WO2015002009A1 - Spr sensor cell, and spr sensor - Google Patents

Spr sensor cell, and spr sensor Download PDF

Info

Publication number
WO2015002009A1
WO2015002009A1 PCT/JP2014/066597 JP2014066597W WO2015002009A1 WO 2015002009 A1 WO2015002009 A1 WO 2015002009A1 JP 2014066597 W JP2014066597 W JP 2014066597W WO 2015002009 A1 WO2015002009 A1 WO 2015002009A1
Authority
WO
WIPO (PCT)
Prior art keywords
spr sensor
layer
sensor cell
core layer
refractive index
Prior art date
Application number
PCT/JP2014/066597
Other languages
French (fr)
Japanese (ja)
Inventor
友広 紺谷
真由 尾▲崎▼
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015002009A1 publication Critical patent/WO2015002009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the present invention relates to an SPR sensor cell and an SPR sensor. More specifically, the present invention relates to an SPR sensor cell and an SPR sensor provided with an optical waveguide.
  • SPR Surface Plasmon Resonance
  • an SPR sensor including an optical fiber a metal thin film is formed on the outer peripheral surface of the tip portion of the optical fiber, an analysis sample is fixed, and light is introduced into the optical fiber.
  • light of a specific wavelength generates surface plasmon resonance in the metal thin film, and the light intensity is attenuated.
  • the wavelength for generating surface plasmon resonance usually varies depending on the refractive index of the analysis sample fixed to the optical fiber.
  • the wavelength at which the light intensity is attenuated after the occurrence of surface plasmon resonance is measured, the wavelength at which the surface plasmon resonance is generated can be identified, and if it is detected that the attenuation wavelength has changed, the surface plasmon resonance is detected. Since it can be confirmed that the wavelength to be generated has changed, the change in the refractive index of the analysis sample can be confirmed.
  • an SPR sensor can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction.
  • the SPR sensor including such an optical fiber
  • a core through which light passes and a clad covering the core are provided, and a through-hole that reaches the surface of the core is formed at a predetermined position of the clad, and this through-hole is supported.
  • Patent Document 1 proposes an SPR sensor cell in which a metal thin film is formed on the surface of the core at the position (for example, Patent Document 1). According to such an SPR sensor cell, it is easy to form a metal thin film for generating surface plasmon resonance on the core surface and to fix the analysis sample to the surface.
  • the present invention has been made to solve the above-described conventional problems, and an object thereof is to provide an SPR sensor cell and an SPR sensor having very excellent detection sensitivity.
  • an SPR sensor cell comprises an under cladding layer, a core layer provided so that at least a part thereof is adjacent to the under cladding layer, and a metal layer covering the core layer, the under cladding layer comprising: An undercladding layer forming resin and particles dispersed in the undercladding layer forming resin.
  • the filling rate of particles in the under cladding layer is 3% to 30%.
  • the average particle diameter ( ⁇ ) of the particles is 200 nm to 2.5 ⁇ m.
  • the particle includes an inorganic oxide.
  • the particles include a metal oxide.
  • the particles include a metal.
  • an SPR sensor is provided.
  • the SPR sensor of the present invention includes the SPR sensor cell.
  • FIG. 2 is a schematic sectional view taken along line Ia-Ia of the SPR sensor cell shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view of an SPR sensor cell according to another preferred embodiment of the present invention. It is a schematic sectional drawing explaining an example of the manufacturing method of the SPR sensor cell of this invention. It is a schematic sectional drawing explaining the SPR sensor by preferable embodiment of this invention. It is the transmittance
  • FIG. 1 is a schematic perspective view illustrating an SPR sensor cell according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic sectional view taken along line Ia-Ia of the SPR sensor cell shown in FIG.
  • the upper side of the drawing is the upper side
  • the lower side of the drawing is the lower side.
  • the SPR sensor cell 100 is formed in a bottomed frame shape having a substantially rectangular shape in plan view, and is embedded in the under cladding layer 11 so that the upper surface of the under cladding layer 11 is exposed. It has a core layer 12, an under cladding layer 11, and a metal layer 13 that covers the core layer 12.
  • the under cladding layer 11, the core layer 12, and the metal layer 13 constitute an optical waveguide, and function as the detection unit 10 that detects the state of the sample and / or its change.
  • the SPR sensor cell 100 includes a sample placement unit 20 provided so as to be adjacent to the detection unit 10.
  • the sample placement portion 20 is defined by the over clad layer 14.
  • the over clad layer 14 may be omitted as long as the sample placement portion 20 can be appropriately provided.
  • a sample to be analyzed for example, a solution or a powder
  • the detection unit substantially a metal layer
  • the under-cladding layer 11 is formed in a substantially rectangular flat plate shape in plan view having a predetermined thickness.
  • the thickness of the under cladding layer is, for example, 5 ⁇ m to 400 ⁇ m.
  • the under clad layer 11 includes an under clad layer forming resin and particles dispersed in the under clad layer forming resin.
  • the reason why such an effect is obtained is not clear, but is presumed as follows. That is, by dispersing particles in the under cladding layer, the reflectance on the surface of the under cladding layer can be increased and light can be prevented from entering the under cladding layer. Further, even when light is incident on the under cladding layer, light scattering is induced by the particles, so that the intensity of light transmitted through the under cladding layer and emitted can be reduced.
  • the difference between the light intensity transmitted through the core layer (that is, signal intensity) and the light intensity from the outside such as the under cladding layer (that is, noise intensity) can be increased. It is estimated that highly accurate measurement is possible by reducing the influence of factors.
  • the particles any appropriate particles that can increase the reflectivity of the underclad layer surface and / or reduce the light transmittance in the underclad layer can be used.
  • the particles are preferably formed from a material having a refractive index of 1.40 to 3.00, more preferably 1.43 to 2.60.
  • the refractive index of the under cladding layer can be easily adjusted to a desired range.
  • the particles are preferably formed from a material having an extinction coefficient of 0.1 or less, more preferably 0.
  • the refractive index means a refractive index at a wavelength of 830 nm.
  • the extinction coefficient means an extinction coefficient at a wavelength of 830 nm.
  • the particle forming material include metals and inorganic oxides.
  • Preferred examples of the metal include titanium, tantalum, aluminum, zinc, chromium, iron and the like.
  • examples of the inorganic oxide include metal oxides (for example, titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and chromium oxide (Cr 2 O 3 ), iron oxide (Fe 2 O 3 ), copper oxide (CuO)) and metalloid oxides (eg, boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), germanium oxide (GeO 2 )) Can be preferably exemplified.
  • grain only 1 type may be used and it may be used in combination of 2 or more types.
  • the average particle diameter ( ⁇ ) of the above particles is, for example, 10 nm to 5 ⁇ m.
  • the lower limit of the average particle diameter is preferably 200 nm, more preferably 400 nm.
  • the upper limit of the average particle diameter is preferably 2.5 ⁇ m, more preferably 2.0 ⁇ m.
  • an average particle diameter means a median diameter.
  • the average particle size of the particles in the under cladding layer is, for example, based on laser diffraction / scattering particle size distribution measurement or image processing of a SEM image of a cross section of the under cladding layer to obtain a particle size distribution, and a volume obtained therefrom. It can be obtained based on a reference particle size distribution.
  • any appropriate resin capable of forming an undercladding layer having a refractive index lower than the refractive index of the core layer described later is used.
  • Specific examples include fluororesins, epoxy resins, polyimide resins, polyamide resins, silicone resins, acrylic resins, and modified products thereof (for example, fluorene-modified products, deuterium-modified products, and fluorine-modified products other than fluororesins).
  • fluororesins epoxy resins, polyimide resins, polyamide resins, silicone resins, acrylic resins, and modified products thereof (for example, fluorene-modified products, deuterium-modified products, and fluorine-modified products other than fluororesins).
  • These may be used alone or in combination of two or more.
  • These can be used as a photosensitive material, preferably by blending a photosensitive agent.
  • the refractive index of the resin for forming the underclad layer is lower than the refractive index of the above particles.
  • the difference between the refractive index of the undercladding layer forming resin and the refractive index of the particles is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.07 or more, and even more preferably 0.00. 10 or more.
  • the refractive index of the resin for forming the underclad layer is preferably 1.42 or less, more preferably less than 1.40, and further preferably 1.38 or less.
  • the filling rate of the particles in the under cladding layer 11 is, for example, 1% to 50%.
  • the lower limit of the filling rate is preferably 2%, more preferably 3%, still more preferably 5%.
  • the upper limit of the filling rate is preferably 30%, more preferably 25%.
  • the refractive index (N CL ) of the under cladding layer 11 is lower than the refractive index (N PA ) of the particles.
  • the difference between the refractive index of the under cladding layer and the refractive index of the particles (N PA ⁇ N CL ) is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.07 or more, and even more. Preferably, it is 0.10 or more.
  • the light transmittance of the under cladding layer 11 at a wavelength of 650 nm is, for example, 95% or less, and preferably 92% or less. With such a light transmittance, noise caused by the light transmitted through the under cladding layer can be reduced and the S / N ratio can be improved.
  • the light transmittance of the under cladding layer is calculated as a transmittance (thickness: 100 ⁇ m) at a wavelength of 650 nm by a visible / ultraviolet absorption spectrum method using a spectrophotometer.
  • the core layer 12 is formed in a substantially prismatic shape extending in a direction orthogonal to both the width direction of the undercladding layer 11 (left and right direction in FIG. 2) and the thickness direction. Embedded in the upper end.
  • the direction in which the core layer 12 extends is the direction in which light propagates in the optical waveguide.
  • the core layer 12 is arranged so that the upper surface thereof is flush with the upper surface of the under cladding layer 11.
  • the metal layer can be efficiently arranged only on the upper side of the core layer.
  • the core layer is disposed so that both end surfaces in the extending direction thereof are flush with both end surfaces in the corresponding direction of the under cladding layer.
  • the refractive index (N CO ) of the core layer 12 is preferably 1.43 or less, more preferably less than 1.40, and further preferably 1.38 or less. By setting the refractive index of the core layer to 1.43 or less, the detection sensitivity can be significantly improved.
  • the lower limit of the refractive index of the core layer is preferably 1.34. If the refractive index of the core layer is 1.34 or more, SPR can be excited even with an aqueous sample (water refractive index: 1.33), and a general-purpose material can be used. it can.
  • the refractive index (N CO ) of the core layer 12 is higher than the refractive index (N CL ) of the under cladding layer 11.
  • the difference (N CO -N CL ) between the refractive index of the core layer and the refractive index of the under cladding layer is preferably 0.010 or more, more preferably 0.020 or more, and further preferably 0.025 or more. . If the difference between the refractive index of the core layer and the refractive index of the under cladding layer is within such a range, the optical waveguide of the detection unit can be set to a so-called multimode. Therefore, the amount of light transmitted through the optical waveguide can be increased, and as a result, the S / N ratio can be improved.
  • the difference between the refractive index of the core layer and the refractive index of the under cladding layer is preferably 0.15 or less, more preferably 0.10 or less, and still more preferably 0.050 or less. If the difference between the refractive index of the core layer and the refractive index of the under cladding layer is within such a range, light having a reflection angle that causes SPR excitation can exist in the core layer.
  • the thickness of the core layer 12 is, for example, 5 ⁇ m to 200 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m.
  • the width of the core layer is, for example, 5 ⁇ m to 200 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m. With such a thickness and / or width, the optical waveguide can be a so-called multimode.
  • the length of the core layer 12 (waveguide length) is, for example, 2 mm to 50 mm, preferably 10 mm to 20 mm.
  • any appropriate material can be used as long as the effects of the present invention can be obtained.
  • it can be formed from a resin similar to the undercladding layer-forming resin and adjusted to have a refractive index higher than that of the undercladding layer.
  • the metal layer 13 is formed so as to uniformly cover at least part of the upper surfaces of the under cladding layer 11 and the core layer 12.
  • an easy adhesion layer (not shown) may be provided between the under cladding layer and the core layer and the metal layer.
  • Examples of the material for forming the metal layer 13 include gold, silver, platinum, copper, aluminum, and alloys thereof.
  • the metal layer may be a single layer or may have a laminated structure of two or more layers.
  • the thickness of the metal layer (the total thickness of all layers in the case of a laminated structure) is preferably 20 nm to 70 nm, more preferably 30 nm to 60 nm.
  • the easy-adhesion layer chrome or titanium is typically mentioned.
  • the thickness of the easy adhesion layer is preferably 1 nm to 5 nm.
  • the over clad layer 14 has a rectangular frame in plan view so that the outer periphery of the over clad layer 11 and the core layer 12 is substantially the same as the outer periphery of the under clad layer 11 in plan view. It is formed into a shape. A portion surrounded by the upper surfaces of the under-cladding layer 11 and the core layer 12 and the over-cladding layer 14 is defined as a sample placement portion 20.
  • Examples of the material for forming the over clad layer 14 include a material for forming the core layer and the under clad layer, and silicone rubber.
  • the thickness of the over cladding layer is preferably 5 ⁇ m to 2000 ⁇ m, more preferably 25 ⁇ m to 200 ⁇ m.
  • the refractive index of the overcladding layer is preferably lower than the refractive index of the core layer. In one embodiment, the refractive index of the overclad layer is equivalent to the refractive index of the underclad layer.
  • a protective layer 15 may be provided between the under cladding layer 11 and the core layer 12 and the metal layer 13.
  • the protective layer 15 can be formed as a thin film having the same shape as that of the under cladding layer in plan view so as to cover all the upper surfaces of the under cladding layer 11 and the core layer 12.
  • the material for forming the protective layer include silicon dioxide and aluminum oxide. These materials can preferably be adjusted to have a refractive index lower than that of the core layer.
  • the thickness of the protective layer is preferably 1 nm to 100 nm, more preferably 5 nm to 20 nm.
  • the core layer may be provided adjacent to the under cladding layer.
  • the core layer may be provided so as to penetrate the under cladding layer.
  • the number of core layers in the SPR sensor may be changed according to the purpose. Specifically, a plurality of core layers may be formed at a predetermined interval in the width direction of the under cladding layer. With such a configuration, since a plurality of samples can be analyzed simultaneously, the analysis efficiency can be improved.
  • shape of the core layer any appropriate shape (for example, a semi-cylindrical shape or a convex column shape) can be adopted depending on the purpose.
  • a lid may be provided on the SPR sensor cell 100 (sample placement unit 20).
  • the sample can be prevented from coming into contact with the outside air. Further, when the sample is a solution, a change in concentration due to evaporation of the solvent can be prevented.
  • an inlet for injecting the liquid sample into the sample placement portion and a discharge port for discharging from the sample placement portion may be provided. With such a configuration, the sample can be flowed and continuously supplied to the sample placement unit, so that the characteristics of the sample can be continuously measured.
  • SPR sensor cell of the present invention can be manufactured by any suitable method.
  • 4 (a) to 4 (i) are schematic cross-sectional views for explaining an example of the method for producing the SPR sensor cell of the present invention.
  • the material 12 'for forming the core layer is disposed on the surface of the mold 30 having the recess corresponding to the shape of the core layer.
  • the transfer film 40 is bonded to the surface of the mold 30 while being pressed by the pressing means 50 in a predetermined direction, and the recess is filled with the core layer forming material 12 ′. Excess core layer forming material 12 'is removed.
  • the core layer forming material 12 ′ filled in the recesses is irradiated with ultraviolet rays, and the material is cured to form the core layer 12.
  • the transfer film 40 is peeled from the mold 30 and the core layer 12 is transferred onto the transfer film 40.
  • an undercladding layer forming material 11 ′ including an undercladding layer forming resin and particles dispersed in the resin is applied so as to cover the core layer 12.
  • the under-cladding layer forming material 11 ′ is previously coated on another support (for example, a corona-treated PET film), and the under-cladding layer forming material 11 ′ is used as the core layer 12.
  • the support and the transfer film 40 may be bonded to cover the substrate.
  • the under cladding layer forming material 11 ′ is irradiated with ultraviolet rays, and the material is cured to form the under cladding layer 11.
  • the transfer film 40 is peeled and removed, and the top and bottom are reversed.
  • the irradiation condition of the ultraviolet rays can be appropriately set according to the type of material. If necessary, the material may be heated. Heating may be performed before ultraviolet irradiation, may be performed after ultraviolet irradiation, or may be performed in combination with ultraviolet irradiation. In addition, any appropriate method can be used as a method of dispersing particles in the undercladding layer forming resin.
  • an easy-adhesion layer (not shown) is formed on the under cladding layer 11 and the core layer 14 as necessary.
  • the easy adhesion layer is formed, for example, by sputtering chromium or titanium.
  • the metal layer 13 is formed so as to cover the core layer 12 on the core layer and the undercladding layer (on the protective layer when the protective layer is formed).
  • the metal layer 13 is formed, for example, by vacuum deposition, ion plating, or sputtering of a material for forming the metal layer through a mask having a predetermined pattern.
  • the over clad layer 14 having the predetermined frame shape is formed.
  • the over clad layer 14 can be formed by any appropriate method.
  • the over clad layer 14 is formed by disposing a mold having the predetermined frame shape on the core layer and the under clad layer, filling the mold with a varnish of an over clad layer forming material, and drying, if necessary. It can be formed by curing and finally removing the mold.
  • the over clad layer 14 can be formed by applying varnish to the upper surfaces of the core layer and the under clad layer, and after drying and exposing and developing through a photomask having a predetermined pattern. .
  • the SPR sensor cell shown in FIG. 1 can be manufactured.
  • FIG. 5 is a schematic cross-sectional view illustrating an SPR sensor according to a preferred embodiment of the present invention.
  • the SPR sensor 200 includes an SPR sensor cell 100, a light source 110, and an optical measuring instrument 120.
  • the SPR sensor cell 100 is the SPR sensor of the present invention described in the above items A and B.
  • the optical measuring instrument 120 is connected to any appropriate arithmetic processing device, and can store, display and process data.
  • the light source 110 is connected to the light source side optical fiber 112 via the light source side optical connector 111.
  • the light source side optical fiber 112 is connected to one end of the SPR sensor cell 100 in the propagation direction via the light source side fiber block 113.
  • a measuring instrument side optical fiber 115 is connected to the other end portion in the propagation direction of the SPR sensor cell 100 via a measuring instrument side fiber block 114.
  • the measuring instrument side optical fiber 115 is connected to the optical measuring instrument 120 via the measuring instrument side optical connector 116.
  • the light source side optical fiber 112 and the measuring instrument side optical fiber 115 are preferably connected by a multimode optical fiber capable of propagating light having a reflection angle capable of SPR excitation into the optical waveguide.
  • an optical fiber having a diameter larger than that of the core layer 12 can be used as the light source side optical fiber 112 as shown in FIG. Since particles are dispersed in the underclad layer to reduce the incidence and transmission of light, when a large-diameter optical fiber is used, the optical fiber and the SPR sensor cell are maintained while maintaining a sufficient S / N ratio. There is an advantage that the alignment with the position becomes easy and the operability is improved.
  • the measuring instrument side optical fiber 115 may be an optical fiber having a diameter larger than that of the core layer 12. Needless to say, optical fibers having substantially the same diameter as the core layer 12 may be used as the light source side and measuring instrument side optical fibers.
  • the SPR sensor cell 100 is fixed by any appropriate sensor cell fixing device (not shown).
  • the sensor cell fixing device is movable along a predetermined direction (for example, the width direction of the SPR sensor cell), and thereby, the SPR sensor cell can be arranged at a desired position.
  • the light source side optical fiber 112 is fixed by a light source side optical fiber fixing device 131, and the measuring instrument side optical fiber 115 is fixed by a measuring instrument side optical fiber fixing device 132.
  • the light source side optical fiber fixing device 131 and the measuring instrument side optical fiber fixing device 132 are respectively fixed on any appropriate six-axis moving stage (not shown), and the propagation direction and width direction of the optical fiber ( It is movable in a propagation direction and a direction orthogonal to the horizontal direction) and a thickness direction (a direction orthogonal to the propagation direction in the vertical direction) and a rotation direction around each of these directions.
  • the light source 110, the light source side optical fiber 112, the SPR sensor cell 100 (core layer 12), the measuring instrument side optical fiber 115, and the optical measuring instrument 120 can be arranged on one axis, Light can be introduced from the light source 110 to be transmitted.
  • the sample is placed in the sample placement portion 20 of the SPR sensor cell 100, and the sample and the metal layer 13 are brought into contact with each other.
  • predetermined light from the light source 110 is introduced into the SPR sensor cell 100 (core layer 12) via the light source side optical fiber 112 (see arrow L1 in FIG. 5).
  • the light introduced into the SPR sensor cell 100 (core layer 12) is transmitted through the SPR sensor cell 100 (core layer 12) while repeating total reflection in the core layer 12, and part of the light is on the upper surface of the core layer 12. Is incident on the metal layer 13 and attenuated by surface plasmon resonance.
  • the light transmitted through the SPR sensor cell 100 is introduced into the optical measuring instrument 120 through the measuring instrument side optical fiber 115 (see arrow L2 in FIG. 5). That is, in the SPR sensor 200, the light intensity of the light introduced into the optical measuring instrument 120 is attenuated at the wavelength that caused the surface plasmon resonance in the core layer 12. Since the wavelength for generating surface plasmon resonance depends on the refractive index of the sample in contact with the metal layer 13, the attenuation of the light intensity of the light introduced into the optical measuring instrument 120 is detected to detect the refractive index of the sample. Changes can be detected.
  • the optical measuring instrument 120 measures the wavelength at which the light intensity attenuates after transmission through the SPR sensor cell 100 (the wavelength that generates surface plasmon resonance), and the attenuation wavelength changes. If this is detected, a change in the refractive index of the sample can be confirmed.
  • the optical measuring instrument 120 measures the change (degree of attenuation) of the monochromatic light after passing through the SPR sensor cell 100, and the degree of attenuation changes. If it is detected, it can be confirmed that the wavelength for generating surface plasmon resonance has changed, and the change in the refractive index of the sample can be confirmed.
  • such an SPR sensor cell can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction based on the change in the refractive index of the sample. More specifically, for example, when the sample is a solution, the refractive index of the sample (solution) depends on the concentration of the solution. Therefore, if the refractive index of the sample is detected, the concentration of the sample is measured. Can do. Furthermore, if it is detected that the refractive index of the sample has changed, it can be confirmed that the concentration of the sample has changed. For example, in detecting an immune reaction, an antibody is immobilized on the metal layer 13 of the SPR sensor cell 100 via a dielectric film, and a specimen is brought into contact with the antibody.
  • the refractive index of the sample changes when the antibody and the specimen are immunoreacted, it is possible to determine that the antibody and the specimen have immunoreacted by detecting the change in the refractive index of the sample before and after contact between the antibody and the specimen. it can.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the measurement wavelength of the refractive index is 830 nm unless otherwise specified.
  • the refractive index was measured at a wavelength of 830 nm using a prism coupler type refractive index measuring device after forming a 10 ⁇ m thick film on a silicon wafer.
  • Filling rate (%) ((particle mixing rate (wt%) / bulk specific gravity (g / mL)) / (100 + particle mixing rate (wt%))) ⁇ 100
  • ⁇ Bulk specific gravity> The bulk specific gravity of the particles was calculated by putting the particles in a cup having a known volume (mL), measuring the weight (g) of the particles, and dividing the particle weight by the cup volume.
  • ⁇ Average particle size> The median diameter was calculated by laser diffraction / scattering particle size distribution measurement to obtain an average particle diameter.
  • Example 1 An SPR sensor cell was fabricated by the method shown in FIG. Specifically, the core layer forming material was dropped on the surface of a mold (length: 200 mm, width: 200 mm) in which a concave portion for forming a core layer having a width of 50 ⁇ m and a thickness (depth) of 50 ⁇ m was formed on the surface. One end of the corona-treated surface of a PP film (thickness: 40 ⁇ m) having a corona-treated one surface was brought into contact with the surface of the mold, and the other end was warped.
  • the core layer forming material is composed of 60 parts by weight of fluorine-based UV curable resin (DIC, trade name “OP38Z”) and 40 parts by weight of fluorine-based UV curable resin (DIC, trade name “OP40Z”). Was prepared by stirring and dissolving.
  • the PP film was peeled from the mold, and a substantially prismatic core layer having a thickness of 50 ⁇ m and a width of 50 ⁇ m was transferred onto the film.
  • the under cladding layer forming material was applied on the PP film so as to cover the core layer.
  • the under clad layer forming material is 99.4 parts by weight of fluorine-based UV curable resin (manufactured by Solvay Specialty Polymer Japan, trade name “Fluorolink MD700”, refractive index: 1.348) and silica particles (manufactured by Admatech Co., Ltd.).
  • the product name “Admafine SC2500-SMJ” and refractive index 1.45) were prepared by mixing 0.6 parts by weight. At this time, the coating was applied so that the thickness from the core layer surface (upper surface) was 100 ⁇ m.
  • the undercladding layer forming material was cured by irradiating with ultraviolet rays to form an undercladding layer (light transmittance: 95% or less), and then the PP film was peeled off to remove the undercladding layer and the core layer.
  • the optical waveguide fill having the core layer embedded in the underclad layer. It was produced.
  • the optical waveguide film is diced and cut to a length of 22.25 mm ⁇ width of 20 mm, and then chromium and gold are sequentially sputtered through a mask having an opening of length 6 mm ⁇ width 1 mm so as to cover the core layer.
  • An easy adhesion layer (thickness: 1 nm) and a metal layer (thickness: 50 nm) were sequentially formed.
  • a frame-shaped overcladding layer was formed using a fluorine-based UV curable resin (trade name “Fluorolink MD700” manufactured by Solvay Specialty Polymer Japan Co., Ltd.) in the same manner as the undercladding layer was formed. In this manner, an SPR sensor cell similar to the SPR sensor cell shown in FIGS. 1 and 2 was produced.
  • a halogen light source (manufactured by Ocean Optics, trade name “HL-2000-HP”, white light) was connected to the incident side end face including the core layer of the SPR sensor cell obtained above through a multimode optical fiber ( ⁇ 1000 ⁇ m).
  • White light from the halogen light source is incident on the incident side end surface including the core layer of the SPR sensor cell via a multimode optical fiber ( ⁇ 1000 ⁇ m), and the light emitted from the emission side end surface of the core layer and the end surface of the core layer are horizontal.
  • the light emitted from the emission side end face of the under cladding layer shifted by 100 ⁇ m in the direction was measured with a power meter through a multimode optical fiber ( ⁇ 50 ⁇ m).
  • the S / N ratio was calculated with the light intensity ( ⁇ W) at the output side end face of the core layer as signal (S) and the light intensity ( ⁇ W) at the output side end face of the under cladding layer as noise (N). The results are shown in Table 1.
  • Example 2 An SPR sensor cell was fabricated in the same manner as in Example 1 except that the mixing ratio of the silica particles in the undercladding layer forming material was 2.5% by weight. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 An SPR sensor cell was produced in the same manner as in Example 1 except that the mixing ratio of the silica particles in the under cladding layer forming material was changed to 5% by weight. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 4 An SPR sensor cell was produced in the same manner as in Example 1 except that the mixing ratio of the silica particles in the under cladding layer forming material was 10% by weight. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 5 Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used, and the mixing ratio of the silica particles in the undercladding layer forming material was 0.8% by weight. Similarly, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 6 The same as in Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 2 wt%. Thus, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 7 The same as in Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 5% by weight. Thus, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 8 The same as in Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 10 wt%. Thus, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 9 Except for using different silica particles (made by Nippon Aerosil Co., Ltd., trade name “AEROSIL R974”, refractive index 1.45) and that the mixing ratio of the silica particles in the under cladding layer forming material was 2.6% by weight.
  • An SPR sensor cell was produced in the same manner as in Example 1. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 10 Example except that different silica particles (manufactured by Nippon Aerosil Co., Ltd., trade name “AEROSIL R974”, refractive index 1.45) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 5 wt%.
  • an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 11 Other than using different silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “SYLOPHOBIC507”, refractive index 1.45) and mixing the silica particles in the under cladding layer forming material to 3.2 wt% An SPR sensor cell was produced in the same manner as in Example 1. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 12 Example except that different silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “SYLOPHOBIC702”, refractive index 1.45) were used, and the mixing ratio of the silica particles in the under cladding layer forming material was 4% by weight.
  • an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 13 Other than using different silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “SYLOPHOBIC702”, refractive index 1.45) and that the mixing ratio of the silica particles in the under cladding layer forming material is 7.2% by weight.
  • An SPR sensor cell was produced in the same manner as in Example 1. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 14 Use of titania particles (manufactured by Sakai Chemical Industry Co., Ltd., trade name “SRD 02-W”, crystal phase: rutile type, refractive index 2.72) and the mixing ratio of silica particles in the undercladding layer forming material is 2 wt.
  • a SPR sensor cell was produced in the same manner as in Example 1 except that the percentage was changed to%. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
  • the detection sensitivity and detection accuracy of the SPR sensor cells produced in Example 3 and Comparative Example 1 were evaluated. Specifically, white light from a halogen light source (trade name “HL-2000-HP” manufactured by Ocean Optics, Inc.) is incident on an incident side end face including the core layer of the SPR sensor cell via an optical fiber ( ⁇ 1000 ⁇ m). The light emitted from the end surface on the emission side of the core layer was introduced into the spectroscope through an optical fiber ( ⁇ 200 ⁇ m), and the transmittance spectrum was measured.
  • a halogen light source trade name “HL-2000-HP” manufactured by Ocean Optics, Inc.
  • the ethylene glycol concentration in the aqueous solution is the X axis
  • the wavelength corresponding to the minimum value of the transmittance is the Y axis
  • the relationship is plotted on the XY coordinates to obtain a calibration curve.
  • the slope and the correlation coefficient were obtained. The greater the slope, the greater the sensitivity, and the closer the correlation coefficient to 1, the higher the detection accuracy.
  • FIG. 6 shows the transmittance spectrum when an aqueous solution having ethylene glycol concentrations of 0% and 10% is used as a sample.
  • the SPR sensor cell of the example has a larger S / N ratio than the SPR sensor cell of the comparative example, and is excellent in detection sensitivity and detection accuracy. This is because, in the SPR sensor of the example, light is guided only in the core layer and the SPR spectrum absorption caused by the light is measured, whereas in the SPR sensor cell of the comparative example, the light guided in the cladding layer is Since the SPR spectrum absorption caused by the light guided in the core layer is measured with respect to the total amount of light guided in the core layer, unnecessary light guided in the cladding layer increases, and as a result This is probably because the signal is small.
  • the detection accuracy is lowered due to variations in light guided in the cladding layer. From the above, it can be seen that the SPR sensor cell of the present invention and the SPR sensor using the same are less susceptible to external factors and can be measured with excellent accuracy.
  • the SPR sensor cell and SPR sensor of the present invention can be suitably used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction.

Abstract

 A SPR sensor cell and SPR sensor having very excellent detection sensitivity are provided. The SPR sensor cell of the present invention is provided with an undercladding layer, a core layer provided so that at least a portion is adjacent to the undercladding layer, and a metal layer for covering the core layer. The undercladding layer contains an undercladding layer-forming resin and particles dispersed in the undercladding layer-forming resin.

Description

SPRセンサセルおよびSPRセンサSPR sensor cell and SPR sensor
 本発明は、SPRセンサセルおよびSPRセンサに関する。より詳細には、本発明は、光導波路を備えるSPRセンサセルおよびSPRセンサに関する。 The present invention relates to an SPR sensor cell and an SPR sensor. More specifically, the present invention relates to an SPR sensor cell and an SPR sensor provided with an optical waveguide.
 従来、化学分析および生物化学分析などの分野において、光ファイバを備えるSPR(表面プラズモン共鳴:Surface Plasmon Resonance)センサが用いられている。光ファイバを備えるSPRセンサでは、光ファイバの先端部の外周面に金属薄膜が形成されるとともに、分析サンプルが固定され、その光ファイバ内に光が導入される。導入される光のうち特定の波長の光が、金属薄膜において表面プラズモン共鳴を発生させ、その光強度が減衰する。このようなSPRセンサにおいて、表面プラズモン共鳴を発生させる波長は、通常、光ファイバに固定される分析サンプルの屈折率などによって異なる。したがって、表面プラズモン共鳴の発生後に光強度が減衰する波長を計測すれば、表面プラズモン共鳴を発生させた波長を特定でき、さらに、その減衰する波長が変化したことを検出すれば、表面プラズモン共鳴を発生させる波長が変化したことを確認できるので、分析サンプルの屈折率の変化を確認できる。その結果、このようなSPRセンサは、例えば、サンプルの濃度の測定、免疫反応の検出など、種々の化学分析および生物化学分析に用いることができる。 Conventionally, SPR (Surface Plasmon Resonance) sensors equipped with optical fibers have been used in fields such as chemical analysis and biochemical analysis. In an SPR sensor including an optical fiber, a metal thin film is formed on the outer peripheral surface of the tip portion of the optical fiber, an analysis sample is fixed, and light is introduced into the optical fiber. Among the introduced light, light of a specific wavelength generates surface plasmon resonance in the metal thin film, and the light intensity is attenuated. In such an SPR sensor, the wavelength for generating surface plasmon resonance usually varies depending on the refractive index of the analysis sample fixed to the optical fiber. Therefore, if the wavelength at which the light intensity is attenuated after the occurrence of surface plasmon resonance is measured, the wavelength at which the surface plasmon resonance is generated can be identified, and if it is detected that the attenuation wavelength has changed, the surface plasmon resonance is detected. Since it can be confirmed that the wavelength to be generated has changed, the change in the refractive index of the analysis sample can be confirmed. As a result, such an SPR sensor can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction.
 このような光ファイバを備えるSPRセンサにおいては、光ファイバの先端部が微細な円筒形状であるので、金属薄膜の形成および分析サンプルの固定が困難であるという問題がある。このような問題を解決するために、例えば、光が透過するコアと、このコアを覆うクラッドとを備え、このクラッドの所定位置にコアの表面に至る貫通口を形成し、この貫通口に対応した位置におけるコアの表面に金属薄膜を形成したSPRセンサセルが提案されている(例えば、特許文献1)。このようなSPRセンサセルによれば、コア表面に表面プラズモン共鳴を発生させるための金属薄膜の形成、および、その表面への分析サンプルの固定が容易である。 In the SPR sensor including such an optical fiber, there is a problem that it is difficult to form a metal thin film and fix an analysis sample because the tip of the optical fiber has a fine cylindrical shape. In order to solve such a problem, for example, a core through which light passes and a clad covering the core are provided, and a through-hole that reaches the surface of the core is formed at a predetermined position of the clad, and this through-hole is supported. There has been proposed an SPR sensor cell in which a metal thin film is formed on the surface of the core at the position (for example, Patent Document 1). According to such an SPR sensor cell, it is easy to form a metal thin film for generating surface plasmon resonance on the core surface and to fix the analysis sample to the surface.
 しかし、近年、化学分析および生物化学分析においては、微細な変化および/または微量成分の検出に対する要求が高まっており、SPRセンサセルのさらなる検出感度の向上が求められている。 However, in recent years, in chemical analysis and biochemical analysis, there is an increasing demand for detection of minute changes and / or trace components, and further improvement in detection sensitivity of the SPR sensor cell is required.
特開2000-19100号公報JP 2000-19100 A
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、非常に優れた検出感度を有するSPRセンサセルおよびSPRセンサを提供することにある。 The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide an SPR sensor cell and an SPR sensor having very excellent detection sensitivity.
 本発明によれば、SPRセンサセルが提供される。本発明のSPRセンサセルは、アンダークラッド層と、少なくとも一部が該アンダークラッド層に隣接するように設けられたコア層と、該コア層を被覆する金属層とを備え、該アンダークラッド層が、アンダークラッド層形成樹脂と該アンダークラッド層形成樹脂に分散された粒子とを含む。
 1つの実施形態においては、上記アンダークラッド層における粒子の充填率が、3%~30%である。
 1つの実施形態においては、上記粒子の平均粒子径(φ)が、200nm~2.5μmである。
 1つの実施形態においては、上記粒子が、無機酸化物を含む。
 1つの実施形態においては、上記粒子が、金属酸化物を含む。
 1つの実施形態においては、上記粒子が、金属を含む。
 本発明の別の局面によれば、SPRセンサが提供される。本発明のSPRセンサは、上記SPRセンサセルを備える。
According to the present invention, an SPR sensor cell is provided. The SPR sensor cell of the present invention comprises an under cladding layer, a core layer provided so that at least a part thereof is adjacent to the under cladding layer, and a metal layer covering the core layer, the under cladding layer comprising: An undercladding layer forming resin and particles dispersed in the undercladding layer forming resin.
In one embodiment, the filling rate of particles in the under cladding layer is 3% to 30%.
In one embodiment, the average particle diameter (φ) of the particles is 200 nm to 2.5 μm.
In one embodiment, the particle includes an inorganic oxide.
In one embodiment, the particles include a metal oxide.
In one embodiment, the particles include a metal.
According to another aspect of the present invention, an SPR sensor is provided. The SPR sensor of the present invention includes the SPR sensor cell.
 本発明のSPRセンサセルおよびSPRセンサによれば、十分なS/N比が得られるので、精度の高い測定が可能となる。 According to the SPR sensor cell and the SPR sensor of the present invention, a sufficient S / N ratio can be obtained, so that highly accurate measurement is possible.
本発明の好ましい実施形態によるSPRセンサセルを説明する概略斜視図である。It is a schematic perspective view explaining the SPR sensor cell by preferable embodiment of this invention. 図1に示すSPRセンサセルのIa-Ia線概略断面図である。FIG. 2 is a schematic sectional view taken along line Ia-Ia of the SPR sensor cell shown in FIG. 1. 本発明の別の好ましい実施形態によるSPRセンサセルの概略断面図である。FIG. 3 is a schematic cross-sectional view of an SPR sensor cell according to another preferred embodiment of the present invention. 本発明のSPRセンサセルの製造方法の一例を説明する概略断面図である。It is a schematic sectional drawing explaining an example of the manufacturing method of the SPR sensor cell of this invention. 本発明の好ましい実施形態によるSPRセンサを説明する概略断面図である。It is a schematic sectional drawing explaining the SPR sensor by preferable embodiment of this invention. 実施例で得られた透過率スペクトルである。It is the transmittance | permeability spectrum obtained in the Example.
A.SPRセンサセル
 図1は、本発明の好ましい実施形態によるSPRセンサセルを説明する概略斜視図である。図2は、図1に示すSPRセンサセルのIa-Ia線概略断面図である。なお、以下のSPRセンサセルの説明において方向に言及するときは、図面の紙面上側を上側とし、図面の紙面下側を下側とする。
A. SPR Sensor Cell FIG. 1 is a schematic perspective view illustrating an SPR sensor cell according to a preferred embodiment of the present invention. FIG. 2 is a schematic sectional view taken along line Ia-Ia of the SPR sensor cell shown in FIG. In the following description of the SPR sensor cell, when referring to a direction, the upper side of the drawing is the upper side, and the lower side of the drawing is the lower side.
 SPRセンサセル100は、図1および図2に示すように、平面視略矩形の有底枠形状に形成されており、アンダークラッド層11と、上面が露出するようにアンダークラッド層11に埋設されたコア層12と、アンダークラッド層11とコア層12を被覆する金属層13とを有する。アンダークラッド層11、コア層12および金属層13は光導波路を構成し、サンプルの状態および/またはその変化を検知する検知部10として機能する。図示した形態においては、SPRセンサセル100は、検知部10に隣接するように設けられたサンプル配置部20を備える。サンプル配置部20は、オーバークラッド層14により規定されている。オーバークラッド層14は、サンプル配置部20を適切に設けることができる限りにおいて省略されてもよい。サンプル配置部20には、分析されるサンプル(例えば、溶液、粉末)が検知部(実質的には金属層)に接触して配置される。 As shown in FIGS. 1 and 2, the SPR sensor cell 100 is formed in a bottomed frame shape having a substantially rectangular shape in plan view, and is embedded in the under cladding layer 11 so that the upper surface of the under cladding layer 11 is exposed. It has a core layer 12, an under cladding layer 11, and a metal layer 13 that covers the core layer 12. The under cladding layer 11, the core layer 12, and the metal layer 13 constitute an optical waveguide, and function as the detection unit 10 that detects the state of the sample and / or its change. In the illustrated form, the SPR sensor cell 100 includes a sample placement unit 20 provided so as to be adjacent to the detection unit 10. The sample placement portion 20 is defined by the over clad layer 14. The over clad layer 14 may be omitted as long as the sample placement portion 20 can be appropriately provided. In the sample placement unit 20, a sample to be analyzed (for example, a solution or a powder) is placed in contact with the detection unit (substantially a metal layer).
 アンダークラッド層11は、所定の厚みを有する平面視略矩形平板状に形成されている。アンダークラッド層の厚み(コア層上面からの厚み)は、例えば5μm~400μmである。 The under-cladding layer 11 is formed in a substantially rectangular flat plate shape in plan view having a predetermined thickness. The thickness of the under cladding layer (thickness from the upper surface of the core layer) is, for example, 5 μm to 400 μm.
 アンダークラッド層11は、アンダークラッド層形成樹脂と該アンダークラッド層形成樹脂に分散された粒子とを含む。アンダークラッド層中に粒子を分散させることにより、十分なS/N比が得られ、精度の高い測定が可能となる。このような効果が得られる理由は定かではないが、以下のように推測される。すなわち、アンダークラッド層中に粒子を分散させることにより、アンダークラッド層表面における反射率を増大させて、アンダークラッド層に光が入射することを防ぐことができる。また、アンダークラッド層に光が入射した場合であっても、粒子によって光散乱が誘発されるので、アンダークラッド層を透過して出射する光の強度を低下させることができる。その結果、コア層を透過してくる光強度(すなわち、シグナル強度)と、アンダークラッド層等の外部からの光強度(すなわち、ノイズ強度)との差を大きくすることができ、これにより、外部因子による影響を低減して精度の高い計測が可能となると推測される。 The under clad layer 11 includes an under clad layer forming resin and particles dispersed in the under clad layer forming resin. By dispersing the particles in the undercladding layer, a sufficient S / N ratio can be obtained and measurement with high accuracy is possible. The reason why such an effect is obtained is not clear, but is presumed as follows. That is, by dispersing particles in the under cladding layer, the reflectance on the surface of the under cladding layer can be increased and light can be prevented from entering the under cladding layer. Further, even when light is incident on the under cladding layer, light scattering is induced by the particles, so that the intensity of light transmitted through the under cladding layer and emitted can be reduced. As a result, the difference between the light intensity transmitted through the core layer (that is, signal intensity) and the light intensity from the outside such as the under cladding layer (that is, noise intensity) can be increased. It is estimated that highly accurate measurement is possible by reducing the influence of factors.
 上記粒子としては、アンダークラッド層表面の反射率を増大させ得るおよび/またはアンダークラッド層における光透過性を低減させ得る任意の適切な粒子が用いられ得る。例えば、粒子は、好ましくは1.40~3.00、より好ましくは1.43~2.60の屈折率を有する材料から形成される。このような材料を用いる場合、アンダークラッド層の屈折率を所望の範囲に調整しやすいという利点ある。また例えば、粒子は、好ましくは0.1以下、より好ましくは0の消衰係数を有する材料から形成される。なお、本明細書において、屈折率は、波長830nmにおける屈折率を意味する。また、消衰係数は、波長830nmにおける消衰係数を意味する。 As the particles, any appropriate particles that can increase the reflectivity of the underclad layer surface and / or reduce the light transmittance in the underclad layer can be used. For example, the particles are preferably formed from a material having a refractive index of 1.40 to 3.00, more preferably 1.43 to 2.60. When such a material is used, there is an advantage that the refractive index of the under cladding layer can be easily adjusted to a desired range. Also, for example, the particles are preferably formed from a material having an extinction coefficient of 0.1 or less, more preferably 0. In the present specification, the refractive index means a refractive index at a wavelength of 830 nm. The extinction coefficient means an extinction coefficient at a wavelength of 830 nm.
 粒子の形成材料の具体例としては、例えば、金属または無機酸化物が挙げられる。金属としては、チタン、タンタル、アルミニウム、亜鉛、クロム、鉄等が好ましく例示できる。また、無機酸化物としては、金属酸化物(例えば、酸化チタン(TiO)、酸化タンタル(Ta)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、酸化クロム(Cr)、酸化鉄(Fe)、酸化銅(CuO))および半金属酸化物(例えば、酸化ホウ素(B)、酸化ケイ素(SiO)、酸化ゲルマニウム(GeO))が好ましく例示できる。上記粒子としては、一種のみ用いてもよく、二種以上を組み合わせて用いてもよい。 Specific examples of the particle forming material include metals and inorganic oxides. Preferred examples of the metal include titanium, tantalum, aluminum, zinc, chromium, iron and the like. Examples of the inorganic oxide include metal oxides (for example, titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and chromium oxide (Cr 2 O 3 ), iron oxide (Fe 2 O 3 ), copper oxide (CuO)) and metalloid oxides (eg, boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), germanium oxide (GeO 2 )) Can be preferably exemplified. As said particle | grain, only 1 type may be used and it may be used in combination of 2 or more types.
 上記粒子の平均粒子径(φ)は、例えば10nm~5μmである。平均粒子径の下限は、好ましくは200nm、より好ましくは400nmである。また、平均粒子径の上限は、好ましくは2.5μm、より好ましくは2.0μmである。このような平均粒子径であれば、アンダークラッド層の透過光に起因するノイズを低減して、S/N比を向上させることができる。また、コア層からの光漏れを低減して十分なシグナル強度を維持することができる。なお、本明細書において、平均粒子径は、メジアン径を意味する。アンダークラッド層における上記粒子の平均粒子径は、例えば、レーザー回折散乱式粒度分布測定に基づいて、または、アンダークラッド層断面のSEM画像を画像処理して粒径分布を求め、そこから得られる体積基準粒度分布に基づいて得ることができる。 The average particle diameter (φ) of the above particles is, for example, 10 nm to 5 μm. The lower limit of the average particle diameter is preferably 200 nm, more preferably 400 nm. Further, the upper limit of the average particle diameter is preferably 2.5 μm, more preferably 2.0 μm. With such an average particle diameter, it is possible to reduce the noise caused by the transmitted light of the under cladding layer and improve the S / N ratio. Further, light leakage from the core layer can be reduced and sufficient signal intensity can be maintained. In addition, in this specification, an average particle diameter means a median diameter. The average particle size of the particles in the under cladding layer is, for example, based on laser diffraction / scattering particle size distribution measurement or image processing of a SEM image of a cross section of the under cladding layer to obtain a particle size distribution, and a volume obtained therefrom. It can be obtained based on a reference particle size distribution.
 上記アンダークラッド層形成樹脂としては、後述するコア層の屈折率よりも低い屈折率を有するアンダークラッド層を形成し得る任意の適切な樹脂が用いられる。具体例としては、フッ素樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、シリコーン樹脂、アクリル樹脂およびこれらの変性体(例えば、フルオレン変性体、重水素変性体、フッ素樹脂以外の場合はフッ素変性体)が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。これらは、好ましくは感光剤を配合して、感光性材料として用いられ得る。 As the undercladding layer forming resin, any appropriate resin capable of forming an undercladding layer having a refractive index lower than the refractive index of the core layer described later is used. Specific examples include fluororesins, epoxy resins, polyimide resins, polyamide resins, silicone resins, acrylic resins, and modified products thereof (for example, fluorene-modified products, deuterium-modified products, and fluorine-modified products other than fluororesins). Can be mentioned. These may be used alone or in combination of two or more. These can be used as a photosensitive material, preferably by blending a photosensitive agent.
 アンダークラッド層形成樹脂の屈折率は、上記粒子の屈折率より低い。アンダークラッド層形成樹脂の屈折率と粒子の屈折率との差は、好ましくは0.03以上であり、より好ましくは0.05以上、さらに好ましくは0.07以上、さらにより好ましくは、0.10以上である。 The refractive index of the resin for forming the underclad layer is lower than the refractive index of the above particles. The difference between the refractive index of the undercladding layer forming resin and the refractive index of the particles is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.07 or more, and even more preferably 0.00. 10 or more.
 アンダークラッド層形成樹脂の屈折率は、好ましくは1.42以下であり、より好ましくは1.40未満であり、さらに好ましくは1.38以下である。 The refractive index of the resin for forming the underclad layer is preferably 1.42 or less, more preferably less than 1.40, and further preferably 1.38 or less.
 アンダークラッド層11における上記粒子の充填率は、例えば1%~50%である。充填率の下限は、好ましくは2%、より好ましくは3%、さらに好ましくは5%である。また、充填率の上限は、好ましくは30%、より好ましくは25%である。このような充填率であれば、アンダークラッド層の透過光に起因するノイズを低減して、S/N比を向上させることができる。また、コア層からの光漏れを低減して十分なシグナル強度を維持することができる。 The filling rate of the particles in the under cladding layer 11 is, for example, 1% to 50%. The lower limit of the filling rate is preferably 2%, more preferably 3%, still more preferably 5%. Further, the upper limit of the filling rate is preferably 30%, more preferably 25%. With such a filling rate, noise caused by the transmitted light of the under cladding layer can be reduced and the S / N ratio can be improved. Further, light leakage from the core layer can be reduced and sufficient signal intensity can be maintained.
 アンダークラッド層11の屈折率(NCL)は、上記粒子の屈折率(NPA)よりも低い。アンダークラッド層の屈折率と粒子の屈折率との差(NPA-NCL)は、好ましくは0.03以上であり、より好ましくは0.05以上、さらに好ましくは0.07以上、さらにより好ましくは、0.10以上である。このような範囲にすることにより、アンダークラッド層内の光散乱特性が向上し、十分なS/N比が得られ、精度の高い測定が可能となる。 The refractive index (N CL ) of the under cladding layer 11 is lower than the refractive index (N PA ) of the particles. The difference between the refractive index of the under cladding layer and the refractive index of the particles (N PA −N CL ) is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.07 or more, and even more. Preferably, it is 0.10 or more. By setting it as such a range, the light-scattering characteristic in an under clad layer improves, sufficient S / N ratio is obtained, and a highly accurate measurement is attained.
 アンダークラッド層11の波長650nmにおける光透過率は、例えば95%以下、好ましくは92%以下である。このような光透過率であれば、アンダークラッド層の透過光に起因するノイズを低減して、S/N比を向上させることができる。なお、アンダークラッド層の光透過率は、分光光度計を用いた可視・紫外線吸収スペクトル法にて、波長650nmおける透過率(厚み100μm)として算出される。 The light transmittance of the under cladding layer 11 at a wavelength of 650 nm is, for example, 95% or less, and preferably 92% or less. With such a light transmittance, noise caused by the light transmitted through the under cladding layer can be reduced and the S / N ratio can be improved. The light transmittance of the under cladding layer is calculated as a transmittance (thickness: 100 μm) at a wavelength of 650 nm by a visible / ultraviolet absorption spectrum method using a spectrophotometer.
 コア層12は、アンダークラッド層11の幅方向(図2の紙面の左右方向)および厚み方向の両方と直交する方向に延びる略角柱形状に形成され、アンダークラッド層11の幅方向略中央部の上端部に埋設されている。コア層12の延びる方向が、光導波路内を光が伝播する方向となる。 The core layer 12 is formed in a substantially prismatic shape extending in a direction orthogonal to both the width direction of the undercladding layer 11 (left and right direction in FIG. 2) and the thickness direction. Embedded in the upper end. The direction in which the core layer 12 extends is the direction in which light propagates in the optical waveguide.
 コア層12は、その上面がアンダークラッド層11の上面と面一となるように配置されている。コア層の上面がアンダークラッド層の上面と面一となるように配置することにより、金属層をコア層の上側のみに効率よく配置することができる。さらに、コア層は、その延びる方向の両端面がアンダークラッド層の当該方向の両端面と面一となるように配置されている。 The core layer 12 is arranged so that the upper surface thereof is flush with the upper surface of the under cladding layer 11. By arranging the upper surface of the core layer so as to be flush with the upper surface of the under cladding layer, the metal layer can be efficiently arranged only on the upper side of the core layer. Furthermore, the core layer is disposed so that both end surfaces in the extending direction thereof are flush with both end surfaces in the corresponding direction of the under cladding layer.
 コア層12の屈折率(NCO)は、好ましくは1.43以下であり、より好ましくは1.40未満であり、さらに好ましくは1.38以下である。コア層の屈折率を1.43以下とすることにより、検出感度を格段に向上させることができる。コア層の屈折率の下限は、好ましくは1.34である。コア層の屈折率が1.34以上であれば、水溶液系のサンプル(水の屈折率:1.33)であってもSPRを励起することができ、かつ、汎用の材料を使用することができる。 The refractive index (N CO ) of the core layer 12 is preferably 1.43 or less, more preferably less than 1.40, and further preferably 1.38 or less. By setting the refractive index of the core layer to 1.43 or less, the detection sensitivity can be significantly improved. The lower limit of the refractive index of the core layer is preferably 1.34. If the refractive index of the core layer is 1.34 or more, SPR can be excited even with an aqueous sample (water refractive index: 1.33), and a general-purpose material can be used. it can.
 コア層12の屈折率(NCO)は、アンダークラッド層11の屈折率(NCL)より高い。コア層の屈折率とアンダークラッド層の屈折率との差(NCO-NCL)は、好ましくは0.010以上であり、より好ましくは0.020以上、さらに好ましくは0.025以上である。コア層の屈折率とアンダークラッド層の屈折率との差がこのような範囲であれば、検出部の光導波路をいわゆるマルチモードとすることができる。したがって、光導波路を透過する光の量を多くすることができ、結果として、S/N比を向上させることができる。また、コア層の屈折率とアンダークラッド層の屈折率との差は、好ましくは0.15以下、より好ましくは0.10以下、さらに好ましくは0.050以下である。コア層の屈折率とアンダークラッド層の屈折率との差がこのような範囲であれば、SPR励起が生じる反射角の光がコア層内に存在することができる。 The refractive index (N CO ) of the core layer 12 is higher than the refractive index (N CL ) of the under cladding layer 11. The difference (N CO -N CL ) between the refractive index of the core layer and the refractive index of the under cladding layer is preferably 0.010 or more, more preferably 0.020 or more, and further preferably 0.025 or more. . If the difference between the refractive index of the core layer and the refractive index of the under cladding layer is within such a range, the optical waveguide of the detection unit can be set to a so-called multimode. Therefore, the amount of light transmitted through the optical waveguide can be increased, and as a result, the S / N ratio can be improved. Further, the difference between the refractive index of the core layer and the refractive index of the under cladding layer is preferably 0.15 or less, more preferably 0.10 or less, and still more preferably 0.050 or less. If the difference between the refractive index of the core layer and the refractive index of the under cladding layer is within such a range, light having a reflection angle that causes SPR excitation can exist in the core layer.
 コア層12の厚みは、例えば5μm~200μmであり、好ましくは20μm~200μmである。また、コア層の幅は、例えば5μm~200μmであり、好ましくは20μm~200μmである。このような厚みおよび/または幅であれば、光導波路をいわゆるマルチモードとすることができる。また、コア層12の長さ(導波路長)は、例えば2mm~50mmであり、好ましくは10mm~20mmである。 The thickness of the core layer 12 is, for example, 5 μm to 200 μm, preferably 20 μm to 200 μm. The width of the core layer is, for example, 5 μm to 200 μm, preferably 20 μm to 200 μm. With such a thickness and / or width, the optical waveguide can be a so-called multimode. The length of the core layer 12 (waveguide length) is, for example, 2 mm to 50 mm, preferably 10 mm to 20 mm.
 コア層12を形成する材料としては、本発明の効果が得られる限りにおいて任意の適切な材料を用いることができる。例えば、アンダークラッド層形成樹脂と同様の樹脂であって、屈折率がアンダークラッド層よりも高くなるように調整された樹脂から形成され得る。 As the material for forming the core layer 12, any appropriate material can be used as long as the effects of the present invention can be obtained. For example, it can be formed from a resin similar to the undercladding layer-forming resin and adjusted to have a refractive index higher than that of the undercladding layer.
 金属層13は、図1および図2に示すように、アンダークラッド層11およびコア層12の上面の少なくとも一部を均一に被覆するように形成されている。必要に応じて、アンダークラッド層およびコア層と金属層との間に易接着層(図示せず)が設けられ得る。易接着層を形成することにより、アンダークラッド層およびコア層と金属層とを強固に固着させることができる。 As shown in FIGS. 1 and 2, the metal layer 13 is formed so as to uniformly cover at least part of the upper surfaces of the under cladding layer 11 and the core layer 12. If necessary, an easy adhesion layer (not shown) may be provided between the under cladding layer and the core layer and the metal layer. By forming the easy adhesion layer, the under clad layer, the core layer, and the metal layer can be firmly fixed.
 金属層13を形成する材料としては、金、銀、白金、銅、アルミニウムおよびこれらの合金が挙げられる。金属層は、単一層であってもよく、2層以上の積層構造を有していてもよい。金属層の厚み(積層構造を有する場合はすべての層の合計厚み)は、好ましくは20nm~70nmであり、より好ましくは30nm~60nmである。 Examples of the material for forming the metal layer 13 include gold, silver, platinum, copper, aluminum, and alloys thereof. The metal layer may be a single layer or may have a laminated structure of two or more layers. The thickness of the metal layer (the total thickness of all layers in the case of a laminated structure) is preferably 20 nm to 70 nm, more preferably 30 nm to 60 nm.
 易接着層を形成する材料としては、代表的にはクロムまたはチタンが挙げられる。易接着層の厚みは、好ましくは1nm~5nmである。 As a material for forming the easy-adhesion layer, chrome or titanium is typically mentioned. The thickness of the easy adhesion layer is preferably 1 nm to 5 nm.
 オーバークラッド層14は、図1に示すように、アンダークラッド層11およびコア層12の上面において、その外周がアンダークラッド層11の外周と平面視において略同一となるように、平面視矩形の枠形状に形成されている。アンダークラッド層11およびコア層12の上面とオーバークラッド層14とで囲まれる部分が、サンプル配置部20として区画されている。当該区画にサンプルを配置することにより、検知部10の金属層とサンプルとが接触し、検出が可能となる。さらに、このような区画を形成することにより、サンプルを容易に金属層表面に配置することができるので、作業性の向上を図ることができる。 As shown in FIG. 1, the over clad layer 14 has a rectangular frame in plan view so that the outer periphery of the over clad layer 11 and the core layer 12 is substantially the same as the outer periphery of the under clad layer 11 in plan view. It is formed into a shape. A portion surrounded by the upper surfaces of the under-cladding layer 11 and the core layer 12 and the over-cladding layer 14 is defined as a sample placement portion 20. By arranging the sample in the section, the metal layer of the detection unit 10 and the sample come into contact with each other, and detection is possible. Furthermore, by forming such a partition, the sample can be easily placed on the surface of the metal layer, so that workability can be improved.
 オーバークラッド層14を形成する材料としては、例えば、上記コア層およびアンダークラッド層を形成する材料、ならびにシリコーンゴムが挙げられる。オーバークラッド層の厚みは、好ましくは5μm~2000μmであり、さらに好ましくは25μm~200μmである。オーバークラッド層の屈折率は、好ましくは、コア層の屈折率よりも低い。1つの実施形態においては、オーバークラッド層の屈折率は、アンダークラッド層の屈折率と同等である。 Examples of the material for forming the over clad layer 14 include a material for forming the core layer and the under clad layer, and silicone rubber. The thickness of the over cladding layer is preferably 5 μm to 2000 μm, more preferably 25 μm to 200 μm. The refractive index of the overcladding layer is preferably lower than the refractive index of the core layer. In one embodiment, the refractive index of the overclad layer is equivalent to the refractive index of the underclad layer.
 本発明の好ましい実施形態によるSPRセンサセルを説明してきたが、本発明はこれらに限定されない。例えば、図3に例示するように、アンダークラッド層11およびコア層12と金属層13と間に保護層15を設けてもよい。この場合、保護層15は、アンダークラッド層11およびコア層12の上面をすべて被覆するように、平面視においてアンダークラッド層と同じ形状の薄膜として形成され得る。保護層を設けることにより、例えば、サンプルが液状である場合に、サンプルによってコア層および/またはクラッド層が膨潤することを防止することができる。保護層を形成する材料としては、例えば、二酸化ケイ素、酸化アルミニウムが挙げられる。これらの材料は、好ましくは、コア層よりも屈折率が低くなるように調整され得る。保護層の厚みは、好ましくは1nm~100nmであり、より好ましくは5nm~20nmである。 Although the SPR sensor cell according to a preferred embodiment of the present invention has been described, the present invention is not limited thereto. For example, as illustrated in FIG. 3, a protective layer 15 may be provided between the under cladding layer 11 and the core layer 12 and the metal layer 13. In this case, the protective layer 15 can be formed as a thin film having the same shape as that of the under cladding layer in plan view so as to cover all the upper surfaces of the under cladding layer 11 and the core layer 12. By providing the protective layer, for example, when the sample is in a liquid state, the core layer and / or the clad layer can be prevented from swelling due to the sample. Examples of the material for forming the protective layer include silicon dioxide and aluminum oxide. These materials can preferably be adjusted to have a refractive index lower than that of the core layer. The thickness of the protective layer is preferably 1 nm to 100 nm, more preferably 5 nm to 20 nm.
 また例えば、コア層とアンダークラッド層の関係においては、コア層の少なくとも一部がアンダークラッド層に隣接するように設けられていればよい。例えば、上記実施形態ではアンダークラッド層にコア層が埋設された構成を説明したが、コア層はアンダークラッド層を貫通するようにして設けられてもよい。また、アンダークラッド層の上にコア層を形成し、当該コア層の所定の部分をオーバークラッド層で包囲する構成としてもよい。 Also, for example, in the relationship between the core layer and the under cladding layer, at least a part of the core layer may be provided adjacent to the under cladding layer. For example, in the above embodiment, the configuration in which the core layer is embedded in the under cladding layer has been described. However, the core layer may be provided so as to penetrate the under cladding layer. Moreover, it is good also as a structure which forms a core layer on an under clad layer and surrounds the predetermined part of the said core layer with an over clad layer.
 さらに、SPRセンサにおけるコア層の数は、目的に応じて変更してもよい。具体的には、コア層は、アンダークラッド層の幅方向に所定の間隔を隔てて複数形成されてもよい。このような構成であれば、複数のサンプルを同時に分析することができるので、分析効率を向上させることができる。コア層の形状もまた、目的に応じて任意の適切な形状(例えば、半円柱形状、凸柱形状)を採用することができる。 Furthermore, the number of core layers in the SPR sensor may be changed according to the purpose. Specifically, a plurality of core layers may be formed at a predetermined interval in the width direction of the under cladding layer. With such a configuration, since a plurality of samples can be analyzed simultaneously, the analysis efficiency can be improved. As the shape of the core layer, any appropriate shape (for example, a semi-cylindrical shape or a convex column shape) can be adopted depending on the purpose.
 さらに、SPRセンサセル100(サンプル配置部20)の上部には、蓋を設けてもよい。このような構成とすれば、サンプルが外気に接触することを防止することができる。また、サンプルが溶液である場合には、溶媒の蒸発による濃度変化を防止することができる。蓋を設ける場合には、液状サンプルをサンプル配置部へ注入するための注入口とサンプル配置部から排出するための排出口とを設けてもよい。このような構成とすれば、サンプルを流してサンプル配置部に連続的に供給することができるので、サンプルの特性を連続的に測定することができる。 Furthermore, a lid may be provided on the SPR sensor cell 100 (sample placement unit 20). With such a configuration, the sample can be prevented from coming into contact with the outside air. Further, when the sample is a solution, a change in concentration due to evaporation of the solvent can be prevented. When the lid is provided, an inlet for injecting the liquid sample into the sample placement portion and a discharge port for discharging from the sample placement portion may be provided. With such a configuration, the sample can be flowed and continuously supplied to the sample placement unit, so that the characteristics of the sample can be continuously measured.
 上記の実施形態は、それぞれを適切に組み合わせてもよい。 The above embodiments may be appropriately combined with each other.
B.SPRセンサセルの製造方法
 本発明のSPRセンサセルは、任意の適切な方法により製造され得る。図4(a)~(i)は、本発明のSPRセンサセルの製造方法の一例を説明する概略断面図である。
B. Method for Manufacturing SPR Sensor Cell The SPR sensor cell of the present invention can be manufactured by any suitable method. 4 (a) to 4 (i) are schematic cross-sectional views for explaining an example of the method for producing the SPR sensor cell of the present invention.
 まず、図4(a)に示すように、コア層の形状に対応する凹部を有する鋳型30の表面上にコア層を形成する材料12’を配置する。次いで、図4(b)に示すように、鋳型30表面に転写フィルム40を所定の方向に向かって押圧手段50で押圧しながら貼り合わせて、該凹部にコア層形成材料12’を充填しつつ余分なコア層形成材料12’を除去する。その後、図4(c)に示すように、凹部内に充填されたコア層形成材料12’に紫外線を照射し、当該材料を硬化させて、コア層12を形成する。さらに、図4(d)に示すように、転写フィルム40を鋳型30から剥離して、転写フィルム40上にコア層12を転写する。 First, as shown in FIG. 4A, the material 12 'for forming the core layer is disposed on the surface of the mold 30 having the recess corresponding to the shape of the core layer. Next, as shown in FIG. 4B, the transfer film 40 is bonded to the surface of the mold 30 while being pressed by the pressing means 50 in a predetermined direction, and the recess is filled with the core layer forming material 12 ′. Excess core layer forming material 12 'is removed. Thereafter, as shown in FIG. 4C, the core layer forming material 12 ′ filled in the recesses is irradiated with ultraviolet rays, and the material is cured to form the core layer 12. Further, as shown in FIG. 4D, the transfer film 40 is peeled from the mold 30 and the core layer 12 is transferred onto the transfer film 40.
 次いで、図4(e)に示すように、アンダークラッド層形成樹脂と該樹脂中に分散された粒子とを含むアンダークラッド層形成材料11’を、コア層12を覆うように塗布する。あるいは、図示例とは異なり、アンダークラッド層形成材料11’を予め他の支持体(例えば、コロナ処理済のPETフィルム)上に塗布しておき、該アンダークラッド層形成材料11’がコア層12を覆うように、該支持体と転写フィルム40とを貼り合わせてもよい。その後、図4(f)に示すように、アンダークラッド層形成材料11’に紫外線を照射し、当該材料を硬化させて、アンダークラッド層11を形成する。その後、図4(g)に示すように、転写フィルム40を剥離除去し、上下を反転させる。 Next, as shown in FIG. 4E, an undercladding layer forming material 11 ′ including an undercladding layer forming resin and particles dispersed in the resin is applied so as to cover the core layer 12. Alternatively, unlike the illustrated example, the under-cladding layer forming material 11 ′ is previously coated on another support (for example, a corona-treated PET film), and the under-cladding layer forming material 11 ′ is used as the core layer 12. The support and the transfer film 40 may be bonded to cover the substrate. Thereafter, as shown in FIG. 4 (f), the under cladding layer forming material 11 ′ is irradiated with ultraviolet rays, and the material is cured to form the under cladding layer 11. Thereafter, as shown in FIG. 4G, the transfer film 40 is peeled and removed, and the top and bottom are reversed.
 上記紫外線の照射条件は、材料の種類に応じて適切に設定され得る。必要に応じて、材料を加熱してもよい。加熱は、紫外線照射前に行ってもよく、紫外線照射後に行ってもよく、紫外線照射と併せて行ってもよい。また、アンダークラッド層形成樹脂中に粒子を分散させる方法としては、任意の適切な方法が用いられ得る。 The irradiation condition of the ultraviolet rays can be appropriately set according to the type of material. If necessary, the material may be heated. Heating may be performed before ultraviolet irradiation, may be performed after ultraviolet irradiation, or may be performed in combination with ultraviolet irradiation. In addition, any appropriate method can be used as a method of dispersing particles in the undercladding layer forming resin.
 次に、必要に応じて、アンダークラッド層11およびコア層14の上に易接着層(図示せず)を形成する。易接着層は、例えば、クロムまたはチタンをスパッタリングすることにより形成される。 Next, an easy-adhesion layer (not shown) is formed on the under cladding layer 11 and the core layer 14 as necessary. The easy adhesion layer is formed, for example, by sputtering chromium or titanium.
 次に、図4(h)に示すように、コア層およびアンダークラッド層の上(保護層を形成する場合には保護層の上)に、コア層12を被覆するようにして金属層13を形成する。具体的には、金属層13は、例えば、所定のパターンを有するマスクを介して金属層を形成する材料を真空蒸着、イオンプレーティングまたはスパッタリングすることにより形成される。 Next, as shown in FIG. 4 (h), the metal layer 13 is formed so as to cover the core layer 12 on the core layer and the undercladding layer (on the protective layer when the protective layer is formed). Form. Specifically, the metal layer 13 is formed, for example, by vacuum deposition, ion plating, or sputtering of a material for forming the metal layer through a mask having a predetermined pattern.
 最後に、図4(i)に示すように、上記所定の枠形状を有するオーバークラッド層14を形成する。オーバークラッド層14は、任意の適切な方法により形成され得る。オーバークラッド層14は、例えば、上記所定の枠形状を有する鋳型をコア層およびアンダークラッド層の上に配置し、当該鋳型にオーバークラッド層形成材料のワニスを充填して乾燥し、必要に応じて硬化させ、最後に鋳型を除去することにより形成され得る。感光性材料を用いる場合には、オーバークラッド層14は、コア層およびアンダークラッド層の上面にワニスを塗布し、乾燥後に、所定のパターンのフォトマスクを介して露光および現像することにより形成され得る。 Finally, as shown in FIG. 4I, the over clad layer 14 having the predetermined frame shape is formed. The over clad layer 14 can be formed by any appropriate method. For example, the over clad layer 14 is formed by disposing a mold having the predetermined frame shape on the core layer and the under clad layer, filling the mold with a varnish of an over clad layer forming material, and drying, if necessary. It can be formed by curing and finally removing the mold. In the case of using a photosensitive material, the over clad layer 14 can be formed by applying varnish to the upper surfaces of the core layer and the under clad layer, and after drying and exposing and developing through a photomask having a predetermined pattern. .
 以上のようにして、図1に示すSPRセンサセルを作製することができる。 As described above, the SPR sensor cell shown in FIG. 1 can be manufactured.
C.SPRセンサ
 図5は、本発明の好ましい実施形態によるSPRセンサを説明する概略断面図である。SPRセンサ200は、SPRセンサセル100と光源110と光計測器120とを備える。SPRセンサセル100は、上記A項およびB項で説明した本発明のSPRセンサである。
C. SPR Sensor FIG. 5 is a schematic cross-sectional view illustrating an SPR sensor according to a preferred embodiment of the present invention. The SPR sensor 200 includes an SPR sensor cell 100, a light source 110, and an optical measuring instrument 120. The SPR sensor cell 100 is the SPR sensor of the present invention described in the above items A and B.
 光源110としては、任意の適切な光源が採用され得る。光源の具体例としては、白色光源、単色光光源が挙げられる。光計測器120は、任意の適切な演算処理装置に接続され、データの蓄積、表示および加工を可能としている。 Any appropriate light source may be employed as the light source 110. Specific examples of the light source include a white light source and a monochromatic light source. The optical measuring instrument 120 is connected to any appropriate arithmetic processing device, and can store, display and process data.
 光源110は、光源側光コネクタ111を介して光源側光ファイバ112に接続されている。光源側光ファイバ112は、光源側ファイバブロック113を介してSPRセンサセル100の伝播方向一方側端部に接続されている。SPRセンサセル100の伝播方向他方側端部には、計測器側ファイバブロック114を介して計測器側光ファイバ115が接続されている。計測器側光ファイバ115は、計測器側光コネクタ116を介して光計測器120に接続されている。光源側光ファイバ112および計測器側光ファイバ115としては、SPR励起可能な反射角の光を光導波路内に伝播させることができるマルチモード光ファイバにて接続することが好ましい。 The light source 110 is connected to the light source side optical fiber 112 via the light source side optical connector 111. The light source side optical fiber 112 is connected to one end of the SPR sensor cell 100 in the propagation direction via the light source side fiber block 113. A measuring instrument side optical fiber 115 is connected to the other end portion in the propagation direction of the SPR sensor cell 100 via a measuring instrument side fiber block 114. The measuring instrument side optical fiber 115 is connected to the optical measuring instrument 120 via the measuring instrument side optical connector 116. The light source side optical fiber 112 and the measuring instrument side optical fiber 115 are preferably connected by a multimode optical fiber capable of propagating light having a reflection angle capable of SPR excitation into the optical waveguide.
 本発明のSPRセンサにおいては、図5に示す通り、光源側光ファイバ112としてコア層12よりも太径の光ファイバを用いることができる。アンダークラッド層中に粒子を分散させて光の入射および透過を低減しているので、太径の光ファイバを用いた場合には、十分なS/N比を維持しつつ、光ファイバとSPRセンサセルとの位置合わせが容易になり、操作性が向上するという利点がある。同様に、計測器側光ファイバ115をコア層12よりも太径の光ファイバとすることもできる。なお、言うまでもないが、コア層12と略同径の光ファイバを光源側および計測器側光ファイバとして用いてもよい。 In the SPR sensor of the present invention, an optical fiber having a diameter larger than that of the core layer 12 can be used as the light source side optical fiber 112 as shown in FIG. Since particles are dispersed in the underclad layer to reduce the incidence and transmission of light, when a large-diameter optical fiber is used, the optical fiber and the SPR sensor cell are maintained while maintaining a sufficient S / N ratio. There is an advantage that the alignment with the position becomes easy and the operability is improved. Similarly, the measuring instrument side optical fiber 115 may be an optical fiber having a diameter larger than that of the core layer 12. Needless to say, optical fibers having substantially the same diameter as the core layer 12 may be used as the light source side and measuring instrument side optical fibers.
 SPRセンサセル100は、任意の適切なセンサセル固定装置(図示せず)によって固定されている。センサセル固定装置は、所定方向(例えば、SPRセンサセルの幅方向)に沿って移動可能とされており、これにより、SPRセンサセルを所望の位置に配置することができる。 The SPR sensor cell 100 is fixed by any appropriate sensor cell fixing device (not shown). The sensor cell fixing device is movable along a predetermined direction (for example, the width direction of the SPR sensor cell), and thereby, the SPR sensor cell can be arranged at a desired position.
 光源側光ファイバ112は、光源側光ファイバ固定装置131により固定され、計測器側光ファイバ115は、計測器側光ファイバ固定装置132により固定されている。光源側光ファイバ固定装置131および計測器側光ファイバ固定装置132は、それぞれ、任意の適切な6軸移動ステージ(図示せず)の上に固定されており、光ファイバの伝播方向、幅方向(伝播方向と水平方向において直交する方向)および厚み方向(伝播方向と垂直方向において直交する方向)と、これらのそれぞれの方向を軸とする回転方向とに可動とされている。 The light source side optical fiber 112 is fixed by a light source side optical fiber fixing device 131, and the measuring instrument side optical fiber 115 is fixed by a measuring instrument side optical fiber fixing device 132. The light source side optical fiber fixing device 131 and the measuring instrument side optical fiber fixing device 132 are respectively fixed on any appropriate six-axis moving stage (not shown), and the propagation direction and width direction of the optical fiber ( It is movable in a propagation direction and a direction orthogonal to the horizontal direction) and a thickness direction (a direction orthogonal to the propagation direction in the vertical direction) and a rotation direction around each of these directions.
 このようなSPRセンサによれば、光源110、光源側光ファイバ112、SPRセンサセル100(コア層12)、計測器側光ファイバ115および光計測器120を一軸上に配置することができ、これらを透過するように光源110から光を導入することができる。 According to such an SPR sensor, the light source 110, the light source side optical fiber 112, the SPR sensor cell 100 (core layer 12), the measuring instrument side optical fiber 115, and the optical measuring instrument 120 can be arranged on one axis, Light can be introduced from the light source 110 to be transmitted.
 以下、このようなSPRセンサの使用形態の一例を説明する。 Hereinafter, an example of usage of such an SPR sensor will be described.
 まず、サンプルをSPRセンサセル100のサンプル配置部20に配置し、サンプルと金属層13とを接触させる。次いで、光源110から所定の光を、光源側光ファイバ112を介してSPRセンサセル100(コア層12)に導入する(図5の矢印L1参照)。SPRセンサセル100(コア層12)に導入された光は、コア層12内において全反射を繰り返しながら、SPRセンサセル100(コア層12)を透過するとともに、一部の光は、コア層12の上面において金属層13に入射し、表面プラズモン共鳴により減衰される。SPRセンサセル100(コア層12)を透過した光は、計測器側光ファイバ115を介して光計測器120に導入される(図5の矢印L2参照)。すなわち、このSPRセンサ200において、光計測器120に導入される光は、コア層12において表面プラズモン共鳴を発生させた波長の光強度が減衰している。表面プラズモン共鳴を発生させる波長は、金属層13に接触したサンプルの屈折率などに依存するので、光計測器120に導入される光の光強度の減衰を検出することにより、サンプルの屈折率の変化を検出することができる。 First, the sample is placed in the sample placement portion 20 of the SPR sensor cell 100, and the sample and the metal layer 13 are brought into contact with each other. Next, predetermined light from the light source 110 is introduced into the SPR sensor cell 100 (core layer 12) via the light source side optical fiber 112 (see arrow L1 in FIG. 5). The light introduced into the SPR sensor cell 100 (core layer 12) is transmitted through the SPR sensor cell 100 (core layer 12) while repeating total reflection in the core layer 12, and part of the light is on the upper surface of the core layer 12. Is incident on the metal layer 13 and attenuated by surface plasmon resonance. The light transmitted through the SPR sensor cell 100 (core layer 12) is introduced into the optical measuring instrument 120 through the measuring instrument side optical fiber 115 (see arrow L2 in FIG. 5). That is, in the SPR sensor 200, the light intensity of the light introduced into the optical measuring instrument 120 is attenuated at the wavelength that caused the surface plasmon resonance in the core layer 12. Since the wavelength for generating surface plasmon resonance depends on the refractive index of the sample in contact with the metal layer 13, the attenuation of the light intensity of the light introduced into the optical measuring instrument 120 is detected to detect the refractive index of the sample. Changes can be detected.
 例えば、光源110として白色光源を用いる場合には、光計測器120によって、SPRセンサセル100の透過後に光強度が減衰する波長(表面プラズモン共鳴を発生させる波長)を計測し、その減衰する波長が変化したことを検出すれば、サンプルの屈折率の変化を確認することができる。また例えば、光源110として単色光光源を用いる場合には、光計測器120によって、SPRセンサセル100の透過後における単色光の光強度の変化(減衰の度合い)を計測し、その減衰の度合いが変化したことを検出すれば、表面プラズモン共鳴を発生させる波長が変化したことを確認でき、サンプルの屈折率の変化を確認することができる。 For example, when a white light source is used as the light source 110, the optical measuring instrument 120 measures the wavelength at which the light intensity attenuates after transmission through the SPR sensor cell 100 (the wavelength that generates surface plasmon resonance), and the attenuation wavelength changes. If this is detected, a change in the refractive index of the sample can be confirmed. For example, when a monochromatic light source is used as the light source 110, the optical measuring instrument 120 measures the change (degree of attenuation) of the monochromatic light after passing through the SPR sensor cell 100, and the degree of attenuation changes. If it is detected, it can be confirmed that the wavelength for generating surface plasmon resonance has changed, and the change in the refractive index of the sample can be confirmed.
 上記のように、このようなSPRセンサセルは、サンプルの屈折率の変化に基づいて、例えば、サンプルの濃度の測定、免疫反応の検出などの種々の化学分析および生物化学分析に用いることができる。より具体的には、例えば、サンプルが溶液である場合には、サンプル(溶液)の屈折率は溶液の濃度に依存するので、サンプルの屈折率を検出すれば、そのサンプルの濃度を測定することができる。さらに、サンプルの屈折率が変化したことを検出すれば、サンプルの濃度が変化したことを確認することができる。また例えば、免疫反応の検出においては、SPRセンサセル100の金属層13の上に誘電体膜を介して抗体を固定し、抗体に検体を接触させる。抗体と検体とが免疫反応すればサンプルの屈折率が変化するので、抗体と検体との接触前後におけるサンプルの屈折率変化を検出することにより、抗体と検体とが免疫反応したと判断することができる。 As described above, such an SPR sensor cell can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction based on the change in the refractive index of the sample. More specifically, for example, when the sample is a solution, the refractive index of the sample (solution) depends on the concentration of the solution. Therefore, if the refractive index of the sample is detected, the concentration of the sample is measured. Can do. Furthermore, if it is detected that the refractive index of the sample has changed, it can be confirmed that the concentration of the sample has changed. For example, in detecting an immune reaction, an antibody is immobilized on the metal layer 13 of the SPR sensor cell 100 via a dielectric film, and a specimen is brought into contact with the antibody. Since the refractive index of the sample changes when the antibody and the specimen are immunoreacted, it is possible to determine that the antibody and the specimen have immunoreacted by detecting the change in the refractive index of the sample before and after contact between the antibody and the specimen. it can.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例および比較例において、特に明記しない限り、屈折率の測定波長は830nmである。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, the measurement wavelength of the refractive index is 830 nm unless otherwise specified.
<屈折率>
 屈折率は、シリコンウェハの上に10μm厚の膜を形成し、プリズムカプラ式屈折率測定装置を用いて波長830nmで測定した。
<Refractive index>
The refractive index was measured at a wavelength of 830 nm using a prism coupler type refractive index measuring device after forming a 10 μm thick film on a silicon wafer.
<充填率>
 粒子の充填率は、以下の式によって算出した。
 充填率(%)=((粒子混合率(wt%)/かさ比重(g/mL))/(100+粒子混合率(wt%)))×100
<Filling rate>
The filling rate of the particles was calculated by the following formula.
Filling rate (%) = ((particle mixing rate (wt%) / bulk specific gravity (g / mL)) / (100 + particle mixing rate (wt%))) × 100
<かさ比重>
 粒子のかさ比重は、既知の体積(mL)を有するカップに粒子を入れて、該粒子の重量(g)を測定し、粒子重量をカップ体積で除することにより算出した。
<Bulk specific gravity>
The bulk specific gravity of the particles was calculated by putting the particles in a cup having a known volume (mL), measuring the weight (g) of the particles, and dividing the particle weight by the cup volume.
<平均粒子径>
 レーザー回折散乱式粒度分布測定によってメジアン径を算出して、平均粒子径とした。
<Average particle size>
The median diameter was calculated by laser diffraction / scattering particle size distribution measurement to obtain an average particle diameter.
<実施例1>
 図4に示すような方法でSPRセンサセルを作製した。具体的には、表面に幅50μmおよび厚み(深さ)50μmのコア層形成用の凹部が形成された鋳型(長さ200mm、幅200mm)の該表面にコア層形成材料を滴下した。該鋳型の表面に片面をコロナ処理したPPフィルム(厚み:40μm)のコロナ処理面の片端を当接させ、他端は反らせた状態とした。この状態で、鋳型とPPフィルムとの当接部位にPPフィルム側からローラを押し当てながら他端側に向かってローラを回転させて両者を貼り合わせた。これにより、鋳型の凹部内にコア層形成材料を充填し、余分なコア層形成材料を押し出した。次いで、得られた積層体に対し、PPフィルム側から紫外線を照射し、コア層形成材料を完全に硬化させてコア層(屈折率:1.384)を形成した。なお、コア層形成材料は、フッ素系UV硬化型樹脂(DIC社製、商品名「OP38Z」)60重量部とフッ素系UV硬化型樹脂(DIC社製、商品名「OP40Z」)40重量部とを攪拌溶解させて調製した。次いで、鋳型からPPフィルムを剥離して、該フィルム上に厚み50μm、幅50μmの略角柱形状のコア層を転写した。
<Example 1>
An SPR sensor cell was fabricated by the method shown in FIG. Specifically, the core layer forming material was dropped on the surface of a mold (length: 200 mm, width: 200 mm) in which a concave portion for forming a core layer having a width of 50 μm and a thickness (depth) of 50 μm was formed on the surface. One end of the corona-treated surface of a PP film (thickness: 40 μm) having a corona-treated one surface was brought into contact with the surface of the mold, and the other end was warped. In this state, the roller was rotated toward the other end side while pressing the roller from the PP film side against the contact portion between the mold and the PP film, and the two were bonded together. Thereby, the core layer forming material was filled in the concave portion of the mold, and the excess core layer forming material was extruded. Next, the obtained laminate was irradiated with ultraviolet rays from the PP film side, and the core layer forming material was completely cured to form a core layer (refractive index: 1.384). The core layer forming material is composed of 60 parts by weight of fluorine-based UV curable resin (DIC, trade name “OP38Z”) and 40 parts by weight of fluorine-based UV curable resin (DIC, trade name “OP40Z”). Was prepared by stirring and dissolving. Next, the PP film was peeled from the mold, and a substantially prismatic core layer having a thickness of 50 μm and a width of 50 μm was transferred onto the film.
 上記PPフィルム上に、コア層を被覆するようにアンダークラッド層形成材料を塗布した。なお、アンダークラッド層形成材料は、フッ素系UV硬化型樹脂(ソルベイスペシャルティポリマージャパン社製、商品名「Fluorolink MD700」、屈折率:1.348)99.4重量部とシリカ粒子(株式会社アドマテック製、商品名「アドマファイン SC2500‐SMJ)、屈折率1.45)0.6重量部とを混合して調製した。このとき、コア層表面(上面)からの厚みが100μmになるように塗布した。次いで、紫外線を照射し、アンダークラッド層形成材料を硬化させて、アンダークラッド層(光透過率:95%以下)を形成した。その後、PPフィルムを剥離除去し、アンダークラッド層およびコア層を上下反転させた。以上のようにして、アンダークラッド層に埋設されたコア層を有する光導波路フィルムを作製した。 The under cladding layer forming material was applied on the PP film so as to cover the core layer. The under clad layer forming material is 99.4 parts by weight of fluorine-based UV curable resin (manufactured by Solvay Specialty Polymer Japan, trade name “Fluorolink MD700”, refractive index: 1.348) and silica particles (manufactured by Admatech Co., Ltd.). The product name “Admafine SC2500-SMJ” and refractive index 1.45) were prepared by mixing 0.6 parts by weight. At this time, the coating was applied so that the thickness from the core layer surface (upper surface) was 100 μm. Next, the undercladding layer forming material was cured by irradiating with ultraviolet rays to form an undercladding layer (light transmittance: 95% or less), and then the PP film was peeled off to remove the undercladding layer and the core layer. As described above, the optical waveguide fill having the core layer embedded in the underclad layer. It was produced.
 次いで、光導波路フィルムを長さ22.25mm×幅20mmにダイシング切断した後、長さ6mm×幅1mmの開口部を有するマスクを介して、クロムおよび金を順にスパッタリングし、コア層を覆うように易接着層(厚み:1nm)および金属層(厚み:50nm)を順に形成した。最後に、フッ素系UV硬化型樹脂(ソルベイスペシャルティポリマージャパン社製、商品名「Fluorolink MD700」)を用い、アンダークラッド層を形成したのと類似の方法で、枠形状のオーバークラッド層を形成した。このようにして、図1および図2に示すSPRセンサセルと同様のSPRセンサセルを作製した。 Next, the optical waveguide film is diced and cut to a length of 22.25 mm × width of 20 mm, and then chromium and gold are sequentially sputtered through a mask having an opening of length 6 mm × width 1 mm so as to cover the core layer. An easy adhesion layer (thickness: 1 nm) and a metal layer (thickness: 50 nm) were sequentially formed. Finally, a frame-shaped overcladding layer was formed using a fluorine-based UV curable resin (trade name “Fluorolink MD700” manufactured by Solvay Specialty Polymer Japan Co., Ltd.) in the same manner as the undercladding layer was formed. In this manner, an SPR sensor cell similar to the SPR sensor cell shown in FIGS. 1 and 2 was produced.
 上記で得られたSPRセンサセルのコア層を含む入射側端面にマルチモード光ファイバ(φ1000μm)を介してハロゲン光源(オーシャンオプティクス社製、商品名「HL-2000-HP」、白色光)を接続した。該ハロゲン光源からの白色光をSPRセンサセルのコア層を含む入射側端面にマルチモード光ファイバ(φ1000μm)を介して入射させ、コア層の出射側端面から出射した光および該コア層の端面から水平方向に100μmずれたアンダークラッド層の出射側端面から出射した光をマルチモード光ファイバ(φ50μm)を介してパワーメーターで測定した。 A halogen light source (manufactured by Ocean Optics, trade name “HL-2000-HP”, white light) was connected to the incident side end face including the core layer of the SPR sensor cell obtained above through a multimode optical fiber (φ1000 μm). . White light from the halogen light source is incident on the incident side end surface including the core layer of the SPR sensor cell via a multimode optical fiber (φ1000 μm), and the light emitted from the emission side end surface of the core layer and the end surface of the core layer are horizontal. The light emitted from the emission side end face of the under cladding layer shifted by 100 μm in the direction was measured with a power meter through a multimode optical fiber (φ50 μm).
 コア層の出射側端面における光強度(μW)をシグナル(S)とし、アンダークラッド層の出射側端面における光強度(μW)をノイズ(N)としてS/N比を算出した。結果を表1に示す。 The S / N ratio was calculated with the light intensity (μW) at the output side end face of the core layer as signal (S) and the light intensity (μW) at the output side end face of the under cladding layer as noise (N). The results are shown in Table 1.
<実施例2>
 アンダークラッド層形成材料におけるシリカ粒子の混合率を2.5重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 2>
An SPR sensor cell was fabricated in the same manner as in Example 1 except that the mixing ratio of the silica particles in the undercladding layer forming material was 2.5% by weight. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例3>
 アンダークラッド層形成材料におけるシリカ粒子の混合率を5重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 3>
An SPR sensor cell was produced in the same manner as in Example 1 except that the mixing ratio of the silica particles in the under cladding layer forming material was changed to 5% by weight. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例4>
 アンダークラッド層形成材料におけるシリカ粒子の混合率を10重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 4>
An SPR sensor cell was produced in the same manner as in Example 1 except that the mixing ratio of the silica particles in the under cladding layer forming material was 10% by weight. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例5>
 異なるシリカ粒子(株式会社アドマテック製、商品名「アドマファイン SC5500‐SMJ」)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を0.8重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 5>
Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used, and the mixing ratio of the silica particles in the undercladding layer forming material was 0.8% by weight. Similarly, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例6>
 異なるシリカ粒子(株式会社アドマテック製、商品名「アドマファイン SC5500‐SMJ」)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を2重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 6>
The same as in Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 2 wt%. Thus, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例7>
 異なるシリカ粒子(株式会社アドマテック製、商品名「アドマファイン SC5500‐SMJ」)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を5重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 7>
The same as in Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 5% by weight. Thus, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例8>
 異なるシリカ粒子(株式会社アドマテック製、商品名「アドマファイン SC5500‐SMJ」)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を10重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 8>
The same as in Example 1 except that different silica particles (manufactured by Admatech Co., Ltd., trade name “Admafine SC5500-SMJ”) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 10 wt%. Thus, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例9>
 異なるシリカ粒子(日本アエロジル株式会社製、商品名「AEROSIL R974」、屈折率1.45)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を2.6重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 9>
Except for using different silica particles (made by Nippon Aerosil Co., Ltd., trade name “AEROSIL R974”, refractive index 1.45) and that the mixing ratio of the silica particles in the under cladding layer forming material was 2.6% by weight. An SPR sensor cell was produced in the same manner as in Example 1. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例10>
 異なるシリカ粒子(日本アエロジル株式会社製、商品名「AEROSIL R974」、屈折率1.45)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を5重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 10>
Example except that different silica particles (manufactured by Nippon Aerosil Co., Ltd., trade name “AEROSIL R974”, refractive index 1.45) were used and the mixing ratio of the silica particles in the undercladding layer forming material was 5 wt%. In the same manner as in Example 1, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例11>
 異なるシリカ粒子(富士シリシア化学株式会社製、商品名「SYLOPHOBIC507」、屈折率1.45)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を3.2重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 11>
Other than using different silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “SYLOPHOBIC507”, refractive index 1.45) and mixing the silica particles in the under cladding layer forming material to 3.2 wt% An SPR sensor cell was produced in the same manner as in Example 1. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例12>
 異なるシリカ粒子(富士シリシア化学株式会社製、商品名「SYLOPHOBIC702」、屈折率1.45)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を4重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 12>
Example except that different silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “SYLOPHOBIC702”, refractive index 1.45) were used, and the mixing ratio of the silica particles in the under cladding layer forming material was 4% by weight. In the same manner as in Example 1, an SPR sensor cell was produced. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例13>
 異なるシリカ粒子(富士シリシア化学株式会社製、商品名「SYLOPHOBIC702」、屈折率1.45)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を7.2重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 13>
Other than using different silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “SYLOPHOBIC702”, refractive index 1.45) and that the mixing ratio of the silica particles in the under cladding layer forming material is 7.2% by weight. An SPR sensor cell was produced in the same manner as in Example 1. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<実施例14>
 チタニア粒子(堺化学工業株式会社製、商品名「SRD 02-W」、結晶相:ルチル型、屈折率2.72)を用いたことおよびアンダークラッド層形成材料におけるシリカ粒子の混合率を2重量%にしたこと以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Example 14>
Use of titania particles (manufactured by Sakai Chemical Industry Co., Ltd., trade name “SRD 02-W”, crystal phase: rutile type, refractive index 2.72) and the mixing ratio of silica particles in the undercladding layer forming material is 2 wt. A SPR sensor cell was produced in the same manner as in Example 1 except that the percentage was changed to%. The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
<比較例1>
 アンダークラッド層形成材料におけるシリカ粒子の混合率を0重量%にしたこと(すなわち、シリカ粒子を用いなかったこと)以外は実施例1と同様にして、SPRセンサセルを作製した。得られたSPRセンサセルを用いて実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 1>
An SPR sensor cell was produced in the same manner as in Example 1 except that the mixing ratio of the silica particles in the undercladding layer forming material was 0% by weight (that is, no silica particles were used). The obtained SPR sensor cell was used for the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例3および比較例1で作製したSPRセンサセルの検出感度と検出精度を評価した。具体的には、ハロゲン光源(オーシャンオプティクス社製、商品名「HL-2000-HP」)からの白色光をSPRセンサセルのコア層を含む入射側端面に光ファイバ(φ1000μm)を介して入射させ、コア層の出射側端面から出射した光を光ファイバ(φ200μm)を介して分光器に導入して、透過率スペクトルを計測した。異なる濃度のエチレングリコール水溶液をサンプルとして用いた場合における水溶液中のエチレングリコール濃度をX軸、透過率の極小値に対応する波長をY軸として、それらの関係をXY座標にプロットして検量線を作成し、その傾きおよび相関係数を求めた。傾きが大きいほど感度が大きいことを意味し、相関係数が1に近いほど検出精度が高いことを意味する。結果を表2に示す。また、エチレングリコール濃度が0%および10%の水溶液をサンプルとしたときの透過率スペクトルを図6に示す。 The detection sensitivity and detection accuracy of the SPR sensor cells produced in Example 3 and Comparative Example 1 were evaluated. Specifically, white light from a halogen light source (trade name “HL-2000-HP” manufactured by Ocean Optics, Inc.) is incident on an incident side end face including the core layer of the SPR sensor cell via an optical fiber (φ1000 μm). The light emitted from the end surface on the emission side of the core layer was introduced into the spectroscope through an optical fiber (φ200 μm), and the transmittance spectrum was measured. When ethylene glycol aqueous solutions of different concentrations are used as samples, the ethylene glycol concentration in the aqueous solution is the X axis, the wavelength corresponding to the minimum value of the transmittance is the Y axis, and the relationship is plotted on the XY coordinates to obtain a calibration curve. The slope and the correlation coefficient were obtained. The greater the slope, the greater the sensitivity, and the closer the correlation coefficient to 1, the higher the detection accuracy. The results are shown in Table 2. Further, FIG. 6 shows the transmittance spectrum when an aqueous solution having ethylene glycol concentrations of 0% and 10% is used as a sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<評価>
 表1、表2および図6から明らかなように、実施例のSPRセンサセルは、比較例のSPRセンサセルに比べてS/N比が大きく、検出感度および検出精度に優れる。これは、実施例のSPRセンサではコア層内のみに光が導波し、該光によって生じるSPRスペクトル吸収を測定するのに対し、比較例のSPRセンサセルでは、クラッド層内を導波した光とコア層内を導波した光との総量に対して、コア層内を導波した光によって生じるSPRスペクトル吸収を測定することから、クラッド層内を導波した不要な光が増え、その結果としてシグナルが小さくなるためと考えられる。さらにまた、クラッド層内を導波する光にバラツキがあるために、検出精度が低下すると考えられる。以上のことから、本発明のSPRセンサセルおよびこれを用いたSPRセンサは、外部要因の影響を受けにくく、精度に優れた測定が可能であることがわかる。
<Evaluation>
As is apparent from Tables 1 and 2 and FIG. 6, the SPR sensor cell of the example has a larger S / N ratio than the SPR sensor cell of the comparative example, and is excellent in detection sensitivity and detection accuracy. This is because, in the SPR sensor of the example, light is guided only in the core layer and the SPR spectrum absorption caused by the light is measured, whereas in the SPR sensor cell of the comparative example, the light guided in the cladding layer is Since the SPR spectrum absorption caused by the light guided in the core layer is measured with respect to the total amount of light guided in the core layer, unnecessary light guided in the cladding layer increases, and as a result This is probably because the signal is small. Furthermore, it is considered that the detection accuracy is lowered due to variations in light guided in the cladding layer. From the above, it can be seen that the SPR sensor cell of the present invention and the SPR sensor using the same are less susceptible to external factors and can be measured with excellent accuracy.
 本発明のSPRセンサセルおよびSPRセンサは、サンプルの濃度の測定、免疫反応の検出など、種々の化学分析および生物化学分析に好適に利用され得る。 The SPR sensor cell and SPR sensor of the present invention can be suitably used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction.
 10   検知部
 11   アンダークラッド層
 12   コア層
 13   金属層
 14   オーバークラッド層
 20   サンプル配置部
100   SPRセンサセル
110   光源
120   光計測器
200   SPRセンサ
DESCRIPTION OF SYMBOLS 10 Detection part 11 Under clad layer 12 Core layer 13 Metal layer 14 Over clad layer 20 Sample arrangement | positioning part 100 SPR sensor cell 110 Light source 120 Optical measuring device 200 SPR sensor

Claims (7)

  1.  アンダークラッド層と、少なくとも一部が該アンダークラッド層に隣接するように設けられたコア層と、該コア層を被覆する金属層とを備え、
     該アンダークラッド層が、アンダークラッド層形成樹脂と該アンダークラッド層形成樹脂に分散された粒子とを含む、SPRセンサセル。
    An under clad layer, a core layer provided so that at least a part thereof is adjacent to the under clad layer, and a metal layer covering the core layer,
    The SPR sensor cell, wherein the under cladding layer includes an under cladding layer forming resin and particles dispersed in the under cladding layer forming resin.
  2.  前記アンダークラッド層における粒子の充填率が、3%~30%である、請求項1に記載のSPRセンサセル。 The SPR sensor cell according to claim 1, wherein the under-cladding layer has a particle filling rate of 3% to 30%.
  3.  前記粒子の平均粒子径(φ)が、200nm~2.5μmである、請求項1に記載のSPRセンサセル。 2. The SPR sensor cell according to claim 1, wherein an average particle diameter (φ) of the particles is 200 nm to 2.5 μm.
  4.  前記粒子が、無機酸化物を含む、請求項1に記載のSPRセンサセル。 The SPR sensor cell according to claim 1, wherein the particles contain an inorganic oxide.
  5.  前記粒子が、金属酸化物を含む、請求項4に記載のSPRセンサセル。 The SPR sensor cell according to claim 4, wherein the particles include a metal oxide.
  6.  前記粒子が、金属を含む、請求項1に記載のSPRセンサセル。 The SPR sensor cell according to claim 1, wherein the particles include a metal.
  7.  請求項1に記載のSPRセンサセルを備える、SPRセンサ。
     
    An SPR sensor comprising the SPR sensor cell according to claim 1.
PCT/JP2014/066597 2013-07-01 2014-06-24 Spr sensor cell, and spr sensor WO2015002009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-137711 2013-07-01
JP2013137711A JP2015010971A (en) 2013-07-01 2013-07-01 Spr sensor cell, and spr sensor

Publications (1)

Publication Number Publication Date
WO2015002009A1 true WO2015002009A1 (en) 2015-01-08

Family

ID=52143588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066597 WO2015002009A1 (en) 2013-07-01 2014-06-24 Spr sensor cell, and spr sensor

Country Status (2)

Country Link
JP (1) JP2015010971A (en)
WO (1) WO2015002009A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031582A (en) * 2007-07-27 2009-02-12 Fuji Xerox Co Ltd Method for manufacturing optical waveguide
JP2011211000A (en) * 2010-03-30 2011-10-20 Sony Corp Solid-state image pickup device, method for manufacturing the same and electronic apparatus
JP2012122915A (en) * 2010-12-10 2012-06-28 Nitto Denko Corp Spr sensor cell and spr sensor
JP2013122643A (en) * 2011-12-09 2013-06-20 Nippon Shokubai Co Ltd Resin composition and planar molded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031582A (en) * 2007-07-27 2009-02-12 Fuji Xerox Co Ltd Method for manufacturing optical waveguide
JP2011211000A (en) * 2010-03-30 2011-10-20 Sony Corp Solid-state image pickup device, method for manufacturing the same and electronic apparatus
JP2012122915A (en) * 2010-12-10 2012-06-28 Nitto Denko Corp Spr sensor cell and spr sensor
JP2013122643A (en) * 2011-12-09 2013-06-20 Nippon Shokubai Co Ltd Resin composition and planar molded body

Also Published As

Publication number Publication date
JP2015010971A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5425141B2 (en) SPR sensor cell and SPR sensor
WO2013129378A1 (en) Spr sensor cell, and spr sensor
WO2012077482A1 (en) Spr sensor cell and spr sensor
WO2011158660A1 (en) Spr sensor cell and spr sensor
JP5946330B2 (en) SPR sensor cell and SPR sensor
WO2013001848A1 (en) Spr sensor cell and spr sensor
JP2012107901A (en) Colorimetric sensor cell, colorimetric sensor, and method for manufacturing colorimetric sensor cell
JP6076786B2 (en) SPR sensor cell and SPR sensor
WO2013038830A1 (en) Spr sensor cell and spr sensor
US9535214B2 (en) Method of inputting light into optical waveguide
WO2013129379A1 (en) Spr sensor cell, and spr sensor
JP2016085160A (en) Spr sensor cell and spr sensor
WO2015002009A1 (en) Spr sensor cell, and spr sensor
JP6234768B2 (en) Optical waveguide and SPR sensor cell and colorimetric sensor cell using the optical waveguide
JP2014185894A (en) SPR sensor cell and SPR sensor
JP2015081928A (en) Optical waveguide, and spr sensor cell and colorimetric sensor cell using the same
Singh et al. Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study
WO2012066829A1 (en) Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, spr sensor cell, spr sensor, and method for producing spr sensor cell
WO2015079785A1 (en) Optical waveguide, and spr sensor cell and colorimetric sensor cell which use optical waveguide
JP2013117545A (en) Spr sensor cell and spr sensor
JP2015081929A (en) Optical waveguide, and spr sensor cell and colorimetric sensor cell using the same
JP2016085161A (en) Spr sensor cell and spr sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820476

Country of ref document: EP

Kind code of ref document: A1