WO2006093162A1 - Ultrasonic distance measuring system and ultrasonic distance measuring method - Google Patents

Ultrasonic distance measuring system and ultrasonic distance measuring method Download PDF

Info

Publication number
WO2006093162A1
WO2006093162A1 PCT/JP2006/303782 JP2006303782W WO2006093162A1 WO 2006093162 A1 WO2006093162 A1 WO 2006093162A1 JP 2006303782 W JP2006303782 W JP 2006303782W WO 2006093162 A1 WO2006093162 A1 WO 2006093162A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication packet
information terminal
transmission
time stamp
receiving
Prior art date
Application number
PCT/JP2006/303782
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromichi Hashizume
Masanori Sugimoto
Original Assignee
Inter-University Research Institute Corporation Research Organization Of Information And Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter-University Research Institute Corporation Research Organization Of Information And Systems filed Critical Inter-University Research Institute Corporation Research Organization Of Information And Systems
Publication of WO2006093162A1 publication Critical patent/WO2006093162A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present invention transmits a communication packet from an information terminal (transmission node) on the transmission side in an ultrasonic wave, and receives the communication packet at an information terminal (reception node) on the reception side.
  • This is related to an ultrasonic distance measuring system and an ultrasonic distance measuring method for measuring the distance between the two.
  • the other information terminal can be used for providing services specific to the information terminal, and for each information terminal to start a special operation when specific information terminals detect that they are approaching each other.
  • the customer's information terminal can be provided with product information on the sales floor. In a crowded gathering, it may be possible to display on the information terminals owned by each other what direction and distance the person being interviewed is.
  • the information terminal is equipped with a GPS (global positioning system) reception function.
  • GPS global positioning system
  • the information terminal is equipped with a GPS (global positioning system) reception function.
  • the location information of the members in the central server By collecting the location information of the members in the central server and installing the mobile phone communication function in the information terminal, it is possible to know the location from the zone information.
  • These technologies are in practical use.
  • the transmission node generates an electromagnetic wave or an electric signal and an ultrasonic signal at the same time.
  • the receiving node or the concentration node collects signals related to the arrival timing of both signals and knows the propagation delay time of the ultrasonic wave.
  • the interval (distance) between the transmission node and the reception node is calculated by dividing the propagation delay time by the known sound velocity in the air.
  • the transmitting node transmits a beacon to the ultrasonic channel simultaneously and a timing signal including general information to the radio wave (similar to infrared) channel simultaneously.
  • the receiving node receives both signals, calculates the difference between the arrival times of each signal, and calculates the distance between the nodes.
  • the spatial coordinate position of the specific node can be obtained by performing distance measurement on the three or more pairs of nodes as seen from the specific node.
  • the receiving node receives the ultrasonic beacon transmitted from the transmitting node with ultrasonic waves.
  • the receiving node requests the central server to calculate the distance by transmitting the arrival time of the received ultrasonic beacon to the central server via the LAN.
  • the central server monitoring the operation of each node compares the signals from the transmitting node and the receiving node, calculates the distance between the arrival time differential nodes, and calculates the calculated distance to the receiving node.
  • the receiving node obtains the distance from the transmitting node.
  • Patent Document 1 Patent Document 2, Patent Document 3, Patent Document 4 and the like are disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-323357
  • Patent Document 2 JP-A-2004-289711
  • Patent Document 3 JP-A-6-82242
  • Patent Document 4 Japanese Patent Publication No. 2004-530115
  • the configuration includes a central server, and the configuration includes both a device that generates electromagnetic waves and a device that generates ultrasonic waves, which complicates the device configuration. There was a problem that the control method was also complicated.
  • the present invention has been made in view of the above problems, and can measure the distance with a simple device configuration and can accurately measure the distance between the transmission node and the reception node using only ultrasonic waves.
  • An object of the present invention is to provide an ultrasonic distance measuring system and an ultrasonic distance measuring method that can measure well, and in particular have a general data communication function.
  • an ultrasonic distance measurement system uses a predetermined time synchronization method in a plurality of information terminals in a state where their internal clocks are synchronized in advance via a network.
  • An ultrasonic distance measurement system that measures a distance between corresponding information terminals by transmitting a communication packet from one information terminal and receiving the communication packet at another information terminal.
  • a communication packet generating means for generating a transmission time stamp based on the time acquired from the internal clock and generating a communication packet including the transmission time stamp; and a communication packet generated by the communication packet generating means
  • Communication packet transmitting means for transmitting ultrasonically, and the information terminal on the receiving side transmits the communication packet transmitted ultrasonically from the information terminal on the transmitting side
  • a communication packet receiving means for receiving, a reception time stamp generating means for acquiring a time when the communication packet is received by the communication packet receiving means, and generating a reception time stamp based on the time, and the reception time stamp Distance for calculating the distance between the information terminal on the transmission side and the information terminal on the reception side based on the difference between the reception time stamp generated by the generation means and the transmission time stamp included in the communication packet received by the communication packet reception means Calculation And an exit means.
  • the ultrasonic distance measuring system includes a single information terminal among a plurality of information terminals in a state where the internal clock is synchronized in advance via a network using a predetermined time synchronization method.
  • the ultrasonic distance measuring system measures the distance between the corresponding information terminals by transmitting the communication packet and receiving the communication packet at another information terminal.
  • the communication packet transmits and receives the communication packet.
  • the transmission side information terminal actually includes the transmission time obtained from the internal clock and the transmission time, including the transmission time stamp indicating the reference position that is the reference for synchronization and the time when the reference position was transmitted.
  • a transmission time stamp is generated based on a transmission correction value that is a time difference until the reference position of the communication packet is transmitted, and the transmission time stamp is included.
  • a communication packet generating means for generating a communication packet; and a communication packet transmitting means for transmitting the communication packet generated by the communication packet generating means by means of ultrasonic waves.
  • a communication packet receiving means for receiving a communication packet transmitted by sound waves;
  • the reception time when the communication packet is received by the communication packet receiving means is acquired from the internal clock, and the acquired reception time and the time difference from when the reception time is acquired until the reference position of the communication bucket is actually received.
  • a reception time stamp generating means for generating a reception time stamp representing a time at which the reference position is received, a reception time stamp generated by the reception time stamp generation means and a communication packet received by the reception means
  • Distance calculating means for calculating the distance between the information terminal on the transmission side and the information terminal on the reception side based on the difference from the transmission time stamp included in the communication packet.
  • the ultrasonic distance measuring system is the ultrasonic distance measuring system described above, wherein the communication packet includes an identification ID for identifying an information terminal on a transmitting side, arbitrary communication data, a check It further comprises at least one of the thumbs.
  • the communication packet further includes a coordinate position of an information terminal on a transmitting side, and information on the receiving side
  • the terminal and each transmission-side information terminal calculated by the distance calculation means It further comprises position estimating means for estimating the position of the receiving information terminal based on the distance from the receiving information terminal and the coordinate position of each transmitting information terminal.
  • the information terminal is a portable information terminal such as a PDA, a mobile phone, or a personal computer. It is characterized by.
  • the information terminal on the transmitting side is fixed, and the information terminal on the receiving side is movable. It is characterized by that.
  • the present invention relates to an ultrasonic distance measuring method, and the ultrasonic distance measuring method according to the present invention synchronizes the internal clock in advance via a network using a predetermined time synchronization method.
  • An ultrasonic distance measurement method that measures the distance between corresponding information terminals by transmitting communication packets from one information terminal and receiving communication packets at other information terminals in a plurality of information terminals in a state. Therefore, a transmission time stamp is generated based on the time acquired from the internal clock, and a communication packet including the transmission time stamp is generated, and the generated communication packet is ultrasonically transmitted.
  • the receiving information terminal receives the communication packet transmitted by the transmitting terminal's information terminal power ultrasound and the time when the communication packet was received from the internal clock.
  • a reception time stamp is generated based on the time, and a transmission-side information terminal and the reception-side information terminal are connected based on a difference between the generated reception time stamp and a transmission time stamp included in the received communication packet. It is characterized by calculating the distance.
  • the ultrasonic distance measuring method includes a plurality of information terminals in a state where their internal clocks are synchronized in advance via a network using a predetermined time synchronization method.
  • a transmission time stamp is generated, a communication packet including the transmission time stamp is generated, and the generated communication packet is transmitted by ultrasonic waves.
  • the receiving side information terminal receives the communication packet transmitted by the transmitting side information terminal power ultrasound, obtains the reception time when the communication packet was received from the internal clock, and the received reception time and the received time are Based on the reception correction value, which is the time difference from when the reference position of the communication packet is actually received until it is acquired, a reception time stamp indicating the time when the reference position is received is generated, and the generated reception time stamp and Based on the difference from the transmission time stamp included in the received communication packet, the distance between the transmitting information terminal and the receiving information terminal is calculated. To it, it is referred to as Features.
  • the communication packet includes an identification ID for identifying an information terminal on a transmission side, arbitrary communication data, It further comprises at least one of the checksums.
  • the communication packet further includes a coordinate position of an information terminal on a transmission side,
  • the communication packet further includes a coordinate position of an information terminal on a transmission side
  • the information terminal is a portable information terminal such as a PDA, a mobile phone, or a personal computer. It is characterized by.
  • the information terminal on the transmitting side is fixed, and the information terminal on the receiving side is It is characterized by being movable.
  • the internal clock is synchronized in advance via the network using a predetermined time synchronization method.
  • a communication packet is transmitted from one information terminal, and a communication packet is received by another information terminal, thereby measuring the distance between the corresponding information terminals.
  • the information terminal on the transmission side generates a transmission time stamp based on the time acquired from the internal clock, generates a communication packet including the transmission time stamp, and transmits the generated communication packet using ultrasonic waves.
  • the receiving side information terminal receives the communication packet transmitted by the transmitting side information terminal force ultrasonic wave, acquires the time when the communication packet was received, and acquires the internal clock force, and based on the received time stamp And the distance between the transmitting information terminal and the transmitting information terminal is calculated based on the difference between the generated reception time stamp and the transmission time stamp included in the received communication packet.
  • the distance can be measured with a simple device configuration, and in particular, the distance between the transmission node and the reception node can be accurately measured in a short time using only ultrasonic waves.
  • the ultrasonic distance measurement system and the ultrasonic distance measurement method according to the present invention in a plurality of information terminals in a state where the internal clocks are synchronized in advance via a network using a predetermined time synchronization method, By transmitting communication packets from one information terminal and receiving communication packets at other information terminals, the distance between the corresponding information terminals is measured.
  • the communication packet includes a reference position serving as a reference for synchronization when the communication packet is transmitted and received and a transmission time stamp indicating the time when the reference position is transmitted.
  • the information terminal on the transmission side generates a transmission time stamp based on the transmission time acquired from the internal clock and the transmission correction value that is the time difference from the transmission time until the reference position of the communication packet is actually transmitted. Then, a communication packet including the transmission time stamp is generated, and the generated communication packet is transmitted by ultrasonic waves. Then, the receiving side information terminal receives the communication packet transmitted by the transmitting side information terminal power ultrasonic wave, acquires the reception time when the communication packet is received from the internal clock, and acquires the acquired reception time and the reception time. Based on the reception correction value that is the time difference from when the reference position of the communication packet is actually received until the reference position of the communication packet is received, a reception time stamp indicating the time when the reference position is received is generated.
  • the distance between the information terminal on the transmission side and the information terminal on the reception side is calculated based on the difference between the reception time stamp and the transmission time stamp included in the received communication packet. This makes it possible to measure distances with a simple device configuration and uses only ultrasonic waves. As a result, the distance between the transmitting node and the receiving node can be accurately measured in a short time.
  • the communication packet includes at least one of an identification ID for identifying an information terminal on the transmission side, arbitrary communication data, and a checksum.
  • an identification ID for identifying an information terminal on the transmission side
  • arbitrary communication data for identifying an information terminal on the transmission side
  • checksum for identifying an information terminal on the transmission side
  • the ability to send and receive multiple pieces of information at once can be achieved.
  • the communication packet further includes the coordinate position of the information terminal on the transmitting side, and the information terminal on the receiving side has a plurality of different information terminals.
  • the reception terminal receives the received data based on the calculated distance between each transmission-side information terminal and the reception-side information terminal and the coordinate position of each transmission-side information terminal. The position of the information terminal on the side is estimated. As a result, the coordinate position of the information terminal on the receiving side can be accurately estimated in a short time.
  • the information terminal is a portable information terminal such as a PDA, a mobile phone, or a personal computer.
  • a portable information terminal such as a PDA, a mobile phone, or a personal computer.
  • the information terminal on the transmission side is fixed, and the information terminal on the reception side is movable.
  • the receiving information terminal can calculate the coordinate position of the information terminal.
  • FIG. 1 is a conceptual diagram showing an example of a configuration of an ultrasonic distance measurement system 100.
  • FIG. 2 is a block diagram showing an example of a specific configuration of the transmission node 102.
  • FIG. 3 is a block diagram showing an example of a specific configuration of the receiving node 104.
  • FIG. 4 is a conceptual diagram showing an example of time synchronization by NTP.
  • FIG. 5 is a diagram showing an example of a specific configuration of a communication packet.
  • FIG. 6 is a flowchart showing an example of processing performed in the transmission node 102.
  • FIG. 7 is a flowchart illustrating an example of processing performed in the reception node 104.
  • FIG. 8 is a diagram showing an example of phase extraction by direct detection.
  • Fig. 9 is a diagram showing an example of expression of a time reference point by a synchronization pattern.
  • FIG. 10 is a diagram showing an example of an ultrasonic distance measurement system 100 configured with a plurality of fixed transmission nodes 102 and a portable reception node 104.
  • FIG. 1 is a conceptual diagram showing an example of the configuration of the ultrasonic distance measuring system 100.
  • the ultrasonic distance measurement system 100 generates a communication packet, and transmits the communication packet with ultrasonic waves, and receives the communication packet and measures the distance between the transmission node and the transmission node.
  • the receiving node 104 is connected to the receiving node 104 via the Internet communication network 106 so as to be able to communicate wirelessly.
  • FIG. 1 shows an example of an ultrasonic distance measuring system 100 force consisting of one transmitting node 102 and three receiving nodes 104.
  • the number of force transmitting nodes 102 and receiving nodes 104 is not limited to this. Les.
  • the node 102 is described as a transmitting node, and the node 104 is a receiving node.
  • the configuration of each node may be the same, and each node plays a role as necessary. Can bear.
  • the transmission node 102 generates a transmission time stamp based on the time acquired from the internal clock, generates a communication packet including the transmission time stamp, and transmits the generated communication packet using ultrasonic waves.
  • FIG. 2 is a block diagram illustrating an example of a specific configuration of the transmission node 102.
  • the transmitting node 102 includes a CPU 102a that controls the entire transmitting node 102 and a wireless LAN 102b that connects the transmitting node 102 to the Internet communication network 106 (the time synchronization communication device in FIG. 1).
  • the transmission node 102 may further include an ultrasonic receiving element (corresponding to the ultrasonic receiver R in FIG. 1).
  • the CPU 102a includes a communication packet generation unit and a communication packet transmission unit.
  • the communication packet generation unit generates a transmission time stamp based on the time acquired from the internal clock 102c, and generates a communication packet including the transmission time stamp. Specifically Generates a transmission time stamp based on the transmission time acquired from the internal clock 102c and a transmission correction value that is a time difference from the transmission time until the reference position of the communication packet is actually transmitted.
  • a communication packet including is generated.
  • the communication packet transmission unit transmits the communication packet generated by the communication packet generation unit using ultrasonic waves. Note that the communication packet includes at least a reference position serving as a reference for synchronization when the communication packet is transmitted and received and a transmission time stamp indicating the time when the reference position is transmitted.
  • FIG. 5 is a diagram illustrating an example of a specific configuration of a communication packet.
  • the communication packet includes a synchronization pattern portion including a reference position (corresponding to a time reference point), which is a characteristic part of the present invention, a packet length (in bytes), a transmission node ID, It consists of a transmission time stamp, user data (arbitrary communication data), and a checksum (CRC16).
  • the communication packet includes the coordinate position of transmitting node 102. Further, the order of data included in the communication packet excluding the synchronization pattern part and the checksum may be arbitrarily changed.
  • the receiving node 104 receives the communication packet transmitted by the ultrasonic wave from the transmitting node 102, acquires the time when the communication packet was received from the internal clock, and based on the time, A reception time stamp is generated, and a distance between the transmission node 102 and the reception node 104 is calculated based on a difference between the generated reception time stamp and a transmission time stamp included in the received communication packet.
  • FIG. 3 is a block diagram showing an example of a specific configuration of the receiving node 104. As shown in FIG. As shown in FIG.
  • the receiving node 104 includes a CPU 104a that controls the entire receiving node 104 and a wireless LAN 104b that connects the receiving node 104 to the Internet communication network 106 (the time synchronization communicator N in FIG. 1). ), Internal clock 104c for timing, waveform memory 104d for storing received waveforms, AD converter 104e, and ultrasonic receiving element 104f (corresponding to ultrasonic receiver R in FIG. 1) These are configured and connected via an arbitrary communication path.
  • the reception node 104 may further include an ultrasonic transmission element (corresponding to the ultrasonic transmitter S in FIG. 1). In FIG.
  • CPU 104a includes a communication packet receiving unit, a reception time stamp generating unit, a distance calculating unit, and a position estimating unit.
  • the communication packet receiving unit receives a communication packet transmitted from the transmission node 102 by using an ultrasonic wave.
  • the reception time stamp generation unit acquires the time when the communication packet is received by the communication packet reception unit from the internal clock 104c, and generates a reception time stamp based on the time. Specifically, the reception time when the communication packet is received by the communication packet receiver is acquired from the internal clock 104c, and the acquired reception time and the reference position of the communication packet are actually received after the reception time is acquired. Based on the reception correction value, which is the time difference until, a reception time stamp indicating the time when the reference position is received is generated.
  • the distance calculation unit determines the distance between the transmission node 102 and the reception node 104 based on the difference between the reception time stamp generated by the reception time stamp generation unit and the transmission time stamp included in the communication packet received by the communication packet reception unit. Is calculated.
  • the position estimation unit continuously receives communication packets from a plurality of different transmission nodes 102, the position estimation unit calculates the distance between each transmission node 102 and the reception node 104 calculated by the distance calculation unit and the coordinate position of each transmission node 102. Based on this, the position of the receiving node 104 is estimated.
  • FIG. Fig. 4 is a conceptual diagram showing an example of time synchronization by NTP. As shown in Fig. 4, the n + 1 layer NTP server that synchronizes the time inquires the NT p server of the n layer for the time.
  • the n-th layer NTP server transmits the inquiry to the n_l layer NTP server. Thereafter, the communication is repeated between NTP servers in adjacent layers, and finally the inquiry is transmitted to the NTP server in the uppermost layer (0th layer).
  • the top layer NTP server then returns the time to the adjacent layer NTP server. Thereafter, transmission is repeated between NTP servers in adjacent layers, and finally the time is returned to the n + 1 layer NTP server that is the source of the inquiry. This allows the n + 1 layer NTP server to synchronize the time.
  • FIG. 6 is a flowchart showing an example of processing performed in the transmission node 102.
  • the sending node sends out communication packets at an appropriate frequency by the following processing.
  • phase shifter 102g step SA-1
  • step SA_3 Determine with i (step SA_3). Specifically, first, the delay times of the transmission circuit and the ultrasonic transmission element are examined, and the delay time s and the waveform of the frequency f corresponding to the waveform of the frequency f are obtained.
  • Equation 1 Equation 2 Equation 3
  • the calculated initial phase amounts p, p, and p are stored in the waveform memories 102d to 102f, respectively.
  • frac (x) is an operation for extracting the fractional part of x.
  • step SA— :! to SA—3 may be executed once.
  • the transmission circuit or the transmission element to be used has a property (dispersion characteristic) that changes the phase of the waveform depending on the frequency, correction is applied to the elementary carrier in advance to compensate for it.
  • the duration of the synchronization pattern of the transmitted waveform is l / (f -f
  • a transmission time is acquired from the internal clock 102c, and a time obtained by adding a preset time "0.5 ms" as a transmission correction value to the transmission time is generated as a transmission time stamp T.
  • Step SA_4 when starting the transmission operation, one time reference point is determined, the transmission timing of the communication packet can be calculated relative to the time reference point, and the time reference point is time synchronized. Generate and send the value represented by the internal clock Time stamp T. Here, set the time reference point to the center of the synchronization pattern (0
  • the waveform transmission phase After 5ms), set the waveform transmission phase to zero at this center. More specifically, a carrier waveform composed of a plurality of predetermined frequencies is generated, and an additive synthesis thereof or a result obtained by modulating these with a main carrier is used as a synchronization pattern.
  • the phases of the elementary carriers constituting the plurality of carriers in the synchronization pattern are configured so as to have a predetermined relationship with the time reference point (see FIG. 9).
  • the time point when the zero phases of the three frequencies are aligned is defined and set as the time reference point, but the predetermined condition of the time reference point is, for example, the maximum value of the three frequencies Or you can use the point when the minimum values are complete.
  • the time stamp is quantized with 1 ⁇ s and expressed as a 48-bit integer. This is a notation that cycles in about nine years.
  • step SA-4 the ultrasonic carrier wave is modulated and a communication packet is transmitted. Specifically, first, the synchronization pattern is transmitted with the initial phase amounts p to p stored in the waveform memories 102d to 102f (step SA-5). Next, the packet length is
  • step SA—6 send sender node ID
  • step SA—8 send send timestamp T
  • step SA—9 send user data
  • bit s bit s
  • a checksum (CRC16 using a 16-bit generator polynomial in this embodiment) is created from the pattern and transmitted (step SA-10).
  • the packet length, transmission node ID, transmission time stamp, and CRC16 are sequentially modulated by PSK and transmitted.
  • PSK for data less than the packet length included in the communication packet (see Fig. 5), 8-value PSK modulation is applied to the frequencies f to f.
  • FIG. Figure 7 4 is a flowchart showing an example of processing performed in a trust node 104.
  • processing may be performed by force analog demodulation, which describes an example of digital processing.
  • a carrier is detected, and if it can be detected (step SB-1: Yes), a start time T that is a time when reception starts from the internal clock 104c is acquired (step SB-2).
  • the received signal is AD converted by the AD converter 104e and stored in the waveform memory 104d (step SB-3).
  • step SB — 4 the beginning portion (synchronization pattern) of the communication packet is extracted.
  • phase information sine component and cosine component of the subcarrier of frequency f are expressed as cos (2 ⁇ f t
  • step SB-5 the carrier with frequency f
  • Step SB-6 Furthermore, the phase information sine component of the elementary carrier of frequency f and
  • the cosine component is extracted by multiplying cos (2 ⁇ f t) and sin (2 ⁇ f t) (Step SB—7
  • Step SB-8 the data from the beginning of the communication packet to a little less than lms (which is shorter by the carrier detection time) belongs to the synchronous pattern part, and it is orthogonally detected at frequencies f to f. To synchronize the waveform memory 104d.
  • Sine and cosine phase information is extracted for the elementary carrier of the pattern.
  • step SB_8 by comparing this, the phases ⁇ , ⁇ , ⁇ at the reception start time T can be obtained.
  • steps SB_4 to SB_8 will be described in detail. As shown in FIG. 8, the product of the received waveform and the frequency f waveform (cos (2 ⁇ ft)) and the received waveform and the frequency f
  • Time reference points T 1, T 2, T 3 are determined based on the transmission delay times r to r (step SB—9
  • the time reference point T is calculated by the following formula 4. Also, an elementary carrier with frequency f and frequency f
  • the time reference point T is calculated using Equation 5 below from the received phases ⁇ and ⁇ of 12 2 3 elementary carriers.
  • the time base is determined from the reception phases ⁇ and ⁇ of the elementary carrier with frequency f and the elementary carrier with frequency f.
  • Point T is calculated using Equation 6 below.
  • ⁇ + ((( ⁇ -- ⁇ ) / 2 ⁇ ) + (rf -rf)) / (f -f)
  • T T-((( ⁇ -- ⁇ ) / 2 ⁇ ) + (rf -rf)) / (f -f)
  • ⁇ -((( ⁇ -- ⁇ ) / 2 ⁇ ) + (rf -rf)) / (f -f)
  • the time reference point is reproduced by calculating the time when the phase relationship of the subcarriers becomes a specific value.
  • the reception time stamp T is determined (step SB-10). Specifically, the arithmetic mean shown in Equation 7 below is the reception time stamp T. Note that variations and confidence intervals may be considered in the reception time stamp.
  • the quadrature detection is continued on the data in the waveform memory 104d, and the phases ⁇ , small, ⁇ are used as a reference.
  • step SB—12 Yes
  • the communication bucket The distance D between nodes is calculated using Equation 8 below (step SB-13).
  • thermometer is installed in the receiver (receiving node 104) to correct changes in sound velocity due to temperature.
  • each transmitting node 102 calculated in step SB-13 and the receiving node concerned The position of the receiving node 104 may be estimated based on the distance to the transmitting terminal 104 and the coordinate position of each transmitting node 102.
  • the embodiment of the ultrasonic distance measurement system 100 has been described above. Here, the process up to the development of this system is explained.
  • the conventional technology for measuring distances using ultrasonic waves required a central server for collecting information. Therefore, an access from each node to the central server occurs in determining the distance, which becomes a load on the server. Furthermore, the load increases in proportion to the square of the number of nodes (the number of nodes involved), and the system may fail if the number of nodes increases. In addition, it takes time to determine each distance by the communication time for access and response.
  • the receiving node must receive ultrasonic waves and electromagnetic waves. Therefore, for example, if either one of the receptions fails, the measurement cannot be performed and the reliability is bad.
  • a reception routine is created with the processor software of a small digital device, high-speed and high-precision processing is required for reception of both channels, which increases costs.
  • the number of measurement processes between nodes increases, the number of receive interrupt processes is approximately twice that of this system, making it unsuitable for large-scale applications.
  • the widely used piezoelectric ultrasonic wave transmitting and receiving elements are characterized by a narrow communication band and uneven amplitude and phase propagation characteristics in the transmission band. Due to this feature, even if it is attempted to convey the timing start point with a carrier burst, the received signal is subjected to another amplitude change or phase change for each frequency component, and is decomposed to make the start point ambiguous. That is, the delay time becomes ambiguous. As a result, it becomes difficult to accurately measure the distance. Therefore, the present inventors have developed a mechanism capable of accurately transmitting timing information even in a narrowband communication path such as ultrasonic communication. Portable information terminals are constantly moving, and there are always people around who can interfere with communication. Therefore, it is necessary to complete a single distance measurement including information transmission in a short time. In addition, if there is an error in communication, it is necessary to consider detecting the error and avoiding erroneous measurements.
  • information terminals communicate with each other via a bucket-type digital communication network using ultrasonic waves.
  • one node transmits the information communication packet including the time reference point information and the time stamp information of the time when it was transmitted.
  • the receiving node determines the position of the time reference point from the received packet and generates a reception time stamp again. At the same time, it is possible to obtain the packet propagation delay time by calculating the difference compared with the transmission time stamp obtained by decoding the communication information.
  • the receiving node can calculate the distance from the transmitting node by converting the delay time in consideration of the speed of sound.
  • each node is synchronized in time with an accuracy of, for example, 1/1000 second by a highly synchronized internal clock or time synchronization method such as NTP.
  • one transmitting node transmits a packet composed of a node identification number and a time stamp using an ultrasonic channel.
  • the receiving node can calculate the distance from the transmitting node by obtaining the reception time (reception time stamp) of the specific bit position of the packet.
  • a receiving node that has received three or more sets of this packet can determine the three-dimensional coordinate position of the receiving node.
  • the ultrasonic distance measurement system and the ultrasonic distance measurement method according to the present invention can accurately measure the distance between the transmission node and the reception node in a short time using only the ultrasonic waves.
  • it is suitable for distance measurement indoors and within a range of several meters to several tens of meters, and is extremely useful.

Abstract

An ultrasonic distance measuring system and an ultrasonic distance measuring method that can perform a distance measurement by use of a simple apparatus structure and particularly can precisely measure the distance between a transmitting node and a receiving node in a short time by use of only ultrasonic waves. In the ultrasonic distance measuring system (100), the transmitting node (102), which generates a communication packet and transmits the communication packet by use of ultrasonic waves, is connected to the receiving node (104), which receives the communication packet to measure the distance between the receiving node and the transmitting node, via an Internet communication network (106) such that they can wirelessly communicate with each other.

Description

明 細 書  Specification
超音波距離測定システムおよび超音波距離測定方法  Ultrasonic distance measuring system and ultrasonic distance measuring method
技術分野  Technical field
[0001] 本発明は、送信側の情報端末 (送信ノード)から通信パケットを超音波で送信し、受 信側の情報端末 (受信ノード)で当該通信パケットを受信することにより、情報端末 (ノ ード)間の距離を測定する超音波距離測定システムおよび超音波距離測定方法に 関するものである。  [0001] The present invention transmits a communication packet from an information terminal (transmission node) on the transmission side in an ultrasonic wave, and receives the communication packet at an information terminal (reception node) on the reception side. This is related to an ultrasonic distance measuring system and an ultrasonic distance measuring method for measuring the distance between the two.
背景技術  Background art
[0002] 現在、小型かつ軽量で通信機能を持った可搬型の情報端末が開発され、多く利用 されるようになった。また、インフラストラクチャーとしてのインターネット通信網も整備 されてきた。インターネット通信網により距離を克服しつつ情報世界 (サイバースべ一 ス)にアクセスすることができるので、 日常生活で活用されている。  [0002] Currently, portable information terminals having a small size and light weight and having a communication function have been developed and are widely used. In addition, the Internet communication network as an infrastructure has been established. It is used in everyday life because it can access the information world (cyber basis) while overcoming the distance through the Internet communication network.
[0003] ところで、可搬型の情報端末を対象とした場合、情報端末の用途として、例えば、あ る情報端末が特定の場所に移動されたことを他の情報端末が検出すると、他の情報 端末はその情報端末に固有のサービスを提供するという用途、また、接近し合ってい ることを特定の情報端末相互が検知すると、互いの情報端末が特別な動作を開始す るという用途が考えられる。具体的には、百貨店に来た客が売場付近に接近したこと を売場に設置された情報端末が客の携帯端末を介して検出すると、客の情報端末に 当該売場の商品情報を提供したり、雑踏した集会で面会相手が自分力 どの方向で どの距離に居るかを互いが所有する情報端末に表示したりすることが考えられる。こ れらの用途は、遠距離の通信ではなぐ情報端末の通信距離が特定の値 (数メート ル〜数十メートル)になっている場合における用途である。  [0003] By the way, when a portable information terminal is targeted, as an information terminal, for example, when another information terminal detects that an information terminal has been moved to a specific location, the other information terminal Can be used for providing services specific to the information terminal, and for each information terminal to start a special operation when specific information terminals detect that they are approaching each other. Specifically, when an information terminal installed in the sales floor detects that a customer who has arrived at a department store is close to the sales floor via the customer's mobile terminal, the customer's information terminal can be provided with product information on the sales floor. In a crowded gathering, it may be possible to display on the information terminals owned by each other what direction and distance the person being interviewed is. These applications are used when the communication distance of the information terminal is not a long distance communication and is a specific value (several meters to several tens of meters).
[0004] また、情報端末の通信距離が特定の値 (数メートル〜数十メートル)になっている場 合、例えば、情報端末に GPS (全地球測位システム)の受信機能を搭載することで中 央サーバにメンバの位置情報を集約したり、情報端末に携帯電話の通信機能を搭載 することでゾーン情報から位置を知ったりすることができる。そして、これら技術は実 用化されている。 また、超音波を利用して距離や座標位置を測定する技術が存在する。電波や光な どの電磁波およびケーブルを伝搬する電気信号は、空気中を伝搬する超音波に比 較して百万倍ほど高速に伝搬するので、ほぼ無限大の伝搬速度を持つと見なすこと ができる。具体的には、まず、送信ノードは、電磁波または電気信号と超音波信号と 同時に発生する。つぎに、受信ノードまたは集中ノードは、両信号の到着タイミングに 関する信号を集め、超音波の伝搬遅延時間を知る。そして、既知である空気中の音 速で当該伝播遅延時間を除すことで、送信ノードと受信ノードとの間隔 (距離)を計算 する。換言すると、送信ノードは、ビーコンを超音波チャンネルに、また一般情報を含 むタイミング信号を電波(赤外線も同様)チャンネルで同時に送信する。受信ノードは 、両方の信号を受信し、各信号の到着時刻の差を計算して、ノード間の距離を計算 する。なお、特定ノードから見て、座標位置のわ力、つている 3組以上のノードに対して 距離測定を行うことで、当該特定ノードの空間座標位置を求めることができる。 [0004] Also, when the communication distance of the information terminal is a specific value (several meters to several tens of meters), for example, the information terminal is equipped with a GPS (global positioning system) reception function. By collecting the location information of the members in the central server and installing the mobile phone communication function in the information terminal, it is possible to know the location from the zone information. These technologies are in practical use. There are also techniques for measuring distances and coordinate positions using ultrasonic waves. Electromagnetic waves such as radio waves and light, and electrical signals propagating through cables propagate one million times faster than ultrasonic waves propagating in the air, so they can be regarded as having an almost infinite propagation speed. . Specifically, first, the transmission node generates an electromagnetic wave or an electric signal and an ultrasonic signal at the same time. Next, the receiving node or the concentration node collects signals related to the arrival timing of both signals and knows the propagation delay time of the ultrasonic wave. Then, the interval (distance) between the transmission node and the reception node is calculated by dividing the propagation delay time by the known sound velocity in the air. In other words, the transmitting node transmits a beacon to the ultrasonic channel simultaneously and a timing signal including general information to the radio wave (similar to infrared) channel simultaneously. The receiving node receives both signals, calculates the difference between the arrival times of each signal, and calculates the distance between the nodes. Note that the spatial coordinate position of the specific node can be obtained by performing distance measurement on the three or more pairs of nodes as seen from the specific node.
また、例えば、個々の内部クロックが同期されていないノード群と中央サーバとがネ ットワークを介して接続されたシステムでノード間の距離を測定する技術が存在する。 具体的には、まず、受信ノードは、送信ノードから超音波で送信された超音波ビーコ ンを受信する。つぎに、受信ノードは、受信した超音波ビーコンの到着時刻を LANを 介して中央サーバに送信することで、中央サーバに距離計算を依頼する。そして、個 々のノードの動作を監視している中央サーバは、送信ノードおよび受信ノードからの 信号を比較し、その到着時間差力 ノード間の距離を計算して、計算した距離を受 信ノードに送信する。そして、受信ノードは、送信ノードとの距離を得る。  In addition, for example, there is a technique for measuring the distance between nodes in a system in which a group of nodes whose internal clocks are not synchronized and a central server are connected via a network. Specifically, first, the receiving node receives the ultrasonic beacon transmitted from the transmitting node with ultrasonic waves. Next, the receiving node requests the central server to calculate the distance by transmitting the arrival time of the received ultrasonic beacon to the central server via the LAN. Then, the central server monitoring the operation of each node compares the signals from the transmitting node and the receiving node, calculates the distance between the arrival time differential nodes, and calculates the calculated distance to the receiving node. Send. Then, the receiving node obtains the distance from the transmitting node.
また、その他の関連する技術として、例えば特許文献 1、特許文献 2、特許文献 3、 特許文献 4などが開示されている。  As other related techniques, for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4 and the like are disclosed.
特許文献 1 :特開 2003— 323357号公報 Patent Document 1: Japanese Patent Laid-Open No. 2003-323357
特許文献 2 :特開 2004— 289711号公報 Patent Document 2: JP-A-2004-289711
特許文献 3 :特開平 6— 82242号公報 Patent Document 3: JP-A-6-82242
特許文献 4 :特表 2004— 530115号公報 Patent Document 4: Japanese Patent Publication No. 2004-530115
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 [0006] しかしながら、従来技術では、中央サーバを備えた構成や、電磁波を発生する装置 と超音波を発生する装置の両方を備えた構成であったので、装置構成が複雑になり 、またそれらの制御方式も複雑になる、という問題点があった。 Problems to be solved by the invention [0006] However, in the prior art, the configuration includes a central server, and the configuration includes both a device that generates electromagnetic waves and a device that generates ultrasonic waves, which complicates the device configuration. There was a problem that the control method was also complicated.
一方、超音波のみを用いて距離を測定するという方式には反射型があるのみで、 漠然と対象の位置を捉えること以上はできず、また情報処理に必要な一般情報を超 音波で伝送することはできなレ、、とレ、う問題点があった。  On the other hand, there is only a reflection type of measuring the distance using only ultrasonic waves, and it is not possible to grasp the position of the target vaguely, and to transmit general information necessary for information processing with ultrasonic waves. There were problems that couldn't be done.
さらに、可搬型端末ではごく短時間に、単発での距離測定を行えることが便利であ るが、従来方式ではそのような用途に使用した場合に必ずしも十分な性能が得られ なレ、、という問題点もあった。  Furthermore, it is convenient to be able to measure the distance in a single shot in a very short time with a portable terminal, but the conventional method does not necessarily provide sufficient performance when used for such applications. There was also a problem.
[0007] 本発明は上記問題点に鑑みてなされたものであり、簡単な装置構成で距離の測定 が行えると共に、超音波のみを用いて送信ノードと受信ノードとの距離を短時間に精 度よく測定することができ、特に一般データ通信機能を併せ持つ超音波距離測定シ ステムおよび超音波距離測定方法を提供することを目的とする。  [0007] The present invention has been made in view of the above problems, and can measure the distance with a simple device configuration and can accurately measure the distance between the transmission node and the reception node using only ultrasonic waves. An object of the present invention is to provide an ultrasonic distance measuring system and an ultrasonic distance measuring method that can measure well, and in particular have a general data communication function.
課題を解決するための手段  Means for solving the problem
[0008] 上記目的を達成するために、本発明に力かる超音波距離測定システムは、所定の 時刻同期手法を用いてネットワークを介してその内部クロックを予め同期させた状態 の複数の情報端末において、 1つの情報端末から通信パケットを送信し、他の情報 端末で通信パケットを受信することにより、該当する情報端末間の距離を測定する超 音波距離測定システムであって、送信側の情報端末は、内部クロックから取得した時 刻に基づレ、て送信タイムスタンプを生成し、当該送信タイムスタンプを含む通信パケ ットを生成する通信パケット生成手段と、前記通信パケット生成手段で生成した通信 パケットを超音波で送信する通信パケット送信手段と、を備え、受信側の情報端末は 、送信側の情報端末から超音波で送信された通信パケットを受信する通信パケット受 信手段と、前記通信パケット受信手段で通信パケットを受信した時刻を内部クロック 力 取得し、当該時刻に基づいて受信タイムスタンプを生成する受信タイムスタンプ 生成手段と、前記受信タイムスタンプ生成手段で生成した受信タイムスタンプと前記 通信パケット受信手段で受信した通信パケットに含まれる送信タイムスタンプとの差 に基づいて送信側の情報端末と当該受信側の情報端末との距離を算出する距離算 出手段と、を備えたことを特徴とする。 [0008] In order to achieve the above object, an ultrasonic distance measurement system according to the present invention uses a predetermined time synchronization method in a plurality of information terminals in a state where their internal clocks are synchronized in advance via a network. An ultrasonic distance measurement system that measures a distance between corresponding information terminals by transmitting a communication packet from one information terminal and receiving the communication packet at another information terminal. A communication packet generating means for generating a transmission time stamp based on the time acquired from the internal clock and generating a communication packet including the transmission time stamp; and a communication packet generated by the communication packet generating means Communication packet transmitting means for transmitting ultrasonically, and the information terminal on the receiving side transmits the communication packet transmitted ultrasonically from the information terminal on the transmitting side A communication packet receiving means for receiving, a reception time stamp generating means for acquiring a time when the communication packet is received by the communication packet receiving means, and generating a reception time stamp based on the time, and the reception time stamp Distance for calculating the distance between the information terminal on the transmission side and the information terminal on the reception side based on the difference between the reception time stamp generated by the generation means and the transmission time stamp included in the communication packet received by the communication packet reception means Calculation And an exit means.
[0009] また、本発明にかかる超音波距離測定システムは、所定の時刻同期手法を用いて ネットワークを介してその内部クロックを予め同期させた状態の複数の情報端末にお いて、 1つの情報端末力も通信パケットを送信し、他の情報端末で通信パケットを受 信することにより、該当する情報端末間の距離を測定する超音波距離測定システム であって、前記通信パケットは、通信パケットを送受信する際の同期の基準となる基 準位置および当該基準位置が送信された時刻を表す送信タイムスタンプを含み、送 信側の情報端末は、内部クロックから取得した送信時刻および当該送信時刻から実 際に通信パケットの基準位置が送信されるまでの時間差である送信補正値に基づい て、送信タイムスタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成 する通信パケット生成手段と、前記通信パケット生成手段で生成した通信パケットを 超音波で送信する通信パケット送信手段と、を備え、受信側の情報端末は、送信側 の情報端末から超音波で送信された通信パケットを受信する通信パケット受信手段と [0009] In addition, the ultrasonic distance measuring system according to the present invention includes a single information terminal among a plurality of information terminals in a state where the internal clock is synchronized in advance via a network using a predetermined time synchronization method. The ultrasonic distance measuring system measures the distance between the corresponding information terminals by transmitting the communication packet and receiving the communication packet at another information terminal. The communication packet transmits and receives the communication packet. The transmission side information terminal actually includes the transmission time obtained from the internal clock and the transmission time, including the transmission time stamp indicating the reference position that is the reference for synchronization and the time when the reference position was transmitted. A transmission time stamp is generated based on a transmission correction value that is a time difference until the reference position of the communication packet is transmitted, and the transmission time stamp is included. A communication packet generating means for generating a communication packet; and a communication packet transmitting means for transmitting the communication packet generated by the communication packet generating means by means of ultrasonic waves. A communication packet receiving means for receiving a communication packet transmitted by sound waves;
、前記通信パケット受信手段で通信パケットを受信した受信時刻を内部クロックから 取得し、取得した受信時刻および当該受信時刻が取得されてから実際に通信バケツ トの基準位置が受信されるまでの時間差である受信補正値に基づいて、基準位置が 受信された時刻を表す受信タイムスタンプを生成する受信タイムスタンプ生成手段と 、前記受信タイムスタンプ生成手段で生成した受信タイムスタンプと前記通信パケット 受信手段で受信した通信パケットに含まれる送信タイムスタンプとの差に基づいて送 信側の情報端末と当該受信側の情報端末との距離を算出する距離算出手段と、を 備えたことを特徴とする。 The reception time when the communication packet is received by the communication packet receiving means is acquired from the internal clock, and the acquired reception time and the time difference from when the reception time is acquired until the reference position of the communication bucket is actually received. Based on a certain reception correction value, a reception time stamp generating means for generating a reception time stamp representing a time at which the reference position is received, a reception time stamp generated by the reception time stamp generation means and a communication packet received by the reception means Distance calculating means for calculating the distance between the information terminal on the transmission side and the information terminal on the reception side based on the difference from the transmission time stamp included in the communication packet.
[0010] また、本発明にかかる超音波距離測定システムは、前記に記載の超音波距離測定 システムにおいて、前記通信パケットは、送信側の情報端末を識別する識別 ID、任 意の通信データ、チェックサムのうち少なくとも 1つをさらに含むこと、を特徴とする。  [0010] Further, the ultrasonic distance measuring system according to the present invention is the ultrasonic distance measuring system described above, wherein the communication packet includes an identification ID for identifying an information terminal on a transmitting side, arbitrary communication data, a check It further comprises at least one of the thumbs.
[0011] また、本発明にかかる超音波距離測定システムは、前記に記載の超音波距離測定 システムにおいて、前記通信パケットは、送信側の情報端末の座標位置をさらに含 み、前記受信側の情報端末は、異なる複数の送信側の情報端末から連続して通信 パケットを受信した場合、前記距離算出手段で算出した各送信側の情報端末と当該 受信側の情報端末との距離および各送信側の情報端末の座標位置に基づいて当 該受信側の情報端末の位置を推定する位置推定手段、をさらに備えたことを特徴と する。 [0011] Further, in the ultrasonic distance measuring system according to the present invention, in the ultrasonic distance measuring system described above, the communication packet further includes a coordinate position of an information terminal on a transmitting side, and information on the receiving side When receiving a communication packet continuously from a plurality of different transmission-side information terminals, the terminal and each transmission-side information terminal calculated by the distance calculation means It further comprises position estimating means for estimating the position of the receiving information terminal based on the distance from the receiving information terminal and the coordinate position of each transmitting information terminal.
[0012] また、本発明にかかる超音波距離測定システムは、前記に記載の超音波距離測定 システムにおいて、前記情報端末は、 PDA,携帯電話、パーソナルコンピュータなど の可搬型の情報端末であること、を特徴とする。  [0012] Further, in the ultrasonic distance measuring system according to the present invention, in the ultrasonic distance measuring system described above, the information terminal is a portable information terminal such as a PDA, a mobile phone, or a personal computer. It is characterized by.
[0013] また、本発明にかかる超音波距離測定システムは、前記に記載の超音波距離測定 システムにおいて、前記送信側の情報端末は固定されたものであり、前記受信側の 情報端末は移動可能なものであること、を特徴とする。  [0013] Further, in the ultrasonic distance measuring system according to the present invention, in the ultrasonic distance measuring system described above, the information terminal on the transmitting side is fixed, and the information terminal on the receiving side is movable. It is characterized by that.
[0014] また、本発明は超音波距離測定方法に関するものであり、本発明にかかる超音波 距離測定方法は、所定の時刻同期手法を用いてネットワークを介してその内部クロッ クを予め同期させた状態の複数の情報端末において、 1つの情報端末から通信パケ ットを送信し、他の情報端末で通信パケットを受信することにより、該当する情報端末 間の距離を測定する超音波距離測定方法であって、送信側の情報端末にぉレ、て、 内部クロックから取得した時刻に基づいて送信タイムスタンプを生成し、当該送信タイ ムスタンプを含む通信パケットを生成し、生成した通信パケットを超音波で送信し、受 信側の情報端末において、送信側の情報端末力 超音波で送信された通信パケット を受信し、通信パケットを受信した時刻を内部クロックから取得し、当該時刻に基づい て受信タイムスタンプを生成し、生成した受信タイムスタンプと受信した通信パケット に含まれる送信タイムスタンプとの差に基づいて送信側の情報端末と当該受信側の 情報端末との距離を算出すること、を特徴とする。  In addition, the present invention relates to an ultrasonic distance measuring method, and the ultrasonic distance measuring method according to the present invention synchronizes the internal clock in advance via a network using a predetermined time synchronization method. An ultrasonic distance measurement method that measures the distance between corresponding information terminals by transmitting communication packets from one information terminal and receiving communication packets at other information terminals in a plurality of information terminals in a state. Therefore, a transmission time stamp is generated based on the time acquired from the internal clock, and a communication packet including the transmission time stamp is generated, and the generated communication packet is ultrasonically transmitted. The receiving information terminal receives the communication packet transmitted by the transmitting terminal's information terminal power ultrasound and the time when the communication packet was received from the internal clock. A reception time stamp is generated based on the time, and a transmission-side information terminal and the reception-side information terminal are connected based on a difference between the generated reception time stamp and a transmission time stamp included in the received communication packet. It is characterized by calculating the distance.
[0015] また、本発明にかかる超音波距離測定方法は、所定の時刻同期手法を用いてネッ トワークを介してその内部クロックを予め同期させた状態の複数の情報端末において 、 1つの情報端末から通信パケットを送信し、他の情報端末で通信パケットを受信す ることにより、該当する情報端末間の距離を測定する超音波距離測定方法であって、 前記通信パケットは、通信パケットを送受信する際の同期の基準となる基準位置およ び当該基準位置が送信された時刻を表す送信タイムスタンプを含み、送信側の情報 端末において、内部クロックから取得した送信時刻および当該送信時刻から実際に 通信パケットの基準位置が送信されるまでの時間差である送信補正値に基づいて、 送信タイムスタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成し、 生成した通信パケットを超音波で送信し、受信側の情報端末において、送信側の情 報端末力 超音波で送信された通信パケットを受信し、通信パケットを受信した受信 時刻を内部クロックから取得し、取得した受信時刻および当該受信時刻が取得され てから実際に通信パケットの基準位置が受信されるまでの時間差である受信補正値 に基づいて、基準位置が受信された時刻を表す受信タイムスタンプを生成し、生成し た受信タイムスタンプと受信した通信パケットに含まれる送信タイムスタンプとの差に 基づいて送信側の情報端末と当該受信側の情報端末との距離を算出すること、を特 徴とする。 [0015] In addition, the ultrasonic distance measuring method according to the present invention includes a plurality of information terminals in a state where their internal clocks are synchronized in advance via a network using a predetermined time synchronization method. An ultrasonic distance measurement method for measuring a distance between corresponding information terminals by transmitting a communication packet and receiving the communication packet at another information terminal, wherein the communication packet is used when transmitting / receiving the communication packet. This includes a reference position that is a reference for synchronization and a transmission time stamp that indicates the time when the reference position was transmitted, and the information terminal on the transmitting side actually uses the transmission time acquired from the internal clock and the transmission time. Based on the transmission correction value that is the time difference until the reference position of the communication packet is transmitted, a transmission time stamp is generated, a communication packet including the transmission time stamp is generated, and the generated communication packet is transmitted by ultrasonic waves. The receiving side information terminal receives the communication packet transmitted by the transmitting side information terminal power ultrasound, obtains the reception time when the communication packet was received from the internal clock, and the received reception time and the received time are Based on the reception correction value, which is the time difference from when the reference position of the communication packet is actually received until it is acquired, a reception time stamp indicating the time when the reference position is received is generated, and the generated reception time stamp and Based on the difference from the transmission time stamp included in the received communication packet, the distance between the transmitting information terminal and the receiving information terminal is calculated. To it, it is referred to as Features.
[0016] また、本発明にかかる超音波距離測定方法は、前記に記載の超音波距離測定方 法において、前記通信パケットは、送信側の情報端末を識別する識別 ID、任意の通 信データ、チェックサムのうち少なくとも 1つをさらに含むこと、を特徴とする。  [0016] Further, in the ultrasonic distance measuring method according to the present invention, in the ultrasonic distance measuring method described above, the communication packet includes an identification ID for identifying an information terminal on a transmission side, arbitrary communication data, It further comprises at least one of the checksums.
[0017] また、本発明にかかる超音波距離測定方法は、前記に記載の超音波距離測定方 法において、前記通信パケットは、送信側の情報端末の座標位置をさらに含み、前 記受信側の情報端末は、異なる複数の送信側の情報端末から連続して通信パケット を受信した場合、算出した各送信側の情報端末と当該受信側の情報端末との距離 および各送信側の情報端末の座標位置に基づいて当該受信側の情報端末の位置 を推定すること、を特徴とする。  [0017] Further, in the ultrasonic distance measuring method according to the present invention, in the ultrasonic distance measuring method described above, the communication packet further includes a coordinate position of an information terminal on a transmission side, When an information terminal continuously receives communication packets from a plurality of different transmission side information terminals, the calculated distance between each transmission side information terminal and the reception side information terminal and the coordinates of each transmission side information terminal The position of the information terminal on the receiving side is estimated based on the position.
[0018] また、本発明にかかる超音波距離測定方法は、前記に記載の超音波距離測定方 法において、前記情報端末は、 PDA,携帯電話、パーソナルコンピュータなどの可 搬型の情報端末であること、を特徴とする。  [0018] Further, in the ultrasonic distance measuring method according to the present invention, in the ultrasonic distance measuring method described above, the information terminal is a portable information terminal such as a PDA, a mobile phone, or a personal computer. It is characterized by.
[0019] また、本発明にかかる超音波距離測定方法は、前記に記載の超音波距離測定方 法において、前記送信側の情報端末は固定されたものであり、前記受信側の情報端 末は移動可能なものであること、を特徴とする。  [0019] Further, in the ultrasonic distance measuring method according to the present invention, in the ultrasonic distance measuring method described above, the information terminal on the transmitting side is fixed, and the information terminal on the receiving side is It is characterized by being movable.
発明の効果  The invention's effect
[0020] 本発明にかかる超音波距離測定システムおよび超音波距離測定方法によれば、所 定の時刻同期手法を用いてネットワークを介してその内部クロックを予め同期させた 状態の複数の情報端末において、 1つの情報端末から通信パケットを送信し、他の 情報端末で通信パケットを受信することにより、該当する情報端末間の距離を測定す る。特に、送信側の情報端末は、内部クロックから取得した時刻に基づいて送信タイ ムスタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成し、生成した 通信パケットを超音波で送信する。そして、受信側の情報端末は、送信側の情報端 末力 超音波で送信された通信パケットを受信し、通信パケットを受信した時刻を内 部クロック力 取得し、当該時刻に基づいて受信タイムスタンプを生成し、生成した受 信タイムスタンプと受信した通信パケットに含まれる送信タイムスタンプとの差に基づ レ、て送信側の情報端末と当該送信側の情報端末との距離を算出する。これにより、 簡単な装置構成で距離の測定が行えると共に、特に超音波のみを用いて送信ノード と受信ノードとの距離を短時間に精度よく測定することができるという効果を奏する。 また、本発明にかかる超音波距離測定システムおよび超音波距離測定方法によれ ば、所定の時刻同期手法を用いてネットワークを介してその内部クロックを予め同期 させた状態の複数の情報端末において、 1つの情報端末から通信パケットを送信し、 他の情報端末で通信パケットを受信することにより、該当する情報端末間の距離を測 定する。特に、通信パケットは、通信パケットを送受信する際の同期の基準となる基 準位置および当該基準位置が送信された時刻を表す送信タイムスタンプを含む。送 信側の情報端末は、内部クロックから取得した送信時刻および当該送信時刻から実 際に通信パケットの基準位置が送信されるまでの時間差である送信補正値に基づい て、送信タイムスタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成 し、生成した通信パケットを超音波で送信する。そして、受信側の情報端末は、送信 側の情報端末力 超音波で送信された通信パケットを受信し、通信パケットを受信し た受信時刻を内部クロックから取得し、取得した受信時刻および当該受信時刻が取 得されてから実際に通信パケットの基準位置が受信されるまでの時間差である受信 補正値に基づレ、て、基準位置が受信された時刻を表す受信タイムスタンプを生成し 、生成した受信タイムスタンプと受信した通信パケットに含まれる送信タイムスタンプと の差に基づいて送信側の情報端末と当該受信側の情報端末との距離を算出する。 これにより、簡単な装置構成で距離の測定が行えると共に、特に超音波のみを用い て送信ノードと受信ノードとの距離を短時間に精度よく測定することができるという効 果を奏する。 [0020] According to the ultrasonic distance measuring system and the ultrasonic distance measuring method of the present invention, the internal clock is synchronized in advance via the network using a predetermined time synchronization method. In a plurality of information terminals in a state, a communication packet is transmitted from one information terminal, and a communication packet is received by another information terminal, thereby measuring the distance between the corresponding information terminals. In particular, the information terminal on the transmission side generates a transmission time stamp based on the time acquired from the internal clock, generates a communication packet including the transmission time stamp, and transmits the generated communication packet using ultrasonic waves. Then, the receiving side information terminal receives the communication packet transmitted by the transmitting side information terminal force ultrasonic wave, acquires the time when the communication packet was received, and acquires the internal clock force, and based on the received time stamp And the distance between the transmitting information terminal and the transmitting information terminal is calculated based on the difference between the generated reception time stamp and the transmission time stamp included in the received communication packet. As a result, the distance can be measured with a simple device configuration, and in particular, the distance between the transmission node and the reception node can be accurately measured in a short time using only ultrasonic waves. Further, according to the ultrasonic distance measurement system and the ultrasonic distance measurement method according to the present invention, in a plurality of information terminals in a state where the internal clocks are synchronized in advance via a network using a predetermined time synchronization method, By transmitting communication packets from one information terminal and receiving communication packets at other information terminals, the distance between the corresponding information terminals is measured. In particular, the communication packet includes a reference position serving as a reference for synchronization when the communication packet is transmitted and received and a transmission time stamp indicating the time when the reference position is transmitted. The information terminal on the transmission side generates a transmission time stamp based on the transmission time acquired from the internal clock and the transmission correction value that is the time difference from the transmission time until the reference position of the communication packet is actually transmitted. Then, a communication packet including the transmission time stamp is generated, and the generated communication packet is transmitted by ultrasonic waves. Then, the receiving side information terminal receives the communication packet transmitted by the transmitting side information terminal power ultrasonic wave, acquires the reception time when the communication packet is received from the internal clock, and acquires the acquired reception time and the reception time. Based on the reception correction value that is the time difference from when the reference position of the communication packet is actually received until the reference position of the communication packet is received, a reception time stamp indicating the time when the reference position is received is generated. The distance between the information terminal on the transmission side and the information terminal on the reception side is calculated based on the difference between the reception time stamp and the transmission time stamp included in the received communication packet. This makes it possible to measure distances with a simple device configuration and uses only ultrasonic waves. As a result, the distance between the transmitting node and the receiving node can be accurately measured in a short time.
[0022] また、本発明にかかる超音波距離測定システムおよび超音波距離測定方法によれ ば、通信パケットは、送信側の情報端末を識別する識別 ID、任意の通信データ、チ エックサムのうち少なくとも 1つをさらに含む。これにより、複数の情報を一度に送受信 すること力 Sできるとレ、う効果を奏する。  [0022] Further, according to the ultrasonic distance measurement system and the ultrasonic distance measurement method according to the present invention, the communication packet includes at least one of an identification ID for identifying an information terminal on the transmission side, arbitrary communication data, and a checksum. In addition. As a result, the ability to send and receive multiple pieces of information at once can be achieved.
[0023] また、本発明にかかる超音波距離測定システムおよび超音波距離測定方法によれ ば、通信パケットは、送信側の情報端末の座標位置をさらに含み、受信側の情報端 末は、異なる複数の送信側の情報端末力も連続して通信パケットを受信した場合、 算出した各送信側の情報端末と当該受信側の情報端末との距離および各送信側の 情報端末の座標位置に基づいて当該受信側の情報端末の位置を推定する。これに より、受信側の情報端末の座標位置を短時間に精度よく推定することができるという 効果を奏する。  [0023] Further, according to the ultrasonic distance measuring system and the ultrasonic distance measuring method according to the present invention, the communication packet further includes the coordinate position of the information terminal on the transmitting side, and the information terminal on the receiving side has a plurality of different information terminals. When the communication terminal also continuously receives communication packets, the reception terminal receives the received data based on the calculated distance between each transmission-side information terminal and the reception-side information terminal and the coordinate position of each transmission-side information terminal. The position of the information terminal on the side is estimated. As a result, the coordinate position of the information terminal on the receiving side can be accurately estimated in a short time.
[0024] また、本発明にかかる超音波距離測定システムおよび超音波距離測定方法によれ ば、情報端末は、 PDA,携帯電話、パーソナルコンピュータなどの可搬型の情報端 末である。これにより、移動しながら、互いの情報端末間の距離を短時間に精度よく 測定することができるという効果を奏する。  [0024] Further, according to the ultrasonic distance measurement system and the ultrasonic distance measurement method according to the present invention, the information terminal is a portable information terminal such as a PDA, a mobile phone, or a personal computer. As a result, the distance between the information terminals can be accurately measured in a short time while moving.
[0025] また、本発明にかかる超音波距離測定システムおよび超音波距離測定方法によれ ば、送信側の情報端末は固定されたものであり、受信側の情報端末は移動可能なも のである。これにより、例えば屋内に複数の送信側の情報端末を設置しておくことで 、受信側の情報端末は当該情報端末の座標位置を計算することができるという効果 を奏する。  In addition, according to the ultrasonic distance measuring system and the ultrasonic distance measuring method according to the present invention, the information terminal on the transmission side is fixed, and the information terminal on the reception side is movable. Thus, for example, by installing a plurality of transmitting information terminals indoors, the receiving information terminal can calculate the coordinate position of the information terminal.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]図 1は、超音波距離測定システム 100の構成の一例を示す概念図である。  FIG. 1 is a conceptual diagram showing an example of a configuration of an ultrasonic distance measurement system 100.
[図 2]図 2は、送信ノード 102の具体的な構成の一例を示すブロック図である。  FIG. 2 is a block diagram showing an example of a specific configuration of the transmission node 102.
[図 3]図 3は、受信ノード 104の具体的な構成の一例を示すブロック図である。  FIG. 3 is a block diagram showing an example of a specific configuration of the receiving node 104.
[図 4]図 4は、 NTPによる時刻同期の一例を示す概念図である。  FIG. 4 is a conceptual diagram showing an example of time synchronization by NTP.
[図 5]図 5は、通信パケットの具体的な構成の一例を示す図である。 [図 6]図 6は、送信ノード 102で行われる処理の一例を示すフローチャートである。 FIG. 5 is a diagram showing an example of a specific configuration of a communication packet. FIG. 6 is a flowchart showing an example of processing performed in the transmission node 102.
[図 7]図 7は、受信ノード 104で行われる処理の一例を示すフローチャートである。  FIG. 7 is a flowchart illustrating an example of processing performed in the reception node 104.
[図 8]図 8は、直接検波による位相の抽出の一例を示す図である。  FIG. 8 is a diagram showing an example of phase extraction by direct detection.
[図 9]図 9は、同期パターンによる時刻基準点の表現の一例を示す図である。  [Fig. 9] Fig. 9 is a diagram showing an example of expression of a time reference point by a synchronization pattern.
[図 10]図 10は、複数の固定型の送信ノード 102と可搬型の受信ノード 104で構成さ れた超音波距離測定システム 100の一例を示す図である。  FIG. 10 is a diagram showing an example of an ultrasonic distance measurement system 100 configured with a plurality of fixed transmission nodes 102 and a portable reception node 104.
符号の説明  Explanation of symbols
[0027] 100 超音波距離測定システム [0027] 100 ultrasonic distance measuring system
102 送信ノード  102 Sending node
102a CPU  102a CPU
102b 無線 LAN  102b wireless LAN
102c 内咅 βクロック  102c internal β clock
102d〜: 102f 波形メモリ  102d: 102f waveform memory
102g〜102i 移相器  102g to 102i phase shifter
102j DA変換器  102j DA converter
102k 超音波送信素子  102k ultrasonic transmitter
104 受信ノード  104 Receiving node
104a CPU  104a CPU
104b 無線 LAN  104b wireless LAN
104c 内咅 Gクロック  104c inner clock G clock
104d 波形メモリ  104d waveform memory
104e AD変換器  104e AD converter
104f 超音波送信素子  104f Ultrasonic transmitter
106 インターネット通信網  106 Internet communication network
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下に、本発明にかかる超音波距離測定システムおよび超音波距離測定方法の 実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発 明が限定されるものではない。 [0029] まず、本発明の超音波距離測定システム 100の構成について、図 1を参照して説 明する。図 1は超音波距離測定システム 100の構成の一例を示す概念図である。 超音波距離測定システム 100は、図 1に示すように、通信パケットを生成し、通信パ ケットを超音波で送信する送信ノード 102と、通信パケットを受信し、送信ノードとの 間の距離を測定する受信ノード 104とがインターネット通信網 106を介して無線で通 信可能に接続して構成されている。ここで、全ての送信ノード 102および受信ノード 1 04は、 NTP (Network Time Protocol)を用いてインターネット通信網 106を介し てその内部クロックを予め同期している。なお、図 1では、超音波距離測定システム 1 00力 1つの送信ノード 102と 3つの受信ノード 104で構成された一例を示している 力 送信ノード 102および受信ノード 104の個数はこれに限定されなレ、。また、本実 施の形態では、符号 102のノードを送信ノード、符号 104のノードを受信ノードとして 説明するが、それぞれのノードの構成は同一であってもよぐそれぞれが必要に応じ て役割を担うことができる。 Hereinafter, embodiments of an ultrasonic distance measuring system and an ultrasonic distance measuring method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited by this embodiment. First, the configuration of the ultrasonic distance measuring system 100 of the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram showing an example of the configuration of the ultrasonic distance measuring system 100. As shown in FIG. 1, the ultrasonic distance measurement system 100 generates a communication packet, and transmits the communication packet with ultrasonic waves, and receives the communication packet and measures the distance between the transmission node and the transmission node. The receiving node 104 is connected to the receiving node 104 via the Internet communication network 106 so as to be able to communicate wirelessly. Here, all transmitting nodes 102 and receiving nodes 104 are synchronized in advance with their internal clocks via the Internet communication network 106 using NTP (Network Time Protocol). FIG. 1 shows an example of an ultrasonic distance measuring system 100 force consisting of one transmitting node 102 and three receiving nodes 104. The number of force transmitting nodes 102 and receiving nodes 104 is not limited to this. Les. In this embodiment, the node 102 is described as a transmitting node, and the node 104 is a receiving node. However, the configuration of each node may be the same, and each node plays a role as necessary. Can bear.
[0030] 送信ノード 102は、内部クロックから取得した時刻に基づいて送信タイムスタンプを 生成し、当該送信タイムスタンプを含む通信パケットを生成し、生成した通信パケット を超音波で送信する。ここで、送信ノード 102の具体的な構成の一例について、図 2 を参照して説明する。図 2は、送信ノード 102の具体的な構成の一例を示すブロック 図である。図 2に示すように、送信ノード 102は、当該送信ノード 102の全体を統括的 に制御する CPU102aと、当該送信ノード 102をインターネット通信網 106に接続す る無線 LAN102b (図 1における時刻同期通信器 Nに対応)と、計時する内部クロック 102cと、送信する波形を記憶する複数の波形メモリ 102d〜102fと、複数の移相器 102g〜: 102iと、 DA変換器 10¾と、超音波送信素子 102k (図 1における超音波送 信器 Sに対応)と、で構成され、これらは任意の通信路を介して接続されている。なお 、送信ノード 102は、超音波受信素子(図 1における超音波受信器 Rに対応)をさらに 含んで構成されてもよい。  [0030] The transmission node 102 generates a transmission time stamp based on the time acquired from the internal clock, generates a communication packet including the transmission time stamp, and transmits the generated communication packet using ultrasonic waves. Here, an example of a specific configuration of the transmission node 102 will be described with reference to FIG. FIG. 2 is a block diagram illustrating an example of a specific configuration of the transmission node 102. As shown in FIG. 2, the transmitting node 102 includes a CPU 102a that controls the entire transmitting node 102 and a wireless LAN 102b that connects the transmitting node 102 to the Internet communication network 106 (the time synchronization communication device in FIG. 1). N), a plurality of waveform memories 102d to 102f that store waveforms to be transmitted, a plurality of phase shifters 102g to 102i, a DA converter 10¾, and an ultrasonic transmission element 102k (Corresponding to the ultrasonic transmitter S in Fig. 1), and these are connected via an arbitrary communication path. The transmission node 102 may further include an ultrasonic receiving element (corresponding to the ultrasonic receiver R in FIG. 1).
[0031] 図 2において、 CPU102aは、通信パケット生成部と通信パケット送信部とを備える 。通信パケット生成部は、内部クロック 102cから取得した時刻に基づいて送信タイム スタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成する。具体的に は、内部クロック 102cから取得した送信時刻および当該送信時刻から実際に通信パ ケットの基準位置が送信されるまでの時間差である送信補正値に基づいて、送信タ ィムスタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成する。通信 パケット送信部は、通信パケット生成部で生成した通信パケットを超音波で送信する 。なお、通信パケットは、当該通信パケットを送受信する際の同期の基準となる基準 位置および当該基準位置が送信された時刻を表す送信タイムスタンプを少なくとも含 む。 In FIG. 2, the CPU 102a includes a communication packet generation unit and a communication packet transmission unit. The communication packet generation unit generates a transmission time stamp based on the time acquired from the internal clock 102c, and generates a communication packet including the transmission time stamp. Specifically Generates a transmission time stamp based on the transmission time acquired from the internal clock 102c and a transmission correction value that is a time difference from the transmission time until the reference position of the communication packet is actually transmitted. A communication packet including is generated. The communication packet transmission unit transmits the communication packet generated by the communication packet generation unit using ultrasonic waves. Note that the communication packet includes at least a reference position serving as a reference for synchronization when the communication packet is transmitted and received and a transmission time stamp indicating the time when the reference position is transmitted.
[0032] ここで、通信パケットの具体的な構成の一例について図 5を参照して説明する。図 5 は、通信パケットの具体的な構成の一例を示す図である。図 5に示すように、通信パ ケットは、本発明の特徴部分である基準位置(時刻基準点に対応)を含む同期バタ ーン部と、パケット長(バイト単位)と、送信ノード IDと、送信タイムスタンプと、ユーザ データ (任意の通信データ)と、チェックサム(CRC16)と、で構成されている。なお、 受信ノード 104の座標位置を推定する場合には、通信パケットは、送信ノード 102の 座標位置を含む。また、同期パターン部およびチェックサムを除く通信パケットに含ま れるデータの順序は任意に変更してもよい。  Here, an example of a specific configuration of the communication packet will be described with reference to FIG. FIG. 5 is a diagram illustrating an example of a specific configuration of a communication packet. As shown in FIG. 5, the communication packet includes a synchronization pattern portion including a reference position (corresponding to a time reference point), which is a characteristic part of the present invention, a packet length (in bytes), a transmission node ID, It consists of a transmission time stamp, user data (arbitrary communication data), and a checksum (CRC16). When the coordinate position of receiving node 104 is estimated, the communication packet includes the coordinate position of transmitting node 102. Further, the order of data included in the communication packet excluding the synchronization pattern part and the checksum may be arbitrarily changed.
[0033] 再び図 1に戻り、受信ノード 104は、送信ノード 102から超音波で送信された通信 パケットを受信し、通信パケットを受信した時刻を内部クロックから取得し、当該時刻 に基づレ、て受信タイムスタンプを生成し、生成した受信タイムスタンプと受信した通信 パケットに含まれる送信タイムスタンプとの差に基づいて送信ノード 102と当該受信ノ ード 104との距離を算出する。ここで、受信ノード 104の具体的な構成の一例につい て、図 3を参照して説明する。図 3は、受信ノード 104の具体的な構成の一例を示す ブロック図である。図 3に示すように、受信ノード 104は、当該受信ノード 104の全体 を統括的に制御する CPU104aと、当該受信ノード 104をインターネット通信網 106 に接続する無線 LAN104b (図 1における時刻同期通信器 Nに対応)と、計時する内 部クロック 104cと、受信した波形を記憶する波形メモリ 104dと、 AD変換器 104eと、 超音波受信素子 104f (図 1における超音波受信器 Rに対応)と、で構成され、これら は任意の通信路を介して接続されている。なお、受信ノード 104は、超音波送信素 子(図 1における超音波送信器 Sに対応)をさらに含んで構成されてもよい。 [0034] 図 3において、 CPU104aは、通信パケット受信部と受信タイムスタンプ生成部と距 離算出部と位置推定部とを備える。通信パケット受信部は、送信ノード 102から超音 波で送信された通信パケットを受信する。受信タイムスタンプ生成部は、通信パケット 受信部で通信パケットを受信した時刻を内部クロック 104cから取得し、当該時刻に 基づいて受信タイムスタンプを生成する。具体的には、通信パケット受信部で通信パ ケットを受信した受信時刻を内部クロック 104cから取得し、取得した受信時刻および 当該受信時刻が取得されてから実際に通信パケットの基準位置が受信されるまでの 時間差である受信補正値に基づいて、基準位置が受信された時刻を表す受信タイム スタンプを生成する。距離算出部は、受信タイムスタンプ生成部で生成した受信タイ ムスタンプと前記通信パケット受信部で受信した通信パケットに含まれる送信タイムス タンプとの差に基づいて送信ノード 102と当該受信ノード 104との距離を算出する。 位置推定部は、異なる複数の送信ノード 102から連続して通信パケットを受信した場 合、距離算出部で算出した各送信ノード 102と当該受信ノード 104との距離および 各送信ノード 102の座標位置に基づいて当該受信ノード 104の位置を推定する。 [0033] Returning to Fig. 1 again, the receiving node 104 receives the communication packet transmitted by the ultrasonic wave from the transmitting node 102, acquires the time when the communication packet was received from the internal clock, and based on the time, A reception time stamp is generated, and a distance between the transmission node 102 and the reception node 104 is calculated based on a difference between the generated reception time stamp and a transmission time stamp included in the received communication packet. Here, an example of a specific configuration of the receiving node 104 will be described with reference to FIG. FIG. 3 is a block diagram showing an example of a specific configuration of the receiving node 104. As shown in FIG. As shown in FIG. 3, the receiving node 104 includes a CPU 104a that controls the entire receiving node 104 and a wireless LAN 104b that connects the receiving node 104 to the Internet communication network 106 (the time synchronization communicator N in FIG. 1). ), Internal clock 104c for timing, waveform memory 104d for storing received waveforms, AD converter 104e, and ultrasonic receiving element 104f (corresponding to ultrasonic receiver R in FIG. 1) These are configured and connected via an arbitrary communication path. The reception node 104 may further include an ultrasonic transmission element (corresponding to the ultrasonic transmitter S in FIG. 1). In FIG. 3, CPU 104a includes a communication packet receiving unit, a reception time stamp generating unit, a distance calculating unit, and a position estimating unit. The communication packet receiving unit receives a communication packet transmitted from the transmission node 102 by using an ultrasonic wave. The reception time stamp generation unit acquires the time when the communication packet is received by the communication packet reception unit from the internal clock 104c, and generates a reception time stamp based on the time. Specifically, the reception time when the communication packet is received by the communication packet receiver is acquired from the internal clock 104c, and the acquired reception time and the reference position of the communication packet are actually received after the reception time is acquired. Based on the reception correction value, which is the time difference until, a reception time stamp indicating the time when the reference position is received is generated. The distance calculation unit determines the distance between the transmission node 102 and the reception node 104 based on the difference between the reception time stamp generated by the reception time stamp generation unit and the transmission time stamp included in the communication packet received by the communication packet reception unit. Is calculated. When the position estimation unit continuously receives communication packets from a plurality of different transmission nodes 102, the position estimation unit calculates the distance between each transmission node 102 and the reception node 104 calculated by the distance calculation unit and the coordinate position of each transmission node 102. Based on this, the position of the receiving node 104 is estimated.
[0035] 以上の構成において、超音波距離測定システム 100を構成する送信ノード 102お よび受信ノード 104で行われる処理を、図 6、図 7などを参照して順に説明する。なお 、超音波距離測定システム 100を構成する全ての送信ノード 102および受信ノード 1 04は、 NTPを用いてインターネット通信網 106を介して、内部クロック 102cおよび内 部クロック 104cを予め同期しているものとする。ここで、 NTPによる時刻同期につい て、図 4を参照して簡単に説明する。図 4は、 NTPによる時刻同期の一例を示す概念 図である。図 4に示すように、時刻同期する第 n+ 1層の NTPサーバは、第 n層の NT pサーバへ時刻を問い合わせる。そして、第 n層の NTPサーバは、第 n_ l層の NTP サーバへ当該問い合わせを伝達する。以降、隣り合う層の NTPサーバ同士で伝達 を繰り返し、最終的に、最上層(第 0層)の NTPサーバへ当該問い合わせを伝達する 。そして、最上層の NTPサーバは、隣り合う層の NTPサーバへ時刻を返す。以降、 隣り合う層の NTPサーバ同士で伝達を繰り返し、最終的に、問い合わせ元の第 n+ 1 層の NTPサーバへ当該時刻を返す。これにより、第 n+ 1層の NTPサーバは時刻を 同期することができる。 [0036] 初めに、送信ノード 102で行われる処理を図 6などを参照して説明する。図 6は、送 信ノード 102で行われる処理の一例を示すフローチャートである。なお、送信ノードは 、以下の処理により、通信パケットを適当な頻度で送出する。 [0035] In the above configuration, processing performed by the transmission node 102 and the reception node 104 constituting the ultrasonic distance measurement system 100 will be described in order with reference to Figs. Note that all the transmission nodes 102 and reception nodes 104 constituting the ultrasonic distance measurement system 100 are synchronized in advance with the internal clock 102c and the internal clock 104c via the Internet communication network 106 using NTP. And Here, time synchronization by NTP will be briefly described with reference to FIG. Fig. 4 is a conceptual diagram showing an example of time synchronization by NTP. As shown in Fig. 4, the n + 1 layer NTP server that synchronizes the time inquires the NT p server of the n layer for the time. Then, the n-th layer NTP server transmits the inquiry to the n_l layer NTP server. Thereafter, the communication is repeated between NTP servers in adjacent layers, and finally the inquiry is transmitted to the NTP server in the uppermost layer (0th layer). The top layer NTP server then returns the time to the adjacent layer NTP server. Thereafter, transmission is repeated between NTP servers in adjacent layers, and finally the time is returned to the n + 1 layer NTP server that is the source of the inquiry. This allows the n + 1 layer NTP server to synchronize the time. First, processing performed in the transmission node 102 will be described with reference to FIG. FIG. 6 is a flowchart showing an example of processing performed in the transmission node 102. The sending node sends out communication packets at an appropriate frequency by the following processing.
[0037] まず、波形メモリ 102dに記憶された波形(周波数 f = 39000Hz)の初期位相量 p  [0037] First, the initial phase amount p of the waveform (frequency f = 39000 Hz) stored in the waveform memory 102d.
1 1 を移相器 102gで決定し (ステップ SA—1)、波形メモリ 102eに記憶された波形 (周波 数 f = 39000Hz)の初期位相量 pを移相器 102hで決定し (ステップ SA_ 2)、波形  1 1 is determined by the phase shifter 102g (step SA-1), and the initial phase amount p of the waveform (frequency f = 39000Hz) stored in the waveform memory 102e is determined by the phase shifter 102h (step SA_2). ,Waveform
2 2  twenty two
メモリ 102fに記憶された波形 (周波数 f =40000Hz)の初期位相量 pを移相器 102  The initial phase amount p of the waveform (frequency f = 40000Hz) stored in memory 102f is changed to phase shifter 102
3 3  3 3
iで決定する (ステップ SA_ 3)。具体的には、まず、送信回路および超音波送信素 子の遅延時間を調べて、周波数 f の波形に対応する遅延時間 s、周波数 f の波形に  Determine with i (step SA_3). Specifically, first, the delay times of the transmission circuit and the ultrasonic transmission element are examined, and the delay time s and the waveform of the frequency f corresponding to the waveform of the frequency f are obtained.
1 1 2  1 1 2
対応する遅延時間 s、周波数 f の波形に対応する遅延時間 Sを計測する。ついで、  Measure the delay time S corresponding to the waveform with the corresponding delay time s and frequency f. Next,
2 3 3  2 3 3
時刻基準点での素搬送波の位相をゼロに揃えるために、同期パターンの搬送波ごと に初期位相量 p、 p、 pをそれぞれ、下記の数式 1、数式 2、数式 3で算出する。そし  In order to align the phase of the elementary carrier at the time reference point to zero, the initial phase amounts p, p, and p are calculated by Equation 1, Equation 2, and Equation 3 below for each carrier of the synchronization pattern. And
1 2 3  one two Three
て、算出した初期位相量 p、 p、 pをそれぞれ、波形メモリ 102d〜102fに蓄積する。  Thus, the calculated initial phase amounts p, p, and p are stored in the waveform memories 102d to 102f, respectively.
1 2 3  one two Three
p = 2 π X (l -frac ( (0. 0005 + s ) X f ) ) · · · (数式 1)  p = 2 π X (l -frac ((0. 0005 + s) X f))) (Equation 1)
1 1 1  1 1 1
p = 2 π X (l -frac ( (0. 0005 + s ) X f ) ) · · · (数式 2)  p = 2 π X (l -frac ((0. 0005 + s) X f))) (Equation 2)
2 2 2  2 2 2
p = 2 π X (l -frac ( (0. 0005 + s ) X f ) ) · · · (数式 3)  p = 2 π X (l -frac ((0. 0005 + s) X f))) (Equation 3)
3 3 3  3 3 3
ここで、 frac (x)は、 xの小数部を取り出す演算である。  Here, frac (x) is an operation for extracting the fractional part of x.
なお、ステップ SA—:!〜 SA— 3までの処理は一度実行しておけばよい。  It should be noted that the processes from step SA— :! to SA—3 may be executed once.
[0038] ここで、使用する送信回路または送信素子が周波数により波形の位相に変化を与 えるような性質 (分散特性)を有する場合には、それを補償するように予め素搬送波 に補正を加えてもよレ、。また、送出波形の同期パターンの継続時間は、 l/ (f -f [0038] Here, if the transmission circuit or the transmission element to be used has a property (dispersion characteristic) that changes the phase of the waveform depending on the frequency, correction is applied to the elementary carrier in advance to compensate for it. Anyway. The duration of the synchronization pattern of the transmitted waveform is l / (f -f
max mi max mi
)を超えないように決める(f は複数搬送波のうち最高周波数であり、 f は最低周 n max mm ) (F is the highest frequency among multiple carriers, and f is the minimum circumference n max mm
波数である。)。  It is wave number. ).
[0039] つぎに、内部クロック 102cから送信時刻を取得し、当該送信時刻に送信補正値と して予め設定された時間「0. 5ms」を加えた時刻を送信タイムスタンプ Tとして生成  [0039] Next, a transmission time is acquired from the internal clock 102c, and a time obtained by adding a preset time "0.5 ms" as a transmission correction value to the transmission time is generated as a transmission time stamp T.
s  s
する(ステップ SA_4)。具体的には、送信動作を開始するにあたり、一つの時刻基 準点を決定し、通信パケットの送出タイミングを、その時刻基準点に相対的に算定で きるようにし、時刻基準点を時刻同期された内部クロックで表記した値を生成し、送信 タイムスタンプ Tとする。ここで、時刻基準点を同期パターンの中央 (送信開始から 0(Step SA_4). Specifically, when starting the transmission operation, one time reference point is determined, the transmission timing of the communication packet can be calculated relative to the time reference point, and the time reference point is time synchronized. Generate and send the value represented by the internal clock Time stamp T. Here, set the time reference point to the center of the synchronization pattern (0
. 5ms後)にとり、この中央で波形の送信位相をゼロに合わせる。また、具体的には、 複数の予め決定された周波数からなる搬送波波形を生成し、その加法合成またはそ れらをさらに主搬送波で変調したものを同期パターンとする。なお、同期パターンの 複数搬送波を構成する素搬送波の位相は、時刻基準点にぉレ、て予め決定された一 定の関係をもつように構成しておく(図 9参照)。ここで、本実施の形態では、 3つの周 波数のゼロ位相が揃う時点を時刻基準点と定義して設定しているが、時刻基準点の 所定の条件としては、例えば 3つの周波数の最大値または最小値が揃った時点を用 いてもよレ、。また、タイムスタンプは、 1 μ sで量子化し、 48ビット整数で表記したものと する。これは、約 9年間でサイクルする表記法である。 After 5ms), set the waveform transmission phase to zero at this center. More specifically, a carrier waveform composed of a plurality of predetermined frequencies is generated, and an additive synthesis thereof or a result obtained by modulating these with a main carrier is used as a synchronization pattern. Note that the phases of the elementary carriers constituting the plurality of carriers in the synchronization pattern are configured so as to have a predetermined relationship with the time reference point (see FIG. 9). Here, in the present embodiment, the time point when the zero phases of the three frequencies are aligned is defined and set as the time reference point, but the predetermined condition of the time reference point is, for example, the maximum value of the three frequencies Or you can use the point when the minimum values are complete. The time stamp is quantized with 1 μs and expressed as a 48-bit integer. This is a notation that cycles in about nine years.
[0040] つぎに、ステップ SA—4の処理と同時に、超音波搬送波を変調して通信パケットを 送信する。具体的には、まず、波形メモリ 102d〜: 102fのそれぞれに蓄積された初期 位相量 p〜pで、同期パターンを送信する(ステップ SA— 5)。つぎに、パケット長を [0040] Next, simultaneously with the processing of step SA-4, the ultrasonic carrier wave is modulated and a communication packet is transmitted. Specifically, first, the synchronization pattern is transmitted with the initial phase amounts p to p stored in the waveform memories 102d to 102f (step SA-5). Next, the packet length is
1 3  13
送信し (ステップ SA— 6)、送信ノード IDを送信し (ステップ SA— 7)、送信タイムスタ ンプ Tを送信し (ステップ SA— 8)、ユーザデータを送信し (ステップ SA— 9)、ビット s  Send (step SA—6), send sender node ID (step SA—7), send send timestamp T (step SA—8), send user data (step SA—9), bit s
パターンからチェックサム(本実施の形態では 16ビットの生成多項式による CRC16) を作成して送信する (ステップ SA— 10)。つまり、パケット長、送信ノード ID、送信タイ ムスタンプ、 CRC16を順次、 PSKにて変調して送出する。ここで、通信パケットに含 まれるパケット長以下のデータ(図 5参照)は、周波数 f 〜f に 8値 PSK変調をかける  A checksum (CRC16 using a 16-bit generator polynomial in this embodiment) is created from the pattern and transmitted (step SA-10). In other words, the packet length, transmission node ID, transmission time stamp, and CRC16 are sequentially modulated by PSK and transmitted. Here, for data less than the packet length included in the communication packet (see Fig. 5), 8-value PSK modulation is applied to the frequencies f to f.
1 3  13
ことで送信するが、その位相基準には同期パターンの素搬送波をあてる。そして、そ れらをゼロ位相とし、ここから η/4 πラジアン (nは 0〜7の整数)移動した相で、 0から 7までのデジタル値を表現する。なお、搬送波は 3種類あるので、 1msのシンボル時 間に 24ビット(3 X 8)または 3バイトのデジタル情報を送信することができる。換言する と、各搬送波での送信速度を 1シンボル/ msとしているので、 24 ( = 8 X 3 X ( 1/0. 001) ) kbpsの総合通信速度を持つ。なお、本実施の形態では、 8値 PSK変調をか けて送信する例を示すが、直接搬送波やその他の変調方式で送信してもよい。  However, a synchronous carrier wave is applied to the phase reference. These are set to zero phase, and a digital value from 0 to 7 is expressed by a phase shifted from here by η / 4 π radians (where n is an integer from 0 to 7). Since there are three types of carrier waves, 24-bit (3 X 8) or 3-byte digital information can be transmitted in 1 ms symbol time. In other words, since the transmission speed in each carrier wave is 1 symbol / ms, the total communication speed is 24 (= 8 × 3 × (1 / 0.001)) kbps. In this embodiment, an example is shown in which transmission is performed using 8-level PSK modulation, but transmission may be performed directly using a carrier wave or other modulation scheme.
[0041] 以上、送信ノード 102で行われる処理の説明を終了する。 This is the end of the description of the processing performed by the transmission node 102.
[0042] つぎに、受信ノード 104で行われる処理を図 7などを参照して説明する。図 7は、受 信ノード 104で行われる処理の一例を示すフローチャートである。受信では、 f 、 f 、 f Next, processing performed at the receiving node 104 will be described with reference to FIG. Figure 7 4 is a flowchart showing an example of processing performed in a trust node 104. For reception, f, f, f
1 2 3 の周波数から成る正弦波を、基準相のものと 1 /2 πラジアン移相した信号を用意 し、各々、 cos co t、 sin co t相当の信号として受信波形に乗じて直交検波を行う。なお 、以下ではデジタル処理の例について説明している力 アナログ的復調で処理を行 つてもよい。  Prepare a signal that is a sine wave with a frequency of 1 2 3 and phase-shifted by 1/2 π radians, and multiply the received waveform as signals equivalent to cos co t and sin co t respectively, and perform quadrature detection. Do. In the following, processing may be performed by force analog demodulation, which describes an example of digital processing.
[0043] まず、キャリアを検出し、検出できた場合には (ステップ SB— 1 : Yes)、内部クロック 104cから受信を開始した時刻である開始時刻 Tを取得する(ステップ SB— 2)。  [0043] First, a carrier is detected, and if it can be detected (step SB-1: Yes), a start time T that is a time when reception starts from the internal clock 104c is acquired (step SB-2).
0  0
[0044] つぎに、受信信号を AD変換器 104eで AD変換し、波形メモリ 104dに蓄積する (ス テツプ SB— 3)。  [0044] Next, the received signal is AD converted by the AD converter 104e and stored in the waveform memory 104d (step SB-3).
[0045] つぎに、通信パケットの冒頭部分(同期パターン)を取り出す (ステップ SB _ 4)。  Next, the beginning portion (synchronization pattern) of the communication packet is extracted (step SB — 4).
[0046] つぎに、周波数 f の素搬送波の位相情報サイン成分とコサイン成分を、 cos ( 2 π f t [0046] Next, the phase information sine component and cosine component of the subcarrier of frequency f are expressed as cos (2 π f t
1 1 1 1
)と sin (2 π f t)を乗じることで抽出する(ステップ SB - 5)。また、周波数 f の素搬送 ) And sin (2 π f t) (step SB-5). Also, the carrier with frequency f
1 2  1 2
波の位相情報サイン成分とコサイン成分を、 cos ( 2 n i t)と sin (2 π f t)を乗じること  Multiplying the wave phase information sine and cosine components by cos (2 n i t) and sin (2 π f t)
2 2  twenty two
で抽出する(ステップ SB— 6)。さらに、周波数 f の素搬送波の位相情報サイン成分と  (Step SB-6). Furthermore, the phase information sine component of the elementary carrier of frequency f and
3  Three
コサイン成分を、 cos (2 π f t)と sin (2 π f t)を乗じることで抽出する(ステップ SB— 7  The cosine component is extracted by multiplying cos (2 π f t) and sin (2 π f t) (Step SB—7
3 3  3 3
[0047] つぎに、同期パターン部の素搬送波の開始時刻 Tでの位相 φ 、 、 φ を計算す [0047] Next, the phases φ,, φ at the start time T of the subcarrier of the synchronous pattern portion are calculated.
0 1 2 3 る(ステップ SB— 8)。ステップ SB— 4〜SB— 7までの処理で通信パケットの冒頭部 分から lms弱(キャリア検出時間だけ短くなる)分のデータは同期パターン部に属す るものとして、それを周波数 f 〜f で直交検波を行うことで、波形メモリ 104d中の同期  0 1 2 3 (Step SB-8). In the processing from step SB-4 to SB-7, the data from the beginning of the communication packet to a little less than lms (which is shorter by the carrier detection time) belongs to the synchronous pattern part, and it is orthogonally detected at frequencies f to f. To synchronize the waveform memory 104d.
1 3  13
パターンの素搬送波についてサイン、コサイン位相情報を抽出している。ステップ SB _ 8では、これを比較することで受信開始時刻 Tでの位相 φ 、 φ 、 φ を得ることが  Sine and cosine phase information is extracted for the elementary carrier of the pattern. In step SB_8, by comparing this, the phases φ, φ, φ at the reception start time T can be obtained.
0 1 2 3  0 1 2 3
できる。ここで、受信素子または受信回路が位相に関する分散特性をもつ場合には、 その値を補正する。ステップ SB _ 4〜SB _ 8の処理を詳細に説明すれば、図 8に示 すように、受信波形と周波数 f 波形(cos (2 π f t) )との積および受信波形と周波数 f  it can. Here, if the receiving element or the receiving circuit has a dispersion characteristic related to the phase, the value is corrected. The processing in steps SB_4 to SB_8 will be described in detail. As shown in FIG. 8, the product of the received waveform and the frequency f waveform (cos (2πft)) and the received waveform and the frequency f
1 1 1 波形から位相を π /2だけ移相した波形(sin ( 2 π f t) )との積を計算し、それぞれを  1 1 1 Calculate the product of the waveform (sin (2 π f t)) whose phase is shifted by π / 2 from the waveform,
1  1
積分器を通して比較することにより、位相 Φ を計算する。また、受信波形と周波数 f  Compute the phase Φ by comparison through an integrator. The received waveform and frequency f
1 2 波形(cos (2 π f t) )との積および受信波形と周波数 f 波形から位相を π Ζ2だけ移 相した波形 (sin (2 π f t) )との積を計算し、それぞれを積分器を通 I 1 Phase shift from product of 2 waveform (cos (2 π ft)) and received waveform and frequency f waveform by π Ζ2. Compute the product of the phased waveforms (sin (2 π ft)) and pass each through an integrator.
2  2
により、位相 Φ を計算する。さらに、受信波形と周波数 f 波形 (cos(2 f t))との積  To calculate the phase Φ. Furthermore, the product of the received waveform and the frequency f waveform (cos (2 f t))
2 3 3 および受信波形と周波数 f 波形から位相を π /2だけ移相した波形(sin (2 π f t) )と  2 3 3 and the waveform (sin (2 π f t)) with the phase shifted by π / 2 from the received waveform and the frequency f waveform
3 3 の積を計算し、それぞれを積分器を通して比較することにより、位相 Φ を計算する。  Compute the phase Φ by computing the products of 3 3 and comparing each through an integrator.
3  Three
[0048] 再び図 7に戻り、周波数 f 〜f の受信信号それぞれに対応する予め測定された受  [0048] Returning again to FIG.
1 3  13
信遅延時間 r〜rに基づいて、時刻基準点 T 、T 、T を決定する(ステップ SB— 9  Time reference points T 1, T 2, T 3 are determined based on the transmission delay times r to r (step SB—9
1 3 12 23 31  1 3 12 23 31
)。具体的には、周波数 f の素搬送波と周波数 f の素搬送波の受信位相 Φ 、 Φ から  ). Specifically, from the reception phase Φ, Φ of the elementary carrier of frequency f and the elementary carrier of frequency f
1 2 1 2 1 2 1 2
、時刻基準点 T を以下の数式 4で算出する。また、周波数 f の素搬送波と周波数 f The time reference point T is calculated by the following formula 4. Also, an elementary carrier with frequency f and frequency f
12 2 3 の素搬送波の受信位相 φ 、 φ から、時刻基準点 T を以下の数式 5で算出する。さ  The time reference point T is calculated using Equation 5 below from the received phases φ and φ of 12 2 3 elementary carriers. The
2 3 23  2 3 23
らに、周波数 f の素搬送波と周波数 f の素搬送波の受信位相 Φ 、 Φ から、時刻基準  In addition, the time base is determined from the reception phases Φ and Φ of the elementary carrier with frequency f and the elementary carrier with frequency f.
3 1 3 1  3 1 3 1
点 T を以下の数式 6で算出する。  Point T is calculated using Equation 6 below.
31  31
Τ =Τ +(((φ —φ )/2π) + (rf -rf ))/(f -f )  Τ = Τ + (((φ --φ) / 2π) + (rf -rf)) / (f -f)
12 0 1 2 1 1 2 2 1 2  12 0 1 2 1 1 2 2 1 2
• · · (数式 4)  • · · (Formula 4)
T =T - (((Φ —Φ )/2π) + (rf -rf ))/(f -f )  T = T-(((Φ --Φ) / 2π) + (rf -rf)) / (f -f)
(数式 5)  (Formula 5)
Τ =Τ - (((Φ —Φ )/2π) + (rf -rf ))/(f -f )  Τ = Τ-(((Φ --Φ) / 2π) + (rf -rf)) / (f -f)
···(数式 6)  (Formula 6)
つまり、素搬送波の位相関係が特定の値になる時刻を計算することで時刻基準点 を再現する。  In other words, the time reference point is reproduced by calculating the time when the phase relationship of the subcarriers becomes a specific value.
[0049] つぎに、ステップ SB— 9で決定した時刻基準点 T 〜T および開始時刻 Τに基づ  [0049] Next, based on the time reference points T to T and the start time Τ determined in step SB-9.
12 31 0 いて、受信タイムスタンプ Τを決定する(ステップ SB— 10)。具体的には、以下の数 式 7に示す相加平均を受信タイムスタンプ Tとする。なお、当該受信タイムスタンプに 、ばらつきや信頼区間を考慮してもよい。  12 31 0 and the reception time stamp Τ is determined (step SB-10). Specifically, the arithmetic mean shown in Equation 7 below is the reception time stamp T. Note that variations and confidence intervals may be considered in the reception time stamp.
T =T + (T +Τ +Τ )/3 ··· (数式 7)  T = T + (T + Τ + Τ) / 3 (Equation 7)
r 0 12 23 31  r 0 12 23 31
[0050] つぎに、波形メモリ 104dのデータに直交検波を続けて、位相 φ 、 小 、 φ を基準に  [0050] Next, the quadrature detection is continued on the data in the waveform memory 104d, and the phases φ, small, φ are used as a reference.
1 2 3 復調することで、パケット長、送信ノード ID、送信タイムスタンプ T、ユーザデータ、チ ヱックサム (CRC16)を得る(ステップ SB— 11)。  1 2 3 Demodulation obtains the packet length, transmission node ID, transmission time stamp T, user data, and checksum (CRC16) (step SB-11).
[0051] つぎに、チェックサムを検定し、合致する場合 (ステップ SB— 12: Yes)、通信バケツ トの全データを正しく受信できたと判断し、ノード間の距離 Dを以下の数式 8で算出す る(ステップ SB— 13)。 [0051] Next, the checksum is verified, and if it matches (step SB—12: Yes), the communication bucket The distance D between nodes is calculated using Equation 8 below (step SB-13).
D= (T -T ) /c · · · (数式 8)  D = (T -T) / c (8)
r s  r s
ここで、 cは音速であり、摂氏 20度、 1気圧の乾燥した大気中で約 340mZsである 。なお、それ以外の環境では、予め補正する。具体的には、それ以外の広い温度環 境で本システムまたは本方法を実施する場合は、受信機(受信ノード 104)に気温計 を搭載して、気温に因る音速変化を補正する。  Where c is the speed of sound, about 340mZs in a dry atmosphere of 20 degrees Celsius and 1 atmosphere. In other environments, correction is performed in advance. Specifically, when this system or method is implemented in a wide range of other temperature environments, a thermometer is installed in the receiver (receiving node 104) to correct changes in sound velocity due to temperature.
[0052] ここで、送信ノード 102の座標位置をさらに含む通信パケットを、異なる複数の送信 ノードから連続して受信した場合には、ステップ SB— 13で算出した各送信ノード 10 2と当該受信ノード 104との距離および各送信ノード 102の座標位置に基づいて当 該受信ノード 104の位置を推定してもよい。  [0052] Here, when a communication packet further including the coordinate position of transmitting node 102 is continuously received from a plurality of different transmitting nodes, each transmitting node 102 calculated in step SB-13 and the receiving node concerned The position of the receiving node 104 may be estimated based on the distance to the transmitting terminal 104 and the coordinate position of each transmitting node 102.
[0053] 以上、受信ノード 104で行われる処理の説明を終了する。  [0053] This is the end of the description of the processing performed by the receiving node 104.
[0054] 以上、超音波距離測定システム 100の実施の形態について説明した。ここで、本シ ステムが開発されるまでの経緯について説明する。  The embodiment of the ultrasonic distance measurement system 100 has been described above. Here, the process up to the development of this system is explained.
[0055] これまで、超音波で距離を測定する従来技術では、例えば情報を集約する中央サ ーバを必要としていた。し力し、距離決定に個々のノードから中央サーバへのァクセ スが発生し、サーバの負荷となる。さらに、当該負荷は、ノード数の 2乗(ノードの関係 数)に比例して増加し、ノード台数が増えるとシステムが破綻する可能性がある。また 、アクセスおよび応答の通信時間だけ、個々の距離決定に時間を要する。  [0055] Until now, the conventional technology for measuring distances using ultrasonic waves, for example, required a central server for collecting information. Therefore, an access from each node to the central server occurs in determining the distance, which becomes a load on the server. Furthermore, the load increases in proportion to the square of the number of nodes (the number of nodes involved), and the system may fail if the number of nodes increases. In addition, it takes time to determine each distance by the communication time for access and response.
また、電磁波と超音波で距離を測定する従来技術では、受信ノードは超音波と電 磁波の受信を行わなければならなレ、。そのため、例えば、どちらか一方の受信が失 敗すると計測を行うことができず、信頼性が悪レ、。また、小型デジタル機器のプロセッ サソフトウェアで受信ルーチンを作る場合、両チャンネルの受信に高速かつ高精度 の処理を必要とし、コストが高くなる。また、ノード間での計測処理数が増加した場合 、受信割り込み処理の回数は本システムと比べて約 2倍を要し、大規模応用に不適 である。  Also, with the conventional technology that measures distance using electromagnetic waves and ultrasonic waves, the receiving node must receive ultrasonic waves and electromagnetic waves. Therefore, for example, if either one of the receptions fails, the measurement cannot be performed and the reliability is bad. In addition, when a reception routine is created with the processor software of a small digital device, high-speed and high-precision processing is required for reception of both channels, which increases costs. In addition, when the number of measurement processes between nodes increases, the number of receive interrupt processes is approximately twice that of this system, making it unsuitable for large-scale applications.
また、 GPSなどで距離を測定する従来技術では、一般に数メートル程度の精度し か達成できず、本システムのように数 cmの精度の計測は困難である。また、携帯電 話や PHSのアンテナゾーンで追跡する方法では、ゾーンのグリッド(一般に数百メー トル)以上に細かい距離計測はできない。また、電波や赤外線ビーコンを設置して、 受信信号のレベル低下から距離を推定する方法では、電波の遮蔽物がぁレ、だにあ つて信号減衰すると、測定誤差になり、正確な距離計測は困難である。また、これら 測定方法では、電波源が屋外にあると、電波の到達しない屋内では利用できない。 In addition, with conventional technologies that measure distances with GPS, etc., it is generally only possible to achieve accuracy of several meters, and it is difficult to measure with accuracy of several centimeters like this system. Mobile phone The method of tracking in a talk or PHS antenna zone cannot measure distances finer than the zone grid (generally hundreds of meters). In addition, with the method of estimating the distance from the decrease in the level of the received signal by installing radio waves or infrared beacons, if the radio wave shielding object is lost, the signal attenuation will result in a measurement error, and accurate distance measurement will not be possible. Have difficulty. In addition, these measurement methods cannot be used indoors where radio waves do not reach if the radio sources are outdoors.
[0056] ところで、現在、情報端末の多くはインターネットアクセス機能を持っている。そして 、広く利用されている NTPなどの時刻同期手法を用いることで、数分に一度のネット ワーク通信で、情報端末は常時十分な精度で内部クロックを同期させておくことがで きる。こうすれば、電気信号と超音波信号でタイミングを同時に発生することなぐ単 に超音波信号の送受信だけで距離計測や座標位置計測を行うことができる。  [0056] By the way, many information terminals currently have an Internet access function. By using a widely used time synchronization method such as NTP, the information terminal can always synchronize the internal clock with sufficient accuracy by network communication once every few minutes. In this way, distance measurement and coordinate position measurement can be performed simply by transmitting and receiving an ultrasonic signal without simultaneously generating timing with an electric signal and an ultrasonic signal.
[0057] しかし、超音波通信だけで距離計測を行う場合、距離計測に必要な情報 (例えば 送信ノードの ID、送信タイムスタンプ)を伝達する必要がある。従来の超音波計測で は、超音波はタイミングを示すバーストのみでよぐタイムスタンプや送信ノード IDは 電気的通信路で伝送していた。だが、超音波のみを使用した計測では、超音波でタ イミングと一般のデジタル情報の双方を伝送できるように設計しなければならなレ、。  However, when distance measurement is performed only by ultrasonic communication, it is necessary to transmit information necessary for distance measurement (for example, ID of transmission node, transmission time stamp). In conventional ultrasonic measurement, the ultrasonic wave is transmitted only by a burst indicating the timing, and the time stamp and the transmission node ID are transmitted through an electrical communication channel. However, in measurement using only ultrasonic waves, it must be designed to transmit both timing and general digital information using ultrasonic waves.
[0058] ところが、広く用いられている圧電型の超音波の送信素子、受信素子は、通信帯域 が狭ぐかつ伝送帯域において振幅や位相の伝搬特性が平坦でない、という特徴が ある。この特徴により、タイミングの起点を搬送波バーストで伝えようとしても、受信さ れた信号は周波数成分ごとに別の振幅変化や位相変化を受け、分解し、起点が曖 味になってしまう。つまり、遅延時間が曖昧になってしまう。その結果、精度よく距離を 測定すること力 S困難となる。そこで、本発明者らは、超音波通信のような狭帯域通信 路でもタイミング情報を精度よく伝達できる仕組みを開発した。なお、可搬型の情報 端末は、常に移動し、周囲には通信の障害となる人物が絶えず存在する。そのため 、情報伝達を含めた一回の距離計測は、短時間で完結させる必要がある。また、通 信に誤りがあった場合には、当該誤りを検出し、誤った測定を回避することも考慮す る必要がある。  However, the widely used piezoelectric ultrasonic wave transmitting and receiving elements are characterized by a narrow communication band and uneven amplitude and phase propagation characteristics in the transmission band. Due to this feature, even if it is attempted to convey the timing start point with a carrier burst, the received signal is subjected to another amplitude change or phase change for each frequency component, and is decomposed to make the start point ambiguous. That is, the delay time becomes ambiguous. As a result, it becomes difficult to accurately measure the distance. Therefore, the present inventors have developed a mechanism capable of accurately transmitting timing information even in a narrowband communication path such as ultrasonic communication. Portable information terminals are constantly moving, and there are always people around who can interfere with communication. Therefore, it is necessary to complete a single distance measurement including information transmission in a short time. In addition, if there is an error in communication, it is necessary to consider detecting the error and avoiding erroneous measurements.
[0059] 以上の経緯を踏まえて開発された本システムによれば、携帯型あるいは固定の情 報端末群が超音波により通信しあうネットワークで、一般の情報通信を行いながら、 送信側の情報端末力 の距離を測定することができる。これにより、情報端末の位置 に基づく情報サービスや相互関係に基づくサービスなどの各種の高度な移動体情 報サービスを提供することができる。また、情報端末の接近を知り、数メートル前から 案内掲示をすることができる。また、人ごみの中で目指す相手までの距離や方向を 知ること力 Sできる。また、建物に複数の送信ノードを固定設置しておき、受信ノードが 各送信ノードとの距離を知ることで当該受信ノードの座標位置を知ることができる。ま た、本システムは、携帯端末や PDAなどの可搬型の情報端末の絶対位置や相互位 置を利用した各種の情報サービスを設計する場合に利用することができる。なお、全 てのノードは基本的には受信状態にあり、ランダムなタイミングで送信状態へ移行す る。 [0059] According to this system developed based on the above circumstances, while performing general information communication in a network in which portable or fixed information terminals communicate with each other by ultrasonic waves, The distance of the information terminal power on the transmitting side can be measured. This makes it possible to provide various advanced mobile information services such as information services based on the location of information terminals and services based on mutual relationships. In addition, it is possible to know the approach of the information terminal, and to post information several meters in advance. In addition, it is possible to know the distance and direction to the target in the crowd. In addition, a plurality of transmission nodes are fixedly installed in the building, and the coordinate position of the reception node can be known by the reception node knowing the distance to each transmission node. In addition, this system can be used when designing various information services using the absolute position and mutual position of portable information terminals such as mobile terminals and PDAs. All nodes are basically in the reception state and transition to the transmission state at random timing.
[0060] 具体的には、本システムによれば、情報端末(ノード)群が超音波を使用したバケツ ト方式デジタル通信網で相互に通信し合う。例えば、一つのノード(送信ノード)が送 信動作を行い、その他のノード(受信ノード)が受信動作を行う。なお、すべてのノー ドは NTPなどの時刻同期手法で予め内部クロックの値を一致させている。送信ノード は情報通信パケットに時刻基準点情報とそれを送信した時刻のタイムスタンプ情報と を含めて送信する。受信ノードは、受信したパケットから時刻基準点の位置を決定し 、改めて受信タイムスタンプを生成する。また、それと共に、通信情報を解読して得た 送信タイムスタンプと比較して、その差を計算することで、パケットの伝播遅延時間を 得ること力 Sできる。そして、受信ノードは、音速を考慮して遅延時間を換算することで、 送信ノードとの距離を算出することができる。換言すると、本システムによれば、各ノ ードは、高度に調整された内部クロックまたは NTPなどの時刻同期手法で例えば 1 /1000秒以内の精度で時刻を同期されている。そして、一台の送信ノードは、ノード 識別番号とタイムスタンプで構成されるパケットを超音波チャンネルを使用して送信 する。そして、受信ノードはパケットの特定ビット位置の受信時刻(受信タイムスタンプ )を得ることで、送信ノードとの距離を計算することができる。なお、パケットに送信ノー ド IDおよび座標情報をさらに含めておくことで、このパケットを 3組以上受信した受信 ノードは、当該受信ノードの立体座標位置を決定することができる。  [0060] Specifically, according to this system, information terminals (nodes) communicate with each other via a bucket-type digital communication network using ultrasonic waves. For example, one node (transmission node) performs a transmission operation, and the other nodes (reception nodes) perform a reception operation. All nodes have the same internal clock value in advance using a time synchronization method such as NTP. The transmitting node transmits the information communication packet including the time reference point information and the time stamp information of the time when it was transmitted. The receiving node determines the position of the time reference point from the received packet and generates a reception time stamp again. At the same time, it is possible to obtain the packet propagation delay time by calculating the difference compared with the transmission time stamp obtained by decoding the communication information. The receiving node can calculate the distance from the transmitting node by converting the delay time in consideration of the speed of sound. In other words, according to the present system, each node is synchronized in time with an accuracy of, for example, 1/1000 second by a highly synchronized internal clock or time synchronization method such as NTP. Then, one transmitting node transmits a packet composed of a node identification number and a time stamp using an ultrasonic channel. Then, the receiving node can calculate the distance from the transmitting node by obtaining the reception time (reception time stamp) of the specific bit position of the packet. By further including the transmission node ID and coordinate information in the packet, a receiving node that has received three or more sets of this packet can determine the three-dimensional coordinate position of the receiving node.
[0061] また、本実施の形態の変形例として、例えば、図 10に示すように、送信ノードを室 内の適当な位置に配置し、受信ノードを可搬型として、室内における送信ノードから の距離を測定してもよい。 Further, as a modification of the present embodiment, for example, as shown in FIG. It is also possible to place the receiving node in a portable position, make the receiving node portable, and measure the distance from the transmitting node in the room.
[0062] また、本システムによれば、実験を行った結果、数十メートルの距離の見通しのよい 室内において、超音波パケットによりノード IDや送信タイムスタンプを含む情報のデ ジタル通信(数〜数 10kbps)が可能なこと、数 cmの誤差で距離の計測をできること が確認、できた。  [0062] Further, according to this system, as a result of experiments, digital communication (several to several) of information including node IDs and transmission time stamps by ultrasonic packets is performed in a room with a distance of several tens of meters. 10 kbps) was possible, and it was confirmed that the distance could be measured with an error of several centimeters.
産業上の利用可能性  Industrial applicability
[0063] 以上のように、本発明にかかる超音波距離測定システムおよび超音波距離測定方 法は、超音波のみを用いて送信ノードと受信ノードとの距離を短時間に精度よく測定 することができ、特に、屋内や数メートル〜数十メートルの範囲内での距離計測に好 適であり、極めて有用である。 As described above, the ultrasonic distance measurement system and the ultrasonic distance measurement method according to the present invention can accurately measure the distance between the transmission node and the reception node in a short time using only the ultrasonic waves. In particular, it is suitable for distance measurement indoors and within a range of several meters to several tens of meters, and is extremely useful.

Claims

請求の範囲 The scope of the claims
[1] 所定の時刻同期手法を用いてネットワークを介してその内部クロックを予め同期さ せた状態の複数の情報端末において、 1つの情報端末力 通信パケットを送信し、 他の情報端末で通信パケットを受信することにより、該当する情報端末間の距離を測 定する超音波距離測定システムであって、  [1] A plurality of information terminals with their internal clocks synchronized in advance via a network using a predetermined time synchronization method, one information terminal power communication packet is transmitted, and another information terminal transmits a communication packet. An ultrasonic distance measurement system that measures the distance between corresponding information terminals by receiving
送信側の情報端末は、  The sending information terminal
内部クロックから取得した時刻に基づいて送信タイムスタンプを生成し、当該送信タ ィムスタンプを含む通信パケットを生成する通信パケット生成手段と、  Communication packet generation means for generating a transmission time stamp based on the time acquired from the internal clock and generating a communication packet including the transmission time stamp;
前記通信パケット生成手段で生成した通信パケットを超音波で送信する通信バケツ ト送信手段と、  A communication bucket transmitting means for transmitting the communication packet generated by the communication packet generating means with ultrasonic waves;
を備え、  With
受信側の情報端末は、  The information terminal on the receiving side
送信側の情報端末から超音波で送信された通信パケットを受信する通信パケット受 信手段と、  A communication packet receiving means for receiving a communication packet transmitted by ultrasonic waves from an information terminal on the transmitting side;
前記通信パケット受信手段で通信パケットを受信した時刻を内部クロックから取得し 、当該時刻に基づいて受信タイムスタンプを生成する受信タイムスタンプ生成手段と 前記受信タイムスタンプ生成手段で生成した受信タイムスタンプと前記通信パケット 受信手段で受信した通信パケットに含まれる送信タイムスタンプとの差に基づいて送 信側の情報端末と当該受信側の情報端末との距離を算出する距離算出手段と、 を備えたことを特徴とする超音波距離測定システム。  The time when the communication packet is received by the communication packet receiving means is acquired from an internal clock, the reception time stamp generating means for generating a reception time stamp based on the time, the reception time stamp generated by the reception time stamp generating means, Distance calculating means for calculating the distance between the information terminal on the transmission side and the information terminal on the reception side based on the difference from the transmission time stamp included in the communication packet received by the communication packet receiving means. A characteristic ultrasonic distance measuring system.
[2] 所定の時刻同期手法を用いてネットワークを介してその内部クロックを予め同期さ せた状態の複数の情報端末において、 1つの情報端末力 通信パケットを送信し、 他の情報端末で通信パケットを受信することにより、該当する情報端末間の距離を測 定する超音波距離測定システムであって、  [2] In a plurality of information terminals in which the internal clock is synchronized in advance via a network using a predetermined time synchronization method, one information terminal power communication packet is transmitted, and the communication packet is transmitted to another information terminal. An ultrasonic distance measurement system that measures the distance between corresponding information terminals by receiving
前記通信パケットは、通信パケットを送受信する際の同期の基準となる基準位置お よび当該基準位置が送信された時刻を表す送信タイムスタンプを含み、  The communication packet includes a reference position serving as a reference for synchronization when the communication packet is transmitted and received and a transmission time stamp indicating a time when the reference position is transmitted,
送信側の情報端末は、 内部クロックから取得した送信時刻および当該送信時刻から実際に通信パケットの 基準位置が送信されるまでの時間差である送信補正値に基づいて、送信タイムスタ ンプを生成し、当該送信タイムスタンプを含む通信パケットを生成する通信パケット生 成手段と、 The sending information terminal A transmission time stamp is generated based on a transmission time acquired from the internal clock and a transmission correction value that is a time difference from the transmission time until the reference position of the communication packet is actually transmitted, and the communication packet including the transmission time stamp is generated. Communication packet generation means for generating
前記通信パケット生成手段で生成した通信パケットを超音波で送信する通信バケツ ト送信手段と、  A communication bucket transmitting means for transmitting the communication packet generated by the communication packet generating means with ultrasonic waves;
を備え、  With
受信側の情報端末は、  The information terminal on the receiving side
送信側の情報端末から超音波で送信された通信パケットを受信する通信パケット受 信手段と、  A communication packet receiving means for receiving a communication packet transmitted by ultrasonic waves from an information terminal on the transmitting side;
前記通信パケット受信手段で通信パケットを受信した受信時刻を内部クロックから 取得し、取得した受信時刻および当該受信時刻が取得されてから実際に通信バケツ トの基準位置が受信されるまでの時間差である受信補正値に基づいて、基準位置が 受信された時刻を表す受信タイムスタンプを生成する受信タイムスタンプ生成手段と 前記受信タイムスタンプ生成手段で生成した受信タイムスタンプと前記通信パケット 受信手段で受信した通信パケットに含まれる送信タイムスタンプとの差に基づいて送 信側の情報端末と当該受信側の情報端末との距離を算出する距離算出手段と、 を備えたことを特徴とする超音波距離測定システム。  This is the time difference between the reception time when the communication packet is received by the communication packet receiving means from the internal clock, and the reference position of the communication bucket is actually received after the acquired reception time and the reception time are acquired. Based on the reception correction value, a reception time stamp generating means for generating a reception time stamp indicating the time when the reference position is received, a reception time stamp generated by the reception time stamp generating means, and a communication received by the communication packet receiving means An ultrasonic distance measuring system comprising: distance calculating means for calculating a distance between a transmitting information terminal and a receiving information terminal based on a difference from a transmission time stamp included in a packet. .
[3] 前記通信パケットは、送信側の情報端末の座標位置をさらに含み、  [3] The communication packet further includes a coordinate position of an information terminal on the transmission side,
前記受信側の情報端末は、  The receiving information terminal is
異なる複数の送信側の情報端末から連続して通信パケットを受信した場合、前記 距離算出手段で算出した各送信側の情報端末と当該受信側の情報端末との距離お よび各送信側の情報端末の座標位置に基づいて当該受信側の情報端末の位置を 推定する位置推定手段、  When communication packets are successively received from a plurality of different transmission side information terminals, the distance between each transmission side information terminal calculated by the distance calculation means and the reception side information terminal and each transmission side information terminal Position estimating means for estimating the position of the receiving information terminal based on the coordinate position of
をさらに備えたことを特徴とする請求項 1または 2に記載の超音波距離測定システム  The ultrasonic distance measuring system according to claim 1, further comprising:
[4] 所定の時刻同期手法を用いてネットワークを介してその内部クロックを予め同期さ せた状態の複数の情報端末において、 1つの情報端末力 通信パケットを送信し、 他の情報端末で通信パケットを受信することにより、該当する情報端末間の距離を測 定する超音波距離測定方法であって、 [4] The internal clock is synchronized in advance via the network using a predetermined time synchronization method. Ultrasonic distance measurement method for measuring the distance between corresponding information terminals by transmitting one information terminal power communication packet and receiving the communication packet at another information terminal Because
送信側の情報端末において、内部クロックから取得した時刻に基づいて送信タイム スタンプを生成し、当該送信タイムスタンプを含む通信パケットを生成し、生成した通 信パケットを超音波で送信し、  In the information terminal on the transmission side, a transmission time stamp is generated based on the time acquired from the internal clock, a communication packet including the transmission time stamp is generated, and the generated communication packet is transmitted with ultrasonic waves.
受信側の情報端末において、送信側の情報端末から超音波で送信された通信パ ケットを受信し、通信パケットを受信した時刻を内部クロックから取得し、当該時刻に 基づレ、て受信タイムスタンプを生成し、生成した受信タイムスタンプと受信した通信パ ケットに含まれる送信タイムスタンプとの差に基づいて送信側の情報端末と当該受信 側の情報端末との距離を算出すること、  The receiving information terminal receives the communication packet transmitted by the ultrasonic wave from the transmitting information terminal, acquires the time when the communication packet was received from the internal clock, and receives the time stamp based on the time. And calculating a distance between the information terminal on the transmission side and the information terminal on the reception side based on the difference between the generated reception time stamp and the transmission time stamp included in the received communication packet,
を特徴とする超音波距離測定方法。  An ultrasonic distance measuring method characterized by the above.
[5] 所定の時刻同期手法を用いてネットワークを介してその内部クロックを予め同期さ せた状態の複数の情報端末において、 1つの情報端末力 通信パケットを送信し、 他の情報端末で通信パケットを受信することにより、該当する情報端末間の距離を測 定する超音波距離測定方法であって、  [5] In a plurality of information terminals in which the internal clock is synchronized in advance via a network using a predetermined time synchronization method, one information terminal power communication packet is transmitted, and the other information terminal transmits the communication packet. Is an ultrasonic distance measurement method for measuring the distance between corresponding information terminals by receiving
前記通信パケットは、通信パケットを送受信する際の同期の基準となる基準位置お よび当該基準位置が送信された時刻を表す送信タイムスタンプを含み、  The communication packet includes a reference position serving as a reference for synchronization when the communication packet is transmitted and received and a transmission time stamp indicating a time when the reference position is transmitted,
送信側の情報端末において、内部クロックから取得した送信時刻および当該送信 時刻から実際に通信パケットの基準位置が送信されるまでの時間差である送信補正 値に基づいて、送信タイムスタンプを生成し、当該送信タイムスタンプを含む通信パ ケットを生成し、生成した通信パケットを超音波で送信し、  In the information terminal on the transmission side, a transmission time stamp is generated based on the transmission time acquired from the internal clock and the transmission correction value that is the time difference from the transmission time until the reference position of the communication packet is actually transmitted. A communication packet including a transmission time stamp is generated, and the generated communication packet is transmitted with ultrasonic waves.
受信側の情報端末において、送信側の情報端末から超音波で送信された通信パ ケットを受信し、通信パケットを受信した受信時刻を内部クロックから取得し、取得した 受信時刻および当該受信時刻が取得されてから実際に通信パケットの基準位置が 受信されるまでの時間差である受信補正値に基づいて、基準位置が受信された時刻 を表す受信タイムスタンプを生成し、生成した受信タイムスタンプと受信した通信パケ ットに含まれる送信タイムスタンプとの差に基づいて送信側の情報端末と当該受信側 の情報端末との距離を算出すること、 The information terminal on the receiving side receives the communication packet transmitted by ultrasonic waves from the information terminal on the transmitting side, acquires the reception time when the communication packet is received from the internal clock, and acquires the acquired reception time and the relevant reception time. Based on the reception correction value, which is the time difference from when the reference position of the communication packet is actually received, to the reception time stamp indicating the time when the reference position was received. Based on the difference from the transmission time stamp included in the communication packet, the transmitting side information terminal and the receiving side Calculating the distance to the information terminal
を特徴とする超音波距離測定方法。  An ultrasonic distance measuring method characterized by the above.
前記通信パケットは、送信側の情報端末の座標位置をさらに含み、  The communication packet further includes a coordinate position of an information terminal on the transmission side,
前記受信側の情報端末は、異なる複数の送信側の情報端末から連続して通信パ ケットを受信した場合、算出した各送信側の情報端末と当該受信側の情報端末との 距離および各送信側の情報端末の座標位置に基づいて当該受信側の情報端末の 位置を推定すること、  When the receiving information terminal continuously receives communication packets from a plurality of different transmitting information terminals, the calculated distance between each transmitting information terminal and the receiving information terminal and each transmitting side Estimating the position of the receiving information terminal based on the coordinate position of the information terminal,
を特徴とする請求項 4または 5に記載の超音波距離測定方法。  The ultrasonic distance measuring method according to claim 4 or 5, wherein:
PCT/JP2006/303782 2005-03-01 2006-02-28 Ultrasonic distance measuring system and ultrasonic distance measuring method WO2006093162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-056406 2005-03-01
JP2005056406A JP4041899B2 (en) 2005-03-01 2005-03-01 Ultrasonic distance measuring system and ultrasonic distance measuring method

Publications (1)

Publication Number Publication Date
WO2006093162A1 true WO2006093162A1 (en) 2006-09-08

Family

ID=36941191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303782 WO2006093162A1 (en) 2005-03-01 2006-02-28 Ultrasonic distance measuring system and ultrasonic distance measuring method

Country Status (2)

Country Link
JP (1) JP4041899B2 (en)
WO (1) WO2006093162A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540144A (en) * 2012-01-05 2012-07-04 厦门大学 Ultrasonic wave and wireless-based jointed location method
CN104237850A (en) * 2013-06-20 2014-12-24 沈阳工业大学 Method and device for mutual location and confirmation among multiple robots
WO2015002246A1 (en) * 2013-07-04 2015-01-08 Kddi株式会社 Distance estimation system
JP2015055604A (en) * 2013-09-13 2015-03-23 一般財団法人電力中央研究所 Estimation method, estimation device, and estimation program for sensor terminal position
CN104811497A (en) * 2015-05-04 2015-07-29 苏州触达信息技术有限公司 Ultrasonic positioning based interaction method and system
CN105548965A (en) * 2015-12-21 2016-05-04 北京像素软件科技股份有限公司 Synchronous sending system and method of ultrasonic wave signals
CN105807255A (en) * 2016-03-07 2016-07-27 杨志鹏 Sound-radio cooperative locating device and method thereof
CN114698086A (en) * 2020-12-31 2022-07-01 中国移动通信有限公司研究院 Information indication method, device, related equipment and storage medium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498781A (en) * 2008-01-29 2009-08-05 日电(中国)有限公司 Independent locator and ultrasonic positioning system and method thereof
JP5410742B2 (en) * 2008-12-11 2014-02-05 大成建設株式会社 High precision synchronization method
JP5685108B2 (en) * 2011-02-25 2015-03-18 Kddi株式会社 Pulse extraction load reduction method, search side terminal, and searched side terminal
JP5685109B2 (en) * 2011-02-25 2015-03-18 Kddi株式会社 Direct wave extraction method, search side terminal, and searched side terminal
JP5412470B2 (en) * 2011-05-27 2014-02-12 株式会社半導体理工学研究センター Position measurement system
JP2013174537A (en) * 2012-02-27 2013-09-05 Kddi Corp Mobile follow-up system, follow-up terminal therefor, and mobile terminal
JP6484412B2 (en) * 2014-08-05 2019-03-13 株式会社東海理化電機製作所 Vehicle communication system
KR20210095284A (en) * 2020-01-22 2021-08-02 삼성전자주식회사 System and method for determining user position

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217839A (en) * 2001-01-12 2002-08-02 Nec Corp Communication system using elastic wave
JP2002335553A (en) * 2001-01-26 2002-11-22 Docomo Communications Laboratories Usa Inc Method of mobility prediction in wireless mobile access digital network
WO2004023740A1 (en) * 2002-09-05 2004-03-18 Nokia Corporation Signal propagation delay routing
JP2004156998A (en) * 2002-11-06 2004-06-03 Hitachi Ltd Terminal device for mobile communication, and method for selecting radio transmission line
JP2004282512A (en) * 2003-03-17 2004-10-07 Nec Saitama Ltd Method for transferring infrared data of portable terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217839A (en) * 2001-01-12 2002-08-02 Nec Corp Communication system using elastic wave
JP2002335553A (en) * 2001-01-26 2002-11-22 Docomo Communications Laboratories Usa Inc Method of mobility prediction in wireless mobile access digital network
WO2004023740A1 (en) * 2002-09-05 2004-03-18 Nokia Corporation Signal propagation delay routing
JP2004156998A (en) * 2002-11-06 2004-06-03 Hitachi Ltd Terminal device for mobile communication, and method for selecting radio transmission line
JP2004282512A (en) * 2003-03-17 2004-10-07 Nec Saitama Ltd Method for transferring infrared data of portable terminal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540144A (en) * 2012-01-05 2012-07-04 厦门大学 Ultrasonic wave and wireless-based jointed location method
CN104237850A (en) * 2013-06-20 2014-12-24 沈阳工业大学 Method and device for mutual location and confirmation among multiple robots
WO2015002246A1 (en) * 2013-07-04 2015-01-08 Kddi株式会社 Distance estimation system
JP2015014504A (en) * 2013-07-04 2015-01-22 Kddi株式会社 Distance estimation system
JP2015055604A (en) * 2013-09-13 2015-03-23 一般財団法人電力中央研究所 Estimation method, estimation device, and estimation program for sensor terminal position
CN104811497A (en) * 2015-05-04 2015-07-29 苏州触达信息技术有限公司 Ultrasonic positioning based interaction method and system
CN104811497B (en) * 2015-05-04 2018-05-18 苏州触达信息技术有限公司 A kind of exchange method and system based on ultrasonic wave positioning
CN105548965A (en) * 2015-12-21 2016-05-04 北京像素软件科技股份有限公司 Synchronous sending system and method of ultrasonic wave signals
CN105807255A (en) * 2016-03-07 2016-07-27 杨志鹏 Sound-radio cooperative locating device and method thereof
CN114698086A (en) * 2020-12-31 2022-07-01 中国移动通信有限公司研究院 Information indication method, device, related equipment and storage medium

Also Published As

Publication number Publication date
JP4041899B2 (en) 2008-02-06
JP2006242640A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4041899B2 (en) Ultrasonic distance measuring system and ultrasonic distance measuring method
Chen et al. $ M^ 3$ M 3: Multipath assisted Wi-Fi localization with a single access point
Zand et al. A high-accuracy phase-based ranging solution with Bluetooth Low Energy (BLE)
Ayyalasomayajula et al. BLoc: CSI-based accurate localization for BLE tags
Han et al. Indoor localization with a single Wi-Fi access point based on OFDM-MIMO
US7558583B2 (en) System and methods of radio interference based localization in sensor networks
Wang et al. Robust chinese remainder theorem ranging method based on dual-frequency measurements
Abrudan et al. Time synchronization and ranging in OFDM systems using time-reversal
WO2009076156A2 (en) System and method for determination of position
WO2011091062A1 (en) Precision location method and system
JP2005536944A (en) Method and system for detecting location in wireless local area network
Cho et al. Practical localization system for consumer devices using zigbee networks
Janson et al. Self-localization application for iphone using only ambient sound signals
Von Zengen et al. No-Cost distance estimation using standard WSN radios
KR101042751B1 (en) Apparatus and method for measure distance in wireless environment
Tong et al. Wi-Fi localization enabling self-calibration
Gu et al. TyrLoc: a low-cost multi-technology MIMO localization system with a single RF chain
Li et al. Decimeter level indoor localization using hybrid measurements of a distributed single receiver
Jiang et al. An indoor airborne ultrasonic wireless communication network
Liu et al. HiLoc: Sub-meter level indoor localization using a single access point with distributed antennas in wireless sensor networks
AU2020239637A1 (en) Location determination based on phase differences
CA3090071A1 (en) Aligned multi-wireless device location determination
CN116009005A (en) Ranging method, terminal, controller, time synchronization method and positioning method
US11356966B2 (en) Carrier frequency offset estimation and elimination
Hedley et al. Wireless sensor network using hybrid TDOA/RSS tracking of uncooperative targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728561

Country of ref document: EP

Kind code of ref document: A1