WO2015019869A1 - Light detection device, position input device, and electronic device - Google Patents

Light detection device, position input device, and electronic device Download PDF

Info

Publication number
WO2015019869A1
WO2015019869A1 PCT/JP2014/069682 JP2014069682W WO2015019869A1 WO 2015019869 A1 WO2015019869 A1 WO 2015019869A1 JP 2014069682 W JP2014069682 W JP 2014069682W WO 2015019869 A1 WO2015019869 A1 WO 2015019869A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
fluorescent light
fluorescent
Prior art date
Application number
PCT/JP2014/069682
Other languages
French (fr)
Japanese (ja)
Inventor
豪 鎌田
俊 植木
智子 南郷
一義 櫻木
崇 片山
昌洋 ▲辻▼本
藤原 小百合
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015019869A1 publication Critical patent/WO2015019869A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0428Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a light detection device, a position input device, and an electronic apparatus.
  • This application claims priority based on Japanese Patent Application No. 2013-162791 filed in Japan on August 5, 2013, the contents of which are incorporated herein by reference.
  • an irradiation coordinate position detection system displays by detecting a display device having a display unit, a photofluorescent unit containing a fluorescent agent disposed in front of the display unit, and fluorescence emitted by the fluorescent agent during laser light irradiation. And an imaging device for imaging the light beam irradiation position on the unit.
  • Patent Document 1 has a problem that it is difficult to reliably specify the position irradiated with light from the laser pointer.
  • One aspect of the present invention has been made to solve the above-described problem, and in light detection using light emission from a phosphor, light detection capable of reliably specifying an excitation energy supply position.
  • One object is to provide a device.
  • One aspect of the present invention is to provide a position input device that includes the above-described photodetection device and can reliably specify the supply position of excitation energy.
  • An object of one embodiment of the present invention is to provide an electronic device including the position input device described above and capable of stable operation.
  • a photodetection device includes a phosphor that emits light by obtaining excitation energy, and internally guides the light emitted from the phosphor.
  • a light guide plate an image sensor that images a part of an end face of the fluorescent light guide plate, and a position detection unit that detects a supply position of the excitation energy in the fluorescent light guide plate based on an image captured by the image sensor;
  • a reflection reduction unit that is provided in at least a part of the end surface of the fluorescent light guide plate excluding the imaging region of the imaging element and reduces reflection of the light reaching the end surface of the fluorescent light guide plate.
  • the reflection reduction unit may be a light absorption layer provided on an end surface of the fluorescent light guide plate.
  • the fluorescent light guide plate may have a cutout portion cut out in an arc shape, and the imaging element has a concave curved surface of the cutout portion. May be taken.
  • the excitation energy may be light energy.
  • the light detection device may include a low reflection layer or a light scattering layer on at least one of the first main surface and the second main surface of the fluorescent light guide plate.
  • the light detection device includes the low reflection layer or the light scattering layer
  • a dielectric multilayer film is formed on one of the first main surface and the second main surface.
  • a low reflection layer having a plurality of protrusions arranged with a period equal to or less than the wavelength of the visible light region may be provided on the other main surface.
  • the position detection unit may determine a representative position of the light emitting region based on the image and calculate a supply position of the excitation energy from the representative position.
  • the light detection device may include a light detection element that detects that the light is emitted from the phosphor on the end face of the fluorescent light guide plate.
  • a position input device includes the photodetector according to one aspect of the present invention and an excitation energy supply source that supplies the excitation energy to an arbitrary position of the fluorescent light guide plate.
  • the excitation energy supply source is a plurality of light energy supply sources, and the plurality of light energies from the plurality of light energy supply sources are supplied to different positions of the fluorescent light guide plate.
  • the position detection unit may include identification means for identifying a plurality of lights generated when the light is generated.
  • An electronic apparatus includes a position input device according to one aspect of the present invention, a display device disposed opposite to the first main surface or the second main surface of the fluorescent light guide plate, A control unit that controls the display device based on position information output from the position input device.
  • FIG. 2A is a front view of a light detection device
  • FIG. 2B is a diagram illustrating an image acquired by a first image sensor
  • FIG. 3C is a diagram illustrating an image acquired by a second image sensor. It is an enlarged view of the location shown with the code
  • A) It is sectional drawing which shows the state which decomposed
  • B) It is sectional drawing which shows the state which assembled the electronic device. It is a block diagram which shows the circuit structure of an electronic device.
  • FIG. 1 Front view for explaining the principle of position detection in the light detection device,
  • FIG. 1 A diagram showing an image acquired by the first image sensor,
  • FIG. 1 A diagram showing an image acquired by the second image sensor .
  • FIG. 1 A perspective view of a laser pointer. It is a figure which shows the pulse of the laser beam inject
  • FIG. 1 Front view for explaining a problem in the case where there is no light absorption layer on the end face of the fluorescent light guide plate
  • FIG. 2nd Embodiment A diagram showing an image acquired by the first image sensor
  • C a second image sensor It is a figure which shows the image which acquired. It is a figure which shows the modification of the structure of the image pick-up element vicinity in the photon detection apparatus of 1st Embodiment. It is a perspective view which shows the photon detection apparatus of 2nd Embodiment. It is sectional drawing which shows the photon detection apparatus of 3rd Embodiment. It is sectional drawing which shows the photon detection apparatus of 4th Embodiment.
  • FIG. 34 (A) Perspective view of the photodetector of the sixteenth embodiment, (B) a sectional view as seen from the direction of arrow B in FIG. 34 (A), (C) a sectional view as seen from the direction of arrow C in FIG. .
  • FIG. 1 is a perspective view illustrating an electronic apparatus according to the first embodiment.
  • FIG. 2A is a front view of the light detection device.
  • FIG. 2B is a diagram illustrating an image acquired by the first image sensor.
  • FIG. 2C is a diagram illustrating an image acquired by the second image sensor.
  • FIG. 3 is an enlarged view of a portion indicated by reference symbol A in FIG.
  • FIG. 4A is a cross-sectional view illustrating a state where the electronic device is disassembled.
  • FIG. 1 is a perspective view illustrating an electronic apparatus according to the first embodiment.
  • FIG. 2A is a front view of the light detection device.
  • FIG. 2B is a diagram illustrating an image acquired by the first image sensor.
  • FIG. 2C is a diagram illustrating an image acquired by the second image sensor.
  • FIG. 3 is an enlarged view of a portion indicated by reference symbol A in FIG.
  • FIG. 4A is a cross-sectional view illustrating a state where the electronic device is
  • FIG. 4B is a cross-sectional view illustrating a state where the electronic device is assembled.
  • FIG. 5 is a block diagram illustrating a circuit configuration of the electronic device.
  • the scale of the size may be varied depending on the component.
  • the electronic apparatus 1 includes a position input device 2 and a display 3.
  • the position input device 2 includes a light detection device 4 and a laser pointer 5.
  • the light detection device 4 is disposed on the viewing side of the display unit 6 of the display 3.
  • Specific examples of the display 3 include, for example, a liquid crystal display, an organic electroluminescence (hereinafter abbreviated as EL) display, and the like, but are not particularly limited.
  • the positions of the display 3 and the light detection device 4 are fixed as will be described later.
  • the assembly 7 of the display 3 and the light detection device 4 constitutes a display with an interactive function.
  • the user can input various commands and instructions according to the display content of the display 3 by irradiating the laser beam L0 toward a certain part of the light detection device 4 using the laser pointer 5.
  • the laser pointer 5 for example, a laser pointer that emits blue-violet laser light having a wavelength of 405 nm is used.
  • the surface on the side on which the user irradiates the laser light L0 is referred to as “front surface”, and the surface on the opposite side to the side on which the user irradiates the laser light L0. This will be referred to as the “back”.
  • the laser pointer 5 corresponds to an excitation energy supply source and a light energy supply source in claims.
  • the display 3 corresponds to a display device in claims.
  • the light detection device 4 includes a fluorescent light guide plate 9, an image sensor 10, a grid 11, and a light absorbing material 12.
  • two image pickup devices 10 are used.
  • the two image sensors 10 are respectively disposed at the lower left corner and the lower right corner of the fluorescent light guide plate 9.
  • the lower left image sensor 10 of the fluorescent light guide plate 9 is referred to as a first image sensor 10L
  • the lower right image sensor 10 of the fluorescent light guide plate 9 is referred to as a second image sensor 10R.
  • the fluorescent light guide plate 9 includes a phosphor 13 that absorbs the energy of the laser light L0 and emits fluorescence when irradiated with the laser light L0 that is excitation light. To do.
  • a phosphor 13 that absorbs blue-violet light having a wavelength of 405 nm and emits blue light having a wavelength longer than 405 nm is used.
  • the fluorescent light guide plate 9 receives the blue-violet laser light L0 emitted from the laser pointer 5, and emits blue fluorescence in all directions from the irradiation point.
  • a phosphor that absorbs blue light and emits green light and a phosphor that absorbs blue light and emits red light according to the wavelength of light emitted from the laser pointer 5 can also be used.
  • the excitation wavelength and the emission wavelength are not particularly limited.
  • the light emitted from the fluorescent material 13 is guided through the fluorescent light guide plate 9 while being repeatedly reflected at the front surface 9f and the back surface 9b of the fluorescent light guide plate 9, that is, the interface between the constituent material of the fluorescent light guide material 9 and air. To do.
  • the fluorescent light guide plate 9 is a rectangular flat plate material in which the fluorescent material 13 is dispersed in the transparent base material 14 as shown in FIGS. 2, 4 (A), and 4 (B).
  • the transparent substrate 14 is made of a highly transparent organic material such as an acrylic resin such as PMMA, a polycarbonate resin, or an optically transparent inorganic material such as glass.
  • PMMA resin reffractive index 1.49
  • the phosphor 13 may be uniformly dispersed inside the transparent substrate 14 or may not necessarily be uniformly dispersed. Furthermore, the phosphor 13 does not necessarily have to be dispersed inside the transparent substrate 14. For example, the structure by which the film containing the fluorescent substance 13 was bonded together on the front surface of the transparent base material 14 may be sufficient.
  • Organic phosphors include organic phosphors.
  • Organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine dyes, Perylene dye, pyrene dye, anthracene dye, acridone dye, acridine dye, fluorene dye, terphenyl dye, ethene dye, butadiene dye, hexatriene dye, oxazole dye, coumarin dye, Stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazine dyes, naphthalimide dyes, anthraquinone dyes and the like are preferably used.
  • An inorganic phosphor can also be used as the phosphor 13. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as the phosphor 13 of the present embodiment as long as they have fluorescence.
  • the phosphor 13 is not limited to one type, and a plurality of types (two types or three or more types) of phosphors may be used.
  • the fluorescent light guide plate 9 needs to use light that emits light when irradiated with high-energy excitation light such as laser light L0 and does not emit light when irradiated with normal external light such as sunlight or illumination light. There is. Therefore, the concentration of the phosphor 13 in the fluorescent light guide plate 9 may be relatively low.
  • the configuration on the first image sensor 10L side and the configuration on the second image sensor 10R side are bilaterally symmetric and substantially the same, only the first image sensor 10L side is shown in FIG.
  • the lower left corner and the lower right corner where the image sensor 10 is arranged are cut out in an arc shape forming a quarter of a circle. That is, the fluorescent light guide plate 9 has a circular arc-shaped notch 9k at the lower left corner and the lower right corner.
  • the center of the arc forming the shape of the notch 9k substantially coincides with the intersection of the long side extension line and the short side extension line of the fluorescent light guide plate 9.
  • the grid 11 is arranged so as to form an angle of approximately 45 ° with the long side and the short side of the fluorescent light guide plate 9.
  • the grid 11 is a plate material having a fine opening 11 h that transmits the light L emitted from the end surface 9 t of the fluorescent light guide plate 9.
  • the position of the opening 11h of the grid 11 substantially coincides with the center of the arc that forms the notch 9k of the fluorescent light guide plate 9.
  • the image sensor 10 is disposed on the opposite side of the fluorescent light guide plate 9 with the grid 11 interposed therebetween.
  • the image sensor 10 includes a line sensor 15 on the light receiving surface of the image sensor 10 facing the grid 11. Thereby, the imaging element 10 images a part of the end surface 9t of the fluorescent light guide plate 9.
  • the line sensor 15 has a configuration in which a plurality of CCD elements (not shown) are arranged in a direction parallel to the paper surface of FIG.
  • the number of CCD elements that is, the number of pixels of the line sensor 15 is, for example, about 1000 to several thousand.
  • the image sensor 10 is not limited to a one-dimensional line sensor, and may include a two-dimensional array sensor. Although illustration is omitted, the grid 11 and the image sensor 10 are fixed to the fluorescent light guide plate 9 by an arbitrary fixing member.
  • the fluorescent light guide plate 9 has two main surfaces (a front surface and a back surface) and four end surfaces. Of these end faces, a light absorbing material 12 is provided on a portion excluding the end face 9t of the notch 9k, which is the imaging region of the image sensor 10. As a specific form of the light absorbing material 12, there is a form in which a black tape functioning as a light absorbing material is attached to the end face 9 t of the fluorescent light guide plate 9. As another example, a black paint is applied to the end surface 9t of the fluorescent light guide plate 9, a two-color molding method is used when the fluorescent light guide plate 9 is manufactured, and the end surface 9t of the fluorescent light guide plate 9 and the vicinity thereof are made of black resin. Various methods can be used.
  • the fluorescent light guide plate 9 functions as a reflection reducing unit that reduces the total reflection of light reaching the end surface 9t. The operation of the fluorescent light guide plate 9 will be described again in detail.
  • the light detection device 4 needs to be fixed at an appropriate position with respect to the display 3. Therefore, as shown in FIG. 4A, pins 18 are provided on the back surface 9 b of the fluorescent light guide plate 9.
  • the bezel 17 of the display 3 is provided with a hole 17 h for inserting the pin 18 at a position corresponding to the pin 18 of the fluorescent light guide plate 9.
  • the pins 18 and the holes 17h are provided at the four corners of the fluorescent light guide plate 9 and the bezel 17, but the numbers and positions of the pins 18 and the holes 17h are not limited to this example.
  • the pin 18 of the fluorescent light guide plate 9 may be fixed to the hole 17h of the bezel 17, or may be inserted without being fixed to the hole 17h of the bezel 17. That is, the fluorescent light guide plate 9 may be fixed to the display 3 or may be configured to be detachable from the display 3 without being fixed to the display 3.
  • the fluorescent light guide plate 9 may be fixed to the display 3 or may be configured to be detachable from the display 3 without being fixed to the display 3.
  • the light detection device 4 uses the laser light L0 on the fluorescent light guide plate 9 based on the image captured by the image sensor 10.
  • a position detection unit 20 that detects the coordinates of the irradiation position is provided.
  • the electronic apparatus 1 includes a control unit 21 that controls the display 3 based on the position information output from the position input device 2.
  • the light detection device 4 of the present embodiment uses the laser pointer 5 to irradiate the laser light L0 to a desired position of the fluorescent light guide plate 9, and the light L generated from the phosphor 13 is emitted from the end face of the fluorescent light guide plate 9.
  • Two image pickup devices 10 are captured from 9t, and the coordinates of the light emitting point, that is, the coordinates of the irradiation position of the laser light L0 are specified based on the images captured by these image pickup devices 10.
  • FIG. 6A is a front view for explaining the principle of position detection in the light detection device 4.
  • FIG. 6B is a diagram illustrating an image GL acquired by the line sensor 15 of the first image sensor 10L.
  • FIG. 6C is a diagram illustrating an image GR acquired by the line sensor 15 of the second image sensor 10R. 6B and 6C show images of the images GL and GR captured by the line sensors 15 of the image sensors 10L and 10R as viewed from the light receiving surface side of the line sensors 15.
  • FIG. 6A is a front view for explaining the principle of position detection in the light detection device 4.
  • FIG. 6B is a diagram illustrating an image GL acquired by the line sensor 15 of the first image sensor 10L.
  • FIG. 6C is a diagram illustrating an image GR acquired by the line sensor 15 of the second image sensor 10R. 6B and 6C show images of the images GL and GR captured by the line sensors 15 of the image sensors 10L and 10R as viewed from the light receiving surface side of the line sensors 15.
  • the point where the laser light L0 is irradiated on the fluorescent light guide plate 9 is denoted by reference numeral P11. That is, the point P11 is a point where the laser beam L0 is irradiated, and is a point where the phosphor 13 emits light. Therefore, in the following description, this point is referred to as a light emitting point P11.
  • Light is emitted in all directions from the light emitting point P11. Of these, the light L1 and R1 traveling toward the two image pickup devices 10L and 10R pass through the openings 11h of the grid 11 shown in FIG. The light enters the elements 10L and 10R.
  • the corner portion of the fluorescent light guide plate 9 has the arc-shaped cutout portion 9k, thereby obtaining the following effects.
  • a straight line connecting the light emitting point P ⁇ b> 11 and the image sensor 10 coincides with the normal line of the end surface 9 t of the fluorescent light guide plate 9. Therefore, the reflection of the light L1 and R1 reaching the end face 9t of the fluorescent light guide plate 9 from the light emitting point P11 is minimized. Further, the lights L1 and R1 are not refracted when emitted from the end face 9t of the fluorescent light guide plate 9. Therefore, the angle can be obtained from the position of the light emitting region on the line sensor 15 without considering the refractive index of the fluorescent light guide plate 9.
  • the angle between the central axis of the light L1 incident on the first image sensor 10L from the light emitting point P11 and the lower side of the fluorescent light guide plate 9 is ⁇ .
  • the image of the light emission point P11 acquired by the first image sensor 10L is L1
  • the distance from the right end of the image GL to the image L1 is l.
  • the correlation between the angle ⁇ and the distance l may be stored in the position detection unit 20 in the form of a table, for example. Thereby, the position detection part 20 can obtain
  • an angle formed by the central axis of the light R1 incident on the second image sensor 10R from the light emitting point P11 and the lower side of the fluorescent light guide plate 9 is ⁇ .
  • the image of the light emitting point acquired by the second image sensor 10R is R1
  • the distance from the left end of the image GR to the image R1 is r.
  • the correlation between the angle ⁇ and the distance r may be stored in the position detection unit 20 in the form of a table, for example. Thereby, the position detection unit 20 can obtain the distance r from the image GR of the second image sensor 10R, and can obtain the angle ⁇ from the correlation table.
  • the image of the light emitting point P ⁇ b> 11 has a linear shape extending in the thickness direction of the fluorescent light guide plate 9.
  • the width of the straight line that is the image of the light emitting point P11 becomes wide, and it may be difficult to specify the position of the image on the line sensor 15. That is, when the width of the straight line that is the image of the light emitting point P11 is increased, it may be difficult to specify the distances l and r.
  • the width of the straight line that is the image of the light emitting point P11 becomes wider is, for example, when the beam diameter of the laser light L0 irradiated to the fluorescent light guide plate 9 is large, the laser light L0 is in the normal direction of the fluorescent light guide plate 9.
  • the light is irradiated from an oblique direction, there is a light scattering component inside the fluorescent light guide plate 9, and there is a light scattering component on the end surface 9t of the fluorescent light guide plate 9.
  • FIG. 7A is a cross-sectional view of the fluorescent light guide plate 9 when the laser light L0 is incident.
  • FIG. 7B is a diagram illustrating an image G acquired by the image sensor 10.
  • the laser light L0 when the laser light L0 is irradiated obliquely with respect to the normal direction V of the fluorescent light guide plate 9, the laser light L0 crosses the inside of the fluorescent light guide plate 9 diagonally.
  • the region where the phosphor 13 is excited by the laser light L0 spreads sideways, and the light emitting region spreads sideways.
  • the width of the straight line that is the image of the light emitting point P11 is widened.
  • the representative position P12 of the light emitting region may be determined between one end P1 and the other end P2 in the width direction of the image of the light emitting point P11.
  • the center of the one end P1 and the other end P2 is the representative position P12
  • the center of luminance between the one end P1 and the other end P2 is the representative position
  • Examples include a method of setting P12 as a representative position P12 at a position shifted from the center or the luminance center of gravity by a predetermined distance to either one end P1 or the other end P2. Further, by obtaining the width W between the one end P1 and the other end P2 of the light emitting region, it is possible to distinguish a plurality of excitation lights, transmit arbitrary information, and the like.
  • the position detection unit 20 uses the following expressions (1) and (2).
  • the coordinates (x, y) of the light emitting point P11 can be calculated.
  • the origin of the coordinates (x, y) is the lower left vertex of the fluorescent light guide plate 9.
  • the x coordinate is a distance from the origin in the horizontal direction (long side direction) of the fluorescent light guide plate 9.
  • the y coordinate is a distance from the origin in the vertical direction (short side direction) of the fluorescent light guide plate 9.
  • FIG. 10A is a front view showing a problem when the light absorption layer 12 is not provided on the end surface 9 t of the fluorescent light guide plate 9.
  • FIG. 10B is a diagram illustrating an image GL acquired by the first image sensor 10L.
  • FIG. 10C is a diagram illustrating an image GR acquired by the second imaging element 10R.
  • FIG. 6A used for explaining the principle of coordinate calculation, only light directly directed from the light emitting point P11 to the image sensor 10 is shown, but actually light is emitted from the light emitting point P11 in all directions. It is injected. Of the light traveling in various directions, the light traveling toward the image sensor 10 after being totally reflected at the end surface 9t of the fluorescent light guide plate 9, that is, the interface between the fluorescent light guide plate 9 and air, is not directly directed to the image sensor 10. Exists.
  • the light L2 that reaches the end surface 9t on the upper side of the fluorescent light guide plate 9 and is totally reflected by the end surface 9t enters the first image sensor 10L.
  • the light reaching the end surface 9t on the right side of the fluorescent light guide plate 9 a part of the light is emitted from the end surface 9t to the outside, and a part of the light L3 reflected by the end surface 9t is incident on the first image sensor 10L.
  • the light R2 that reaches the end surface 9t on the upper side of the fluorescent light guide plate 9 and is totally reflected by the end surface 9t enters the second image sensor 10R.
  • three light-emitting point images L1, L2, and L3 appear in the image GL acquired by the first imaging element 10L.
  • the image L1 is an image of the light emission point P11 by the light that directly reaches the first image sensor 10L from the light emission point P11.
  • the image L2 is an image of the light emission point P11 by light that is totally reflected by the end surface 9t on the upper side of the fluorescent light guide plate 9 and reaches the first image sensor 10L.
  • the image L3 is an image of the light emission point P11 by light reflected by the end surface 9t on the right side of the fluorescent light guide plate 9 and reaching the first image sensor 10L.
  • three light emitting point images R1, R2, and R3 appear in the image GR acquired by the second imaging element 10R.
  • the image R1 is an image of the light emission point P11 by light that directly reaches the second image sensor 10R from the light emission point P11.
  • the image R2 is an image of the light emission point P11 by the light that is totally reflected by the end surface 9t on the upper side of the fluorescent light guide plate 9 and reaches the second imaging element 10R.
  • the image R3 is an image of the light emission point P11 by light reflected by the end surface 9t on the left side of the fluorescent light guide plate 9 and reaching the second imaging element 10R.
  • each of the image sensors 10L and 10R it is difficult to identify images of three light emitting points whose intensities are not substantially changed. Therefore, based on the image GL acquired by the first image sensor 10L, three angles ⁇ shown in FIG. 6A are detected, and based on the image GR acquired by the second image sensor 10R, FIG. Three angles ⁇ shown in (A) are detected. Combining these detection results, nine coordinates (x, y) of the light emitting point P11 are calculated based on the equations (1) and (2). However, it is difficult to specify which of the nine coordinate calculation results is the true coordinate. In particular, depending on the location of the light emitting point P11, all of the light incident on the end face 9t may be totally reflected.
  • the light reflected on the end face 9t a plurality of times increases depending on the size of the fluorescent light guide plate 9, the concentration of the phosphor 13, the intensity of the excitation light, and the like, making it difficult to specify the coordinates.
  • black tape or the like is attached to the end surface 9t of the fluorescent light guide plate 9 excluding the imaging regions of the imaging elements 10L and 10R.
  • the light absorbing material 12 is provided. Therefore, the light that has reached the end surface 9t of the fluorescent light guide plate 9 from the light emitting point P11 is absorbed by the light absorbing material 12, and reflection at the end surface 9t is greatly reduced. Note that the light reflected by the end surface 9t corresponding to the lower side of the fluorescent light guide plate 9 does not directly enter each of the imaging elements 10L and 10R. Therefore, the light absorbing material 12 may not be provided on the end surface 9t corresponding to the lower side of the fluorescent light guide plate 9, or may be provided.
  • the image GL acquired by the first image sensor 10L includes only the image of the light emission point P11 by the light L1 directly reaching the first image sensor 10L from the light emission point P11. Appears.
  • the image GR acquired by the second image sensor 10R includes only the image of the light emission point P11 by the light R1 that directly reaches the second image sensor 10R from the light emission point P11. Appears. Therefore, only one coordinate (x, y) of the light emitting point P11 is calculated based on the equations (1) and (2).
  • the position of the light emitting point P11 that is, the irradiation position of the laser light L0 by the laser pointer 5 can be specified as one.
  • the coordinate detection of the irradiation position of the laser beam L0 has been described above.
  • the user can change the position of the cursor on the display 3 by changing the irradiation position of the laser light L0 by only detecting the coordinates, for example.
  • the upper button cannot be turned ON / OFF.
  • FIG. 8 is a perspective view of the laser pointer 5 used in the first embodiment.
  • the laser pointer 5 includes a pointer main body 5a and a button 5b for switching between emission (ON) / stop (OFF) of the laser light L0.
  • FIG. 9 is a diagram illustrating an example of a pulse of the laser beam L0 for causing the button pressing operation.
  • the control unit 21 Does not generate commands such as pressing a button or releasing a button.
  • FIG. 11 is an enlarged front view showing a modification of the configuration in the vicinity of the image sensor 10 of the light detection device 4.
  • the light detection device 4 may include a lens 23 instead of the grid 11 shown in FIG.
  • the optical axis of the lens 23 forms an angle of approximately 45 ° with the long and short sides of the fluorescent light guide plate 9.
  • the position of the principal point of the lens 23 substantially coincides with the position of the center of the arc that forms the notch 9k of the fluorescent light guide plate 9.
  • the lens 23 focuses the light emitted from the end surface 9 t of the fluorescent light guide plate 9 to generate an image of the light emitting point on the line sensor 15.
  • This modification can be applied to all the following embodiments.
  • FIG. 12 is a perspective view showing the photodetecting device of the second embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the fluorescent light guide plate 9 is made of a flat plate material.
  • the fluorescent light guide plate 27 is formed of a plate material that is curved in one dimension. Other configurations are the same as those of the first embodiment. Even if the fluorescent light guide plate 27 is curved, the fluorescent light guide plate 27 does not affect the internal light guide as long as the thickness is constant. Therefore, it is possible to specify the coordinates of the light emitting point by the same procedure as in the first embodiment.
  • the case where the fluorescent light guide plate 27 is flat and the angle-coordinate conversion formulas of the light emitting points are as follows. It may be common.
  • the degree of curvature of the fluorescent light guide plate 27 is not particularly limited as long as the curvature does not allow internal light guide.
  • the angle-coordinate conversion of the light emitting point is complicated. However, if the shape of the fluorescent light guide plate 27 is fixed, angle-coordinate conversion of the light emitting point can be performed using a lookup table or the like.
  • the same effect as that of the first embodiment can be obtained in which the irradiation position of the laser beam can be reliably specified.
  • the light detection device 26 of the second embodiment is suitable when used in combination with a display whose display surface has a curvature.
  • FIG. 13 is a cross-sectional view showing the photodetecting device of the third embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the fluorescent light guide plate 9 Three surfaces, the front surface 9f and the back surface 9b, and the front surface 3f of the display 3 are interfaces with air. Therefore, the outside light coming from indoor lighting or an object illuminated by the indoor lighting is reflected by these three surfaces. The reflection of outside light is greatest on the front surface 9 f of the fluorescent light guide plate 9 before the outside light is absorbed by the phosphor 13. Thus, when the interface reflection of external light is large, the image is reflected and the display quality of the display 3 on the back side is deteriorated, which is not preferable.
  • a low reflection layer 31 made of a dielectric multilayer film is formed on the front surface 9 f of the fluorescent light guide plate 9.
  • the dielectric multilayer film is composed of a laminated film in which thin films having different refractive indexes such as aluminum oxide, titanium dioxide, silicon dioxide, and magnesium fluoride are alternately laminated.
  • a low reflection layer 32 having a moth-eye structure is formed on the back surface 9 b of the fluorescent light guide plate 9.
  • the moth-eye structure is a structure having a plurality of conical protrusions arranged with a period equal to or shorter than the wavelength of the visible light region.
  • an ultraviolet curable resin material is applied to one surface of the fluorescent light guide plate 9, and a mold having a concavo-convex shape is arranged on the resin material and irradiated with ultraviolet rays.
  • a method of transferring the shape of the template that is, a so-called nanoimprint method can be used. In that case, an ultraviolet curable acrylic resin can be suitably used.
  • the dimensions of the protrusions are, for example, a height of 100 nm to 600 nm and a bottom surface width of 100 nm to 600 nm.
  • the low reflection layer 32 having the moth-eye structure since the effective refractive index changes gently in the height direction of the protrusion, reflection is reduced.
  • a low reflection layer 33 having a moth-eye structure is also formed on the front surface 3 f of the display 3.
  • the same effect as in the first and second embodiments that the irradiation position of the laser beam can be reliably specified can be obtained. Since the low reflection layers 31, 32, and 33 are formed on the three surfaces of the front surface 9f and the rear surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3, respectively, it is possible to suppress the display quality of the display 3 from deteriorating. When a hand or an article touches the moth-eye structure, the moth-eye structure is deteriorated and the reflection suppressing function may be lowered.
  • the moth-eye structure is used for the back surface 9b of the fluorescent light guide plate 9 that is not exposed to the user side and the front surface 3f of the display 3, there is no possibility that the reflection suppressing function of the moth-eye structure will deteriorate. .
  • a moth-eye structure may be used for the front surface 9f of the fluorescent light guide plate 9, and conversely, a general low reflection layer is used for the back surface 9b of the fluorescent light guide plate 9 and the display 3.
  • the front surface 3f may be used. That is, it is possible to appropriately select which of the plurality of surfaces uses the moth-eye structure and uses a general low reflection layer.
  • FIG. 14 is a cross-sectional view showing the photodetecting device of the fourth embodiment. 14, the same code
  • the low reflection layer 31 made of a dielectric multilayer film is formed on the front surface 9 f of the fluorescent light guide plate 9.
  • the light scattering layer 36 is provided on the front surface of the fluorescent light guide plate 9.
  • the light scattering layer 36 may be, for example, a layer in which particles having a refractive index different from the refractive index of the transparent substrate are dispersed in a transparent substrate, or a layer having fine irregularities formed on the surface. Also good.
  • a low refractive index layer 37 having a refractive index lower than that of the fluorescent light guide plate 9 is formed between the fluorescent light guide plate 9 and the light scattering layer 36. With this configuration, light leakage from the light scattering layer 36 can be suppressed.
  • the low reflection layers 32 and 33 having a moth-eye structure are formed on the back surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3, respectively, as in the third embodiment. Other configurations are the same as those of the first embodiment.
  • the light detection device 35 of the fourth embodiment an effect similar to that of the first to third embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Since the light scattering layer 36 is formed on the front surface 9f of the fluorescent light guide plate 9, and the low reflection layers 32 and 33 are formed on the rear surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3, the display quality of the display 3 is degraded. Can be suppressed.
  • FIG. 15A is a front view of the photodetecting device of the fifth embodiment.
  • FIG. 15B is a diagram illustrating an image acquired by the first image sensor.
  • FIG. 15C is a diagram illustrating an image acquired by the second imaging element.
  • FIG. 16 is a diagram showing pulses of laser light emitted from two laser pointers.
  • the same reference numerals are given to the same components as those in the drawing used in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 15A it is assumed that two different places of the fluorescent light guide plate 9 are irradiated with laser beams L0 and L0 '.
  • Two emission points when the laser beams L0 and L0 'are irradiated are set as an emission point P11 and an emission point P22, respectively.
  • FIG. 15B two light-emitting point images L1 and L2 appear in the image GL acquired by the first imaging element 10L.
  • the image L1 is an image of the light emission point P11 by light that has reached the first imaging element 10L from the light emission point P11.
  • the image L2 is an image of the light emission point P22 by light that has reached the first image sensor 10L from the light emission point P22.
  • two light emitting point images R1 and R2 appear in the image GR acquired by the second image sensor 10R.
  • the image R1 is an image of the light emission point P11 by light that has reached the second image sensor 10R from the light emission point P11.
  • the image R2 is an image of the light emission point P22 by light that has reached the second image sensor 10R from the light emission point P22.
  • the coordinates (x, y) of the light emitting point are calculated in four ways. However, it is impossible to specify which two of the four coordinate detection results are true coordinates.
  • pulse light having a specific pulse waveform is superimposed on the laser light L0 and L0 'emitted from the two laser pointers, respectively.
  • the laser light L0 irradiated to the light emitting point P11 has a pulse waveform shown in the upper part of FIG.
  • the laser beam L0 'irradiated to the light emitting point P22 has a pulse waveform shown in the lower part of FIG.
  • the pulse waveforms are made different between the laser light L0 irradiated to the light emitting point P11 and the laser light L0 'irradiated to the light emitting point P22.
  • the light emitted from each light emitting point P11, P22 also reflects the pulse waveform of each laser beam L0, L0 'and has a different light emission pulse waveform.
  • the position detection unit 20 compares the light emission pulse waveforms between the image L1 and the image L2 of the light emission point in the image GL of the first image sensor 10L, and the image R1 and the image of the light emission point in the image GR of the second image sensor 10R.
  • the light emission pulse waveform is compared with R2.
  • the coordinates of the two light emission points P11 and P22 can be specified.
  • Such a pulse waveform for identification and the pulse waveform for button operation shown in FIG. 9 can be used in combination.
  • Other configurations of the light detection device 39 are the same as those in the first embodiment.
  • the same effect as in the first to fourth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably.
  • the fifth embodiment for example, when two users each have a laser pointer and share one electronic device, one user may use two laser pointers at the same time. Also, the coordinates of the two light emitting points P11 and P22 can be reliably specified.
  • the frequencies of the laser beams L0 and L0 'respectively emitted from the two laser pointers may be made different from each other instead of making the pulse waveforms different.
  • the beam diameters of the laser beams L0 and L0 ' may be varied.
  • the image widths of the two light emitting points P11 and P22 in the images GL and GR of the imaging elements 10L and 10R are also different according to the difference in the beam diameters of the laser beams L0 and L0 '.
  • FIG. 17 is a front view showing, in a time series, how the light emission points change in the photodetector of the sixth embodiment.
  • the same components as those used in the first embodiment are designated by the same reference numerals, and detailed description thereof is omitted.
  • each of the figures F1 to F4 is defined as a first frame to a fourth frame.
  • the position detection unit 20 stores an image of the light emission point P22 when light emission occurs at the light emission point P22 in the first frame F1. Thereafter, when light emission occurs at the light emission point P11 in the second frame F2, if the position of the newly generated image of the light emission point P11 is compared with the position of the already stored image of the light emission point P22, the light emission point P11 The image can be identified. Similarly, when light emission at the light emission point P22 is stopped in the fourth frame F4, an image of only the light emission point P11 is stored.
  • Other configurations of the light detection device are the same as those in the first embodiment.
  • the same effect as in the first to fifth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified.
  • the coordinates of the two light emitting points can be reliably specified without changing the specifications of the two laser pointers by looking at the position of each light emitting point on the time axis.
  • FIGS. 18A to 18C The basic configuration of the photodetector in the seventh embodiment is the same as that in the first embodiment.
  • 7th Embodiment demonstrates the 3rd example of the identification means which identifies them when light is irradiated to the several location of a fluorescence light-guide plate.
  • FIG. 18A is a front view of the photodetector in the seventh embodiment.
  • FIG. 18B is a diagram illustrating an image acquired by the first image sensor.
  • FIG. 18C is a diagram illustrating an image acquired by the second imaging element.
  • FIG. 19 is a diagram showing the wavelength of laser light emitted from three laser pointers and the emission wavelength of the phosphor.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first laser light L0 is emitted from the first laser pointer 5A toward the fluorescent light guide plate 9.
  • the second laser beam L0 ' is emitted from the second laser pointer 5B toward the fluorescent light guide plate 9.
  • the third laser beam L 0 ′′ is emitted from the third laser pointer 5 C toward the fluorescent light guide plate 9.
  • the first laser pointer 5A emits laser light L0 in the red wavelength region.
  • the second laser pointer 5B emits a laser beam L0 'in the blue-violet wavelength region.
  • the third laser pointer 5C emits laser light L0 ′′ in the infrared wavelength region.
  • the emission wavelength range of the first laser pointer 5A, the emission wavelength range of the second laser pointer 5B, and the emission wavelength range of the third laser pointer 5C are different from each other.
  • the fluorescent light guide plate 9 includes three types of phosphors having different excitation wavelength ranges and emission wavelength ranges.
  • the first phosphor is a phosphor (indicated by symbol (A)) that is excited by red light (indicated by a thick solid line) and emits infrared light (indicated by a thin solid line).
  • the second phosphor is a phosphor (indicated by symbol (B)) that is excited by blue-violet light (indicated by a thick one-dot chain line) and emits blue light (indicated by a thin one-dot chain line).
  • the third phosphor is an up-conversion phosphor (indicated by symbol (C)) that is excited by infrared light (indicated by a thin solid line) and emits green light (indicated by a broken line).
  • C up-conversion phosphor
  • These three types of phosphors are evenly dispersed inside the fluorescent light guide plate 9. It is desirable that the excitation wavelength region and the emission wavelength region of each phosphor do not overlap as much as possible.
  • the image sensor 10 includes a color filter on the light incident side of the line sensor.
  • the imaging element 10 can identify light having different wavelengths by including a color filter. Therefore, the coordinates of the three light emitting points can be specified by combining the images of infrared light, the images of blue light, and the images of green light. Also in the light detection device 42 of the seventh embodiment, the same effect as in the first to sixth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably. Also in the light detection device 42 of the seventh embodiment, the coordinates of a plurality of light emitting points can be specified reliably. When combining the photodetector 42 of the seventh embodiment with a display, it is desirable that the wavelength range of the excitation light be outside the visible light range so as not to be affected by the display content of the display.
  • FIG. 20 is a perspective view of the laser pointer of the eighth embodiment.
  • FIG. 21 is a timing chart of an optical signal output from the laser pointer.
  • the laser pointer 5 of the first embodiment shown in FIG. 8 has only a button 5b for switching on / off of laser light.
  • the laser pointer 46 of the eighth embodiment includes a first function button 48, a second function button 49, in addition to the laser light ON / OFF switching button 47, And a jog dial 50.
  • the jog dial 50 is for performing a screen scroll operation of the display, for example.
  • the user can operate the ON / OFF switching button 47 and the jog dial 50 with the thumb while holding the laser pointer 46, the first function button 48 with the index finger, and the second function button 49 with the middle finger. Can be operated.
  • a laser pointer having function buttons equivalent to those of a mouse can be configured.
  • each button 47, 48, 49 of the laser pointer 46 is pushed, it is not preferable that the irradiation direction of the laser beam L0 is shifted by the operation and the irradiation position is shifted. Therefore, it is desirable to design the position of each button 47, 48, 49 so that the vector of force applied when each button 47, 48, 49 is pressed passes through the center of gravity of the laser pointer 46. Then, when the buttons 47, 48, 49 are pressed, useless rotational movement does not occur, and the operability of the laser pointer 46 is improved.
  • the first function button 48 is pressed to turn it on (period (A)). Then, a predetermined pulse waveform is superimposed on the laser beam L0 only during a period when the first function button 48 is pressed. The position detector 20 recognizes that the first function button 48 has been pressed by detecting this pulsed light. The same applies to the second function button 49.
  • the button press information may be transmitted by other means such as wireless communication.
  • the change in the display image affects the detection of light emission as noise.
  • the lighting control at the place of use affects the detection of light emission as noise.
  • the frequency of the pulsed light of the laser pointer is different from the frequency of dimming the display or lighting, and a mechanism for separating the frequency is provided in the light detection device. Further, it is desirable that the delay time of the phosphor contained in the fluorescent light guide plate is sufficiently short with respect to the period of the pulsed light.
  • the user does not need to master special operations such as pressing the ON / OFF switching button. Various operations can be easily performed.
  • FIG. 22 is a front view of the light detection device according to the ninth embodiment. 22, the same code
  • the light detection device 4 includes the image pickup devices 10 at two locations on the lower left and lower right of the fluorescent light guide plate 4.
  • the light detection device 53 of the ninth embodiment includes the imaging elements 10 at all four corners of the fluorescent light guide plate 9.
  • the fact that the arc-shaped notch 9k is provided at the corner of the fluorescent light guide plate 9 provided with the image pickup device 10 and the grid 11 is provided between the fluorescent light guide plate 9 and the image pickup device 10 This is the same as in the first embodiment.
  • the light absorbing material 12 is provided on the end surface 9t of the fluorescent light guide plate 9 excluding the notch 9k.
  • the same effect as in the first to eighth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Furthermore, by increasing the number of image pickup devices 10 to four, the following three effects can be obtained.
  • the first effect is an improvement in the position reading accuracy of the light emitting point.
  • the image sensor 10LB and the image sensor 10RB are provided only at two locations on the lower left and lower right of the fluorescent light guide plate 9, the position of the light emitting point P11 close to the image sensor 10LB and the image sensor 10RB is accurate. It can be detected.
  • the position of the light emitting point P22 far from the image sensor 10LB and the image sensor 10RB it is difficult to detect the position with high accuracy because the change in the angle of the light beam with respect to the position change of the light emitting point P22 is small.
  • the upper left image pickup device 10LT and the upper right image pickup device 10RT of the fluorescent light guide plate 9 are used for detecting the position of the light emitting point 22, which is high. Position detection can be performed with accuracy.
  • the upper right image sensor 10RT and the lower right image sensor 10RB of the fluorescent light guide plate 9 are used, and the light emitting point near the left side of the fluorescent light guide plate 9 is used.
  • position detection can be performed with high accuracy.
  • the second effect is failure detection of the image sensor 10.
  • the malfunctioning image sensor 10 can be specified from the contradiction of position information obtained from each image sensor 10.
  • the position detection unit 20 does not use the position information of the malfunctioning image sensor 10 when calculating the coordinates of the light emitting point, and notifies the user of the malfunction image sensor 10. It becomes possible to take.
  • a third effect is redundancy of the image sensor 10. In the case of two image sensors 10, if one of the image sensors 10 fails, the position of the light emitting point cannot be detected. In that respect, if there are three or more image sensors 10, the failure of the image sensor 10 is detected, and the position detection function is not lost by using only the effective image sensor 10.
  • FIG. 23 is a front view of the light detection device according to the tenth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light detection device 56 of the tenth embodiment includes a light detection element 57 that detects that light is emitted from the phosphor on the end face of the upper left corner of the fluorescent light guide plate 9. Yes.
  • a light detection element 57 for example, a photodiode or a line sensor having a sufficiently small number of pixels as compared with the imaging element 10 can be used.
  • the position of the light detection element 57 is not necessarily limited to the upper left corner of the fluorescent light guide plate 9 and can be installed at an arbitrary place.
  • the same effect as in the first to ninth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably.
  • the image sensor 10 needs to be a one-dimensional or two-dimensional array sensor in order to specify the coordinates of the light emitting point.
  • a one-dimensional or two-dimensional array sensor requires scanning when reading an image. Therefore, a one-dimensional or two-dimensional array sensor has a limit in detection speed, and when a pulse signal is superimposed on a laser beam, it is difficult to transmit a pulse signal with a large amount of information.
  • the coordinates cannot be specified, it is easy to transmit a pulse signal with a large amount of information by providing the light detection element 57 having a detection speed faster than that of the one-dimensional or two-dimensional array sensor.
  • FIG. 24A is a front view of the photodetection device according to the eleventh embodiment.
  • FIG. 24B is a diagram illustrating an image acquired by the first image sensor.
  • FIG. 25 is a diagram showing the excitation wavelength of the laser light emitted from the laser pointer and the emission wavelength of the phosphor.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the eleventh embodiment is one example.
  • the photodetecting device 60 of the eleventh embodiment includes one image sensor 10 at the lower left corner of the fluorescent light guide plate 9.
  • the image sensor 10 includes wavelength specifying means such as a color filter.
  • the light absorbing material 12 is provided on two sides sandwiching the corner where the imaging element 10 is provided, that is, on the lower side and the left side of the fluorescent light guide plate.
  • Wavelength selective reflection layers 61 and 62 are provided on two sides sandwiching a corner that is opposite to the corner on which the image sensor 10 is provided, that is, on the upper side and the right side of the fluorescent light guide plate 9.
  • a red light selective reflection layer 61 that absorbs light in the green region and light in the blue region and selectively reflects light in the red region among the incident light is provided on the end surface 9t corresponding to the upper side of the fluorescent light guide plate 9. Yes.
  • a green light selective reflection layer 62 that absorbs blue light and selectively reflects green light among the incident light is provided on the end surface 9 t corresponding to the right side of the fluorescent light guide plate 9.
  • a multilayer film in which layers having different refractive indexes are alternately laminated, a laminated film in which a color filter is laminated on a metal film, or the like can be used.
  • the fluorescent light guide plate 9 includes a phosphor that emits light in a relatively wide visible range upon receiving excitation light having a wavelength in the blue-violet range (indicated by a thick one-dot chain line).
  • the light emitted from the phosphor has a peak in the blue region, and has a relatively high intensity of blue light (indicated by a thin one-dot chain line), a relatively low intensity of green light (indicated by a broken line), and an even lower intensity Contains red light (indicated by solid line).
  • images LR, LB, and LG of three light emitting points having different wavelength regions (colors) appear. Since the three light emitting point images LR, LB, and LG have different wavelength ranges, if the imaging device 10 includes wavelength specifying means, it can be determined which image is reflected by which side. From this, the coordinates of the light emitting point P11 can be specified by calculation.
  • an effect similar to that of the first to tenth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified.
  • effects such as reduction in cost and reduction in the size of the frame portion of the electronic device can be obtained.
  • FIG. 26 is a perspective view of the light detection device according to the twelfth embodiment.
  • FIG. 27 is a cross-sectional view of the fluorescent light guide plate. In FIG. 26 and FIG. 27, the same reference numerals are given to the same components as those used in the first embodiment, and detailed description thereof will be omitted.
  • the fluorescent light guide plate 66 is a phosphor that absorbs excitation energy and generates fluorescence when a mechanical external force is applied, so-called stress.
  • a light emitting phosphor 67 is contained.
  • the stress-stimulated phosphor 67 for example, a yellow-orange stress phosphor made of zinc sulfide (ZnS: Mn) with manganese added as the emission center, a red-stress phosphor with 0.1 mol% Ga added to ZnS: Mn, A green stress fluorescent substance made of strontium aluminate (SrAl 2 O 4 : Eu) to which europium is added as an emission center, a metal complex of terpyridines which are organic compounds, and the like can be used.
  • Other configurations of the light detection device 65 are the same as those in the first embodiment.
  • phosphors contained in the fluorescent light guide plate 66 (1) containing only a stress-emitting phosphor, and causing the stress-emitting phosphor to emit light by stress, (2) containing a photo-excited phosphor and a stress-emitting phosphor.
  • One of the phosphors emits light by either light or stress
  • (4) photoexcited fluorescence And a stress-stimulated phosphor and the photoexcited phosphor is excited by light emitted from the stress-stimulated phosphor to emit light.
  • the light detection device 65 of the twelfth embodiment an effect similar to that of the first to eleventh embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified.
  • the photodetecting device 65 of the twelfth embodiment as shown in FIG. 26, the user uses a tool such as a pointing stick 68 whose tip is thin to some extent, instead of the laser pointer, to specify a specific part of the fluorescent light guide plate 66.
  • the stress-stimulated phosphor 67 at the location where the pressure is applied emits light, and the position can be input. Therefore, even in a situation where the laser pointer is not provided, the light detection device 65 of the twelfth embodiment can function as a position detection device.
  • the pointer 68 in this embodiment corresponds to an excitation energy supply source in the claims.
  • FIG. 28A and 28B are cross-sectional views of the photodetector of the thirteenth embodiment.
  • FIG. 28A shows a state where no pressure is applied to the fluorescent sheet
  • FIG. 28B shows a state where pressure is applied to the fluorescent sheet.
  • the stress-stimulated phosphor 67 is contained inside the fluorescent light guide plate 66.
  • the stress-stimulated phosphor is not contained inside the light guide plate 71.
  • a fluorescent sheet 72 made of a transparent resin sheet containing the stress-stimulated phosphor 67 is disposed on the front surface of the light guide plate 71.
  • the light guide plate 71 and the fluorescent sheet 72 are opposed to each other through an air layer, and the light guide plate 71 and the fluorescent sheet 72 constitute a fluorescent light guide plate 73.
  • the fluorescent sheet 72 is flexible enough to be appropriately bent and contact the light guide plate 71 when pressure is applied.
  • the stress-stimulated phosphor 67 at the location where the pressure is applied Emits light.
  • the light guide plate 71 can be identified by detecting the light guided through the light guide plate 71 by the image sensor 10.
  • the light detection device 70 of the thirteenth embodiment an effect similar to that of the first to twelfth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Similar to the light detection device 65 of the twelfth embodiment, the light detection device 70 of the thirteenth embodiment can function as a position detection device even in a situation where a laser pointer is not provided.
  • FIGS. 29 and 30 The fourteenth embodiment of the present invention will be described below with reference to FIGS. 29 and 30.
  • the basic configuration of the photodetector in the fourteenth embodiment is the same as that in the first embodiment.
  • the light detection device according to the fourteenth embodiment differs from the first embodiment in that a measure against scratches on the surface of the fluorescent light guide plate is taken.
  • FIG. 29 is a diagram for explaining a problem when the fluorescent light guide plate is damaged.
  • FIG. 30 is a cross-sectional view of the fluorescent light guide plate in the photodetector of the fourteenth embodiment. 29 and 30, the same reference numerals are given to the same components as those used in the first embodiment, and detailed description thereof will be omitted.
  • the fluorescent light guide plate 9 has a scratch K, it goes from the light emitting point P11 to the light absorbing material 12 on the end face 9t, and one of the light that should be absorbed by the light absorbing material 12 in the original case.
  • the part may be detected by the image sensor 10 by bending its optical path due to the scratch K.
  • the coordinates of the light emitting point P11 cannot be uniquely specified.
  • a hard coat layer 77 is formed on the front surface 9 f of the fluorescent light guide plate 9.
  • the hard coat layer 77 can be formed by applying a general hard coat agent such as ultraviolet curable to the front surface 9 f of the fluorescent light guide plate 9.
  • a general hard coat agent such as ultraviolet curable
  • the scratch resistance of the fluorescent light guide plate 9 is improved.
  • Other configurations of the light detection device 76 are the same as those in the first embodiment.
  • the light detection device 76 of the fourteenth embodiment an effect similar to that of the first to thirteenth embodiments can be obtained in which the irradiation position of the laser beam can be specified with certainty.
  • the light detection device 76 of the fourteenth embodiment it is possible to prevent the coordinates from being identified due to the scratch K on the fluorescent light guide plate 9.
  • FIG. 31 is a cross-sectional view showing a modification of the fluorescent light guide plate.
  • the photodetecting device may include a fluorescent light guide plate shown in FIG. 31 instead of the fluorescent light guide plate shown in FIG.
  • a low refractive index layer 79 having a refractive index lower than the refractive index of the fluorescent light guide plate 9 is formed on the front surface 9 f of the fluorescent light guide plate 9.
  • the layer thickness of the low refractive index layer 79 is thicker than the assumed flaw depth. According to this configuration, the light guides the inside of the fluorescent light guide plate 9 and does not reach the low refractive index layer 79. Therefore, even if the low refractive index layer 79 is damaged, the light guide is not affected. Absent. Thereby, it can suppress that a coordinate becomes unidentifiable due to the damage
  • FIG. 31 is a cross-sectional view showing a modification of the fluorescent light guide plate.
  • FIG. 32 is a cross-sectional view showing a modification of the fluorescent light guide plate.
  • the photodetecting device may include a fluorescent light guide plate shown in FIG. 32 instead of the fluorescent light guide plate shown in FIG.
  • a low refractive index layer 79 having a refractive index lower than the refractive index of the fluorescent light guide plate 9 and a hard coat layer 77 are laminated on the front surface 9 f of the fluorescent light guide plate 9 in this order. Even in this configuration, it is possible to prevent the coordinates from becoming unidentifiable due to scratches on the fluorescent light guide plate 9.
  • FIG. 33 is a block diagram of a position detector of the photodetecting device according to the fifteenth embodiment.
  • measures have been taken such as preventing the scratch itself, or preventing the light guide inside from being affected even if the surface is scratched. .
  • a measure is taken to exclude the influence of scratches when calculating the coordinates of the light emitting points. This is a software measure, and the configuration of the photodetection device other than the circuit block shown in FIG. 33 is the same as that of the first embodiment.
  • the coordinate calculation unit 82 of the position detection unit 26 acquires image information from the first image sensor 10L and the second image sensor 10R. The image information is compared with the flaw information stored in the flaw information database 83. At this time, if any of the plurality of light-emitting point information in the image information matches the scratch information, the priority of the light-emitting point information is lowered, and coordinate calculation is performed using the light-emitting point information with a high priority.
  • the degree of scratches is relatively light, or when the number of scratches is relatively small, measures can be taken by this method.
  • teaching, voluntary information storage, etc. can be considered as a method for acquiring flaw information.
  • the electronic device issues an instruction to the user to irradiate light to a predetermined position of the fluorescent light guide plate, or automatically from the system to a predetermined position of the fluorescent light guide plate. Irradiate light.
  • the coordinate calculation unit 82 determines that the light emission generated from a position deviating from the assumed light emission point is caused by a flaw, and lists the light emission information in the flaw information database 83.
  • the coordinate calculation unit 82 performs processing for lowering the priority of the light emission information, and the light emission The information is finally stored in the scratch information database 83 as scratch information.
  • the same effect as in the first to fourteenth embodiments can be obtained that the irradiation position of the laser beam can be reliably specified.
  • the light detection device of the fifteenth embodiment it is possible to prevent the coordinates from being specified due to scratches on the fluorescent light guide plate.
  • FIG. 34A is a perspective view of the photodetecting device of the sixteenth embodiment.
  • FIG. 34B is a cross-sectional view as viewed from the direction of arrow B in FIG.
  • FIG. 34C is a cross-sectional view as viewed from the direction of arrow C in FIG. 34, the same code
  • the photodetector 85 of the sixteenth embodiment includes two sets of photodetector units 86 and 87.
  • the light detection units 86 and 87 include a fluorescent light guide plate 9, two sets of imaging elements 10 and a grid 11.
  • the image sensor 10 and the grid 11 are provided at the lower left and lower right of the fluorescent light guide plate 9, respectively.
  • the two sets of light detection units 86 and 87 are arranged at a certain distance D.
  • a light absorbing material 12 is provided on the end face of each fluorescent light guide plate 9.
  • Other configurations are the same as those of the first embodiment.
  • the photodetector 85 of the sixteenth embodiment when the user irradiates the laser light L0 toward the fluorescent light guide plate 9 on the front side, first, at the irradiation position of the laser light L0 on the fluorescent light guide plate 9 on the front side. Luminescence occurs. Thereafter, the laser light L0 passes through the fluorescent light guide plate 9 on the front side and enters the fluorescent light guide plate 9 on the back side, and light emission occurs at the irradiation position of the laser light L0 on the fluorescent light guide plate 9 on the back side. Thus, light emission occurs in each of the two fluorescent light guide plates 9 by one irradiation of the laser light.
  • the concentration of the phosphor contained in the fluorescent light guide plate 9, particularly the front fluorescent light guide plate 9 needs to be set to a value such that the laser light L 0 cannot be absorbed by one fluorescent light guide plate 9. There is.
  • the user irradiates the laser light L0 obliquely from the lower right to the upper left, for example, toward the fluorescent light guide plate 9 on the front side.
  • the laser light L0 obliquely from the lower right to the upper left, for example, toward the fluorescent light guide plate 9 on the front side.
  • the coordinates of the light emission points in each fluorescent light guide plate 9 are obtained by calculation.
  • the direction in which the laser light L0 is emitted can be identified from the coordinates of the light emitting points on the two fluorescent light guide plates 9 and the distance between the two fluorescent light guide plates 9.
  • the horizontal direction of the photodetecting device 85 is taken as the x axis
  • the vertical direction is taken as the y axis.
  • the distance between the x coordinate x1 of the light emitting point on the front fluorescent light guide plate 9 and the x coordinate x2 of the light emitting point on the rear fluorescent light guide plate 9 is ⁇ x, and in the x-axis direction.
  • the incident angle of the laser light with respect to the fluorescent light guide plate 9 is ⁇
  • the incident angle ⁇ can be obtained by the following equation (3).
  • the distance between the y coordinate y1 of the light emitting point in the front fluorescent light guide plate 9 and the y coordinate y2 of the light emitting point in the rear fluorescent light guide plate 9 is ⁇ y
  • the incident angle of the laser beam with respect to the fluorescent light guide plate 9 in the axial direction is ⁇
  • the incident angle ⁇ can be obtained by the following equation (4).
  • the same effect as in the first to fifteenth embodiments can be obtained that the irradiation position of the laser beam can be specified with certainty.
  • button press information or the like can be transmitted by superimposing a pulse signal on the laser beam L0.
  • the direction in which the laser light L0 is emitted can be specified, for example, when a plurality of users have a plurality of laser pointers separately, from which user It is possible to grasp whether an instruction has been issued.
  • FIG. 35 is a perspective view of an electronic apparatus according to a seventeenth embodiment.
  • FIG. 36 is a cross-sectional view of an electronic device.
  • symbol is attached
  • the electronic device 1 according to the first embodiment has a configuration in which the light detection device 4 is externally attached to the display 3.
  • the electronic device 90 of the seventeenth embodiment is integrated by joining the same light detection device 35 (see FIG. 14) to the front surface of the display 3 as in the fourth embodiment. Then, a joined body of the display 3 and the light detection device 35 is accommodated in the bezel 17.
  • the basic configuration of the light detection device 35 is the same as that of the first embodiment.
  • a low refractive index layer 37 having a refractive index lower than the refractive index of the fluorescent light guide plate 9, a light scattering layer on the front surface 9f of the fluorescent light guide plate 9. 36 are stacked in this order.
  • the light scattering layer 36 may be, for example, a layer in which particles having a refractive index different from the refractive index of the transparent substrate are dispersed in a transparent substrate, or a layer having fine irregularities formed on the surface. Also good. Since the low refractive index layer 37 is formed between the fluorescent light guide plate 9 and the light scattering layer 36, light leakage from the light scattering layer 36 can be suppressed.
  • the back surface 9 b of the fluorescent light guide plate 9 is joined to the display 3 through a low refractive index layer 91.
  • the low refractive index layer 91 may be the same as or different from the low refractive index layer 37.
  • the low refractive index layers 37 and 91 are present on both sides of the fluorescent light guide plate 9, the light guide efficiency is not particularly different compared to the case where the low refractive index layer is provided only on one side of the fluorescent light guide plate 9.
  • Other configurations are the same as those of the first embodiment.
  • the same effect as in the first to sixteenth embodiments can be obtained that the irradiation position of the laser beam can be specified with certainty.
  • the light scattering layer 36 is formed on the front surface of the fluorescent light guide plate 9, it is possible to suppress deterioration in display quality of the display 3. Since the joined body of the display 3 and the light detection device 35 is accommodated in the bezel 17, the electronic device 90 can be reduced in size and thickness.
  • FIG. 37 is a perspective view of an electronic apparatus according to an eighteenth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the electronic device 93 of the eighteenth embodiment includes a touch panel 94 on the front side of the electronic device 1 of the first embodiment. That is, the electronic device 93 includes the display 3, the light detection device 4 disposed on the front surface of the display 3, and the touch panel 94 disposed on the front surface of the light detection device 4.
  • the touch panel 94 is disposed at a certain interval from the light detection device 4.
  • the touch panel 94 is a general touch panel such as a capacitance type or a resistance film type.
  • the configuration of the light detection device 4 is the same as that of the first embodiment.
  • the touch panel 94 Since the touch panel 94 is disposed on the forefront of the electronic device 93, the user can directly touch the touch panel 94, and inputs a desired command by touching a predetermined position according to the display content of the display 3. Can do. Further, when the laser beam L0 is irradiated toward the electronic device 93, the laser beam L0 passes through the touch panel 94, so that the light detection device 4 specifies the coordinates of the irradiation position of the laser beam L0 as in the previous embodiment. be able to. Therefore, the electronic device 93 according to the eighteenth embodiment has two positions: a touch panel type position input unit that is directly touched by the user, and a light detection type position input unit that is irradiated with the laser beam L0 from a remote position. It also has an input means.
  • a priority order is set in advance as to which position input means should be given priority. It is desirable to keep it. In general, it is desirable to set the input priority by the touch panel 94 to be high and the input priority from the light detection device 4 to be low. The reason is that the input by the light detection device 4 is made from a position away from the electronic device 93, and the input by the touch panel 94 is made from a position close to the electronic device 93. Because they should have.
  • the light detection device 4 of the eighteenth embodiment an effect similar to that of the first to seventeenth embodiments can be obtained in which the irradiation position of the laser light can be reliably specified.
  • the electronic device 93 that has both a touch panel type position input unit and a light detection type position input unit, and it is possible to increase the variety of input operations. For example, it is possible to realize an electronic device in which a user who is near and a user who is far can input operations.
  • FIG. 38 is a perspective view of the electronic device of the nineteenth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the electronic device 96 includes a display 3, a light detection device 4 disposed on the front surface of the display 3, an optical sensor 97 disposed on the front surface of the light detection device 4, It has.
  • the optical sensor 97 is provided in a frame shape along the four sides of the fluorescent light guide plate 9 on the front surface of the light detection device 4.
  • the optical sensor 97 includes two sets of a light projecting unit 98 and a light receiving unit 99.
  • a pair of light projecting unit 98 and light receiving unit 99 are respectively disposed along two opposing sides of the fluorescent light guide plate 9.
  • the light projecting unit 98 is disposed along, for example, the upper side and the left side of the fluorescent light guide plate 9.
  • the light receiving unit 99 is disposed along, for example, the lower side and the right side of the fluorescent light guide plate 9.
  • the light projecting unit 98 has a configuration in which, for example, a plurality of infrared LEDs are arranged in one row.
  • the light receiving unit 99 has a configuration in which, for example, a plurality of infrared sensors are arranged in a line.
  • the configuration of the light detection device 4 is the same as that of the first embodiment.
  • a touch panel 94 is arranged on the front surface of the fluorescent light guide plate 9 with a gap. If there is a gap between the touch panel 94 and the fluorescent light guide plate 9, the touch panel 94 does not hinder the light guide in the fluorescent light guide plate 9. However, in that case, there are many interfaces between the touch panel 94 and the fluorescent light guide plate 9 and the air, and there are problems such as a decrease in the transmittance of the laser beam and a surface reflection of the laser beam.
  • the optical sensor 97 is arranged in a frame shape along the four sides of the fluorescent light guide plate 9, and most of the fluorescent light guide plate 9 is exposed to the front side. Therefore, problems such as a decrease in the transmittance of the laser beam L0 and surface reflection of the laser beam L0 do not occur.
  • the same effect as in the first to eighteenth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably.
  • an electronic apparatus having both an optical sensor type position input means and a light detection type position input means can be realized, and the diversity of input operations can be enhanced. For example, it is possible to realize an electronic device in which a user who is near and a user who is far can input operations.
  • FIG. 39 is a perspective view showing the photodetecting device of the twentieth embodiment.
  • FIG. 40 is a cross-sectional view of the photodetection device.
  • symbol is attached
  • the horizontal direction of the light detection device 101 is the x axis
  • the vertical direction is the y axis.
  • the linear first electrode 102 and the second electrode 103 are formed on the front surface 9f and the back surface 9b of the fluorescent light guide plate 9, respectively. Yes.
  • a plurality of first electrodes 102 are provided on the front surface 9f of the fluorescent light guide plate 9 at intervals from each other along the x-axis direction.
  • first electrodes 102 and a plurality of second electrodes 103 are arranged in a lattice pattern on the front surface 9 f and the back surface 9 b of the fluorescent light guide plate 9.
  • the first electrode 102 and the second electrode 103 are formed of a transparent conductive film such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the fluorescent light guide plate 9 Since the first electrode 102 and the second electrode 103 are provided on the front surface 9f and the back surface 9b of the fluorescent light guide plate 9 which is a dielectric material, the fluorescent light guide plate 9 also functions as a capacitive touch panel. Therefore, the fluorescent light guide plate 9 operates as a capacitive touch panel at the same time as specifying the coordinates of the irradiation position of the laser light L0, as in the previous embodiment.
  • the same effect as in the first to nineteenth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably.
  • an electronic device having both a touch panel type position input unit and a photodetection type position input unit can be realized, and the variety of input operations can be increased. it can. Since the fluorescent light guide plate and the touch panel are used as a single member, the light detection device 101 of the twentieth embodiment can reduce the number of constituent members and the cost compared to the light detection device of the eighteenth embodiment.
  • FIG. 41 is a cross-sectional view showing a modification of the photodetecting device of the twentieth embodiment.
  • the fluorescent light guide plate and the touch panel it is necessary to provide electrodes on the front surface 9f and the back surface 9b of the fluorescent light guide plate 9, respectively.
  • the electrode hinders total reflection of light guided through the fluorescent light guide plate 9, there is a possibility that the coordinate detection accuracy may be reduced and the mountable size may be reduced. Therefore, as shown in FIG. 41, it is desirable to provide low refractive index layers 104 and 105 between the fluorescent light guide plate 9 and the first electrode 102 and between the fluorescent light guide plate 9 and the second electrode 103, respectively. Thereby, the light guide efficiency of the fluorescent light guide plate 9 can be increased.
  • FIG. 42 is a cross-sectional view illustrating a modification of the photodetecting device according to the twentieth embodiment.
  • the electrodes do not necessarily have to be provided on both sides of the fluorescent light guide plate.
  • both the first electrode 102 and the second electrode 103 may be provided on the front surface 9 f of the fluorescent light guide plate 9.
  • the low refractive index layer 104 is provided on the front surface 9 f of the fluorescent light guide plate 9
  • the second electrode 103 is provided on the low refractive index layer 104.
  • a first electrode 102 is provided on the second electrode 103 via a dielectric layer 106. Even with this configuration, the light guide efficiency of the fluorescent light guide plate 9 can be increased, and the fluorescent light guide plate and the touch panel can be combined with one member.
  • the light absorbing material is provided on the end face of the fluorescent light guide plate.
  • the directivity may be reduced by scattering the light emitted from the light emitting point.
  • the image of the light emitting point by the reflected light is blurred as compared with the image of the light emitting point by the direct light, so that both can be identified.
  • a light scattering layer may be provided on the end face of the fluorescent light guide plate.
  • the light scattering layer may be, for example, a layer in which particles having a refractive index different from the refractive index of the transparent substrate are dispersed in the transparent substrate, or a layer having fine irregularities formed on the surface. Good. Or you may give uneven
  • the installation position of the image sensor is not necessarily limited to the corner of the fluorescent light guide plate.
  • the image sensor may be provided in the middle of the side of the fluorescent light guide plate.
  • the fluorescent light guide plate only needs to be provided with an arc-shaped notch that forms a half of a circle.
  • the overall shape of the fluorescent light guide plate is not limited to a rectangle.
  • this light detection device can be used as a light sensor that can specify a position irradiated with light.
  • this light detection device can be used as a light sensor that can specify a position irradiated with light.
  • the example which excites the fluorescent substance in a fluorescence light-guide plate with a laser beam was given, it replaced with this example and excited the fluorescent substance in a fluorescence light-guide plate with the light from a light emitting diode (LED).
  • LED light emitting diode
  • the present invention is applicable to various display devices such as a liquid crystal display device having a position input function, an organic electroluminescence display device, and a plasma display.
  • Position input device 3 Display (display device) 4, 26, 30, 35, 39, 42, 53, 56, 60, 65, 70, 76, 85, 101 Photodetector 5, 5A, 5B, 5C, 46 Laser pointer 9, 27, 66, 73 Fluorescent light Optical plate 10, 10L, 10R, 10LT, 10RT, 10LB, 10RB Image sensor 12 Light absorber (reflection reduction part) DESCRIPTION OF SYMBOLS 13 Fluorescent substance 20 Position detection part 21 Control part 31,32,33 Low reflection layer 36 Light-scattering layer 67 Stress light-emitting fluorescent substance

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Position Input By Displaying (AREA)

Abstract

This light detection device comprises: a fluorescent light guide plate having a fluorescent body that obtains excitation energy and emits light and which guides the light emitted by the fluorescent body to inside; an imaging element that captures part of an end surface of the fluorescent light guide plate; a position detection unit that detects the position of excitation energy supply in the fluorescent light guide plate, on the basis of the image captured by the imaging element; and a reflection reduction unit (light absorption material) provided on at least part of an area in the end surface of the fluorescent light guide plate, other than the imaging element imaging area, and which reduces total reflection of light that has reached the end surface of the fluorescent light guide plate.

Description

光検出装置、位置入力装置、および電子機器Photodetection device, position input device, and electronic device
 本発明は、光検出装置、位置入力装置、および電子機器に関する。
 本願は、2013年8月5日に、日本に出願された特願2013-162791号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light detection device, a position input device, and an electronic apparatus.
This application claims priority based on Japanese Patent Application No. 2013-162791 filed in Japan on August 5, 2013, the contents of which are incorporated herein by reference.
 従来から、光学センサー方式、タッチパネル方式、ジェスチャー入力方式など、各種の入力装置が知られている。この種の入力装置は、方式によって異なる利点や課題を持つが、大画面の表示装置と組み合わせることが難しい、プレゼンテーション等を行う際によく用いられるレーザーポインターが使えない、という共通の課題を持っている。これに対して、レーザーポインターの使用が可能な入力装置の一例として、照射座標位置検出システムが下記の特許文献1に開示されている。照射座標位置検出システムは、表示部を有する表示装置と、表示部の前面に配置された蛍光剤を含有する光蛍光部と、レーザー光の照射時に蛍光剤が発した蛍光を検出することにより表示部上の光束照射位置を撮像する撮像装置と、を備えている。 Conventionally, various input devices such as an optical sensor method, a touch panel method, and a gesture input method are known. Although this type of input device has different advantages and problems depending on the method, it has the common problem that it is difficult to combine with a large-screen display device, and a laser pointer that is often used for presentations etc. cannot be used. Yes. On the other hand, as an example of an input device capable of using a laser pointer, an irradiation coordinate position detection system is disclosed in Patent Document 1 below. The irradiation coordinate position detection system displays by detecting a display device having a display unit, a photofluorescent unit containing a fluorescent agent disposed in front of the display unit, and fluorescence emitted by the fluorescent agent during laser light irradiation. And an imaging device for imaging the light beam irradiation position on the unit.
特開2012-68920号公報JP 2012-68920 A
 特許文献1の照射座標位置検出システムには、レーザーポインターから光を照射した位置を確実に特定することが難しい、という課題があった。 The irradiation coordinate position detection system of Patent Document 1 has a problem that it is difficult to reliably specify the position irradiated with light from the laser pointer.
 本発明の一つの態様は、上記の課題を解決するためになされたものであり、蛍光体からの発光を利用した光検出において、励起エネルギーの供給位置を確実に特定することが可能な光検出装置を提供することを目的の一つとする。本発明の一つの態様は、上記の光検出装置を備え、励起エネルギーの供給位置を確実に特定することが可能な位置入力装置を提供することを目的の一つとする。本発明の一つの態様は、上記の位置入力装置を備え、安定した動作が可能な電子機器を提供することを目的の一つとする。 One aspect of the present invention has been made to solve the above-described problem, and in light detection using light emission from a phosphor, light detection capable of reliably specifying an excitation energy supply position. One object is to provide a device. One aspect of the present invention is to provide a position input device that includes the above-described photodetection device and can reliably specify the supply position of excitation energy. An object of one embodiment of the present invention is to provide an electronic device including the position input device described above and capable of stable operation.
 上記の目的を達成するために、本発明の一つの態様の光検出装置は、励起エネルギーを得て光を発する蛍光体を有し、前記蛍光体から発せられた光を内部で導光させる蛍光導光板と、前記蛍光導光板の端面の一部を撮像する撮像素子と、前記撮像素子が捉えた画像に基づいて、前記蛍光導光板における前記励起エネルギーの供給位置を検出する位置検出部と、前記蛍光導光板の端面のうち、前記撮像素子の撮像領域を除く領域の少なくとも一部に設けられ、前記蛍光導光板の端面に到達した前記光の反射を低減する反射低減部と、を備える。 In order to achieve the above object, a photodetection device according to one aspect of the present invention includes a phosphor that emits light by obtaining excitation energy, and internally guides the light emitted from the phosphor. A light guide plate, an image sensor that images a part of an end face of the fluorescent light guide plate, and a position detection unit that detects a supply position of the excitation energy in the fluorescent light guide plate based on an image captured by the image sensor; A reflection reduction unit that is provided in at least a part of the end surface of the fluorescent light guide plate excluding the imaging region of the imaging element and reduces reflection of the light reaching the end surface of the fluorescent light guide plate.
 本発明の一つの態様の光検出装置において、前記反射低減部は、前記蛍光導光板の端面に設けられた光吸収層であってもよい。 In the light detection device according to one aspect of the present invention, the reflection reduction unit may be a light absorption layer provided on an end surface of the fluorescent light guide plate.
 本発明の一つの態様の光検出装置において、前記蛍光導光板は、円弧状に切り欠かれた切り欠き部を有していてもよく、前記撮像素子は、前記切り欠き部の凹んだ湾曲面を撮像するものであってもよい。 In the light detection device according to one aspect of the present invention, the fluorescent light guide plate may have a cutout portion cut out in an arc shape, and the imaging element has a concave curved surface of the cutout portion. May be taken.
 本発明の一つの態様の光検出装置において、前記励起エネルギーは光エネルギーであってもよい。 In the photodetector of one aspect of the present invention, the excitation energy may be light energy.
 本発明の一つの態様の光検出装置は、前記蛍光導光板の第1主面および第2主面の少なくとも一方に、低反射層もしくは光散乱層を備えていてもよい。 The light detection device according to one aspect of the present invention may include a low reflection layer or a light scattering layer on at least one of the first main surface and the second main surface of the fluorescent light guide plate.
 本発明の一つの態様の光検出装置は、前記低反射層もしくは前記光散乱層を備える場合、前記第1主面および前記第2主面のうち、一方の主面に、誘電体多層膜からなる低反射層を備え、他方の主面に、可視光領域の波長以下の周期で配列された複数の突起を有する低反射層を備えていてもよい。 When the light detection device according to one aspect of the present invention includes the low reflection layer or the light scattering layer, a dielectric multilayer film is formed on one of the first main surface and the second main surface. And a low reflection layer having a plurality of protrusions arranged with a period equal to or less than the wavelength of the visible light region may be provided on the other main surface.
 本発明の一つの態様の光検出装置において、前記位置検出部は、前記画像に基づいて前記発光領域の代表位置を決定し、前記代表位置から前記励起エネルギーの供給位置を算出してもよい。 In the light detection device according to one aspect of the present invention, the position detection unit may determine a representative position of the light emitting region based on the image and calculate a supply position of the excitation energy from the representative position.
 本発明の一つの態様の光検出装置は、前記蛍光導光板の端面に、前記蛍光体から前記光が発せられたことを検出する光検出素子を備えていてもよい。 The light detection device according to one aspect of the present invention may include a light detection element that detects that the light is emitted from the phosphor on the end face of the fluorescent light guide plate.
 本発明の一つの態様の位置入力装置は、本発明の一つの態様の光検出装置と、前記蛍光導光板の任意の位置に前記励起エネルギーを供給する励起エネルギー供給源と、を備える。 A position input device according to one aspect of the present invention includes the photodetector according to one aspect of the present invention and an excitation energy supply source that supplies the excitation energy to an arbitrary position of the fluorescent light guide plate.
 本発明の一つの態様の位置入力装置において、前記励起エネルギー供給源が複数の光エネルギー供給源であり、前記複数の光エネルギー供給源からの複数の光エネルギーが前記蛍光導光板の異なる位置に供給された際に生じる複数の光を前記位置検出部が識別する識別手段を備えていてもよい。 In the position input device according to one aspect of the present invention, the excitation energy supply source is a plurality of light energy supply sources, and the plurality of light energies from the plurality of light energy supply sources are supplied to different positions of the fluorescent light guide plate. The position detection unit may include identification means for identifying a plurality of lights generated when the light is generated.
 本発明の一つの態様の電子機器は、本発明の一つの態様の位置入力装置と、前記蛍光導光板の前記第1主面もしくは前記第2主面に対向して配置された表示装置と、前記位置入力装置から出力された位置情報に基づいて前記表示装置を制御する制御部と、を備える。 An electronic apparatus according to one aspect of the present invention includes a position input device according to one aspect of the present invention, a display device disposed opposite to the first main surface or the second main surface of the fluorescent light guide plate, A control unit that controls the display device based on position information output from the position input device.
 本発明の一つの態様によれば、蛍光体からの発光を用いた光検出装置において、励起エネルギーの供給位置を確実に特定することができる。本発明の一つの態様によれば、上記の光検出装置を備えた位置入力装置において、励起エネルギーの供給位置を確実に特定することができる。本発明の一つの態様によれば、上記の位置入力装置を備え、高精度の動作が可能な電子機器を提供することができる。 According to one aspect of the present invention, it is possible to reliably specify the supply position of excitation energy in a photodetection device using light emission from a phosphor. According to one aspect of the present invention, it is possible to reliably specify the excitation energy supply position in the position input device including the above-described photodetector. According to one aspect of the present invention, it is possible to provide an electronic apparatus that includes the position input device and is capable of high-precision operation.
第1実施形態の電子機器を示す斜視図である。It is a perspective view which shows the electronic device of 1st Embodiment. (A)光検出装置の正面図、(B)第1の撮像素子が取得した画像を示す図、(C)第2の撮像素子が取得した画像を示す図、である。2A is a front view of a light detection device, FIG. 2B is a diagram illustrating an image acquired by a first image sensor, and FIG. 3C is a diagram illustrating an image acquired by a second image sensor. 図2(A)の符号Aで示す箇所の拡大図である。It is an enlarged view of the location shown with the code | symbol A of FIG. 2 (A). (A)電子機器を分解した状態を示す断面図、(B)電子機器を組み立てた状態を示す断面図、である。(A) It is sectional drawing which shows the state which decomposed | disassembled the electronic device, (B) It is sectional drawing which shows the state which assembled the electronic device. 電子機器の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of an electronic device. (A)光検出装置における位置検出の原理を説明するための正面図、(B)第1の撮像素子が取得した画像を示す図、(C)第2の撮像素子が取得した画像を示す図、である。(A) Front view for explaining the principle of position detection in the light detection device, (B) A diagram showing an image acquired by the first image sensor, (C) A diagram showing an image acquired by the second image sensor . (A)レーザー光が入射した状態の蛍光導光板の断面図、(B)第1の撮像素子が取得した画像を示す図、である。(A) It is sectional drawing of the fluorescence light-guide plate in the state into which the laser beam entered, (B) is a figure which shows the image which the 1st image pick-up element acquired. レーザーポインターの斜視図である。It is a perspective view of a laser pointer. レーザーポインターから射出されるレーザー光のパルスを示す図である。It is a figure which shows the pulse of the laser beam inject | emitted from a laser pointer. (A)蛍光導光板の端面に光吸収層がない場合の問題点を説明するための正面図、(B)第1の撮像素子が取得した画像を示す図、(C)第2の撮像素子が取得した画像を示す図、である。(A) Front view for explaining a problem in the case where there is no light absorption layer on the end face of the fluorescent light guide plate, (B) A diagram showing an image acquired by the first image sensor, (C) a second image sensor It is a figure which shows the image which acquired. 第1実施形態の光検出装置における撮像素子近傍の構成の変形例を示す図である。It is a figure which shows the modification of the structure of the image pick-up element vicinity in the photon detection apparatus of 1st Embodiment. 第2実施形態の光検出装置を示す斜視図である。It is a perspective view which shows the photon detection apparatus of 2nd Embodiment. 第3実施形態の光検出装置を示す断面図である。It is sectional drawing which shows the photon detection apparatus of 3rd Embodiment. 第4実施形態の光検出装置を示す断面図である。It is sectional drawing which shows the photon detection apparatus of 4th Embodiment. (A)第5実施形態の光検出装置の正面図、(B)第1の撮像素子が取得した画像を示す図、(C)第2の撮像素子が取得した画像を示す図、である。(A) The front view of the photon detection apparatus of 5th Embodiment, (B) The figure which shows the image which the 1st image sensor acquired, (C) The figure which shows the image which the 2nd image sensor acquired. 2個のレーザーポインターから射出されるレーザー光のパルスを示す図である。It is a figure which shows the pulse of the laser beam inject | emitted from two laser pointers. 第6実施形態の光検出装置の正面図である。It is a front view of the photon detection device of a 6th embodiment. (A)第7実施形態の光検出装置の正面図、(B)第1の撮像素子が取得した画像を示す図、(C)第2の撮像素子が取得した画像を示す図、である。(A) The front view of the photodetector of 7th Embodiment, (B) The figure which shows the image which the 1st image sensor acquired, (C) The figure which shows the image which the 2nd image sensor acquired. 3個のレーザーポインターから射出されるレーザー光の波長および蛍光体の発光波長を示す図である。It is a figure which shows the wavelength of the laser beam inject | emitted from three laser pointers, and the light emission wavelength of a fluorescent substance. 第8実施形態のレーザーポインターの斜視図である。It is a perspective view of the laser pointer of 8th Embodiment. レーザーポインターから出力される光信号のタイミングチャートである。It is a timing chart of the optical signal output from a laser pointer. 第9実施形態の光検出装置の正面図である。It is a front view of the photon detection apparatus of 9th Embodiment. 第10実施形態の光検出装置の正面図である。It is a front view of the photon detection apparatus of 10th Embodiment. (A)第11実施形態の光検出装置の正面図、(B)第1の撮像素子が取得した画像を示す図、である。(A) The front view of the photon detection apparatus of 11th Embodiment, (B) The figure which shows the image which the 1st image pick-up element acquired. レーザーポインターから射出されるレーザー光の波長および蛍光体の発光波長を示す図である。It is a figure which shows the wavelength of the laser beam inject | emitted from a laser pointer, and the light emission wavelength of fluorescent substance. 第12実施形態の位置入力装置の斜視図である。It is a perspective view of the position input device of 12th Embodiment. 光検出装置の断面図である。It is sectional drawing of a photon detection apparatus. (A)第13実施形態の光検出装置において圧力を加えていない状態を示す断面図、(B)圧力を加えた状態を示す断面図、である。(A) Sectional drawing which shows the state which is not applying the pressure in the photon detection apparatus of 13th Embodiment, (B) It is sectional drawing which shows the state which added the pressure. 蛍光導光板に傷が付いたときの問題点を説明するための図である。It is a figure for demonstrating a problem when a fluorescent light guide plate is damaged. 第14実施形態の光検出装置の蛍光導光板の断面図である。It is sectional drawing of the fluorescence light-guide plate of the photon detection apparatus of 14th Embodiment. 蛍光導光板の変形例を示す断面図である。It is sectional drawing which shows the modification of a fluorescence light-guide plate. 蛍光導光板の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of a fluorescence light-guide plate. 第15実施形態の光検出装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the photon detection apparatus of 15th Embodiment. (A)第16実施形態の光検出装置の斜視図、(B)図34(A)の矢印B方向から見た断面図、(C)図34(A)の矢印C方向から見た断面図、である。(A) Perspective view of the photodetector of the sixteenth embodiment, (B) a sectional view as seen from the direction of arrow B in FIG. 34 (A), (C) a sectional view as seen from the direction of arrow C in FIG. . 第17実施形態の電子機器を示す斜視図である。It is a perspective view which shows the electronic device of 17th Embodiment. 光検出装置の断面図である。It is sectional drawing of a photon detection apparatus. 第18実施形態の電子機器を示す斜視図である。It is a perspective view which shows the electronic device of 18th Embodiment. 第19実施形態の電子機器の変形例を示す斜視図である。It is a perspective view which shows the modification of the electronic device of 19th Embodiment. 第20実施形態の光検出装置を示す斜視図である。It is a perspective view which shows the photon detection apparatus of 20th Embodiment. 光検出装置の断面図である。It is sectional drawing of a photon detection apparatus. 第20実施形態の光検出装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the photon detection apparatus of 20th Embodiment. 第20実施形態の光検出装置の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the photon detection apparatus of 20th Embodiment.
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図10を用いて説明する。
 第1実施形態では、電子機器として、例えばプレゼンテーション等に用いて好適なインタラクティブ機能を備えたディスプレイの例を挙げる。
 図1は、第1実施形態の電子機器を示す斜視図である。図2(A)は、光検出装置の正面図である。図2(B)は、第1の撮像素子が取得した画像を示す図である。図2(C)は、第2の撮像素子が取得した画像を示す図である。図3は、図2(A)の符号Aで示す箇所の拡大図である。図4(A)は、電子機器を分解した状態を示す断面図である。図4(B)は、電子機器を組み立てた状態を示す断面図である。図5は、電子機器の回路構成を示すブロック図である。
 以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In the first embodiment, an example of a display having an interactive function suitable for use in a presentation or the like is given as an electronic device.
FIG. 1 is a perspective view illustrating an electronic apparatus according to the first embodiment. FIG. 2A is a front view of the light detection device. FIG. 2B is a diagram illustrating an image acquired by the first image sensor. FIG. 2C is a diagram illustrating an image acquired by the second image sensor. FIG. 3 is an enlarged view of a portion indicated by reference symbol A in FIG. FIG. 4A is a cross-sectional view illustrating a state where the electronic device is disassembled. FIG. 4B is a cross-sectional view illustrating a state where the electronic device is assembled. FIG. 5 is a block diagram illustrating a circuit configuration of the electronic device.
In the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 第1実施形態の電子機器1は、位置入力装置2と、ディスプレイ3と、を備えている。位置入力装置2は、光検出装置4と、レーザーポインター5と、を備えている。光検出装置4は、ディスプレイ3の表示部6の視認側に配置されている。ディスプレイ3の具体例として、例えば液晶ディスプレイ、有機エレクトロルミネッセンス(Electroluminescence, 以下、ELと略記する)ディスプレイ等を挙げることができるが、特に限定されない。ディスプレイ3と光検出装置4とは、後述するように相互の位置が固定されている。ディスプレイ3と光検出装置4との組立体7は、インタラクティブ機能付きのディスプレイを構成する。 The electronic apparatus 1 according to the first embodiment includes a position input device 2 and a display 3. The position input device 2 includes a light detection device 4 and a laser pointer 5. The light detection device 4 is disposed on the viewing side of the display unit 6 of the display 3. Specific examples of the display 3 include, for example, a liquid crystal display, an organic electroluminescence (hereinafter abbreviated as EL) display, and the like, but are not particularly limited. The positions of the display 3 and the light detection device 4 are fixed as will be described later. The assembly 7 of the display 3 and the light detection device 4 constitutes a display with an interactive function.
 使用者は、レーザーポインター5を用いて光検出装置4の一定の箇所に向けてレーザー光L0を照射することにより、ディスプレイ3の表示内容に応じた各種の命令や指示を入力することができる。レーザーポインター5には、例えば波長405nmの青紫色のレーザー光を射出するレーザーポインターを用いる。 The user can input various commands and instructions according to the display content of the display 3 by irradiating the laser beam L0 toward a certain part of the light detection device 4 using the laser pointer 5. As the laser pointer 5, for example, a laser pointer that emits blue-violet laser light having a wavelength of 405 nm is used.
 以下の説明においては、各構成部材の面のうち、使用者がレーザー光L0を照射する側の面を「前面」と称し、使用者がレーザー光L0を照射する側と反対側の面を「背面」と称する。レーザーポインター5は、特許請求の範囲の励起エネルギー供給源、および光エネルギー供給源に相当する。ディスプレイ3は、特許請求の範囲の表示装置に相当する。 In the following description, among the surfaces of the constituent members, the surface on the side on which the user irradiates the laser light L0 is referred to as “front surface”, and the surface on the opposite side to the side on which the user irradiates the laser light L0. This will be referred to as the “back”. The laser pointer 5 corresponds to an excitation energy supply source and a light energy supply source in claims. The display 3 corresponds to a display device in claims.
 図1、図2(A)に示すように、光検出装置4は、蛍光導光板9と、撮像素子10と、グリッド11と、光吸収材12と、を備えている。第1実施形態の光検出装置4では、2個の撮像素子10が用いられている。2個の撮像素子10は、蛍光導光板9の左下の角部と右下の角部とにそれぞれ配置されている。以下の説明では、蛍光導光板9の左下の撮像素子10を第1の撮像素子10Lと称し、蛍光導光板9の右下の撮像素子10を第2の撮像素子10Rと称する。 As shown in FIGS. 1 and 2A, the light detection device 4 includes a fluorescent light guide plate 9, an image sensor 10, a grid 11, and a light absorbing material 12. In the light detection device 4 of the first embodiment, two image pickup devices 10 are used. The two image sensors 10 are respectively disposed at the lower left corner and the lower right corner of the fluorescent light guide plate 9. In the following description, the lower left image sensor 10 of the fluorescent light guide plate 9 is referred to as a first image sensor 10L, and the lower right image sensor 10 of the fluorescent light guide plate 9 is referred to as a second image sensor 10R.
 図4(A)、(B)に示すように、蛍光導光板9は、励起光であるレーザー光L0が照射された際にレーザー光L0のエネルギーを吸収して蛍光を生じる蛍光体13を含有する。蛍光体13には、例えば波長405nmの青紫光を吸収し、405nmよりも長波長側の青色光を放射する蛍光体が用いられる。この場合、蛍光導光板9は、レーザーポインター5から照射された青紫色のレーザー光L0を受け、その照射点から青色の蛍光を全方向に放射する。その他、レーザーポインター5から射出される光の波長に応じて、青色光を吸収して緑色光を放射する蛍光体、青色光を吸収して赤色光を放射する蛍光体などを用いることもできる。励起波長と発光波長は特に限定されない。蛍光体13から発せられた光は、蛍光導光板9の前面9fおよび背面9b、すなわち蛍光導光体9の構成物質と空気との界面で反射を繰り返しつつ、蛍光導光板9の内部を導光する。 As shown in FIGS. 4A and 4B, the fluorescent light guide plate 9 includes a phosphor 13 that absorbs the energy of the laser light L0 and emits fluorescence when irradiated with the laser light L0 that is excitation light. To do. As the phosphor 13, for example, a phosphor that absorbs blue-violet light having a wavelength of 405 nm and emits blue light having a wavelength longer than 405 nm is used. In this case, the fluorescent light guide plate 9 receives the blue-violet laser light L0 emitted from the laser pointer 5, and emits blue fluorescence in all directions from the irradiation point. In addition, a phosphor that absorbs blue light and emits green light and a phosphor that absorbs blue light and emits red light according to the wavelength of light emitted from the laser pointer 5 can also be used. The excitation wavelength and the emission wavelength are not particularly limited. The light emitted from the fluorescent material 13 is guided through the fluorescent light guide plate 9 while being repeatedly reflected at the front surface 9f and the back surface 9b of the fluorescent light guide plate 9, that is, the interface between the constituent material of the fluorescent light guide material 9 and air. To do.
 蛍光導光板9は、図2、図4(A)、図4(B)に示すように、透明基材14の中に蛍光体13を分散させた長方形状の平坦な板材である。透明基材14は、PMMA等のアクリル樹脂、ポリカーボネート樹脂などの透明性の高い有機材料、もしくはガラスなどの光透過性を有する無機材料で構成される。第1実施形態では、透明基材14として、例えばPMMA樹脂(屈折率1.49)が用いられる。蛍光体13は、透明基材14の内部に均一に分散していてもよいし、必ずしも均一に分散していなくてもよい。さらに、蛍光体13は、必ずしも透明基材14の内部に分散していなくてもよい。例えば透明基材14の前面に蛍光体13を含有するフィルムが貼り合わされた構成でもよい。 The fluorescent light guide plate 9 is a rectangular flat plate material in which the fluorescent material 13 is dispersed in the transparent base material 14 as shown in FIGS. 2, 4 (A), and 4 (B). The transparent substrate 14 is made of a highly transparent organic material such as an acrylic resin such as PMMA, a polycarbonate resin, or an optically transparent inorganic material such as glass. In the first embodiment, for example, PMMA resin (refractive index 1.49) is used as the transparent substrate 14. The phosphor 13 may be uniformly dispersed inside the transparent substrate 14 or may not necessarily be uniformly dispersed. Furthermore, the phosphor 13 does not necessarily have to be dispersed inside the transparent substrate 14. For example, the structure by which the film containing the fluorescent substance 13 was bonded together on the front surface of the transparent base material 14 may be sufficient.
 蛍光体13の具体例としては、有機蛍光体が挙げられる。有機蛍光体としては、クマリン系色素、ペリレン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素,キサンテン系色素、ピリジン系色素、オキサジン系色素、クリセン系色素、チオフラビン系色素、ペリレン系色素、ピレン系色素、アントラセン系色素、アクリドン系色素、アクリジン系色素、フルオレン系色素、ターフェニル系色素、エテン系色素、ブタジエン系色素、ヘキサトリエン系色素、オキサゾール系色素、クマリン系色素、スチルベン系色素、ジ-およびトリフェニルメタン系色素、チアゾール系色素、チアジン系色素、ナフタルイミド系色素、アントラキノン系色素等が好適に使用される。具体的には、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素や、クマリン色素系染料であるベーシックイエロー51や、ソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素や、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、1-エチル-2-〔4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕ピリジニウム-パークロレート(ピリジン1)などのピリジン系色素、さらには、シアニン系色素、あるいはオキサジン系色素などが使用される。 Specific examples of the phosphor 13 include organic phosphors. Organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine dyes, Perylene dye, pyrene dye, anthracene dye, acridone dye, acridine dye, fluorene dye, terphenyl dye, ethene dye, butadiene dye, hexatriene dye, oxazole dye, coumarin dye, Stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazine dyes, naphthalimide dyes, anthraquinone dyes and the like are preferably used. Specifically, 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2 ′ -N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) Coumarin dyes such as coumarin (coumarin 153), basic yellow 51 which is a coumarin dye dye, naphthalimide dyes such as solvent yellow 11 and solvent yellow 116, rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, Rhodamine 110, sulforhodamine, basic violet 11 Rhodamine dyes such as Basic Red 2, pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] pyridinium-perchlorate (pyridine 1), and cyanine A dye or an oxazine dye is used.
 蛍光体13として無機蛍光体を用いることもできる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も、蛍光性があれば本実施形態の蛍光体13として使用が可能である。蛍光体13は、1種類に限ることなく、複数種類(2種類もしくは3種類以上)の蛍光体を用いてもよい。 An inorganic phosphor can also be used as the phosphor 13. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as the phosphor 13 of the present embodiment as long as they have fluorescence. The phosphor 13 is not limited to one type, and a plurality of types (two types or three or more types) of phosphors may be used.
 蛍光導光板9には、レーザー光L0のようなエネルギーの高い励起光が照射されたときに発光し、太陽光や照明光などの通常の外光が照射された程度では発光しないものを用いる必要がある。したがって、蛍光導光板9における蛍光体13の濃度は比較的低くてかまわない。 The fluorescent light guide plate 9 needs to use light that emits light when irradiated with high-energy excitation light such as laser light L0 and does not emit light when irradiated with normal external light such as sunlight or illumination light. There is. Therefore, the concentration of the phosphor 13 in the fluorescent light guide plate 9 may be relatively low.
 図3を用いて、撮像素子10の近傍の詳細な構成について説明する。
 第1の撮像素子10L側の構成と第2の撮像素子10R側の構成とは左右対称であり、実質的に同じであるため、図3では第1の撮像素子10L側のみを示す。
 蛍光導光板9の4個の角部のうち、撮像素子10が配置される左下の角部と右下の角部は、円の1/4をなす円弧状に切り欠かれている。すなわち、蛍光導光板9は、左下の角部と右下の角部に円弧状の切り欠き部9kを有している。切り欠き部9kの形状をなす円弧の中心は、蛍光導光板9の長辺の延長線と短辺の延長線との交点と略一致する。
A detailed configuration in the vicinity of the image sensor 10 will be described with reference to FIG.
Since the configuration on the first image sensor 10L side and the configuration on the second image sensor 10R side are bilaterally symmetric and substantially the same, only the first image sensor 10L side is shown in FIG.
Of the four corners of the fluorescent light guide plate 9, the lower left corner and the lower right corner where the image sensor 10 is arranged are cut out in an arc shape forming a quarter of a circle. That is, the fluorescent light guide plate 9 has a circular arc-shaped notch 9k at the lower left corner and the lower right corner. The center of the arc forming the shape of the notch 9k substantially coincides with the intersection of the long side extension line and the short side extension line of the fluorescent light guide plate 9.
 グリッド11は、蛍光導光板9の長辺および短辺と略45°の角度をなすように配置されている。グリッド11は、蛍光導光板9の端面9tから射出された光Lを透過させる微細な開口11hを有する板材である。グリッド11の開口11hの位置は、蛍光導光板9の切り欠き部9kの形状をなす円弧の中心に略一致する。 The grid 11 is arranged so as to form an angle of approximately 45 ° with the long side and the short side of the fluorescent light guide plate 9. The grid 11 is a plate material having a fine opening 11 h that transmits the light L emitted from the end surface 9 t of the fluorescent light guide plate 9. The position of the opening 11h of the grid 11 substantially coincides with the center of the arc that forms the notch 9k of the fluorescent light guide plate 9.
 撮像素子10は、グリッド11を挟んで蛍光導光板9の反対側に配置されている。撮像素子10は、グリッド11と対向する撮像素子10の受光面にラインセンサー15を備えている。これにより、撮像素子10は、蛍光導光板9の端面9tの一部を撮像する。ラインセンサー15は、図3の紙面に平行な方向に複数のCCD素子(図示略)が配列された構成を有している。CCD素子の数、すなわちラインセンサー15の画素数は、例えば1000~数1000程度である。撮像素子10は、1次元のラインセンサーに限ることなく、2次元のアレイセンサーを備えていてもよい。図示は省略するが、グリッド11と撮像素子10とは、任意の固定用部材により蛍光導光板9に固定されている。 The image sensor 10 is disposed on the opposite side of the fluorescent light guide plate 9 with the grid 11 interposed therebetween. The image sensor 10 includes a line sensor 15 on the light receiving surface of the image sensor 10 facing the grid 11. Thereby, the imaging element 10 images a part of the end surface 9t of the fluorescent light guide plate 9. The line sensor 15 has a configuration in which a plurality of CCD elements (not shown) are arranged in a direction parallel to the paper surface of FIG. The number of CCD elements, that is, the number of pixels of the line sensor 15 is, for example, about 1000 to several thousand. The image sensor 10 is not limited to a one-dimensional line sensor, and may include a two-dimensional array sensor. Although illustration is omitted, the grid 11 and the image sensor 10 are fixed to the fluorescent light guide plate 9 by an arbitrary fixing member.
 蛍光導光板9は、2つの主面(前面および背面)と4つの端面とを有している。これらの端面のうち、撮像素子10の撮像領域である切り欠き部9kの端面9tを除く部分に、光吸収材12が設けられている。光吸収材12の具体的な形態として、光吸収材として機能する黒色テープを蛍光導光板9の端面9tに貼り付ける形態が挙げられる。その他の例として、蛍光導光板9の端面9tに黒色塗料を塗布する、蛍光導光板9を作製する際に2色成形法を用い、蛍光導光板9の端面9tとその近傍を黒色樹脂で構成する、等の種々の方法を用いることができる。蛍光導光板9は、端面9tに到達した光の全反射を低減する反射低減部として機能する。蛍光導光板9の作用については、再度詳しく説明する。 The fluorescent light guide plate 9 has two main surfaces (a front surface and a back surface) and four end surfaces. Of these end faces, a light absorbing material 12 is provided on a portion excluding the end face 9t of the notch 9k, which is the imaging region of the image sensor 10. As a specific form of the light absorbing material 12, there is a form in which a black tape functioning as a light absorbing material is attached to the end face 9 t of the fluorescent light guide plate 9. As another example, a black paint is applied to the end surface 9t of the fluorescent light guide plate 9, a two-color molding method is used when the fluorescent light guide plate 9 is manufactured, and the end surface 9t of the fluorescent light guide plate 9 and the vicinity thereof are made of black resin. Various methods can be used. The fluorescent light guide plate 9 functions as a reflection reducing unit that reduces the total reflection of light reaching the end surface 9t. The operation of the fluorescent light guide plate 9 will be described again in detail.
 光検出装置4は、ディスプレイ3に対して適切な位置に固定される必要がある。そこで、図4(A)に示すように、蛍光導光板9の背面9bにピン18が設けられている。一方、ディスプレイ3のベゼル17には、蛍光導光板9のピン18に対応する位置に、ピン18を挿入するための孔17hが設けられている。ピン18および孔17hは、図1に示すように、蛍光導光板9およびベゼル17の4つの角部に設けられているが、ピン18および孔17hの個数や位置はこの例に限定されない。 The light detection device 4 needs to be fixed at an appropriate position with respect to the display 3. Therefore, as shown in FIG. 4A, pins 18 are provided on the back surface 9 b of the fluorescent light guide plate 9. On the other hand, the bezel 17 of the display 3 is provided with a hole 17 h for inserting the pin 18 at a position corresponding to the pin 18 of the fluorescent light guide plate 9. As shown in FIG. 1, the pins 18 and the holes 17h are provided at the four corners of the fluorescent light guide plate 9 and the bezel 17, but the numbers and positions of the pins 18 and the holes 17h are not limited to this example.
 図4(B)に示すように、ベゼル17の孔17hにピン18を挿入した状態で、ディスプレイ3の前面3fと蛍光導光板9の背面9bとの間に空間があることが好ましい。その理由は、仮にディスプレイ3と蛍光導光板9とが接触していると、蛍光導光板9の内部を導光する光の一部がディスプレイ3と蛍光導光板9との界面で全反射できずにディスプレイ3側に漏れ、光の損失が生じるおそれがあるからである。 As shown in FIG. 4B, it is preferable that there is a space between the front surface 3f of the display 3 and the back surface 9b of the fluorescent light guide plate 9 in a state where the pins 18 are inserted into the holes 17h of the bezel 17. The reason is that if the display 3 and the fluorescent light guide plate 9 are in contact with each other, a part of the light guided inside the fluorescent light guide plate 9 cannot be totally reflected at the interface between the display 3 and the fluorescent light guide plate 9. This is because leakage to the display 3 side may cause loss of light.
 蛍光導光板9のピン18は、ベゼル17の孔17hに固定されていてもよいし、ベゼル17の孔17hに固定されずに挿入されているだけでもよい。すなわち、蛍光導光板9は、ディスプレイ3に固定されていてもよいし、ディスプレイ3に固定されず、ディスプレイ3に対して着脱できる構成であってもよい。ディスプレイ3と蛍光導光板9との間に空間がある場合、上述した利点がある反面、蛍光導光板9と空気との界面およびディスプレイ3と空気との界面が多くなる。その結果、外光の反射光Lrが多くなり、画像品質が低下する場合がある。この点を考慮すると、ディスプレイ3に対して光検出装置4が着脱可能とされ、例えばインタラクティブ機能が不要なときには光検出装置4をディスプレイ3から取り外せるとよい。 The pin 18 of the fluorescent light guide plate 9 may be fixed to the hole 17h of the bezel 17, or may be inserted without being fixed to the hole 17h of the bezel 17. That is, the fluorescent light guide plate 9 may be fixed to the display 3 or may be configured to be detachable from the display 3 without being fixed to the display 3. When there is a space between the display 3 and the fluorescent light guide plate 9, there is an advantage described above, but there are many interfaces between the fluorescent light guide plate 9 and air and between the display 3 and air. As a result, the reflected light Lr of outside light increases, and the image quality may deteriorate. Considering this point, the light detection device 4 can be attached to and detached from the display 3. For example, when the interactive function is unnecessary, the light detection device 4 can be detached from the display 3.
 その他、レーザー光L0の照射位置の特定や制御に係わる構成として、図5に示すように、光検出装置4は、撮像素子10が捉えた画像に基づいて、蛍光導光板9におけるレーザー光L0の照射位置の座標を検出する位置検出部20を備えている。電子機器1は、位置入力装置2から出力された位置情報に基づいてディスプレイ3を制御する制御部21を備えている。 In addition, as a configuration related to the specification and control of the irradiation position of the laser light L0, as shown in FIG. 5, the light detection device 4 uses the laser light L0 on the fluorescent light guide plate 9 based on the image captured by the image sensor 10. A position detection unit 20 that detects the coordinates of the irradiation position is provided. The electronic apparatus 1 includes a control unit 21 that controls the display 3 based on the position information output from the position input device 2.
 本実施形態の光検出装置4は、使用者がレーザーポインター5を用いて蛍光導光板9の所望の位置にレーザー光L0を照射したとき、蛍光体13から生じる光Lを蛍光導光板9の端面9tから2個の撮像素子10が捉え、これらの撮像素子10が捉えた画像に基づいて発光点の座標、すなわちレーザー光L0の照射位置の座標を特定する。 The light detection device 4 of the present embodiment uses the laser pointer 5 to irradiate the laser light L0 to a desired position of the fluorescent light guide plate 9, and the light L generated from the phosphor 13 is emitted from the end face of the fluorescent light guide plate 9. Two image pickup devices 10 are captured from 9t, and the coordinates of the light emitting point, that is, the coordinates of the irradiation position of the laser light L0 are specified based on the images captured by these image pickup devices 10.
 レーザー光L0の照射位置の座標を特定する原理を、図6(A)~(C)を用いて、以下に説明する。
 図6(A)は、光検出装置4における位置検出の原理を説明するための正面図である。図6(B)は、第1の撮像素子10Lのラインセンサー15が取得した画像GLを示す図である。図6(C)は、第2の撮像素子10Rのラインセンサー15が取得した画像GRを示す図である。図6(B)および図6(C)は、各撮像素子10L,10Rのラインセンサー15が捉えた画像GL,GRをラインセンサー15の受光面側から見たイメージを示している。
The principle of specifying the coordinates of the irradiation position of the laser beam L0 will be described below with reference to FIGS. 6 (A) to (C).
FIG. 6A is a front view for explaining the principle of position detection in the light detection device 4. FIG. 6B is a diagram illustrating an image GL acquired by the line sensor 15 of the first image sensor 10L. FIG. 6C is a diagram illustrating an image GR acquired by the line sensor 15 of the second image sensor 10R. 6B and 6C show images of the images GL and GR captured by the line sensors 15 of the image sensors 10L and 10R as viewed from the light receiving surface side of the line sensors 15. FIG.
 図6(A)に示すように、蛍光導光板9において、レーザー光L0が照射された点を符号P11で示す。すなわち、点P11は、レーザー光L0が照射された点であり、蛍光体13による発光が生じた点である。したがって、以下の説明では、この点のことを発光点P11と称する。発光点P11からは全ての方向に光が射出されるが、そのうち、2個の撮像素子10L,10Rに向けて進む光L1,R1は、図3に示すグリッド11の開口11hを通って各撮像素子10L,10Rにそれぞれ入射する。 As shown in FIG. 6A, the point where the laser light L0 is irradiated on the fluorescent light guide plate 9 is denoted by reference numeral P11. That is, the point P11 is a point where the laser beam L0 is irradiated, and is a point where the phosphor 13 emits light. Therefore, in the following description, this point is referred to as a light emitting point P11. Light is emitted in all directions from the light emitting point P11. Of these, the light L1 and R1 traveling toward the two image pickup devices 10L and 10R pass through the openings 11h of the grid 11 shown in FIG. The light enters the elements 10L and 10R.
 本実施形態では、蛍光導光板9の角部が円弧状の切り欠き部9kを有することで、以下の効果が得られる。発光点P11と撮像素子10とを結ぶ直線が蛍光導光板9の端面9tの法線と一致する。そのため、発光点P11から蛍光導光板9の端面9tに到達した光L1,R1の反射が最小になる。また、光L1,R1は、蛍光導光板9の端面9tから射出される際に屈折しない。そのため、蛍光導光板9の屈折率を考慮することなく、ラインセンサー15上の発光領域の位置から角度を求めることができる。 In the present embodiment, the corner portion of the fluorescent light guide plate 9 has the arc-shaped cutout portion 9k, thereby obtaining the following effects. A straight line connecting the light emitting point P <b> 11 and the image sensor 10 coincides with the normal line of the end surface 9 t of the fluorescent light guide plate 9. Therefore, the reflection of the light L1 and R1 reaching the end face 9t of the fluorescent light guide plate 9 from the light emitting point P11 is minimized. Further, the lights L1 and R1 are not refracted when emitted from the end face 9t of the fluorescent light guide plate 9. Therefore, the angle can be obtained from the position of the light emitting region on the line sensor 15 without considering the refractive index of the fluorescent light guide plate 9.
 発光点P11から第1の撮像素子10Lに入射する光L1の中心軸と蛍光導光板9の下辺とのなす角度をαとする。図6(B)に示すように、第1の撮像素子10Lが取得した発光点P11の像をL1とし、画像GLの右端から像L1までの距離をlとする。角度αが小さくなる程、距離lは小さくなり、角度αが大きくなる程、距離lは大きくなる。すなわち、角度αと距離lとは一定の相関を持つ。角度αと距離lとの相関は、例えばテーブルの形で位置検出部20に格納しておけばよい。これにより、位置検出部20は、第1の撮像素子10Lの画像GLから距離lを求め、相関テーブルから角度αを求めることができる。 The angle between the central axis of the light L1 incident on the first image sensor 10L from the light emitting point P11 and the lower side of the fluorescent light guide plate 9 is α. As shown in FIG. 6B, the image of the light emission point P11 acquired by the first image sensor 10L is L1, and the distance from the right end of the image GL to the image L1 is l. The smaller the angle α, the smaller the distance l, and the larger the angle α, the larger the distance l. That is, the angle α and the distance l have a certain correlation. The correlation between the angle α and the distance l may be stored in the position detection unit 20 in the form of a table, for example. Thereby, the position detection part 20 can obtain | require the distance l from the image GL of the 1st image pick-up element 10L, and can obtain | require the angle (alpha) from a correlation table.
 同様に、発光点P11から第2の撮像素子10Rに入射する光R1の中心軸と蛍光導光板9の下辺とのなす角度をβとする。図6(C)に示すように、第2の撮像素子10Rが取得した発光点の像をR1とし、画像GRの左端から像R1までの距離をrとする。角度βが小さくなる程、距離rは小さくなり、角度βが大きくなる程、距離rは大きくなる。すなわち、角度βと距離rとは一定の相関を持つ。角度βと距離rとの相関は、例えばテーブルの形で位置検出部20に格納しておけばよい。これにより、位置検出部20は、第2の撮像素子10Rの画像GRから距離rを求め、相関テーブルから角度βを求めることができる。 Similarly, an angle formed by the central axis of the light R1 incident on the second image sensor 10R from the light emitting point P11 and the lower side of the fluorescent light guide plate 9 is β. As shown in FIG. 6C, the image of the light emitting point acquired by the second image sensor 10R is R1, and the distance from the left end of the image GR to the image R1 is r. The smaller the angle β, the smaller the distance r, and the larger the angle β, the larger the distance r. That is, the angle β and the distance r have a certain correlation. The correlation between the angle β and the distance r may be stored in the position detection unit 20 in the form of a table, for example. Thereby, the position detection unit 20 can obtain the distance r from the image GR of the second image sensor 10R, and can obtain the angle β from the correlation table.
 蛍光導光板9の厚さ方向で見ると、蛍光導光板9の内部を進行する光は、蛍光導光板9の前面9fおよび背面9bで反射を繰り返し、撮像素子10に到達する。そのため、発光点P11の像は、蛍光導光板9の厚さ方向に延びる直線状となる。ただし、発光点P11の像である直線の幅が広くなり、ラインセンサー15上での像の位置の特定が難しくなる場合がある。すなわち、発光点P11の像である直線の幅が広くなると、上述の距離l,rの特定が難しくなる場合がある。発光点P11の像である直線の幅が広くなる場合とは、例えば、蛍光導光板9に照射されるレーザー光L0のビーム径が大きい場合、レーザー光L0が蛍光導光板9の法線方向に対して斜め方向から照射された場合、蛍光導光板9の内部に光散乱成分がある場合、蛍光導光板9の端面9tに光散乱成分がある場合、などである。 When viewed in the thickness direction of the fluorescent light guide plate 9, the light traveling inside the fluorescent light guide plate 9 is repeatedly reflected on the front surface 9 f and the back surface 9 b of the fluorescent light guide plate 9 and reaches the image sensor 10. Therefore, the image of the light emitting point P <b> 11 has a linear shape extending in the thickness direction of the fluorescent light guide plate 9. However, the width of the straight line that is the image of the light emitting point P11 becomes wide, and it may be difficult to specify the position of the image on the line sensor 15. That is, when the width of the straight line that is the image of the light emitting point P11 is increased, it may be difficult to specify the distances l and r. The case where the width of the straight line that is the image of the light emitting point P11 becomes wider is, for example, when the beam diameter of the laser light L0 irradiated to the fluorescent light guide plate 9 is large, the laser light L0 is in the normal direction of the fluorescent light guide plate 9. On the other hand, when the light is irradiated from an oblique direction, there is a light scattering component inside the fluorescent light guide plate 9, and there is a light scattering component on the end surface 9t of the fluorescent light guide plate 9.
 図7(A)は、レーザー光L0が入射したときの蛍光導光板9の断面図である。図7(B)は、撮像素子10が取得した画像Gを示す図である。
 例えば図7(A)に示すように、レーザー光L0が蛍光導光板9の法線方向Vに対して斜め方向から照射された場合、レーザー光L0は蛍光導光板9の内部を斜めに横切るため、レーザー光L0が蛍光導光板9の法線方向Vから照射された場合に比べて、レーザー光L0により蛍光体13が励起される領域が横に広がり、発光領域が横に広がる。この場合、図7(B)に示す撮像素子10が取得した画像Gにおいて、発光点P11の像である直線の幅が広くなる。
FIG. 7A is a cross-sectional view of the fluorescent light guide plate 9 when the laser light L0 is incident. FIG. 7B is a diagram illustrating an image G acquired by the image sensor 10.
For example, as shown in FIG. 7A, when the laser light L0 is irradiated obliquely with respect to the normal direction V of the fluorescent light guide plate 9, the laser light L0 crosses the inside of the fluorescent light guide plate 9 diagonally. Compared to the case where the laser light L0 is irradiated from the normal direction V of the fluorescent light guide plate 9, the region where the phosphor 13 is excited by the laser light L0 spreads sideways, and the light emitting region spreads sideways. In this case, in the image G acquired by the image sensor 10 shown in FIG. 7B, the width of the straight line that is the image of the light emitting point P11 is widened.
 図7(B)に示すような場合、発光点P11の像の幅方向の一端P1と他端P2との間に発光領域の代表位置P12を決定すればよい。一端P1、他端P2の位置から代表位置P12を決定する方法としては、例えば、一端P1-他端P2の中心を代表位置P12とする、一端P1-他端P2間の輝度の重心を代表位置P12とする、上記の中心や輝度重心から一端P1、他端P2のいずれかに所定の距離ずれた位置を代表位置P12とする、等の方法が挙げられる。さらに、発光領域の一端P1-他端P2間の幅Wを求めることにより、複数の励起光を区別すること、任意の情報を伝達すること、等が可能である。 7B, the representative position P12 of the light emitting region may be determined between one end P1 and the other end P2 in the width direction of the image of the light emitting point P11. As a method for determining the representative position P12 from the positions of the one end P1 and the other end P2, for example, the center of the one end P1 and the other end P2 is the representative position P12, and the center of luminance between the one end P1 and the other end P2 is the representative position Examples include a method of setting P12 as a representative position P12 at a position shifted from the center or the luminance center of gravity by a predetermined distance to either one end P1 or the other end P2. Further, by obtaining the width W between the one end P1 and the other end P2 of the light emitting region, it is possible to distinguish a plurality of excitation lights, transmit arbitrary information, and the like.
 図6に戻って、角度αと角度βとが検出できたら、蛍光導光板9の下辺の長さをLとすると、位置検出部20は、以下の(1)式、(2)式を用いて、発光点P11の座標(x,y)を算出することができる。ここで、座標(x,y)の原点は、蛍光導光板9の左下の頂点とする。x座標は、蛍光導光板9の横方向(長辺方向)の原点からの距離である。y座標は、蛍光導光板9の縦方向(短辺方向)の原点からの距離である。 Returning to FIG. 6, if the angle α and the angle β can be detected, assuming that the length of the lower side of the fluorescent light guide plate 9 is L, the position detection unit 20 uses the following expressions (1) and (2). Thus, the coordinates (x, y) of the light emitting point P11 can be calculated. Here, the origin of the coordinates (x, y) is the lower left vertex of the fluorescent light guide plate 9. The x coordinate is a distance from the origin in the horizontal direction (long side direction) of the fluorescent light guide plate 9. The y coordinate is a distance from the origin in the vertical direction (short side direction) of the fluorescent light guide plate 9.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 蛍光導光板9の端面に設けられた光吸収材12の作用について説明する。
 最初に、蛍光導光板9が光吸収材12を備えていない場合の問題点について説明する。
 図10(A)は、蛍光導光板9の端面9tに光吸収層12がない場合の問題点を示す正面図である。図10(B)は、第1の撮像素子10Lが取得した画像GLを示す図である。図10(C)は、第2の撮像素子10Rが取得した画像GRを示す図である。
The operation of the light absorbing material 12 provided on the end face of the fluorescent light guide plate 9 will be described.
First, a problem when the fluorescent light guide plate 9 does not include the light absorbing material 12 will be described.
FIG. 10A is a front view showing a problem when the light absorption layer 12 is not provided on the end surface 9 t of the fluorescent light guide plate 9. FIG. 10B is a diagram illustrating an image GL acquired by the first image sensor 10L. FIG. 10C is a diagram illustrating an image GR acquired by the second imaging element 10R.
 先に座標計算の原理の説明に用いた図6(A)では、発光点P11から撮像素子10に直接向かう光のみを示したが、実際には、発光点P11からあらゆる方向に向けて光が射出される。種々の方向に向かう光のうち、撮像素子10に直接向かうのではなく、蛍光導光板9の端面9t、すなわち蛍光導光板9と空気との界面で全反射した後、撮像素子10に向かう光が存在する。 In FIG. 6A used for explaining the principle of coordinate calculation, only light directly directed from the light emitting point P11 to the image sensor 10 is shown, but actually light is emitted from the light emitting point P11 in all directions. It is injected. Of the light traveling in various directions, the light traveling toward the image sensor 10 after being totally reflected at the end surface 9t of the fluorescent light guide plate 9, that is, the interface between the fluorescent light guide plate 9 and air, is not directly directed to the image sensor 10. Exists.
 図10(A)に示すように、蛍光導光板9の上辺側の端面9tに到達し、端面9tで全反射した光L2は第1の撮像素子10Lに入射する。蛍光導光板9の右辺側の端面9tに到達した光のうち、一部の光は端面9tから外部に射出され、端面9tで反射した一部の光L3は第1の撮像素子10Lに入射する。さらに進行方向によっては、蛍光導光板9の上辺側の端面9tに到達し、端面9tで全反射した光R2は第2の撮像素子10Rに入射する。蛍光導光板9の左辺側の端面9tに到達した光のうち、一部の光は端面9tから外部に射出され、端面9tで反射した一部の光R3は第2の撮像素子10Rに入射する。 As shown in FIG. 10 (A), the light L2 that reaches the end surface 9t on the upper side of the fluorescent light guide plate 9 and is totally reflected by the end surface 9t enters the first image sensor 10L. Of the light reaching the end surface 9t on the right side of the fluorescent light guide plate 9, a part of the light is emitted from the end surface 9t to the outside, and a part of the light L3 reflected by the end surface 9t is incident on the first image sensor 10L. . Further, depending on the traveling direction, the light R2 that reaches the end surface 9t on the upper side of the fluorescent light guide plate 9 and is totally reflected by the end surface 9t enters the second image sensor 10R. Of the light reaching the end surface 9t on the left side of the fluorescent light guide plate 9, a part of the light is emitted from the end surface 9t to the outside, and a part of the light R3 reflected by the end surface 9t is incident on the second image sensor 10R. .
 この場合、図10(B)に示すように、第1の撮像素子10Lが取得した画像GLには、3個の発光点の像L1,L2,L3が現れる。像L1は、発光点P11から第1の撮像素子10Lに直接到達した光による発光点P11の像である。像L2は、蛍光導光板9の上辺側の端面9tで全反射して第1の撮像素子10Lに到達した光による発光点P11の像である。像L3は、蛍光導光板9の右辺側の端面9tで反射して第1の撮像素子10Lに到達した光による発光点P11の像である。 In this case, as shown in FIG. 10B, three light-emitting point images L1, L2, and L3 appear in the image GL acquired by the first imaging element 10L. The image L1 is an image of the light emission point P11 by the light that directly reaches the first image sensor 10L from the light emission point P11. The image L2 is an image of the light emission point P11 by light that is totally reflected by the end surface 9t on the upper side of the fluorescent light guide plate 9 and reaches the first image sensor 10L. The image L3 is an image of the light emission point P11 by light reflected by the end surface 9t on the right side of the fluorescent light guide plate 9 and reaching the first image sensor 10L.
 同様に、図10(C)に示すように、第2の撮像素子10Rが取得した画像GRには、3個の発光点の像R1,R2,R3が現れる。像R1は、発光点P11から第2の撮像素子10Rに直接到達した光による発光点P11の像である。像R2は、蛍光導光板9の上辺側の端面9tで全反射して第2の撮像素子10Rに到達した光による発光点P11の像である。像R3は、蛍光導光板9の左辺側の端面9tで反射して第2の撮像素子10Rに到達した光による発光点P11の像である。 Similarly, as shown in FIG. 10C, three light emitting point images R1, R2, and R3 appear in the image GR acquired by the second imaging element 10R. The image R1 is an image of the light emission point P11 by light that directly reaches the second image sensor 10R from the light emission point P11. The image R2 is an image of the light emission point P11 by the light that is totally reflected by the end surface 9t on the upper side of the fluorescent light guide plate 9 and reaches the second imaging element 10R. The image R3 is an image of the light emission point P11 by light reflected by the end surface 9t on the left side of the fluorescent light guide plate 9 and reaching the second imaging element 10R.
 各撮像素子10L,10Rにおいては、強度が略変わらない3個の発光点の像を識別することは困難である。そのため、第1の撮像素子10Lが取得した画像GLに基づいて、図6(A)に示した角度αが3個検出され、第2の撮像素子10Rが取得した画像GRに基づいて、図6(A)に示した角度βが3個検出される。これらの検出結果を組み合わせると、(1)式、(2)式に基づいて、発光点P11の座標(x,y)が9通り算出される。しかしながら、9個の座標算出結果のうち、どれが真の座標であるかを特定することは難しい。特に発光点P11の場所によっては、端面9tに入射した光の全てが全反射することがある。その場合、真の座標を特定することは略不可能である。さらに、蛍光導光板9のサイズ、蛍光体13の濃度、励起光の強度などによって端面9tで複数回反射する光が増え、座標の特定がさらに困難になる。 In each of the image sensors 10L and 10R, it is difficult to identify images of three light emitting points whose intensities are not substantially changed. Therefore, based on the image GL acquired by the first image sensor 10L, three angles α shown in FIG. 6A are detected, and based on the image GR acquired by the second image sensor 10R, FIG. Three angles β shown in (A) are detected. Combining these detection results, nine coordinates (x, y) of the light emitting point P11 are calculated based on the equations (1) and (2). However, it is difficult to specify which of the nine coordinate calculation results is the true coordinate. In particular, depending on the location of the light emitting point P11, all of the light incident on the end face 9t may be totally reflected. In that case, it is almost impossible to specify the true coordinates. Furthermore, the light reflected on the end face 9t a plurality of times increases depending on the size of the fluorescent light guide plate 9, the concentration of the phosphor 13, the intensity of the excitation light, and the like, making it difficult to specify the coordinates.
 この問題点に対して、本実施形態の光検出装置4では、図2(A)に示すように、各撮像素子10L,10Rの撮像領域を除く蛍光導光板9の端面9tに、黒色テープなどの光吸収材12が設けられている。そのため、発光点P11から蛍光導光板9の端面9tに到達した光が光吸収材12に吸収され、端面9tでの反射が大幅に低減される。なお、蛍光導光板9の下辺に対応する端面9tで反射した光は各撮像素子10L,10Rに直接入射しない。そのため、蛍光導光板9の下辺に対応する端面9tには、光吸収材12が設けられていなくてもよいし、設けられていてもよい。 With respect to this problem, in the light detection device 4 of the present embodiment, as shown in FIG. 2A, black tape or the like is attached to the end surface 9t of the fluorescent light guide plate 9 excluding the imaging regions of the imaging elements 10L and 10R. The light absorbing material 12 is provided. Therefore, the light that has reached the end surface 9t of the fluorescent light guide plate 9 from the light emitting point P11 is absorbed by the light absorbing material 12, and reflection at the end surface 9t is greatly reduced. Note that the light reflected by the end surface 9t corresponding to the lower side of the fluorescent light guide plate 9 does not directly enter each of the imaging elements 10L and 10R. Therefore, the light absorbing material 12 may not be provided on the end surface 9t corresponding to the lower side of the fluorescent light guide plate 9, or may be provided.
 これにより、図2(B)に示すように、第1の撮像素子10Lが取得した画像GLには、発光点P11から第1の撮像素子10Lに直接到達した光L1による発光点P11の像のみが現れる。同様に、図2(C)に示すように、第2の撮像素子10Rが取得した画像GRには、発光点P11から第2の撮像素子10Rに直接到達した光R1による発光点P11の像のみが現れる。したがって、(1)式、(2)式に基づいて、発光点P11の座標(x,y)は1個のみ算出される。このように、本実施形態の光検出装置4によれば、発光点P11の位置、すなわちレーザーポインター5によるレーザー光L0の照射位置を1個に特定することができる。 As a result, as shown in FIG. 2B, the image GL acquired by the first image sensor 10L includes only the image of the light emission point P11 by the light L1 directly reaching the first image sensor 10L from the light emission point P11. Appears. Similarly, as shown in FIG. 2C, the image GR acquired by the second image sensor 10R includes only the image of the light emission point P11 by the light R1 that directly reaches the second image sensor 10R from the light emission point P11. Appears. Therefore, only one coordinate (x, y) of the light emitting point P11 is calculated based on the equations (1) and (2). Thus, according to the light detection device 4 of the present embodiment, the position of the light emitting point P11, that is, the irradiation position of the laser light L0 by the laser pointer 5 can be specified as one.
 以上、レーザー光L0の照射位置の座標検出について説明した。しかしながら、ディスプレイ3との組み合わせを考えた場合、座標検出だけでは、使用者は、例えば、レーザー光L0の照射位置を変えてディスプレイ3上のカーソルの位置を変更することはできても、ディスプレイ3上のボタンのON/OFF操作を行うことはできない。実際にインタラクティブ機能を実現するためには、例えばパソコン用マウスのクリック動作のように、ディスプレイ3上のボタン押下動作などを可能にする必要がある。 The coordinate detection of the irradiation position of the laser beam L0 has been described above. However, when the combination with the display 3 is considered, the user can change the position of the cursor on the display 3 by changing the irradiation position of the laser light L0 by only detecting the coordinates, for example. The upper button cannot be turned ON / OFF. In order to actually realize the interactive function, it is necessary to enable a button press operation on the display 3 such as a click operation of a mouse for a personal computer.
 図8は、第1実施形態で用いるレーザーポインター5の斜視図である。レーザーポインター5は、ポインター本体5aと、レーザー光L0の射出(ON)/停止(OFF)を切り替えるためのボタン5bと、を備えている。 FIG. 8 is a perspective view of the laser pointer 5 used in the first embodiment. The laser pointer 5 includes a pointer main body 5a and a button 5b for switching between emission (ON) / stop (OFF) of the laser light L0.
 図8のレーザーポインター5は、レーザー光L0のON/OFFを切り替えることしかできないが、それでも上記のボタン押下動作を行わせることはできる。
 図9は、ボタン押下動作を行わせるためのレーザー光L0のパルスの一例を示す図である。図9の符号(A)で示すように、レーザー光L0がOFFになってからレーザー光L0がONになるまでの期間が予め設定された一定期間よりも長い場合には、制御部21は、ボタンを押す、ボタンを放す等の命令を発生させない。
The laser pointer 5 of FIG. 8 can only switch the laser light L0 ON / OFF, but can still perform the above-described button pressing operation.
FIG. 9 is a diagram illustrating an example of a pulse of the laser beam L0 for causing the button pressing operation. As indicated by reference numeral (A) in FIG. 9, when the period from when the laser beam L0 is turned off to when the laser beam L0 is turned on is longer than a predetermined period, the control unit 21 Does not generate commands such as pressing a button or releasing a button.
 一方、図9の符号(B)で示すように、レーザー光L0がOFFになってからレーザー光L0がONになるまでの期間が一定期間よりも短い場合、制御部21は、ボタン押下命令を発生させる。ボタン押下の状態からレーザー光をOFFにすると、ボタン解放命令を発生させる。これにより、例えばマウスの左ボタンのシングルクリック、ドラッグ&ドロップ等の操作が可能となる。ただし、この方法では、ボタン5bを押したり、離したりするタイミングによっては誤操作を生じる場合があり、使用者はボタン5bの操作に熟練する必要がある。また、ダブルクリック、右ボタン機能、およびスクロール機能がない等の問題があり、一般的なマウスと同等の操作を行うことはできない。 On the other hand, when the period from when the laser beam L0 is turned off to when the laser beam L0 is turned on is shorter than a certain period, as shown by reference numeral (B) in FIG. generate. When the laser beam is turned off from the button pressed state, a button release command is generated. Thereby, for example, a single click of the left button of the mouse, drag & drop, and the like can be performed. However, in this method, an erroneous operation may occur depending on the timing at which the button 5b is pressed or released, and the user needs to be skilled in the operation of the button 5b. In addition, there are problems such as lack of double-click, right button function, and scroll function, and operations equivalent to those of a general mouse cannot be performed.
[変形例]
  図11は、光検出装置4の撮像素子10近傍の構成の変形例を示す拡大正面図である。
 光検出装置4は、図3に示したグリッド11に代えて、レンズ23を備えていてもよい。図11の構成では、レンズ23の光軸は、蛍光導光板9の長辺および短辺と略45°の角度をなす。レンズ23の主点の位置は、蛍光導光板9の切り欠き部9kの形状をなす円弧の中心の位置に略一致する。レンズ23は、蛍光導光板9の端面9tから射出された光を集束させてラインセンサー15上に発光点の像を生成する。
 この変形例は、以下の全ての実施形態に適用が可能である。
[Modification]
FIG. 11 is an enlarged front view showing a modification of the configuration in the vicinity of the image sensor 10 of the light detection device 4.
The light detection device 4 may include a lens 23 instead of the grid 11 shown in FIG. In the configuration of FIG. 11, the optical axis of the lens 23 forms an angle of approximately 45 ° with the long and short sides of the fluorescent light guide plate 9. The position of the principal point of the lens 23 substantially coincides with the position of the center of the arc that forms the notch 9k of the fluorescent light guide plate 9. The lens 23 focuses the light emitted from the end surface 9 t of the fluorescent light guide plate 9 to generate an image of the light emitting point on the line sensor 15.
This modification can be applied to all the following embodiments.
[第2実施形態]
 以下、本発明の第2実施形態について、図12を用いて説明する。
 第2実施形態の光検出装置の基本構成は第1実施形態と同様である。第2実施形態では、蛍光導光板の形状が第1実施形態と異なる。
 図12は、第2実施形態の光検出装置を示す斜視図である。
 図12において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
The basic configuration of the photodetection device of the second embodiment is the same as that of the first embodiment. In the second embodiment, the shape of the fluorescent light guide plate is different from that of the first embodiment.
FIG. 12 is a perspective view showing the photodetecting device of the second embodiment.
In FIG. 12, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1実施形態の光検出装置4においては、蛍光導光板9が平坦な板材で構成されていた。これに対して、第2実施形態の光検出装置26においては、蛍光導光板27が1次元に湾曲した板材で構成されている。その他の構成は、第1実施形態と同様である。蛍光導光板27は、湾曲していても厚みが一定でありさえすれば、内部の導光に影響を与えない。したがって、第1実施形態と同様の手順により、発光点の座標を特定することが可能である。 In the light detection device 4 of the first embodiment, the fluorescent light guide plate 9 is made of a flat plate material. In contrast, in the light detection device 26 of the second embodiment, the fluorescent light guide plate 27 is formed of a plate material that is curved in one dimension. Other configurations are the same as those of the first embodiment. Even if the fluorescent light guide plate 27 is curved, the fluorescent light guide plate 27 does not affect the internal light guide as long as the thickness is constant. Therefore, it is possible to specify the coordinates of the light emitting point by the same procedure as in the first embodiment.
 このように、蛍光導光板27が1次元に湾曲している場合、蛍光導光板27が平坦である場合と発光点の角度-座標変換式((1)式、(2)式で示す)は共通でよい。蛍光導光板27の湾曲の度合いは、内部での導光が不可能な曲率とならない限り、特に限定されない。これに対して、蛍光導光板が2次元に湾曲している場合は、発光点の角度-座標変換は複雑になる。しかしながら、蛍光導光板27の形状が固定であれば、ルックアップテーブル等を用いて発光点の角度-座標変換は可能である。 Thus, when the fluorescent light guide plate 27 is curved in one dimension, the case where the fluorescent light guide plate 27 is flat and the angle-coordinate conversion formulas of the light emitting points (shown by the formulas (1) and (2)) are as follows. It may be common. The degree of curvature of the fluorescent light guide plate 27 is not particularly limited as long as the curvature does not allow internal light guide. On the other hand, when the fluorescent light guide plate is curved two-dimensionally, the angle-coordinate conversion of the light emitting point is complicated. However, if the shape of the fluorescent light guide plate 27 is fixed, angle-coordinate conversion of the light emitting point can be performed using a lookup table or the like.
 第2実施形態の光検出装置26においても、レーザー光の照射位置を確実に特定できるという第1実施形態と同様の効果が得られる。第2実施形態の光検出装置26は、表示面が曲率を有するディスプレイと組み合わせて用いる際に好適である。 Also in the light detection device 26 of the second embodiment, the same effect as that of the first embodiment can be obtained in which the irradiation position of the laser beam can be reliably specified. The light detection device 26 of the second embodiment is suitable when used in combination with a display whose display surface has a curvature.
[第3実施形態]
 以下、本発明の第3実施形態について、図13を用いて説明する。
 第3実施形態の光検出装置の基本構成は第1実施形態と同様である。第3実施形態では、蛍光導光板の表面処理が第1実施形態と異なる。
 図13は、第3実施形態の光検出装置を示す断面図である。
 図13において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIG.
The basic configuration of the photodetection device of the third embodiment is the same as that of the first embodiment. In the third embodiment, the surface treatment of the fluorescent light guide plate is different from the first embodiment.
FIG. 13 is a cross-sectional view showing the photodetecting device of the third embodiment.
In FIG. 13, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1実施形態の図4(B)に示したように、蛍光導光板9の背面9bとディスプレイ3の前面3fとの間には空間があることが好ましいが、この場合、蛍光導光板9の前面9fおよび背面9b、ディスプレイ3の前面3fの3つの面が空気との界面となる。そのため、屋内照明、もしくは屋内照明によって照らされた物体などから来る外光はこれらの3つの面で反射する。外光の反射は、外光が蛍光体13に吸収される前の蛍光導光板9の前面9fにおいて最も大きい。このように、外光の界面反射が大きいと写り込みとなり、背面側にあるディスプレイ3の表示品質が低下するため、好ましくない。 As shown in FIG. 4B of the first embodiment, it is preferable that there is a space between the back surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3. In this case, the fluorescent light guide plate 9 Three surfaces, the front surface 9f and the back surface 9b, and the front surface 3f of the display 3 are interfaces with air. Therefore, the outside light coming from indoor lighting or an object illuminated by the indoor lighting is reflected by these three surfaces. The reflection of outside light is greatest on the front surface 9 f of the fluorescent light guide plate 9 before the outside light is absorbed by the phosphor 13. Thus, when the interface reflection of external light is large, the image is reflected and the display quality of the display 3 on the back side is deteriorated, which is not preferable.
 そこで、第3実施形態の光検出装置30では、蛍光導光板9の前面9fおよび背面9b、ディスプレイ3の前面3fの3つの面に表面処理が施されている。その他の構成は、第1実施形態と同様である。 Therefore, in the light detection device 30 of the third embodiment, surface treatment is performed on the three surfaces of the front surface 9f and the rear surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3. Other configurations are the same as those of the first embodiment.
 具体的には、蛍光導光板9の前面9fに、誘電体多層膜からなる低反射層31が形成されている。誘電体多層膜は、例えば酸化アルミニウム、二酸化チタン、二酸化シリコン、フッ化マグネシウム等の屈折率の異なる薄膜を交互に積層した積層膜で構成される。 Specifically, a low reflection layer 31 made of a dielectric multilayer film is formed on the front surface 9 f of the fluorescent light guide plate 9. The dielectric multilayer film is composed of a laminated film in which thin films having different refractive indexes such as aluminum oxide, titanium dioxide, silicon dioxide, and magnesium fluoride are alternately laminated.
 蛍光導光板9の背面9bには、モスアイ構造を有する低反射層32が形成されている。モスアイ構造は、可視光領域の波長以下の周期で配列された複数の錐状の突起を有する構造である。モスアイ構造を形成する方法としては、例えば蛍光導光板9の一面に紫外線硬化性の樹脂材料を塗布し、樹脂材料上に凹凸形状を有する鋳型を配置して紫外線を照射することで、樹脂材料に鋳型の形状を転写する方法、いわゆるナノインプリント法を用いることができる。その場合、紫外線硬化性のアクリル樹脂を好適に用いることができる。突起の寸法は、例えば高さが100nm以上600nm以下、底面の幅が100nm以上600nm以下である。モスアイ構造を有する低反射層32は、突起の高さ方向で実効的な屈折率がなだらかに変化しているため、反射が低減される。同様に、ディスプレイ3の前面3fにも、モスアイ構造を有する低反射層33が形成されている。 A low reflection layer 32 having a moth-eye structure is formed on the back surface 9 b of the fluorescent light guide plate 9. The moth-eye structure is a structure having a plurality of conical protrusions arranged with a period equal to or shorter than the wavelength of the visible light region. As a method for forming the moth-eye structure, for example, an ultraviolet curable resin material is applied to one surface of the fluorescent light guide plate 9, and a mold having a concavo-convex shape is arranged on the resin material and irradiated with ultraviolet rays. A method of transferring the shape of the template, that is, a so-called nanoimprint method can be used. In that case, an ultraviolet curable acrylic resin can be suitably used. The dimensions of the protrusions are, for example, a height of 100 nm to 600 nm and a bottom surface width of 100 nm to 600 nm. In the low reflection layer 32 having the moth-eye structure, since the effective refractive index changes gently in the height direction of the protrusion, reflection is reduced. Similarly, a low reflection layer 33 having a moth-eye structure is also formed on the front surface 3 f of the display 3.
 第3実施形態の光検出装置30においても、レーザー光の照射位置を確実に特定できるという第1、第2実施形態と同様の効果が得られる。蛍光導光板9の前面9fおよび背面9b、ディスプレイ3の前面3fの3つの面にそれぞれ低反射層31,32,33が形成されているため、ディスプレイ3の表示品質の低下を抑えることができる。手や物品がモスアイ構造に触れると、モスアイ構造が劣化し、反射抑制機能が低下する虞がある。しかしながら、本実施形態の場合、使用者側に露出しない蛍光導光板9の背面9bとディスプレイ3の前面3fとにモスアイ構造が用いられているため、モスアイ構造の反射抑制機能が低下するおそれがない。ただし、上記の欠点が特に問題とならない場合には、モスアイ構造を蛍光導光板9の前面9fに用いてもよく、逆に、一般的な低反射層を蛍光導光板9の背面9bとディスプレイ3の前面3fとに用いてもよい。すなわち、これら複数の面のいずれにモスアイ構造を用い、一般的な低反射層を用いるかは適宜選択が可能である。 Also in the photodetecting device 30 of the third embodiment, the same effect as in the first and second embodiments that the irradiation position of the laser beam can be reliably specified can be obtained. Since the low reflection layers 31, 32, and 33 are formed on the three surfaces of the front surface 9f and the rear surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3, respectively, it is possible to suppress the display quality of the display 3 from deteriorating. When a hand or an article touches the moth-eye structure, the moth-eye structure is deteriorated and the reflection suppressing function may be lowered. However, in the case of the present embodiment, since the moth-eye structure is used for the back surface 9b of the fluorescent light guide plate 9 that is not exposed to the user side and the front surface 3f of the display 3, there is no possibility that the reflection suppressing function of the moth-eye structure will deteriorate. . However, if the above-mentioned drawbacks are not particularly problematic, a moth-eye structure may be used for the front surface 9f of the fluorescent light guide plate 9, and conversely, a general low reflection layer is used for the back surface 9b of the fluorescent light guide plate 9 and the display 3. The front surface 3f may be used. That is, it is possible to appropriately select which of the plurality of surfaces uses the moth-eye structure and uses a general low reflection layer.
[第4実施形態]
 以下、本発明の第4実施形態について、図14を用いて説明する。
 第4実施形態の光検出装置の基本構成は第1実施形態と同様である。第4実施形態では、蛍光導光板に表面処理を施している点は第3実施形態と同様であり、表面処理の具体的形態が第3実施形態と異なる。
 図14は、第4実施形態の光検出装置を示す断面図である。
 図14において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the photodetection device of the fourth embodiment is the same as that of the first embodiment. In 4th Embodiment, the point which surface-treats to the fluorescence light-guide plate is the same as that of 3rd Embodiment, and the specific form of surface treatment differs from 3rd Embodiment.
FIG. 14 is a cross-sectional view showing the photodetecting device of the fourth embodiment.
14, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and detailed description is abbreviate | omitted.
 第3実施形態の光検出装置30では、蛍光導光板9の前面9fに誘電体多層膜からなる低反射層31が形成されていた。蛍光導光板9の表面処理として、必ずしも低反射層31の形成により反射光全体の光量を低減させる必要はなく、外光を散乱させて指向性を低減させるものであってもよい。そこで、第4実施形態の光検出装置35では、蛍光導光板9の前面に光散乱層36が設けられている。光散乱層36としては、例えば透明基材中に透明基材の屈折率と異なる屈折率を有する粒子を分散させた層であってもよいし、表面に微細な凹凸を形成した層であってもよい。 In the light detection device 30 of the third embodiment, the low reflection layer 31 made of a dielectric multilayer film is formed on the front surface 9 f of the fluorescent light guide plate 9. As the surface treatment of the fluorescent light guide plate 9, it is not always necessary to reduce the light amount of the entire reflected light by forming the low reflection layer 31, and the directivity may be reduced by scattering external light. Therefore, in the light detection device 35 of the fourth embodiment, the light scattering layer 36 is provided on the front surface of the fluorescent light guide plate 9. The light scattering layer 36 may be, for example, a layer in which particles having a refractive index different from the refractive index of the transparent substrate are dispersed in a transparent substrate, or a layer having fine irregularities formed on the surface. Also good.
 蛍光導光板9の前面9に光散乱層36を直接形成したとすると、蛍光導光板9内を光が進行する際に光散乱層36から光が漏れ、導光が阻害されるおそれがある。そのため、蛍光導光板9の屈折率よりも低い屈折率を有する低屈折率層37が、蛍光導光板9と光散乱層36との間に形成されている。この構成であれば、光散乱層36からの光漏れを抑制することができる。蛍光導光板9の背面9bとディスプレイ3の前面3fとに、モスアイ構造を有する低反射層32,33がそれぞれ形成されている点は、第3実施形態と同様である。その他の構成は、第1実施形態と同様である。 If the light scattering layer 36 is directly formed on the front surface 9 of the fluorescent light guide plate 9, light may leak from the light scattering layer 36 when the light travels through the fluorescent light guide plate 9, and the light guide may be hindered. Therefore, a low refractive index layer 37 having a refractive index lower than that of the fluorescent light guide plate 9 is formed between the fluorescent light guide plate 9 and the light scattering layer 36. With this configuration, light leakage from the light scattering layer 36 can be suppressed. The low reflection layers 32 and 33 having a moth-eye structure are formed on the back surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3, respectively, as in the third embodiment. Other configurations are the same as those of the first embodiment.
 第4実施形態の光検出装置35においても、レーザー光の照射位置を確実に特定できるという第1~第3実施形態と同様の効果が得られる。蛍光導光板9の前面9fに光散乱層36が形成され、蛍光導光板9の背面9b、ディスプレイ3の前面3fに低反射層32,33が形成されているため、ディスプレイ3の表示品質の低下を抑えることができる。 Also in the light detection device 35 of the fourth embodiment, an effect similar to that of the first to third embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Since the light scattering layer 36 is formed on the front surface 9f of the fluorescent light guide plate 9, and the low reflection layers 32 and 33 are formed on the rear surface 9b of the fluorescent light guide plate 9 and the front surface 3f of the display 3, the display quality of the display 3 is degraded. Can be suppressed.
[第5実施形態]
 以下、本発明の第5実施形態について、図15、図16を用いて説明する。
 第5実施形態の光検出装置の基本構成は第1実施形態と同様である。第5実施形態の光検出装置は、蛍光導光板の複数の箇所に光が照射されたときにそれらを識別する識別手段を備えている。識別手段の第1の例について説明する。
 図15(A)は、第5実施形態の光検出装置の正面図である。図15(B)は、第1の撮像素子が取得した画像を示す図である。図15(C)は、第2の撮像素子が取得した画像を示す図である。
 図16は、2個のレーザーポインターから射出されるレーザー光のパルスを示す図である。
 図15(A)~(C)において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Fifth Embodiment]
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS. 15 and 16.
The basic configuration of the photodetector in the fifth embodiment is the same as that in the first embodiment. The light detection device according to the fifth embodiment includes identification means for identifying a plurality of portions of the fluorescent light guide plate when the light is irradiated. A first example of identification means will be described.
FIG. 15A is a front view of the photodetecting device of the fifth embodiment. FIG. 15B is a diagram illustrating an image acquired by the first image sensor. FIG. 15C is a diagram illustrating an image acquired by the second imaging element.
FIG. 16 is a diagram showing pulses of laser light emitted from two laser pointers.
In FIGS. 15A to 15C, the same reference numerals are given to the same components as those in the drawing used in the first embodiment, and detailed description thereof will be omitted.
 第5実施形態では、図15(A)に示すように、蛍光導光板9の異なる2箇所にレーザー光L0,L0’が照射された場合を想定する。レーザー光L0,L0’が照射されたときの2つの発光点を、それぞれ発光点P11、発光点P22とする。このとき、図15(B)に示すように、第1の撮像素子10Lが取得した画像GLには、2つの発光点の像L1,L2が現れる。像L1は、発光点P11から第1の撮像素子10Lに到達した光による発光点P11の像である。像L2は、発光点P22から第1の撮像素子10Lに到達した光による発光点P22の像である。 In the fifth embodiment, as shown in FIG. 15A, it is assumed that two different places of the fluorescent light guide plate 9 are irradiated with laser beams L0 and L0 '. Two emission points when the laser beams L0 and L0 'are irradiated are set as an emission point P11 and an emission point P22, respectively. At this time, as shown in FIG. 15B, two light-emitting point images L1 and L2 appear in the image GL acquired by the first imaging element 10L. The image L1 is an image of the light emission point P11 by light that has reached the first imaging element 10L from the light emission point P11. The image L2 is an image of the light emission point P22 by light that has reached the first image sensor 10L from the light emission point P22.
 同様に、図15(C)に示すように、第2の撮像素子10Rが取得した画像GRには、2つの発光点の像R1,R2が現れる。像R1は、発光点P11から第2の撮像素子10Rに到達した光による発光点P11の像である。像R2は、発光点P22から第2の撮像素子10Rに到達した光による発光点P22の像である。 Similarly, as shown in FIG. 15C, two light emitting point images R1 and R2 appear in the image GR acquired by the second image sensor 10R. The image R1 is an image of the light emission point P11 by light that has reached the second image sensor 10R from the light emission point P11. The image R2 is an image of the light emission point P22 by light that has reached the second image sensor 10R from the light emission point P22.
 2個の撮像素子10L,10Rの画像GL,GRを組み合わせると、発光点の座標(x,y)は4通り算出される。しかしながら、4個の座標検出結果のうち、どの2個が真の座標であるかを特定することは不可能である。 When the images GL and GR of the two image sensors 10L and 10R are combined, the coordinates (x, y) of the light emitting point are calculated in four ways. However, it is impossible to specify which two of the four coordinate detection results are true coordinates.
 そこで、2個のレーザーポインターからそれぞれ射出されるレーザー光L0,L0’に対して特有のパルス波形を有するパルス光を重畳させる。例えば図16に示すように、発光点P11に照射されるレーザー光L0は、図16の上段に示すパルス波形を有する。これに対して、発光点P22に照射されるレーザー光L0’は、図16の下段に示すパルス波形を有する。このように、発光点P11に照射されるレーザー光L0と発光点P22に照射されるレーザー光L0’とでパルス波形を異ならせる。この場合、各発光点P11,P22から発せられる光も、各レーザー光L0,L0’のパルス波形を反映し、異なる発光パルス波形を有する。 Therefore, pulse light having a specific pulse waveform is superimposed on the laser light L0 and L0 'emitted from the two laser pointers, respectively. For example, as shown in FIG. 16, the laser light L0 irradiated to the light emitting point P11 has a pulse waveform shown in the upper part of FIG. On the other hand, the laser beam L0 'irradiated to the light emitting point P22 has a pulse waveform shown in the lower part of FIG. In this way, the pulse waveforms are made different between the laser light L0 irradiated to the light emitting point P11 and the laser light L0 'irradiated to the light emitting point P22. In this case, the light emitted from each light emitting point P11, P22 also reflects the pulse waveform of each laser beam L0, L0 'and has a different light emission pulse waveform.
 位置検出部20は、第1の撮像素子10Lの画像GLにおける発光点の像L1と像L2とで発光パルス波形を比較し、第2の撮像素子10Rの画像GRにおける発光点の像R1と像R2とで発光パルス波形を比較する。同じパターンの発光パルス波形を有する像同士を組み合わせることで、2個の発光点P11,P22の座標を特定することができる。このような識別用のパルス波形と、図9に示したボタン操作用のパルス波形と、を併用することもできる。光検出装置39のその他の構成は、第1実施形態と同様である。 The position detection unit 20 compares the light emission pulse waveforms between the image L1 and the image L2 of the light emission point in the image GL of the first image sensor 10L, and the image R1 and the image of the light emission point in the image GR of the second image sensor 10R. The light emission pulse waveform is compared with R2. By combining the images having the light emission pulse waveforms of the same pattern, the coordinates of the two light emission points P11 and P22 can be specified. Such a pulse waveform for identification and the pulse waveform for button operation shown in FIG. 9 can be used in combination. Other configurations of the light detection device 39 are the same as those in the first embodiment.
 第5実施形態の光検出装置39においても、レーザー光の照射位置を確実に特定できるという第1~第4実施形態と同様の効果が得られる。特に第5実施形態においては、例えば2人の使用者がレーザーポインターをそれぞれ持ち、1台の電子機器を共用する場合、1人の使用者が2個のレーザーポインターを同時に使用する場合があっても、2個の発光点P11,P22の座標を確実に特定できる。 Also in the light detection device 39 of the fifth embodiment, the same effect as in the first to fourth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably. Particularly in the fifth embodiment, for example, when two users each have a laser pointer and share one electronic device, one user may use two laser pointers at the same time. Also, the coordinates of the two light emitting points P11 and P22 can be reliably specified.
 なお、2個のレーザーポインターからそれぞれ射出されるレーザー光L0,L0’に対して、パルス波形を異ならせることに代えて、周波数を異ならせてもよい。もしくは、レーザー光L0,L0’のビーム径を異ならせてもよい。この場合、レーザー光L0,L0’のビーム径の差異に応じて、各撮像素子10L,10Rの画像GL,GRにおける2つの発光点P11,P22の像の幅も異なる。幅が等しい像同士を組み合わせることで、2個の発光点の座標を特定することができる。 It should be noted that the frequencies of the laser beams L0 and L0 'respectively emitted from the two laser pointers may be made different from each other instead of making the pulse waveforms different. Alternatively, the beam diameters of the laser beams L0 and L0 'may be varied. In this case, the image widths of the two light emitting points P11 and P22 in the images GL and GR of the imaging elements 10L and 10R are also different according to the difference in the beam diameters of the laser beams L0 and L0 '. By combining images having the same width, the coordinates of two light emitting points can be specified.
[第6実施形態]
 以下、本発明の第6実施形態について、図17を用いて説明する。
 第6実施形態の光検出装置の基本構成は第1実施形態と同様である。第6実施形態では、蛍光導光板の複数の箇所に光が照射されたときにそれらを識別する識別手段の第2の例について説明する。
 図17は、第6実施形態の光検出装置において、発光点の変化の様子を時系列で示す正面図である。
 図17において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Sixth Embodiment]
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the light detection device of the sixth embodiment is the same as that of the first embodiment. In the sixth embodiment, a second example of identification means for identifying a plurality of portions of a fluorescent light guide plate when light is irradiated will be described.
FIG. 17 is a front view showing, in a time series, how the light emission points change in the photodetector of the sixth embodiment.
In FIG. 17, the same components as those used in the first embodiment are designated by the same reference numerals, and detailed description thereof is omitted.
 厳密に2個のレーザーポインターが同時に点灯もしくは消灯することはほとんどあり得ない。2個のレーザーポインターの点灯タイミングもしくは消灯タイミングには、微小ではあっても必ず時間のずれがあるはずである。図17に示すように、例えばレーザー光L0’が発光点P22に先に照射され、その後、レーザー光L0が発光点P11に照射されたものとする。図17の左側から右側に向けて時間が経過し、各図F1~F4を第1フレーム~第4フレームとする。 Strictly two laser pointers can hardly be turned on or off at the same time. There should be a time lag in the timing of turning on or off the two laser pointers, even if they are very small. As shown in FIG. 17, for example, it is assumed that the laser beam L0 ′ is irradiated to the light emitting point P22 first, and then the laser beam L0 is irradiated to the light emitting point P11. As time elapses from the left side to the right side in FIG. 17, each of the figures F1 to F4 is defined as a first frame to a fourth frame.
 この場合、位置検出部20は、第1フレームF1において発光点P22で発光が生じた際に発光点P22の像を記憶する。その後、第2フレームF2において発光点P11で発光が生じた際、新たに生じた発光点P11の像の位置を既に記憶されていた発光点P22の像の位置と比較すれば、発光点P11の像を識別することができる。同様に、第4フレームF4において発光点P22の発光が停止した際には、発光点P11のみの像を記憶する。光検出装置の他の構成は、第1実施形態と同様である。 In this case, the position detection unit 20 stores an image of the light emission point P22 when light emission occurs at the light emission point P22 in the first frame F1. Thereafter, when light emission occurs at the light emission point P11 in the second frame F2, if the position of the newly generated image of the light emission point P11 is compared with the position of the already stored image of the light emission point P22, the light emission point P11 The image can be identified. Similarly, when light emission at the light emission point P22 is stopped in the fourth frame F4, an image of only the light emission point P11 is stored. Other configurations of the light detection device are the same as those in the first embodiment.
 第6実施形態の光検出装置においても、レーザー光の照射位置を確実に特定できるという第1~第5実施形態と同様の効果が得られる。特に第6実施形態においては、各発光点の位置を時間軸で見ることによって2個のレーザーポインターの仕様を変えることなく、2個の発光点の座標を確実に特定することができる。 In the light detection apparatus of the sixth embodiment, the same effect as in the first to fifth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. In particular, in the sixth embodiment, the coordinates of the two light emitting points can be reliably specified without changing the specifications of the two laser pointers by looking at the position of each light emitting point on the time axis.
[第7実施形態]
 以下、本発明の第7実施形態について、図18、図19を用いて説明する。
 第7実施形態の光検出装置の基本構成は第1実施形態と同様である。第7実施形態では、蛍光導光板の複数の箇所に光が照射されたときにそれらを識別する識別手段の第3の例について説明する。
 図18(A)は、第7実施形態の光検出装置の正面図である。図18(B)は、第1の撮像素子が取得した画像を示す図である。図18(C)は、第2の撮像素子が取得した画像を示す図である。図19は、3個のレーザーポインターから射出されるレーザー光の波長および蛍光体の発光波長を示す図である。
 図18(A)~(C)において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Seventh Embodiment]
Hereinafter, a seventh embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the photodetector in the seventh embodiment is the same as that in the first embodiment. 7th Embodiment demonstrates the 3rd example of the identification means which identifies them when light is irradiated to the several location of a fluorescence light-guide plate.
FIG. 18A is a front view of the photodetector in the seventh embodiment. FIG. 18B is a diagram illustrating an image acquired by the first image sensor. FIG. 18C is a diagram illustrating an image acquired by the second imaging element. FIG. 19 is a diagram showing the wavelength of laser light emitted from three laser pointers and the emission wavelength of the phosphor.
In FIGS. 18A to 18C, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第7実施形態の光検出装置42においては、図18(A)に示すように、第1のレーザーポインター5Aから蛍光導光板9に向けて第1のレーザー光L0が照射されている。第2のレーザーポインター5Bから蛍光導光板9に向けて第2のレーザー光L0’が照射されている。第3のレーザーポインター5Cから蛍光導光板9に向けて第3のレーザー光L0’’が照射されている。第1のレーザーポインター5Aは、赤色波長域のレーザー光L0を射出する。第2のレーザーポインター5Bは、青紫色波長域のレーザー光L0’を射出する。第3のレーザーポインター5Cは、赤外波長域のレーザー光L0’’を射出する。このように、第1のレーザーポインター5Aの発光波長域と、第2のレーザーポインター5Bの発光波長域と、第3のレーザーポインター5Cの発光波長域とは、それぞれ異なっている。 In the photodetecting device 42 of the seventh embodiment, as shown in FIG. 18A, the first laser light L0 is emitted from the first laser pointer 5A toward the fluorescent light guide plate 9. The second laser beam L0 'is emitted from the second laser pointer 5B toward the fluorescent light guide plate 9. The third laser beam L 0 ″ is emitted from the third laser pointer 5 C toward the fluorescent light guide plate 9. The first laser pointer 5A emits laser light L0 in the red wavelength region. The second laser pointer 5B emits a laser beam L0 'in the blue-violet wavelength region. The third laser pointer 5C emits laser light L0 ″ in the infrared wavelength region. As described above, the emission wavelength range of the first laser pointer 5A, the emission wavelength range of the second laser pointer 5B, and the emission wavelength range of the third laser pointer 5C are different from each other.
 蛍光導光板9には、図19に示すように、励起波長域および発光波長域がそれぞれ異なる3種類の蛍光体が含まれている。第1の蛍光体は、赤色光(太い実線で示す)により励起されて赤外光(細い実線で示す)を射出する蛍光体(符号(A)で示す)である。第2の蛍光体は、青紫色光(太い1点鎖線で示す)により励起されて青色光(細い1点鎖線で示す)を射出する蛍光体(符号(B)で示す)である。第3の蛍光体は、赤外光(細い実線で示す)により励起されて緑色光(破線で示す)を射出するアップコンバージョン蛍光体(符号(C)で示す)である。これら3種類の蛍光体は、蛍光導光板9の内部に均等に分散されている。それぞれの蛍光体の励起波長域と発光波長域とは、できるだけ重ならないことが望ましい。 As shown in FIG. 19, the fluorescent light guide plate 9 includes three types of phosphors having different excitation wavelength ranges and emission wavelength ranges. The first phosphor is a phosphor (indicated by symbol (A)) that is excited by red light (indicated by a thick solid line) and emits infrared light (indicated by a thin solid line). The second phosphor is a phosphor (indicated by symbol (B)) that is excited by blue-violet light (indicated by a thick one-dot chain line) and emits blue light (indicated by a thin one-dot chain line). The third phosphor is an up-conversion phosphor (indicated by symbol (C)) that is excited by infrared light (indicated by a thin solid line) and emits green light (indicated by a broken line). These three types of phosphors are evenly dispersed inside the fluorescent light guide plate 9. It is desirable that the excitation wavelength region and the emission wavelength region of each phosphor do not overlap as much as possible.
 撮像素子10は、ラインセンサーの光入射側にカラーフィルターを備えている。撮像素子10は、カラーフィルターを備えたことにより、波長の異なる光を識別することができる。そのため、赤外光による像同士、青色光による像同士、緑色光による像同士を組み合わせることで、3個の発光点の座標を特定することができる。
 第7実施形態の光検出装置42においても、レーザー光の照射位置を確実に特定できるという第1~第6実施形態と同様の効果が得られる。第7実施形態の光検出装置42においても、複数個の発光点の座標を確実に特定することができる。第7実施形態の光検出装置42をディスプレイと組み合わせる場合、ディスプレイの表示内容の影響を受けないように、励起光の波長域は可視光域の外側にあることが望ましい。
The image sensor 10 includes a color filter on the light incident side of the line sensor. The imaging element 10 can identify light having different wavelengths by including a color filter. Therefore, the coordinates of the three light emitting points can be specified by combining the images of infrared light, the images of blue light, and the images of green light.
Also in the light detection device 42 of the seventh embodiment, the same effect as in the first to sixth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably. Also in the light detection device 42 of the seventh embodiment, the coordinates of a plurality of light emitting points can be specified reliably. When combining the photodetector 42 of the seventh embodiment with a display, it is desirable that the wavelength range of the excitation light be outside the visible light range so as not to be affected by the display content of the display.
[第8実施形態]
 以下、本発明の第8実施形態について、図20、図21を用いて説明する。
 第8実施形態では、位置入力装置を構成するレーザーポインターの他の例について説明する。
 図20は、第8実施形態のレーザーポインターの斜視図である。図21は、レーザーポインターから出力される光信号のタイミングチャートである。
[Eighth Embodiment]
The eighth embodiment of the present invention will be described below with reference to FIGS.
In the eighth embodiment, another example of a laser pointer constituting the position input device will be described.
FIG. 20 is a perspective view of the laser pointer of the eighth embodiment. FIG. 21 is a timing chart of an optical signal output from the laser pointer.
 図8に示した第1実施形態のレーザーポインター5は、レーザー光のON/OFF切り替えのためのボタン5bのみを備えていた。これに対して、図20に示すように、第8実施形態のレーザーポインター46は、レーザー光のON/OFF切り替えボタン47に加えて、第1の機能ボタン48,第2の機能ボタン49と、ジョグダイヤル50と、を備えている。ジョグダイヤル50は、例えばディスプレイの画面スクロール操作を行うためのものである。 The laser pointer 5 of the first embodiment shown in FIG. 8 has only a button 5b for switching on / off of laser light. On the other hand, as shown in FIG. 20, the laser pointer 46 of the eighth embodiment includes a first function button 48, a second function button 49, in addition to the laser light ON / OFF switching button 47, And a jog dial 50. The jog dial 50 is for performing a screen scroll operation of the display, for example.
 使用者はレーザーポインター46を持った状態で、親指でON/OFF切り替えボタン47とジョグダイヤル50とを操作することができ、人差し指で第1の機能ボタン48を、中指で第2の機能ボタン49を操作することができる。これにより、マウスと同等の機能ボタンを備えたレーザーポインターを構成することができる。レーザーポインター46の各ボタン47,48,49を押したときにその動作でレーザー光L0の射出方向がぶれ、照射位置がずれることは好ましくない。そのため、各ボタン47,48,49を押したときに加わる力のベクトルがレーザーポインター46の重心を通るように各ボタン47,48,49の位置等を設計することが望ましい。そうすれば、各ボタン47,48,49を押したときに無駄な回転運動が生じず、レーザーポインター46の操作性が向上する。 The user can operate the ON / OFF switching button 47 and the jog dial 50 with the thumb while holding the laser pointer 46, the first function button 48 with the index finger, and the second function button 49 with the middle finger. Can be operated. As a result, a laser pointer having function buttons equivalent to those of a mouse can be configured. When each button 47, 48, 49 of the laser pointer 46 is pushed, it is not preferable that the irradiation direction of the laser beam L0 is shifted by the operation and the irradiation position is shifted. Therefore, it is desirable to design the position of each button 47, 48, 49 so that the vector of force applied when each button 47, 48, 49 is pressed passes through the center of gravity of the laser pointer 46. Then, when the buttons 47, 48, 49 are pressed, useless rotational movement does not occur, and the operability of the laser pointer 46 is improved.
 図21に示すように、レーザー光L0が出力されているとき、すなわちON/OFF切り替えボタン47が押されたON状態のとき、第1の機能ボタン48を押してON状態((A)の期間)とすると、第1の機能ボタン48が押されている期間だけレーザー光L0に所定のパルス波形が重畳される。位置検出部20は、このパルス光を検出することにより第1の機能ボタン48が押されたことを認識する。第2の機能ボタン49についても同様である。 As shown in FIG. 21, when the laser beam L0 is output, that is, when the ON / OFF switching button 47 is pressed, the first function button 48 is pressed to turn it on (period (A)). Then, a predetermined pulse waveform is superimposed on the laser beam L0 only during a period when the first function button 48 is pressed. The position detector 20 recognizes that the first function button 48 has been pressed by detecting this pulsed light. The same applies to the second function button 49.
 なお、上記の構成に代えて、ON/OFF切り替えボタン47が押されていない状態で第1の機能ボタン48が押されたとき、パルス波形が重畳されたレーザー光を出力する構成としてもよい。第1の機能ボタン48と第2の機能ボタン49とで出力するレーザー光の波長を異ならせてもよい。もしくは、パルスを有するレーザー光を用いることに代えて、例えば無線通信等の他の手段でボタン押下情報を伝達してもよい。 Note that, instead of the above-described configuration, when the first function button 48 is pressed in a state where the ON / OFF switching button 47 is not pressed, a laser beam on which a pulse waveform is superimposed may be output. The wavelength of the laser beam output by the first function button 48 and the second function button 49 may be different. Alternatively, instead of using a laser beam having a pulse, the button press information may be transmitted by other means such as wireless communication.
 蛍光導光板をディスプレイに重ねる場合、ディスプレイの映像の変化がノイズとして発光の検出に影響を与えることは好ましくない。同様に、使用場所の照明の調光がノイズとして発光の検出に影響を与えることは好ましくない。この問題の対策として、レーザーポインターのパルス光の周波数をディスプレイの書き込みや照明の調光の周波数と異ならせること、周波数を分離する機構を光検出装置に設けること、などが考えられる。また、蛍光導光板中に含まれる蛍光体の遅延時間はパルス光の周期に対して充分に短いことが望ましい。 When the fluorescent light guide plate is overlaid on the display, it is not preferable that the change in the display image affects the detection of light emission as noise. Similarly, it is not preferable that the lighting control at the place of use affects the detection of light emission as noise. As countermeasures against this problem, it is conceivable that the frequency of the pulsed light of the laser pointer is different from the frequency of dimming the display or lighting, and a mechanism for separating the frequency is provided in the light detection device. Further, it is desirable that the delay time of the phosphor contained in the fluorescent light guide plate is sufficiently short with respect to the period of the pulsed light.
 使用者は、第1実施形態のレーザーポインター5に代えて、第8実施形態のレーザーポインター46を使用することにより、ON/OFF切り替えボタンの押し加減等の特殊な操作を習熟する必要がなく、各種の操作を容易に行うことができる。 By using the laser pointer 46 of the eighth embodiment instead of the laser pointer 5 of the first embodiment, the user does not need to master special operations such as pressing the ON / OFF switching button. Various operations can be easily performed.
[第9実施形態]
 以下、本発明の第9実施形態について、図22を用いて説明する。
 第9実施形態の光検出装置の基本構成は第1実施形態と同様である。第9実施形態の光検出装置は、撮像素子の数が第1実施形態と異なる。
 図22は、第9実施形態の光検出装置の正面図である。
 図22において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Ninth Embodiment]
The ninth embodiment of the present invention will be described below with reference to FIG.
The basic configuration of the photodetector in the ninth embodiment is the same as that in the first embodiment. The light detection device of the ninth embodiment differs from the first embodiment in the number of image sensors.
FIG. 22 is a front view of the light detection device according to the ninth embodiment.
22, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and detailed description is abbreviate | omitted.
 第1実施形態の光検出装置4は、蛍光導光板4の左下と右下の2箇所に撮像素子10を備えていた。これに対して、第9実施形態の光検出装置53は、図22に示すように、蛍光導光板9の4箇所の角部の全てに撮像素子10を備えている。撮像素子10が備えられた蛍光導光板9の角部に円弧状の切り欠き部9kが設けられたこと、蛍光導光板9と撮像素子10との間にグリッド11が設けられたことは、第1実施形態と同様である。切り欠き部9kを除く蛍光導光板9の端面9tに光吸収材12が設けられたことも、第1実施形態と同様である。 The light detection device 4 according to the first embodiment includes the image pickup devices 10 at two locations on the lower left and lower right of the fluorescent light guide plate 4. On the other hand, as shown in FIG. 22, the light detection device 53 of the ninth embodiment includes the imaging elements 10 at all four corners of the fluorescent light guide plate 9. The fact that the arc-shaped notch 9k is provided at the corner of the fluorescent light guide plate 9 provided with the image pickup device 10 and the grid 11 is provided between the fluorescent light guide plate 9 and the image pickup device 10 This is the same as in the first embodiment. Similarly to the first embodiment, the light absorbing material 12 is provided on the end surface 9t of the fluorescent light guide plate 9 excluding the notch 9k.
 第9実施形態の光検出装置53においても、レーザー光の照射位置を確実に特定できるという第1~第8実施形態と同様の効果が得られる。さらに、撮像素子10を4個に増やしたことにより、以下の3つの効果が得られる。 Also in the light detection device 53 of the ninth embodiment, the same effect as in the first to eighth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Furthermore, by increasing the number of image pickup devices 10 to four, the following three effects can be obtained.
 第1の効果は、発光点の位置読み取り精度の向上である。
 図22において、仮に蛍光導光板9の左下と右下の2箇所のみに撮像素子10LB,撮像素子10RBが設けられていたとすると、撮像素子10LB,撮像素子10RBに近い発光点P11の位置は精度良く検出できる。しかしながら、撮像素子10LB,撮像素子10RBから遠い発光点P22の位置については、発光点P22の位置変化に対する光線の角度変化が小さいため、高い精度で位置検出を行うことが難しくなる。
The first effect is an improvement in the position reading accuracy of the light emitting point.
In FIG. 22, assuming that the image sensor 10LB and the image sensor 10RB are provided only at two locations on the lower left and lower right of the fluorescent light guide plate 9, the position of the light emitting point P11 close to the image sensor 10LB and the image sensor 10RB is accurate. It can be detected. However, regarding the position of the light emitting point P22 far from the image sensor 10LB and the image sensor 10RB, it is difficult to detect the position with high accuracy because the change in the angle of the light beam with respect to the position change of the light emitting point P22 is small.
 このような場合、4個の撮像素子10LB,10RB,10LT,10RTがあれば、発光点22の位置検出に蛍光導光板9の左上の撮像素子10LT、右上の撮像素子10RTを用いることにより、高い精度で位置検出を行うことができる。同様に、蛍光導光板9の右辺寄りの発光点に対しては、蛍光導光板9の右上の撮像素子10RTと右下の撮像素子10RBを用い、蛍光導光板9の左辺寄りの発光点に対しては、蛍光導光板9の左上の撮像素子10LTと左下の撮像素子10LBを用いることにより、高い精度で位置検出を行うことができる。 In such a case, if there are four image pickup devices 10LB, 10RB, 10LT, and 10RT, the upper left image pickup device 10LT and the upper right image pickup device 10RT of the fluorescent light guide plate 9 are used for detecting the position of the light emitting point 22, which is high. Position detection can be performed with accuracy. Similarly, for the light emitting point near the right side of the fluorescent light guide plate 9, the upper right image sensor 10RT and the lower right image sensor 10RB of the fluorescent light guide plate 9 are used, and the light emitting point near the left side of the fluorescent light guide plate 9 is used. Thus, by using the upper left image sensor 10LT and the lower left image sensor 10LB of the fluorescent light guide plate 9, position detection can be performed with high accuracy.
 第2の効果は、撮像素子10の故障検出である。
 撮像素子10が4個以上ある場合、それぞれの撮像素子10から得られる位置情報の矛盾から、故障している撮像素子10を特定することができる。これにより、位置検出部20は、発光点の座標を算出する際に故障している撮像素子10の位置情報を使わない、故障している撮像素子10を使用者に報知する、等のアクションを取ることが可能となる。
The second effect is failure detection of the image sensor 10.
When there are four or more image sensors 10, the malfunctioning image sensor 10 can be specified from the contradiction of position information obtained from each image sensor 10. Thereby, the position detection unit 20 does not use the position information of the malfunctioning image sensor 10 when calculating the coordinates of the light emitting point, and notifies the user of the malfunction image sensor 10. It becomes possible to take.
 第3の効果は、撮像素子10の冗長性である。
 撮像素子10が2個の場合、一方の撮像素子10が故障すると、発光点の位置検出ができなくなる。その点、撮像素子10が3個以上あれば、撮像素子10の故障を検知し、有効な撮像素子10のみを用いることにより位置検出機能を失うことがない。
A third effect is redundancy of the image sensor 10.
In the case of two image sensors 10, if one of the image sensors 10 fails, the position of the light emitting point cannot be detected. In that respect, if there are three or more image sensors 10, the failure of the image sensor 10 is detected, and the position detection function is not lost by using only the effective image sensor 10.
[第10実施形態]
 以下、本発明の第10実施形態について、図23を用いて説明する。
 第10実施形態の光検出装置の基本構成は第1実施形態と同様である。第10実施形態の光検出装置は、撮像素子の他に光検出素子を備えている点が第1実施形態と異なる。
 図23は、第10実施形態の光検出装置の正面図である。
 図23において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Tenth embodiment]
Hereinafter, a tenth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the photodetector in the tenth embodiment is the same as that in the first embodiment. The light detection apparatus according to the tenth embodiment is different from the first embodiment in that a light detection element is provided in addition to the imaging element.
FIG. 23 is a front view of the light detection device according to the tenth embodiment.
In FIG. 23, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図23に示すように、第10実施形態の光検出装置56は、蛍光導光板9の左上の角部の端面に、蛍光体から光が発せられたことを検出する光検出素子57を備えている。光検出素子57には、例えばフォトダイオード、撮像素子10に比べて画素数が充分に少ないラインセンサーなどを用いることができる。光検出素子57の位置は、必ずしも蛍光導光板9の左上の角部に限ることはなく、任意の場所に設置することができる。 As shown in FIG. 23, the light detection device 56 of the tenth embodiment includes a light detection element 57 that detects that light is emitted from the phosphor on the end face of the upper left corner of the fluorescent light guide plate 9. Yes. As the light detection element 57, for example, a photodiode or a line sensor having a sufficiently small number of pixels as compared with the imaging element 10 can be used. The position of the light detection element 57 is not necessarily limited to the upper left corner of the fluorescent light guide plate 9 and can be installed at an arbitrary place.
 第10実施形態の光検出装置56においても、レーザー光の照射位置を確実に特定できるという第1~第9実施形態と同様の効果が得られる。 Also in the light detection device 56 of the tenth embodiment, the same effect as in the first to ninth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably.
 第10実施形態の光検出装置56においては、以下の特有な効果が得られる。
 撮像素子10は、発光点の座標を特定するために、1次元または2次元のアレイセンサーである必要がある。しかしながら、1次元または2次元のアレイセンサーでは画像の読み取りを行う際に走査が必要である。そのため、1次元または2次元のアレイセンサーでは検出速度に限界があり、レーザー光にパルス信号を重畳させる場合、情報量の多いパルス信号を送信することが難しい。そこで、座標の特定はできなくても、1次元または2次元のアレイセンサーよりも検出速度が速い光検出素子57を設けることにより、情報量の多いパルス信号を送信することが容易になる。
In the light detection device 56 of the tenth embodiment, the following specific effects are obtained.
The image sensor 10 needs to be a one-dimensional or two-dimensional array sensor in order to specify the coordinates of the light emitting point. However, a one-dimensional or two-dimensional array sensor requires scanning when reading an image. Therefore, a one-dimensional or two-dimensional array sensor has a limit in detection speed, and when a pulse signal is superimposed on a laser beam, it is difficult to transmit a pulse signal with a large amount of information. Thus, even if the coordinates cannot be specified, it is easy to transmit a pulse signal with a large amount of information by providing the light detection element 57 having a detection speed faster than that of the one-dimensional or two-dimensional array sensor.
[第11実施形態]
 以下、本発明の第11実施形態について、図24、図25を用いて説明する。
 第11実施形態の光検出装置の基本構成は第1実施形態と同様である。第10実施形態の光検出装置は、蛍光導光板に1個の撮像素子と波長選択反射層とを備えた点が第1実施形態と異なる。
 図24(A)は、第11実施形態の光検出装置の正面図である。図24(B)は、第1の撮像素子が取得した画像を示す図である。図25は、レーザーポインターから射出されるレーザー光の励起波長および蛍光体の発光波長を示す図である。
 図24(A)において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Eleventh embodiment]
The eleventh embodiment of the present invention will be described below with reference to FIGS.
The basic configuration of the photodetection device of the eleventh embodiment is the same as that of the first embodiment. The light detection device of the tenth embodiment is different from the first embodiment in that the fluorescent light guide plate includes one image sensor and a wavelength selective reflection layer.
FIG. 24A is a front view of the photodetection device according to the eleventh embodiment. FIG. 24B is a diagram illustrating an image acquired by the first image sensor. FIG. 25 is a diagram showing the excitation wavelength of the laser light emitted from the laser pointer and the emission wavelength of the phosphor.
In FIG. 24A, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 撮像素子10が1個では発光点の座標の特定が不可能である、と先に述べたが、撮像素子10が1個であっても、蛍光導光板9の端面9tに特殊な反射機能を持たせることにより、発光点の座標の特定が可能になる。第11実施形態は、その一つの例である。 As described above, it is impossible to specify the coordinates of the light emitting point with one image sensor 10. However, even if there is only one image sensor 10, a special reflection function is provided on the end surface 9t of the fluorescent light guide plate 9. By providing it, the coordinates of the light emitting point can be specified. The eleventh embodiment is one example.
 図24(A)に示すように、第11実施形態の光検出装置60は、蛍光導光板9の左下の角部に1個の撮像素子10を備えている。撮像素子10は、例えばカラーフィルターなどの波長特定手段を備えている。撮像素子10が設けられた角部を挟む2辺、すなわち、蛍光導光板の下辺と左辺とに光吸収材12が設けられている。撮像素子10が設けられた角部と対角をなす角部を挟む2辺、すなわち、蛍光導光板9の上辺と右辺とに波長選択反射層61,62が設けられている。 As shown in FIG. 24 (A), the photodetecting device 60 of the eleventh embodiment includes one image sensor 10 at the lower left corner of the fluorescent light guide plate 9. The image sensor 10 includes wavelength specifying means such as a color filter. The light absorbing material 12 is provided on two sides sandwiching the corner where the imaging element 10 is provided, that is, on the lower side and the left side of the fluorescent light guide plate. Wavelength selective reflection layers 61 and 62 are provided on two sides sandwiching a corner that is opposite to the corner on which the image sensor 10 is provided, that is, on the upper side and the right side of the fluorescent light guide plate 9.
 蛍光導光板9の上辺にあたる端面9tに、入射した光のうち、緑色域の光および青色域の光を吸収して赤色域の光を選択的に反射する赤色光選択反射層61が設けられている。蛍光導光板9の右辺にあたる端面9tに、入射した光のうち、青色域の光を吸収して緑色域の光を選択的に反射する緑色光選択反射層62が設けられている。これらの波長選択反射層61,62には、屈折率が互いに異なる層を交互に積層した多層膜、金属膜上にカラーフィルターを積層した積層膜などを用いることができる。 A red light selective reflection layer 61 that absorbs light in the green region and light in the blue region and selectively reflects light in the red region among the incident light is provided on the end surface 9t corresponding to the upper side of the fluorescent light guide plate 9. Yes. A green light selective reflection layer 62 that absorbs blue light and selectively reflects green light among the incident light is provided on the end surface 9 t corresponding to the right side of the fluorescent light guide plate 9. As these wavelength selective reflection layers 61 and 62, a multilayer film in which layers having different refractive indexes are alternately laminated, a laminated film in which a color filter is laminated on a metal film, or the like can be used.
 図25に示すように、蛍光導光板9は、青紫域の波長(太い1点鎖線で示す)の励起光を受けて、比較的広い可視域の光を発する蛍光体を含んでいる。蛍光体から発する光は、青色域にピークを有しており、強度が比較的高い青色光(細い1点鎖線で示す)、強度が比較的低い緑色光(破線で示す)、強度がさらに低い赤色光(実線で示す)を含んでいる。 As shown in FIG. 25, the fluorescent light guide plate 9 includes a phosphor that emits light in a relatively wide visible range upon receiving excitation light having a wavelength in the blue-violet range (indicated by a thick one-dot chain line). The light emitted from the phosphor has a peak in the blue region, and has a relatively high intensity of blue light (indicated by a thin one-dot chain line), a relatively low intensity of green light (indicated by a broken line), and an even lower intensity Contains red light (indicated by solid line).
 図24(A)に示す発光点P11から光が発せられたとき、青色域にピークを有する光のうち、一部の光LBは発光点P11から撮像素子10に直接到達する。発光点P11から赤色光選択反射層61に到達した光のうち、緑色光と青色光とが吸収され、赤色域にピークを有する光LRが反射して撮像素子10に到達する。発光点P11から緑色光選択反射層62に到達した光のうち、青色光は吸収され、緑色域にピークを有する光LGが反射して撮像素子10に到達する。 When light is emitted from the light emission point P11 shown in FIG. 24A, a part of the light LB out of the light having a peak in the blue region reaches the image sensor 10 directly from the light emission point P11. Of the light reaching the red light selective reflection layer 61 from the light emitting point P11, green light and blue light are absorbed, and the light LR having a peak in the red region is reflected and reaches the imaging device 10. Of the light reaching the green light selective reflection layer 62 from the light emitting point P <b> 11, the blue light is absorbed, and the light LG having a peak in the green region is reflected and reaches the image sensor 10.
 この結果、図24(B)に示すように、撮像素子10が捉えた画像Gには、波長域(色)が異なる3つの発光点の像LR,LB,LGが現れる。3つの発光点の像LR,LB,LGはそれぞれ波長域が異なるため、波長特定手段を備えた撮像素子10であれば、どの像がどの辺で反射した光による像であるかを判断できる。このことから、計算によって発光点P11の座標を特定することができる。 As a result, as shown in FIG. 24B, in the image G captured by the image sensor 10, images LR, LB, and LG of three light emitting points having different wavelength regions (colors) appear. Since the three light emitting point images LR, LB, and LG have different wavelength ranges, if the imaging device 10 includes wavelength specifying means, it can be determined which image is reflected by which side. From this, the coordinates of the light emitting point P11 can be specified by calculation.
 第11実施形態の光検出装置60においても、レーザー光の照射位置を確実に特定できるという第1~第10実施形態と同様の効果が得られる。特に第11実施形態の場合、撮像素子10の個数が1個で済むため、コストが低減できる、電子機器の額縁部分のサイズを縮小できる、等の効果が得られる。 Also in the light detection device 60 of the eleventh embodiment, an effect similar to that of the first to tenth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Particularly, in the case of the eleventh embodiment, since only one image sensor 10 is required, effects such as reduction in cost and reduction in the size of the frame portion of the electronic device can be obtained.
[第12実施形態]
 以下、本発明の第12実施形態について、図26、図27を用いて説明する。
 第12実施形態の光検出装置の基本構成は第1実施形態と同様である。第12実施形態の光検出装置は、蛍光体に励起エネルギーを与える手段として、光に代えて圧力を用いる点が第1実施形態と異なる。
 図26は、第12実施形態の光検出装置の斜視図である。図27は、蛍光導光板の断面図である。
 図26、図27において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Twelfth embodiment]
The twelfth embodiment of the present invention will be described below with reference to FIGS.
The basic configuration of the photodetector in the twelfth embodiment is the same as that in the first embodiment. The photodetector of the twelfth embodiment is different from the first embodiment in that pressure is used instead of light as means for applying excitation energy to the phosphor.
FIG. 26 is a perspective view of the light detection device according to the twelfth embodiment. FIG. 27 is a cross-sectional view of the fluorescent light guide plate.
In FIG. 26 and FIG. 27, the same reference numerals are given to the same components as those used in the first embodiment, and detailed description thereof will be omitted.
 図26、図27に示すように、第12実施形態の光検出装置65において、蛍光導光板66は、機械的な外力が加わった際に励起エネルギーを吸収して蛍光を生じる蛍光体、いわゆる応力発光蛍光体67を含有する。応力発光蛍光体67として、例えば発光中心としてマンガンを添加した硫化亜鉛(ZnS:Mn)からなる黄橙色応力蛍光発光体、ZnS:Mnに0.1mol%のGaを添加した赤色応力蛍光発光体、発光中心としてユウロピウムを添加したアルミン酸ストロンチウム(SrAl:Eu)からなる緑色応力蛍光発光体、有機化合物であるテルピリジン類の金属錯体、などを用いることができる。光検出装置65のその他の構成は、第1実施形態と同様である。 As shown in FIGS. 26 and 27, in the photodetector 65 of the twelfth embodiment, the fluorescent light guide plate 66 is a phosphor that absorbs excitation energy and generates fluorescence when a mechanical external force is applied, so-called stress. A light emitting phosphor 67 is contained. As the stress-stimulated phosphor 67, for example, a yellow-orange stress phosphor made of zinc sulfide (ZnS: Mn) with manganese added as the emission center, a red-stress phosphor with 0.1 mol% Ga added to ZnS: Mn, A green stress fluorescent substance made of strontium aluminate (SrAl 2 O 4 : Eu) to which europium is added as an emission center, a metal complex of terpyridines which are organic compounds, and the like can be used. Other configurations of the light detection device 65 are the same as those in the first embodiment.
 蛍光導光板66に含有する蛍光体の組み合わせとして、(1)応力発光蛍光体のみを含有し、応力により応力発光蛍光体を発光させる、(2)光励起蛍光体と応力発光蛍光体とを含有し、光、応力のいずれかによりいずれかの蛍光体を発光させる、(3)光でも応力でも発光する蛍光体を含有し、光、応力のいずれかにより蛍光体を発光させる、(4)光励起蛍光体と応力発光蛍光体とを含有し、応力発光蛍光体が発する光により光励起蛍光体を励起させて発光させる、等が採用できる。 As a combination of phosphors contained in the fluorescent light guide plate 66, (1) containing only a stress-emitting phosphor, and causing the stress-emitting phosphor to emit light by stress, (2) containing a photo-excited phosphor and a stress-emitting phosphor. , One of the phosphors emits light by either light or stress, (3) contains a phosphor that emits light by either light or stress, and causes the phosphor to emit light by either light or stress, (4) photoexcited fluorescence And a stress-stimulated phosphor, and the photoexcited phosphor is excited by light emitted from the stress-stimulated phosphor to emit light.
 第12実施形態の光検出装置65においても、レーザー光の照射位置を確実に特定できるという第1~第11実施形態と同様の効果が得られる。第12実施形態の光検出装置65においては、図26に示すように、使用者は、レーザーポインターに代えて、先端がある程度細い指し棒68などの器具を用いて、蛍光導光板66の特定の箇所に局所的に圧力を加えることにより、圧力を加えた箇所の応力発光蛍光体67が発光し、位置を入力することができる。したがって、レーザーポインターを備えていない状況であっても、第12実施形態の光検出装置65を位置検出装置として機能させることができる。本実施形態の指し棒68は、特許請求の範囲の励起エネルギー供給源に相当する。 Also in the light detection device 65 of the twelfth embodiment, an effect similar to that of the first to eleventh embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. In the photodetecting device 65 of the twelfth embodiment, as shown in FIG. 26, the user uses a tool such as a pointing stick 68 whose tip is thin to some extent, instead of the laser pointer, to specify a specific part of the fluorescent light guide plate 66. By applying pressure locally at the location, the stress-stimulated phosphor 67 at the location where the pressure is applied emits light, and the position can be input. Therefore, even in a situation where the laser pointer is not provided, the light detection device 65 of the twelfth embodiment can function as a position detection device. The pointer 68 in this embodiment corresponds to an excitation energy supply source in the claims.
[第13実施形態]
 以下、本発明の第13実施形態について、図28を用いて説明する。
 第13実施形態の光検出装置の基本構成は、第1実施形態と同様である。第12実施形態の光検出装置は、応力発光蛍光体を用いる点が第12実施形態と同様であるが、蛍光導光板における応力発光蛍光体の含有形態が第12実施形態と異なる。
 図28(A)、(B)は、第13実施形態の光検出装置の断面図である。図28(A)は、蛍光シートに圧力が加えられていない状態を示し、図28(B)は、蛍光シートに圧力が加えられた状態を示す。
[Thirteenth embodiment]
The thirteenth embodiment of the present invention will be described below with reference to FIG.
The basic configuration of the photodetector in the thirteenth embodiment is the same as that in the first embodiment. The light detection device of the twelfth embodiment is the same as the twelfth embodiment in that a stress-stimulated phosphor is used, but the content of the stress-stimulated phosphor in the fluorescent light guide plate is different from the twelfth embodiment.
28A and 28B are cross-sectional views of the photodetector of the thirteenth embodiment. FIG. 28A shows a state where no pressure is applied to the fluorescent sheet, and FIG. 28B shows a state where pressure is applied to the fluorescent sheet.
 第12実施形態の光検出装置65では、蛍光導光板66の内部に応力発光蛍光体67が含有されていた。これに対して、図28(A)に示すように、第13実施形態の光検出装置70では、導光板71の内部に応力発光蛍光体が含有されていない。導光板71の前面に、応力発光蛍光体67が含有された透明樹脂シートからなる蛍光シート72が配置されている。導光板71と蛍光シート72とは空気層を介して対向しており、導光板71と蛍光シート72とで蛍光導光板73が構成されている。蛍光シート72は、圧力が加えられたときに適宜撓んで導光板71に接触する程度の可撓性を有している。 In the photodetector 65 of the twelfth embodiment, the stress-stimulated phosphor 67 is contained inside the fluorescent light guide plate 66. On the other hand, as shown in FIG. 28A, in the light detection device 70 of the thirteenth embodiment, the stress-stimulated phosphor is not contained inside the light guide plate 71. On the front surface of the light guide plate 71, a fluorescent sheet 72 made of a transparent resin sheet containing the stress-stimulated phosphor 67 is disposed. The light guide plate 71 and the fluorescent sheet 72 are opposed to each other through an air layer, and the light guide plate 71 and the fluorescent sheet 72 constitute a fluorescent light guide plate 73. The fluorescent sheet 72 is flexible enough to be appropriately bent and contact the light guide plate 71 when pressure is applied.
 第13実施形態の光検出装置70では、使用者は、指し棒等の器具を用いて蛍光シート72の特定の箇所に局所的に圧力を加えると、圧力を加えた箇所の応力発光蛍光体67が発光する。このとき、図28(B)に示すように、蛍光シート72が撓んで導光板71に接触すると、蛍光シート72内の光が導光板71に入射し、導光板71の内部を進行する。この後は先の実施形態と同様、導光板71を導光する光を撮像素子10で検出することにより、発光点の座標を特定することができる。 In the light detection device 70 of the thirteenth embodiment, when a user applies a pressure locally to a specific location of the fluorescent sheet 72 using an instrument such as a pointer, the stress-stimulated phosphor 67 at the location where the pressure is applied. Emits light. At this time, as shown in FIG. 28B, when the fluorescent sheet 72 is bent and contacts the light guide plate 71, the light in the fluorescent sheet 72 enters the light guide plate 71 and travels inside the light guide plate 71. Thereafter, as in the previous embodiment, the light guide point 71 can be identified by detecting the light guided through the light guide plate 71 by the image sensor 10.
 第13実施形態の光検出装置70においても、レーザー光の照射位置を確実に特定できるという第1~第12実施形態と同様の効果が得られる。第12実施形態の光検出装置65と同様、レーザーポインターを備えていない状況であっても、第13実施形態の光検出装置70を位置検出装置として機能させることができる。 Also in the light detection device 70 of the thirteenth embodiment, an effect similar to that of the first to twelfth embodiments can be obtained in which the irradiation position of the laser beam can be reliably specified. Similar to the light detection device 65 of the twelfth embodiment, the light detection device 70 of the thirteenth embodiment can function as a position detection device even in a situation where a laser pointer is not provided.
[第14実施形態]
 以下、本発明の第14実施形態について、図29、図30を用いて説明する。
 第14実施形態の光検出装置の基本構成は第1実施形態と同様である。第14実施形態の光検出装置は、蛍光導光板表面に付く傷の対策を施してある点が第1実施形態と異なる。
 図29は、蛍光導光板に傷が付いたときの問題点を説明するための図である。図30は、第14実施形態の光検出装置における蛍光導光板の断面図である。
 図29、図30において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Fourteenth embodiment]
The fourteenth embodiment of the present invention will be described below with reference to FIGS. 29 and 30.
The basic configuration of the photodetector in the fourteenth embodiment is the same as that in the first embodiment. The light detection device according to the fourteenth embodiment differs from the first embodiment in that a measure against scratches on the surface of the fluorescent light guide plate is taken.
FIG. 29 is a diagram for explaining a problem when the fluorescent light guide plate is damaged. FIG. 30 is a cross-sectional view of the fluorescent light guide plate in the photodetector of the fourteenth embodiment.
29 and 30, the same reference numerals are given to the same components as those used in the first embodiment, and detailed description thereof will be omitted.
 図29に示すように、蛍光導光板9に傷Kが付いたとすると、発光点P11から端面9tの光吸収材12に向かい、本来であれば光吸収材12に吸収されるはずの光の一部は、傷Kによってその光路を曲げ、撮像素子10に検出される場合がある。この場合、撮像素子10Rに発光点P11から直接到達する光R1と発光点P11から傷Kを介して到達する光R2とが存在するため、発光点P11の座標が一意に特定できなくなる。 As shown in FIG. 29, assuming that the fluorescent light guide plate 9 has a scratch K, it goes from the light emitting point P11 to the light absorbing material 12 on the end face 9t, and one of the light that should be absorbed by the light absorbing material 12 in the original case. The part may be detected by the image sensor 10 by bending its optical path due to the scratch K. In this case, since the light R1 that directly reaches the imaging element 10R from the light emitting point P11 and the light R2 that reaches from the light emitting point P11 via the scratch K exist, the coordinates of the light emitting point P11 cannot be uniquely specified.
 この問題に対して、図30に示すように、第14実施形態の光検出装置76においては、蛍光導光板9の前面9fにハードコート層77が形成されている。ハードコート層77は、蛍光導光板9の前面9fに、例えば紫外線硬化性等の一般のハードコート剤を塗布することで形成できる。蛍光導光板9の前面9fにこの種のハードコート層77が形成されることにより蛍光導光板9の耐擦傷性が向上する。光検出装置76のその他の構成は、第1実施形態と同様である。 In order to solve this problem, as shown in FIG. 30, in the light detection device 76 of the fourteenth embodiment, a hard coat layer 77 is formed on the front surface 9 f of the fluorescent light guide plate 9. The hard coat layer 77 can be formed by applying a general hard coat agent such as ultraviolet curable to the front surface 9 f of the fluorescent light guide plate 9. By forming this type of hard coat layer 77 on the front surface 9f of the fluorescent light guide plate 9, the scratch resistance of the fluorescent light guide plate 9 is improved. Other configurations of the light detection device 76 are the same as those in the first embodiment.
 第14実施形態の光検出装置76においても、レーザー光の照射位置を確実に特定できるという第1~第13実施形態と同様の効果が得られる。特に第14実施形態の光検出装置76によれば、蛍光導光板9の傷Kに起因して座標が特定できなくなることを抑制できる。 Also in the light detection device 76 of the fourteenth embodiment, an effect similar to that of the first to thirteenth embodiments can be obtained in which the irradiation position of the laser beam can be specified with certainty. In particular, according to the light detection device 76 of the fourteenth embodiment, it is possible to prevent the coordinates from being identified due to the scratch K on the fluorescent light guide plate 9.
[第1変形例]
 図31は、蛍光導光板の変形例を示す断面図である。
 光検出装置は、図30に示した蛍光導光板に代えて、図31に示す蛍光導光板を備えていてもよい。図31においては、蛍光導光板9の前面9fに、蛍光導光板9の屈折率よりも低い屈折率を有する低屈折率層79が形成されている。低屈折率層79の層厚は、想定される傷の深さよりも厚い。この構成によれば、光は蛍光導光板9の内部を導光し、低屈折率層79には達しないため、低屈折率層79に傷が付いたとしても導光に影響を及ぼすことはない。これにより、蛍光導光板9の傷に起因して座標が特定できなくなることを抑制できる。
[First Modification]
FIG. 31 is a cross-sectional view showing a modification of the fluorescent light guide plate.
The photodetecting device may include a fluorescent light guide plate shown in FIG. 31 instead of the fluorescent light guide plate shown in FIG. In FIG. 31, a low refractive index layer 79 having a refractive index lower than the refractive index of the fluorescent light guide plate 9 is formed on the front surface 9 f of the fluorescent light guide plate 9. The layer thickness of the low refractive index layer 79 is thicker than the assumed flaw depth. According to this configuration, the light guides the inside of the fluorescent light guide plate 9 and does not reach the low refractive index layer 79. Therefore, even if the low refractive index layer 79 is damaged, the light guide is not affected. Absent. Thereby, it can suppress that a coordinate becomes unidentifiable due to the damage | wound of the fluorescence light-guide plate 9. FIG.
[第2変形例]
 図32は、蛍光導光板の変形例を示す断面図である。
 光検出装置は、図30に示した蛍光導光板に代えて、図32に示す蛍光導光板を備えていてもよい。図32においては、蛍光導光板9の前面9fに、蛍光導光板9の屈折率よりも低い屈折率を有する低屈折率層79とハードコート層77とがこの順に積層されている。この構成においても、蛍光導光板9の傷に起因して座標が特定できなくなることを抑制できる。
[Second Modification]
FIG. 32 is a cross-sectional view showing a modification of the fluorescent light guide plate.
The photodetecting device may include a fluorescent light guide plate shown in FIG. 32 instead of the fluorescent light guide plate shown in FIG. In FIG. 32, a low refractive index layer 79 having a refractive index lower than the refractive index of the fluorescent light guide plate 9 and a hard coat layer 77 are laminated on the front surface 9 f of the fluorescent light guide plate 9 in this order. Even in this configuration, it is possible to prevent the coordinates from becoming unidentifiable due to scratches on the fluorescent light guide plate 9.
[第15実施形態]
 以下、本発明の第15実施形態について、図33を用いて説明する。
 第15実施形態の光検出装置の基本構成は第1実施形態と同様である。第15実施形態の光検出装置は、蛍光導光板表面に付く傷による座標特定不能の対策を施してある点が第1実施形態と異なる。
 図33は、第15実施形態の光検出装置の位置検出部のブロック図である。
[Fifteenth embodiment]
The fifteenth embodiment of the present invention will be described below with reference to FIG.
The basic configuration of the photodetector in the fifteenth embodiment is the same as that in the first embodiment. The light detection device of the fifteenth embodiment is different from the first embodiment in that a measure against the inability to specify coordinates due to scratches on the surface of the fluorescent light guide plate is taken.
FIG. 33 is a block diagram of a position detector of the photodetecting device according to the fifteenth embodiment.
 第14実施形態の光検出装置76では、傷が付くこと自体を防止する、もしくは表面に傷が付いたとしても内部での導光に影響を及ぼさないようにする、といった対策が施されていた。これに対して、第15実施形態の光検出装置では、発光点の座標計算時に傷の影響を除外するという対策が施されている。これはソフトウェア上の対策であり、図33に示す回路ブロック以外の光検出装置の構成は、第1実施形態と同様である。 In the light detection device 76 of the fourteenth embodiment, measures have been taken such as preventing the scratch itself, or preventing the light guide inside from being affected even if the surface is scratched. . On the other hand, in the photodetector of the fifteenth embodiment, a measure is taken to exclude the influence of scratches when calculating the coordinates of the light emitting points. This is a software measure, and the configuration of the photodetection device other than the circuit block shown in FIG. 33 is the same as that of the first embodiment.
 具体的には、図33に示すように、発光点の座標計算時に、位置検出部26の座標演算部82は、第1の撮像素子10L、第2の撮像素子10Rからの画像情報を取得し、この画像情報と傷情報データベース83に格納された傷情報とを比較する。このとき、画像情報における複数の発光点情報の中に傷情報と一致するものがあれば、その発光点情報の優先度を下げ、優先度の高い発光点情報を用いて座標計算を行う。傷の程度が比較的軽い場合、もしくは傷の個数が比較的少ないときには、この方法により対策が可能である。 Specifically, as shown in FIG. 33, when calculating the coordinates of the light emission point, the coordinate calculation unit 82 of the position detection unit 26 acquires image information from the first image sensor 10L and the second image sensor 10R. The image information is compared with the flaw information stored in the flaw information database 83. At this time, if any of the plurality of light-emitting point information in the image information matches the scratch information, the priority of the light-emitting point information is lowered, and coordinate calculation is performed using the light-emitting point information with a high priority. When the degree of scratches is relatively light, or when the number of scratches is relatively small, measures can be taken by this method.
 この方法を用いる場合、傷情報を予め取得しておく必要がある。傷情報を取得する手法として、ティーチング、自主的な情報蓄積などが考えられる。ティーチングを行う場合、最初に、電子機器が使用者に指示を出して蛍光導光板の予め定められた位置に光を照射させる、もしくは、システムから自動的に蛍光導光板の予め定められた位置に光を照射する。このとき、座標演算部82は、想定される発光点から外れた位置から生じている発光を傷によるものと判断し、その発光情報を傷情報データベース83にリストアップする。もしくは、自主的な情報蓄積を行う場合、過去複数回の使用時に常に固定された位置で発光が検出されたとき、座標演算部82は、その発光情報の優先度を下げる処理を行い、その発光情報を最終的に傷情報として傷情報データベース83に格納する。 When using this method, it is necessary to obtain scratch information in advance. Teaching, voluntary information storage, etc. can be considered as a method for acquiring flaw information. When teaching, first, the electronic device issues an instruction to the user to irradiate light to a predetermined position of the fluorescent light guide plate, or automatically from the system to a predetermined position of the fluorescent light guide plate. Irradiate light. At this time, the coordinate calculation unit 82 determines that the light emission generated from a position deviating from the assumed light emission point is caused by a flaw, and lists the light emission information in the flaw information database 83. Alternatively, in the case where voluntary information accumulation is performed, when light emission is detected at a fixed position at the time of multiple past use, the coordinate calculation unit 82 performs processing for lowering the priority of the light emission information, and the light emission The information is finally stored in the scratch information database 83 as scratch information.
 第15実施形態の光検出装置においても、レーザー光の照射位置を確実に特定できるという第1~第14実施形態と同様の効果が得られる。特に第15実施形態の光検出装置によれば、蛍光導光板の傷に起因して座標が特定できなくなることを抑制できる。 Also in the light detection apparatus of the fifteenth embodiment, the same effect as in the first to fourteenth embodiments can be obtained that the irradiation position of the laser beam can be reliably specified. In particular, according to the light detection device of the fifteenth embodiment, it is possible to prevent the coordinates from being specified due to scratches on the fluorescent light guide plate.
[第16実施形態]
 以下、本発明の第16実施形態について、図34を用いて説明する。
 第16実施形態の光検出装置の基本構成は第1実施形態と同様である。第16実施形態の光検出装置は、蛍光導光板、撮像素子等からなる光検出ユニットを2組備えている点が第1実施形態と異なる。
 図34(A)は、第16実施形態の光検出装置の斜視図である。図34(B)は、図34(A)の矢印B方向から見た断面図である。図34(C)は、図34(A)の矢印C方向から見た断面図である。
 図34において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Sixteenth Embodiment]
The sixteenth embodiment of the present invention will be described below with reference to FIG.
The basic configuration of the photodetector in the sixteenth embodiment is the same as that in the first embodiment. The light detection device according to the sixteenth embodiment is different from the first embodiment in that it includes two sets of light detection units including a fluorescent light guide plate, an image sensor, and the like.
FIG. 34A is a perspective view of the photodetecting device of the sixteenth embodiment. FIG. 34B is a cross-sectional view as viewed from the direction of arrow B in FIG. FIG. 34C is a cross-sectional view as viewed from the direction of arrow C in FIG.
34, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and detailed description is abbreviate | omitted.
 図34(A)に示すように、第16実施形態の光検出装置85は、2組の光検出ユニット86,87を備えている。光検出ユニット86,87は、蛍光導光板9と、2組の撮像素子10およびグリッド11と、を備えている。撮像素子10およびグリッド11は、蛍光導光板9の左下および右下にそれぞれ設けられている。2組の光検出ユニット86,87は、一定の距離Dをおいて配置されている。各蛍光導光板9の端面には、光吸収材12が設けられている。その他の構成は、第1実施形態と同様である。 As shown in FIG. 34A, the photodetector 85 of the sixteenth embodiment includes two sets of photodetector units 86 and 87. The light detection units 86 and 87 include a fluorescent light guide plate 9, two sets of imaging elements 10 and a grid 11. The image sensor 10 and the grid 11 are provided at the lower left and lower right of the fluorescent light guide plate 9, respectively. The two sets of light detection units 86 and 87 are arranged at a certain distance D. A light absorbing material 12 is provided on the end face of each fluorescent light guide plate 9. Other configurations are the same as those of the first embodiment.
 第16実施形態の光検出装置85において、使用者が前面側の蛍光導光板9に向けてレーザー光L0を照射した場合、最初に、前面側の蛍光導光板9のレーザー光L0の照射位置で発光が生じる。その後、レーザー光L0は前面側の蛍光導光板9を透過して背面側の蛍光導光板9に入射し、背面側の蛍光導光板9におけるレーザー光L0の照射位置で発光が生じる。このように、1回のレーザー光の照射により、2枚の蛍光導光板9のそれぞれで発光が生じる。そのためには、蛍光導光板9、特に前面側の蛍光導光板9に含まれる蛍光体の濃度は、レーザー光L0が1枚の蛍光導光板9で吸収しきれない程度の値に設定される必要がある。 In the photodetector 85 of the sixteenth embodiment, when the user irradiates the laser light L0 toward the fluorescent light guide plate 9 on the front side, first, at the irradiation position of the laser light L0 on the fluorescent light guide plate 9 on the front side. Luminescence occurs. Thereafter, the laser light L0 passes through the fluorescent light guide plate 9 on the front side and enters the fluorescent light guide plate 9 on the back side, and light emission occurs at the irradiation position of the laser light L0 on the fluorescent light guide plate 9 on the back side. Thus, light emission occurs in each of the two fluorescent light guide plates 9 by one irradiation of the laser light. For this purpose, the concentration of the phosphor contained in the fluorescent light guide plate 9, particularly the front fluorescent light guide plate 9, needs to be set to a value such that the laser light L 0 cannot be absorbed by one fluorescent light guide plate 9. There is.
 使用者が前面側の蛍光導光板9に向かって、例えば右下から左上に向けて斜めにレーザー光L0を照射したとする。このとき、上述したように、2枚の蛍光導光板9のそれぞれで発光が生じ、各蛍光導光板9における発光点の座標が計算により求められる。ここで、2枚の蛍光導光板9における発光点の座標と2枚の蛍光導光板9間の距離から、レーザー光L0が発射された方向を特定することができる。 It is assumed that the user irradiates the laser light L0 obliquely from the lower right to the upper left, for example, toward the fluorescent light guide plate 9 on the front side. At this time, as described above, light emission occurs in each of the two fluorescent light guide plates 9, and the coordinates of the light emission points in each fluorescent light guide plate 9 are obtained by calculation. Here, the direction in which the laser light L0 is emitted can be identified from the coordinates of the light emitting points on the two fluorescent light guide plates 9 and the distance between the two fluorescent light guide plates 9.
 具体的には、光検出装置85の水平方向をx軸とし、垂直方向をy軸とする。図34(B)に示すように、前面側の蛍光導光板9における発光点のx座標x1と背面側の蛍光導光板9における発光点のx座標x2との距離をΔxとし、x軸方向における蛍光導光板9に対するレーザー光の入射角をαとすると、下記の(3)式により、入射角αを求めることができる。
Figure JPOXMLDOC01-appb-M000003
Specifically, the horizontal direction of the photodetecting device 85 is taken as the x axis, and the vertical direction is taken as the y axis. As shown in FIG. 34 (B), the distance between the x coordinate x1 of the light emitting point on the front fluorescent light guide plate 9 and the x coordinate x2 of the light emitting point on the rear fluorescent light guide plate 9 is Δx, and in the x-axis direction. When the incident angle of the laser light with respect to the fluorescent light guide plate 9 is α, the incident angle α can be obtained by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 同様に、図34(C)に示すように、前面側の蛍光導光板9における発光点のy座標y1と背面側の蛍光導光板9における発光点のy座標y2との距離をΔyとし、y軸方向における蛍光導光板9に対するレーザー光の入射角をβとすると、下記の(4)式により、入射角βを求めることができる。
Figure JPOXMLDOC01-appb-M000004
Similarly, as shown in FIG. 34C, the distance between the y coordinate y1 of the light emitting point in the front fluorescent light guide plate 9 and the y coordinate y2 of the light emitting point in the rear fluorescent light guide plate 9 is Δy, If the incident angle of the laser beam with respect to the fluorescent light guide plate 9 in the axial direction is β, the incident angle β can be obtained by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
 第16実施形態の光検出装置85においても、レーザー光の照射位置を確実に特定できるという第1~第15実施形態と同様の効果が得られる。先の実施形態と同様、レーザー光L0にパルス信号を重畳させることで、ボタン押下情報等を伝達することができる。第16実施形態の光検出装置85に特有の効果として、レーザー光L0が発射された方向を特定できるため、例えば複数の使用者が複数のレーザーポインターを分けて持っていた場合、どの使用者から指示が出されたのかを把握することができる。 Also in the photodetecting device 85 of the sixteenth embodiment, the same effect as in the first to fifteenth embodiments can be obtained that the irradiation position of the laser beam can be specified with certainty. As in the previous embodiment, button press information or the like can be transmitted by superimposing a pulse signal on the laser beam L0. As an effect peculiar to the light detection device 85 of the sixteenth embodiment, since the direction in which the laser light L0 is emitted can be specified, for example, when a plurality of users have a plurality of laser pointers separately, from which user It is possible to grasp whether an instruction has been issued.
[第17実施形態]
 以下、本発明の第17実施形態について、図35、図36を用いて説明する。
 第17実施形態の電子機器の基本構成は第1実施形態と同様である。第17実施形態の電子機器は、ディスプレイと光検出装置とを一体化させた点が第1実施形態と異なる。
 図35は、第17実施形態の電子機器の斜視図である。図36は、電子機器の断面図である。
 図35、図36において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Seventeenth embodiment]
The seventeenth embodiment of the present invention will be described below with reference to FIGS. 35 and 36.
The basic configuration of the electronic device of the seventeenth embodiment is the same as that of the first embodiment. The electronic device of the seventeenth embodiment is different from the first embodiment in that the display and the light detection device are integrated.
FIG. 35 is a perspective view of an electronic apparatus according to a seventeenth embodiment. FIG. 36 is a cross-sectional view of an electronic device.
In FIG. 35 and FIG. 36, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and detailed description is abbreviate | omitted.
 第1実施形態の電子機器1は、ディスプレイ3に対して光検出装置4を外付けする構成であった。これに対して、図35に示すように、第17実施形態の電子機器90は、ディスプレイ3の前面に、第4実施形態と同様の光検出装置35(図14参照)が接合されて一体化され、ディスプレイ3と光検出装置35との接合体がベゼル17の内部に収納されている。光検出装置35の基本構成は、第1実施形態と同様である。 The electronic device 1 according to the first embodiment has a configuration in which the light detection device 4 is externally attached to the display 3. On the other hand, as shown in FIG. 35, the electronic device 90 of the seventeenth embodiment is integrated by joining the same light detection device 35 (see FIG. 14) to the front surface of the display 3 as in the fourth embodiment. Then, a joined body of the display 3 and the light detection device 35 is accommodated in the bezel 17. The basic configuration of the light detection device 35 is the same as that of the first embodiment.
 図36に示すように、第17実施形態の光検出装置35では、蛍光導光板9の前面9fに、蛍光導光板9の屈折率よりも低い屈折率を有する低屈折率層37、光散乱層36がこの順に積層されている。光散乱層36としては、例えば透明基材中に透明基材の屈折率と異なる屈折率を有する粒子を分散させた層であってもよいし、表面に微細な凹凸を形成した層であってもよい。低屈折率層37が蛍光導光板9と光散乱層36との間に形成されているため、光散乱層36からの光漏れを抑制することができる。蛍光導光板9の背面9bは、低屈折率層91を介してディスプレイ3と接合されている。低屈折率層91は、低屈折率層37と同じものでもよいし、異なるものでもよい。低屈折率層37,91が蛍光導光板9の両面に存在するが、低屈折率層が蛍光導光板9の片面のみに存在する場合と比べて導光効率は特に変わらない。その他の構成は、第1実施形態と同様である。 As shown in FIG. 36, in the light detection device 35 of the seventeenth embodiment, a low refractive index layer 37 having a refractive index lower than the refractive index of the fluorescent light guide plate 9, a light scattering layer on the front surface 9f of the fluorescent light guide plate 9. 36 are stacked in this order. The light scattering layer 36 may be, for example, a layer in which particles having a refractive index different from the refractive index of the transparent substrate are dispersed in a transparent substrate, or a layer having fine irregularities formed on the surface. Also good. Since the low refractive index layer 37 is formed between the fluorescent light guide plate 9 and the light scattering layer 36, light leakage from the light scattering layer 36 can be suppressed. The back surface 9 b of the fluorescent light guide plate 9 is joined to the display 3 through a low refractive index layer 91. The low refractive index layer 91 may be the same as or different from the low refractive index layer 37. Although the low refractive index layers 37 and 91 are present on both sides of the fluorescent light guide plate 9, the light guide efficiency is not particularly different compared to the case where the low refractive index layer is provided only on one side of the fluorescent light guide plate 9. Other configurations are the same as those of the first embodiment.
 第17実施形態の光検出装置35においても、レーザー光の照射位置を確実に特定できるという第1~第16実施形態と同様の効果が得られる。また、蛍光導光板9の前面に光散乱層36が形成されているため、ディスプレイ3の表示品質の低下を抑えることができる。ディスプレイ3と光検出装置35との接合体がベゼル17の内部に収納されているため、電子機器90の小型化、薄型化が図れる。 Also in the light detection device 35 of the seventeenth embodiment, the same effect as in the first to sixteenth embodiments can be obtained that the irradiation position of the laser beam can be specified with certainty. In addition, since the light scattering layer 36 is formed on the front surface of the fluorescent light guide plate 9, it is possible to suppress deterioration in display quality of the display 3. Since the joined body of the display 3 and the light detection device 35 is accommodated in the bezel 17, the electronic device 90 can be reduced in size and thickness.
[第18実施形態]
 以下、本発明の第18実施形態について、図37を用いて説明する。
 第18実施形態の電子機器の基本構成は第1実施形態と同様である。第18実施形態の電子機器は、ディスプレイと光検出装置とにタッチパネルをさらに組み合わせた点が第1実施形態と異なる。
 図37は、第18実施形態の電子機器の斜視図である。
 図37において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Eighteenth embodiment]
The eighteenth embodiment of the present invention will be described below with reference to FIG.
The basic configuration of the electronic device of the eighteenth embodiment is the same as that of the first embodiment. The electronic device of the eighteenth embodiment is different from the first embodiment in that a touch panel is further combined with a display and a light detection device.
FIG. 37 is a perspective view of an electronic apparatus according to an eighteenth embodiment.
In FIG. 37, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図37に示すように、第18実施形態の電子機器93は、第1実施形態の電子機器1の前面側にタッチパネル94を備えている。すなわち、電子機器93は、ディスプレイ3と、ディスプレイ3の前面に配置された光検出装置4と、光検出装置4の前面に配置されたタッチパネル94と、を備えている。タッチパネル94は、光検出装置4と一定の間隔をおいて配置されている。タッチパネル94は、静電容量方式、抵抗膜方式などの一般的なタッチパネルである。光検出装置4の構成は、第1実施形態と同様である。 As shown in FIG. 37, the electronic device 93 of the eighteenth embodiment includes a touch panel 94 on the front side of the electronic device 1 of the first embodiment. That is, the electronic device 93 includes the display 3, the light detection device 4 disposed on the front surface of the display 3, and the touch panel 94 disposed on the front surface of the light detection device 4. The touch panel 94 is disposed at a certain interval from the light detection device 4. The touch panel 94 is a general touch panel such as a capacitance type or a resistance film type. The configuration of the light detection device 4 is the same as that of the first embodiment.
 タッチパネル94は電子機器93の最前面に配置されているため、使用者はタッチパネル94に直接触れることができ、ディスプレイ3の表示内容に応じて所定の位置に触れることで所望の命令を入力することができる。また、電子機器93に向けてレーザー光L0を照射した場合、レーザー光L0はタッチパネル94を透過するため、先の実施形態と同様、光検出装置4がレーザー光L0の照射位置の座標を特定することができる。したがって、第18実施形態の電子機器93は、使用者が直接触れることによるタッチパネル方式の位置入力手段、離れた位置からレーザー光L0を照射することによる光検出方式の位置入力手段、の2つの位置入力手段を兼ね備えている。 Since the touch panel 94 is disposed on the forefront of the electronic device 93, the user can directly touch the touch panel 94, and inputs a desired command by touching a predetermined position according to the display content of the display 3. Can do. Further, when the laser beam L0 is irradiated toward the electronic device 93, the laser beam L0 passes through the touch panel 94, so that the light detection device 4 specifies the coordinates of the irradiation position of the laser beam L0 as in the previous embodiment. be able to. Therefore, the electronic device 93 according to the eighteenth embodiment has two positions: a touch panel type position input unit that is directly touched by the user, and a light detection type position input unit that is irradiated with the laser beam L0 from a remote position. It also has an input means.
 電子機器93はこれら2種類の位置入力手段を備えているため、双方の位置入力手段に同時に入力がある場合を想定すると、いずれの位置入力手段による入力を優先するか、という優先順位を予め設定しておくことが望ましい。一般的には、タッチパネル94による入力の優先度を高く、光検出装置4による入力の優先度を低く設定することが望ましい。その理由は、光検出装置4による入力は電子機器93から離れた位置からなされ、タッチパネル94による入力は電子機器93に近い位置からなされるが、操作に対する優位性は入力装置に近い位置にいる操作者が有するべきだからである。 Since the electronic device 93 includes these two types of position input means, assuming that both position input means have inputs at the same time, a priority order is set in advance as to which position input means should be given priority. It is desirable to keep it. In general, it is desirable to set the input priority by the touch panel 94 to be high and the input priority from the light detection device 4 to be low. The reason is that the input by the light detection device 4 is made from a position away from the electronic device 93, and the input by the touch panel 94 is made from a position close to the electronic device 93. Because they should have.
 第18実施形態の光検出装置4においても、レーザー光の照射位置を確実に特定できるという第1~第17実施形態と同様の効果が得られる。特に、第18実施形態によれば、タッチパネル方式の位置入力手段、光検出方式の位置入力手段、の双方を兼ね備えた電子機器93を実現でき、入力操作の多様性を高めることができる。例えば近くにいる使用者、遠くにいる使用者がともに入力操作が可能な電子機器を実現することができる。 Also in the light detection device 4 of the eighteenth embodiment, an effect similar to that of the first to seventeenth embodiments can be obtained in which the irradiation position of the laser light can be reliably specified. In particular, according to the eighteenth embodiment, it is possible to realize the electronic device 93 that has both a touch panel type position input unit and a light detection type position input unit, and it is possible to increase the variety of input operations. For example, it is possible to realize an electronic device in which a user who is near and a user who is far can input operations.
[第19実施形態]
 以下、本発明の第19実施形態について、図38を用いて説明する。
 第19実施形態の電子機器の基本構成は第18実施形態と同様である。第19実施形態の電子機器は、前面側に配置される位置入力手段の構成が第18実施形態と異なる。
 図38は、第19実施形態の電子機器の斜視図である。
 図38において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Nineteenth Embodiment]
The nineteenth embodiment of the present invention is described below with reference to FIG.
The basic configuration of the electronic device of the nineteenth embodiment is the same as that of the eighteenth embodiment. The electronic device of the nineteenth embodiment differs from the eighteenth embodiment in the configuration of the position input means arranged on the front side.
FIG. 38 is a perspective view of the electronic device of the nineteenth embodiment.
In FIG. 38, the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図38に示すように、第19実施形態の電子機器96は、ディスプレイ3と、ディスプレイ3の前面に配置された光検出装置4と、光検出装置4の前面に配置された光学センサー97と、を備えている。光学センサー97は、光検出装置4の前面に蛍光導光板9の4辺に沿って枠状に設けられている。 As shown in FIG. 38, the electronic device 96 according to the nineteenth embodiment includes a display 3, a light detection device 4 disposed on the front surface of the display 3, an optical sensor 97 disposed on the front surface of the light detection device 4, It has. The optical sensor 97 is provided in a frame shape along the four sides of the fluorescent light guide plate 9 on the front surface of the light detection device 4.
 光学センサー97は、2組の投光部98と受光部99とを備えている。1組の投光部98と受光部99とは、蛍光導光板9の対向する2辺に沿ってそれぞれ配置されている。投光部98は、例えば蛍光導光板9の上辺と左辺とに沿って配置されている。受光部99は、例えば蛍光導光板9の下辺と右辺とに沿って配置されている。投光部98は、例えば複数の赤外LEDが1列に配列された構成を有している。受光部99は、例えば複数の赤外センサーが1列に配列された構成を有している。光検出装置4の構成は、第1実施形態と同様である。 The optical sensor 97 includes two sets of a light projecting unit 98 and a light receiving unit 99. A pair of light projecting unit 98 and light receiving unit 99 are respectively disposed along two opposing sides of the fluorescent light guide plate 9. The light projecting unit 98 is disposed along, for example, the upper side and the left side of the fluorescent light guide plate 9. The light receiving unit 99 is disposed along, for example, the lower side and the right side of the fluorescent light guide plate 9. The light projecting unit 98 has a configuration in which, for example, a plurality of infrared LEDs are arranged in one row. The light receiving unit 99 has a configuration in which, for example, a plurality of infrared sensors are arranged in a line. The configuration of the light detection device 4 is the same as that of the first embodiment.
 図37に示した第18実施形態の電子機器93の場合、蛍光導光板9の前面に間隔をおいてタッチパネル94が配置されている。タッチパネル94と蛍光導光板9との間に隙間があれば、タッチパネル94が蛍光導光板9内の導光を阻害することはない。しかしながら、その場合、タッチパネル94や蛍光導光板9と空気との界面が多くなり、レーザー光の透過率低下、レーザー光の表面反射等の問題がある。その点、第19実施形態の電子機器96の場合、光学センサー97は蛍光導光板9の4辺に沿って枠状に配置され、蛍光導光板9の大部分は前面側に露出している。そのため、レーザー光L0の透過率低下、レーザー光L0の表面反射等の問題が生じることはない。 In the case of the electronic apparatus 93 according to the eighteenth embodiment shown in FIG. 37, a touch panel 94 is arranged on the front surface of the fluorescent light guide plate 9 with a gap. If there is a gap between the touch panel 94 and the fluorescent light guide plate 9, the touch panel 94 does not hinder the light guide in the fluorescent light guide plate 9. However, in that case, there are many interfaces between the touch panel 94 and the fluorescent light guide plate 9 and the air, and there are problems such as a decrease in the transmittance of the laser beam and a surface reflection of the laser beam. In that regard, in the case of the electronic device 96 of the nineteenth embodiment, the optical sensor 97 is arranged in a frame shape along the four sides of the fluorescent light guide plate 9, and most of the fluorescent light guide plate 9 is exposed to the front side. Therefore, problems such as a decrease in the transmittance of the laser beam L0 and surface reflection of the laser beam L0 do not occur.
 第19実施形態の光検出装置4においても、レーザー光の照射位置を確実に特定できるという第1~第18実施形態と同様の効果が得られる。特に、第19実施形態によれば、光学センサー方式の位置入力手段、光検出方式の位置入力手段、の双方を兼ね備えた電子機器を実現でき、入力操作の多様性を高めることができる。例えば近くにいる使用者、遠くにいる使用者がともに入力操作が可能な電子機器を実現することができる。 Also in the light detection device 4 of the nineteenth embodiment, the same effect as in the first to eighteenth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably. In particular, according to the nineteenth embodiment, an electronic apparatus having both an optical sensor type position input means and a light detection type position input means can be realized, and the diversity of input operations can be enhanced. For example, it is possible to realize an electronic device in which a user who is near and a user who is far can input operations.
[第20実施形態]
 以下、本発明の第20実施形態について、図39、図40を用いて説明する。
 第20実施形態の光検出装置の基本構成は第1実施形態と同様である。第20実施形態の光検出装置は、第18実施形態と同様、タッチパネル機能を有しているが、蛍光導光板とタッチパネルとを兼用させた点が第18実施形態と異なる。
 図39は、第20実施形態の光検出装置を示す斜視図である。図40は、光検出装置の断面図である。
 図39、図40において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[20th embodiment]
The twentieth embodiment of the present invention will be described below with reference to FIGS. 39 and 40.
The basic configuration of the photodetecting device of the twentieth embodiment is the same as that of the first embodiment. The light detection device of the twentieth embodiment has a touch panel function as in the eighteenth embodiment, but is different from the eighteenth embodiment in that the fluorescent light guide plate and the touch panel are combined.
FIG. 39 is a perspective view showing the photodetecting device of the twentieth embodiment. FIG. 40 is a cross-sectional view of the photodetection device.
In FIG. 39 and FIG. 40, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and detailed description is abbreviate | omitted.
 光検出装置101の水平方向をx軸とし、垂直方向をy軸とする。図39、図40に示すように、第20実施形態の光検出装置101では、蛍光導光板9の前面9fと背面9bとに線状の第1電極102、第2電極103がそれぞれ形成されている。蛍光導光板9の前面9fには、複数本の第1電極102がx軸方向に沿って互いに間隔をおいて設けられている。蛍光導光板9の背面9bには、複数本の第2電極103がy軸方向に沿って互いに間隔をおいて設けられている。したがって、蛍光導光板9の前面9fと背面9bとで、複数本の第1電極102と複数本の第2電極103とが格子状に配置されている。第1電極102および第2電極103は、インジウム錫酸化物(ITO)等の透明導電膜により形成されている。光検出装置101のその他の構成は、第1実施形態と同様である。 The horizontal direction of the light detection device 101 is the x axis, and the vertical direction is the y axis. As shown in FIGS. 39 and 40, in the photodetector 101 of the twentieth embodiment, the linear first electrode 102 and the second electrode 103 are formed on the front surface 9f and the back surface 9b of the fluorescent light guide plate 9, respectively. Yes. A plurality of first electrodes 102 are provided on the front surface 9f of the fluorescent light guide plate 9 at intervals from each other along the x-axis direction. On the back surface 9b of the fluorescent light guide plate 9, a plurality of second electrodes 103 are provided at intervals from each other along the y-axis direction. Therefore, a plurality of first electrodes 102 and a plurality of second electrodes 103 are arranged in a lattice pattern on the front surface 9 f and the back surface 9 b of the fluorescent light guide plate 9. The first electrode 102 and the second electrode 103 are formed of a transparent conductive film such as indium tin oxide (ITO). Other configurations of the photodetection device 101 are the same as those in the first embodiment.
 第1電極102および第2電極103が誘電体材料である蛍光導光板9の前面9fと背面9bとに設けられたことにより、蛍光導光板9は静電容量方式のタッチパネルとしても機能する。したがって、蛍光導光板9は、先の実施形態と同様、レーザー光L0の照射位置の座標特定を行うと同時に、静電容量方式のタッチパネルとして動作する。 Since the first electrode 102 and the second electrode 103 are provided on the front surface 9f and the back surface 9b of the fluorescent light guide plate 9 which is a dielectric material, the fluorescent light guide plate 9 also functions as a capacitive touch panel. Therefore, the fluorescent light guide plate 9 operates as a capacitive touch panel at the same time as specifying the coordinates of the irradiation position of the laser light L0, as in the previous embodiment.
 第20実施形態の光検出装置101においても、レーザー光の照射位置を確実に特定できるという第1~第19実施形態と同様の効果が得られる。特に、第20実施形態の光検出装置101によれば、タッチパネル方式の位置入力手段、光検出方式の位置入力手段、の双方を兼ね備えた電子機器を実現でき、入力操作の多様性を高めることができる。蛍光導光板とタッチパネルとを一つの部材で兼用しているため、第20実施形態の光検出装置101は、第18実施形態の光検出装置に比べて構成部材を少なくでき、コストを低減できる。 Also in the light detection apparatus 101 of the twentieth embodiment, the same effect as in the first to nineteenth embodiments can be obtained that the irradiation position of the laser beam can be specified reliably. In particular, according to the photodetection device 101 of the twentieth embodiment, an electronic device having both a touch panel type position input unit and a photodetection type position input unit can be realized, and the variety of input operations can be increased. it can. Since the fluorescent light guide plate and the touch panel are used as a single member, the light detection device 101 of the twentieth embodiment can reduce the number of constituent members and the cost compared to the light detection device of the eighteenth embodiment.
[第1変形例]
 図41は、第20実施形態の光検出装置の変形例を示す断面図である。
 上述したように、蛍光導光板とタッチパネルを一つの部材で兼用するために、蛍光導光板9の前面9fと背面9bとにそれぞれ電極を設ける必要がある。しかしながら、電極は蛍光導光板9内を導光する光の全反射を阻害するため、座標検出精度の低下や実装可能サイズの低下を招くおそれがある。そこで、図41に示すように、蛍光導光板9と第1電極102との間、および蛍光導光板9と第2電極103との間に低屈折率層104,105をそれぞれ設けることが望ましい。これにより、蛍光導光板9の導光効率を高めることができる。
[First Modification]
FIG. 41 is a cross-sectional view showing a modification of the photodetecting device of the twentieth embodiment.
As described above, in order to use the fluorescent light guide plate and the touch panel as one member, it is necessary to provide electrodes on the front surface 9f and the back surface 9b of the fluorescent light guide plate 9, respectively. However, since the electrode hinders total reflection of light guided through the fluorescent light guide plate 9, there is a possibility that the coordinate detection accuracy may be reduced and the mountable size may be reduced. Therefore, as shown in FIG. 41, it is desirable to provide low refractive index layers 104 and 105 between the fluorescent light guide plate 9 and the first electrode 102 and between the fluorescent light guide plate 9 and the second electrode 103, respectively. Thereby, the light guide efficiency of the fluorescent light guide plate 9 can be increased.
[第2変形例]
 図42は、第20実施形態の光検出装置の変形例を示す断面図である。
 蛍光導光板とタッチパネルとを一つの部材で兼用する場合、電極は必ずしも蛍光導光板の両面に設けられなくてもよい。図42に示すように、蛍光導光板9の前面9fに第1電極102と第2電極103の双方を設けてもよい。この例では、蛍光導光板9の前面9fに低屈折率層104が設けられ、低屈折率層104上に第2電極103が設けられている。第2電極103上に誘電体層106を介して第1電極102が設けられている。この構成によっても、蛍光導光板9の導光効率を高めつつ、蛍光導光板とタッチパネルとを一つの部材で兼用することができる。
[Second Modification]
FIG. 42 is a cross-sectional view illustrating a modification of the photodetecting device according to the twentieth embodiment.
When the fluorescent light guide plate and the touch panel are used as a single member, the electrodes do not necessarily have to be provided on both sides of the fluorescent light guide plate. As shown in FIG. 42, both the first electrode 102 and the second electrode 103 may be provided on the front surface 9 f of the fluorescent light guide plate 9. In this example, the low refractive index layer 104 is provided on the front surface 9 f of the fluorescent light guide plate 9, and the second electrode 103 is provided on the low refractive index layer 104. A first electrode 102 is provided on the second electrode 103 via a dielectric layer 106. Even with this configuration, the light guide efficiency of the fluorescent light guide plate 9 can be increased, and the fluorescent light guide plate and the touch panel can be combined with one member.
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態では、蛍光導光板の端面に光吸収材を設けたが、必ずしも光を吸収させる必要はなく、発光点から発せられた光の全反射を低減できるものであればよい。したがって、発光点から発せられた光を散乱させて指向性を低減させるものであってもよい。この場合、撮像素子が捉えた画像上では反射光による発光点の像が直接光による発光点の像に比べてぼやけることにより、両者を識別することができる。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the light absorbing material is provided on the end face of the fluorescent light guide plate. However, it is not always necessary to absorb the light, and any material that can reduce the total reflection of the light emitted from the light emitting point may be used. Therefore, the directivity may be reduced by scattering the light emitted from the light emitting point. In this case, on the image captured by the image sensor, the image of the light emitting point by the reflected light is blurred as compared with the image of the light emitting point by the direct light, so that both can be identified.
 具体的には、蛍光導光板の端面に光散乱層が設けられていてもよい。光散乱層としては、例えば透明基材中に透明基材の屈折率と異なる屈折率を有する粒子を分散させた層であってもよいし、表面に微細な凹凸を形成した層であってもよい。もしくは、蛍光導光板の端面自体に凹凸加工を施してもよい。 Specifically, a light scattering layer may be provided on the end face of the fluorescent light guide plate. The light scattering layer may be, for example, a layer in which particles having a refractive index different from the refractive index of the transparent substrate are dispersed in the transparent substrate, or a layer having fine irregularities formed on the surface. Good. Or you may give uneven | corrugated processing to the end surface itself of a fluorescence light-guide plate.
 撮像素子の設置位置は必ずしも蛍光導光板の角部に限ることはない。例えば、撮像素子が蛍光導光板の辺の途中に設けられていてもよい。その場合、蛍光導光板に円の1/2をなす円弧状の切り欠き部が設けられていればよい。また、蛍光導光板の全体形状は矩形に限ることはない。 The installation position of the image sensor is not necessarily limited to the corner of the fluorescent light guide plate. For example, the image sensor may be provided in the middle of the side of the fluorescent light guide plate. In that case, the fluorescent light guide plate only needs to be provided with an arc-shaped notch that forms a half of a circle. The overall shape of the fluorescent light guide plate is not limited to a rectangle.
 上記実施形態では、光検出装置をレーザーポインターと組み合わせた位置入力装置としての例を示したが、この光検出装置を、光が照射された位置を特定可能な光センサーとして用いることができる。また、上記実施形態では、蛍光導光板中の蛍光体をレーザー光で励起させる例を挙げたが、この例に代えて、蛍光導光板中の蛍光体を発光ダイオード(LED)からの光で励起させてもよい。すなわち、光エネルギー供給源としてLEDを用いてもよい。その場合、LEDは、比較的近い距離から蛍光導光板に光を照射することが好ましい。LEDは指向性が弱いため、遠距離からの入力が難しいからである。近距離からであれば、低出力でより安全に入力を行うことができる。
 その他、光検出装置、位置入力装置、および電子機器の各種の構成要素の形状、配置、数、材料等については適宜変更が可能である。
In the above-described embodiment, an example of a position input device in which a light detection device is combined with a laser pointer has been described. However, this light detection device can be used as a light sensor that can specify a position irradiated with light. Moreover, in the said embodiment, although the example which excites the fluorescent substance in a fluorescence light-guide plate with a laser beam was given, it replaced with this example and excited the fluorescent substance in a fluorescence light-guide plate with the light from a light emitting diode (LED). You may let them. That is, you may use LED as a light energy supply source. In that case, the LED preferably emits light to the fluorescent light guide plate from a relatively close distance. This is because an LED is difficult to input from a long distance because of its low directivity. From a short distance, it is possible to input safely with low output.
In addition, the shape, arrangement, number, material, and the like of various components of the light detection device, the position input device, and the electronic device can be appropriately changed.
 本発明は、位置入力機能を備えた液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマディスプレイ等の各種表示装置に利用可能である。 The present invention is applicable to various display devices such as a liquid crystal display device having a position input function, an organic electroluminescence display device, and a plasma display.
 1,90,93,96  電子機器
 2  位置入力装置
 3  ディスプレイ(表示装置)
 4,26,30,35,39,42,53,56,60,65,70,76,85,101  光検出装置
 5,5A,5B,5C,46  レーザーポインター
 9,27,66,73  蛍光導光板
 10,10L,10R,10LT,10RT,10LB,10RB  撮像素子
 12  光吸収材(反射低減部)
 13  蛍光体
 20  位置検出部
 21  制御部
 31,32,33  低反射層
 36  光散乱層
 67  応力発光蛍光体
1, 90, 93, 96 Electronic equipment 2 Position input device 3 Display (display device)
4, 26, 30, 35, 39, 42, 53, 56, 60, 65, 70, 76, 85, 101 Photodetector 5, 5A, 5B, 5C, 46 Laser pointer 9, 27, 66, 73 Fluorescent light Optical plate 10, 10L, 10R, 10LT, 10RT, 10LB, 10RB Image sensor 12 Light absorber (reflection reduction part)
DESCRIPTION OF SYMBOLS 13 Fluorescent substance 20 Position detection part 21 Control part 31,32,33 Low reflection layer 36 Light-scattering layer 67 Stress light-emitting fluorescent substance

Claims (11)

  1.  励起エネルギーを得て光を発する蛍光体を有し、前記蛍光体から発せられた光を内部で導光させる蛍光導光板と、
     前記蛍光導光板の端面の一部を撮像する撮像素子と、
     前記撮像素子が捉えた画像に基づいて、前記蛍光導光板における前記励起エネルギーの供給位置を検出する位置検出部と、
     前記蛍光導光板の端面のうち、前記撮像素子の撮像領域を除く領域の少なくとも一部に設けられ、前記蛍光導光板の端面に到達した前記光の全反射を低減する反射低減部と、
     を備えた光検出装置。
    A fluorescent light guide plate that has a phosphor that emits light by obtaining excitation energy, and guides the light emitted from the phosphor inside;
    An imaging device for imaging a part of an end face of the fluorescent light guide plate;
    A position detection unit that detects a supply position of the excitation energy in the fluorescent light guide plate based on an image captured by the imaging element;
    Of the end face of the fluorescent light guide plate, provided in at least a part of the region excluding the imaging region of the image sensor, a reflection reducing unit that reduces the total reflection of the light reaching the end face of the fluorescent light guide plate;
    A light detection apparatus comprising:
  2.  前記反射低減部が、前記蛍光導光板の端面に設けられた光吸収層である請求項1に記載の光検出装置。 The light detection device according to claim 1, wherein the reflection reducing unit is a light absorption layer provided on an end face of the fluorescent light guide plate.
  3.  前記蛍光導光板が、円弧状に切り欠かれた切り欠き部を有し、
     前記撮像素子が、前記切り欠き部の凹んだ湾曲面を撮像する
     請求項1または請求項2に記載の光検出装置。
    The fluorescent light guide plate has a notch cut out in an arc shape,
    The photodetection device according to claim 1, wherein the imaging element captures an image of a curved surface in which the cutout portion is recessed.
  4.  前記励起エネルギーが光エネルギーである
     請求項1から請求項3までのいずれか一項に記載の光検出装置。
    The photodetection device according to any one of claims 1 to 3, wherein the excitation energy is light energy.
  5.  前記蛍光導光板の第1主面および第2主面の少なくとも一方に、低反射層もしくは光散乱層を備えた
     請求項4に記載の光検出装置。
    The light detection device according to claim 4, further comprising a low reflection layer or a light scattering layer on at least one of the first main surface and the second main surface of the fluorescent light guide plate.
  6.  前記第1主面および前記第2主面のうち、一方の主面に、誘電体多層膜からなる低反射層を備え、他方の主面に、可視光領域の波長以下の周期で配列された複数の突起を有する低反射層を備えた
     請求項5に記載の光検出装置。
    Of the first main surface and the second main surface, one main surface is provided with a low reflection layer made of a dielectric multilayer film, and the other main surface is arranged with a period equal to or less than the wavelength of the visible light region. The light detection device according to claim 5, further comprising a low reflection layer having a plurality of protrusions.
  7.  前記位置検出部が、前記画像に基づいて前記発光領域の代表位置を決定し、前記代表位置から前記励起エネルギーの供給位置を算出する
     請求項1から請求項6までのいずれか一項に記載の光検出装置。
    The said position detection part determines the representative position of the said light emission area | region based on the said image, and calculates the supply position of the said excitation energy from the said representative position. Photodetector.
  8.  前記蛍光導光板の端面に、前記蛍光体から前記光が発せられたことを検出する光検出素子を備えた
     請求項1から請求項7までのいずれか一項に記載の光検出装置。
    The light detection device according to claim 1, further comprising: a light detection element that detects that the light is emitted from the phosphor on an end face of the fluorescent light guide plate.
  9.  請求項1から請求項8までのいずれか一項に記載の光検出装置と、
     前記蛍光導光板の任意の位置に前記励起エネルギーを供給する励起エネルギー供給源と、
     を備えた位置入力装置。
    The photodetection device according to any one of claims 1 to 8,
    An excitation energy supply source for supplying the excitation energy to an arbitrary position of the fluorescent light guide plate;
    A position input device comprising:
  10.  前記励起エネルギー供給源が複数のレーザー光源であり、
     前記複数のレーザー光源から射出される複数の励起レーザー光が前記蛍光導光板の異なる位置に照射された際に生じる複数の光を前記位置検出部が識別する識別手段を備えた
     請求項9に記載の位置入力装置。
    The excitation energy supply source is a plurality of laser light sources;
    10. The identification unit according to claim 9, further comprising: an identification unit that identifies a plurality of lights generated when a plurality of excitation laser beams emitted from the plurality of laser light sources are irradiated to different positions of the fluorescent light guide plate. Position input device.
  11.  請求項9または請求項10に記載の位置入力装置と、
     前記蛍光導光板の前記第1主面もしくは前記第2主面に対向して配置された表示装置と、
     前記位置入力装置から出力された位置情報に基づいて前記表示装置を制御する制御部と、
     を備えた電子機器。
    The position input device according to claim 9 or 10, and
    A display device disposed opposite to the first main surface or the second main surface of the fluorescent light guide plate;
    A control unit for controlling the display device based on position information output from the position input device;
    With electronic equipment.
PCT/JP2014/069682 2013-08-05 2014-07-25 Light detection device, position input device, and electronic device WO2015019869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-162791 2013-08-05
JP2013162791 2013-08-05

Publications (1)

Publication Number Publication Date
WO2015019869A1 true WO2015019869A1 (en) 2015-02-12

Family

ID=52461208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069682 WO2015019869A1 (en) 2013-08-05 2014-07-25 Light detection device, position input device, and electronic device

Country Status (1)

Country Link
WO (1) WO2015019869A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098982A1 (en) * 2015-12-09 2017-06-15 株式会社スクウェア・エニックス Program, computer device, program execution method, and computer system
JP2019053769A (en) * 2018-12-04 2019-04-04 シャープ株式会社 Touch detection apparatus, touch detection system, touch detection method, and program
WO2023131957A1 (en) * 2022-01-07 2023-07-13 Wi-Charge Ltd. Laser triggered display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327769A (en) * 1998-05-08 1999-11-30 Nec Corp Coordinate input device
JP2005354190A (en) * 2004-06-08 2005-12-22 Sony Corp Communication system, receiver and method, recording medium, and program
JP2006238053A (en) * 2005-02-24 2006-09-07 Toshiba Matsushita Display Technology Co Ltd Plane display device and its image inputting method
JP2009289243A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Position detection device, position detection system, video display device and video display system
JP2012068920A (en) * 2010-09-24 2012-04-05 Panasonic Corp Light beam irradiation coordinate position detection system
WO2013039238A1 (en) * 2011-09-15 2013-03-21 オムロン株式会社 Contact prevention film, touch panel, and display device cover panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327769A (en) * 1998-05-08 1999-11-30 Nec Corp Coordinate input device
JP2005354190A (en) * 2004-06-08 2005-12-22 Sony Corp Communication system, receiver and method, recording medium, and program
JP2006238053A (en) * 2005-02-24 2006-09-07 Toshiba Matsushita Display Technology Co Ltd Plane display device and its image inputting method
JP2009289243A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Position detection device, position detection system, video display device and video display system
JP2012068920A (en) * 2010-09-24 2012-04-05 Panasonic Corp Light beam irradiation coordinate position detection system
WO2013039238A1 (en) * 2011-09-15 2013-03-21 オムロン株式会社 Contact prevention film, touch panel, and display device cover panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098982A1 (en) * 2015-12-09 2017-06-15 株式会社スクウェア・エニックス Program, computer device, program execution method, and computer system
JP2019053769A (en) * 2018-12-04 2019-04-04 シャープ株式会社 Touch detection apparatus, touch detection system, touch detection method, and program
WO2023131957A1 (en) * 2022-01-07 2023-07-13 Wi-Charge Ltd. Laser triggered display device

Similar Documents

Publication Publication Date Title
JP5481469B2 (en) Touch sensing display
JP5780970B2 (en) Touch sensitive display
KR100917583B1 (en) A light guide plate for system inputting coordinate contactlessly, a system comprising the same and a method for inputting coordinate contactlessly using the same
CN104813263B (en) Enhancing optical waveguide for light touch sensitive device
TWI587180B (en) Optical digitizer system with position-unique photoluminescent indicia
KR101726597B1 (en) Display apparatus for sensing multi touch and proximated object
WO2018103194A1 (en) Display module and usage method thereof
US20160328090A1 (en) Oled display panel
JP5552296B2 (en) Optical touch device and shielding object position detection method
US8581892B2 (en) Optical position detecting device and display device with position detecting function
TWI470508B (en) Touch panel and touch display device having the same
WO2018103195A1 (en) Display module and usage method thereof
WO2018103193A1 (en) Display module and usage method thereof
TWI582661B (en) Contactless input device and method
KR20060135610A (en) Touch input screen using a light guide
JP2013143127A (en) Display device and input device having light emission patterns in plurality of layers
TW201504898A (en) Optical touchscreen
KR101732957B1 (en) Pen type and orientation recognition apparatus for optical touch screen
KR101374418B1 (en) Multi-touch device
WO2015019869A1 (en) Light detection device, position input device, and electronic device
WO2018103196A1 (en) Display module and usage method thereof
TW201324286A (en) Display device and input device with multi pattern layers
JP2005316517A (en) Optical touch panel
KR20080101164A (en) Multi-touch device
JP2014099139A (en) Coordinate input device and coordinate input system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14834113

Country of ref document: EP

Kind code of ref document: A1