WO2015002018A1 - Position input device, electronic apparatus, and display device - Google Patents

Position input device, electronic apparatus, and display device Download PDF

Info

Publication number
WO2015002018A1
WO2015002018A1 PCT/JP2014/066643 JP2014066643W WO2015002018A1 WO 2015002018 A1 WO2015002018 A1 WO 2015002018A1 JP 2014066643 W JP2014066643 W JP 2014066643W WO 2015002018 A1 WO2015002018 A1 WO 2015002018A1
Authority
WO
WIPO (PCT)
Prior art keywords
input device
position input
plate
light
operation plate
Prior art date
Application number
PCT/JP2014/066643
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 諭
俊平 山中
浦山 雅夫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015002018A1 publication Critical patent/WO2015002018A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected

Definitions

  • the present invention relates to a position input device, an electronic device, and a display device.
  • This application claims priority based on Japanese Patent Application No. 2013-138079 filed in Japan on July 1, 2013, the contents of which are incorporated herein by reference.
  • a position input device called a touch panel or a mouse used when operating various buttons or a cursor on a display screen is known.
  • a non-contact type coordinate input system is disclosed in Patent Document 1 below. This non-contact type coordinate input system calculates a light guide plate including a phosphor, a light sensor that detects light emitted from the phosphor, and arrival coordinates of light that has reached the light guide plate. And an arithmetic unit for transmitting the coordinates.
  • a light source such as a laser pointer is required in which the beam diameter of the emitted light is reduced to some extent when a specific position on the light guide plate is designated. Without this type of light source, this non-contact coordinate input system cannot be used.
  • the position input device includes an operation plate having a light scattering property to scatter light incident from a first surface, and a shadow of an indicator disposed on the first surface side of the operation plate.
  • An image sensor that captures an image from the second surface side of the operation panel, and an image processing unit that detects positional information of the shadow on the operation panel based on an image captured by the image sensor.
  • the position input device may include a fluorescent plate containing a phosphor that generates fluorescence using the light transmitted through the operation plate as excitation light, and the imaging element passes through the fluorescent plate, and It may be configured to capture an image.
  • a solar cell element that generates electric power by receiving fluorescence emitted from the phosphor may be provided in a part of the fluorescent plate.
  • an air layer may be interposed between the operation plate and the fluorescent plate.
  • the position input device may include a solar cell element that generates power by receiving light incident on the operation plate.
  • the position input device may further include a light source that emits light toward the operation plate.
  • the position input device may include a communication unit that transmits the position information to an external device.
  • the imaging element may be disposed at an end of the operation plate.
  • the position input device may include a base disposed so as to face the second surface of the operation plate, and the imaging element is connected to the second surface of the base. You may arrange
  • the position input device may include a plurality of the imaging elements.
  • the haze of the operation plate may be 80% or more, and the light transmittance of the operation plate may be 10% or more and 65% or less.
  • An electronic device includes the position input device according to one aspect of the present invention.
  • a printing pattern representing an instruction target of the indicator may be provided on the operation plate.
  • a display device includes the position input device according to one aspect of the present invention, and a display unit that displays an image representing an indication target of the indicator.
  • the display unit may be a rear projector.
  • a position input device that can be used without using a light source for designating an input position can be provided.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 1.
  • A), (B) It is a figure for demonstrating the effect
  • A), (B) It is a figure for demonstrating the effect
  • A), (B) It is the photograph which image
  • (A), (B) It is the photograph which image
  • (A), (B) It is the photograph which image
  • FIG. 16 is a cross-sectional view taken along line A-A ′ of FIG. 15. It is sectional drawing which shows the position input device of 8th Embodiment. It is a perspective view which shows the electronic device of 9th Embodiment. It is a schematic diagram which shows the display apparatus of 10th Embodiment.
  • FIG. 1 is a perspective view showing the position input device of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
  • the scale of the size may be varied depending on the component.
  • the position input device 1 of the first embodiment includes an operation panel 2, a base 3, a CCD camera 4 (imaging device), an infrared communication port 5 (wireless communication means), and the like.
  • the image processing unit 6 is provided.
  • the operation plate 2 is composed of a laminated plate of a light scattering plate 7 and a fluorescent plate 8.
  • the fluorescent plate 8 is laminated on the surface 7 b (lower surface) side opposite to the contact surface 7 a of the light scattering plate 7.
  • the support portion 9 extends in a trapezoidal shape.
  • the operation plate 2 is fixed to the upper surface 9 a of the support portion 9. Accordingly, the operation plate 2 is disposed above the base 3 so that the lower surface 8b of the fluorescent plate 8 and the upper surface 3a of the base 3 face each other.
  • a finger, a pen, or the like can be used as an indicator when the user performs position input.
  • an indicator is not specifically limited, in this embodiment, it demonstrates as what uses a user's finger
  • the contact surface 2 a of the operation plate 2 faces vertically upward, and the lower surface 3 b of the base 3 faces vertically downward. Yes.
  • the usage form of the position input device 1 is not limited to this posture, and for example, the operation plate 2 and the base 3 may be used in a vertical posture.
  • the light scattering plate 7 is disposed on the side opposite to the base 3, and the fluorescent plate 8 is disposed on the side facing the base 3.
  • the light scattering plate 7 and the fluorescent plate 8 are fixed in close contact via an optical adhesive or the like (not shown), for example.
  • the light scattering plate 7 has a light scattering property to scatter while allowing light incident from the contact surface 7a to pass through the lower surface 7b.
  • the specific configuration of the light scattering plate 7 may be, for example, a plate body such as frosted glass with irregularities formed on the surface, or a particulate medium having a refractive index different from the medium in a transparent medium. It may be a dispersed plate.
  • the light scattering plate 7 has a predetermined haze and total light transmittance. Preferred values of haze and total light transmittance will be described later.
  • the fluorescent plate 8 contains a phosphor 10 that generates fluorescence using incident light as excitation light.
  • the phosphor 10 include a plurality of types of phosphors that absorb ultraviolet light or visible light and emit visible light or infrared light. Therefore, the fluorescent plate 8 receives the light transmitted through the light scattering plate 7 and emits fluorescence, and radiates the fluorescence in all directions.
  • the fluorescent plate 8 is a plate body in which a fluorescent material 10 is dispersed in a transparent substrate 11.
  • the transparent substrate 11 is made of a highly transparent organic material such as an acrylic resin such as PMMA, a polycarbonate resin, or an optically transparent inorganic material such as glass.
  • PMMA resin (refractive index 1.49) is used as the transparent substrate 11.
  • visible light is light in a wavelength region of 380 nm or more and 750 nm or less.
  • Ultraviolet light is light in a wavelength region of less than 380 nm.
  • Infrared light is light in a wavelength region larger than 750 nm.
  • An example of the phosphor 10 is an organic phosphor.
  • BASF LumogenF Violet 570 (product name) is 0.02%
  • BASF Lumogen F Yellow 083 (product name) is 0.02%
  • BASF Lumogen F Orange 240 (product name) is 0. 02%
  • BASF LumogenumF Red 305 (trade name) 0.02%
  • Nile Blue A (CAS registration number 3625-57-8) 0.5%
  • Ir-140 (CAS registration number 53655-17-) 7) 0.5%
  • Ir-144 CAS registration number 54849-69-3) 0.5%
  • quantum dot PbS (lead sulfide) containing 3% phosphors It is done.
  • the fluorescent plate 8 including the plurality of types of phosphors 10 emits fluorescence having a wide wavelength region of about 400 nm to 1500 nm.
  • Organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine dyes, Perylene dye, pyrene dye, anthracene dye, acridone dye, acridine dye, fluorene dye, terphenyl dye, ethene dye, butadiene dye, hexatriene dye, oxazole dye, coumarin dye, Stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazine dyes, naphthalimide dyes, anthraquinone dyes and the like are preferably used.
  • An inorganic phosphor can also be used as the phosphor 10. Further, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as the phosphor 10 of the present embodiment as long as they have fluorescence.
  • the phosphor 10 is not limited to one type, and a plurality of types (two types or three or more types) of phosphors may be used.
  • the base 3 is a rectangular plate having substantially the same size as the operation plate 2.
  • the material of the base 3 is not particularly limited.
  • the CCD camera 4 is installed on the upper surface 3 a of the base 3.
  • the CCD camera 4 has an angle of view that can capture substantially the entire area of the lower surface 2b from a position away from the lower surface 2b of the operation plate 2 by a predetermined distance.
  • the CCD camera 4 does not necessarily have an angle of view that can capture the entire area of the lower surface 2b, and may have an angle of view that can image a part of the lower surface 2b. In that case, what is necessary is just to prescribe
  • the CCD camera 4 images the shadow of the finger touching the contact surface 2 a of the operation plate 2 from the lower surface 2 b side of the operation plate 2.
  • the CCD camera 4 corresponds to the imaging device in the claims. Instead of the CCD camera 4, another type of image sensor may be used.
  • the image processing unit 6 and the infrared communication port 5 are installed in the support unit 9.
  • the image processing unit 6 detects finger shadow position information on the operation panel 2 based on an image captured by the CCD camera 4.
  • the infrared communication port 5 transmits the position information detected by the image processing unit 6 to an external device.
  • the position input device 1 is used as a TV remote controller
  • the infrared communication port 5 transmits the position information detected by the image processing unit 6 toward the TV body.
  • the infrared communication port 5 corresponds to the wireless communication means in the claims.
  • the image processing unit 6 and the infrared communication port 5 general ones can be used.
  • a light scattering plate 7 is used as the operation plate 2.
  • the operation of the light scattering plate 7 is as follows.
  • 3A is a cross-sectional view showing a state where the light scattering plate is touched with a finger
  • FIG. 3B is a plan view showing a state where the light scattering plate is viewed from the side opposite to the contact surface.
  • 4A is a cross-sectional view showing a state in which the glass plate is touched with a finger
  • FIG. 4B is a plan view showing a state in which the glass plate is viewed from the side opposite to the contact surface.
  • the CCD camera 4 displays the glass when the glass plate 201 is imaged from the lower surface 201b side.
  • An image A4 in which the entire hand located on the contact surface 201a side of the plate 201 is seen through is captured. At this time, even if image processing is performed, it is difficult to determine whether or not the fingertip F is touching the glass plate 201 from the image A4.
  • the operation plate is the light scattering plate 7
  • the light from the contact surface 7a side does not pass through the light scattering plate 7 at the place where the fingertip F touches. .
  • the CCD camera 4 recognizes the shadow P of the fingertip F as a dark region locally when the light scattering plate 7 is imaged from the lower surface 7b side.
  • the CCD camera 4 cannot clearly recognize the shape of the entire finger other than the fingertip F or the shape of the hand. The reason for this is that light existing in a normal environment such as sunlight and illumination light is diffuse light, so that light circulates from the surroundings directly under the finger other than the fingertip F or in the region directly under the hand. For this reason, in a place where the fingertip F is not touching, the amount of light transmitted through the light scattering plate 7 is increased and the shadow is blurred.
  • the CCD camera 4 has two factors, that is, light does not pass through the light scattering plate 7 at the place where the fingertip F is touching and the shadow of the finger or hand is blurred at the place where the fingertip F is not touching. Captures an image in which the position touched by the fingertip F is a locally dark point when the light scattering plate 7 is imaged from the lower surface 7b side, that is, an image A3 in which the shadow P of the fingertip F is reflected with high contrast. Can do.
  • the image processing unit 6 uses a locally dark point P in a relatively bright background as coordinates P (x 1 , y 1 ) with the origin O as a reference. Can be detected as
  • the size of the contact portion touched with the fingertip F is a substantially circular region having a diameter of about 5 to 10 mm. If the area of the contact portion is too small, the boundary between the completely shielded region and its peripheral portion tends to blur and the effect of appearing dark locally is lost. Therefore, the size of the contact portion is preferably, for example, a diameter of 5 mm or more. From this viewpoint, it is preferable to use a finger as an indicator rather than a pen with a thin tip.
  • the fluorescent plate 8 has an effect of further improving the accuracy of position detection on the light scattering plate 7 by the following two actions.
  • the first effect is a shadow blurring effect caused by fluorescence.
  • the shadow P of the portion other than the fingertip F is blurred by the wraparound of light from the surroundings.
  • the fluorescent plate 8 is further laminated on the light scattering plate 7, light is emitted in all directions when fluorescent light emission is generated by the wraparound light at a place where the fingertip F is not touched.
  • the part which the fingertip F touches since light does not enter into the fluorescent substance 10, it becomes dark without fluorescence emission.
  • the contrast between the shadow P of the fingertip F and the portion other than the shadow is further enhanced by the action of the fluorescent plate 8.
  • the second action is a color conversion action of the phosphor 10.
  • the second action is a color conversion action of the phosphor 10.
  • the color of the transmitted light changes depending on the type of the phosphor 10. For example, in the case of the phosphor 10 that emits red light by absorbing light in the blue region to green region, the phosphor plate 8 looks red when viewed from the back surface. In the case of the phosphor 10 that absorbs light in the green region to red region and emits deep red light, the phosphor plate 8 appears blue when viewed from the back surface.
  • the CCD camera 4 having high sensitivity in a specific wavelength region is used, the position of the shadow P of the fingertip F can be detected with higher contrast.
  • a red CCD camera is used for the former phosphor and a blue CCD camera is used for the latter phosphor, resulting in a higher resolution and dynamic range than when using a full-color CCD camera. Can be detected.
  • the present inventors took photographs from the opposite side of the surface touched by the fingertip using various operation panels, and compared the shadows of the fingertips. The results are shown in FIGS. 5A, 5B, 6A, 6B, 7A, and 7B.
  • the tester mainly supports the operation plate with three fingers, that is, the thumb, the index finger, and the middle finger. In the photograph, the thumb is shown on the front side of the operation plate, and the index finger and the middle finger are shown on the back side of the operation plate.
  • FIGS. 5A and 5B show the results when a light scattering plate is disposed on the contact surface (front surface) and a fluorescent screen is disposed on the surface (back surface) opposite to the contact surface.
  • FIG. 5A is a photograph taken from the front side
  • FIG. 5B is a photograph taken from the back side.
  • 6 (A) and 6 (B) the positional relationship between the light scattering plate and the fluorescent plate is opposite to that of FIGS. 5 (A) and 5 (B), the fluorescent plate is arranged on the contact surface (surface) side, and opposite to the contact surface. It is a result at the time of arrange
  • FIG. 6A is a photograph taken from the front side
  • FIG. 6B is a photograph taken from the back side.
  • FIG. 7A and 7B show the results when only the fluorescent screen is used.
  • FIG. 7A is a photograph taken from the front side
  • FIG. 7B is a photograph taken from the back side.
  • FIGS. 5A and 5B when a light scattering plate (front surface) / fluorescent plate (back surface) laminated plate is used, a black shadow is formed only at a location touched by a finger.
  • the contours of the fingers other than are blurred.
  • FIGS. 6 (A) and 6 (B) it is possible to identify the place touched by the finger even when a fluorescent plate (front surface) / light scattering plate (back surface) laminated plate is used.
  • a fluorescent plate (front surface) / light scattering plate (back surface) laminated plate As shown in FIGS. 6 (A) and 6 (B), it is possible to identify the place touched by the finger even when a fluorescent plate (front surface) / light scattering plate (back surface) laminated plate is used.
  • the contrast between the shadow of the fingertip and the other portions is low, and it is discriminated depending on the surrounding environment. May be difficult.
  • Haze is an index representing the degree of cloudiness of the light scattering plate. It shows that transparency is so high that the numerical value of haze is small, and transparency is so low that a numerical value is large.
  • Td is the diffuse transmittance
  • Tt is the total light transmittance.
  • “transmittance” as used in this specification refers to total light transmittance.
  • the diffuse transmittance Td and the total light transmittance Tt of the light scattering plate can be measured using, for example, an integrating sphere color measuring device defined in JIS K 7105.
  • FIG. 9A to 9D show the results when the light scattering plate of sample 1 (same as sample 1 of FIG. 8) is used.
  • FIG. 9A is a photograph when only the light scattering plate of Sample 1 is used.
  • FIG. 9B is a photograph when the light scattering plate (front surface) / blue fluorescent plate (back surface, Deep Red) of Sample 1 is used.
  • FIG. 9C is a photograph of the sample 1 using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%).
  • FIG. 9D is a photograph of the sample 1 using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
  • FIGS. 10A to 10D show the results when the light scattering plate of Sample 2 having a haze of 80.3 and a total light transmittance of 60.5% is used.
  • FIG. 10A is a photograph when only the light scattering plate of Sample 2 is used.
  • FIG. 10B is a photograph of the sample 2 using the light scattering plate (front surface) / blue fluorescent plate (back surface, DeepRed).
  • FIG. 10C is a photograph in the case where the light scattering plate (front surface) / red fluorescent plate (back surface, LumogenRed 0.01%) of Sample 2 was used.
  • FIG. 10D is a photograph in the case of using the sample 2 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
  • FIGS. 11A to 11C show the results when the light scattering plate of Sample 3 having a haze of 81.4 and a total light transmittance of 64.5% is used.
  • FIG. 11A is a photograph of the sample 3 using the light scattering plate (front surface) / blue fluorescent plate (back surface, Deep Red).
  • FIG. 11B is a photograph in the case of using the sample 3 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%).
  • FIG. 11C is a photograph in the case of using the sample 3 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
  • FIGS. 12A to 12C show the results when using the light scattering plate of Sample 4 having a haze of 79 and a total light transmittance of 62.5%.
  • FIG. 12A is a photograph of the sample 4 using the light scattering plate (front surface) / blue fluorescent plate (back surface, DeepRed).
  • FIG. 12B is a photograph in the case of using the sample 4 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%).
  • FIG. 12C is a photograph of the sample 4 using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
  • FIGS. 13A to 13B show results when the light scattering plate of sample 5 (same as sample 5 of FIG. 8) is used.
  • FIG. 13A is a photograph when only the light scattering plate of Sample 5 is used.
  • FIG. 13B is a photograph of the sample 5 using the light scattering plate (front surface) / blue fluorescent plate (back surface, Deep Red).
  • FIGS. 14A to 14C show the results when using the light scattering plate of Sample 6 having a haze of 64 and a total light transmittance of 87%.
  • FIG. 14A is a photograph when the light scattering plate (front surface) / blue fluorescent plate (back surface, DeepRed) of sample 6 is used.
  • FIG. 14B is a photograph in the case of using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%) of Sample 6.
  • FIG. 14C is a photograph in the case of using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%) of Sample 6.
  • the haze of the light scattering plate is preferably 80% or more, and the total light transmittance of the light scattering plate is preferably 10% or more and 65% or less, and the total light transmittance of the light scattering plate is It was found that the ratio is more preferably 10% or more and 61% or less.
  • position input is possible in an environment in which the shadow of the fingertip is generated when the user touches the operation plate 2 with a finger or the like. . Therefore, it is not necessary to prepare a light source for designating an input position such as a laser pointer, and a convenient position input device can be provided.
  • the position input device 1 of the first embodiment for example, wiring and electrodes such as a resistive film type and a capacitance type touch panel are not required for the operation plate 2. Therefore, it is possible to deal with the operation panel 2 having various shapes and dimensions by simply optimizing the setting of the imaging range of the CCD camera 4 and the image processing algorithm. Further, it is not necessary to supply power to the wiring and electrodes for position detection, and only the image is detected by the CCD camera 4, so that power consumption can be reduced.
  • the position input device 1 of the first embodiment includes the infrared communication port 5, the position information detected by the image processing unit 6 can be transmitted to an external device wirelessly.
  • a cable or the like for connecting the external device and the position input device 1 is not necessary, and is easy to use.
  • the CCD camera 4 Since the CCD camera 4 is disposed on the upper surface of the base 3 and the operation plate 2 is disposed above the base 3, the CCD camera 4 can reliably capture the shadow of the indicator. Further, a lens such as a wide-angle lens or a fisheye lens may be added to the CCD camera 4. Thereby, the substantial angle of view of the CCD camera 4 is enlarged, the distance between the base 3 and the operation plate 2 can be shortened, and the position input device 1 can be thinned.
  • a lens such as a wide-angle lens or a fisheye lens
  • FIG. 15 is a perspective view of the position input device according to the second embodiment.
  • the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • one CCD camera 4 is installed on the upper surface of the base 3.
  • two CCD cameras 4 are installed on the upper surface 3a of the base 3 as shown in FIG.
  • the two CCD cameras 4 are arranged at intervals in a direction parallel to the extending direction of the support portion 9.
  • the image processing unit 6 specifies position coordinates on the operation panel 2 based on two images from the CCD camera 4 captured from different positions.
  • the arrangement of the two CCD cameras 4 is not limited to this example, and can be changed as appropriate.
  • the number of CCD cameras 4 is not limited to two and may be further increased. Other configurations are the same as those of the first embodiment.
  • the second embodiment there is no need to prepare a light source for designating an input position, and the same effect as the first embodiment that a user-friendly position input device can be provided is obtained. Further, by providing a plurality of CCD cameras 4 arranged at different positions, it is possible to improve the input position detection accuracy.
  • FIG. 16 is a cross-sectional view of the position input device according to the third embodiment.
  • the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the position input device 31 of the third embodiment includes a solar cell element 32 on the end face of the fluorescent plate 8.
  • the solar cell element 32 is arranged along one side of the four sides of the rectangular fluorescent screen 8.
  • the position of the solar cell element 32 is not necessarily one side of the fluorescent screen 8 and may be arranged on two or more sides.
  • the solar cell element 32 has a function of generating electromotive force by taking in light emitted from the phosphor 10 and guided through the inside of the fluorescent plate 8.
  • the solar cell element 32 is bonded to the end face 8c of the fluorescent plate 8 with an optical adhesive (not shown).
  • Other configurations are the same as those of the first embodiment.
  • the solar cell element 32 may be a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell.
  • a compound solar cell using a compound semiconductor is suitable as the solar cell element 32 because it can generate power with high efficiency. It is preferable to use a solar cell element 32 having high sensitivity at the peak wavelength (630 nm) of the emission spectrum of the phosphor 10. The reason is that the solar cell element 32 can generate power with high conversion efficiency.
  • the type of the solar cell element 32 is appropriately determined according to the spectral spectrum of the light incident on the solar cell element 32.
  • an amorphous silicon solar cell can be used as the solar cell element 32.
  • the amorphous silicon solar cell has a spectral sensitivity exceeding 90% with respect to light having a wavelength near 630 nm. Therefore, if the peak wavelength of light emitted from the phosphor 10 is around 630 nm, the amorphous silicon solar cell element can generate power with high conversion efficiency.
  • the solar cell element 32 does not have a high spectral sensitivity for a wide wavelength band such as a dye-sensitized solar cell or an organic solar cell, but is very sensitive to light of a specific narrow wavelength band. A solar cell having high spectral sensitivity may be actively used.
  • Fluorescence emitted from the phosphor 10 guides the inside of the fluorescent plate 8.
  • the reason for this is that although fluorescence is emitted in all directions around the phosphor 10, a large amount of light is caused by the difference in refractive index between the fluorescent plate 8 and the light scattering plate 7 and the difference in refractive index between the fluorescent plate 8 and air. This is because the light is totally reflected by the upper surface 8a and the lower surface 8b of the fluorescent plate 8 and confined inside. Since the position input device 31 includes the solar cell element 32 on the end face 8c of the fluorescent plate 8, the light guided through the inside of the fluorescent plate 8 is collected in the solar cell element 32 and power is generated.
  • the third embodiment it is not necessary to prepare a light source for designating the input position, and the same effect as the first and second embodiments can be obtained that a convenient position input device can be provided. .
  • the solar cell element 32 since the solar cell element 32 receives external light such as illumination light or sunlight and generates electric power, it is not necessary to replace the battery.
  • FIG. 17 is a cross-sectional view of the position input device according to the fourth embodiment.
  • the same components as those used in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the solar cell element 32 is installed on the end face 8c of the fluorescent plate 8.
  • the solar cell element 32 is installed on the lower surface 8b of the fluorescent screen 8, as shown in FIG.
  • One end surface 8c of the fluorescent plate 8 is an inclined surface inclined with respect to the lower surface 8b.
  • the angle ⁇ formed by the end face 8c and the lower face 8b of the fluorescent plate 8 is 45 °, for example.
  • a reflective layer 42 is formed on the end face 8c.
  • a metal film such as silver or aluminum having a high reflectance
  • a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M), or the like can be used.
  • the material of the reflective layer 42 is not limited to this, and a material having a high reflectance at the emission wavelength of the phosphor 10 is desirable.
  • the solar cell element 32 is disposed at a position corresponding to the lower side of the reflective layer 42. In this configuration, light that has guided the inside of the fluorescent plate 8 and reached the end face 8 c is reflected by the reflective layer 42. The light reflected by the reflective layer 42 enters the solar cell element 32 while changing the traveling direction.
  • Other configurations are the same as those of the third embodiment.
  • the light that has been guided through the inside of the fluorescent plate 8 is reflected by the reflective layer 42 and guided to the solar cell element 32. Therefore, the light collection efficiency of the solar cell element 32 is improved. Can be increased.
  • FIG. 18 is a cross-sectional view of the position input device of the fifth embodiment.
  • the same components as those used in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the light scattering plate 7 and the fluorescent plate 8 are in close contact.
  • the position input device 51 of the fifth embodiment as shown in FIG. 18, the light scattering plate 7 and the fluorescent plate 8 are not in close contact with each other and are arranged at intervals.
  • the light scattering plate 7 and the fluorescent plate 8 are fixed via a spacer 52, and air 53 exists between the light scattering plate 7 and the fluorescent plate 8.
  • Other configurations are the same as those of the third embodiment.
  • the air 53 exists between the light scattering plate 7 and the fluorescent plate 8, and the upper surface 8a of the fluorescent plate 8 serves as an interface between the fluorescent plate material and air. Therefore, the amount of light totally reflected by the upper surface 8a of the fluorescent plate 8 becomes the largest, and the light leaking from the fluorescent plate 8 to the light scattering plate 7 can be reduced. As a result, the light guide efficiency of the fluorescent plate 8 can be increased, and the light collection efficiency of the solar cell element 32 can be increased.
  • FIG. 19 is a cross-sectional view of the position input device according to the sixth embodiment. 19, the same code
  • the position input device 61 of the sixth embodiment includes a light emitting diode 62 (Light Emitting Diode, LED) on the end face 8d of the fluorescent plate 8 as auxiliary illumination.
  • LED62 is arrange
  • the position of the LED 62 is not necessarily one end face of the fluorescent plate 8 and may be arranged on two or more end faces.
  • the LED 62 has a function of an auxiliary light source that irradiates the fluorescent screen 8 with light when used in a dark environment.
  • the LED 62 is bonded to the end face 8d of the fluorescent plate 8 by an optical adhesive (not shown). LED62 is good also as a structure lighted using the electric power which the solar cell element 32 produced
  • Other configurations are the same as those of the third embodiment.
  • the shadow of the indicator is difficult to recognize when the position input device is used in a dark environment.
  • the shadow of the indicator can be made clear by turning on the LED 62 as auxiliary illumination, and the user can input the position without any trouble even in a dark place.
  • the LED 62 is not necessarily arranged on the fluorescent plate 8 and may be arranged at a position away from the operation plate 2.
  • FIG. 20 is a perspective view of the position input device according to the seventh embodiment.
  • FIG. 21 is a cross-sectional view of the position input device according to the seventh embodiment. 20 and 21, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the position input device 71 of the seventh embodiment includes an operation plate 72, a support unit 73, a CCD camera 4 (imaging device), an infrared communication port 5 (communication means), and an image processing unit. 6 are provided.
  • the operation plate 72 is composed only of the light scattering plate 7. That is, the position input device 71 of the seventh embodiment does not include the base 3 and the fluorescent plate 8 used in the first embodiment.
  • the CCD camera 4 is disposed below the support portion 73.
  • the CCD camera 4 has an angle of view that can image substantially the entire area of the lower surface 72b in an oblique direction from a position away from the lower surface 72b of the operation plate 72 by a predetermined distance.
  • the CCD camera 4 does not necessarily have an angle of view that can capture the entire area of the lower surface 72b, and may have an angle of view that can image a part of the lower surface 72b. In that case, the area that can be imaged by the CCD camera 4 may be limited to the area touched by the user.
  • the CCD camera 4 captures an image of a finger touching the contact surface 72 a of the operation plate 72 from the lower surface 72 b side of the operation plate 72.
  • One CCD camera 4 may be provided, or a plurality of CCD cameras 4 may be provided.
  • the position input device 71 of the seventh embodiment is not provided with the base 3 and the fluorescent plate 8, and is configured only by the operation plate 72 and the support portion 73 which are made of the light scattering plate 7. Thereby, a thin position input device with a small number of parts can be realized.
  • FIG. 22 is a cross-sectional view of the position input device according to the eighth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the position input device 81 of the eighth embodiment includes an operation plate 72 composed of a light scattering plate 7, a base 3, a support portion 73, and a solar cell element 82.
  • the solar cell element 82 is installed on the upper surface 3 a of the base 3.
  • a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used.
  • a compound solar cell using a compound semiconductor is suitable as the solar cell element 82 because it can generate power with high efficiency.
  • the solar cell element 82 unlike the third embodiment, the solar cell element 82 does not receive the light emitted from the phosphor but receives the external light transmitted through the light scattering plate 7. Generate electricity. Therefore, it is preferable to use the solar cell element 82 having sensitivity with respect to a wide wavelength band of external light.
  • the solar cell element 82 since the solar cell element 82 receives external light such as illumination light or sunlight and generates power, it is not necessary to replace the battery.
  • FIG. 23 is a perspective view showing a usage state of the TV remote control according to the ninth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the basic configuration of the TV remote control 91 of the ninth embodiment is the same as that of the position input device 1 of the first embodiment.
  • a print pattern 93 representing the position of the “HOME” button or the “MENU” button that is an instruction target by the fingertip F is printed.
  • An area corresponding to the print pattern 93 is a position input area for moving the cursor 96 to a desired position on the screen 95 of the TV main body 94.
  • the TV remote controller 91 with a simple configuration and low power consumption can be provided.
  • Examples of the electronic apparatus using the position input device of the first to eighth embodiments are not limited to the TV remote controller, but can be applied to, for example, an electronic desk calculator, a keyboard, a mouse, a track pad, and the like.
  • FIG. 24 is a schematic configuration diagram of a rear projector according to the tenth embodiment.
  • the rear projector 101 includes a screen 102, a projector main body 103, a CCD camera 104, and an image processing unit 105.
  • the screen 102 is composed of a light scattering plate having fine irregularities formed on the surface.
  • the projector main body 103 and the CCD camera 104 are installed on the back side of the screen 102 as viewed from the observer.
  • the projector main body 103 projects an arbitrary image from the back side of the screen 102 toward the screen 102.
  • the CCD camera 104 images the shadow of the fingertip F touched from the front side of the screen 102 from the back side of the screen 102.
  • the observer touches an arbitrary position on the front surface of the screen 102 in order to input a position with the image projected on the screen 102 as a target.
  • the CCD camera 104 images the screen 102 from the back side, and recognizes the shadow P of the fingertip F touched by the observer as a dark region locally.
  • the image processing unit 105 performs image processing on the image captured by the CCD camera 104 and identifies position coordinates.
  • the image processing unit 105 transmits the position information to the projector main body 103.
  • the rear projector 101 having a position input function can be realized with a simple configuration.
  • the application example of the display device using the position input device of the first to eighth embodiments is not limited to the rear projector, but can be applied to a display device such as a digital signage.
  • the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • an example of the infrared communication port is given as the wireless communication means, but Bluetooth (registered trademark) or the like may be used instead.
  • the shape, number, arrangement, material, and the like of various components of the position input device can be appropriately changed without being limited to the above embodiment.
  • the present invention can be used as a position input device for various electronic devices.
  • Position input device Operation panel 4,104 CCD camera (imaging device) 5 Infrared communication port (wireless communication means) 6 Image processing unit 7 Light scattering plate 8 Fluorescent plate 10 Phosphor 32, 82 Solar cell element 62 LED (light source) F fingertip (indicator) P Shadow

Abstract

According to one embodiment of the present invention, a position input device is provided with: an operation board having characteristics of scattering light inputted from a first surface; an image pickup element (CCD camera) that picks up, from the second surface side of the operation board, an image of a shadow of an indicator disposed on the first surface side of the operation board; and an image processing unit that detects positional information of the shadow on the operation board on the basis of the image captured by means of the image pickup element.

Description

位置入力装置、電子機器、および表示装置POSITION INPUT DEVICE, ELECTRONIC DEVICE, AND DISPLAY DEVICE
 本発明は、位置入力装置、電子機器、および表示装置に関する。
 本願は、2013年7月1日に、日本に出願された特願2013-138079号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a position input device, an electronic device, and a display device.
This application claims priority based on Japanese Patent Application No. 2013-138079 filed in Japan on July 1, 2013, the contents of which are incorporated herein by reference.
 表示画面上の各種のボタンやカーソル等を操作する際に用いるタッチパネル、マウスなどと呼ばれる位置入力装置が従来から知られている。位置入力装置の一つとして、非接触式座標入力システムが下記の特許文献1に開示されている。この非接触式座標入力システムは、蛍光体を含む導光板と、蛍光体から発せられた光を検知する光センサーと、導光板に到達した光の到達座標を計算し、ディスプレイ装置またはコンピュータシステムにその座標を伝達する演算部と、を備えている。 Conventionally, a position input device called a touch panel or a mouse used when operating various buttons or a cursor on a display screen is known. As one of the position input devices, a non-contact type coordinate input system is disclosed in Patent Document 1 below. This non-contact type coordinate input system calculates a light guide plate including a phosphor, a light sensor that detects light emitted from the phosphor, and arrival coordinates of light that has reached the light guide plate. And an arithmetic unit for transmitting the coordinates.
特表2009-545056号公報Special table 2009-545056 gazette
 特許文献1の非接触式座標入力システムにおいては、導光板上の特定の位置を指定する際に射出光のビーム径がある程度絞られた光源、例えばレーザーポインター等の光源が必要である。この種の光源がないと、この非接触式座標入力システムを用いることはできない。 In the non-contact coordinate input system of Patent Document 1, a light source such as a laser pointer is required in which the beam diameter of the emitted light is reduced to some extent when a specific position on the light guide plate is designated. Without this type of light source, this non-contact coordinate input system cannot be used.
 本発明の一つの態様の位置入力装置は、第1面から入射する光を散乱させる光散乱性を有する操作板と、前記操作板の前記第1面側に配置された指示体の影を前記操作板の第2面側から撮像する撮像素子と、前記撮像素子が捉えた画像に基づいて前記操作板上での前記影の位置情報を検出する画像処理部と、を備える。 The position input device according to one aspect of the present invention includes an operation plate having a light scattering property to scatter light incident from a first surface, and a shadow of an indicator disposed on the first surface side of the operation plate. An image sensor that captures an image from the second surface side of the operation panel, and an image processing unit that detects positional information of the shadow on the operation panel based on an image captured by the image sensor.
 本発明の一つの態様の位置入力装置は、前記操作板を透過した光を励起光として蛍光を生じる蛍光体を含有する蛍光板と、を備えていてもよく、前記撮像素子が、前記蛍光板を通して前記画像を撮像するよう構成されていてもよい。 The position input device according to one aspect of the present invention may include a fluorescent plate containing a phosphor that generates fluorescence using the light transmitted through the operation plate as excitation light, and the imaging element passes through the fluorescent plate, and It may be configured to capture an image.
 本発明の一つの態様の位置入力装置においては、前記蛍光板の一部に、前記蛍光体から発せられた蛍光を受けて電力を発生する太陽電池素子が設けられていてもよい。 In the position input device according to one aspect of the present invention, a solar cell element that generates electric power by receiving fluorescence emitted from the phosphor may be provided in a part of the fluorescent plate.
 本発明の一つの態様の位置入力装置においては、前記操作板と前記蛍光板との間に空気層が介在していてもよい。 In the position input device according to one aspect of the present invention, an air layer may be interposed between the operation plate and the fluorescent plate.
 本発明の一つの態様の位置入力装置は、前記操作板に入射した光を受けて電力を発生する太陽電池素子を備えていてもよい。 The position input device according to one aspect of the present invention may include a solar cell element that generates power by receiving light incident on the operation plate.
 本発明の一つの態様の位置入力装置は、前記操作板に向けて光を照射する光源をさらに備えていてもよい。 The position input device according to one aspect of the present invention may further include a light source that emits light toward the operation plate.
 本発明の一つの態様の位置入力装置は、前記位置情報を外部機器に送信する通信手段を備えていてもよい。 The position input device according to one aspect of the present invention may include a communication unit that transmits the position information to an external device.
 本発明の一つの態様の位置入力装置においては、前記撮像素子が、前記操作板の端部に配置されていてもよい。 In the position input device according to one aspect of the present invention, the imaging element may be disposed at an end of the operation plate.
 本発明の一つの態様の位置入力装置は、前記操作板の第2面と対向して配置された基台を備えていてもよく、前記撮像素子が、前記基台の前記第2面との対向面に配置されていてもよい。 The position input device according to one aspect of the present invention may include a base disposed so as to face the second surface of the operation plate, and the imaging element is connected to the second surface of the base. You may arrange | position to the opposing surface.
 本発明の一つの態様の位置入力装置は、前記撮像素子を複数個備えていてもよい。 The position input device according to one aspect of the present invention may include a plurality of the imaging elements.
 本発明の一つの態様の位置入力装置においては、前記操作板のヘイズが80%以上であり、かつ、前記操作板の光透過率が10%以上、65%以下であってもよい。 In the position input device according to one aspect of the present invention, the haze of the operation plate may be 80% or more, and the light transmittance of the operation plate may be 10% or more and 65% or less.
 本発明の他の一つの態様の電子機器は、本発明の一つの態様の位置入力装置を備える。 An electronic device according to another aspect of the present invention includes the position input device according to one aspect of the present invention.
 本発明の他の一つの態様の電子機器は、前記指示体の指示目標を表す印刷パターンが前記操作板に設けられていてもよい。 In the electronic device according to another aspect of the present invention, a printing pattern representing an instruction target of the indicator may be provided on the operation plate.
 本発明の他の一つの態様の表示装置は、本発明の一つの態様の位置入力装置と、前記指示体の指示目標を表す画像を表示する表示部と、を備える。 A display device according to another aspect of the present invention includes the position input device according to one aspect of the present invention, and a display unit that displays an image representing an indication target of the indicator.
 本発明の他の一つの態様の表示装置は、前記表示部がリアプロジェクターであってもよい。 In the display device according to another aspect of the present invention, the display unit may be a rear projector.
 本発明の態様によれば、入力位置を指定するための光源を用いることなく使用が可能な位置入力装置を提供できる。 According to the aspect of the present invention, a position input device that can be used without using a light source for designating an input position can be provided.
第1実施形態の位置入力装置を示す斜視図である。It is a perspective view which shows the position input device of 1st Embodiment. 図1のA-A’線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 1. (A)、(B)第1実施形態の光散乱層の作用を説明するための図である。(A), (B) It is a figure for demonstrating the effect | action of the light-scattering layer of 1st Embodiment. (A)、(B)光散乱層がない比較例の作用を説明するための図である。(A), (B) It is a figure for demonstrating the effect | action of the comparative example without a light-scattering layer. (A)、(B)光散乱板と蛍光板との積層体に指を置いた状態を撮影した写真である。(A), (B) It is the photograph which image | photographed the state which put the finger | toe on the laminated body of a light-scattering board and a fluorescent plate. (A)、(B)蛍光板と光散乱板との積層体に指を置いた状態を撮影した写真である。(A), (B) It is the photograph which image | photographed the state which put the finger | toe on the laminated body of a fluorescent plate and a light-scattering plate. (A)、(B)蛍光板に指を置いた状態を撮影した写真である。(A), (B) It is the photograph which image | photographed the state which put the finger | toe on the fluorescent screen. ヘイズおよび全光線透過率がそれぞれ異なる光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board from which a haze and a total light transmittance differ, respectively. 所定のヘイズおよび全光線透過率を有する光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board which has a predetermined haze and a total light transmittance. 所定のヘイズおよび全光線透過率を有する光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board which has a predetermined haze and a total light transmittance. 所定のヘイズおよび全光線透過率を有する光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board which has a predetermined haze and a total light transmittance. 所定のヘイズおよび全光線透過率を有する光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board which has a predetermined haze and a total light transmittance. 所定のヘイズおよび全光線透過率を有する光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board which has a predetermined haze and a total light transmittance. 所定のヘイズおよび全光線透過率を有する光散乱板に指を置いた状態を撮影した写真である。It is the photograph which image | photographed the state which put the finger | toe on the light-scattering board which has a predetermined haze and a total light transmittance. 第2実施形態の位置入力装置を示す斜視図である。It is a perspective view which shows the position input device of 2nd Embodiment. 第3実施形態の位置入力装置を示す断面図である。It is sectional drawing which shows the position input device of 3rd Embodiment. 第4実施形態の位置入力装置を示す断面図である。It is sectional drawing which shows the position input device of 4th Embodiment. 第5実施形態の位置入力装置を示す断面図である。It is sectional drawing which shows the position input device of 5th Embodiment. 第6実施形態の位置入力装置を示す断面図である。It is sectional drawing which shows the position input device of 6th Embodiment. 第7実施形態の位置入力装置を示す斜視図である。It is a perspective view which shows the position input device of 7th Embodiment. 図15のA-A’線に沿う断面図である。FIG. 16 is a cross-sectional view taken along line A-A ′ of FIG. 15. 第8実施形態の位置入力装置を示す断面図である。It is sectional drawing which shows the position input device of 8th Embodiment. 第9実施形態の電子機器を示す斜視図である。It is a perspective view which shows the electronic device of 9th Embodiment. 第10実施形態の表示装置を示す模式図である。It is a schematic diagram which shows the display apparatus of 10th Embodiment.
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図14を用いて説明する。
 第1実施形態では、使用者が例えば指で操作板を触れることにより、その触れた位置を入力する位置入力装置の一例を示す。
 図1は、第1実施形態の位置入力装置を示す斜視図である。図2は、図1のA-A’線に沿う断面図である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
A first embodiment of the present invention will be described below with reference to FIGS.
In the first embodiment, an example of a position input device that inputs the touched position when the user touches the operation plate with a finger, for example, is shown.
FIG. 1 is a perspective view showing the position input device of the first embodiment. FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
In the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 図1、図2に示すように、第1実施形態の位置入力装置1は、操作板2と、基台3と、CCDカメラ4(撮像素子)と、赤外線通信ポート5(無線通信手段)と、画像処理部6と、を備えている。操作板2は、光散乱板7と蛍光板8との積層板で構成されている。蛍光板8は、光散乱板7の接触面7aと反対側の面7b(下面)側に積層されている。基台3の1辺に沿う方向に、支持部9が台状に延在している。操作板2は、支持部9の上面9aに固定されている。これにより、操作板2は、蛍光板8の下面8bと基台3の上面3aとが対向するように、基台3の上方に配置されている。 As shown in FIGS. 1 and 2, the position input device 1 of the first embodiment includes an operation panel 2, a base 3, a CCD camera 4 (imaging device), an infrared communication port 5 (wireless communication means), and the like. The image processing unit 6 is provided. The operation plate 2 is composed of a laminated plate of a light scattering plate 7 and a fluorescent plate 8. The fluorescent plate 8 is laminated on the surface 7 b (lower surface) side opposite to the contact surface 7 a of the light scattering plate 7. In the direction along one side of the base 3, the support portion 9 extends in a trapezoidal shape. The operation plate 2 is fixed to the upper surface 9 a of the support portion 9. Accordingly, the operation plate 2 is disposed above the base 3 so that the lower surface 8b of the fluorescent plate 8 and the upper surface 3a of the base 3 face each other.
 使用者は、図1、図2における操作板2の接触面2a(上面)を触れることになる。使用者が位置入力を行う際の指示体としては、指、ペン等を用いることができる。指示体は特に限定されないが、本実施形態では、使用者の指を用いるものとして説明する。 The user touches the contact surface 2a (upper surface) of the operation plate 2 in FIGS. A finger, a pen, or the like can be used as an indicator when the user performs position input. Although an indicator is not specifically limited, in this embodiment, it demonstrates as what uses a user's finger | toe.
 図1、図2では、位置入力装置1を例えば机上に置いて使用する想定で、操作板2の接触面2aが鉛直上方を向き、基台3の下面3bが鉛直下方を向く姿勢で描いている。ただし、位置入力装置1の使用形態はこの姿勢に限ることはなく、例えば操作板2および基台3を鉛直方向に立てた姿勢で使用してもよい。 In FIG. 1 and FIG. 2, assuming that the position input device 1 is used, for example, on a desk, the contact surface 2 a of the operation plate 2 faces vertically upward, and the lower surface 3 b of the base 3 faces vertically downward. Yes. However, the usage form of the position input device 1 is not limited to this posture, and for example, the operation plate 2 and the base 3 may be used in a vertical posture.
 操作板2を構成する2枚の板体のうち、光散乱板7は基台3と反対側に配置され、蛍光板8は基台3と対向する側に配置される。光散乱板7と蛍光板8とは、例えば光学接着剤等(図示略)を介して密着して固定されている。光散乱板7は、接触面7aから入射する光を下面7b側に透過させつつ、散乱させる光散乱性を有する。光散乱板7の具体的な構成は、例えば表面に凹凸が形成された磨りガラス等の板体であってもよいし、透明な媒体中に媒体とは異なる屈折率を有する粒子状の媒質が分散された板体であってもよい。光散乱板7は、所定のヘイズと全光線透過率とを有している。ヘイズと全光線透過率の好ましい値については後述する。 Among the two plates constituting the operation plate 2, the light scattering plate 7 is disposed on the side opposite to the base 3, and the fluorescent plate 8 is disposed on the side facing the base 3. The light scattering plate 7 and the fluorescent plate 8 are fixed in close contact via an optical adhesive or the like (not shown), for example. The light scattering plate 7 has a light scattering property to scatter while allowing light incident from the contact surface 7a to pass through the lower surface 7b. The specific configuration of the light scattering plate 7 may be, for example, a plate body such as frosted glass with irregularities formed on the surface, or a particulate medium having a refractive index different from the medium in a transparent medium. It may be a dispersed plate. The light scattering plate 7 has a predetermined haze and total light transmittance. Preferred values of haze and total light transmittance will be described later.
 蛍光板8は、入射した光を励起光として蛍光を生じる蛍光体10を含有する。蛍光体10として、例えば、紫外光または可視光を吸収して可視光または赤外光を放射する複数種類の蛍光体が含まれている。よって、蛍光板8は、光散乱板7を透過した光を受けて蛍光発光し、蛍光を全方向に放射する。蛍光板8は、図2に示すように、透明基材11に蛍光体10を分散させた板体である。透明基材11は、PMMA等のアクリル樹脂、ポリカーボネート樹脂などの透明性の高い有機材料、もしくはガラスなどの光透過性を有する無機材料からなる。本実施形態では、透明基材11として例えばPMMA樹脂(屈折率1.49)を用いている。なお、可視光は380nm以上、750nm以下の波長領域の光である。紫外光は380nm未満の波長領域の光である。赤外光は750nmよりも大きい波長領域の光である。 The fluorescent plate 8 contains a phosphor 10 that generates fluorescence using incident light as excitation light. Examples of the phosphor 10 include a plurality of types of phosphors that absorb ultraviolet light or visible light and emit visible light or infrared light. Therefore, the fluorescent plate 8 receives the light transmitted through the light scattering plate 7 and emits fluorescence, and radiates the fluorescence in all directions. As shown in FIG. 2, the fluorescent plate 8 is a plate body in which a fluorescent material 10 is dispersed in a transparent substrate 11. The transparent substrate 11 is made of a highly transparent organic material such as an acrylic resin such as PMMA, a polycarbonate resin, or an optically transparent inorganic material such as glass. In the present embodiment, for example, PMMA resin (refractive index 1.49) is used as the transparent substrate 11. Note that visible light is light in a wavelength region of 380 nm or more and 750 nm or less. Ultraviolet light is light in a wavelength region of less than 380 nm. Infrared light is light in a wavelength region larger than 750 nm.
 蛍光体10の具体例として、有機蛍光体が挙げられる。一例として、BASF社製LumogenF Violet 570(商品名)を0.02%、BASF社製Lumogen F Yellow 083(商品名)を0.02%、BASF社製Lumogen F Orange 240(商品名)を0.02%、BASF社製Lumogen F Red 305(商品名)を0.02%、Nile Blue A(CAS登録番号3625-57-8)を0.5%、Ir-140(CAS登録番号53655-17-7)を0.5%、Ir-144(CAS登録番号54849-69-3)を0.5%、量子ドットPbS(硫化鉛)を3%からなる複数種の蛍光体を含有したものが用いられる。上記複数種の蛍光体10を含む蛍光板8からは、400nm~1500nm程度の広い波長領域を持つ蛍光が放射される。 An example of the phosphor 10 is an organic phosphor. For example, BASF LumogenF Violet 570 (product name) is 0.02%, BASF Lumogen F Yellow 083 (product name) is 0.02%, BASF Lumogen F Orange 240 (product name) is 0. 02%, BASF LumogenumF Red 305 (trade name) 0.02%, Nile Blue A (CAS registration number 3625-57-8) 0.5%, Ir-140 (CAS registration number 53655-17-) 7) 0.5%, Ir-144 (CAS registration number 54849-69-3) 0.5%, quantum dot PbS (lead sulfide) containing 3% phosphors It is done. The fluorescent plate 8 including the plurality of types of phosphors 10 emits fluorescence having a wide wavelength region of about 400 nm to 1500 nm.
 有機蛍光体としては、クマリン系色素、ペリレン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素,キサンテン系色素、ピリジン系色素、オキサジン系色素、クリセン系色素、チオフラビン系色素、ペリレン系色素、ピレン系色素、アントラセン系色素、アクリドン系色素、アクリジン系色素、フルオレン系色素、ターフェニル系色素、エテン系色素、ブタジエン系色素、ヘキサトリエン系色素、オキサゾール系色素、クマリン系色素、スチルベン系色素、ジ-およびトリフェニルメタン系色素、チアゾール系色素、チアジン系色素、ナフタルイミド系色素、アントラキノン系色素等が好適に使用される。具体的には、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素や、クマリン色素系染料であるベーシックイエロー51や、ソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素や、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、1-エチル-2-〔4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕ピリジニウム-パークロレート(ピリジン1)などのピリジン系色素、さらには、シアニン系色素、あるいはオキサジン系色素などが用いられる。 Organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine dyes, Perylene dye, pyrene dye, anthracene dye, acridone dye, acridine dye, fluorene dye, terphenyl dye, ethene dye, butadiene dye, hexatriene dye, oxazole dye, coumarin dye, Stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazine dyes, naphthalimide dyes, anthraquinone dyes and the like are preferably used. Specifically, 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2 ′ -N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) Coumarin dyes such as coumarin (coumarin 153), basic yellow 51 which is a coumarin dye dye, naphthalimide dyes such as solvent yellow 11 and solvent yellow 116, rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, Rhodamine 110, sulforhodamine, basic violet 11 Rhodamine dyes such as Basic Red 2, pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] pyridinium-perchlorate (pyridine 1), and cyanine For example, a dye or an oxazine dye is used.
 蛍光体10として無機蛍光体を用いることもできる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も、蛍光性があれば、本実施形態の蛍光体10として使用が可能である。蛍光体10は、1種類に限ることなく、複数種類(2種類もしくは3種類以上)の蛍光体を用いてもよい。 An inorganic phosphor can also be used as the phosphor 10. Further, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as the phosphor 10 of the present embodiment as long as they have fluorescence. The phosphor 10 is not limited to one type, and a plurality of types (two types or three or more types) of phosphors may be used.
 基台3は、操作板2と略同等の大きさを有する矩形の板体である。基台3の材料は特に限定されない。CCDカメラ4は、基台3の上面3aに設置されている。CCDカメラ4は、操作板2の下面2bから所定の距離離れた位置から、下面2bの略全域を撮像できる画角を有している。ただし、CCDカメラ4は、必ずしも下面2bの全域を撮像できる画角を有していなくてもよく、下面2bの一部を撮像できる画角を有していてもよい。その場合には、CCDカメラ4が撮像できる領域を使用者が触れる領域に規定すればよい。CCDカメラ4は、操作板2の接触面2aに触れた指の影を操作板2の下面2b側から撮像する。CCDカメラ4は、特許請求の範囲の撮像素子に対応する。CCDカメラ4に代えて、他の方式の撮像素子を用いてもよい。 The base 3 is a rectangular plate having substantially the same size as the operation plate 2. The material of the base 3 is not particularly limited. The CCD camera 4 is installed on the upper surface 3 a of the base 3. The CCD camera 4 has an angle of view that can capture substantially the entire area of the lower surface 2b from a position away from the lower surface 2b of the operation plate 2 by a predetermined distance. However, the CCD camera 4 does not necessarily have an angle of view that can capture the entire area of the lower surface 2b, and may have an angle of view that can image a part of the lower surface 2b. In that case, what is necessary is just to prescribe | regulate the area | region which the CCD camera 4 can image to the area | region which a user touches. The CCD camera 4 images the shadow of the finger touching the contact surface 2 a of the operation plate 2 from the lower surface 2 b side of the operation plate 2. The CCD camera 4 corresponds to the imaging device in the claims. Instead of the CCD camera 4, another type of image sensor may be used.
 画像処理部6と赤外線通信ポート5とは、支持部9に設置されている。画像処理部6は、CCDカメラ4が捉えた画像に基づいて操作板2上での指の影の位置情報を検出する。赤外線通信ポート5は、画像処理部6が検出した位置情報を外部機器に送信する。例えば位置入力装置1をTVリモコンとして用いる場合、赤外線通信ポート5は、画像処理部6が検出した位置情報をTV本体に向けて送信する。赤外線通信ポート5は、特許請求の範囲の無線通信手段に対応する。画像処理部6および赤外線通信ポート5には、一般的なものを用いることができる。 The image processing unit 6 and the infrared communication port 5 are installed in the support unit 9. The image processing unit 6 detects finger shadow position information on the operation panel 2 based on an image captured by the CCD camera 4. The infrared communication port 5 transmits the position information detected by the image processing unit 6 to an external device. For example, when the position input device 1 is used as a TV remote controller, the infrared communication port 5 transmits the position information detected by the image processing unit 6 toward the TV body. The infrared communication port 5 corresponds to the wireless communication means in the claims. As the image processing unit 6 and the infrared communication port 5, general ones can be used.
 第1実施形態の位置入力装置1には、操作板2として光散乱板7が用いられている。光散乱板7の作用は、以下の通りである。
 図3(A)は光散乱板を指で触れた様子を示す断面図であり、図3(B)は光散乱板を接触面と反対側から見た様子を示す平面図である。
 図4(A)はガラス板を指で触れた様子を示す断面図であり、図4(B)はガラス板を接触面と反対側から見た様子を示す平面図である。
In the position input device 1 of the first embodiment, a light scattering plate 7 is used as the operation plate 2. The operation of the light scattering plate 7 is as follows.
3A is a cross-sectional view showing a state where the light scattering plate is touched with a finger, and FIG. 3B is a plan view showing a state where the light scattering plate is viewed from the side opposite to the contact surface.
4A is a cross-sectional view showing a state in which the glass plate is touched with a finger, and FIG. 4B is a plan view showing a state in which the glass plate is viewed from the side opposite to the contact surface.
 図4(A)、(B)に示すように、仮に操作板が光散乱性を持たないガラス板201であった場合、CCDカメラ4は、ガラス板201を下面201b側から撮像したとき、ガラス板201の接触面201a側に位置する手の全体が透けて見えた画像A4を捉える。このとき、画像処理を行っても、この画像A4から指先Fがガラス板201に触れているか否かを判別することは難しい。 As shown in FIGS. 4A and 4B, if the operation plate is a glass plate 201 that does not have light scattering properties, the CCD camera 4 displays the glass when the glass plate 201 is imaged from the lower surface 201b side. An image A4 in which the entire hand located on the contact surface 201a side of the plate 201 is seen through is captured. At this time, even if image processing is performed, it is difficult to determine whether or not the fingertip F is touching the glass plate 201 from the image A4.
 これに対し、図3(A)に示すように、操作板が光散乱板7であれば、指先Fが触れている箇所では、接触面7a側からの光が光散乱板7を全く透過しない。CCDカメラ4は、光散乱板7を下面7b側から撮像したとき、指先Fの影Pを局所的に暗い領域として認識する。一方、指先Fが触れていない箇所では、CCDカメラ4は、指先F以外の指全体の形や手の形を明確には認識できない。その理由は、太陽光、照明光などの通常の環境に存在する光は拡散光であるため、指先F以外の指の直下や手の直下の領域には周囲から光が回り込むからである。そのため、指先Fが触れていない箇所では、光散乱板7を透過する光量が増え、影がぼやける。 On the other hand, as shown in FIG. 3A, if the operation plate is the light scattering plate 7, the light from the contact surface 7a side does not pass through the light scattering plate 7 at the place where the fingertip F touches. . The CCD camera 4 recognizes the shadow P of the fingertip F as a dark region locally when the light scattering plate 7 is imaged from the lower surface 7b side. On the other hand, at a location where the fingertip F is not touching, the CCD camera 4 cannot clearly recognize the shape of the entire finger other than the fingertip F or the shape of the hand. The reason for this is that light existing in a normal environment such as sunlight and illumination light is diffuse light, so that light circulates from the surroundings directly under the finger other than the fingertip F or in the region directly under the hand. For this reason, in a place where the fingertip F is not touching, the amount of light transmitted through the light scattering plate 7 is increased and the shadow is blurred.
 このように、指先Fが触れている箇所では光が光散乱板7を全く透過しないこと、指先Fが触れていない箇所では指や手の影がぼやけること、の2つの要因により、CCDカメラ4は、光散乱板7を下面7b側から撮像したとき、指先Fが触れた位置が局所的に暗い点となった画像、すなわち、指先Fの影Pが高いコントラストで映った画像A3を捉えることができる。その結果、画像処理部6は、図3(B)に示すように、相対的に明るい背景の中で局所的に暗い点Pを、原点Oを基準とした座標P(x,y)として検出することができる。 As described above, the CCD camera 4 has two factors, that is, light does not pass through the light scattering plate 7 at the place where the fingertip F is touching and the shadow of the finger or hand is blurred at the place where the fingertip F is not touching. Captures an image in which the position touched by the fingertip F is a locally dark point when the light scattering plate 7 is imaged from the lower surface 7b side, that is, an image A3 in which the shadow P of the fingertip F is reflected with high contrast. Can do. As a result, as shown in FIG. 3B, the image processing unit 6 uses a locally dark point P in a relatively bright background as coordinates P (x 1 , y 1 ) with the origin O as a reference. Can be detected as
 一般に、指先Fで触れた接触部分の大きさは、直径5~10mm程度の略円形の領域である。接触部分の面積が小さすぎると、完全に遮光された領域とその周辺部との境界がぼやけやすく、局所的に暗く見える効果が失われる。そのため、接触箇所の大きさは、例えば直径5mm以上であることが好ましい。この観点から、指示体としては、先端が細いペンなどを用いるよりも指を用いることが好ましい。 Generally, the size of the contact portion touched with the fingertip F is a substantially circular region having a diameter of about 5 to 10 mm. If the area of the contact portion is too small, the boundary between the completely shielded region and its peripheral portion tends to blur and the effect of appearing dark locally is lost. Therefore, the size of the contact portion is preferably, for example, a diameter of 5 mm or more. From this viewpoint, it is preferable to use a finger as an indicator rather than a pen with a thin tip.
 次に、蛍光板8については、以下に示す2つの作用により、光散乱板7上の位置検出の精度を更に高める効果を奏する。
 第1の作用は、蛍光発光による影のぼやけ作用である。上述したように、光散乱板7の作用により、指先F以外の部分の影Pは周囲からの光の回り込みによりぼやける。ところが、光散乱板7にさらに蛍光板8を積層すると、指先Fが触れていない箇所では、回り込んだ光によって蛍光発光が生じる際に、光が全方向に放射される。一方、指先Fが触れている箇所では、蛍光体10に光が入射しないため、蛍光発光が起こらずに暗くなる。その結果、わずかな入射光であっても、蛍光板8の作用により指先Fの影Pと影以外の部分とのコントラストがより強調される。
Next, the fluorescent plate 8 has an effect of further improving the accuracy of position detection on the light scattering plate 7 by the following two actions.
The first effect is a shadow blurring effect caused by fluorescence. As described above, due to the action of the light scattering plate 7, the shadow P of the portion other than the fingertip F is blurred by the wraparound of light from the surroundings. However, when the fluorescent plate 8 is further laminated on the light scattering plate 7, light is emitted in all directions when fluorescent light emission is generated by the wraparound light at a place where the fingertip F is not touched. On the other hand, in the part which the fingertip F touches, since light does not enter into the fluorescent substance 10, it becomes dark without fluorescence emission. As a result, even with a small amount of incident light, the contrast between the shadow P of the fingertip F and the portion other than the shadow is further enhanced by the action of the fluorescent plate 8.
 第2の作用は、蛍光体10の色変換作用である。外光が光散乱板7と蛍光板8とを透過すると、蛍光体10で吸収されずに蛍光板8を透過する光と、蛍光体10で吸収され、発光して蛍光板8を透過する光と、が混ざり合う。したがって、蛍光体10の種類によって透過する光の色が変化する。例えば青色域~緑色域の光を吸収して赤色光を発光する蛍光体10の場合、蛍光板8を裏面から見ると赤色に見える。緑色域~赤色域の光を吸収して深赤色光を発光する蛍光体10の場合、蛍光板8を裏面から見ると青色に見える。したがって、特定の波長域に感度が高いCCDカメラ4を用いれば、より高いコントラストで指先Fの影Pの位置を検出することができる。例えば前者の蛍光体に対しては赤色用CCDカメラを用い、後者の蛍光体に対しては青色用CCDカメラを用いることにより、フルカラー対応のCCDカメラを用いた場合よりも高い解像度とダイナミックレンジでの検出が可能となる。 The second action is a color conversion action of the phosphor 10. When external light passes through the light scattering plate 7 and the fluorescent plate 8, light that is transmitted through the fluorescent plate 8 without being absorbed by the fluorescent material 10, and light that is absorbed by the fluorescent material 10, emits light, and passes through the fluorescent plate 8. Mix together. Therefore, the color of the transmitted light changes depending on the type of the phosphor 10. For example, in the case of the phosphor 10 that emits red light by absorbing light in the blue region to green region, the phosphor plate 8 looks red when viewed from the back surface. In the case of the phosphor 10 that absorbs light in the green region to red region and emits deep red light, the phosphor plate 8 appears blue when viewed from the back surface. Therefore, if the CCD camera 4 having high sensitivity in a specific wavelength region is used, the position of the shadow P of the fingertip F can be detected with higher contrast. For example, a red CCD camera is used for the former phosphor and a blue CCD camera is used for the latter phosphor, resulting in a higher resolution and dynamic range than when using a full-color CCD camera. Can be detected.
 本発明者らは、各種の操作板を用いて指先が触れた面と反対側から写真を撮影し、指先の影の様子を比較した。その結果を図5(A)、(B)、図6(A)、(B)、図7(A)、(B)に示す。
 試験者は、主に親指と人差し指と中指の3本の指で操作板を支えており、写真では親指が操作板の手前側に写り、人差し指と中指とが操作板の裏側に写っている。
The present inventors took photographs from the opposite side of the surface touched by the fingertip using various operation panels, and compared the shadows of the fingertips. The results are shown in FIGS. 5A, 5B, 6A, 6B, 7A, and 7B.
The tester mainly supports the operation plate with three fingers, that is, the thumb, the index finger, and the middle finger. In the photograph, the thumb is shown on the front side of the operation plate, and the index finger and the middle finger are shown on the back side of the operation plate.
 図5(A)、(B)は、接触面(表面)に光散乱板を配置し、接触面と反対側の面(裏面)に蛍光板を配置した場合の結果である。図5(A)は表面側から撮影した写真であり、図5(B)は裏面側から撮影した写真である。
 図6(A)、(B)は、光散乱板と蛍光板の位置関係が図5(A)、(B)と逆であり、接触面(表面)側に蛍光板を配置し、接触面と反対側の面(裏面)に光散乱板を配置した場合の結果である。図6(A)は表面側から撮影した写真であり、図6(B)は裏面側から撮影した写真である。
FIGS. 5A and 5B show the results when a light scattering plate is disposed on the contact surface (front surface) and a fluorescent screen is disposed on the surface (back surface) opposite to the contact surface. FIG. 5A is a photograph taken from the front side, and FIG. 5B is a photograph taken from the back side.
6 (A) and 6 (B), the positional relationship between the light scattering plate and the fluorescent plate is opposite to that of FIGS. 5 (A) and 5 (B), the fluorescent plate is arranged on the contact surface (surface) side, and opposite to the contact surface. It is a result at the time of arrange | positioning a light-scattering board to the surface (back surface) of the side. FIG. 6A is a photograph taken from the front side, and FIG. 6B is a photograph taken from the back side.
 図7(A)、(B)は、蛍光板のみを用いた場合の結果である。図7(A)は表面側から撮影した写真であり、図7(B)は裏面側から撮影した写真である。 7A and 7B show the results when only the fluorescent screen is used. FIG. 7A is a photograph taken from the front side, and FIG. 7B is a photograph taken from the back side.
 図7(A)、(B)に示すように、蛍光板のみを用いた場合、手指の全体が透け、輪郭がくっきり見える。その結果、指先が蛍光板表面に触れているか否かを判別することはできない。この理由は、蛍光板自体は光散乱性を持たないからである。 As shown in FIGS. 7A and 7B, when only the fluorescent screen is used, the entire finger is transparent and the outline is clearly visible. As a result, it cannot be determined whether or not the fingertip is touching the fluorescent screen surface. This is because the fluorescent screen itself does not have light scattering properties.
 これに対し、図5(A)、(B)に示すように、光散乱板(表面)/蛍光板(裏面)の積層板を用いた場合、指が触れた箇所のみに黒い影ができ、それ以外の手指の輪郭はぼやけている。 On the other hand, as shown in FIGS. 5A and 5B, when a light scattering plate (front surface) / fluorescent plate (back surface) laminated plate is used, a black shadow is formed only at a location touched by a finger. The contours of the fingers other than are blurred.
 図6(A)、(B)に示すように、蛍光板(表面)/光散乱板(裏面)の積層板を用いた場合も、指が触れた箇所の識別は可能である。ただし、光散乱板(表面)/蛍光板(裏面)の積層板(図5(A)、(B))に比べると、指先の影とそれ以外の部分のコントラストが低く、周囲の環境によっては識別が難しくなる場合が考えられる。 As shown in FIGS. 6 (A) and 6 (B), it is possible to identify the place touched by the finger even when a fluorescent plate (front surface) / light scattering plate (back surface) laminated plate is used. However, compared with the light scattering plate (front surface) / fluorescent plate (back surface) laminated plate (FIGS. 5A and 5B), the contrast between the shadow of the fingertip and the other portions is low, and it is discriminated depending on the surrounding environment. May be difficult.
 次に、本発明者らは、ヘイズと全光線透過率とが異なる複数種の光散乱板を用い、接触面と反対側から写真を撮影し、指先の影の様子を比較した。その結果を図8に示す。以下の全ての写真においては、接触面側にある人差し指と中指の指先の影の様子に着目する。
 サンプル1として、ヘイズ:82.5、全光線透過率:55%の光散乱板と、この光散乱板と蛍光板との積層板を準備した。サンプル5として、ヘイズ:78.5、全光線透過率:64.8%の光散乱板と、この光散乱板と蛍光板との積層板を準備した。
 図8は、サンプル1の写真とサンプル5の写真とを比較したものである。
Next, the inventors used a plurality of types of light scattering plates having different haze and total light transmittance, took pictures from the side opposite to the contact surface, and compared the shadows of the fingertips. The result is shown in FIG. In all the following photos, focus on the shadows of the index finger and the middle fingertip on the contact surface side.
As Sample 1, a light scattering plate having a haze of 82.5 and a total light transmittance of 55% and a laminated plate of this light scattering plate and a fluorescent plate were prepared. As Sample 5, a light scattering plate having a haze of 78.5 and a total light transmittance of 64.8% and a laminated plate of the light scattering plate and a fluorescent plate were prepared.
FIG. 8 compares the photograph of sample 1 with the photograph of sample 5.
 ヘイズは、光散乱板の曇りの度合いを表す指標である。ヘイズの数値が小さい程、透明性が高く、数値が大きい程、透明性が低いことを示す。ヘイズの定義は以下の通りである。
 ヘイズ(%)=(Td/Tt)×100 …(1)
 Tdは拡散透過率であり、Ttは全光線透過率である。
 また、本明細書で言う「透過率」は、全光線透過率のことである。光散乱板の拡散透過率Tdおよび全光線透過率Ttは、例えばJIS K 7105に規定された積分球色測定装置を用いて測定することができる。
Haze is an index representing the degree of cloudiness of the light scattering plate. It shows that transparency is so high that the numerical value of haze is small, and transparency is so low that a numerical value is large. The definition of haze is as follows.
Haze (%) = (Td / Tt) × 100 (1)
Td is the diffuse transmittance, and Tt is the total light transmittance.
Further, “transmittance” as used in this specification refers to total light transmittance. The diffuse transmittance Td and the total light transmittance Tt of the light scattering plate can be measured using, for example, an integrating sphere color measuring device defined in JIS K 7105.
 図8に示すように、ヘイズ:82.5、全光線透過率:55%のサンプル1を用いた場合、指先の影が局所的に暗い領域として充分に認識できることが判った(図8中に「◎」で示す)。これに対して、ヘイズ:78.5、全光線透過率:64.8%のサンプル5を用いた場合、指先の影の位置を精度良く判断することが若干難しいものの、位置の特定は可能であることが判った(図8中に「△」で示す)。 As shown in FIG. 8, when Sample 1 with haze: 82.5 and total light transmittance: 55% was used, it was found that the shadow of the fingertip could be sufficiently recognized as a locally dark region (in FIG. 8). “◎”). On the other hand, when Sample 5 having haze: 78.5 and total light transmittance: 64.8% is used, it is slightly difficult to accurately determine the position of the shadow of the fingertip, but the position can be specified. It was found that this was present (indicated by “Δ” in FIG. 8).
 さらに、ヘイズと全光線透過率とが異なる複数種の光散乱板を用い、接触面と反対側から写真を撮影し、指先の影の様子を比較した。
 図9(A)~(D)は、サンプル1の光散乱板(図8のサンプル1と同一)を用いた場合の結果である。
 図9(A)は、サンプル1の光散乱板のみを用いた場合の写真である。図9(B)は、サンプル1の光散乱板(表面)/青色蛍光板(裏面、DeepRed)を用いた場合の写真である。図9(C)は、サンプル1の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.01%)を用いた場合の写真である。図9(D)は、サンプル1の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.02%)を用いた場合の写真である。
Furthermore, using a plurality of kinds of light scattering plates having different haze and total light transmittance, photographs were taken from the side opposite to the contact surface, and the state of the shadow of the fingertip was compared.
9A to 9D show the results when the light scattering plate of sample 1 (same as sample 1 of FIG. 8) is used.
FIG. 9A is a photograph when only the light scattering plate of Sample 1 is used. FIG. 9B is a photograph when the light scattering plate (front surface) / blue fluorescent plate (back surface, Deep Red) of Sample 1 is used. FIG. 9C is a photograph of the sample 1 using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%). FIG. 9D is a photograph of the sample 1 using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
 図10(A)~(D)は、ヘイズ:80.3、全光線透過率:60.5%のサンプル2の光散乱板を用いた場合の結果である。
 図10(A)は、サンプル2の光散乱板のみを用いた場合の写真である。図10(B)は、サンプル2の光散乱板(表面)/青色蛍光板(裏面、DeepRed)を用いた場合の写真である。図10(C)は、サンプル2の光散乱板(表面)/赤色蛍光板(裏面、LumogenRed0.01%)を用いた場合の写真である。図10(D)は、サンプル2の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.02%)を用いた場合の写真である。
FIGS. 10A to 10D show the results when the light scattering plate of Sample 2 having a haze of 80.3 and a total light transmittance of 60.5% is used.
FIG. 10A is a photograph when only the light scattering plate of Sample 2 is used. FIG. 10B is a photograph of the sample 2 using the light scattering plate (front surface) / blue fluorescent plate (back surface, DeepRed). FIG. 10C is a photograph in the case where the light scattering plate (front surface) / red fluorescent plate (back surface, LumogenRed 0.01%) of Sample 2 was used. FIG. 10D is a photograph in the case of using the sample 2 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
 図11(A)~(C)は、ヘイズ:81.4、全光線透過率:64.5%のサンプル3の光散乱板を用いた場合の結果である。
 図11(A)は、サンプル3の光散乱板(表面)/青色蛍光板(裏面、DeepRed)を用いた場合の写真である。図11(B)は、サンプル3の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.01%)を用いた場合の写真である。図11(C)は、サンプル3の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.02%)を用いた場合の写真である。
FIGS. 11A to 11C show the results when the light scattering plate of Sample 3 having a haze of 81.4 and a total light transmittance of 64.5% is used.
FIG. 11A is a photograph of the sample 3 using the light scattering plate (front surface) / blue fluorescent plate (back surface, Deep Red). FIG. 11B is a photograph in the case of using the sample 3 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%). FIG. 11C is a photograph in the case of using the sample 3 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
 図12(A)~(C)は、ヘイズ:79、全光線透過率:62.5%のサンプル4の光散乱板を用いた場合の結果である。
 図12(A)は、サンプル4の光散乱板(表面)/青色蛍光板(裏面、DeepRed)を用いた場合の写真である。図12(B)は、サンプル4の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.01%)を用いた場合の写真である。図12(C)は、サンプル4の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.02%)を用いた場合の写真である。
FIGS. 12A to 12C show the results when using the light scattering plate of Sample 4 having a haze of 79 and a total light transmittance of 62.5%.
FIG. 12A is a photograph of the sample 4 using the light scattering plate (front surface) / blue fluorescent plate (back surface, DeepRed). FIG. 12B is a photograph in the case of using the sample 4 light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%). FIG. 12C is a photograph of the sample 4 using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%).
 図13(A)~(B)は、サンプル5の光散乱板(図8のサンプル5と同一)を用いた場合の結果である。
 図13(A)は、サンプル5の光散乱板のみを用いた場合の写真である。図13(B)は、サンプル5の光散乱板(表面)/青色蛍光板(裏面、DeepRed)を用いた場合の写真である。
FIGS. 13A to 13B show results when the light scattering plate of sample 5 (same as sample 5 of FIG. 8) is used.
FIG. 13A is a photograph when only the light scattering plate of Sample 5 is used. FIG. 13B is a photograph of the sample 5 using the light scattering plate (front surface) / blue fluorescent plate (back surface, Deep Red).
 図14(A)~(C)は、ヘイズ:64、全光線透過率:87%のサンプル6の光散乱板を用いた場合の結果である。
 図14(A)は、サンプル6の光散乱板(表面)/青色蛍光板(裏面、DeepRed)を用いた場合の写真である。図14(B)は、サンプル6の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.01%)を用いた場合の写真である。図14(C)は、サンプル6の光散乱板(表面)/赤色蛍光板(裏面、Lumogen Red0.02%)を用いた場合の写真である。
FIGS. 14A to 14C show the results when using the light scattering plate of Sample 6 having a haze of 64 and a total light transmittance of 87%.
FIG. 14A is a photograph when the light scattering plate (front surface) / blue fluorescent plate (back surface, DeepRed) of sample 6 is used. FIG. 14B is a photograph in the case of using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.01%) of Sample 6. FIG. 14C is a photograph in the case of using the light scattering plate (front surface) / red fluorescent plate (back surface, Lumogen Red 0.02%) of Sample 6.
 全ての写真を比較した結果、サンプル1またはサンプル2の光散乱板を用いた場合、指先の影が局所的に暗い領域として確実に認識できることが判った。これに対して、サンプル3の光散乱板を用いた場合、蛍光板を積層することにより指先の影のコントラストが向上し、位置の特定は充分可能になることが判った。サンプル4~サンプル5の光散乱板を用いた場合、指先の影の位置を精度良く判断することが若干難しくなるものの、位置の特定は可能であることが判った。サンプル6の光散乱板を用いた場合、指先の影の位置を精度良く判断することがさらに難しくなるものの、位置の特定は可能であることが判った。 As a result of comparing all the photographs, it was found that when the light scattering plate of Sample 1 or Sample 2 was used, the shadow of the fingertip could be reliably recognized as a locally dark region. On the other hand, when the light scattering plate of sample 3 was used, it was found that the contrast of the shadow of the fingertip was improved by stacking the fluorescent plates, and the position could be specified sufficiently. When the light scattering plates of Sample 4 to Sample 5 were used, it was found that the position of the fingertip shadow could be specified although it was slightly difficult to accurately determine the position of the fingertip shadow. When the light scattering plate of sample 6 was used, it was found that the position of the shadow of the fingertip could be specified, although it was more difficult to accurately determine the position.
 以上の結果から、光散乱板のヘイズは80%以上であり、かつ、光散乱板の全光線透過率は10%以上、65%以下であることが好ましく、光散乱板の全光線透過率は10%以上、61%以下であることが更に好ましいことが判った。 From the above results, the haze of the light scattering plate is preferably 80% or more, and the total light transmittance of the light scattering plate is preferably 10% or more and 65% or less, and the total light transmittance of the light scattering plate is It was found that the ratio is more preferably 10% or more and 61% or less.
 つまり、ヘイズが大きい場合でも、全光線透過率が高すぎる場合には位置検出が困難になる。その理由は、指先の影を検出するためには、指先以外の手の形状がぼやけていることが必要である。しかしながら、ヘイズが大きくても全光線透過率が高すぎると、指先以外の手の形状が透けて見えてしまい、指先の影を特定しにくくなるからである。逆に、全光線透過率が10%未満になると、光散乱板の全体が暗くなり過ぎ、影を認識すること自体が困難になる。 That is, even if the haze is large, position detection becomes difficult if the total light transmittance is too high. The reason is that the shape of the hand other than the fingertip must be blurred in order to detect the shadow of the fingertip. However, even if the haze is large, if the total light transmittance is too high, the shape of the hand other than the fingertip can be seen through, making it difficult to specify the shadow of the fingertip. On the contrary, if the total light transmittance is less than 10%, the entire light scattering plate becomes too dark and it becomes difficult to recognize the shadow itself.
 以上説明したように、第1実施形態の位置入力装置1によれば、使用者が指等で操作板2に触れた際に指先の影が生じる環境下であれば、位置入力が可能である。したがって、レーザーポインター等、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる。 As described above, according to the position input device 1 of the first embodiment, position input is possible in an environment in which the shadow of the fingertip is generated when the user touches the operation plate 2 with a finger or the like. . Therefore, it is not necessary to prepare a light source for designating an input position such as a laser pointer, and a convenient position input device can be provided.
 第1実施形態の位置入力装置1においては、例えば抵抗膜方式、静電容量方式のタッチパネルのような配線や電極が操作板2に一切不要である。そのため、CCDカメラ4の撮像範囲と画像処理のアルゴリズムの設定を最適化するだけで、様々な形状や寸法を有する操作板2に対応できる。また、位置検出のために配線や電極に電力を供給する必要がなく、CCDカメラ4で画像を検出するだけであるから、消費電力を低減することができる。 In the position input device 1 of the first embodiment, for example, wiring and electrodes such as a resistive film type and a capacitance type touch panel are not required for the operation plate 2. Therefore, it is possible to deal with the operation panel 2 having various shapes and dimensions by simply optimizing the setting of the imaging range of the CCD camera 4 and the image processing algorithm. Further, it is not necessary to supply power to the wiring and electrodes for position detection, and only the image is detected by the CCD camera 4, so that power consumption can be reduced.
 第1実施形態の位置入力装置1は赤外線通信ポート5を備えているため、画像処理部6が検出した位置情報を外部機器に対して無線で送信することができる。外部機器と位置入力装置1とを接続するケーブル等が不要であり、使いやすいものとなる。 Since the position input device 1 of the first embodiment includes the infrared communication port 5, the position information detected by the image processing unit 6 can be transmitted to an external device wirelessly. A cable or the like for connecting the external device and the position input device 1 is not necessary, and is easy to use.
 CCDカメラ4が基台3の上面に配置され、操作板2が基台3の上方空間に配置されているため、CCDカメラ4は指示体の影を確実に捉えることができる。さらに、CCDカメラ4に広角レンズ、魚眼レンズ等のレンズを付加してもよい。これにより、CCDカメラ4の実質的な画角が拡大し、基台3と操作板2との距離を短くし、位置入力装置1の薄型化を図ることができる。 Since the CCD camera 4 is disposed on the upper surface of the base 3 and the operation plate 2 is disposed above the base 3, the CCD camera 4 can reliably capture the shadow of the indicator. Further, a lens such as a wide-angle lens or a fisheye lens may be added to the CCD camera 4. Thereby, the substantial angle of view of the CCD camera 4 is enlarged, the distance between the base 3 and the operation plate 2 can be shortened, and the position input device 1 can be thinned.
[第2実施形態]
 以下、本発明の第2実施形態について、図15を用いて説明する。
 第2実施形態の位置入力装置の基本構成は第1実施形態と同様である。CCDカメラの構成が第1実施形態と異なる。
 図15は、第2実施形態の位置入力装置の斜視図である。
 図15において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
The basic configuration of the position input device of the second embodiment is the same as that of the first embodiment. The configuration of the CCD camera is different from that of the first embodiment.
FIG. 15 is a perspective view of the position input device according to the second embodiment.
In FIG. 15, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
 第1実施形態においては、1個のCCDカメラ4が基台3の上面に設置されていた。これに対して、第2実施形態の位置入力装置21においては、図15に示すように、2個のCCDカメラ4が基台3の上面3aに設置されている。2個のCCDカメラ4は、支持部9の延在方向に平行な方向に間隔をおいて配置されている。画像処理部6は、異なる位置から撮像したCCDカメラ4からの2つの画像に基づいて操作板2上の位置座標を特定する。2個のCCDカメラ4の配置は、この例に限ることなく、適宜変更が可能である。CCDカメラ4の個数は、2個に限ることはなく、さらに増やしてもよい。その他の構成は第1実施形態と同様である。 In the first embodiment, one CCD camera 4 is installed on the upper surface of the base 3. On the other hand, in the position input device 21 of the second embodiment, two CCD cameras 4 are installed on the upper surface 3a of the base 3 as shown in FIG. The two CCD cameras 4 are arranged at intervals in a direction parallel to the extending direction of the support portion 9. The image processing unit 6 specifies position coordinates on the operation panel 2 based on two images from the CCD camera 4 captured from different positions. The arrangement of the two CCD cameras 4 is not limited to this example, and can be changed as appropriate. The number of CCD cameras 4 is not limited to two and may be further increased. Other configurations are the same as those of the first embodiment.
 第2実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1実施形態と同様の効果が得られる。また、異なる位置に配置した複数のCCDカメラ4を備えたことにより、入力位置の検出精度を高めることができる。 Also in the second embodiment, there is no need to prepare a light source for designating an input position, and the same effect as the first embodiment that a user-friendly position input device can be provided is obtained. Further, by providing a plurality of CCD cameras 4 arranged at different positions, it is possible to improve the input position detection accuracy.
[第3実施形態]
 以下、本発明の第3実施形態について、図16を用いて説明する。
 第3実施形態の位置入力装置の基本構成は第1実施形態と同様である。太陽電池素子を付加した点が第1実施形態と異なる。
 図16は、第3実施形態の位置入力装置の断面図である。
 図16において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIG.
The basic configuration of the position input device of the third embodiment is the same as that of the first embodiment. The point which added the solar cell element differs from 1st Embodiment.
FIG. 16 is a cross-sectional view of the position input device according to the third embodiment.
In FIG. 16, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
 図16に示すように、第3実施形態の位置入力装置31は、蛍光板8の端面に太陽電池素子32を備えている。太陽電池素子32は、矩形状の蛍光板8の4辺のうち、1辺に沿って配置されている。ただし、太陽電池素子32の位置は、必ずしも蛍光板8の1辺でなくてもよく、2辺以上に配置されていてもよい。太陽電池素子32は、蛍光体10から発せられて蛍光板8の内部を導光した光を取り込んで起電力を発生する機能を有する。太陽電池素子32は、例えば蛍光板8の端面8cに光学接着剤(図示略)により接合されている。その他の構成は第1実施形態と同様である。 As shown in FIG. 16, the position input device 31 of the third embodiment includes a solar cell element 32 on the end face of the fluorescent plate 8. The solar cell element 32 is arranged along one side of the four sides of the rectangular fluorescent screen 8. However, the position of the solar cell element 32 is not necessarily one side of the fluorescent screen 8 and may be arranged on two or more sides. The solar cell element 32 has a function of generating electromotive force by taking in light emitted from the phosphor 10 and guided through the inside of the fluorescent plate 8. For example, the solar cell element 32 is bonded to the end face 8c of the fluorescent plate 8 with an optical adhesive (not shown). Other configurations are the same as those of the first embodiment.
 太陽電池素子32には、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率の発電が可能であることから、太陽電池素子32として好適である。太陽電池素子32には、蛍光体10の発光スペクトルのピーク波長(630nm)において高い感度を有するものを用いることが好ましい。その理由は、太陽電池素子32が高い変換効率で発電を行えるからである。 The solar cell element 32 may be a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell. Among these, a compound solar cell using a compound semiconductor is suitable as the solar cell element 32 because it can generate power with high efficiency. It is preferable to use a solar cell element 32 having high sensitivity at the peak wavelength (630 nm) of the emission spectrum of the phosphor 10. The reason is that the solar cell element 32 can generate power with high conversion efficiency.
 言い換えると、太陽電池素子32の種類は、当該太陽電池素子32に入射する光の分光スペクトルに応じて適宜決定される。例えば、太陽電池素子32として、アモルファスシリコン太陽電池を用いることができる。アモルファスシリコン太陽電池は、630nm付近の波長の光に対して90%を超える分光感度を有する。そのため、蛍光体10から射出される光のピーク波長が630nm付近であれば、アモルファスシリコン太陽電池素子は高い変換効率で発電を行うことができる。また、太陽電池素子32として、色素増感型太陽電池や有機系太陽電池など、広い波長帯域に対しては高い分光感度を有していないが、特定の狭い波長帯域の光に対して非常に高い分光感度を有するような太陽電池を積極的に使用してもよい。 In other words, the type of the solar cell element 32 is appropriately determined according to the spectral spectrum of the light incident on the solar cell element 32. For example, an amorphous silicon solar cell can be used as the solar cell element 32. The amorphous silicon solar cell has a spectral sensitivity exceeding 90% with respect to light having a wavelength near 630 nm. Therefore, if the peak wavelength of light emitted from the phosphor 10 is around 630 nm, the amorphous silicon solar cell element can generate power with high conversion efficiency. Further, the solar cell element 32 does not have a high spectral sensitivity for a wide wavelength band such as a dye-sensitized solar cell or an organic solar cell, but is very sensitive to light of a specific narrow wavelength band. A solar cell having high spectral sensitivity may be actively used.
 蛍光体10から発せられた蛍光は、蛍光板8の内部を導光する。その理由は、蛍光は、蛍光体10を中心として全方位に放射されるが、多くの光が蛍光板8と光散乱板7との屈折率の違い、蛍光板8と空気との屈折率の違いにより、蛍光板8の上面8aおよび下面8bで全反射し、内部に閉じ込められるからである。位置入力装置31は蛍光板8の端面8cに太陽電池素子32を備えているため、蛍光板8の内部を導光してきた光が太陽電池素子32に集められ、発電が行われる。 Fluorescence emitted from the phosphor 10 guides the inside of the fluorescent plate 8. The reason for this is that although fluorescence is emitted in all directions around the phosphor 10, a large amount of light is caused by the difference in refractive index between the fluorescent plate 8 and the light scattering plate 7 and the difference in refractive index between the fluorescent plate 8 and air. This is because the light is totally reflected by the upper surface 8a and the lower surface 8b of the fluorescent plate 8 and confined inside. Since the position input device 31 includes the solar cell element 32 on the end face 8c of the fluorescent plate 8, the light guided through the inside of the fluorescent plate 8 is collected in the solar cell element 32 and power is generated.
 第3実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1、第2実施形態と同様の効果が得られる。 Also in the third embodiment, it is not necessary to prepare a light source for designating the input position, and the same effect as the first and second embodiments can be obtained that a convenient position input device can be provided. .
 第3実施形態の位置入力装置31の場合、太陽電池素子32が照明光や太陽光などの外光を受けて発電を行うため、バッテリーの交換が不要である。 In the case of the position input device 31 of the third embodiment, since the solar cell element 32 receives external light such as illumination light or sunlight and generates electric power, it is not necessary to replace the battery.
[第4実施形態]
 以下、本発明の第4実施形態について、図17を用いて説明する。
 第4実施形態の位置入力装置の基本構成は第1実施形態と同様である。位置入力装置が太陽電池素子を備える点は第3実施形態と同様であり、太陽電池素子の配置が第3実施形態と異なる。
 図17は、第4実施形態の位置入力装置の断面図である。
 図17において、第3実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the position input device of the fourth embodiment is the same as that of the first embodiment. The point that the position input device includes a solar cell element is the same as that of the third embodiment, and the arrangement of the solar cell elements is different from that of the third embodiment.
FIG. 17 is a cross-sectional view of the position input device according to the fourth embodiment.
In FIG. 17, the same components as those used in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第3実施形態において、太陽電池素子32は蛍光板8の端面8cに設置されていた。これに対して、第4実施形態の位置入力装置41においては、図17に示すように、太陽電池素子32は蛍光板8の下面8bに設置されている。蛍光板8の一つの端面8cは下面8bに対して傾斜した傾斜面となっている。蛍光板8の端面8cと下面8bとのなす角度θは例えば45°である。端面8cに反射層42が形成されている。反射層42として、例えば高い反射率を有する銀、アルミニウムなどの金属膜、ESR(Enhanced Specular Reflector)反射フィルム(3M社製)などの誘電体多層膜などを用いることができる。反射層42の材料は、これに限ることはなく、蛍光体10の発光波長における反射率が高いものが望ましい。 In the third embodiment, the solar cell element 32 is installed on the end face 8c of the fluorescent plate 8. On the other hand, in the position input device 41 of the fourth embodiment, the solar cell element 32 is installed on the lower surface 8b of the fluorescent screen 8, as shown in FIG. One end surface 8c of the fluorescent plate 8 is an inclined surface inclined with respect to the lower surface 8b. The angle θ formed by the end face 8c and the lower face 8b of the fluorescent plate 8 is 45 °, for example. A reflective layer 42 is formed on the end face 8c. As the reflective layer 42, for example, a metal film such as silver or aluminum having a high reflectance, a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M), or the like can be used. The material of the reflective layer 42 is not limited to this, and a material having a high reflectance at the emission wavelength of the phosphor 10 is desirable.
 太陽電池素子32は、反射層42の下方に対応する位置に配置されている。この構成においては、蛍光板8の内部を導光し、端面8cに到達した光は、反射層42で反射する。反射層42で反射した光は、進行方向を変えて太陽電池素子32に入射する。その他の構成は第3実施形態と同様である。 The solar cell element 32 is disposed at a position corresponding to the lower side of the reflective layer 42. In this configuration, light that has guided the inside of the fluorescent plate 8 and reached the end face 8 c is reflected by the reflective layer 42. The light reflected by the reflective layer 42 enters the solar cell element 32 while changing the traveling direction. Other configurations are the same as those of the third embodiment.
 第4実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1~第3実施形態と同様の効果が得られる。 Also in the fourth embodiment, it is not necessary to prepare a light source for designating an input position, and an advantageous effect similar to that in the first to third embodiments can be obtained that a convenient position input device can be provided. .
 第4実施形態の位置入力装置41の場合、蛍光板8の内部を導光してきた光を反射層42で反射させて太陽電池素子32に導く構成であるため、太陽電池素子32の集光効率を高めることができる。 In the case of the position input device 41 according to the fourth embodiment, the light that has been guided through the inside of the fluorescent plate 8 is reflected by the reflective layer 42 and guided to the solar cell element 32. Therefore, the light collection efficiency of the solar cell element 32 is improved. Can be increased.
[第5実施形態]
 以下、本発明の第5実施形態について、図18を用いて説明する。
 第5実施形態の位置入力装置の基本構成は第1実施形態と同様である。位置入力装置が太陽電池素子を備える点は第3実施形態と同様であり、光散乱板と蛍光板とからなる操作板の構成が第3実施形態と異なる。
 図18は、第5実施形態の位置入力装置の断面図である。
 図18において、第3実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fifth Embodiment]
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the position input device of the fifth embodiment is the same as that of the first embodiment. The point that the position input device includes the solar cell element is the same as that of the third embodiment, and the configuration of the operation plate including the light scattering plate and the fluorescent plate is different from that of the third embodiment.
FIG. 18 is a cross-sectional view of the position input device of the fifth embodiment.
In FIG. 18, the same components as those used in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第3実施形態では、光散乱板7と蛍光板8とは密着していた。これに対して、第5実施形態の位置入力装置51では、図18に示すように、光散乱板7と蛍光板8とは、密着しておらず、間隔をおいて配置されている。光散乱板7と蛍光板8とはスペーサー52を介して固定され、光散乱板7と蛍光板8との間に空気53が存在している。その他の構成は第3実施形態と同様である。 In the third embodiment, the light scattering plate 7 and the fluorescent plate 8 are in close contact. On the other hand, in the position input device 51 of the fifth embodiment, as shown in FIG. 18, the light scattering plate 7 and the fluorescent plate 8 are not in close contact with each other and are arranged at intervals. The light scattering plate 7 and the fluorescent plate 8 are fixed via a spacer 52, and air 53 exists between the light scattering plate 7 and the fluorescent plate 8. Other configurations are the same as those of the third embodiment.
 第5実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1~第4実施形態と同様の効果が得られる。 Also in the fifth embodiment, it is not necessary to prepare a light source for designating an input position, and an advantageous effect similar to those in the first to fourth embodiments can be obtained that a convenient position input device can be provided. .
 第5実施形態の位置入力装置51の場合、光散乱板7と蛍光板8との間に空気53が存在しており、蛍光板8の上面8aは蛍光板材料と空気との界面となる。そのため、蛍光板8の上面8aで全反射する光の量が最も多くなり、蛍光板8から光散乱板7に漏れる光を減らすことができる。その結果、蛍光板8の導光効率を高め、太陽電池素子32の集光効率を高めることができる。 In the case of the position input device 51 of the fifth embodiment, the air 53 exists between the light scattering plate 7 and the fluorescent plate 8, and the upper surface 8a of the fluorescent plate 8 serves as an interface between the fluorescent plate material and air. Therefore, the amount of light totally reflected by the upper surface 8a of the fluorescent plate 8 becomes the largest, and the light leaking from the fluorescent plate 8 to the light scattering plate 7 can be reduced. As a result, the light guide efficiency of the fluorescent plate 8 can be increased, and the light collection efficiency of the solar cell element 32 can be increased.
[第6実施形態]
 以下、本発明の第6実施形態について、図19を用いて説明する。
 第6実施形態の位置入力装置の基本構成は第1実施形態と同様である。位置入力装置が太陽電池素子を備える点は第3実施形態と同様であり、補助光源としての発光ダイオードを備えた点が第3実施形態と異なる。
 図19は、第6実施形態の位置入力装置の断面図である。
 図19において、第3実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Sixth Embodiment]
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the position input device of the sixth embodiment is the same as that of the first embodiment. The point that a position input device is provided with a solar cell element is the same as that of a 3rd embodiment, and the point provided with the light emitting diode as an auxiliary light source differs from a 3rd embodiment.
FIG. 19 is a cross-sectional view of the position input device according to the sixth embodiment.
19, the same code | symbol is attached | subjected to the same component as drawing used in 3rd Embodiment, and description is abbreviate | omitted.
 図19に示すように、第6実施形態の位置入力装置61は、蛍光板8の端面8dに補助照明として発光ダイオード62(Light Emitting Diode, LED)を備えている。LED62は、矩形状の蛍光板8の4辺のうち、太陽電池素子32が設けられた端面8cと対向する端面8dに沿って配置されている。ただし、LED62の位置は、必ずしも蛍光板8の1つの端面でなくてもよく、2つ以上の端面に配置されていてもよい。LED62は、暗い環境で用いる場合に蛍光板8に光を照射する補助光源の機能を有する。LED62は、例えば蛍光板8の端面8dに光学接着剤(図示略)により接合されている。LED62は、太陽電池素子32が生成した電力を用いて点灯する構成としてもよい。その他の構成は第3実施形態と同様である。 As shown in FIG. 19, the position input device 61 of the sixth embodiment includes a light emitting diode 62 (Light Emitting Diode, LED) on the end face 8d of the fluorescent plate 8 as auxiliary illumination. LED62 is arrange | positioned along the end surface 8d which opposes the end surface 8c in which the solar cell element 32 was provided among four sides of the rectangular fluorescent screen 8. FIG. However, the position of the LED 62 is not necessarily one end face of the fluorescent plate 8 and may be arranged on two or more end faces. The LED 62 has a function of an auxiliary light source that irradiates the fluorescent screen 8 with light when used in a dark environment. For example, the LED 62 is bonded to the end face 8d of the fluorescent plate 8 by an optical adhesive (not shown). LED62 is good also as a structure lighted using the electric power which the solar cell element 32 produced | generated. Other configurations are the same as those of the third embodiment.
 第6実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1~第5実施形態と同様の効果が得られる。 Also in the sixth embodiment, it is not necessary to prepare a light source for designating an input position, and the same effects as those in the first to fifth embodiments can be obtained that a convenient position input device can be provided. .
 太陽光や照明光等の外光が充分にある環境では問題ないが、位置入力装置を暗い環境で用いる場合には指示体の影が認識しにくいことが考えられる。その場合、第6実施形態の位置入力装置61では、LED62を補助照明として点灯することにより指示体の影を鮮明にすることができ、使用者は暗い場所でも支障なく位置入力を行うことができる。なお、LED62は、必ずしも蛍光板8上に配置する必要はなく、操作板2から離れた位置に配置してもよい。 Although there is no problem in an environment where there is sufficient external light such as sunlight or illumination light, it is conceivable that the shadow of the indicator is difficult to recognize when the position input device is used in a dark environment. In that case, in the position input device 61 of the sixth embodiment, the shadow of the indicator can be made clear by turning on the LED 62 as auxiliary illumination, and the user can input the position without any trouble even in a dark place. . The LED 62 is not necessarily arranged on the fluorescent plate 8 and may be arranged at a position away from the operation plate 2.
[第7実施形態]
 以下、本発明の第7実施形態について、図20、図21を用いて説明する。
 第7実施形態の位置入力装置の基本構成は第1実施形態と同様であるが、基台と蛍光板を備えていない点が第1実施形態と異なる。
 図20は、第7実施形態の位置入力装置の斜視図である。図21は、第7実施形態の位置入力装置の断面図である。
 図20、図21において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Seventh Embodiment]
The seventh embodiment of the present invention will be described below with reference to FIGS.
The basic configuration of the position input device of the seventh embodiment is the same as that of the first embodiment, but is different from the first embodiment in that the base and the fluorescent screen are not provided.
FIG. 20 is a perspective view of the position input device according to the seventh embodiment. FIG. 21 is a cross-sectional view of the position input device according to the seventh embodiment.
20 and 21, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
 図20に示すように、第7実施形態の位置入力装置71は、操作板72と、支持部73と、CCDカメラ4(撮像素子)と、赤外線通信ポート5(通信手段)と、画像処理部6と、を備えている。操作板72は、光散乱板7のみで構成されている。すなわち、第7実施形態の位置入力装置71は、第1実施形態で用いられている基台3と蛍光板8とを備えていない。 As shown in FIG. 20, the position input device 71 of the seventh embodiment includes an operation plate 72, a support unit 73, a CCD camera 4 (imaging device), an infrared communication port 5 (communication means), and an image processing unit. 6 are provided. The operation plate 72 is composed only of the light scattering plate 7. That is, the position input device 71 of the seventh embodiment does not include the base 3 and the fluorescent plate 8 used in the first embodiment.
 図21に示すように、CCDカメラ4は、支持部73の下部に配置されている。CCDカメラ4は、操作板72の下面72bから所定の距離離れた位置から、斜め方向に下面72bの略全域を撮像できる画角を有している。ただし、CCDカメラ4は、必ずしも下面72bの全域を撮像できる画角を有していなくてもよく、下面72bの一部を撮像できる画角を有していてもよい。その場合には、CCDカメラ4が撮像できる領域を使用者が触れる領域に限定すればよい。CCDカメラ4は、操作板72の接触面72aに触れた指の影を操作板72の下面72b側から撮像する。CCDカメラ4は、1個でもよいし、複数個備えられていてもよい。 As shown in FIG. 21, the CCD camera 4 is disposed below the support portion 73. The CCD camera 4 has an angle of view that can image substantially the entire area of the lower surface 72b in an oblique direction from a position away from the lower surface 72b of the operation plate 72 by a predetermined distance. However, the CCD camera 4 does not necessarily have an angle of view that can capture the entire area of the lower surface 72b, and may have an angle of view that can image a part of the lower surface 72b. In that case, the area that can be imaged by the CCD camera 4 may be limited to the area touched by the user. The CCD camera 4 captures an image of a finger touching the contact surface 72 a of the operation plate 72 from the lower surface 72 b side of the operation plate 72. One CCD camera 4 may be provided, or a plurality of CCD cameras 4 may be provided.
 第7実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1~第6実施形態と同様の効果が得られる。 Also in the seventh embodiment, it is not necessary to prepare a light source for designating an input position, and an advantageous effect similar to those in the first to sixth embodiments can be obtained that a convenient position input device can be provided. .
 第7実施形態の位置入力装置71は基台3と蛍光板8とを備えておらず、光散乱板7からなる操作板72と支持部73のみで構成されている。これにより、部品点数が少なく、薄型の位置入力装置を実現できる。 The position input device 71 of the seventh embodiment is not provided with the base 3 and the fluorescent plate 8, and is configured only by the operation plate 72 and the support portion 73 which are made of the light scattering plate 7. Thereby, a thin position input device with a small number of parts can be realized.
[第8実施形態]
 以下、本発明の第8実施形態について、図22を用いて説明する。
 第8実施形態の位置入力装置の基本構成は第1実施形態と同様である。操作板が蛍光板を備えていない点は第7実施形態と同様であるが、基台と太陽電池素子を備えた点が第7実施形態と異なる。
 図22は、第8実施形態の位置入力装置の断面図である。
 図22において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Eighth Embodiment]
The eighth embodiment of the present invention will be described below with reference to FIG.
The basic configuration of the position input device of the eighth embodiment is the same as that of the first embodiment. The point that the operation plate does not include the fluorescent plate is the same as that of the seventh embodiment, but the point that the base plate and the solar cell element are provided is different from the seventh embodiment.
FIG. 22 is a cross-sectional view of the position input device according to the eighth embodiment.
In FIG. 22, the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図22に示すように、第8実施形態の位置入力装置81は、光散乱板7からなる操作板72と、基台3と、支持部73と、太陽電池素子82を備えている。太陽電池素子82は、基台3の上面3aに設置されている。太陽電池素子82には、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率の発電が可能であることから、太陽電池素子82として好適である。第8実施形態の位置入力装置81の場合、第3実施形態と異なり、太陽電池素子82は、蛍光体から発せられた光を受けるのではなく、光散乱板7を透過した外光を受けて発電を行う。したがって、外光が持つ広い波長帯域に対して感度を有する太陽電池素子82を用いることが好ましい。 As shown in FIG. 22, the position input device 81 of the eighth embodiment includes an operation plate 72 composed of a light scattering plate 7, a base 3, a support portion 73, and a solar cell element 82. The solar cell element 82 is installed on the upper surface 3 a of the base 3. As the solar cell element 82, a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used. Among these, a compound solar cell using a compound semiconductor is suitable as the solar cell element 82 because it can generate power with high efficiency. In the case of the position input device 81 of the eighth embodiment, unlike the third embodiment, the solar cell element 82 does not receive the light emitted from the phosphor but receives the external light transmitted through the light scattering plate 7. Generate electricity. Therefore, it is preferable to use the solar cell element 82 having sensitivity with respect to a wide wavelength band of external light.
 第8実施形態においても、入力位置を指定するための光源を準備する必要がなく、使い勝手の良い位置入力装置を提供することができる、という第1~第7実施形態と同様の効果が得られる。 Also in the eighth embodiment, it is not necessary to prepare a light source for designating an input position, and the same effects as those in the first to seventh embodiments can be obtained that a convenient position input device can be provided. .
 第8実施形態の位置入力装置81の場合、太陽電池素子82が照明光や太陽光などの外光を受けて発電を行うため、バッテリーの交換が不要である。 In the case of the position input device 81 of the eighth embodiment, since the solar cell element 82 receives external light such as illumination light or sunlight and generates power, it is not necessary to replace the battery.
[第9実施形態]
 以下、本発明の第9実施形態について、図23を用いて説明する。
 第9実施形態では、第1~第8実施形態の位置入力装置を採用した電子機器の例を挙げる。ここでは、電子機器の一つの形態として、TVリモコンの例を示す。
 図23は、第9実施形態のTVリモコンの使用状態を示す斜視図である。
 図23において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Ninth Embodiment]
The ninth embodiment of the present invention will be described below with reference to FIG.
In the ninth embodiment, an example of an electronic apparatus that employs the position input device of the first to eighth embodiments will be described. Here, an example of a TV remote controller is shown as one form of electronic equipment.
FIG. 23 is a perspective view showing a usage state of the TV remote control according to the ninth embodiment.
In FIG. 23, the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図23に示すように、第9実施形態のTVリモコン91の基本構成は、第1実施形態の位置入力装置1と同様である。操作板92の上面に、指先Fによる指示目標となる「HOME」ボタンや「MENU」ボタンの位置を表す印刷パターン93が印刷されている。印刷パターン93に対応する領域は、TV本体94の画面95上でカーソル96を所望の位置に移動させるための位置入力領域となっている。 As shown in FIG. 23, the basic configuration of the TV remote control 91 of the ninth embodiment is the same as that of the position input device 1 of the first embodiment. On the upper surface of the operation plate 92, a print pattern 93 representing the position of the “HOME” button or the “MENU” button that is an instruction target by the fingertip F is printed. An area corresponding to the print pattern 93 is a position input area for moving the cursor 96 to a desired position on the screen 95 of the TV main body 94.
 第9実施形態においては、簡易な構成で消費電力の少ないTVリモコン91を提供することができる。
 第1~第8実施形態の位置入力装置を用いた電子機器の例は、TVリモコンに限ることなく、例えば電子式卓上計算器、キーボード、マウス、トラックパッドなどに応用が可能である。
In the ninth embodiment, the TV remote controller 91 with a simple configuration and low power consumption can be provided.
Examples of the electronic apparatus using the position input device of the first to eighth embodiments are not limited to the TV remote controller, but can be applied to, for example, an electronic desk calculator, a keyboard, a mouse, a track pad, and the like.
[第10実施形態]
 以下、本発明の第10実施形態について、図24を用いて説明する。
 第10実施形態では、第1~第8実施形態の位置入力装置を採用した表示装置の例を挙げる。ここでは、表示装置の一つの形態として、リアプロジェクター(背面投射型プロジェクター)の例を示す。
 図24は、第10実施形態のリアプロジェクターの概略構成図である。
[Tenth embodiment]
The tenth embodiment of the present invention will be described below with reference to FIG.
In the tenth embodiment, an example of a display device adopting the position input device of the first to eighth embodiments will be given. Here, an example of a rear projector (a rear projection projector) is shown as one form of the display device.
FIG. 24 is a schematic configuration diagram of a rear projector according to the tenth embodiment.
 図24に示すように、リアプロジェクター101は、スクリーン102と、プロジェクター本体103と、CCDカメラ104と、画像処理部105と、を備えている。スクリーン102は、表面に微細な凹凸が形成された光散乱板で構成されている。プロジェクター本体103およびCCDカメラ104は、観察者から見てスクリーン102の背面側に設置されている。プロジェクター本体103は、スクリーン102の背面側からスクリーン102に向けて任意の映像を投射する。CCDカメラ104は、スクリーン102の前面側から触れた指先Fの影をスクリーン102の背面側から撮像する。 As shown in FIG. 24, the rear projector 101 includes a screen 102, a projector main body 103, a CCD camera 104, and an image processing unit 105. The screen 102 is composed of a light scattering plate having fine irregularities formed on the surface. The projector main body 103 and the CCD camera 104 are installed on the back side of the screen 102 as viewed from the observer. The projector main body 103 projects an arbitrary image from the back side of the screen 102 toward the screen 102. The CCD camera 104 images the shadow of the fingertip F touched from the front side of the screen 102 from the back side of the screen 102.
 観察者は、スクリーン102に投射された映像を目標として位置入力を行うため、スクリーン102の前面の任意の位置に触れる。このとき、CCDカメラ104はスクリーン102を背面側から撮像しており、観察者が触れた指先Fの影Pを局所的に暗い領域として認識する。画像処理部105は、CCDカメラ104が捉えた画像に画像処理を施して位置座標を特定する。画像処理部105は、その位置情報をプロジェクター本体103に送信する。 The observer touches an arbitrary position on the front surface of the screen 102 in order to input a position with the image projected on the screen 102 as a target. At this time, the CCD camera 104 images the screen 102 from the back side, and recognizes the shadow P of the fingertip F touched by the observer as a dark region locally. The image processing unit 105 performs image processing on the image captured by the CCD camera 104 and identifies position coordinates. The image processing unit 105 transmits the position information to the projector main body 103.
 第10実施形態においては、簡易な構成で位置入力機能を有するリアプロジェクター101を実現することができる。
 第1~第8実施形態の位置入力装置を用いた表示装置の応用例は、リアプロジェクターに限ることなく、例えばデジタルサイネージなどの表示装置にも応用が可能である。
In the tenth embodiment, the rear projector 101 having a position input function can be realized with a simple configuration.
The application example of the display device using the position input device of the first to eighth embodiments is not limited to the rear projector, but can be applied to a display device such as a digital signage.
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態で例示した位置入力装置において、無線通信手段として赤外線通信ポートの例を挙げたが、これに代えて、Bluetooth(登録商標)などを用いてもよい。その他、位置入力装置の各種構成要素の形状、数、配置、材料等に関して、上記実施形態に限ることなく、適宜変更が可能である。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the position input device exemplified in the above embodiment, an example of the infrared communication port is given as the wireless communication means, but Bluetooth (registered trademark) or the like may be used instead. In addition, the shape, number, arrangement, material, and the like of various components of the position input device can be appropriately changed without being limited to the above embodiment.
 本発明は、各種電子機器の位置入力装置として利用が可能である。 The present invention can be used as a position input device for various electronic devices.
 1,21,31,41,51,61,71,81  位置入力装置
 2  操作板
 4,104  CCDカメラ(撮像素子)
 5  赤外線通信ポート(無線通信手段)
 6  画像処理部
 7  光散乱板
 8  蛍光板
 10  蛍光体
 32,82  太陽電池素子
 62  LED(光源)
 F  指先(指示体)
 P  影
1, 21, 31, 41, 51, 61, 71, 81 Position input device 2 Operation panel 4,104 CCD camera (imaging device)
5 Infrared communication port (wireless communication means)
6 Image processing unit 7 Light scattering plate 8 Fluorescent plate 10 Phosphor 32, 82 Solar cell element 62 LED (light source)
F fingertip (indicator)
P Shadow

Claims (15)

  1.  第1面から入射する光を散乱させる光散乱性を有する操作板と、
     前記操作板の前記第1面側に配置された指示体の影を前記操作板の第2面側から撮像する撮像素子と、
     前記撮像素子が捉えた画像に基づいて前記操作板上での前記影の位置情報を検出する画像処理部と、を備えた位置入力装置。
    An operation plate having a light scattering property to scatter light incident from the first surface;
    An image sensor that images the shadow of the indicator arranged on the first surface side of the operation plate from the second surface side of the operation plate;
    A position input device comprising: an image processing unit configured to detect position information of the shadow on the operation plate based on an image captured by the imaging element.
  2.  前記操作板の前記第2面側に、前記操作板を透過した光を励起光として蛍光を生じる蛍光体を含有する蛍光板をさらに備え、
     前記撮像素子が、前記蛍光板を通して前記画像を撮像する請求項1に記載の位置入力装置。
    A fluorescent plate containing a phosphor that generates fluorescence using the light transmitted through the operation plate as excitation light on the second surface side of the operation plate,
    The position input device according to claim 1, wherein the image pickup device picks up the image through the fluorescent plate.
  3.  前記蛍光板の一部に、前記蛍光体から発せられた蛍光を受けて電力を発生する太陽電池素子が設けられた請求項2に記載の位置入力装置。 The position input device according to claim 2, wherein a solar cell element that generates electric power by receiving the fluorescence emitted from the phosphor is provided on a part of the phosphor plate.
  4.  前記操作板と前記蛍光板との間に空気層が介在している請求項3に記載の位置入力装置。 The position input device according to claim 3, wherein an air layer is interposed between the operation plate and the fluorescent plate.
  5.  前記操作板を透過した光を受けて電力を発生する太陽電池素子が設けられた請求項1に記載の位置入力装置。 The position input device according to claim 1, further comprising a solar cell element that generates light upon receiving light transmitted through the operation plate.
  6.  前記操作板に向けて光を照射する光源をさらに備えた請求項1に記載の位置入力装置。 The position input device according to claim 1, further comprising a light source that emits light toward the operation plate.
  7.  前記位置情報を外部機器に送信する通信手段を備えた請求項1から請求項6までのいずれか一項に記載の位置入力装置。 The position input device according to any one of claims 1 to 6, further comprising a communication unit that transmits the position information to an external device.
  8.  前記撮像素子が、前記操作板の端部に配置されている請求項1から請求項7までのいずれか一項に記載の位置入力装置。 The position input device according to any one of claims 1 to 7, wherein the imaging element is disposed at an end of the operation plate.
  9.  前記操作板の第2面と対向して配置された基台を備え、
     前記撮像素子が、前記基台の前記第2面との対向面に配置されている請求項1から請求項7までのいずれか一項に記載の位置入力装置。
    A base disposed opposite to the second surface of the operation plate;
    The position input device according to any one of claims 1 to 7, wherein the imaging element is disposed on a surface of the base that faces the second surface.
  10.  前記撮像素子を複数個備えた請求項1から請求項9までのいずれか一項に記載の位置入力装置。 The position input device according to any one of claims 1 to 9, comprising a plurality of the imaging elements.
  11.  前記操作板のヘイズ値が80%以上であり、かつ、前記操作板の光透過率が10%以上、65%以下である請求項1から請求項10までのいずれか一項に記載の位置入力装置。 The position input according to any one of claims 1 to 10, wherein a haze value of the operation plate is 80% or more and a light transmittance of the operation plate is 10% or more and 65% or less. apparatus.
  12.  請求項1から請求項11までのいずれか一項に記載の位置入力装置を備えた電子機器。 An electronic device comprising the position input device according to any one of claims 1 to 11.
  13.  前記指示体の指示目標を表す印刷パターンが前記操作板に設けられた請求項12に記載の電子機器。 13. The electronic device according to claim 12, wherein a printing pattern representing an instruction target of the indicator is provided on the operation plate.
  14.  請求項1から請求項11までのいずれか一項に記載の位置入力装置と、
     前記指示体の指示目標を表す画像を表示する表示部と、を備えた表示装置。
    A position input device according to any one of claims 1 to 11,
    A display unit configured to display an image representing an indication target of the indicator.
  15.  前記表示部がリアプロジェクターである請求項14に記載の表示装置。 The display device according to claim 14, wherein the display unit is a rear projector.
PCT/JP2014/066643 2013-07-01 2014-06-24 Position input device, electronic apparatus, and display device WO2015002018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013138079 2013-07-01
JP2013-138079 2013-07-01

Publications (1)

Publication Number Publication Date
WO2015002018A1 true WO2015002018A1 (en) 2015-01-08

Family

ID=52143597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066643 WO2015002018A1 (en) 2013-07-01 2014-06-24 Position input device, electronic apparatus, and display device

Country Status (1)

Country Link
WO (1) WO2015002018A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182101A (en) * 1993-10-26 1995-07-21 Itu Res Inc Apparatus and method for input of graphic, operating method of graphic object and supply method of graphic input signal
JP2003076491A (en) * 2001-09-04 2003-03-14 Tamagawa Seiki Co Ltd Track ball system without wiring
JP2006228196A (en) * 2005-01-21 2006-08-31 Fanuc Ltd Display console panel for control device
JP2007241737A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Table type information display terminal
JP2013084269A (en) * 2011-10-07 2013-05-09 Young Optics Inc Touch display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182101A (en) * 1993-10-26 1995-07-21 Itu Res Inc Apparatus and method for input of graphic, operating method of graphic object and supply method of graphic input signal
JP2003076491A (en) * 2001-09-04 2003-03-14 Tamagawa Seiki Co Ltd Track ball system without wiring
JP2006228196A (en) * 2005-01-21 2006-08-31 Fanuc Ltd Display console panel for control device
JP2007241737A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Table type information display terminal
JP2013084269A (en) * 2011-10-07 2013-05-09 Young Optics Inc Touch display device

Similar Documents

Publication Publication Date Title
JP6678225B2 (en) Multi-mode stylus and digitizer system
US9804703B2 (en) Touch input device which detects a magnitude of a touch pressure
KR100917583B1 (en) A light guide plate for system inputting coordinate contactlessly, a system comprising the same and a method for inputting coordinate contactlessly using the same
US9075452B2 (en) Optical digitizer system with position-unique photoluminescent indicia
CN104813263B (en) Enhancing optical waveguide for light touch sensitive device
US9557827B2 (en) Optical digitizer system with position-unique photoluminescent indicia
CN109690567B (en) Fingerprint identification device and electronic equipment
WO2018103194A1 (en) Display module and usage method thereof
CN207799711U (en) biological characteristic identification module
TWI635306B (en) Optical apparatus
TWI571769B (en) Contactless input device and method
TWI605363B (en) System and methods for calibrating a digitizer system
WO2013130920A1 (en) Sensor-in-pixel display system with near infrared filter
TWI580269B (en) Camera module and optical touch screen using the same
TW201229860A (en) Optical touch screen and method for assembling the same
TWI582661B (en) Contactless input device and method
CN107168591B (en) Optical touch panel and display device
TWI578208B (en) Optical touch screen
US9442605B2 (en) Display device and display control system
WO2015019869A1 (en) Light detection device, position input device, and electronic device
TWI698623B (en) Proximity sensing device and display device
WO2015002018A1 (en) Position input device, electronic apparatus, and display device
CN109313866A (en) With the near-infrared transparence display frame in following coding pattern
US11188772B2 (en) Drive method for texture recognition device and texture recognition device
JP2012221142A (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP