WO2015002246A1 - Distance estimation system - Google Patents

Distance estimation system Download PDF

Info

Publication number
WO2015002246A1
WO2015002246A1 PCT/JP2014/067687 JP2014067687W WO2015002246A1 WO 2015002246 A1 WO2015002246 A1 WO 2015002246A1 JP 2014067687 W JP2014067687 W JP 2014067687W WO 2015002246 A1 WO2015002246 A1 WO 2015002246A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
distance
time
transmission
distance estimation
Prior art date
Application number
PCT/JP2014/067687
Other languages
French (fr)
Japanese (ja)
Inventor
康孝 西村
吉原 貴仁
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Publication of WO2015002246A1 publication Critical patent/WO2015002246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present invention relates to distance estimation between terminals (master unit and slave unit) using radio signals, and more particularly to a distance estimation system capable of reducing an increase in error in distance estimation due to the influence of reflected waves and noise.
  • various applications can be realized. For example, if the distance between a person and a house door is known, a smart entry that automatically releases and locks the door lock according to the distance can be realized. In addition, when the distance between the parent and the child is known, it is possible to realize lost child prevention such as an alarm notification when both are separated by a certain distance or more.
  • Non-Patent Document 1 using a sound wave (ultrasonic wave) having a propagation time slower than that of an electromagnetic wave achieves an accuracy of an error number of 10 cm.
  • the distance is estimated by transmitting and receiving sound waves between the parent terminal and the child terminal, and the child terminal notifying the parent terminal of information on the transmission and reception times of the sound waves.
  • FIG. 4 conceptually shows the estimation.
  • a cross-correlation function is used to calculate the reception time.
  • the waveform of the transmitted sound wave is shared between both terminals in advance and a reference signal is generated.
  • the cross-correlation function between the received sound and the reference signal is calculated, and the peak point is determined as the sound wave reception time.
  • Beepbeep a high accuracy acoustic ranging system using cots mobile devices (international conference Sensys 2007)
  • Non-Patent Document 1 related to the prior art, when the cross-correlation function of the reflected wave or noise is larger than the cross-correlation function of the direct wave due to the influence of the reflected wave or noise, the reception time of the sound wave is There was a problem that errors and errors in distance estimation would increase.
  • the present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a distance estimation system that can reduce an increase in error due to the influence of reflected waves and noise.
  • the present invention is a distance estimation system that includes a parent device and a child device, and estimates a distance between the parent device and the child device, both the parent device and the child device, A distance estimation signal is continuously transmitted and received between each time with a predetermined interval between each time, and a distance estimation signal transmission / reception unit for acquiring the transmission / reception time is provided, and the master unit is based on the acquired transmission / reception time, A distance estimation unit that estimates a distance between the parent device and the child device at each time; and a clock deviation calculation unit that calculates a clock deviation between the parent device and the child device at each time based on the acquired transmission / reception time; And a determination unit for determining whether or not the acquired transmission / reception time at each time is a correction target based on the calculated clock deviation history.
  • the present invention it is possible to automatically determine whether the transmission / reception time used for the current distance estimation is to be corrected by comparing the history of the clock deviation with the clock deviation when attempting to estimate the current distance.
  • an increase in error due to the influence of reflected waves and noise is taken into consideration in advance. Can be avoided, and the influence can be reduced.
  • FIG. 1 is a functional block diagram of a parent device and a child device constituting a distance estimation system according to an embodiment of the present invention.
  • the distance estimation system 100 includes a parent device 1P and a child device 1C.
  • Master unit 1P includes a control signal transmission / reception unit 2P and a distance estimation signal transmission / reception unit 3P
  • slave unit 1C includes a control signal transmission / reception unit 2C and a distance estimation signal transmission / reception unit 3C.
  • the control signal transmission / reception units 2P and 2C and the distance estimation signal transmission / reception units 3P and 3C to which the same names and corresponding symbols are attached respectively have the same function and / or functions corresponding to each other as described below.
  • the control signal transmission / reception units 2P and 2C transmit and receive various control signals between the master unit 1P and the slave unit 1C.
  • various setting information used in the present invention is shared between the master unit 1P and the slave unit 1C, and various processes performed between the master unit 1P and the slave unit 1C are executed. Timing adjustments are made.
  • Communication media for control signals include Bluetooth (registered trademark), Wi-Fi (registered trademark), sound wave / ultrasound, 2G / 3G / LTE / WiMax (registered trademark), etc., directly between master unit 1P and slave unit 1C Anything that communicates or via a base station can be used.
  • the type of communication media used for each type of control signal may be different.
  • the distance estimation signal transmitting / receiving unit 3P, 3C performs transmission / reception of a distance estimation signal for estimating the distance between the two units 1P, 1C between the master unit 1P and the slave unit 1C, and the time at which the transmission / reception is performed. Record (transmission / reception time).
  • Bluetooth registered trademark
  • Wi-Fi registered trademark
  • sound waves / ultrasonic waves or the like that can communicate directly between the parent device and the child device can be used.
  • the distance estimation signal transmission / reception unit 3C on the side of the slave unit 1C notifies the distance estimation signal transmission / reception unit 3P on the side of the base unit 1P of the transmission / reception time information recorded in the slave unit 1C.
  • a signal separate from the distance estimation signal may be used, or a communication medium similar to the control signal may be used.
  • base unit 1P further includes a distance estimation unit 4, a clock shift calculation unit 5, a clock shift history recording unit 51, a determination unit 6, a correction unit 7, and a transmission / reception time recording unit 8.
  • the outline of each part is as follows.
  • the distance estimation unit 4 transmits the transmission / reception time in the parent device 1P itself acquired by the distance estimation signal transmission / reception unit 3P and the transmission / reception time in the child device 1C acquired by the distance estimation signal transmission / reception unit 3C (to the parent device 1P side) And the distance D (i between the parent device 1P and the child device 1C when the i-th distance estimation signal is transmitted / received based on (the “time of transmission / reception at the i-th time”) ).
  • the acquired value as it is Either (the i-th transmission / reception time) or a value obtained by correcting the acquired value as it is by the correction unit 7 is used. Details of the distance estimation will be described later.
  • the clock deviation calculation unit 5 calculates a deviation t_dif (i) between the clock in the master unit 1P and the clock in the slave unit 1C when the i-th distance estimation signal is transmitted / received based on the i-th transmission / reception time. Details of the calculation will be described later.
  • the clock shift history recording unit 51 records the clock shift t_dif (i) calculated for each i times by the clock shift calculation unit 5 and holds it as a history.
  • the stored history is referred to by the determination unit 6.
  • the determination unit 6 refers to the clock deviation history t_dif (i) recorded in the time i recorded in the clock deviation history recording unit 51, and whether the transmission / reception time at the i-th time is a target to be corrected with low accuracy. Judge whether or not. Details of the determination will be described later.
  • the correction unit 7 corrects the i-th transmission / reception time. Details thereof will be described later.
  • the flow arrows provided for the reference are not drawn for the sake of simplicity.
  • FIG. 2 is a diagram showing an example of each step in the processing procedure between the master unit 1P and the slave unit 1C when performing distance estimation with correction according to the present invention. Details of the processing of each unit in FIG. 1 will be described while explaining the processing procedure.
  • step S01 a communication channel is established between the parent devices 1P and 1C via the control signal transmission / reception units 2P and 2C.
  • step S02 a signal to start processing for a series of distance estimations continued over i each time is transmitted from the parent device 1P to the child device 1C through the control signal transmission / reception units 2P and 2C. .
  • step SPC [i] distance estimation signal transmission / reception unit 3P of base unit 1P transmits i-th distance estimation signal P_i, and distance estimation signal transmission / reception unit 3C of handset 1C performs i-th distance estimation signal Send C_i. Further, in step SPC [i] 0, with each transmission, the distance estimation signal transmitting / receiving unit 3P of the parent device 1P acquires the transmission time T P_S (i) of the P_i transmitted by itself and transmitted by the child device 1C. Obtain the reception time T P_R (i) of C_i.
  • the distance estimation signal transmitting / receiving unit 3C of the slave unit 1C acquires the transmission time T C_S (i) of C_i transmitted by itself and acquires the reception time T C_R (i) of P_i transmitted by the master unit 1P. .
  • FIG. 3 is a diagram for schematically explaining the above-described series of transmission / reception times in step SPC [i].
  • (1) is a time-series viewpoint, and (2) is a device-like transmission / reception. From this point of view, the series of times are shown.
  • (2) is a transmission unit 3PS (speaker if the signal is a sound wave) and a reception unit 3PM (a microphone if the signal is a sound wave) included in the distance estimation signal transmission / reception unit 3P, and a transmission included in the distance estimation signal transmission / reception unit 3C.
  • a unit 3CS and a receiving unit 3CM are shown.
  • the transmission unit 3PS transmits the signal P_i, and the reception time at the reception unit 3PM at the “self” 3P of the transmitted P_i is the “transmission” time T P_S (i), and the other party of the transmitted P_i
  • the reception time at the reception unit 3CM at 3C is the reception time T C_R (i).
  • the transmission unit 3CS transmits a signal C_i
  • the reception time at the reception unit 3CM at the “self” 3C of the transmitted C_i is the “transmission” time T C_S (i)
  • the transmitted C_i The reception time at the receiving unit 3PM at the other party 3P is the reception time T P_R (i).
  • the transmission time T P_S (i) and the reception time T P_R (i) are the values of the watch that manages the reception recording (recording if the signal is a sound wave) in the receiving unit 3PM. It is acquired as the time, that is, as the time of the clock of the parent device 1P.
  • the reception time T C_R (i) and the transmission time T C_S (i) are acquired as the clock time for managing reception records in the reception unit 3CM, that is, as the clock time of the slave unit 1C.
  • the detection may be performed as follows.
  • a cross-correlation function is used to acquire each transmission / reception time.
  • the waveform of the distance estimation signal is shared in advance, and the transmission units 3PS and 3CS transmit the reference signal sharing the waveform.
  • Receiving units 3PM and 3CM calculate a cross-correlation function between a series of signals and a reference signal in reception recording, and determine peak times as transmission / reception times.
  • step SPC [i] 0 when the transmission / reception of step SPC [i] 0 as described above is completed, the distance estimation signal transmission / reception unit 3P receives the transmission / reception interval acquired by itself in step SP [i] 1 on the base unit 1P side.
  • T P (i) can be calculated as follows.
  • step SC [i] 1 in the slave unit 1C side the distance estimation signal transmitting and receiving part 3C has a calculated ready as follows its acquired apart T C (i) of the transmission and reception . Each of these may actually calculate each interval.
  • T P (i) T P_R (i) -T P_S (i)
  • T C (i) T C_R (i) -T C_S (i)
  • step SC [i] 2 slave unit 1C notifies base unit 1P of reception time T C_R (i) and transmission time T C_S (i) that it acquired in step SPC [i] 0.
  • step SP [i] 2 base unit 1P acquires the notified times. As described above, the notification is performed via the distance estimation signal transmitting / receiving units 3P and 3C. At this time, a signal for information notification that is separate from the distance estimation signal may be used.
  • step SP [i] 3 the master unit 1P, a series of transmission and reception time that it has acquired (acquired T P_r the base unit 1P (i) and T P_S (i), the slave unit 1C obtains the master unit notified T C_R the 1P (i) and T C_S (i)) is, whether it should be corrected, it is determined at decision section 6.
  • step SP [i] 3 first, the clock deviation calculation unit 5 performs the following series of processes in order to make the determination.
  • a clock deviation t_dif (i) between the parent device 1P and the child device 1C at the i-th transmission time (referred to as “this time”) is calculated based on the series of transmission / reception times.
  • the determination unit 6 determines that the series of transmission / reception times acquired by the determination unit 6 need not be corrected. If it is determined, it is determined that the series of transmission / reception times acquired by itself should be corrected.
  • the held information can be referred to as appropriate by each unit of base unit 1P.
  • NTP Network Time Protocol
  • Non-Patent Document 2 Network Time Protocol (IETF RFC 1305) http://www.ietf.org/rfc/rfc1305.txt
  • the above first processing has been carried out in the past before i this time, and a series of clock deviation histories has been obtained.
  • the second process is performed using the history from the following viewpoints.
  • the clocks of the master unit 1P and the slave unit 1C shift with time due to the difference in clock source, but in a short period such as a period in which distance estimation is repeatedly performed, it can be considered that the change of the clock shift is extremely small. Therefore, ideally, the clock deviation t_dif (i) is expected to be a substantially constant value.
  • the clock deviation t_dif (i) of the current i is This value is somewhat different from the normally calculated value t_dif.
  • the determination unit 6 determines whether or not to correct according to the determination. Therefore, when the following equation is established, the current time i deviation t_dif (i) is an outlier, and it is determined that the transmission / reception time needs to be corrected. On the other hand, if it does not hold, it is determined that the correction is unnecessary.
  • the threshold value th is given in advance as a parameter that depends on the required accuracy for distance estimation in the distance estimation unit 4. For example, when the distance estimation signal is a sound wave and the required accuracy is 30 cm, the threshold th is about 1 [ms].
  • m is a parameter indicating the number of past information to be used. For example, an average value or median value of the past m clock deviations t_dif (j) may be used as the actual clock deviation t_dif.
  • the distribution of the clock deviation value t_dif (j) in the past history may be obtained, and those determined to be outliers may be excluded.
  • the determination of the threshold th may also serve as a determination as to whether or not to exclude from the history after i this time.
  • step SP [i] 4 when it is determined whether or not the correction should be made in step SP [i] 3, in step SP [i] 4, the distance estimation unit 4 uses the estimation method according to the determination to cause the distance estimation unit 4 to perform the parent device 1P and the child device 1C. And estimate the distance D (i) at this time i.
  • the distance estimation unit 4 uses the estimation method according to the determination to cause the distance estimation unit 4 to perform the parent device 1P and the child device 1C. And estimate the distance D (i) at this time i.
  • c is the speed of the distance estimation signal (the speed of sound if sound waves). Further, since the principle of calculating the distance by the above formula is well known, the description thereof will be omitted, but the influence of the clock deviation is removed by using the four times by the principle. In Non-Patent Document 1, the distance is calculated based on the principle.
  • t_dif is the original normal clock deviation obtained in step SP [i] 3 described above.
  • the clock deviation t_dif is adjusted as shown in the above equation in order to eliminate the influence of the error caused by the clock deviation t_dif. ing.
  • the distance estimation unit 4 estimates the corrected distance D (i) using the propagation times t P (i) and t C (i) as in the following (Procedure 1) to (Procedure 3). To do.
  • step 1 The distances D P (i) and D C (i) when the propagation times t P (i) and t C (i) are used are calculated by the following equations.
  • the distances correspond to the signals P_i and C_i, respectively.
  • c is the speed of the distance estimation signal as described above.
  • D P (i) T P (i) * c
  • D C (i) T C (i) * c
  • Step 2 The calculated distance is compared with the latest estimated distance D (i-1) in the past to confirm whether it is an outlier.
  • the confirmation may be performed by confirming whether the following (Expression 1) and (Expression 2) are satisfied.
  • Vth is a threshold value indicating the maximum value of the relative speed between the parent device 1P and the child device 1C, and a predetermined value corresponding to a specific application to which the distance estimation system 100 is applied may be given in advance.
  • T (i) is an interval when the transmission / reception / distance estimation is repeated as shown in FIG. 2, and is an interval between the current i-th time and the immediately preceding i-1th time.
  • the past estimated distance D (i-1) may be recorded as additional information by the transmission / reception time recording unit 8 or the like.
  • the distance estimation unit 4 obtains the corrected distance D (i) according to the following case classifications 1 to 3.
  • the result of the estimated distance D (i) may be an estimation failure, or the past estimated distance D (ik) may be substituted. In the case of substituting, it is sufficient to use the latest past ik in which the distance is estimated based on the determination not to be corrected among the past d.
  • the interval T (i) is grasped only in the master unit 1P, and the slave unit 1C that has received a predetermined reference signal from the master unit 1P immediately transmits the reference signal to the master 1P side.
  • Good. (1) of FIG. 3 is an example of a time series possible with such a configuration.
  • the parent device 1P and the child device 1C only need to be able to identify that the reference signal received from the counterpart side corresponds to the i-th time. The identification can be performed by the presetting by the control signal.
  • the distance estimation signal is output at the next i + 1-th time or the i + k-th time after the predetermined number k (k> 0) times.
  • the intensity may be decreased by a predetermined ratio to reduce the influence of the reflected wave, and similarly, the constituent frequencies may be switched in a predetermined pattern.
  • the transmission interval T (i) may be narrowed by a predetermined rate.
  • the change of the setting may be shared by the master unit 1P and the slave unit 1C by the control signal. After the setting change, when it is continuously determined that correction is unnecessary for a predetermined number of times, the original setting may be restored.
  • step 3 In order for the determination unit 6 to determine the necessity of correction, it is necessary to obtain a normal clock deviation t_dif. Therefore, it is necessary to accumulate the clock deviation t_dif (i) of each time i by the clock deviation calculation unit 5 over a predetermined number N and analyze the distribution.
  • the provisionally calculated period is a preparation period for calculating the normal value of the clock deviation t_dif (i), and after the preparation period ends, the distance D (i) is officially calculated. You may make it ask.
  • the distance estimation system 100 of the present invention may include only the determination unit 6 among the determination unit 6 and the correction unit 7. In this case, when the determination unit 6 determines the necessity for correction, the distance estimation unit 4 performs distance estimation by a normal method without correction, and adds information indicating that the estimated distance is low in reliability. Alternatively, the distance estimation result itself may be discarded.

Abstract

This invention provides a distance estimation system whereby increases in error due to the effects of reflected waves or noise can be reduced. A base unit (1P) and a remote unit (1C) use distance-estimation-signal transmission/reception units (3P, 3C) to continuously exchange distance-estimation signals at prescribed intervals and obtain transmission/reception times therefor. A clock-offset computation unit (5) in the base unit (1P) uses said transmission/reception times to compute the offset between clocks in the base unit and the remote unit each time the distance-estimation signals are exchanged. From a history of computed clock offsets, if a determination unit (6) identifies the current clock offset as an off-target value, said determination unit (6) determines that the transmission/reception times need to be corrected, and a correction unit (7) corrects said transmission/reception times. A distance estimation unit (4) computes a distance on the basis of the transmission/reception times, and if a correction was made, the distance estimation unit (4) uses the corrected transmission/reception times.

Description

距離推定システムDistance estimation system
 本発明は、無線信号を使った端末(親機及び子機)間の距離推定に関し、特に、反射波や雑音の影響による距離推定の誤差増大を低減することが可能な、距離推定システムに関する。 The present invention relates to distance estimation between terminals (master unit and slave unit) using radio signals, and more particularly to a distance estimation system capable of reducing an increase in error in distance estimation due to the influence of reflected waves and noise.
 人と人、人とモノ、モノとモノとの距離が分かると、様々な応用が実現できる。例えば、人と家のドアとの距離が分かると、距離に応じてドアロックの解除・施錠を自動的に行うスマートエントリが実現できる。また、親と子供との距離が分かると、両者が一定距離以上離れた際にアラーム通知する等の迷子防止を実現できる。 If we know the distance between people, people and things, things and things, various applications can be realized. For example, if the distance between a person and a house door is known, a smart entry that automatically releases and locks the door lock according to the distance can be realized. In addition, when the distance between the parent and the child is known, it is possible to realize lost child prevention such as an alarm notification when both are separated by a certain distance or more.
 従来、距離推定の代表的な方法として、端末間で電波や音波などの無線を交換する際の受信信号強度に基づいて距離を推定する方法がある。しかしながら、無線デバイスの感度や周辺雑音、遮蔽物によって受信信号強度は変化するため、推定精度は十分ではなかった。 Conventionally, as a typical method of distance estimation, there is a method of estimating a distance based on received signal strength when radio waves such as radio waves and sound waves are exchanged between terminals. However, since the received signal intensity varies depending on the sensitivity of the wireless device, ambient noise, and shielding, the estimation accuracy is not sufficient.
 一方、伝搬時間を利用する方法では、無線デバイスの感度や雑音による影響は少なく、高精度な距離推定が可能である。特に、電磁波と比較して伝搬時間が遅い音波(超音波)を利用した非特許文献1では、誤差数10cmの精度を実現している。 On the other hand, in the method using the propagation time, the influence of the sensitivity and noise of the wireless device is small, and highly accurate distance estimation is possible. In particular, Non-Patent Document 1 using a sound wave (ultrasonic wave) having a propagation time slower than that of an electromagnetic wave achieves an accuracy of an error number of 10 cm.
 非特許文献1では具体的には、親端末と子端末間で音波を送受信し、子端末が親端末に音波の送受信時刻の情報を通知することで、距離を推定する。図4に当該推定を概念的に示す。受信時刻の算出には、相互相関関数を利用している。送信音波の波形を事前に両端末間で共有し、リファレンス信号を生成する。受信した音とリファレンス信号の相互相関関数を計算し、ピークとなる点を音波の受信時刻と決定する。 Specifically, in Non-Patent Document 1, the distance is estimated by transmitting and receiving sound waves between the parent terminal and the child terminal, and the child terminal notifying the parent terminal of information on the transmission and reception times of the sound waves. FIG. 4 conceptually shows the estimation. A cross-correlation function is used to calculate the reception time. The waveform of the transmitted sound wave is shared between both terminals in advance and a reference signal is generated. The cross-correlation function between the received sound and the reference signal is calculated, and the peak point is determined as the sound wave reception time.
 しかしながら、従来技術に係る非特許文献1においては、反射波や雑音の影響により、直接波の相互相関関数より反射波や雑音の相互相関関数の方が大きい値となる場合、音波の受信時刻を誤り、距離推定の誤差が増大してしまうという課題があった。 However, in Non-Patent Document 1 related to the prior art, when the cross-correlation function of the reflected wave or noise is larger than the cross-correlation function of the direct wave due to the influence of the reflected wave or noise, the reception time of the sound wave is There was a problem that errors and errors in distance estimation would increase.
 本発明は、上記従来技術の課題に鑑み、反射波や雑音の影響による誤差増大を低減することのできる距離推定システムを提供することを目的とする。 The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a distance estimation system that can reduce an increase in error due to the influence of reflected waves and noise.
 上記目的を達成するため、本発明は、親機及び子機を備え、当該親機と子機との間の距離を推定する距離推定システムであって、前記親機及び子機の両者が、各回の間に所定間隔を設けて互いに距離推定信号を継続的に送受すると共に、その送受信時刻を取得する距離推定信号送受部を備え、前記親機が、前記取得された送受信時刻に基づいて、各回における前記親機と子機との間の距離を推定する距離推定部と、前記取得された送受信時刻に基づいて、各回における前記親機と子機の時計ずれを算出する時計ずれ算出部と、前記算出された時計ずれの履歴に基づいて、各回における前記取得された送受信時刻が補正対象であるか否かを判断する判断部と、を備えることを特徴とする。 In order to achieve the above object, the present invention is a distance estimation system that includes a parent device and a child device, and estimates a distance between the parent device and the child device, both the parent device and the child device, A distance estimation signal is continuously transmitted and received between each time with a predetermined interval between each time, and a distance estimation signal transmission / reception unit for acquiring the transmission / reception time is provided, and the master unit is based on the acquired transmission / reception time, A distance estimation unit that estimates a distance between the parent device and the child device at each time; and a clock deviation calculation unit that calculates a clock deviation between the parent device and the child device at each time based on the acquired transmission / reception time; And a determination unit for determining whether or not the acquired transmission / reception time at each time is a correction target based on the calculated clock deviation history.
 本発明によれば、時計ずれの履歴と今回距離推定しようとしている際の時計ずれとを比較して、今回距離推定に用いる送受信時刻が補正対象であるかを自動で判断することができる。ここで、補正対象であると判断された回においては、送受信時刻自体の精度が低い可能性が高い情報が得られるので、当該情報を考慮のうえ、反射波や雑音の影響による誤差増大を事前に回避し、その影響を低減することができる。 According to the present invention, it is possible to automatically determine whether the transmission / reception time used for the current distance estimation is to be corrected by comparing the history of the clock deviation with the clock deviation when attempting to estimate the current distance. Here, since it is possible to obtain information with a high possibility that the accuracy of the transmission / reception time itself is low at the times determined to be correction targets, an increase in error due to the influence of reflected waves and noise is taken into consideration in advance. Can be avoided, and the influence can be reduced.
一実施形態に係る、距離推定システムを構成する親機及び子機の機能ブロック図である。It is a functional block diagram of the main | base station and the subunit | mobile_unit which comprise the distance estimation system based on one Embodiment. 本発明における親機及び子機の間の処理手順の例を示す図である。It is a figure which shows the example of the process sequence between the main | base station and the subunit | mobile_unit in this invention. 親機及び子機の間で送受信される、距離推定信号の各送受信の時刻を模式的に説明するための図である。It is a figure for demonstrating typically the time of each transmission / reception of the distance estimation signal transmitted / received between a main | base station and a subunit | mobile_unit. 非特許文献1における距離推定を概念的に示す図である。It is a figure which shows the distance estimation in a nonpatent literature 1 notionally.
 図1は、本発明の一実施形態に係る、距離推定システムを構成する親機及び子機の機能ブロック図である。距離推定システム100は、親機1P及び子機1Cを備える。親機1Pは、制御信号送受部2P及び距離推定信号送受部3Pを備え、子機1Cは制御信号送受部2C及び距離推定信号送受部3Cを備える。ここで、同一名称及び対応する符号が付された制御信号送受部2P,2C及び距離推定信号送受部3P,3Cはそれぞれ、以下説明するように、同一機能及び/又は互いに対応する機能を担う。 FIG. 1 is a functional block diagram of a parent device and a child device constituting a distance estimation system according to an embodiment of the present invention. The distance estimation system 100 includes a parent device 1P and a child device 1C. Master unit 1P includes a control signal transmission / reception unit 2P and a distance estimation signal transmission / reception unit 3P, and slave unit 1C includes a control signal transmission / reception unit 2C and a distance estimation signal transmission / reception unit 3C. Here, the control signal transmission / reception units 2P and 2C and the distance estimation signal transmission / reception units 3P and 3C to which the same names and corresponding symbols are attached respectively have the same function and / or functions corresponding to each other as described below.
 制御信号送受部2P,2Cは、親機1P及び子機1Cの間で、各種の制御信号を送受信する。当該制御信号の送受信により、本発明にて利用する各種の設定情報が親機1P及び子機1Cの間で共有されると共に、親機1P及び子機1Cの間でなされる各種の処理の実行タイミングの調整がなされる。 The control signal transmission / reception units 2P and 2C transmit and receive various control signals between the master unit 1P and the slave unit 1C. By transmitting and receiving the control signal, various setting information used in the present invention is shared between the master unit 1P and the slave unit 1C, and various processes performed between the master unit 1P and the slave unit 1C are executed. Timing adjustments are made.
 制御信号の通信メディアには、Bluetooth(登録商標)やWi-Fi(登録商標)、音波/超音波、2G/3G/LTE/WiMax(登録商標)等、親機1Pと子機1C間で直接通信するものや、基地局を介するものを利用することができる。ここで、制御信号の種類毎に利用する通信メディアの種類が異なっていてもよい。 Communication media for control signals include Bluetooth (registered trademark), Wi-Fi (registered trademark), sound wave / ultrasound, 2G / 3G / LTE / WiMax (registered trademark), etc., directly between master unit 1P and slave unit 1C Anything that communicates or via a base station can be used. Here, the type of communication media used for each type of control signal may be different.
 距離推定信号送受部3P,3Cは、親機1P及び子機1Cの間で、当該両機1P,1Cの間の距離を推定するための距離推定信号の送受信を行うと共に、当該送受信のなされた時刻(送受信時刻)を記録する。 The distance estimation signal transmitting / receiving unit 3P, 3C performs transmission / reception of a distance estimation signal for estimating the distance between the two units 1P, 1C between the master unit 1P and the slave unit 1C, and the time at which the transmission / reception is performed. Record (transmission / reception time).
 距離推定信号は、制御信号によって構成周波数などが設定されたパルス状の無線信号であり、同じく制御信号によって各i回(i=1, 2, 3, ...)の送信間隔T(i)が設定されたうえで、継続的に親機1P及び子機1Cの間で送受信が行われる。 The distance estimation signal is a pulse-shaped radio signal whose component frequency is set by the control signal, and is also transmitted i times (i = 1, 2, 3, ...) by the control signal T (i) Is set, and transmission / reception is continuously performed between the parent device 1P and the child device 1C.
 距離推定信号の通信メディアには、Bluetooth(登録商標)やWi-Fi(登録商標)、音波/超音波等、親機と子機間で直接通信するものを利用することができる。 As the communication medium for the distance estimation signal, Bluetooth (registered trademark), Wi-Fi (registered trademark), sound waves / ultrasonic waves, or the like that can communicate directly between the parent device and the child device can be used.
 さらに、子機1Cの側の距離推定信号送受部3Cは、当該子機1Cにおいて記録された送受信の時刻の情報を、親機1Pの側の距離推定信号送受部3Pへと通知する。当該送受信時刻の通知には、上記距離推定信号とは別途の信号を用いてよく、制御信号と同様の通信メディアのものを利用してよい。 Furthermore, the distance estimation signal transmission / reception unit 3C on the side of the slave unit 1C notifies the distance estimation signal transmission / reception unit 3P on the side of the base unit 1P of the transmission / reception time information recorded in the slave unit 1C. For the notification of the transmission / reception time, a signal separate from the distance estimation signal may be used, or a communication medium similar to the control signal may be used.
 一方、図1に示すように、親機1Pはさらに、距離推定部4、時計ずれ算出部5、時計ずれ履歴記録部51、判断部6、補正部7及び送受信時刻記録部8を備える。当該各部の概要は以下の通りである。 On the other hand, as shown in FIG. 1, base unit 1P further includes a distance estimation unit 4, a clock shift calculation unit 5, a clock shift history recording unit 51, a determination unit 6, a correction unit 7, and a transmission / reception time recording unit 8. The outline of each part is as follows.
 距離推定部4は、距離推定信号送受部3Pが取得した親機1P自身における送受信時刻と、距離推定信号送受部3Cが取得した子機1Cにおける送受信時刻(を親機1Pの側へと送信したもの)と、(これらを、「i回目における送受信時刻」とする)に基づいて、当該i回目の距離推定信号が送受信された際の親機1Pと子機1Cとの間の距離D(i)を推定する。 The distance estimation unit 4 transmits the transmission / reception time in the parent device 1P itself acquired by the distance estimation signal transmission / reception unit 3P and the transmission / reception time in the child device 1C acquired by the distance estimation signal transmission / reception unit 3C (to the parent device 1P side) And the distance D (i between the parent device 1P and the child device 1C when the i-th distance estimation signal is transmitted / received based on (the “time of transmission / reception at the i-th time”) ).
 当該距離D(i)の推定の際には、後述の判断部6による判断のもとで、推定に利用する上記親機1P及び子機1Cにおける一連の送受信時刻として、上記取得したそのままの値(i回目における送受信時刻)、又は、当該取得したそのままの値を補正部7によって補正した値、のいずれかを利用する。当該距離推定の詳細は後述する。 When estimating the distance D (i), based on the determination by the determination unit 6 described later, as the series of transmission / reception times in the parent device 1P and the child device 1C used for estimation, the acquired value as it is Either (the i-th transmission / reception time) or a value obtained by correcting the acquired value as it is by the correction unit 7 is used. Details of the distance estimation will be described later.
 時計ずれ算出部5は、i回目における送受信時刻に基づいて、当該i回目の距離推定信号が送受信された際の親機1Pにおける時計と子機1Cにおける時計とのずれt_dif(i)を算出する。当該算出の詳細は後述する。 The clock deviation calculation unit 5 calculates a deviation t_dif (i) between the clock in the master unit 1P and the clock in the slave unit 1C when the i-th distance estimation signal is transmitted / received based on the i-th transmission / reception time. . Details of the calculation will be described later.
 時計ずれ履歴記録部51は、時計ずれ算出部5によって各i回につき当該算出された時計ずれt_dif(i)を記録し、履歴として保持する。当該保持された履歴は、判断部6によって参照される。 The clock shift history recording unit 51 records the clock shift t_dif (i) calculated for each i times by the clock shift calculation unit 5 and holds it as a history. The stored history is referred to by the determination unit 6.
 判断部6は、時計ずれ履歴記録部51に記録された各回iに渡る時計ずれの履歴t_dif(i)を参照して、当該i回目における送受信時刻が、精度が低く補正すべき対象であるか否かを判断する。当該判断の詳細は後述する。 The determination unit 6 refers to the clock deviation history t_dif (i) recorded in the time i recorded in the clock deviation history recording unit 51, and whether the transmission / reception time at the i-th time is a target to be corrected with low accuracy. Judge whether or not. Details of the determination will be described later.
 補正部7は、判断部6にて当該i回目における送受信時刻が補正すべき対象であると判定された際に、当該i回目における送受信時刻に対して、補正を実施する。その詳細については後述する。 When the determination unit 6 determines that the i-th transmission / reception time is to be corrected, the correction unit 7 corrects the i-th transmission / reception time. Details thereof will be described later.
 送受信時刻記録部8は、i回目における送受信時刻を、各i回(i=1, 2, 3, ...)に渡って履歴として記録し、当該記録を親機1Pの各部に対して、必要に応じて参照に供する。なお図1では、当該参照に供する流れの矢印は、簡略化のために描くのを省略している。 The transmission / reception time recording unit 8 records the transmission / reception time at the i-th time as a history over each i-th (i = 1, 2, 3, ...), and the record for each part of the main unit 1P, Use as a reference if necessary. In FIG. 1, the flow arrows provided for the reference are not drawn for the sake of simplicity.
 図2は、本発明による補正を伴う距離推定を行う際の、親機1P及び子機1Cの間での処理手順における各ステップの例を示す図である。当該処理手順を説明しながら、図1の各部の処理の詳細を説明する。 FIG. 2 is a diagram showing an example of each step in the processing procedure between the master unit 1P and the slave unit 1C when performing distance estimation with correction according to the present invention. Details of the processing of each unit in FIG. 1 will be described while explaining the processing procedure.
 ステップS01にて、親子機1P,1C間では、制御信号送受部2P,2Cを介して通信チャネルを確立する。ステップS02にて、同じく制御信号送受部2P,2Cを介して、親機1Pから子機1Cへと、各回iに渡って継続される一連の距離推定のための処理の開始の合図を送信する。 In step S01, a communication channel is established between the parent devices 1P and 1C via the control signal transmission / reception units 2P and 2C. In step S02, a signal to start processing for a series of distance estimations continued over i each time is transmitted from the parent device 1P to the child device 1C through the control signal transmission / reception units 2P and 2C. .
 なお、図2では、(1)に当該一連の処理の1回目(i=1の場合)が、(i)に当該一連の処理の一般のi回目が示されている。各回の処理は基本的には同様であるので、以下、(i)の一般的なi回目の処理を説明する。各回の処理は前述のように、所定間隔T(i)を設けて繰り返される。 In FIG. 2, (1) shows the first time of the series of processing (when i = 1), and (i) shows the general i-th time of the series of processing. Since each process is basically the same, the general i-th process of (i) will be described below. Each process is repeated with a predetermined interval T (i) as described above.
 ステップSPC[i]0では、親機1Pの距離推定信号送受部3Pが、i回目の距離推定信号P_iを送信すると共に、子機1Cの距離推定信号送受部3Cが、i回目の距離推定信号C_iを送信する。ステップSPC[i]0ではさらに、当該各送信に伴い、親機1Pの距離推定信号送受部3Pが、自身の送信したP_iの送信時刻TP_S(i)を取得し、子機1Cの送信したC_iの受信時刻TP_R(i)を取得する。同様に、子機1Cの距離推定信号送受部3Cが、自身の送信したC_iの送信時刻TC_S(i)を取得し、親機1Pの送信したP_iの受信時刻TC_R(i)を取得する。 In step SPC [i] 0, distance estimation signal transmission / reception unit 3P of base unit 1P transmits i-th distance estimation signal P_i, and distance estimation signal transmission / reception unit 3C of handset 1C performs i-th distance estimation signal Send C_i. Further, in step SPC [i] 0, with each transmission, the distance estimation signal transmitting / receiving unit 3P of the parent device 1P acquires the transmission time T P_S (i) of the P_i transmitted by itself and transmitted by the child device 1C. Obtain the reception time T P_R (i) of C_i. Similarly, the distance estimation signal transmitting / receiving unit 3C of the slave unit 1C acquires the transmission time T C_S (i) of C_i transmitted by itself and acquires the reception time T C_R (i) of P_i transmitted by the master unit 1P. .
 図3は、当該ステップSPC[i]における上記の一連の送受信の時刻を模式的に説明するための図であり、(1)は時系列的な観点から、(2)は送受信を行うデバイス的な観点から、当該一連の時刻を示している。(2)は、距離推定信号送受部3Pが備える送信部3PS(信号が音波であればスピーカ)及び受信部3PM(信号が音波であればマイク)と、同じく距離推定信号送受部3Cが備える送信部3CS及び受信部3CMを示している。 FIG. 3 is a diagram for schematically explaining the above-described series of transmission / reception times in step SPC [i]. (1) is a time-series viewpoint, and (2) is a device-like transmission / reception. From this point of view, the series of times are shown. (2) is a transmission unit 3PS (speaker if the signal is a sound wave) and a reception unit 3PM (a microphone if the signal is a sound wave) included in the distance estimation signal transmission / reception unit 3P, and a transmission included in the distance estimation signal transmission / reception unit 3C. A unit 3CS and a receiving unit 3CM are shown.
 送信部3PSは信号P_iを送信し、当該送信されたP_iの「自分自身」3Pでの受信部3PMにおける受信時刻が、「送信」時刻TP_S(i)であり、当該送信されたP_iの相手方3Cでの受信部3CMにおける受信時刻が、受信時刻TC_R(i)である。 The transmission unit 3PS transmits the signal P_i, and the reception time at the reception unit 3PM at the “self” 3P of the transmitted P_i is the “transmission” time T P_S (i), and the other party of the transmitted P_i The reception time at the reception unit 3CM at 3C is the reception time T C_R (i).
 同様に、送信部3CSは信号C_iを送信し、当該送信されたC_iの「自分自身」3Cでの受信部3CMにおける受信時刻が「送信」時刻TC_S(i)であり、当該送信されたC_iの相手方3Pでの受信部3PMにおける受信時刻が受信時刻TP_R(i)である。 Similarly, the transmission unit 3CS transmits a signal C_i, and the reception time at the reception unit 3CM at the “self” 3C of the transmitted C_i is the “transmission” time T C_S (i), and the transmitted C_i The reception time at the receiving unit 3PM at the other party 3P is the reception time T P_R (i).
 従って、(2)において括弧で記すように、送信時刻TP_S(i)及び受信時刻TP_R(i)は、受信部3PMにおける受信記録(信号が音波であれば、録音)を管理する時計の時刻として、すなわち、親機1Pの時計の時刻として、取得される。同様に、受信時刻TC_R(i)及び送信時刻TC_S(i)は、受信部3CMにおける受信記録を管理する時計の時刻として、すなわち、子機1Cの時計の時刻として、取得される。 Therefore, as described in parentheses in (2), the transmission time T P_S (i) and the reception time T P_R (i) are the values of the watch that manages the reception recording (recording if the signal is a sound wave) in the receiving unit 3PM. It is acquired as the time, that is, as the time of the clock of the parent device 1P. Similarly, the reception time T C_R (i) and the transmission time T C_S (i) are acquired as the clock time for managing reception records in the reception unit 3CM, that is, as the clock time of the slave unit 1C.
 なお、受信部3PM,3CMにおいて受信記録内から以上のような各送信/受信時刻を取得するには、当該受信記録内から対応する音波の波形を検出する必要がある。当該検出は、次のようにすればよい。 In addition, in order to acquire each transmission / reception time as described above from the reception record in the reception units 3PM and 3CM, it is necessary to detect the waveform of the corresponding sound wave from the reception record. The detection may be performed as follows.
 すなわち、各送信/受信時刻の取得には、相互相関関数などを利用する。具体的には、制御信号送受部2P,2Cで送受する制御信号を利用して、距離推定信号の波形を事前に共有し、送信部3PS,3CSは、当該波形が共有されたリファレンス信号を送信する。受信部3PM,3CMでは、受信記録における一連の信号とリファレンス信号との相互相関関数を計算し、ピークとなる時刻を各送信/受信時刻と決定する。 That is, a cross-correlation function is used to acquire each transmission / reception time. Specifically, using the control signals transmitted and received by the control signal transmitting / receiving units 2P and 2C, the waveform of the distance estimation signal is shared in advance, and the transmission units 3PS and 3CS transmit the reference signal sharing the waveform. To do. Receiving units 3PM and 3CM calculate a cross-correlation function between a series of signals and a reference signal in reception recording, and determine peak times as transmission / reception times.
 図2に戻り、以上のようなステップSPC[i]0の送受信を終えると、親機1P側ではステップSP[i]1にて、距離推定信号送受部3Pが、自身の取得した送受信の間隔TP(i)を以下のように算出可能な状態となっている。同様に、子機1C側ではステップSC[i]1にて、距離推定信号送受部3Cが、自身の取得した送受信の間隔TC(i)を以下のように算出可能な状態となっている。これらはそれぞれ、当該各間隔を実際に算出してもよい。
   TP(i) = TP_R(i)-TP_S(i)
   TC(i) = TC_R(i)-TC_S(i)
Returning to FIG. 2, when the transmission / reception of step SPC [i] 0 as described above is completed, the distance estimation signal transmission / reception unit 3P receives the transmission / reception interval acquired by itself in step SP [i] 1 on the base unit 1P side. T P (i) can be calculated as follows. Similarly, at step SC [i] 1 in the slave unit 1C side, the distance estimation signal transmitting and receiving part 3C has a calculated ready as follows its acquired apart T C (i) of the transmission and reception . Each of these may actually calculate each interval.
T P (i) = T P_R (i) -T P_S (i)
T C (i) = T C_R (i) -T C_S (i)
 ステップSC[i]2にて、子機1Cは、自身がステップSPC[i]0で取得した受信時刻TC_R(i)及び送信時刻TC_S(i)を、親機1Pへと通知する。ステップSP[i]2にて、親機1Pは当該通知された各時刻を取得する。当該通知は前述のように、距離推定信号送受部3P,3Cを介して行われ、この際、距離推定信号とは別途の情報通知用の信号を用いてもよい。 In step SC [i] 2, slave unit 1C notifies base unit 1P of reception time T C_R (i) and transmission time T C_S (i) that it acquired in step SPC [i] 0. In step SP [i] 2, base unit 1P acquires the notified times. As described above, the notification is performed via the distance estimation signal transmitting / receiving units 3P and 3C. At this time, a signal for information notification that is separate from the distance estimation signal may be used.
 ステップSP[i]3にて、親機1Pでは、自身が取得した一連の送受信時刻(親機1Pの取得したTP_R(i)及びTP_S(i)と、子機1Cが取得し親機1Pに通知されたTC_R(i)及びTC_S(i))が、補正すべきであるか否かを、判断部6において判断する。 In step SP [i] 3, the master unit 1P, a series of transmission and reception time that it has acquired (acquired T P_r the base unit 1P (i) and T P_S (i), the slave unit 1C obtains the master unit notified T C_R the 1P (i) and T C_S (i)) is, whether it should be corrected, it is determined at decision section 6.
 ステップSP[i]3では、当該判断を下すためにまず、時計ずれ算出部5が次の一連の処理を行う。第一処理として、上記一連の送受信時刻に基づいて当該i回目(「今回」と称する)の送受信時点における親機1Pと子機1Cとの間の時計ずれt_dif(i)を算出する。第二処理として、今回i以前の過去j(j=1, 2, ..., i-1)において既に算出され時計ずれ履歴記録部51に記録されている履歴t_dif(j)(j=1, 2, ..., i-1)から求まる時計ずれの「正常値」t_difと、今回の値t_dif(i)を比較し、これらの値同士が近い値であるか否かを判定する。 In step SP [i] 3, first, the clock deviation calculation unit 5 performs the following series of processes in order to make the determination. As a first process, a clock deviation t_dif (i) between the parent device 1P and the child device 1C at the i-th transmission time (referred to as “this time”) is calculated based on the series of transmission / reception times. As a second process, the history t_dif (j) (j = 1, which is already calculated and recorded in the clock deviation history recording unit 51 in the past j (j = 1, 2, 今 回 ..., i-1) before i this time. , 2, ..., i-1) is compared with the “normal value” t_dif of the clock deviation obtained from this time and the current value t_dif (i) to determine whether or not these values are close to each other.
 判断部6は、上記第二処理にて、近い値であると判定された場合には、自身の取得した一連の送受信時刻は補正の必要はないと判断し、逆に、近い値ではないと判定された場合には、自身の取得した一連の送受信時刻は補正すべきものであると判断する。以下、時計ずれ算出部5による上記第一及び第二処理と、判断部6による判断処理との詳細を説明する。 When the determination unit 6 determines that the values are close in the second process, the determination unit 6 determines that the series of transmission / reception times acquired by the determination unit 6 need not be corrected. If it is determined, it is determined that the series of transmission / reception times acquired by itself should be corrected. Hereinafter, details of the first and second processes by the clock deviation calculation unit 5 and the determination process by the determination unit 6 will be described.
 なお、前提として、今回iの処理を行うに際して、親機1P及び子機1Cの過去の送受信時刻(TP_S(j)、TP_R(j)、TC_S(j)、TC_R(j)) (j=1,2,…,i-1)は、前述のように、親機1Pの送受信時刻記録部8にて保持されている。当該保持された情報は、親機1Pの各部によって適宜参照可能である。 As a premise, when performing the processing of i this time, the past transmission / reception times of the master unit 1P and the slave unit 1C (T P_S (j), T P_R (j), T C_S (j), T C_R (j)) (j = 1, 2,..., i−1) is held in the transmission / reception time recording unit 8 of the base unit 1P as described above. The held information can be referred to as appropriate by each unit of base unit 1P.
 第一処理では、時計ずれ算出部5は、以下の式で今回iの時計ずれt_dif(i)を算出する。
  t_dif(i)=( (TP_S(i) + TP_R(i)) - (TC_S(i) + TC_R(i)) )/2
In the first process, the clock shift calculation unit 5 calculates the clock shift t_dif (i) of the current i by the following equation.
t_dif (i) = ((T P_S (i) + T P_R (i))-(T C_S (i) + T C_R (i))) / 2
 なお、上記の式で時計ずれが算出できることの原理は、インターネットで時刻同期の用途で広く使われているNTP(ネットワークタイムプロトコル;Network Time Protocol)と同様であるので、その説明は省略する。NTPは以下の非特許文献2等に開示されている。 The principle that the clock deviation can be calculated by the above formula is the same as that of NTP (Network Time Protocol) widely used for time synchronization on the Internet, and the explanation is omitted. NTP is disclosed in Non-Patent Document 2 below.
 [非特許文献2]Network Time Protocol (IETF RFC 1305)
 http://www.ietf.org/rfc/rfc1305.txt
[Non-Patent Document 2] Network Time Protocol (IETF RFC 1305)
http://www.ietf.org/rfc/rfc1305.txt
 以上の第一処理は、今回i以前の過去にも実施され、一連の時計ずれの履歴が得られている。本発明では特に、当該履歴を次のような観点で利用して、第二処理を実施する。 The above first processing has been carried out in the past before i this time, and a series of clock deviation histories has been obtained. In the present invention, in particular, the second process is performed using the history from the following viewpoints.
 すなわち、クロックソースの違いにより親機1Pと子機1Cの時計は時間とともにずれていくが、距離推定を繰り返し行う期間などの短期間では、時計のずれの変化は限りなく小さいとみなせる。そのため、理想的には時計ずれt_dif(i)はほぼ一定の値となることが期待される。一方、反射波や雑音の影響により、親機1Pと子機1Cがそれぞれ取得する送受信時刻の内、今回iにおいて少なくとも一方が誤差を含む場合、今回iの時計ずれt_dif(i)は、過去に正常に算出されたものt_difとは、ある程度異なる値となる。 That is, the clocks of the master unit 1P and the slave unit 1C shift with time due to the difference in clock source, but in a short period such as a period in which distance estimation is repeatedly performed, it can be considered that the change of the clock shift is extremely small. Therefore, ideally, the clock deviation t_dif (i) is expected to be a substantially constant value. On the other hand, due to the influence of reflected waves and noise, if at least one of the transmission / reception times acquired by the master unit 1P and the slave unit 1C includes an error in the current i, the clock deviation t_dif (i) of the current i is This value is somewhat different from the normally calculated value t_dif.
 第二処理では、上記観点に基づき、今回のi回目の距離推定における時計ずれt_dif(i)が、本来の正常な時計ずれt_difと所定の閾値th以上異なるか否かを判定する。判断部6は、当該判定に従って、補正すべきか否かを判定する。従って、次式が成立する場合には、今回iの時計ずれt_dif(i)ははずれ値であり、送受信時刻には補正が必要であるという判断が下される。逆に、成立しない場合には、当該補正は不要と判断する。
  |t_dif-t_dif(i)|>th
In the second process, based on the above viewpoint, it is determined whether or not the clock deviation t_dif (i) in the current i-th distance estimation is different from the original normal clock deviation t_dif by a predetermined threshold th or more. The determination unit 6 determines whether or not to correct according to the determination. Therefore, when the following equation is established, the current time i deviation t_dif (i) is an outlier, and it is determined that the transmission / reception time needs to be corrected. On the other hand, if it does not hold, it is determined that the correction is unnecessary.
| t_dif-t_dif (i) |> th
 ここで、閾値thは、距離推定部4における距離推定の際の必要精度に依存したパラメータとして、予め所定値を与えておく。例えば、距離推定信号が音波であって要求精度が30cmの場合、閾値thは1[ms]程度となる。 Here, the threshold value th is given in advance as a parameter that depends on the required accuracy for distance estimation in the distance estimation unit 4. For example, when the distance estimation signal is a sound wave and the required accuracy is 30 cm, the threshold th is about 1 [ms].
 なお、本来の正常な時計ずれt_difは、時計ずれの所定期間に渡る過去履歴t_dif(j)(j=i-m,…,i-2,i-1)から計算する。mは利用する過去の情報の個数を示すパラメタである。例えば、当該過去m個の時計ずれt_dif(j)の平均値や中央値を実際の時計ずれt_difとしてよい。 The original normal clock deviation t_dif is calculated from the past history t_dif (j) (j = i-m,..., I-2, i-1) over a predetermined period of clock deviation. m is a parameter indicating the number of past information to be used. For example, an average value or median value of the past m clock deviations t_dif (j) may be used as the actual clock deviation t_dif.
 なお、上記過去履歴を利用する場合は、過去履歴における時計ずれの値t_dif(j)の分布を求め、はずれ値であると判断されたものは除外するようにしてもよい。上記閾値thの判断で、今回i以降にて当該履歴から除外するか否かの判断を兼ねるようにしてもよい。 When using the above-mentioned past history, the distribution of the clock deviation value t_dif (j) in the past history may be obtained, and those determined to be outliers may be excluded. The determination of the threshold th may also serve as a determination as to whether or not to exclude from the history after i this time.
 以上、ステップSP[i]3にて補正すべきか否かの判断を下すと、ステップSP[i]4では、当該判断に応じた推定方式により、距離推定部4が親機1Pと子機1Cとの今回iの時点での距離D(i)を推定する。以下に、補正しない場合及び補正する場合をそれぞれ説明する。 As described above, when it is determined whether or not the correction should be made in step SP [i] 3, in step SP [i] 4, the distance estimation unit 4 uses the estimation method according to the determination to cause the distance estimation unit 4 to perform the parent device 1P and the child device 1C. And estimate the distance D (i) at this time i. Hereinafter, a case where correction is not performed and a case where correction is performed will be described.
 (補正しない場合)
 距離推定部4は、距離D(i)を次式にて計算する。
  D(i)= ((TP_R(i) - TP_S(i)) - (TC_S(i) - TC_R(i)) / 2*c
(If not corrected)
The distance estimation unit 4 calculates the distance D (i) by the following equation.
D (i) = ((T P_R (i)-T P_S (i))-(T C_S (i)-T C_R (i)) / 2 * c
 なお、上記の式において、cは距離推定信号の速度(音波であれば音速)である。また、上記の式により距離が計算される原理は公知であるので、その説明は省略するが、当該原理により4個の時刻を利用して時計ずれの影響が除去される。非特許文献1でも当該原理によって距離が計算されている。 In the above equation, c is the speed of the distance estimation signal (the speed of sound if sound waves). Further, since the principle of calculating the distance by the above formula is well known, the description thereof will be omitted, but the influence of the clock deviation is removed by using the four times by the principle. In Non-Patent Document 1, the distance is calculated based on the principle.
 (補正する場合)
 まず、補正部7が、次式にて、送受信時刻の補正がなされた形式により、親機1Pと子機1Cが送信した信号P_i、C_iの伝搬時間tP(i)、tC(i)を計算する。
  tP(i)=TC_R(i) - TP_S(i) + t_dif
  tC(i)=TP_R(i) - TC_S(i) - t_dif
(When correcting)
First, the correction unit 7 performs propagation times t P (i) and t C (i) of the signals P_i and C_i transmitted from the parent device 1P and the child device 1C in the form in which the transmission / reception time is corrected by the following equation: Calculate
t P (i) = T C_R (i)-T P_S (i) + t_dif
t C (i) = T P_R (i)-T C_S (i)-t_dif
 なお、上記の式にて、t_difは、前述のステップSP[i]3にて求まっている本来の正常な時計ずれである。ここでは、(補正しない場合)とは異なり4個の時刻ではなく2個の時刻しか使わないため、時計ずれt_difによる誤差の影響を除外すべく、上記の式のように時計ずれt_difを加減している。 In the above equation, t_dif is the original normal clock deviation obtained in step SP [i] 3 described above. Here, unlike (when not corrected), only two times are used instead of four times, so the clock deviation t_dif is adjusted as shown in the above equation in order to eliminate the influence of the error caused by the clock deviation t_dif. ing.
 距離推定部4は、上記伝搬時間tP(i)、tC(i)を用いて、以下の(手順1)~(手順3)のようにして、補正された距離D(i)を推定する。 The distance estimation unit 4 estimates the corrected distance D (i) using the propagation times t P (i) and t C (i) as in the following (Procedure 1) to (Procedure 3). To do.
(手順1)
 伝搬時間tP(i)とtC(i)を使った場合の、距離DP(i)、DC(i)を次式で計算する。当該距離はそれぞれ信号P_i、C_iに対応する。ここでcは前述の通り、距離推定信号の速度である。
  DP(i)= TP(i) * c
  DC(i)= TC(i) * c
(step 1)
The distances D P (i) and D C (i) when the propagation times t P (i) and t C (i) are used are calculated by the following equations. The distances correspond to the signals P_i and C_i, respectively. Here, c is the speed of the distance estimation signal as described above.
D P (i) = T P (i) * c
D C (i) = T C (i) * c
(手順2)
 上記計算された距離を過去の最新の推定距離D(i-1)と比較し、はずれ値でないかを確認する。当該確認は、以下の(式1),(式2)が成立するかを確認すればよい。ここで、Vthは親機1Pと子機1Cの相対速度の最大値を示す閾値であり、距離推定システム100が適用される具体的用途に応じた所定値を予め与えておけばよい。(式1),(式2)により、現実上起こり得がたい異常な距離を排除することができる。T(i)は、図2のように当該送受信・距離推定が繰り返しなされる際の間隔であり、今回のi回目と直前のi-1回目との間隔である。
  |D(i-1)-DP(i)|<T(i)*Vth  (式1)
  |D(i-1)-DC(i)|<T(i)*Vth  (式2)
(Step 2)
The calculated distance is compared with the latest estimated distance D (i-1) in the past to confirm whether it is an outlier. The confirmation may be performed by confirming whether the following (Expression 1) and (Expression 2) are satisfied. Here, Vth is a threshold value indicating the maximum value of the relative speed between the parent device 1P and the child device 1C, and a predetermined value corresponding to a specific application to which the distance estimation system 100 is applied may be given in advance. By using (Expression 1) and (Expression 2), it is possible to eliminate an abnormal distance that is difficult to occur in practice. T (i) is an interval when the transmission / reception / distance estimation is repeated as shown in FIG. 2, and is an interval between the current i-th time and the immediately preceding i-1th time.
| D (i-1) -D P (i) | <T (i) * Vth (Equation 1)
| D (i-1) -D C (i) | <T (i) * Vth (Formula 2)
 なお、上記過去の推定距離D(i-1)は、送受信時刻記録部8等にて追加の情報として、記録しておけばよい。 The past estimated distance D (i-1) may be recorded as additional information by the transmission / reception time recording unit 8 or the like.
(手順3)
 以下の場合分け1~3により、距離推定部4は補正された距離D(i)を求める。
(Procedure 3)
The distance estimation unit 4 obtains the corrected distance D (i) according to the following case classifications 1 to 3.
(場合1)
 (式1)、(式2)とも満たす場合、反射波の影響で伝搬時間を長く誤りやすいことから、DP(i)とDC(i)のうちの小さい方を推定距離D(i)とする。
(Case 1)
If both (Equation 1) and (Equation 2) are satisfied, the propagation time is long and easily erroneous due to the influence of the reflected wave, so the smaller of D P (i) and D C (i) is the estimated distance D (i) And
(場合2)
 (式1)と(式2)のどちらか片方のみを満たす場合、満たした方の距離(DP(i)又はDC(i))を推定距離D(i)とする。この場合、満たさない方の信号P_i又はC_iについて取得された時刻は、反射波等の影響を受け、誤ったものとなっている可能性が高いとして、利用しないようにしている。すなわち、2つの信号P_i又はC_iから選別を行っている。
(Case 2)
When only one of (Equation 1) and (Equation 2) is satisfied, the distance (D P (i) or D C (i)) that satisfies is assumed to be the estimated distance D (i). In this case, the time acquired for the unsatisfied signal P_i or C_i is not used because it is likely to be erroneous due to the influence of reflected waves or the like. That is, the selection is performed from the two signals P_i or C_i.
(場合3)
 (式1)と(式2)の両方とも満たさない場合、両方とも誤っている可能性が高い。この場合、推定距離D(i)の結果を推定失敗としてもよいし、過去の推定距離D(i-k)で代用してもよい。代用する場合は、当該k回遡った過去のうち補正しない判定のもとで距離が推定された、直近の過去i-kを利用すればよい。
(Case 3)
If both (Equation 1) and (Equation 2) are not satisfied, both are likely to be wrong. In this case, the result of the estimated distance D (i) may be an estimation failure, or the past estimated distance D (ik) may be substituted. In the case of substituting, it is sufficient to use the latest past ik in which the distance is estimated based on the determination not to be corrected among the past d.
 以下、本発明における補足事項を説明する。 Hereinafter, supplementary items in the present invention will be described.
 (補足1)図2に示したような、各i回の距離推定信号の送信及びこれに伴う距離推定がなされる際の、各回の間隔T(i)については、前述のように制御信号にて親機1P及び子機1Cで共有しておくことで、距離推定信号が受信されるであろう時間帯が所定精度で概ね予測可能となる。従って、当該時間帯に限定して、前述のレファレンス信号の検出を行えばよい。 (Supplement 1) As shown in FIG. 2, the interval T (i) for each transmission of the distance estimation signal i and the distance estimation associated therewith as shown in FIG. Thus, by sharing the master unit 1P and the slave unit 1C, the time zone during which the distance estimation signal will be received can be roughly predicted with a predetermined accuracy. Therefore, the above-described reference signal may be detected only in the time period.
 あるいは、間隔T(i)は親機1Pにおいてのみ把握しておき、親機1Pから所定のレファレンス信号の受信を受けた子機1Cがただちにレファレンス信号を親1P側に送信するような構成としてもよい。図3の(1)はこのような構成にて可能な時系列の一例である。 Alternatively, the interval T (i) is grasped only in the master unit 1P, and the slave unit 1C that has received a predetermined reference signal from the master unit 1P immediately transmits the reference signal to the master 1P side. Good. (1) of FIG. 3 is an example of a time series possible with such a configuration.
 なお、一般には、各i回において、親機1P及び子機1Cのいずれが先にレファレンス信号を送信する、ということを決めておく必要はない。図3の(1)の例では、TP_S(i)とTP_R(i)の前後関係と、TC_R(i)とTC_S(i)の前後関係は、逆であってもよい。親機1P及び子機1Cでは、相手側から受信したレファレンス信号が、i回目に対応するものであることを識別できればよい。制御信号による事前設定で、当該識別は可能となる。 In general, it is not necessary to determine which of the parent device 1P and the child device 1C transmits the reference signal first every i times. In the example of (1) of FIG. 3, the context of T P_S (i) and T P_R (i) and the context of T C_R (i) and T C_S (i) may be reversed. The parent device 1P and the child device 1C only need to be able to identify that the reference signal received from the counterpart side corresponds to the i-th time. The identification can be performed by the presetting by the control signal.
 (補足2)判断部6がi回目において補正の必要性を判断した場合には、次のi+1回目、あるいは所定回数k(k>0)回先のi+k回目において、距離推定信号送受部2P,2Cが送信する距離推定信号の設定を変えるようにしてもよい。例えば、反射波の影響を下げるべく強度を所定割合だけ下げてもよいし、同様に、構成周波数を所定パターンの中で切り替えるようにしてもよい。送信間隔T(i)を所定割合だけ狭めてもよい。 (Supplement 2) When the determination unit 6 determines the necessity of correction at the i-th time, the distance estimation signal is output at the next i + 1-th time or the i + k-th time after the predetermined number k (k> 0) times. You may make it change the setting of the distance estimation signal which the transmission / reception parts 2P and 2C transmit. For example, the intensity may be decreased by a predetermined ratio to reduce the influence of the reflected wave, and similarly, the constituent frequencies may be switched in a predetermined pattern. The transmission interval T (i) may be narrowed by a predetermined rate.
 当該設定の変更は、制御信号により親機1P及び子機1Cで共有すればよい。設定変更後、所定回数に渡って補正が不要の判断が連続して得られた場合は、当初の設定に戻すようにしてもよい。 The change of the setting may be shared by the master unit 1P and the slave unit 1C by the control signal. After the setting change, when it is continuously determined that correction is unnecessary for a predetermined number of times, the original setting may be restored.
 (補足3)判断部6が補正の必要性を判断するには、正常な時計ずれt_difが求まる必要がある。従って、時計ずれ算出部5による各回iの時計ずれt_dif(i)を所定回数Nに渡って蓄積し、その分布を解析する必要がある。当該N回に達するまでは、距離推定部4にて補正をしない方式で距離D(i)を仮算出しておいてもよい。例えば、図1では、初回であるi=1回目においては、補正判断を下しようがないので、ステップSPC[i]3に相当するステップは省略されている。 (Supplement 3) In order for the determination unit 6 to determine the necessity of correction, it is necessary to obtain a normal clock deviation t_dif. Therefore, it is necessary to accumulate the clock deviation t_dif (i) of each time i by the clock deviation calculation unit 5 over a predetermined number N and analyze the distribution. The distance D (i) may be provisionally calculated by a method in which the distance estimation unit 4 does not perform correction until reaching N times. For example, in FIG. 1, since i = 1, which is the first time, correction determination cannot be made, the step corresponding to step SPC [i] 3 is omitted.
 あるいは、全く同様に、上記仮算出されている期間は、時計ずれt_dif(i)の正常値の算出のための準備期間として、当該準備期間が終了してから、正式に距離D(i)を求めるようにしてもよい。 Or, in exactly the same way, the provisionally calculated period is a preparation period for calculating the normal value of the clock deviation t_dif (i), and after the preparation period ends, the distance D (i) is officially calculated. You may make it ask.
 (補足4)本発明の距離推定システム100は、判断部6及び補正部7のうち、判断部6のみを備えて構成されていてもよい。この場合、判断部6が補正の必要性を判断した場合は、補正しない通常の手法で距離推定部4にて距離推定を行い、当該推定された距離の信頼性が低い旨の情報を付加するなどしてもよいし、距離推定の結果自体を破棄するようにしてもよい。 (Supplement 4) The distance estimation system 100 of the present invention may include only the determination unit 6 among the determination unit 6 and the correction unit 7. In this case, when the determination unit 6 determines the necessity for correction, the distance estimation unit 4 performs distance estimation by a normal method without correction, and adds information indicating that the estimated distance is low in reliability. Alternatively, the distance estimation result itself may be discarded.
 100…距離推定システム、1P…親機、1C…子機、2P,2C…制御信号送受部、3P,3C…距離推定信号送受部、4…距離推定部、5…時計ずれ算出部、51…時計ずれ履歴記録部、6…判断部、7…補正部、8…送受信時刻記録部 100 ... Distance estimation system, 1P ... Base unit, 1C ... Slave unit, 2P, 2C ... Control signal transmission / reception unit, 3P, 3C ... Distance estimation signal transmission / reception unit, 4 ... Distance estimation unit, 5 ... Clock deviation calculation unit, 51 ... Clock deviation history recording unit, 6 ... judgment unit, 7 ... correction unit, 8 ... transmission / reception time recording unit

Claims (5)

  1.  親機及び子機を備え、当該親機と子機との間の距離を推定する距離推定システムであって、
     前記親機及び子機の両者が、
     各回の間に所定間隔を設けて互いに距離推定信号を継続的に送受すると共に、その送受信時刻を取得する距離推定信号送受部を備え、
     前記親機が、
     前記取得された送受信時刻に基づいて、各回における前記親機と子機との間の距離を推定する距離推定部と、
     前記取得された送受信時刻に基づいて、各回における前記親機と子機の時計ずれを算出する時計ずれ算出部と、
     前記算出された時計ずれの履歴に基づいて、各回における前記取得された送受信時刻が補正対象であるか否かを判断する判断部と、を備えることを特徴とする距離推定システム。
    A distance estimation system that includes a parent device and a child device and estimates a distance between the parent device and the child device,
    Both the master unit and the slave unit are
    A distance estimation signal transmission / reception unit that continuously transmits and receives a distance estimation signal with each other with a predetermined interval between each time, and acquires the transmission / reception time,
    The master unit is
    Based on the acquired transmission / reception time, a distance estimation unit that estimates the distance between the parent device and the child device at each time;
    Based on the acquired transmission / reception time, a clock deviation calculation unit that calculates a clock deviation between the parent device and the child device at each time;
    A distance estimation system, comprising: a determination unit configured to determine whether or not the acquired transmission / reception time at each time is a correction target based on the calculated clock shift history.
  2.  前記判断部は、前記算出された時計ずれの履歴に基づいて、前記算出された時計ずれが前記履歴においてはずれ値に属すると判定される場合に、前記補正対象である旨を判断することを特徴とする請求項1に記載の距離推定システム。 The determination unit determines, based on the calculated history of clock deviation, that the calculated clock deviation belongs to a deviation value in the history and is the correction target. The distance estimation system according to claim 1.
  3.  前記親機が、さらに、前記補正対象であると判断された回において、前記取得された送受信時刻を補正する補正部を備え、
     前記距離推定部は、前記補正対象であると判断された回において、前記補正された送受信時刻に基づいて、前記親機と子機との間の距離を推定することを特徴とする請求項1または2に記載の距離推定システム。
    The base unit further includes a correction unit that corrects the acquired transmission / reception time at a time when the base unit is determined to be the correction target,
    The distance estimating unit estimates a distance between the parent device and the child device based on the corrected transmission / reception time at a time when the distance is determined to be the correction target. Or the distance estimation system of 2.
  4.  前記判断部は、前記算出された時計ずれの履歴に基づいて、前記算出された時計ずれが前記履歴においてはずれ値に属すると判定される場合に、前記補正対象である旨を判断し、
     前記補正部は、前記取得された送受信時刻に基づき、前記互いに送受される距離推定信号のうち、前記親機から前記子機へと送信される第一距離推定信号における第一伝搬時間と、前記子機から前記親機へと送信される第二距離推定信号における第二伝搬時間と、を算出し、
     前記距離推定部は、前記第一伝搬時間及び前記第二伝搬時間より、それぞれ第一伝搬距離及び第二伝搬距離を算出し、当該各距離と、直近の過去に前記推定された距離との比較に基づき、当該各距離のいずれかを今回につき推定された距離として定めることを特徴とする請求項3に記載の距離推定システム。
    The determination unit determines that the calculated clock shift belongs to a shift value in the history based on the calculated clock shift history, and determines that the correction target is the correction target.
    The correction unit, based on the acquired transmission / reception time, out of the distance estimation signals transmitted and received with each other, the first propagation time in the first distance estimation signal transmitted from the base unit to the slave unit, and Calculating the second propagation time in the second distance estimation signal transmitted from the slave unit to the master unit,
    The distance estimation unit calculates a first propagation distance and a second propagation distance from the first propagation time and the second propagation time, respectively, and compares each distance with the estimated distance in the latest past. 4. The distance estimation system according to claim 3, wherein any one of the distances is determined as a distance estimated for the current time.
  5.  前記距離推定部は、前記各距離と、直近の過去に前記推定された距離を比較し、その差が共に所定閾値よりも大きい場合には、今回における距離の推定を行わないことを特徴とする請求項4に記載の距離推定システム。 The distance estimation unit compares the distances with the estimated distances in the latest past, and if both of the differences are larger than a predetermined threshold, the distance estimation at this time is not performed. The distance estimation system according to claim 4.
PCT/JP2014/067687 2013-07-04 2014-07-02 Distance estimation system WO2015002246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-140676 2013-07-04
JP2013140676A JP6033174B2 (en) 2013-07-04 2013-07-04 Distance estimation system

Publications (1)

Publication Number Publication Date
WO2015002246A1 true WO2015002246A1 (en) 2015-01-08

Family

ID=52143818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067687 WO2015002246A1 (en) 2013-07-04 2014-07-02 Distance estimation system

Country Status (2)

Country Link
JP (1) JP6033174B2 (en)
WO (1) WO2015002246A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988102A (en) * 2015-02-09 2016-10-05 株式会社理光 Relative orientation angle calculation method and device as well as relative positioning method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097327B2 (en) 2015-04-03 2017-03-15 株式会社ソニー・インタラクティブエンタテインメント Portable terminal, acoustic distance measuring system, and acoustic distance measuring method
JP2018112458A (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Positioning device, positioning method, and positioning program
JP6942506B2 (en) * 2017-04-10 2021-09-29 大和ハウス工業株式会社 Activity estimation system
EP3639549B1 (en) * 2017-09-15 2021-06-16 Metirionic GmbH Method for radio measuring applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101254A (en) * 2002-09-06 2004-04-02 Hitachi Ltd Wireless system, its server, and its base station
JP2004333414A (en) * 2003-05-12 2004-11-25 Hitachi Kokusai Electric Inc Position information detection system
WO2006093162A1 (en) * 2005-03-01 2006-09-08 Inter-University Research Institute Corporation Research Organization Of Information And Systems Ultrasonic distance measuring system and ultrasonic distance measuring method
JP2009174964A (en) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd Apparatus and system for specifying position
JP2012112818A (en) * 2010-11-25 2012-06-14 Denso Corp Communication ranging complex system, communication ranging device, master unit and slave unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864315A (en) * 1997-04-07 1999-01-26 General Electric Company Very low power high accuracy time and frequency circuits in GPS based tracking units
CN100514313C (en) * 2004-08-05 2009-07-15 松下电器产业株式会社 Information receiving terminal and information distributing system
EP1847844A1 (en) * 2006-04-21 2007-10-24 Agilent Technologies, Inc. Digital data signal analysis by evaluating sampled values in conjuction with signal bit values
JP2010041712A (en) * 2008-07-07 2010-02-18 Sumitomo Electric Ind Ltd Base station device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101254A (en) * 2002-09-06 2004-04-02 Hitachi Ltd Wireless system, its server, and its base station
JP2004333414A (en) * 2003-05-12 2004-11-25 Hitachi Kokusai Electric Inc Position information detection system
WO2006093162A1 (en) * 2005-03-01 2006-09-08 Inter-University Research Institute Corporation Research Organization Of Information And Systems Ultrasonic distance measuring system and ultrasonic distance measuring method
JP2009174964A (en) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd Apparatus and system for specifying position
JP2012112818A (en) * 2010-11-25 2012-06-14 Denso Corp Communication ranging complex system, communication ranging device, master unit and slave unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988102A (en) * 2015-02-09 2016-10-05 株式会社理光 Relative orientation angle calculation method and device as well as relative positioning method
CN105988102B (en) * 2015-02-09 2019-01-18 株式会社理光 Relative bearing calculation method and device and relative positioning method

Also Published As

Publication number Publication date
JP6033174B2 (en) 2016-11-30
JP2015014504A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US10833840B2 (en) Methods for nanosecond-scale time synchronization over a network
WO2015002246A1 (en) Distance estimation system
McElroy et al. Comparison of wireless clock synchronization algorithms for indoor location systems
JP5749167B2 (en) Bidirectional ranging using interpulse transmission and reception
EP2525236B1 (en) Method and System for multipath reduction for wireless synchronizing and/or locating
US8391270B2 (en) Network synchronization with reduced energy consumption
KR101520775B1 (en) Two-way ranging messaging scheme
US6490454B1 (en) Downlink observed time difference measurements
CA3023588A1 (en) Positioning system
US20040198394A1 (en) Method, apparatus and system for synchronizing a cellular communication system to GPS time
US20110316747A1 (en) Leading edge detection
KR101182861B1 (en) Distance measuring method
US7103514B1 (en) Filter turning point detection
Cho et al. Practical localization system for consumer devices using zigbee networks
US11800474B2 (en) Methods, second node and apparatus for determining clock asynchronization
US11252687B2 (en) Remote signal synchronization
CN105323029A (en) Dynamic clock synchronization method for underwater acoustic communication based on acoustic link distance measurement and speed measurement
EP2991416B1 (en) Communications with synchronization
US10375659B1 (en) Wireless body-area network time synchronization using R peak reference broadcasts
US11743091B2 (en) Mobile device frequency offset determination and TDoA localization
EP3608686A1 (en) Methods and apparatuses for distance measurement
EP2989480B1 (en) Space-based rss localization
Nkrow et al. Wi-fi fine time measurement: Is it a viable alternative to ultrawideband for ranging in industrial environments?
KR101245522B1 (en) Method and system for wireless positioning
Djenouri MLE for Receiver-to-Receiver Time Synchronization in Wireless Networks with Exponential Distributed Delays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819492

Country of ref document: EP

Kind code of ref document: A1