WO2012066829A1 - Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, spr sensor cell, spr sensor, and method for producing spr sensor cell - Google Patents

Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, spr sensor cell, spr sensor, and method for producing spr sensor cell Download PDF

Info

Publication number
WO2012066829A1
WO2012066829A1 PCT/JP2011/067883 JP2011067883W WO2012066829A1 WO 2012066829 A1 WO2012066829 A1 WO 2012066829A1 JP 2011067883 W JP2011067883 W JP 2011067883W WO 2012066829 A1 WO2012066829 A1 WO 2012066829A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
sensor cell
core layer
sample
Prior art date
Application number
PCT/JP2011/067883
Other languages
French (fr)
Japanese (ja)
Inventor
友広 紺谷
潤一 藤澤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010255167A external-priority patent/JP5503505B2/en
Priority claimed from JP2010255168A external-priority patent/JP2012107902A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2012066829A1 publication Critical patent/WO2012066829A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Definitions

  • the present invention relates to a colorimetric sensor cell, a colorimetric sensor, a method for producing a colorimetric sensor cell, an SPR sensor cell, an SPR sensor and a method for producing an SPR sensor cell, and more specifically, a colorimetric sensor cell comprising an optical waveguide, and a colorimetric comprising the colorimetric sensor cell.
  • the present invention relates to a sensor, a colorimetric sensor cell manufacturing method, an SPR sensor cell including an optical waveguide, an SPR sensor including the SPR sensor cell, and a method of manufacturing the SPR sensor cell.
  • a colorimetric sensor has been used as a sensor for detecting the concentration of a sample and its change.
  • a colorimetric sensor for example, an optical waveguide layer formed on a glass substrate, a reaction film formed on the optical waveguide layer, the absorption spectrum of which changes in response to a gas to be detected, A sensor chip including a right-angle prism for light extraction has been proposed (for example, see Patent Document 1 below).
  • the reaction film reacts with the gas to be detected, and changes color depending on the concentration of the gas to be detected.
  • the guided light travels while repeating total reflection in the optical waveguide layer, and evanescent waves are oozed out on the surface of the optical waveguide layer.
  • the intensity of the light output from the optical waveguide layer using the right-angle prism is reduced.
  • Absorption of light (evanescent wave) by the reaction film depends on the degree of discoloration of the reaction film, that is, the concentration of the gas to be detected. Therefore, the concentration of the gas to be detected is detected by measuring the output intensity of the guided light. be able to.
  • the colorimetric sensor as described above can be used not only for gas detection using a reaction film but also for concentration detection of a solution that causes a color change depending on the concentration.
  • an SPR Surface Plasmon Resonance
  • optical fiber In the fields of chemical analysis and biochemical analysis, for example, an SPR (Surface Plasmon Resonance) sensor including an optical fiber is used in addition to the above-described colorimetric sensor.
  • a metal thin film is formed on the outer peripheral surface of the tip of the optical fiber, an analysis sample is fixed, and light is introduced into the optical fiber. Then, light of a specific wavelength in the introduced light generates surface plasmon resonance in the metal thin film, and attenuates the light intensity.
  • the wavelength for generating surface plasmon resonance usually varies depending on the refractive index of the analysis sample fixed to the optical fiber.
  • the wavelength at which the light intensity attenuates after the occurrence of surface plasmon resonance is measured, the wavelength at which the surface plasmon resonance is generated can be identified, and if it is detected that the attenuation wavelength has changed, the surface plasmon resonance is detected. Since it can be confirmed that the wavelength to be generated has changed, a change in the refractive index of the analysis sample can be confirmed.
  • such an SPR sensor can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction.
  • the concentration of the sample can be detected by measuring the refractive index of the sample (solution), and the refractive index has changed. By confirming, it can be confirmed that the concentration of the sample (solution) has changed.
  • an antibody is immobilized on a metal thin film of an optical fiber in an SPR sensor via a dielectric film, a specimen is brought into contact with the antibody, and surface plasmon resonance is generated. At this time, if the antibody and the specimen undergo an immunoreaction, the refractive index of the sample changes. Therefore, by confirming that the refractive index of the sample has changed before and after contact between the antibody and the specimen, the antibody and specimen Can be judged to have immunoreacted.
  • the SPR sensor equipped with such an optical fiber has a problem that it is difficult to form a metal thin film or fix an analysis sample because the tip of the optical fiber has a fine cylindrical shape.
  • a core through which light passes and a clad covering the core are provided, and a through hole is formed at a predetermined position of the clad up to the surface of the core.
  • An SPR sensor cell in which a metal thin film is formed on the surface of a core at a corresponding position has been proposed (for example, see Patent Document 2 below).
  • this SPR sensor cell it is easy to form a metal thin film for generating surface plasmon resonance on the core surface and to fix the analysis sample to the surface.
  • An object of the present invention is to provide a colorimetric sensor cell having excellent detection accuracy, a colorimetric sensor, a method for producing a colorimetric sensor cell, an SPR sensor cell, an SPR sensor, and a method for producing an SPR sensor cell.
  • a colorimetric sensor cell of the present invention includes a detection unit and a sample placement unit adjacent to the detection unit, and the detection unit includes an under cladding layer made of a first resin, and a second The first resin is infiltrated into the second resin in a surface layer that is made of resin and includes a core layer that is covered with the under cladding layer, and that is in contact with the under cladding layer of the core layer. A resin mixed layer is formed.
  • the colorimetric sensor of the present invention is characterized by comprising the above colorimetric sensor cell.
  • this colorimetric sensor uses a colorimetric sensor cell in which a resin mixed layer made of a second resin infiltrated with a first resin is formed in the core layer, it can accurately detect the concentration and change of the sample. Can do.
  • the method for producing a colorimetric sensor cell of the present invention includes a step of forming a core layer made of a second resin in a predetermined pattern on a substrate, and covering the core layer with the first resin on the substrate. And applying and heating the surface layer of the core layer so as to penetrate the first resin, and curing the first resin to form an undercladding layer made of the first resin, Forming a resin mixed layer in which the first resin is infiltrated into the second resin on a surface layer of the core layer that is in contact with the under cladding layer.
  • a resin mixed layer made of the second resin infiltrated with the first resin can be formed in the core layer, so that the concentration and change of the sample can be accurately detected.
  • a possible colorimetric sensor cell can be manufactured.
  • the SPR sensor cell of the present invention includes a detection unit and a sample placement unit adjacent to the detection unit, and the detection unit includes an under cladding layer made of a first resin and a second resin, and the under cladding.
  • a resin mixed layer in which the first resin is infiltrated into the second resin is formed on a surface layer of the core layer that is in contact with the under cladding layer. It is characterized by having.
  • the concentration and change of the sample can be accurately detected.
  • the SPR sensor of the present invention is characterized by including the above SPR sensor cell.
  • this SPR sensor uses an SPR sensor cell in which a resin mixed layer made of a second resin infiltrated with the first resin is formed in the core layer, it is possible to accurately detect the concentration and change of the sample. .
  • the method for manufacturing an SPR sensor cell according to the present invention includes a step of forming a core layer made of a second resin in a predetermined pattern on a substrate, and covering the core layer with the first resin on the substrate. And applying and heating the first resin so as to penetrate the surface layer of the core layer, and curing the first resin to form an undercladding layer made of the first resin, and Forming a resin mixed layer in which the first resin is infiltrated into the second resin on a surface layer of the core layer that is in contact with the under cladding layer.
  • an SPR sensor cell since the resin mixed layer made of the second resin infiltrated with the first resin can be formed in the core layer, the concentration or change of the sample can be accurately detected.
  • An SPR sensor cell can be manufactured.
  • the detection accuracy can be improved with a simple configuration.
  • FIG. 1 It is a perspective view which shows one Embodiment of the colorimetric sensor cell of this invention. It is sectional drawing of the colorimetric sensor cell shown in FIG. It is process drawing which shows the manufacturing method of the colorimetric sensor cell shown in FIG. 1, Comprising: (a) The process of forming the core layer which consists of 2nd resin on a board
  • FIG. 4 is a schematic sectional side view showing one embodiment of the colorimetric sensor of the present invention. It is a perspective view which shows one Embodiment of the SPR sensor cell of this invention. It is sectional drawing of the SPR sensor cell shown in FIG. FIGS.
  • FIG. 6A and 6B are process diagrams illustrating a method of manufacturing the SPR sensor cell illustrated in FIG. 5, in which FIG. 5A is a process of forming a core layer made of a second resin on a substrate, and FIG. A step of coating and heating one resin so that the core layer is coated and allowing the first resin to penetrate into the surface layer of the core layer; and (c) is a step of curing the first resin and forming an undercladding layer made of the first resin. And (d) is a step of peeling the substrate from the core layer and the under-cladding layer, and (e) is a step of peeling the substrate.
  • the surface of the protective layer being, a process of forming a metal thin film so as to cover the core layer. It is sectional drawing which shows other embodiment of the SPR sensor cell of this invention. It is a schematic sectional side view which shows one Embodiment of the SPR sensor of this invention. The evaluation result of the colorimetric sensor in an Example and a comparative example is shown.
  • FIG. 1 is a perspective view showing an embodiment of a colorimetric sensor cell of the present invention.
  • FIG. 2 is a cross-sectional view of the colorimetric sensor cell shown in FIG.
  • the colorimetric sensor cell 1 is formed in a bottomed frame shape having a substantially rectangular shape in plan view, and includes a detection unit 30 and a sample placement unit 31 adjacent to the detection unit 30. Yes.
  • the detecting unit 30 is provided to detect the state of the sample arranged in the sample arranging unit 31 and the change thereof, and includes the optical waveguide 2.
  • the state when the sample is arranged in the colorimetric sensor cell 1 is the upper and lower reference. That is, in FIG. 1, the upper side of the page is the upper side, and the lower side of the page is the lower side.
  • the optical waveguide 2 is the colorimetric sensor cell 1 itself, and includes an under cladding layer 3, a core layer 4, a protective layer 5, and an over cladding layer 6.
  • the under-cladding layer 3 is made of a first resin (described later) and is formed in a substantially rectangular flat plate shape in plan view having a predetermined thickness in the vertical direction.
  • the core layer 4 is made of a second resin (described later) different from the first resin (described later), and is orthogonal to both the width direction (the direction orthogonal to the thickness direction, hereinafter the same) and the thickness direction of the under cladding layer 3.
  • the under-cladding layer 3 is covered (embedded) at the upper end of the substantially center portion of the under-cladding layer 3 in the width direction.
  • a direction in which the core layer 4 extends is a propagation direction in which light propagates in the optical waveguide 2.
  • the core layer 4 is disposed such that both propagation directions thereof are flush with both propagation directions of the under cladding layer 3, and the upper surface thereof is flush with the upper surface of the under cladding layer 3. In other words, the upper surface of the core layer 4 is exposed from the under cladding layer 3.
  • the core layer 4 is formed of a single resin layer 22 and a resin mixed layer 23.
  • the single resin layer 22 is formed in a substantially prismatic shape (specifically, a rectangular cross section flattened in the width direction), and is arranged so that the upper surface thereof is flush with the upper surface of the under cladding layer 3.
  • the single resin layer 22 is formed in a substantially prismatic shape in which the length in the thickness direction and the length in the width direction are short with respect to the entire core layer 4 and the length in the propagation direction is equal.
  • the resin mixed layer 23 is covered (embedded) at the upper end portion of the core layer 4 in the substantially central portion in the width direction.
  • the resin mixed layer 23 is formed as a surface layer in contact with the under cladding layer 3 of the core layer 4, and more specifically, in the lower part of the core layer 4 and both sides in the width direction, the cross-sectional view surrounding the single resin layer 22 is omitted. It is formed in a concave shape (U shape). The resin mixed layer 23 is disposed so that the upper surface thereof is flush with the upper surfaces of the under cladding layer 3 and the single resin layer 22.
  • the upper surface of the core layer 4 is formed from the single resin layer 22 and the resin mixed layer 23 so as to be flush with the under cladding layer 3, and both the width direction both surfaces and the lower surface are formed from the resin mixed layer 23. ing.
  • a light source 12 (described later) and an optical measuring instrument 13 (described later) are optically connected to both ends in the propagation direction of the core layer 4.
  • the protective layer 5 is formed as a thin layer having the same shape as the under-cladding layer 3 in plan view so as to cover the upper surfaces of the under-cladding layer 3 and the core layer 4 as necessary.
  • the core layer 4 can be prevented from swelling due to the sample.
  • the over clad layer 6 is formed in a rectangular frame shape in plan view on the protective layer 5 so that the outer periphery thereof is substantially the same as the outer periphery of the under clad layer 3 in plan view.
  • the optical waveguide 2 is formed in a bottomed frame shape having the protective layer 5 formed on the under cladding layer 3 and the core layer 4 as a bottom wall and the over cladding layer 6 as a side wall.
  • the sample placement unit 31 is provided to accommodate a sample to be analyzed by the colorimetric sensor 11 (described later), and is placed adjacent to the detection unit 30.
  • sample placement portion 31 is partitioned as a portion surrounded by the protective layer 5 and the over clad layer 6 on the upper side of the core layer 4.
  • the colorimetric sensor cell 1 can be provided with a support member (not shown) for supporting the optical waveguide 2 as necessary.
  • FIG. 3 is a process diagram showing a method for manufacturing the colorimetric sensor cell shown in FIG.
  • a flat substrate 9 is prepared, and then the core layer 4 is formed on the substrate 9.
  • the substrate 9 is formed of a ceramic material such as silicon or glass, a metal material such as copper, aluminum, stainless steel, or an iron alloy, for example, a resin material such as polyimide, glass-epoxy, or polyethylene terephthalate (PET). ing. Preferably, it is formed from a ceramic material.
  • the thickness of the substrate 9 is, for example, 10 to 5000 ⁇ m, preferably 10 to 1500 ⁇ m.
  • the core layer 4 is formed of a second resin.
  • a second resin examples include a polyimide resin, a polyamide resin, a silicone resin, an epoxy resin, an acrylic resin, and their fluorinated modified products and deuterium.
  • resin materials such as chemical-modified products and fluorene-modified products. These resin materials are preferably used as a photosensitive resin by blending a photosensitive agent.
  • the above-described resin varnish (resin solution) is prepared, the varnish is applied to the surface of the substrate 9 in the above-described predetermined pattern, dried, and heated as necessary. Harden.
  • varnish is applied to the entire surface of the substrate 9 and dried, irradiated with ultraviolet rays through a photomask, developed into a pattern, and then heat-cured as necessary.
  • the heating temperature is, for example, 70 to 250 ° C., preferably 70 to 150 ° C.
  • the heating time is, for example, 10 seconds to 2 hours, preferably 5 minutes to 1 hour.
  • the thickness of the core layer 4 thus formed is, for example, 5 to 100 ⁇ m, and the width is, for example, 5 to 200 ⁇ m.
  • the core layer 4 is coated on the substrate 9 and the first resin is infiltrated into the surface layer of the core layer 4 in contact with the first resin.
  • the first resin is applied and heated in the above pattern.
  • the first resin for example, a resin material adjusted to have a refractive index lower than that of the single resin layer 22 of the core layer 4 from the same resin material as described above.
  • the above-described resin varnish (resin solution) is prepared, and the varnish is applied onto the substrate 9 by, for example, casting, spin coater or the like. After coating, the coating is dried if necessary. Next, heating is performed so that the first resin penetrates the core layer 4 (second resin).
  • the heating temperature is, for example, 60 to 150 ° C., preferably 100 to 150 ° C.
  • the heating time is, for example, 1 to 30 minutes.
  • a photosensitive resin If a photosensitive resin is used, it is then irradiated with ultraviolet rays. At this time, if necessary, UV irradiation is performed through a photomask, and development is performed if necessary.
  • the first resin is cured by, for example, heating to form the under cladding layer 3 made of the first resin.
  • a resin mixed layer 23 in which the first resin is infiltrated into the second resin is formed on the surface layer of the core layer 4 that is in contact with the under cladding layer 3, and is embedded in the resin mixed layer 23.
  • a single resin layer 22 is formed.
  • the heating temperature is, for example, 70 to 250 ° C., preferably 70 to 150 ° C.
  • the heating time is, for example, 10 seconds to 2 hours, preferably 5 minutes to 1 hour.
  • the thickness of the under cladding layer 3 formed in this way from the surface of the core layer 4 is, for example, 2 to 500 ⁇ m.
  • the thickness of each side of the resin mixed layer 23 surrounding the single resin layer 22 and the thickness of the single resin layer 22 are not particularly limited, and the degree of penetration of the first resin into the second resin, etc. Is appropriately determined.
  • the under cladding layer 3 and the core layer 4 are formed flush with each other on the lower surface in contact with the substrate 9.
  • the refractive index of the under-cladding layer 3 formed in this way is set lower than the refractive index of the single resin layer 22 of the core layer 4, and is, for example, 1.42 or more and less than 1.55. .
  • the refractive index of the single resin layer 22 of the core layer 4 is set to be higher than the refractive index of the under cladding layer 3 and is, for example, 1.44 or more and 1.65 or less.
  • the refractive index of the resin mixed layer 23 usually exceeds the refractive index of the undercladding layer 3 and is lower than the refractive index of the single resin layer 22.
  • the undercladding layer 3 in the stacking direction thereof. From the side to the single resin layer 22 side, the refractive index of the under cladding layer 3 continuously changes from the refractive index of the single resin layer 22.
  • the substrate 9 is peeled from the under cladding layer 3 and the core layer 4, and the under cladding layer 3 and the core layer 4 are turned upside down.
  • the protective layer 5 is formed on the under cladding layer 3 and the core layer 4.
  • Examples of the material for forming the protective layer 5 include silicon dioxide, aluminum oxide, and the like. Preferably, materials adjusted so as to have a refractive index lower than that of the core layer 4 are included.
  • Examples of a method for forming the protective layer 5 include a sputtering method and a vapor deposition method, and a sputtering method is preferable.
  • the thickness of the protective layer 5 thus formed is, for example, 1 to 100 nm, preferably 5 to 20 nm.
  • the refractive index of the protective layer 5 is set lower than the refractive index of the core layer 4, for example, is 1.25 or more and less than 1.55.
  • the over clad layer 6 is formed on the protective layer 5 in the pattern described above.
  • Examples of the material for forming the over clad layer 6 include silicone rubber and the same resin material (first resin) as the above under clad layer 3.
  • the over clad layer 6 for example, a sheet having a rectangular frame shape in plan view is separately formed from the above-described material, and the sheet is laminated on the protective layer 5 as the over clad layer 6.
  • the above-described resin varnish (resin solution) is prepared, and the varnish is applied to the surface of the protective layer 5 in the above-described pattern, and then dried. Can also be cured.
  • a varnish is applied to the entire surface of the protective layer 5, and after drying, exposed through a photomask. If necessary, after exposure, heated, and then developed into a pattern. It can also be heated.
  • the thickness of the over clad layer 6 thus formed is, for example, 5 to 200 ⁇ m, preferably 25 to 100 ⁇ m.
  • the refractive index of the over clad layer 6 is set lower than the refractive index of the core layer 4, for example, the same as the refractive index of the under clad layer 3. Note that when the refractive index of the protective layer 5 is lower than the refractive index of the core layer 4, the refractive index of the over clad layer 6 is not necessarily lower than the refractive index of the core layer 4.
  • the size and shape of the sample placement portion 31 are not particularly limited, and are appropriately determined according to the type and use of the sample.
  • the sample placement portion 31 is preferably formed small.
  • the colorimetric sensor cell 1 can be manufactured.
  • the resin mixed layer 23 made of the second resin in which the first resin is infiltrated can be formed in the core layer 4.
  • the colorimetric sensor cell 1 that can be detected with high accuracy can be manufactured.
  • the sample is accommodated (arranged) in the sample arrangement part 31, so that the sample is surrounded by the over clad layer 6 in the sample arrangement part 31, and the core layer 4 (single resin layer) 22 and the resin mixed layer 23) are brought into contact with the sample.
  • FIG. 4 is a schematic sectional side view showing an embodiment of the colorimetric sensor of the present invention.
  • the colorimetric sensor 11 includes a light source 12, an optical measuring instrument 13, and the colorimetric sensor cell 1 described above.
  • the light source 12 is a known light source such as a white light source or a monochromatic light source, and is connected to a light source side optical fiber 15 via a light source side optical connector 14, and the light source side optical fiber 15 is connected to the light source side optical fiber.
  • the colorimetric sensor cell 1 (core layer 4) is connected to one end portion in the propagation direction via the block 16.
  • a measuring instrument side optical fiber 18 is connected to the other end portion in the propagation direction of the colorimetric sensor cell 1 (core layer 4) via a measuring instrument side optical fiber block 17, and the measuring instrument side optical fiber 18. Are connected to the optical measuring instrument 13 via the measuring instrument side optical connector 19.
  • the optical measuring instrument 13 is connected to a known arithmetic processing unit, and can display, store and process data.
  • the colorimetric sensor cell 1 is fixed by a known sensor cell fixing device (not shown).
  • the sensor cell fixing device (not shown) is movable along a predetermined direction (for example, the width direction of the colorimetric sensor cell 1), whereby the colorimetric sensor cell 1 is arranged at an arbitrary position.
  • the light source side optical fiber 15 is fixed to the light source side optical fiber fixing device 20
  • the measuring instrument side optical fiber 18 is fixed to the measuring instrument side optical fiber fixing device 21.
  • the light source side optical fiber fixing device 20 and the measuring instrument side optical fiber fixing device 21 are fixed on a known six-axis moving stage (not shown), and the propagation direction and width direction of the optical fiber (the propagation direction and the horizontal direction). It is movable in a direction perpendicular to the direction) and a thickness direction (a direction perpendicular to the propagation direction perpendicular to the propagation direction) and a rotation direction (three directions) with these directions (three directions) as axes.
  • the light source 12, the light source side optical fiber 15, the colorimetric sensor cell 1 (core layer 4), the measuring instrument side optical fiber 18, and the optical measuring instrument 13 can be arranged on one axis. Light can be introduced from the light source 12 so as to transmit these.
  • the colorimetric sensor cell 1 described above that is, the colorimetric sensor cell 1 in which the core layer 4 is formed with the resin mixed layer 23 made of the second resin infiltrated with the first resin is used. Therefore, it is possible to accurately detect the concentration and change of the sample.
  • a sample is accommodated (arranged) in the sample arrangement portion 31 of the colorimetric sensor cell 1 shown in FIG. 4, and the sample and the core layer 4 (the single resin layer 22 and the resin mixed layer 23) are arranged. Make contact.
  • predetermined light from the light source 12 is introduced into the colorimetric sensor cell 1 (core layer 4) via the light source side optical fiber 15 (see the broken line arrow L1 shown in FIG. 4).
  • the light introduced into the colorimetric sensor cell 1 (core layer 4) passes through the colorimetric sensor cell 1 (core layer 4) while repeating total reflection in the core layer 4, and a part of the light is cored as an evanescent wave. It exudes from the layer 4 and is incident on the sample via the protective layer 5 on the upper surface of the core layer 4 and attenuated.
  • the light transmitted through the colorimetric sensor cell 1 is introduced into the optical measuring instrument 13 through the measuring instrument side optical fiber 18 (see the broken line arrow L2 shown in FIG. 4).
  • the light intensity introduced into the optical measuring instrument 13 is attenuated in the light intensity of the wavelength absorbed by the sample in the core layer 4.
  • the wavelength absorbed by the sample depends on the color of the sample accommodated (arranged) in the colorimetric sensor cell 1, the attenuation of the light intensity of the light introduced into the optical measuring instrument 13 is detected. The color and its change can be detected.
  • the optical measuring instrument 13 measures the wavelength at which the light intensity attenuates after transmission through the colorimetric sensor cell 1, and the attenuation wavelength has changed. Once detected, the color of the sample and its change can be confirmed.
  • a change (attenuation degree) of the light intensity of the monochromatic light after transmission through the colorimetric sensor cell 1 is measured by the optical measuring device 13, and the degree of the attenuation. If the change is detected, the color of the sample and its change can be confirmed in the same manner as described above.
  • such a colorimetric sensor 11 can be used for various chemical analyses, such as measurement of the concentration of the sample, based on the change in the color of the sample.
  • the color of the sample (solution) depends on the concentration of the solution. Therefore, in the colorimetric sensor 11 in which the sample (solution) is arranged, the sample (solution) ), The concentration of the sample can be measured. Further, if it is detected that the color of the sample (solution) has changed, it can be confirmed that the concentration of the sample (solution) has changed.
  • the core layer 4 in the sample placement unit 31 is used.
  • the reaction film is fixed so as to be in contact with (single resin layer 22 and resin mixed layer 23), and gas is introduced into sample placement portion 31.
  • the reaction film reacts with the gas to be detected and causes a color change depending on its concentration. That is, the color of the reaction film depends on the concentration of the gas to be detected. Therefore, if the color of the reaction film is detected by the colorimetric sensor 11 in which the reaction film is arranged, the concentration of the gas to be detected can be measured. Further, if it is detected that the color of the reaction film has changed, it can be confirmed that the concentration of the gas to be detected has changed.
  • the detection sensitivity can be improved with a simple configuration.
  • one core layer 4 is formed in the colorimetric sensor cell 1, but the number of core layers 4 is not particularly limited, and a plurality of core layers 4 are formed at intervals in the width direction. You can also.
  • the colorimetric sensor 11 including the colorimetric sensor cell 1 can simultaneously analyze a sample a plurality of times, thereby improving the analysis efficiency.
  • the core layer 4 is formed in a substantially prismatic shape.
  • the shape of the core layer 4 is not particularly limited, and the core layer 4 is, for example, a substantially semicircular shape (semi-cylinder in a cross-sectional view). Shape) and a substantially convex shape (convex column shape) in cross-sectional view.
  • the upper end portion of the colorimetric sensor cell 1 is open, but a lid that covers the sample placement portion 31 can be provided on the upper end portion of the colorimetric sensor cell 1. According to this, it can prevent that a sample contacts external air during a measurement.
  • the lid that covers the sample placement unit 31 is provided with an injection port for injecting the sample (liquid) into the sample placement unit 31 and a discharge port for discharging the sample from the sample placement unit 31. It is also possible to inject from the injection port, pass through the inside of the sample placement portion 31, and discharge from the discharge port. According to this, it is possible to continuously measure the physical properties of the sample while flowing the sample through the sample placement unit 31.
  • FIG. 5 is a perspective view showing an embodiment of the SPR sensor cell of the present invention.
  • 6 is a cross-sectional view of the SPR sensor cell shown in FIG.
  • the same referential mark is attached
  • the SPR sensor cell 41 includes a detection unit 30 and a sample placement unit 31 adjacent to the detection unit 30 in the same manner as the colorimetric sensor cell 1 (see FIGS. 1 and 2) described above.
  • the sample placement unit 31 is provided with the metal thin film 7.
  • the metal thin film 7 is formed so as to uniformly cover the protective layer 5 in the sample placement portion 31. That is, the metal thin film 7 is formed so as to uniformly cover the upper surface of the core layer 4.
  • the metal thin film 7 or the metal particle layer 8 (described later) is formed, the metal material (described later) and the metal particles 10 (described later) can be efficiently arranged only on the upper side of the core layer 4.
  • FIG. 7 is a process diagram showing a method of manufacturing the SPR sensor cell shown in FIG.
  • the plate-like substrate 9 described above is prepared in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3A).
  • a core layer 4 is formed on the substrate 9.
  • the thickness of the substrate 9 is, for example, 10 to 5000 ⁇ m, preferably 10 to 1500 ⁇ m.
  • the core layer 4 has a thickness of 2 to 150 ⁇ m, for example, and a width of 2 to 150 ⁇ m, for example.
  • the core layer 4 is coated on the substrate 9 in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3B).
  • the first resin is applied and heated in the above pattern so that the first resin penetrates into the surface layer of the core layer 4 in contact with the first resin.
  • the first resin is cured by heating, for example, in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3C).
  • An undercladding layer 3 made of one resin is formed.
  • a resin mixed layer 23 in which the first resin is infiltrated into the second resin is formed on the surface layer of the core layer 4 that is in contact with the under cladding layer 3, and is embedded in the resin mixed layer 23.
  • a single resin layer 22 is formed.
  • the substrate 9 is peeled from the under-cladding layer 3 and the core layer 4 in the same manner as the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3D).
  • the under cladding layer 3 and the core layer 4 are turned upside down.
  • a protective layer is formed on the under-cladding layer 3 and the core layer 4 in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3E). 5 is formed.
  • the over-cladding layer 6 is formed on the protective layer 5 in the same manner as the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3 (f)).
  • the pattern is formed as described above.
  • the same resin material (first resin) as that of the above under clad layer 3 is used.
  • the over clad layer 6 for example, a sheet having a rectangular frame shape in plan view is separately formed from the above-described material, and the sheet is laminated on the protective layer 5 as the over clad layer 6.
  • the protective layer 5 when laminating
  • primers such as a silane coupling agent
  • silane coupling agent examples include amino group-containing silane coupling agents such as ⁇ -aminopropyltriethoxysilane.
  • silane coupling agent is treated as a primer, for example, an alcohol solution of the silane coupling agent is applied to the protective layer 5 and then heat-treated.
  • the metal thin film 7 is formed so as to cover the core layer 4 in the sample placement portion 31.
  • Examples of the metal material for forming the metal thin film 7 include gold, silver, platinum, copper, aluminum, and alloys thereof.
  • metal materials can be used alone or in combination of two or more.
  • the metal thin film 7 for example, if necessary, first, a resist having a pattern opposite to the pattern of the metal thin film 7 is formed, and the periphery of the portion where the metal thin film 7 is formed is masked. Thereafter, the metal thin film 7 is formed on the upper surface of the core layer 4 (the core layer 4 exposed from the resist formed if necessary) by, for example, a vapor deposition method such as a vacuum vapor deposition method, an ion plating method, or a sputtering method. Thereafter, if a resist is formed, the resist is removed by etching or peeling.
  • a vapor deposition method such as a vacuum vapor deposition method, an ion plating method, or a sputtering method.
  • the metal thin film 7 can be laminated
  • the thickness of the metal thin film 7 thus formed (when a plurality of metal thin films 7 are stacked, the total thickness) is, for example, 40 to 70 nm, preferably 50 to 60 nm.
  • the SPR sensor cell 41 can be manufactured.
  • the resin mixed layer 23 made of the second resin infiltrated with the first resin can be formed in the core layer 4, so that the concentration and change of the sample can be accurately measured.
  • An SPR sensor cell 41 that can be detected well can be manufactured.
  • Such an SPR sensor cell 41 can accurately detect the concentration and change of the sample.
  • FIG. 8 is a cross-sectional view showing another embodiment of the SPR sensor cell of the present invention.
  • the same referential mark is attached
  • the metal thin film 7 is provided in the sample placement portion 31, but for example, the metal placement layer 31 can be provided with the metal particle layer 8 instead of the metal thin film 7.
  • the metal particle layer 8 is formed so as to uniformly cover the protective layer 5 in the sample placement portion 31. That is, the metal particle layer 8 is formed so as to uniformly cover the upper surface of the core layer 4.
  • the metal particles 10 forming the metal particle layer 8 for example, the surface of particles made of metal such as gold, silver, copper, aluminum, chromium and platinum, for example, inorganic particles such as silica and carbon black is made of the metal described above.
  • the coated particles include particles in which the surface of an organic particle such as a resin is coated with the metal described above.
  • grains which consist of metals are mentioned, More preferably, a chromium particle and a gold particle are mentioned.
  • the average particle diameter of the metal particles 10 is calculated, for example, as an average value of arbitrary 100 particles observed by electron microscope observation, and is, for example, 5 to 300 nm, preferably 10 to 150 nm.
  • the above-described metal particles 10 are dispersed in a known solvent to prepare a particle dispersion, and the particle dispersion is applied to the protective layer 5. ,dry.
  • the gold particle dispersion liquid in which gold particles are dispersed as the metal particles 10 is commercially available, and examples thereof include EMGC series (manufactured by British BioCell International Ltd.).
  • the metal particles 10 are preferably formed as a single particle layer without being stacked on each other in the thickness direction. Further, the respective metal particles 10 are arranged independently at a slight interval so as not to contact each other.
  • the metal particle layer 8 is, for example, 15 to 60%, preferably 20 to 50% of the surface area of the core layer 4 exposed from the under cladding layer 3, that is, the area of the sample placement portion 31, in plan view. % Coating.
  • the metal particle layer 8 covers the core layer 4 exposed from the under-cladding layer 3 at the above-described ratio (coverage), as a single particle layer in which almost all the metal particles 10 are independently arranged. Since the metal particle layer 8 is formed, the concentration and change of the sample can be detected with higher accuracy.
  • the sample is accommodated (arranged) in the sample arrangement part 31, whereby the metal particle layer 8 and the sample are brought into contact with each other. That is, the sample is surrounded by the over clad layer 6 in the sample placement portion 31.
  • Such an SPR sensor cell 41 can accurately detect the concentration and change of the sample.
  • the over clad layer 6 is formed so as to surround the sample in contact with the metal particle layer 8, the sample can be easily disposed on the surface of the metal particle layer 8. Therefore, workability can be improved.
  • FIG. 9 is a schematic sectional side view showing an embodiment of the SPR sensor of the present invention.
  • the SPR sensor 42 includes the light source 12, the optical measuring instrument 13, and the SPR sensor cell 41, similar to the colorimetric sensor 11 (see FIG. 4). Yes.
  • the light source 12 is connected to the light source side optical fiber 15 via the light source side optical connector 14 in the same manner as the colorimetric sensor 11 (see FIG. 4), and the light source side optical fiber 15 is connected to the light source side optical fiber block 16. Is connected to one end of the SPR sensor cell 41 (core layer 4) in the propagation direction.
  • a measuring instrument side optical fiber 18 is connected to the other end of the SPR sensor cell 41 (core layer 4) in the propagation direction via a measuring instrument side optical fiber block 17, and the measuring instrument side optical fiber 18 is The optical measuring instrument 13 is connected to the measuring instrument side optical connector 19.
  • the SPR sensor cell 1 is fixed by a known sensor cell fixing device (not shown).
  • the sensor cell fixing device (not shown) is movable along a predetermined direction (for example, the width direction of the SPR sensor cell 1), whereby the SPR sensor cell 1 is disposed at an arbitrary position.
  • the light source side optical fiber 15 is fixed to the light source side optical fiber fixing device 20
  • the measuring instrument side optical fiber 18 is fixed to the measuring instrument side optical fiber fixing device 21.
  • the light source side optical fiber fixing device 20 and the measuring instrument side optical fiber fixing device 21 are fixed on a known six-axis moving stage (not shown), and the propagation direction and width direction of the optical fiber (the propagation direction and the horizontal direction). It is movable in a direction perpendicular to the direction) and a thickness direction (a direction perpendicular to the propagation direction perpendicular to the propagation direction) and a rotation direction (three directions) with these directions (three directions) as axes.
  • the light source 12, the light source side optical fiber 15, the SPR sensor cell 1 (core layer 4), the measuring instrument side optical fiber 18 and the optical measuring instrument 13 can be arranged on one axis, and these The light can be introduced from the light source 12 so as to transmit the light.
  • the SPR sensor 11 uses the SPR sensor cell 1 described above, that is, the SPR sensor cell 1 in which the resin layer 23 made of the second resin in which the first resin is infiltrated is formed in the core layer 4. It is possible to accurately detect the concentration and change of the sample.
  • a sample is accommodated (arranged) in the sample arrangement portion 31 of the SPR sensor cell 41 shown in FIG. 9, and the sample and the metal thin film 7 (or the metal particle layer 8) are brought into contact with each other.
  • predetermined light from the light source 12 is introduced into the SPR sensor cell 41 (core layer 4) through the light source side optical fiber 15 (see the broken line arrow L1 shown in FIG. 9).
  • the light introduced into the SPR sensor cell 41 (core layer 4) passes through the SPR sensor cell 41 (core layer 4) while repeating total reflection in the core layer 4, and part of the light is on the upper surface of the core layer 4. ,
  • the light is incident on the metal thin film 7 (or the metal particle layer 8) through the protective layer 5 and is attenuated by surface plasmon resonance.
  • the light transmitted through the SPR sensor cell 41 (core layer 4) is introduced into the optical measuring instrument 13 through the measuring instrument side optical fiber 18 (see the broken line arrow L2 shown in FIG. 9).
  • the light intensity of the light introduced into the optical measuring instrument 13 is attenuated at the wavelength at which the surface plasmon resonance is generated in the core layer 4.
  • the wavelength for generating the surface plasmon resonance depends on the refractive index of the sample accommodated (arranged) in the SPR sensor cell 41, by detecting the attenuation of the light intensity of the light introduced into the optical measuring instrument 13, A change in the refractive index of the sample can be detected.
  • the optical measuring instrument 13 measures a wavelength at which the light intensity attenuates after transmission through the SPR sensor cell 41 (a wavelength that generates surface plasmon resonance), If it is detected that the attenuation wavelength has changed, the change in the refractive index of the sample can be confirmed.
  • the optical measuring instrument 13 measures the change (degree of attenuation) of the monochromatic light after passing through the SPR sensor cell 41, and the degree of attenuation is measured. If the change is detected, it can be confirmed that the wavelength for generating the surface plasmon resonance has changed, and the change in the refractive index of the sample can be confirmed as described above.
  • such an SPR sensor 42 can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction based on the change in the refractive index of the sample.
  • the sample when the sample is a solution, since the refractive index of the sample (solution) depends on the concentration of the solution, the sample (solution) is removed from the metal thin film 7 (or the metal particle layer 8). If the refractive index of the sample (solution) is detected in the SPR sensor 42 brought into contact with (), the concentration of the sample can be measured. Moreover, if it detects that the refractive index of the sample (solution) has changed, it can be confirmed that the concentration of the sample (solution) has changed.
  • an antibody is immobilized on the metal thin film 7 (or metal particle layer 8) of the SPR sensor cell 41 via a dielectric film, and a specimen is brought into contact with the antibody.
  • the refractive index of the sample changes if the antibody and the specimen undergo an immunoreaction
  • the antibody and the specimen are immune. It can be judged that it reacted.
  • one core layer 4 is formed in the SPR sensor cell 41, but the number of core layers 4 is not particularly limited, and a plurality of core layers 4 may be formed at intervals in the width direction. it can.
  • the SPR sensor 42 including the SPR sensor cell 41 can simultaneously analyze the sample a plurality of times, so that the analysis efficiency can be improved.
  • the core layer 4 is formed in a substantially prismatic shape.
  • the shape of the core layer 4 is not particularly limited, and the core layer 4 is, for example, a substantially semicircular shape (semi-cylinder in a cross-sectional view). Shape) and a substantially convex shape (convex column shape) in cross-sectional view.
  • the metal thin film 7 (or the metal particle layer 8) is formed so as to cover the entire protective layer 5 in the sample placement portion 31, but the metal thin film 7 (or the metal particle layer) is formed. 8) may be formed only on the upper side of the core layer 4 so as to cover at least the core layer 4.
  • the upper end portion of the SPR sensor cell 41 is open, but a lid that covers the sample placement portion 31 can be provided on the upper end portion of the SPR sensor cell 41. According to this, it can prevent that a sample contacts external air during a measurement.
  • the lid that covers the sample placement unit 31 is provided with an injection port for injecting the sample (liquid) into the sample placement unit 31 and a discharge port for discharging the sample from the sample placement unit 31. It is also possible to inject from the injection port, pass through the inside of the sample placement portion 31, and discharge from the discharge port. According to this, it is possible to continuously measure the physical properties of the sample while flowing the sample through the sample placement unit 31.
  • Production Example 1 (Production of first resin) 35 parts by mass of bisphenoxyethanol fluorene glycidyl ether, 40 parts by mass of 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate which is an alicyclic epoxy resin, (3 ′, 4′-epoxycyclohexane) methyl- 25 parts by weight of 3 ′, 4′-epoxycyclohexylcarboxylate and 50% by weight propionate carbonate solution of 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfinio] phenyl sulfide-bis-hexafluoroantimonate 2
  • the first resin non-solvent photosensitive epoxy resin composition
  • Production Example 2 70 parts by mass of bisphenoxyecnol fluorene glycidyl ether, 30 parts by mass of 1,3,3-tris ⁇ 4- [2- (3-oxecenyl)] butoxyphenyl ⁇ butane and 4,4′-bis [di ( ⁇ -hydroxy
  • a second resin photosensitive epoxy resin composition was prepared by dissolving 1 part by mass of a 50 mass% propion carbonate solution of (ethoxy) phenylsulfinio] phenyl sulfide-bis-hexafluoroantimonate in ethyl lactate.
  • Example 1 On the silicon substrate (substrate), the second resin obtained in Production Example 2 was applied to form a substantially prismatic shape having a thickness of 50 ⁇ m and a width of 50 ⁇ m, and then the solvent was volatilized by heating at 70 ° C. for 10 minutes. It was. Next, the reaction was completed by irradiation with ultraviolet rays through a photomask and further heating at 70 ° C. for 10 minutes. Next, development was performed with a developer of ⁇ -butyrolactone to form a substantially prismatic core layer having a thickness of 50 ⁇ m and a width of 110 ⁇ m (see FIG. 3A).
  • the first resin obtained in Production Example 1 was applied on the substrate so as to show the core layer so that the thickness from the surface (upper surface) of the core layer was 100 ⁇ m, and the coating was performed at 140 ° C. for 20 minutes. Heated. By this heat treatment, the first resin penetrated into the second resin on the surface layer of the core layer (see FIG. 3B).
  • the reaction was completed by irradiation with ultraviolet rays and further heating at 120 ° C. for 10 minutes.
  • an undercladding layer is formed, and a resin mixed layer in which the first resin is infiltrated into the second resin is formed on the surface layer that is in contact with the undercladding layer of the core layer, and is embedded in the resin mixed layer.
  • a single resin layer was formed (see FIG. 3C).
  • the silicon substrate was peeled from the under cladding layer and the core layer (see FIG. 3D), and the under cladding layer and the core layer were turned upside down.
  • a 10 nm thick silicon dioxide thin film was formed as a protective layer on the undercladding layer and the core layer by sputtering (see FIG. 3E).
  • a silicone rubber sheet having substantially the same shape as the silicon substrate in plan view and having an opening having a width direction length of 1 mm and a propagation direction length of 12 mm was prepared and laminated on the protective layer.
  • positioning part of width direction length 1mm and propagation direction length 12mm was divided (refer FIG.3 (f)).
  • the refractive index of the under cladding layer is 1.531
  • the refractive index of the resin mixed layer is 1.584
  • the refractive index of the mixed resin layer is a single resin layer from the under cladding layer side in the stacking direction. Towards the side, it continuously changed from 1.531 to 1.584.
  • Comparative Example 1 The resin mixing layer is not provided in the same manner as in Example 1 except that the step of heating at 140 ° C. for 20 minutes is omitted so that the first resin does not penetrate into the second resin (surface layer of the core layer). A colorimetric sensor cell was obtained.
  • rhodamine B also known as Basic Violet 10
  • aqueous solutions concentration: 1 ng / mL (light red), 10 ng
  • / ML lightly red
  • 100 ng / mL 100 ng / mL
  • 1000 ng / mL 1000 ng / mL (dark red)
  • 50 ⁇ L of water rhodamine B concentration 0 ng / mL
  • a wavelength of 555 nm is applied from one end of the core layer. Light was incident and the intensity of the light emitted from the other end was measured.
  • the concentration of the rhodamine B aqueous solution could be detected with higher accuracy than in the comparative example in which the resin mixed layer was not formed.
  • ⁇ SPR sensor cell> Example 2 On the silicon substrate (substrate), the second resin obtained in Production Example 2 was applied to form a substantially prismatic shape having a thickness of 50 ⁇ m and a width of 50 ⁇ m, and then the solvent was volatilized by heating at 70 ° C. for 10 minutes. It was. Next, the reaction was completed by irradiation with ultraviolet rays through a photomask and further heating at 70 ° C. for 10 minutes. Next, development was performed with a developer of ⁇ -butyrolactone to form a substantially prismatic core layer having a thickness of 50 ⁇ m and a width of 50 ⁇ m (see FIG. 7A).
  • the first resin obtained in Production Example 1 was applied on the substrate so as to show the core layer so that the thickness from the surface (upper surface) of the core layer was 100 ⁇ m, and the coating was performed at 140 ° C. for 5 minutes. Heated. By this heat treatment, the first resin penetrated into the second resin on the surface layer of the core layer (see FIG. 7B).
  • the reaction was completed by irradiation with ultraviolet rays and further heating at 120 ° C. for 10 minutes.
  • an undercladding layer is formed, and a resin mixed layer in which the first resin is infiltrated into the second resin is formed on the surface layer that is in contact with the undercladding layer of the core layer, and is embedded in the resin mixed layer.
  • a single resin layer was formed (see FIG. 7C).
  • the silicon substrate was peeled from the under cladding layer and the core layer (see FIG. 7D), and the under cladding layer and the core layer were turned upside down.
  • a 10 nm-thick silicon dioxide thin film was formed as a protective layer on the undercladding layer and the core layer by sputtering (see FIG. 7 (e)).
  • an over clad layer is formed on the under clad layer and the core layer in a shape having an opening using the first resin, thereby partitioning the sample placement portion (see FIG. 7F).
  • a 1 nm chromium thin film and a 50 nm gold thin film were sequentially laminated on the sample arrangement part (opening of the over clad layer) by sputtering to form a metal thin film (see FIG. 7G).
  • the refractive index of the under cladding layer is 1.584
  • the refractive index of the single resin layer is 1.531
  • the refractive index of the mixed resin layer is a single resin from the under cladding layer side in the stacking direction. It changed continuously from 1.531 to 1.584 toward the layer side.
  • Example 3 A gold particle dispersion liquid (EMGC50, manufactured by British BioCell International Ltd.) was applied to the protective layer in the sample storage portion instead of the chromium thin film and the gold thin film, dried, and then the gold particles not attached to the protective layer.
  • the SPR sensor cell was obtained in the same manner as in Example 2 except that the protective layer in the sample container was washed with ethanol and a metal particle layer was formed on the protective layer (see FIG. 8). .
  • the coverage with metal particles (gold particles) was 30%.
  • Comparative Example 2 The resin mixing layer is not provided in the same manner as in Example 2 except that the step of heating at 140 ° C. for 5 minutes is omitted so that the first resin does not penetrate into the second resin (surface layer of the core layer). An SPR sensor cell was obtained.
  • Comparative Example 3 The resin mixing layer is not provided in the same manner as in Example 3 except that the step of heating at 140 ° C. for 5 minutes is omitted so that the first resin does not penetrate into the second resin (surface layer of the core layer). An SPR sensor cell was obtained.
  • Example 2 Thereafter, five types of ethylene glycol aqueous solutions having different concentrations as samples (concentration: 1 mass% (refractive index: 1.33389), 5 mass% (refractive index: 1.33764), 10 mass in the sample storage portion of the SPR sensor cell. % (Refractive index: 1.34245), 20% by mass (refractive index: 1.325231), 30% by mass (refractive index: 1.36249)) were added in an amount of 50 ⁇ L.
  • Example 2 light having a wavelength of 555 nm was used.
  • Example 3 and Comparative Example 3 light having a wavelength of 633 nm was incident, and the intensity of the light emitted from the other end was measured.
  • the transmittance (%) was determined when the light intensity in the absence of the aqueous ethylene glycol solution was 100%.
  • the colorimetric sensor of the present invention comprising the colorimetric sensor cell of the present invention obtained by the method of producing a colorimetric sensor cell of the present invention, and the SPR sensor cell of the present invention obtained by the method of producing the SPR sensor cell of the present invention.
  • the SPR sensor is suitably used as a sensor for detecting the concentration of a sample and its change in fields such as chemical analysis and biochemical analysis.

Abstract

[Problem] To provide: a colorimetric sensor cell which has excellent sensing accuracy; a colorimetric sensor; a method for producing a colorimetric sensor cell; an SPR sensor cell; an SPR sensor; and a method for producing an SPR sensor cell. [Solution] A colorimetric sensor cell (1) which is provided with a sensing part (30) and a sample disposition part (31) that is adjacent to the sensing part (30). The sensing part (30) is provided with an optical waveguide which has an under cladding layer (3) that is formed of a first resin and a core layer (4) that is formed of a second resin and covered with the under cladding layer (3). A resin mixture layer (23), in which the first resin permeates into the second resin, is formed in the surface layer of the core layer (4), said surface layer being in contact with the under cladding layer (3). An SPR sensor cell (41) wherein: a sensing part (30) is provided with an optical waveguide which has an under cladding layer (3) that is formed of a first resin and a core layer (4) that is formed of a second resin and covered with the under cladding layer (3); and a resin mixture layer (23), in which the first resin permeates into the second resin, is formed in the surface layer of the core layer (4), said surface layer being in contact with the under cladding layer (3).

Description

比色センサセル、比色センサ、比色センサセルの製造方法、SPRセンサセル、SPRセンサおよびSPRセンサセルの製造方法Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, SPR sensor cell, SPR sensor, and method for producing SPR sensor cell
 本発明は、比色センサセル、比色センサ、比色センサセルの製造方法、SPRセンサセル、SPRセンサおよびSPRセンサセルの製造方法、詳しくは、光導波路を備える比色センサセル、その比色センサセルを備える比色センサ、その比色センサセルの製造方法、光導波路を備えるSPRセンサセル、そのSPRセンサセルを備えるSPRセンサ、および、そのSPRセンサセルの製造方法に関する。 The present invention relates to a colorimetric sensor cell, a colorimetric sensor, a method for producing a colorimetric sensor cell, an SPR sensor cell, an SPR sensor and a method for producing an SPR sensor cell, and more specifically, a colorimetric sensor cell comprising an optical waveguide, and a colorimetric comprising the colorimetric sensor cell. The present invention relates to a sensor, a colorimetric sensor cell manufacturing method, an SPR sensor cell including an optical waveguide, an SPR sensor including the SPR sensor cell, and a method of manufacturing the SPR sensor cell.
 従来、化学分析や生物化学分析などの分野において、サンプルの濃度や、その変化を検出するセンサとして、比色センサが用いられている。 Conventionally, in the fields of chemical analysis and biochemical analysis, a colorimetric sensor has been used as a sensor for detecting the concentration of a sample and its change.
 このような比色センサとしては、例えば、ガラス基板上に形成された光導波層と、その光導波層の上に形成された、被検知ガスに反応して吸収スペクトルが変化する反応膜と、光取り出し用の直角プリズムと備えるセンサチップが、提案されている(例えば、下記特許文献1参照)。 As such a colorimetric sensor, for example, an optical waveguide layer formed on a glass substrate, a reaction film formed on the optical waveguide layer, the absorption spectrum of which changes in response to a gas to be detected, A sensor chip including a right-angle prism for light extraction has been proposed (for example, see Patent Document 1 below).
 下記特許文献1に記載のセンサチップにおいて、反応膜は、被検知ガスと反応し、被検知ガスの濃度に依存して、色変化を生じる。 In the sensor chip described in Patent Document 1 below, the reaction film reacts with the gas to be detected, and changes color depending on the concentration of the gas to be detected.
 このようなセンサチップの光導波層に光が導入されると、その導波光は、光導波層内において全反射を繰り返しながら進行するとともに、光導波層の表面にエバネッセント波を染み出させる。このとき、エバネッセント波の一部が反応膜に吸収されるため、光導波層から直角プリズムを用いて出力される光の強度が、低下する。 When light is introduced into the optical waveguide layer of such a sensor chip, the guided light travels while repeating total reflection in the optical waveguide layer, and evanescent waves are oozed out on the surface of the optical waveguide layer. At this time, since a part of the evanescent wave is absorbed by the reaction film, the intensity of the light output from the optical waveguide layer using the right-angle prism is reduced.
 反応膜による光(エバネッセント波)の吸収は、反応膜の変色の度合い、すなわち、被検知ガスの濃度に依存するため、導波光の出力強度を測定することにより、被検知ガスの濃度を検出することができる。 Absorption of light (evanescent wave) by the reaction film depends on the degree of discoloration of the reaction film, that is, the concentration of the gas to be detected. Therefore, the concentration of the gas to be detected is detected by measuring the output intensity of the guided light. be able to.
 また、上記したような比色センサは、反応膜を用いたガス検知の他、例えば、濃度により色変化を生じる溶液の濃度検知などにも用いることができる。 Further, the colorimetric sensor as described above can be used not only for gas detection using a reaction film but also for concentration detection of a solution that causes a color change depending on the concentration.
 また、化学分析や生物化学分析などの分野においては、上記した比色センサの他、例えば、光ファイバを備えるSPR(表面プラズモン共鳴:Surface Plasmon Resonance)センサが用いられている。 In the fields of chemical analysis and biochemical analysis, for example, an SPR (Surface Plasmon Resonance) sensor including an optical fiber is used in addition to the above-described colorimetric sensor.
 光ファイバを備えるSPRセンサでは、光ファイバの先端部の外周面に金属薄膜が形成されるとともに、分析サンプルが固定され、その光ファイバ内に光が導入される。そして、導入される光における特定の波長の光が、金属薄膜において表面プラズモン共鳴を発生させ、その光強度を減衰する。 In an SPR sensor equipped with an optical fiber, a metal thin film is formed on the outer peripheral surface of the tip of the optical fiber, an analysis sample is fixed, and light is introduced into the optical fiber. Then, light of a specific wavelength in the introduced light generates surface plasmon resonance in the metal thin film, and attenuates the light intensity.
 このようなSPRセンサにおいて、表面プラズモン共鳴を発生させる波長は、通常、光ファイバに固定される分析サンプルの屈折率などによって異なる。 In such an SPR sensor, the wavelength for generating surface plasmon resonance usually varies depending on the refractive index of the analysis sample fixed to the optical fiber.
 そのため、表面プラズモン共鳴の発生後に光強度が減衰する波長を計測すれば、表面プラズモン共鳴を発生させた波長を特定でき、また、その減衰する波長が変化したことを検出すれば、表面プラズモン共鳴を発生させる波長が変化したことを確認できるため、分析サンプルの屈折率の変化を確認できる。 Therefore, if the wavelength at which the light intensity attenuates after the occurrence of surface plasmon resonance is measured, the wavelength at which the surface plasmon resonance is generated can be identified, and if it is detected that the attenuation wavelength has changed, the surface plasmon resonance is detected. Since it can be confirmed that the wavelength to be generated has changed, a change in the refractive index of the analysis sample can be confirmed.
 その結果、このようなSPRセンサは、例えば、サンプルの濃度の測定や、免疫反応の検出など、種々の化学分析や生物化学分析に用いることができる。 As a result, such an SPR sensor can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction.
 例えば、サンプルが溶液である場合において、サンプル(溶液)の屈折率は、溶液の濃度に依存する。そのため、サンプル(溶液)を金属薄膜に接触させたSPRセンサにおいて、サンプル(溶液)の屈折率を計測することにより、サンプルの濃度を検出することができ、さらには、その屈折率が変化したことを確認することにより、サンプル(溶液)の濃度が変化したことを確認できる。 For example, when the sample is a solution, the refractive index of the sample (solution) depends on the concentration of the solution. Therefore, in the SPR sensor in which the sample (solution) is in contact with the metal thin film, the concentration of the sample can be detected by measuring the refractive index of the sample (solution), and the refractive index has changed. By confirming, it can be confirmed that the concentration of the sample (solution) has changed.
 また、免疫反応の分析では、例えば、SPRセンサにおける光ファイバの金属薄膜上に、誘電体膜を介して抗体を固定し、抗体に検体を接触させるとともに、表面プラズモン共鳴を発生させる。このとき、抗体と検体とが免疫反応すれば、そのサンプルの屈折率が変化するため、抗体と検体との接触前後において、サンプルの屈折率が変化したことを確認することにより、抗体と検体とが免疫反応したものと判断できる。 In the analysis of immune reaction, for example, an antibody is immobilized on a metal thin film of an optical fiber in an SPR sensor via a dielectric film, a specimen is brought into contact with the antibody, and surface plasmon resonance is generated. At this time, if the antibody and the specimen undergo an immunoreaction, the refractive index of the sample changes. Therefore, by confirming that the refractive index of the sample has changed before and after contact between the antibody and the specimen, the antibody and specimen Can be judged to have immunoreacted.
 しかしながら、このような光ファイバを備えるSPRセンサにおいては、光ファイバの先端部が微細な円筒形状であるため、金属薄膜の形成や分析サンプルの固定が困難であるという不具合がある。 However, the SPR sensor equipped with such an optical fiber has a problem that it is difficult to form a metal thin film or fix an analysis sample because the tip of the optical fiber has a fine cylindrical shape.
 このような不具合を解決するため、例えば、光が透過するコアと、このコアを覆うクラッドとを備え、このクラッドの所定位置に、コアの表面に至るまで貫通口を形成し、この貫通口に対応した位置におけるコアの表面に、金属薄膜を形成したSPRセンサセルが提案されている(例えば、下記特許文献2参照。)。 In order to solve such a problem, for example, a core through which light passes and a clad covering the core are provided, and a through hole is formed at a predetermined position of the clad up to the surface of the core. An SPR sensor cell in which a metal thin film is formed on the surface of a core at a corresponding position has been proposed (for example, see Patent Document 2 below).
 このSPRセンサセルによれば、コア表面に表面プラズモン共鳴を発生させるための金属薄膜の形成、および、その表面への分析サンプルの固定が容易である。 According to this SPR sensor cell, it is easy to form a metal thin film for generating surface plasmon resonance on the core surface and to fix the analysis sample to the surface.
特開2009-250858号公報JP 2009-250858 A 特開2000-19100号公報JP 2000-19100 A
 しかるに、近年、種々の化学分析において、比色センサセルやSPRセンサセルのさらなる検出精度の向上が、要求されている。 However, in recent years, in various chemical analyses, further improvement in detection accuracy of colorimetric sensor cells and SPR sensor cells is required.
 本発明の目的は、検出精度に優れる比色センサセル、比色センサ、比色センサセルの製造方法、SPRセンサセル、SPRセンサおよびSPRセンサセルの製造方法を提供することにある。 An object of the present invention is to provide a colorimetric sensor cell having excellent detection accuracy, a colorimetric sensor, a method for producing a colorimetric sensor cell, an SPR sensor cell, an SPR sensor, and a method for producing an SPR sensor cell.
 上記目的を達成するために、本発明の比色センサセルは、検知部と、前記検知部に隣接するサンプル配置部とを備え、前記検知部は、第1樹脂からなるアンダークラッド層と、第2樹脂からなり、前記アンダークラッド層に被覆されるコア層とを備える光導波路を備え、前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層が、形成されていることを特徴としている。 In order to achieve the above object, a colorimetric sensor cell of the present invention includes a detection unit and a sample placement unit adjacent to the detection unit, and the detection unit includes an under cladding layer made of a first resin, and a second The first resin is infiltrated into the second resin in a surface layer that is made of resin and includes a core layer that is covered with the under cladding layer, and that is in contact with the under cladding layer of the core layer. A resin mixed layer is formed.
 このような比色センサセルによれば、コア層に、第1樹脂が浸透された第2樹脂からなる樹脂混合層が形成されているため、サンプルの濃度や変化などを精度よく検出することができる。 According to such a colorimetric sensor cell, since the resin mixed layer made of the second resin infiltrated with the first resin is formed in the core layer, it is possible to accurately detect the concentration or change of the sample. .
 また、本発明の比色センサは、上記の比色センサセルを備えることを特徴としている。 Further, the colorimetric sensor of the present invention is characterized by comprising the above colorimetric sensor cell.
 この比色センサでは、コア層に、第1樹脂が浸透された第2樹脂からなる樹脂混合層が形成されている比色センサセルが用いられるため、サンプルの濃度や変化などを精度よく検出することができる。 Since this colorimetric sensor uses a colorimetric sensor cell in which a resin mixed layer made of a second resin infiltrated with a first resin is formed in the core layer, it can accurately detect the concentration and change of the sample. Can do.
 また、本発明の比色センサセルの製造方法は、基板の上に、第2樹脂からなるコア層を所定パターンで形成する工程と、前記基板の上において、第1樹脂を、前記コア層を被覆するとともに、前記コア層の表層に前記第1樹脂を浸透させるように、塗布および加熱する工程と、前記第1樹脂を硬化させることにより、前記第1樹脂からなるアンダークラッド層を形成するとともに、前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層を形成する工程とを備えることを特徴としている。 The method for producing a colorimetric sensor cell of the present invention includes a step of forming a core layer made of a second resin in a predetermined pattern on a substrate, and covering the core layer with the first resin on the substrate. And applying and heating the surface layer of the core layer so as to penetrate the first resin, and curing the first resin to form an undercladding layer made of the first resin, Forming a resin mixed layer in which the first resin is infiltrated into the second resin on a surface layer of the core layer that is in contact with the under cladding layer.
 このような比色センサセルの製造方法によれば、コア層に、第1樹脂が浸透された第2樹脂からなる樹脂混合層を形成することができるため、サンプルの濃度や変化などを精度よく検出できる比色センサセルを製造することができる。 According to such a colorimetric sensor cell manufacturing method, a resin mixed layer made of the second resin infiltrated with the first resin can be formed in the core layer, so that the concentration and change of the sample can be accurately detected. A possible colorimetric sensor cell can be manufactured.
 また、本発明のSPRセンサセルは、検知部と、前記検知部に隣接するサンプル配置部とを備え、前記検知部は、第1樹脂からなるアンダークラッド層と、第2樹脂からなり、前記アンダークラッド層に被覆されるコア層とを備える光導波路を備え、前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層が、形成されていることを特徴としている。 The SPR sensor cell of the present invention includes a detection unit and a sample placement unit adjacent to the detection unit, and the detection unit includes an under cladding layer made of a first resin and a second resin, and the under cladding. A resin mixed layer in which the first resin is infiltrated into the second resin is formed on a surface layer of the core layer that is in contact with the under cladding layer. It is characterized by having.
 このようなSPRセンサセルによれば、コア層に、第1樹脂が浸透された第2樹脂からなる樹脂混合層が形成されているため、サンプルの濃度や変化などを精度よく検出することができる。 According to such an SPR sensor cell, since the resin mixed layer made of the second resin infiltrated with the first resin is formed in the core layer, the concentration and change of the sample can be accurately detected.
 また、本発明のSPRセンサは、上記のSPRセンサセルを備えることを特徴としている。 Further, the SPR sensor of the present invention is characterized by including the above SPR sensor cell.
 このSPRセンサでは、コア層に、第1樹脂が浸透された第2樹脂からなる樹脂混合層が形成されているSPRセンサセルが用いられるため、サンプルの濃度や変化などを精度よく検出することができる。 Since this SPR sensor uses an SPR sensor cell in which a resin mixed layer made of a second resin infiltrated with the first resin is formed in the core layer, it is possible to accurately detect the concentration and change of the sample. .
 また、本発明のSPRセンサセルの製造方法は、基板の上に、第2樹脂からなるコア層を所定パターンで形成する工程と、前記基板の上において、第1樹脂を、前記コア層を被覆するとともに、前記コア層の表層に前記第1樹脂を浸透させるように、塗布および加熱する工程と、前記第1樹脂を硬化させることにより、前記第1樹脂からなるアンダークラッド層を形成するとともに、前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層を形成する工程とを備えることを特徴としている。 The method for manufacturing an SPR sensor cell according to the present invention includes a step of forming a core layer made of a second resin in a predetermined pattern on a substrate, and covering the core layer with the first resin on the substrate. And applying and heating the first resin so as to penetrate the surface layer of the core layer, and curing the first resin to form an undercladding layer made of the first resin, and Forming a resin mixed layer in which the first resin is infiltrated into the second resin on a surface layer of the core layer that is in contact with the under cladding layer.
 このようなSPRセンサセルの製造方法によれば、コア層に、第1樹脂が浸透された第2樹脂からなる樹脂混合層を形成することができるため、サンプルの濃度や変化などを精度よく検出できるSPRセンサセルを製造することができる。 According to such a method for manufacturing an SPR sensor cell, since the resin mixed layer made of the second resin infiltrated with the first resin can be formed in the core layer, the concentration or change of the sample can be accurately detected. An SPR sensor cell can be manufactured.
 本発明の比色センサセル、比色センサ、比色センサセルの製造方法、SPRセンサセル、SPRセンサおよびSPRセンサセルの製造方法によれば、簡易な構成により、検出精度の向上を図ることができる。 According to the colorimetric sensor cell, the colorimetric sensor, the colorimetric sensor cell manufacturing method, the SPR sensor cell, the SPR sensor and the SPR sensor cell manufacturing method of the present invention, the detection accuracy can be improved with a simple configuration.
本発明の比色センサセルの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the colorimetric sensor cell of this invention. 図1に示す比色センサセルの断面図である。It is sectional drawing of the colorimetric sensor cell shown in FIG. 図1に示す比色センサセルの製造方法を示す工程図であって、(a)は、基板の上に、第2樹脂からなるコア層を形成する工程、(b)は、基板の上において、第1樹脂を、コア層を被覆するとともに、コア層の表層に第1樹脂を浸透させるように塗布および加熱する工程、(c)は、第1樹脂を硬化させ、第1樹脂からなるアンダークラッド層を形成するとともに、コア層のアンダークラッド層と接触する表層に樹脂混合層を形成する工程、(d)は、コア層およびアンダークラッド層から基板を剥離させる工程、(e)は、基板が剥離されることにより露出されたコア層およびアンダークラッド層の表面に、保護層を形成する工程、(f)は、保護層の表面にオーバークラッド層を形成する工程を示す。It is process drawing which shows the manufacturing method of the colorimetric sensor cell shown in FIG. 1, Comprising: (a) The process of forming the core layer which consists of 2nd resin on a board | substrate, (b) A step of coating and heating the first resin so as to allow the first resin to permeate into the surface layer of the core layer while covering the core layer; and (c), curing the first resin and forming an undercladding made of the first resin. Forming a layer and forming a resin mixed layer on the surface layer in contact with the undercladding layer of the core layer, (d) separating the substrate from the core layer and the undercladding layer, and (e) (F) shows the process of forming an over clad layer on the surface of a protective layer, and the process of forming a protective layer in the surface of a core layer and an under clad layer exposed by peeling. 図4は、本発明の比色センサの一実施形態を示す概略側断面図である。FIG. 4 is a schematic sectional side view showing one embodiment of the colorimetric sensor of the present invention. 本発明のSPRセンサセルの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the SPR sensor cell of this invention. 図5に示すSPRセンサセルの断面図である。It is sectional drawing of the SPR sensor cell shown in FIG. 図5に示すSPRセンサセルの製造方法を示す工程図であって、(a)は、基板の上に、第2樹脂からなるコア層を形成する工程、(b)は、基板の上において、第1樹脂を、コア層を被覆するとともに、コア層の表層に第1樹脂を浸透させるように塗布および加熱する工程、(c)は、第1樹脂を硬化させ、第1樹脂からなるアンダークラッド層を形成するとともに、コア層のアンダークラッド層と接触する表層に樹脂混合層を形成する工程、(d)は、コア層およびアンダークラッド層から基板を剥離させる工程、(e)は、基板が剥離されることにより露出されたコア層およびアンダークラッド層の表面に、保護層を形成する工程、(f)は、保護層の表面にオーバークラッド層を形成する工程、(g)は、オーバークラッド層から露出される保護層の表面に、コア層を被覆するように金属薄膜を形成する工程を示す。FIGS. 6A and 6B are process diagrams illustrating a method of manufacturing the SPR sensor cell illustrated in FIG. 5, in which FIG. 5A is a process of forming a core layer made of a second resin on a substrate, and FIG. A step of coating and heating one resin so that the core layer is coated and allowing the first resin to penetrate into the surface layer of the core layer; and (c) is a step of curing the first resin and forming an undercladding layer made of the first resin. And (d) is a step of peeling the substrate from the core layer and the under-cladding layer, and (e) is a step of peeling the substrate. A step of forming a protective layer on the surfaces of the core layer and the undercladding layer exposed by the step, (f) a step of forming an overcladding layer on the surface of the protective layer, and (g) a step of forming the overcladding layer. From dew The surface of the protective layer being, a process of forming a metal thin film so as to cover the core layer. 本発明のSPRセンサセルの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the SPR sensor cell of this invention. 本発明のSPRセンサの一実施形態を示す概略側断面図である。It is a schematic sectional side view which shows one Embodiment of the SPR sensor of this invention. 実施例および比較例における比色センサの評価結果を示す。The evaluation result of the colorimetric sensor in an Example and a comparative example is shown.
 図1は、本発明の比色センサセルの一実施形態を示す斜視図である。図2は、図1に示す比色センサセルの断面図である。 FIG. 1 is a perspective view showing an embodiment of a colorimetric sensor cell of the present invention. FIG. 2 is a cross-sectional view of the colorimetric sensor cell shown in FIG.
 比色センサセル1は、図1および図2に示すように、平面視略矩形の有底枠形状に形成されており、検知部30と、検知部30に隣接するサンプル配置部31とを備えている。 As shown in FIGS. 1 and 2, the colorimetric sensor cell 1 is formed in a bottomed frame shape having a substantially rectangular shape in plan view, and includes a detection unit 30 and a sample placement unit 31 adjacent to the detection unit 30. Yes.
 検知部30は、サンプル配置部31に配置されるサンプルの状態や、その変化を検知するために設けられており、光導波路2を備えている。 The detecting unit 30 is provided to detect the state of the sample arranged in the sample arranging unit 31 and the change thereof, and includes the optical waveguide 2.
 なお、以下の比色センサセル1の説明において、方向に言及するときは、比色センサセル1にサンプルを配置するときの状態を上下の基準とする。すなわち、図1において、紙面上側を上側とし、紙面下側を下側とする。 In the following description of the colorimetric sensor cell 1, when referring to the direction, the state when the sample is arranged in the colorimetric sensor cell 1 is the upper and lower reference. That is, in FIG. 1, the upper side of the page is the upper side, and the lower side of the page is the lower side.
 光導波路2は、本実施形態においては、比色センサセル1そのものであり、アンダークラッド層3、コア層4、保護層5およびオーバークラッド層6を備えている。 In the present embodiment, the optical waveguide 2 is the colorimetric sensor cell 1 itself, and includes an under cladding layer 3, a core layer 4, a protective layer 5, and an over cladding layer 6.
 アンダークラッド層3は、第1樹脂(後述)からなり、上下方向に所定の厚みを有する平面視略矩形平板状に形成されている。 The under-cladding layer 3 is made of a first resin (described later) and is formed in a substantially rectangular flat plate shape in plan view having a predetermined thickness in the vertical direction.
 コア層4は、第1樹脂(後述)とは異なる第2樹脂(後述)からなり、アンダークラッド層3の幅方向(厚み方向と直交する方向、以下同じ)および厚み方向の両方と直交する方向に延びる略角柱形状(詳しくは、幅方向に扁平する断面矩形状)に形成され、アンダークラッド層3の幅方向略中央部の上端部において、アンダークラッド層3に被覆(埋設)されている。なお、以下の比色センサセル1の説明において、コア層4が延びる方向を、光導波路2内を光が伝播する伝播方向とする。 The core layer 4 is made of a second resin (described later) different from the first resin (described later), and is orthogonal to both the width direction (the direction orthogonal to the thickness direction, hereinafter the same) and the thickness direction of the under cladding layer 3. The under-cladding layer 3 is covered (embedded) at the upper end of the substantially center portion of the under-cladding layer 3 in the width direction. In the following description of the colorimetric sensor cell 1, a direction in which the core layer 4 extends is a propagation direction in which light propagates in the optical waveguide 2.
 また、コア層4は、その伝播方向両面がアンダークラッド層3の伝播方向両面と面一となり、その上面がアンダークラッド層3の上面と面一となるように配置されている。つまり、コア層4は、その上面が、アンダークラッド層3から露出されている。 Further, the core layer 4 is disposed such that both propagation directions thereof are flush with both propagation directions of the under cladding layer 3, and the upper surface thereof is flush with the upper surface of the under cladding layer 3. In other words, the upper surface of the core layer 4 is exposed from the under cladding layer 3.
 また、コア層4は、単一樹脂層22と、樹脂混合層23とから形成されている。 The core layer 4 is formed of a single resin layer 22 and a resin mixed layer 23.
 単一樹脂層22は、略角柱形状(詳しくは、幅方向に扁平する断面矩形状)に形成され、その上面がアンダークラッド層3の上面と面一となるように配置されている。 The single resin layer 22 is formed in a substantially prismatic shape (specifically, a rectangular cross section flattened in the width direction), and is arranged so that the upper surface thereof is flush with the upper surface of the under cladding layer 3.
 より具体的には、単一樹脂層22は、コア層4の全体に対して厚み方向長さおよび幅方向長さが短く、かつ、伝播方向長さが等しい略角柱形状に形成されており、コア層4の幅方向略中央部の上端部において、樹脂混合層23に被覆(埋設)されている。 More specifically, the single resin layer 22 is formed in a substantially prismatic shape in which the length in the thickness direction and the length in the width direction are short with respect to the entire core layer 4 and the length in the propagation direction is equal. The resin mixed layer 23 is covered (embedded) at the upper end portion of the core layer 4 in the substantially central portion in the width direction.
 樹脂混合層23は、コア層4のアンダークラッド層3と接触する表層として形成され、より具体的には、コア層4の下部および幅方向両側部において、単一樹脂層22を囲う断面視略凹形状(コ字状)に形成されている。また、樹脂混合層23は、その上面がアンダークラッド層3および単一樹脂層22の上面と面一となるように、配置されている。 The resin mixed layer 23 is formed as a surface layer in contact with the under cladding layer 3 of the core layer 4, and more specifically, in the lower part of the core layer 4 and both sides in the width direction, the cross-sectional view surrounding the single resin layer 22 is omitted. It is formed in a concave shape (U shape). The resin mixed layer 23 is disposed so that the upper surface thereof is flush with the upper surfaces of the under cladding layer 3 and the single resin layer 22.
 つまり、コア層4は、その上面が、単一樹脂層22および樹脂混合層23から、アンダークラッド層3と面一に形成されるとともに、幅方向両面および下面が、樹脂混合層23から形成されている。 That is, the upper surface of the core layer 4 is formed from the single resin layer 22 and the resin mixed layer 23 so as to be flush with the under cladding layer 3, and both the width direction both surfaces and the lower surface are formed from the resin mixed layer 23. ing.
 また、コア層4の伝播方向両端部には、光源12(後述)および光計測器13(後述)が光学的に接続される。 Also, a light source 12 (described later) and an optical measuring instrument 13 (described later) are optically connected to both ends in the propagation direction of the core layer 4.
 保護層5は、必要により、アンダークラッド層3およびコア層4の上面をすべて被覆するように、平面視においてアンダークラッド層3と同じ形状の薄層として形成されている。 The protective layer 5 is formed as a thin layer having the same shape as the under-cladding layer 3 in plan view so as to cover the upper surfaces of the under-cladding layer 3 and the core layer 4 as necessary.
 保護層5が形成されていると、例えば、サンプルが液状である場合に、サンプルによってコア層4が膨潤することを防止することができる。 When the protective layer 5 is formed, for example, when the sample is in a liquid state, the core layer 4 can be prevented from swelling due to the sample.
 オーバークラッド層6は、保護層5の上において、その外周がアンダークラッド層3の外周と平面視において略同一となるように、平面視矩形の枠形状に形成されている。 The over clad layer 6 is formed in a rectangular frame shape in plan view on the protective layer 5 so that the outer periphery thereof is substantially the same as the outer periphery of the under clad layer 3 in plan view.
 これにより、光導波路2は、アンダークラッド層3およびコア層4の上に形成される保護層5を底壁とし、オーバークラッド層6を側壁とする有底枠形状に形成されている。 Thus, the optical waveguide 2 is formed in a bottomed frame shape having the protective layer 5 formed on the under cladding layer 3 and the core layer 4 as a bottom wall and the over cladding layer 6 as a side wall.
 サンプル配置部31は、比色センサ11(後述)によって分析されるサンプルを収容するために設けられ、検知部30に隣接するように配置されている。 The sample placement unit 31 is provided to accommodate a sample to be analyzed by the colorimetric sensor 11 (described later), and is placed adjacent to the detection unit 30.
 より具体的には、サンプル配置部31は、コア層4の上側において、保護層5とオーバークラッド層6とで囲まれる部分として、区画されている。 More specifically, the sample placement portion 31 is partitioned as a portion surrounded by the protective layer 5 and the over clad layer 6 on the upper side of the core layer 4.
 なお、詳述しないが、比色センサセル1には、必要により、光導波路2を支持する支持部材(図示せず)を設けることができる。 Although not described in detail, the colorimetric sensor cell 1 can be provided with a support member (not shown) for supporting the optical waveguide 2 as necessary.
 図3は、図1に示す比色センサセルの製造方法を示す工程図である。 FIG. 3 is a process diagram showing a method for manufacturing the colorimetric sensor cell shown in FIG.
 次いで、この比色センサセル1の製造方法について、図3を参照して説明する。 Next, a method for manufacturing the colorimetric sensor cell 1 will be described with reference to FIG.
 この方法では、まず、図3(a)に示すように、平板状の基板9を用意し、次いで、その基板9の上に、コア層4を形成する。 In this method, first, as shown in FIG. 3A, a flat substrate 9 is prepared, and then the core layer 4 is formed on the substrate 9.
 基板9は、例えば、シリコン、ガラスなどのセラミック材料、例えば、銅、アルミニウム、ステンレス、鉄合金などの金属材料、例えば、ポリイミド、ガラス-エポキシ、ポリエチレンテレフタレート(PET)などの樹脂材料などから形成されている。好ましくは、セラミック材料から形成されている。基板9の厚みは、例えば、10~5000μm、好ましくは、10~1500μmである。 The substrate 9 is formed of a ceramic material such as silicon or glass, a metal material such as copper, aluminum, stainless steel, or an iron alloy, for example, a resin material such as polyimide, glass-epoxy, or polyethylene terephthalate (PET). ing. Preferably, it is formed from a ceramic material. The thickness of the substrate 9 is, for example, 10 to 5000 μm, preferably 10 to 1500 μm.
 コア層4は、第2樹脂から形成されており、そのような第2樹脂としては、例えば、ポリイミド樹脂、ポリアミド樹脂、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、またはこれらのフッ素化変性体や重水素化変性体、さらには、フルオレン変性体などの樹脂材料が挙げられる。これら樹脂材料は、好ましくは、感光剤を配合して、感光性樹脂として用いられる。 The core layer 4 is formed of a second resin. Examples of such a second resin include a polyimide resin, a polyamide resin, a silicone resin, an epoxy resin, an acrylic resin, and their fluorinated modified products and deuterium. Examples thereof include resin materials such as chemical-modified products and fluorene-modified products. These resin materials are preferably used as a photosensitive resin by blending a photosensitive agent.
 コア層4を形成するには、例えば、上記した樹脂のワニス(樹脂溶液)を調製して、そのワニスを、上記した所定パターンで基板9の表面に塗布した後、乾燥し、必要により、加熱硬化させる。また、感光性樹脂が用いられる場合には、基板9の全面にワニスを塗布および乾燥し、フォトマスクを介して紫外線照射し、現像によりパターンとし、次いで、必要により、加熱硬化する。 In order to form the core layer 4, for example, the above-described resin varnish (resin solution) is prepared, the varnish is applied to the surface of the substrate 9 in the above-described predetermined pattern, dried, and heated as necessary. Harden. When a photosensitive resin is used, varnish is applied to the entire surface of the substrate 9 and dried, irradiated with ultraviolet rays through a photomask, developed into a pattern, and then heat-cured as necessary.
 加熱条件としては、加熱温度が、例えば、70~250℃、好ましくは、70~150℃であり、加熱時間が、例えば、10秒~2時間、好ましくは、5分~1時間である。 As heating conditions, the heating temperature is, for example, 70 to 250 ° C., preferably 70 to 150 ° C., and the heating time is, for example, 10 seconds to 2 hours, preferably 5 minutes to 1 hour.
 このようにして形成されるコア層4の厚みは、例えば、5~100μmであり、幅は、例えば、5~200μmである。 The thickness of the core layer 4 thus formed is, for example, 5 to 100 μm, and the width is, for example, 5 to 200 μm.
 次いで、この方法では、図3(b)に示すように、基板9の上において、コア層4を被覆するとともに、第1樹脂と接触するコア層4の表層に第1樹脂を浸透させるように、第1樹脂を上記パターンで塗布および加熱する。 Next, in this method, as shown in FIG. 3B, the core layer 4 is coated on the substrate 9 and the first resin is infiltrated into the surface layer of the core layer 4 in contact with the first resin. The first resin is applied and heated in the above pattern.
 第1樹脂としては、例えば、上記と同様の樹脂材料から、コア層4の単一樹脂層22よりも屈折率が低くなるように調整された樹脂材料が挙げられる。 As the first resin, for example, a resin material adjusted to have a refractive index lower than that of the single resin layer 22 of the core layer 4 from the same resin material as described above.
 第1樹脂を基板9の上に塗布するには、例えば、上記した樹脂のワニス(樹脂溶液)を調製して、そのワニスを基板9の上に、例えば、キャスティング、スピンコータなどによって、コア層4を被覆するように塗布した後、必要により、乾燥する。次いで、第1樹脂がコア層4(第2樹脂)に浸透するように、加熱する。 In order to apply the first resin onto the substrate 9, for example, the above-described resin varnish (resin solution) is prepared, and the varnish is applied onto the substrate 9 by, for example, casting, spin coater or the like. After coating, the coating is dried if necessary. Next, heating is performed so that the first resin penetrates the core layer 4 (second resin).
 加熱条件としては、加熱温度が、例えば、60~150℃、好ましくは、100~150℃であり、加熱時間が、例えば、1~30分間である。 As heating conditions, the heating temperature is, for example, 60 to 150 ° C., preferably 100 to 150 ° C., and the heating time is, for example, 1 to 30 minutes.
 なお、感光性樹脂が用いられる場合には、次いで、紫外線照射する。このとき、必要により、フォトマスクを介して紫外線照射し、必要により、現像する。 If a photosensitive resin is used, it is then irradiated with ultraviolet rays. At this time, if necessary, UV irradiation is performed through a photomask, and development is performed if necessary.
 次いで、この方法では、図3(c)に示すように、第1樹脂を、例えば、加熱により硬化させ、第1樹脂からなるアンダークラッド層3を形成する。このとき、コア層4として、コア層4のアンダークラッド層3と接触する表層に、第1樹脂が第2樹脂に浸透されている樹脂混合層23が形成されるとともに、樹脂混合層23に埋設される単一樹脂層22が形成される。 Next, in this method, as shown in FIG. 3C, the first resin is cured by, for example, heating to form the under cladding layer 3 made of the first resin. At this time, as the core layer 4, a resin mixed layer 23 in which the first resin is infiltrated into the second resin is formed on the surface layer of the core layer 4 that is in contact with the under cladding layer 3, and is embedded in the resin mixed layer 23. A single resin layer 22 is formed.
 加熱条件としては、加熱温度が、例えば、70~250℃、好ましくは、70~150℃であり、加熱時間が、例えば、10秒~2時間、好ましくは、5分~1時間である。 As heating conditions, the heating temperature is, for example, 70 to 250 ° C., preferably 70 to 150 ° C., and the heating time is, for example, 10 seconds to 2 hours, preferably 5 minutes to 1 hour.
 このようにして形成されるアンダークラッド層3の、コア層4の表面からの厚みは、例えば、2~500μmである。 The thickness of the under cladding layer 3 formed in this way from the surface of the core layer 4 is, for example, 2 to 500 μm.
 なお、樹脂混合層23の、単一樹脂層22を囲んでいる各辺の厚み、および、単一樹脂層22の厚みは、特に制限されず、第2樹脂に対する第1樹脂の浸透の度合いなどにより、適宜決定される。 The thickness of each side of the resin mixed layer 23 surrounding the single resin layer 22 and the thickness of the single resin layer 22 are not particularly limited, and the degree of penetration of the first resin into the second resin, etc. Is appropriately determined.
 これにより、基板9に接触される下面において、アンダークラッド層3とコア層4とが面一に形成される。 Thereby, the under cladding layer 3 and the core layer 4 are formed flush with each other on the lower surface in contact with the substrate 9.
 なお、このようにして形成されるアンダークラッド層3の屈折率は、コア層4の単一樹脂層22の屈折率より低く設定されており、例えば、1.42以上、1.55未満である。 Note that the refractive index of the under-cladding layer 3 formed in this way is set lower than the refractive index of the single resin layer 22 of the core layer 4, and is, for example, 1.42 or more and less than 1.55. .
 また、コア層4の単一樹脂層22の屈折率は、アンダークラッド層3の屈折率より高く設定されており、例えば、1.44以上、1.65以下である。 Further, the refractive index of the single resin layer 22 of the core layer 4 is set to be higher than the refractive index of the under cladding layer 3 and is, for example, 1.44 or more and 1.65 or less.
 また、樹脂混合層23の屈折率は、通常、アンダークラッド層3の屈折率を超過し、単一樹脂層22の屈折率未満であり、具体的には、その積層方向において、アンダークラッド層3側から単一樹脂層22側に向けて、アンダークラッド層3の屈折率から単一樹脂層22の屈折率まで連続的に変化している。 Further, the refractive index of the resin mixed layer 23 usually exceeds the refractive index of the undercladding layer 3 and is lower than the refractive index of the single resin layer 22. Specifically, the undercladding layer 3 in the stacking direction thereof. From the side to the single resin layer 22 side, the refractive index of the under cladding layer 3 continuously changes from the refractive index of the single resin layer 22.
 次いで、この方法では、図3(d)に示すように、アンダークラッド層3およびコア層4から基板9を剥離させ、アンダークラッド層3およびコア層4を上下反転させる。 Next, in this method, as shown in FIG. 3D, the substrate 9 is peeled from the under cladding layer 3 and the core layer 4, and the under cladding layer 3 and the core layer 4 are turned upside down.
 すると、アンダークラッド層3およびコア層4の基板9に接触されていた面が上面として露出される。 Then, the surfaces of the under cladding layer 3 and the core layer 4 that are in contact with the substrate 9 are exposed as the upper surface.
 次いで、この方法では、図3(e)に示すように、アンダークラッド層3およびコア層4の上に保護層5を形成する。 Next, in this method, as shown in FIG. 3 (e), the protective layer 5 is formed on the under cladding layer 3 and the core layer 4.
 保護層5を形成する材料としては、例えば、二酸化ケイ素、酸化アルミニウムなどが挙げられ、好ましくは、それらの材料から、コア層4よりも屈折率が低くなるように調整された材料が挙げられる。 Examples of the material for forming the protective layer 5 include silicon dioxide, aluminum oxide, and the like. Preferably, materials adjusted so as to have a refractive index lower than that of the core layer 4 are included.
 保護層5を形成する方法としては、例えば、スパッタリング法、蒸着法などの方法が挙げられ、好ましくは、スパッタリング法が挙げられる。 Examples of a method for forming the protective layer 5 include a sputtering method and a vapor deposition method, and a sputtering method is preferable.
 このようにして形成される保護層5の厚みは、例えば、1~100nm、好ましくは、5~20nmである。また、保護層5の屈折率は、コア層4の屈折率より低く設定されており、例えば、1.25以上、1.55未満である。 The thickness of the protective layer 5 thus formed is, for example, 1 to 100 nm, preferably 5 to 20 nm. Moreover, the refractive index of the protective layer 5 is set lower than the refractive index of the core layer 4, for example, is 1.25 or more and less than 1.55.
 次いで、この方法では、図3(f)に示すように、オーバークラッド層6を、保護層5の上に、上記したパターンで形成する。 Next, in this method, as shown in FIG. 3 (f), the over clad layer 6 is formed on the protective layer 5 in the pattern described above.
 オーバークラッド層6を形成する材料としては、例えば、シリコーンゴムや、上記したアンダークラッド層3と同様の樹脂材料(第1樹脂)などが挙げられる。 Examples of the material for forming the over clad layer 6 include silicone rubber and the same resin material (first resin) as the above under clad layer 3.
 オーバークラッド層6を形成するには、例えば、別途、上記した材料から平面視矩形枠形状のシートを形成し、そのシートをオーバークラッド層6として、保護層5の上に積層する。 In order to form the over clad layer 6, for example, a sheet having a rectangular frame shape in plan view is separately formed from the above-described material, and the sheet is laminated on the protective layer 5 as the over clad layer 6.
 なお、オーバークラッド層6を形成するには、例えば、上記した樹脂のワニス(樹脂溶液)を調製して、そのワニスを、上記したパターンで保護層5の表面に塗布した後、乾燥させ、必要により硬化させることもできる。また、感光性樹脂が用いられる場合には、保護層5の全面にワニスを塗布し、乾燥後に、フォトマスクを介して露光し、必要により、露光後加熱した後、現像によりパターンとし、次いで、加熱することもできる。 In order to form the over clad layer 6, for example, the above-described resin varnish (resin solution) is prepared, and the varnish is applied to the surface of the protective layer 5 in the above-described pattern, and then dried. Can also be cured. When a photosensitive resin is used, a varnish is applied to the entire surface of the protective layer 5, and after drying, exposed through a photomask. If necessary, after exposure, heated, and then developed into a pattern. It can also be heated.
 このようにして形成されるオーバークラッド層6の厚みは、例えば、5~200μm、好ましくは、25~100μmである。また、オーバークラッド層6の屈折率は、コア層4の屈折率より低く設定されており、例えば、アンダークラッド層3の屈折率と同様に設定されている。なお、保護層5の屈折率がコア層4の屈折率より低い場合には、オーバークラッド層6の屈折率は、必ずしも、コア層4の屈折率より低くなくてもよい。 The thickness of the over clad layer 6 thus formed is, for example, 5 to 200 μm, preferably 25 to 100 μm. Further, the refractive index of the over clad layer 6 is set lower than the refractive index of the core layer 4, for example, the same as the refractive index of the under clad layer 3. Note that when the refractive index of the protective layer 5 is lower than the refractive index of the core layer 4, the refractive index of the over clad layer 6 is not necessarily lower than the refractive index of the core layer 4.
 また、このようなオーバークラッド層6において、サンプル配置部31の大きさおよび形状は、特に限定されず、サンプルの種類や用途に応じて、適宜決定される。比色センサセル1の小型化を図る場合には、好ましくは、サンプル配置部31を小さく形成する。 Further, in such an overcladding layer 6, the size and shape of the sample placement portion 31 are not particularly limited, and are appropriately determined according to the type and use of the sample. When the colorimetric sensor cell 1 is to be miniaturized, the sample placement portion 31 is preferably formed small.
 このようにして、比色センサセル1を製造することができる。 In this way, the colorimetric sensor cell 1 can be manufactured.
 このような比色センサセル1の製造方法によれば、コア層4に、第1樹脂が浸透された第2樹脂からなる樹脂混合層23を形成することができるため、サンプルの濃度や変化などを精度よく検出できる比色センサセル1を製造することができる。 According to such a method for manufacturing the colorimetric sensor cell 1, the resin mixed layer 23 made of the second resin in which the first resin is infiltrated can be formed in the core layer 4. The colorimetric sensor cell 1 that can be detected with high accuracy can be manufactured.
 そして、この比色センサセル1では、サンプル配置部31にサンプルが収容(配置)されることにより、サンプルは、サンプル配置部31において、オーバークラッド層6に取り囲まれ、コア層4(単一樹脂層22および樹脂混合層23)とサンプルとが接触される。 In the colorimetric sensor cell 1, the sample is accommodated (arranged) in the sample arrangement part 31, so that the sample is surrounded by the over clad layer 6 in the sample arrangement part 31, and the core layer 4 (single resin layer) 22 and the resin mixed layer 23) are brought into contact with the sample.
 このような比色センサセル1によれば、サンプルの濃度や変化などを精度よく検出することができる。 According to such a colorimetric sensor cell 1, it is possible to accurately detect the concentration and change of the sample.
 つまり、このような比色センサセル1によれば、コア層4に、第1樹脂が浸透された第2樹脂からなる樹脂混合層23が形成されているため、サンプルの濃度や変化などを精度よく検出することができる。 That is, according to such a colorimetric sensor cell 1, since the resin mixed layer 23 made of the second resin infiltrated with the first resin is formed in the core layer 4, the concentration and change of the sample can be accurately measured. Can be detected.
 図4は、本発明の比色センサの一実施形態を示す概略側断面図である。 FIG. 4 is a schematic sectional side view showing an embodiment of the colorimetric sensor of the present invention.
 次いで、比色センサセル1を備える比色センサ11について、図4を参照して説明する。 Next, the colorimetric sensor 11 including the colorimetric sensor cell 1 will be described with reference to FIG.
 比色センサ11は、図4に示すように、光源12と、光計測器13と、上記した比色センサセル1とを備えている。 As shown in FIG. 4, the colorimetric sensor 11 includes a light source 12, an optical measuring instrument 13, and the colorimetric sensor cell 1 described above.
 光源12は、例えば、白色光源、単色光光源などの公知の光源であって、光源側光コネクタ14を介して光源側光ファイバ15に接続され、この光源側光ファイバ15が、光源側光ファイバブロック16を介して比色センサセル1(コア層4)の伝播方向一方側端部に接続されている。 The light source 12 is a known light source such as a white light source or a monochromatic light source, and is connected to a light source side optical fiber 15 via a light source side optical connector 14, and the light source side optical fiber 15 is connected to the light source side optical fiber. The colorimetric sensor cell 1 (core layer 4) is connected to one end portion in the propagation direction via the block 16.
 また、比色センサセル1(コア層4)の伝播方向他方側端部には、計測器側光ファイバブロック17を介して計測器側光ファイバ18が接続されており、この計測器側光ファイバ18は、計測器側光コネクタ19を介して光計測器13に接続されている。 A measuring instrument side optical fiber 18 is connected to the other end portion in the propagation direction of the colorimetric sensor cell 1 (core layer 4) via a measuring instrument side optical fiber block 17, and the measuring instrument side optical fiber 18. Are connected to the optical measuring instrument 13 via the measuring instrument side optical connector 19.
 光計測器13は、図示しないが、公知の演算処理装置に接続され、データの表示、蓄積および加工を可能としている。 Although not shown, the optical measuring instrument 13 is connected to a known arithmetic processing unit, and can display, store and process data.
 また、このような比色センサ11において、比色センサセル1は、公知のセンサセル固定装置(図示せず)によって固定されている。センサセル固定装置(図示せず)は、所定方向(例えば、比色センサセル1の幅方向)に沿って移動可能とされており、これにより、比色センサセル1が任意の位置に配置されている。 In such a colorimetric sensor 11, the colorimetric sensor cell 1 is fixed by a known sensor cell fixing device (not shown). The sensor cell fixing device (not shown) is movable along a predetermined direction (for example, the width direction of the colorimetric sensor cell 1), whereby the colorimetric sensor cell 1 is arranged at an arbitrary position.
 また、光源側光ファイバ15は、光源側光ファイバ固定装置20に固定され、計測器側光ファイバ18は、計測器側光ファイバ固定装置21に固定されている。 Further, the light source side optical fiber 15 is fixed to the light source side optical fiber fixing device 20, and the measuring instrument side optical fiber 18 is fixed to the measuring instrument side optical fiber fixing device 21.
 光源側光ファイバ固定装置20および計測器側光ファイバ固定装置21は、公知の6軸移動ステージ(図示せず)の上に固定されており、光ファイバの伝播方向、幅方向(伝播方向と水平方向において直交する方向)および厚み方向(伝播方向と垂直方向において直交する方向)と、それら各方向(3方向)を軸とする回転方向(3方向)とに可動とされている。 The light source side optical fiber fixing device 20 and the measuring instrument side optical fiber fixing device 21 are fixed on a known six-axis moving stage (not shown), and the propagation direction and width direction of the optical fiber (the propagation direction and the horizontal direction). It is movable in a direction perpendicular to the direction) and a thickness direction (a direction perpendicular to the propagation direction perpendicular to the propagation direction) and a rotation direction (three directions) with these directions (three directions) as axes.
 このような比色センサ11によれば、光源12、光源側光ファイバ15、比色センサセル1(コア層4)、計測器側光ファイバ18および光計測器13を一軸上に配置することができ、これらを透過するように、光源12から光を導入することができる。 According to such a colorimetric sensor 11, the light source 12, the light source side optical fiber 15, the colorimetric sensor cell 1 (core layer 4), the measuring instrument side optical fiber 18, and the optical measuring instrument 13 can be arranged on one axis. Light can be introduced from the light source 12 so as to transmit these.
 そして、この比色センサ11では、上記した比色センサセル1、つまり、コア層4に、第1樹脂が浸透された第2樹脂からなる樹脂混合層23が形成されている比色センサセル1が用いられるため、サンプルの濃度や変化などを精度よく検出することができる。 In the colorimetric sensor 11, the colorimetric sensor cell 1 described above, that is, the colorimetric sensor cell 1 in which the core layer 4 is formed with the resin mixed layer 23 made of the second resin infiltrated with the first resin is used. Therefore, it is possible to accurately detect the concentration and change of the sample.
 以下において、この比色センサ11の一使用態様について説明する。 Hereinafter, one usage mode of the colorimetric sensor 11 will be described.
 この態様では、例えば、まず、図4に示す比色センサセル1のサンプル配置部31に、サンプルを収容(配置)し、サンプルとコア層4(単一樹脂層22および樹脂混合層23)とを接触させる。次いで、光源12から所定の光を、光源側光ファイバ15を介して比色センサセル1(コア層4)に導入する(図4に示す破線矢印L1参照)。 In this embodiment, for example, first, a sample is accommodated (arranged) in the sample arrangement portion 31 of the colorimetric sensor cell 1 shown in FIG. 4, and the sample and the core layer 4 (the single resin layer 22 and the resin mixed layer 23) are arranged. Make contact. Next, predetermined light from the light source 12 is introduced into the colorimetric sensor cell 1 (core layer 4) via the light source side optical fiber 15 (see the broken line arrow L1 shown in FIG. 4).
 比色センサセル1(コア層4)に導入された光は、コア層4内において全反射を繰り返しながら、比色センサセル1(コア層4)を透過するとともに、一部の光がエバネッセント波としてコア層4から染み出し、コア層4の上面において、保護層5を介してサンプルに入射され、減衰される。 The light introduced into the colorimetric sensor cell 1 (core layer 4) passes through the colorimetric sensor cell 1 (core layer 4) while repeating total reflection in the core layer 4, and a part of the light is cored as an evanescent wave. It exudes from the layer 4 and is incident on the sample via the protective layer 5 on the upper surface of the core layer 4 and attenuated.
 その後、比色センサセル1(コア層4)を透過した光は、計測器側光ファイバ18を介して光計測器13に導入される(図4に示す破線矢印L2参照)。 Thereafter, the light transmitted through the colorimetric sensor cell 1 (core layer 4) is introduced into the optical measuring instrument 13 through the measuring instrument side optical fiber 18 (see the broken line arrow L2 shown in FIG. 4).
 つまり、この比色センサ11において、光計測器13に導入される光は、コア層4においてサンプルが吸収した波長の光強度が減衰している。 That is, in the colorimetric sensor 11, the light intensity introduced into the optical measuring instrument 13 is attenuated in the light intensity of the wavelength absorbed by the sample in the core layer 4.
 サンプルが吸収する波長は、比色センサセル1に収容(配置)されたサンプルの色などに依存するため、光計測器13に導入される光の、光強度の減衰を検出することにより、サンプルの色や、その変化を検出することができる。 Since the wavelength absorbed by the sample depends on the color of the sample accommodated (arranged) in the colorimetric sensor cell 1, the attenuation of the light intensity of the light introduced into the optical measuring instrument 13 is detected. The color and its change can be detected.
 より具体的には、例えば、光源12として白色光源を用いる場合には、光計測器13によって、比色センサセル1の透過後に光強度が減衰する波長を計測し、その減衰する波長が変化したこと検出すれば、サンプルの色や、その変化を確認することができる。 More specifically, for example, when a white light source is used as the light source 12, the optical measuring instrument 13 measures the wavelength at which the light intensity attenuates after transmission through the colorimetric sensor cell 1, and the attenuation wavelength has changed. Once detected, the color of the sample and its change can be confirmed.
 また、例えば、光源12として単色光光源を用いる場合には、光計測器13によって、比色センサセル1の透過後における単色光の光強度の変化(減衰の度合い)を計測し、その減衰の度合いが変化したことを検出すれば、上記と同様に、サンプルの色や、その変化を確認することができる。 Further, for example, when a monochromatic light source is used as the light source 12, a change (attenuation degree) of the light intensity of the monochromatic light after transmission through the colorimetric sensor cell 1 is measured by the optical measuring device 13, and the degree of the attenuation. If the change is detected, the color of the sample and its change can be confirmed in the same manner as described above.
 そのため、このような比色センサ11では、サンプルの色の変化に基づいて、例えば、サンプルの濃度の測定など、種々の化学分析に用いることができる。 Therefore, such a colorimetric sensor 11 can be used for various chemical analyses, such as measurement of the concentration of the sample, based on the change in the color of the sample.
 より具体的には、例えば、サンプルが溶液である場合には、サンプル(溶液)の色は、溶液の濃度に依存するため、そのサンプル(溶液)を配置した比色センサ11において、サンプル(溶液)の色を検出すれば、そのサンプルの濃度を測定することができる。また、サンプル(溶液)の色が変化したことを検出すれば、サンプル(溶液)の濃度が変化したことを確認することができる。 More specifically, for example, when the sample is a solution, the color of the sample (solution) depends on the concentration of the solution. Therefore, in the colorimetric sensor 11 in which the sample (solution) is arranged, the sample (solution) ), The concentration of the sample can be measured. Further, if it is detected that the color of the sample (solution) has changed, it can be confirmed that the concentration of the sample (solution) has changed.
 また、サンプルとして、例えば、ガス(被検知ガス)、および、そのガスに反応して吸収スペクトルが変化(すなわち、色変化)する反応膜を用いる場合には、サンプル配置部31内のコア層4(単一樹脂層22および樹脂混合層23)に反応膜を接触させるように固定するとともに、サンプル配置部31内に、ガスを導入する。 For example, when using a sample (gas to be detected) and a reaction film whose absorption spectrum changes (that is, changes in color) in response to the gas, the core layer 4 in the sample placement unit 31 is used. The reaction film is fixed so as to be in contact with (single resin layer 22 and resin mixed layer 23), and gas is introduced into sample placement portion 31.
 このとき、反応膜は、被検知ガスと反応し、その濃度に依存して、色変化を生じる。つまり、反応膜の色は、被検知ガスの濃度に依存する。そのため、反応膜を配置した比色センサ11において、反応膜の色を検出すれば、被検知ガスの濃度を測定することができる。また、反応膜の色が変化したことを検出すれば、被検知ガスの濃度が変化したことを確認することができる。 At this time, the reaction film reacts with the gas to be detected and causes a color change depending on its concentration. That is, the color of the reaction film depends on the concentration of the gas to be detected. Therefore, if the color of the reaction film is detected by the colorimetric sensor 11 in which the reaction film is arranged, the concentration of the gas to be detected can be measured. Further, if it is detected that the color of the reaction film has changed, it can be confirmed that the concentration of the gas to be detected has changed.
 そして、このような比色センサセル1、比色センサ11、および、比色センサセル1の製造方法によれば、簡易な構成により、検出感度の向上を図ることができる。 Further, according to the colorimetric sensor cell 1, the colorimetric sensor 11, and the method for manufacturing the colorimetric sensor cell 1, the detection sensitivity can be improved with a simple configuration.
 なお、上記した実施形態では、比色センサセル1には、コア層4を1つ形成したが、コア層4の数は、特に制限されず、互いに幅方向に間隔を隔てて、複数形成することもできる。 In the above-described embodiment, one core layer 4 is formed in the colorimetric sensor cell 1, but the number of core layers 4 is not particularly limited, and a plurality of core layers 4 are formed at intervals in the width direction. You can also.
 光導波路2が複数のコア層4を備える場合には、この比色センサセル1を備える比色センサ11により、サンプルを複数回同時に分析できるため、分析効率を向上することができる。 When the optical waveguide 2 includes a plurality of core layers 4, the colorimetric sensor 11 including the colorimetric sensor cell 1 can simultaneously analyze a sample a plurality of times, thereby improving the analysis efficiency.
 また、上記した実施形態では、コア層4を、略角柱形状に形成したが、コア層4の形状としては、特に制限されず、コア層4を、例えば、断面視略半円形状(半円柱形状)、断面視略凸形状(凸柱形状)など、任意の形状に形成することができる。 In the above-described embodiment, the core layer 4 is formed in a substantially prismatic shape. However, the shape of the core layer 4 is not particularly limited, and the core layer 4 is, for example, a substantially semicircular shape (semi-cylinder in a cross-sectional view). Shape) and a substantially convex shape (convex column shape) in cross-sectional view.
 また、上記した実施形態では、比色センサセル1の上端部は開放されているが、比色センサセル1の上端部には、サンプル配置部31を被覆する蓋を設けることもできる。これによれば、測定中に、サンプルが外気に接触することを防止することができる。 In the above-described embodiment, the upper end portion of the colorimetric sensor cell 1 is open, but a lid that covers the sample placement portion 31 can be provided on the upper end portion of the colorimetric sensor cell 1. According to this, it can prevent that a sample contacts external air during a measurement.
 また、サンプル配置部31を被覆する蓋に、サンプル配置部31内へサンプル(液状)を注入するための注入口と、サンプル配置部31からサンプルを排出するための排出口とを設け、サンプルを、注入口から注入し、サンプル配置部31内を通過させて、排出口から排出することもできる。これによれば、サンプル配置部31内にサンプルを流しながら、サンプルの物性を連続的に測定することができる。 In addition, the lid that covers the sample placement unit 31 is provided with an injection port for injecting the sample (liquid) into the sample placement unit 31 and a discharge port for discharging the sample from the sample placement unit 31. It is also possible to inject from the injection port, pass through the inside of the sample placement portion 31, and discharge from the discharge port. According to this, it is possible to continuously measure the physical properties of the sample while flowing the sample through the sample placement unit 31.
 図5は、本発明のSPRセンサセルの一実施形態を示す斜視図である。図6は、図5に示すSPRセンサセルの断面図である。なお、上記した部材に対応する部材については、以下の各図において同一の参照符号を付し、その詳細な説明を省略する。 FIG. 5 is a perspective view showing an embodiment of the SPR sensor cell of the present invention. 6 is a cross-sectional view of the SPR sensor cell shown in FIG. In addition, about the member corresponding to an above-described member, the same referential mark is attached | subjected in each following figure, and the detailed description is abbreviate | omitted.
 SPRセンサセル41は、上記した比色センサセル1(図1および図2参照)と同様に、検知部30と、検知部30に隣接するサンプル配置部31とを備えている。 The SPR sensor cell 41 includes a detection unit 30 and a sample placement unit 31 adjacent to the detection unit 30 in the same manner as the colorimetric sensor cell 1 (see FIGS. 1 and 2) described above.
 また、SPRセンサセル41において、サンプル配置部31には、金属薄膜7が設けられている。 Further, in the SPR sensor cell 41, the sample placement unit 31 is provided with the metal thin film 7.
 金属薄膜7は、図6に示すように、サンプル配置部31内において、保護層5を均一に被覆するように形成されている。つまり、金属薄膜7は、コア層4の上面を均一に被覆するように形成されている。 As shown in FIG. 6, the metal thin film 7 is formed so as to uniformly cover the protective layer 5 in the sample placement portion 31. That is, the metal thin film 7 is formed so as to uniformly cover the upper surface of the core layer 4.
 SPRセンサセル41において、上記したように、コア層4が、その上面がアンダークラッド層3の上面と面一となるように、アンダークラッド層3に被覆(埋設)されていれば、金属薄膜7や金属粒子層8(後述)を形成したときに、金属材料(後述)や金属粒子10(後述)を、コア層4の上側のみに効率よく配置することができる。 In the SPR sensor cell 41, as described above, if the core layer 4 is covered (embedded) in the under cladding layer 3 so that the upper surface thereof is flush with the upper surface of the under cladding layer 3, the metal thin film 7 or When the metal particle layer 8 (described later) is formed, the metal material (described later) and the metal particles 10 (described later) can be efficiently arranged only on the upper side of the core layer 4.
 図7は、図5に示すSPRセンサセルの製造方法を示す工程図である。 FIG. 7 is a process diagram showing a method of manufacturing the SPR sensor cell shown in FIG.
 次いで、このSPRセンサセル41の製造方法について、図7を参照して説明する。 Next, a method for manufacturing the SPR sensor cell 41 will be described with reference to FIG.
 この方法では、まず、図7(a)に示すように、上記の比色センサセル1の製造方法(図3(a)参照)と同様に、上記した平板状の基板9を用意し、次いで、その基板9の上に、コア層4を形成する。 In this method, first, as shown in FIG. 7A, the plate-like substrate 9 described above is prepared in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3A). A core layer 4 is formed on the substrate 9.
 基板9の厚みは、例えば、10~5000μm、好ましくは、10~1500μmである。また、コア層4の厚みは、例えば、2~150μmであり、幅は、例えば、2~150μmである。 The thickness of the substrate 9 is, for example, 10 to 5000 μm, preferably 10 to 1500 μm. The core layer 4 has a thickness of 2 to 150 μm, for example, and a width of 2 to 150 μm, for example.
 次いで、この方法では、図7(b)に示すように、上記の比色センサセル1の製造方法(図3(b)参照)と同様に、基板9の上において、コア層4を被覆するとともに、第1樹脂と接触するコア層4の表層に第1樹脂を浸透させるように、第1樹脂を上記パターンで塗布および加熱する。 Next, in this method, as shown in FIG. 7B, the core layer 4 is coated on the substrate 9 in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3B). The first resin is applied and heated in the above pattern so that the first resin penetrates into the surface layer of the core layer 4 in contact with the first resin.
 次いで、この方法では、図7(c)に示すように、上記の比色センサセル1の製造方法(図3(c)参照)と同様に、第1樹脂を、例えば、加熱により硬化させ、第1樹脂からなるアンダークラッド層3を形成する。このとき、コア層4として、コア層4のアンダークラッド層3と接触する表層に、第1樹脂が第2樹脂に浸透されている樹脂混合層23が形成されるとともに、樹脂混合層23に埋設される単一樹脂層22が形成される。 Next, in this method, as shown in FIG. 7C, the first resin is cured by heating, for example, in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3C). An undercladding layer 3 made of one resin is formed. At this time, as the core layer 4, a resin mixed layer 23 in which the first resin is infiltrated into the second resin is formed on the surface layer of the core layer 4 that is in contact with the under cladding layer 3, and is embedded in the resin mixed layer 23. A single resin layer 22 is formed.
 次いで、この方法では、図7(d)に示すように、上記の比色センサセル1の製造方法(図3(d)参照)と同様に、アンダークラッド層3およびコア層4から基板9を剥離させ、アンダークラッド層3およびコア層4を上下反転させる。 Next, in this method, as shown in FIG. 7D, the substrate 9 is peeled from the under-cladding layer 3 and the core layer 4 in the same manner as the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3D). The under cladding layer 3 and the core layer 4 are turned upside down.
 すると、アンダークラッド層3およびコア層4の基板9に接触されていた面が上面として露出される。 Then, the surfaces of the under cladding layer 3 and the core layer 4 that are in contact with the substrate 9 are exposed as the upper surface.
 次いで、この方法では、図7(e)に示すように、上記の比色センサセル1の製造方法(図3(e)参照)と同様に、アンダークラッド層3およびコア層4の上に保護層5を形成する。 Next, in this method, as shown in FIG. 7E, a protective layer is formed on the under-cladding layer 3 and the core layer 4 in the same manner as in the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3E). 5 is formed.
 次いで、この方法では、図7(f)に示すように、上記の比色センサセル1の製造方法(図3(f)参照)と同様に、オーバークラッド層6を、保護層5の上に、上記したパターンで形成する。 Next, in this method, as shown in FIG. 7 (f), the over-cladding layer 6 is formed on the protective layer 5 in the same manner as the method for manufacturing the colorimetric sensor cell 1 (see FIG. 3 (f)). The pattern is formed as described above.
 オーバークラッド層6を形成する材料としては、上記したアンダークラッド層3と同様の樹脂材料(第1樹脂)が用いられる。 As a material for forming the over clad layer 6, the same resin material (first resin) as that of the above under clad layer 3 is used.
 オーバークラッド層6を形成するには、例えば、別途、上記した材料から平面視矩形枠形状のシートを形成し、そのシートをオーバークラッド層6として、保護層5の上に積層する。 In order to form the over clad layer 6, for example, a sheet having a rectangular frame shape in plan view is separately formed from the above-described material, and the sheet is laminated on the protective layer 5 as the over clad layer 6.
 なお、オーバークラッド層6を保護層5の上に積層するときには、予め、保護層5の表面に、シランカップリング剤などの公知のプライマーを処理した後、積層することもできる。保護層5の表面を上記したプライマーにより処理しておけば、金属薄膜7や金属粒子層8(後述)を形成したときに、その金属材料(後述)や金属粒子10(後述)を保護層5に強固に固着させることができる。 In addition, when laminating | stacking the over clad layer 6 on the protective layer 5, it can also laminate | stack, after processing well-known primers, such as a silane coupling agent, on the surface of the protective layer 5 previously. If the surface of the protective layer 5 is treated with the above-described primer, when the metal thin film 7 and the metal particle layer 8 (described later) are formed, the metal material (described later) and the metal particles 10 (described later) are applied to the protective layer 5. It can be firmly fixed to.
 シランカップリング剤としては、γ-アミノプロピルトリエトキシシランなどのアミノ基含有シランカップリング剤が挙げられる。 Examples of the silane coupling agent include amino group-containing silane coupling agents such as γ-aminopropyltriethoxysilane.
 プライマーとして、シランカップリング剤を処理する場合には、例えば、シランカップリング剤のアルコール溶液を保護層5に塗布し、その後、加熱処理する。 When the silane coupling agent is treated as a primer, for example, an alcohol solution of the silane coupling agent is applied to the protective layer 5 and then heat-treated.
 次いで、この方法では、図7(g)に示すように、金属薄膜7を、サンプル配置部31内において、コア層4を被覆するように形成する。 Next, in this method, as shown in FIG. 7G, the metal thin film 7 is formed so as to cover the core layer 4 in the sample placement portion 31.
 金属薄膜7を形成する金属材料としては、例えば、金、銀、白金、銅、アルミニウム、および、それらの合金などが挙げられる。 Examples of the metal material for forming the metal thin film 7 include gold, silver, platinum, copper, aluminum, and alloys thereof.
 これら金属材料は、単独使用または2種類以上併用することができる。 These metal materials can be used alone or in combination of two or more.
 金属薄膜7を形成するには、例えば、必要により、まず、金属薄膜7のパターンの逆パターンのレジストを形成して、金属薄膜7を形成する部分の周辺をマスキングする。その後、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法などの蒸着法により、コア層4(必要により形成されるレジストから露出するコア層4)の上面に、金属薄膜7を形成する。その後、レジストが形成されている場合には、エッチングや剥離などにより、レジストを除去する。 In order to form the metal thin film 7, for example, if necessary, first, a resist having a pattern opposite to the pattern of the metal thin film 7 is formed, and the periphery of the portion where the metal thin film 7 is formed is masked. Thereafter, the metal thin film 7 is formed on the upper surface of the core layer 4 (the core layer 4 exposed from the resist formed if necessary) by, for example, a vapor deposition method such as a vacuum vapor deposition method, an ion plating method, or a sputtering method. Thereafter, if a resist is formed, the resist is removed by etching or peeling.
 なお、金属薄膜7は、必要により、複数積層することができる。 In addition, the metal thin film 7 can be laminated | stacked if necessary.
 このようにして形成される金属薄膜7の厚み(複数積層される場合には、その合計厚み)は、例えば、40~70nm、好ましくは、50~60nmである。 The thickness of the metal thin film 7 thus formed (when a plurality of metal thin films 7 are stacked, the total thickness) is, for example, 40 to 70 nm, preferably 50 to 60 nm.
 このようにして、SPRセンサセル41を製造することができる。 In this way, the SPR sensor cell 41 can be manufactured.
 このようなSPRセンサセル41の製造方法によれば、コア層4に、第1樹脂が浸透された第2樹脂からなる樹脂混合層23を形成することができるため、サンプルの濃度や変化などを精度よく検出できるSPRセンサセル41を製造することができる。 According to such a method for manufacturing the SPR sensor cell 41, the resin mixed layer 23 made of the second resin infiltrated with the first resin can be formed in the core layer 4, so that the concentration and change of the sample can be accurately measured. An SPR sensor cell 41 that can be detected well can be manufactured.
 そして、このSPRセンサセル41では、サンプル配置部31にサンプルが収容(配置)されることにより、金属薄膜7とサンプルとが接触される。すなわち、サンプルは、サンプル配置部31において、オーバークラッド層6に取り囲まれている。 And in this SPR sensor cell 41, when the sample is accommodated (arranged) in the sample arrangement part 31, the metal thin film 7 and the sample are brought into contact with each other. That is, the sample is surrounded by the over clad layer 6 in the sample placement portion 31.
 このようなSPRセンサセル41によれば、サンプルの濃度や変化などを精度よく検出することができる。 Such an SPR sensor cell 41 can accurately detect the concentration and change of the sample.
 つまり、このようなSPRセンサセル41によれば、コア層4に、第1樹脂が浸透された第2樹脂からなる樹脂混合層23が形成されているため、サンプルの濃度や変化などを精度よく検出することができる。 That is, according to such an SPR sensor cell 41, since the resin mixed layer 23 made of the second resin infiltrated with the first resin is formed in the core layer 4, the concentration or change of the sample can be accurately detected. can do.
 図8は、本発明のSPRセンサセルの他の実施形態を示す断面図である。なお、上記した部材に対応する部材については、以下の各図において同一の参照符号を付し、その詳細な説明を省略する。 FIG. 8 is a cross-sectional view showing another embodiment of the SPR sensor cell of the present invention. In addition, about the member corresponding to an above-described member, the same referential mark is attached | subjected in each following figure, and the detailed description is abbreviate | omitted.
 上記した説明では、サンプル配置部31には、金属薄膜7を設けたが、例えば、サンプル配置部31には、金属薄膜7に代えて、金属粒子層8を設けることができる。 In the above description, the metal thin film 7 is provided in the sample placement portion 31, but for example, the metal placement layer 31 can be provided with the metal particle layer 8 instead of the metal thin film 7.
 金属粒子層8は、図8に示すように、サンプル配置部31内において、保護層5を均一に被覆するように形成されている。つまり、金属粒子層8は、コア層4の上面を均一に被覆するように形成されている。 As shown in FIG. 8, the metal particle layer 8 is formed so as to uniformly cover the protective layer 5 in the sample placement portion 31. That is, the metal particle layer 8 is formed so as to uniformly cover the upper surface of the core layer 4.
 金属粒子層8を形成する金属粒子10としては、例えば、金、銀、銅、アルミニウム、クロム、白金などの金属からなる粒子、例えば、シリカ、カーボンブラックなどの無機粒子の表面が上記した金属により被覆された粒子、例えば、樹脂などの有機粒子の表面が上記した金属により被覆された粒子などが挙げられる。好ましくは、金属からなる粒子が挙げられ、より好ましくは、クロム粒子、金粒子が挙げられる。 As the metal particles 10 forming the metal particle layer 8, for example, the surface of particles made of metal such as gold, silver, copper, aluminum, chromium and platinum, for example, inorganic particles such as silica and carbon black is made of the metal described above. Examples of the coated particles include particles in which the surface of an organic particle such as a resin is coated with the metal described above. Preferably, the particle | grains which consist of metals are mentioned, More preferably, a chromium particle and a gold particle are mentioned.
 金属粒子10の平均粒子径は、例えば、電子顕微鏡観察により観察された任意の100個の粒子の平均値として算出され、例えば、5~300nm、好ましくは、10~150nmである。 The average particle diameter of the metal particles 10 is calculated, for example, as an average value of arbitrary 100 particles observed by electron microscope observation, and is, for example, 5 to 300 nm, preferably 10 to 150 nm.
 金属粒子層8を形成するには、詳しくは図示しないが、例えば、上記した金属粒子10を公知の溶媒に分散させて粒子分散液を調製し、その粒子分散液を、保護層5に塗布し、乾燥する。 For forming the metal particle layer 8, although not shown in detail, for example, the above-described metal particles 10 are dispersed in a known solvent to prepare a particle dispersion, and the particle dispersion is applied to the protective layer 5. ,dry.
 なお、金属粒子10として金粒子が分散された金粒子分散液は、市販されており、例えば、EMGCシリーズ(British BioCell International Ltd.製)などが挙げられる。 In addition, the gold particle dispersion liquid in which gold particles are dispersed as the metal particles 10 is commercially available, and examples thereof include EMGC series (manufactured by British BioCell International Ltd.).
 このようにして形成される金属粒子層8では、各金属粒子10は、好ましくは、厚み方向に互いに積層されずに、単粒子層として形成される。また、各金属粒子10は、互いに接触しないように、わずかに間隔を隔てて、それぞれ独立して配置される。 In the metal particle layer 8 formed in this way, the metal particles 10 are preferably formed as a single particle layer without being stacked on each other in the thickness direction. Further, the respective metal particles 10 are arranged independently at a slight interval so as not to contact each other.
 そして、金属粒子層8は、平面視において、アンダークラッド層3から露出されたコア層4の表面積、すなわち、サンプル配置部31の面積のうち、例えば、15~60%、好ましくは、20~50%を被覆している。金属粒子層8が、上記した割合(被覆率)で、アンダークラッド層3から露出されたコア層4を被覆していると、ほぼすべての金属粒子10が独立して配置された単粒子層として、金属粒子層8が形成されるので、サンプルの濃度や変化などをより精度よく検出することができる。 The metal particle layer 8 is, for example, 15 to 60%, preferably 20 to 50% of the surface area of the core layer 4 exposed from the under cladding layer 3, that is, the area of the sample placement portion 31, in plan view. % Coating. When the metal particle layer 8 covers the core layer 4 exposed from the under-cladding layer 3 at the above-described ratio (coverage), as a single particle layer in which almost all the metal particles 10 are independently arranged. Since the metal particle layer 8 is formed, the concentration and change of the sample can be detected with higher accuracy.
 そして、このSPRセンサセル41では、サンプル配置部31にサンプルが収容(配置)されることにより、金属粒子層8とサンプルとが接触される。すなわち、サンプルは、サンプル配置部31において、オーバークラッド層6に取り囲まれている。 And in this SPR sensor cell 41, the sample is accommodated (arranged) in the sample arrangement part 31, whereby the metal particle layer 8 and the sample are brought into contact with each other. That is, the sample is surrounded by the over clad layer 6 in the sample placement portion 31.
 このようなSPRセンサセル41によれば、サンプルの濃度や変化などを精度よく検出することができる。 Such an SPR sensor cell 41 can accurately detect the concentration and change of the sample.
 つまり、このようなSPRセンサセル41によれば、オーバークラッド層6が、金属粒子層8と接触するサンプルを取り囲むように形成されているので、サンプルを容易に金属粒子層8の表面に配置することができるため、作業性の向上を図ることができる。 That is, according to the SPR sensor cell 41 as described above, since the over clad layer 6 is formed so as to surround the sample in contact with the metal particle layer 8, the sample can be easily disposed on the surface of the metal particle layer 8. Therefore, workability can be improved.
 図9は、本発明のSPRセンサの一実施形態を示す概略側断面図である。 FIG. 9 is a schematic sectional side view showing an embodiment of the SPR sensor of the present invention.
 次いで、SPRセンサセル41を備えるSPRセンサ42について、図9を参照して説明する。 Next, the SPR sensor 42 including the SPR sensor cell 41 will be described with reference to FIG.
 SPRセンサ42は、図9に示すように、上記した比色センサ11(図4参照)と同様に、上記した光源12と、上記した光計測器13と、上記したSPRセンサセル41とを備えている。 As shown in FIG. 9, the SPR sensor 42 includes the light source 12, the optical measuring instrument 13, and the SPR sensor cell 41, similar to the colorimetric sensor 11 (see FIG. 4). Yes.
 光源12は、上記した比色センサ11(図4参照)と同様に、光源側光コネクタ14を介して光源側光ファイバ15に接続され、この光源側光ファイバ15が、光源側光ファイバブロック16を介してSPRセンサセル41(コア層4)の伝播方向一方側端部に接続されている。 The light source 12 is connected to the light source side optical fiber 15 via the light source side optical connector 14 in the same manner as the colorimetric sensor 11 (see FIG. 4), and the light source side optical fiber 15 is connected to the light source side optical fiber block 16. Is connected to one end of the SPR sensor cell 41 (core layer 4) in the propagation direction.
 また、SPRセンサセル41(コア層4)の伝播方向他方側端部には、計測器側光ファイバブロック17を介して計測器側光ファイバ18が接続されており、この計測器側光ファイバ18は、計測器側光コネクタ19を介して光計測器13に接続されている。 A measuring instrument side optical fiber 18 is connected to the other end of the SPR sensor cell 41 (core layer 4) in the propagation direction via a measuring instrument side optical fiber block 17, and the measuring instrument side optical fiber 18 is The optical measuring instrument 13 is connected to the measuring instrument side optical connector 19.
 また、このようなSPRセンサ11において、SPRセンサセル1は、公知のセンサセル固定装置(図示せず)によって固定されている。センサセル固定装置(図示せず)は、所定方向(例えば、SPRセンサセル1の幅方向)に沿って移動可能とされており、これにより、SPRセンサセル1が任意の位置に配置されている。 In such an SPR sensor 11, the SPR sensor cell 1 is fixed by a known sensor cell fixing device (not shown). The sensor cell fixing device (not shown) is movable along a predetermined direction (for example, the width direction of the SPR sensor cell 1), whereby the SPR sensor cell 1 is disposed at an arbitrary position.
 また、光源側光ファイバ15は、光源側光ファイバ固定装置20に固定され、計測器側光ファイバ18は、計測器側光ファイバ固定装置21に固定されている。 Further, the light source side optical fiber 15 is fixed to the light source side optical fiber fixing device 20, and the measuring instrument side optical fiber 18 is fixed to the measuring instrument side optical fiber fixing device 21.
 光源側光ファイバ固定装置20および計測器側光ファイバ固定装置21は、公知の6軸移動ステージ(図示せず)の上に固定されており、光ファイバの伝播方向、幅方向(伝播方向と水平方向において直交する方向)および厚み方向(伝播方向と垂直方向において直交する方向)と、それら各方向(3方向)を軸とする回転方向(3方向)とに可動とされている。 The light source side optical fiber fixing device 20 and the measuring instrument side optical fiber fixing device 21 are fixed on a known six-axis moving stage (not shown), and the propagation direction and width direction of the optical fiber (the propagation direction and the horizontal direction). It is movable in a direction perpendicular to the direction) and a thickness direction (a direction perpendicular to the propagation direction perpendicular to the propagation direction) and a rotation direction (three directions) with these directions (three directions) as axes.
 このようなSPRセンサ11によれば、光源12、光源側光ファイバ15、SPRセンサセル1(コア層4)、計測器側光ファイバ18および光計測器13を一軸上に配置することができ、これらを透過するように、光源12から光を導入することができる。 According to such an SPR sensor 11, the light source 12, the light source side optical fiber 15, the SPR sensor cell 1 (core layer 4), the measuring instrument side optical fiber 18 and the optical measuring instrument 13 can be arranged on one axis, and these The light can be introduced from the light source 12 so as to transmit the light.
 そして、このSPRセンサ11では、上記したSPRセンサセル1、つまり、コア層4に、第1樹脂が浸透された第2樹脂からなる樹脂混合層23が形成されているSPRセンサセル1が用いられるため、サンプルの濃度や変化などを精度よく検出することができる。 The SPR sensor 11 uses the SPR sensor cell 1 described above, that is, the SPR sensor cell 1 in which the resin layer 23 made of the second resin in which the first resin is infiltrated is formed in the core layer 4. It is possible to accurately detect the concentration and change of the sample.
 以下において、このSPRセンサ11の一使用態様について説明する。 Hereinafter, one usage mode of the SPR sensor 11 will be described.
 この態様では、例えば、まず、図9に示すSPRセンサセル41のサンプル配置部31に、サンプルを収容(配置)し、サンプルと金属薄膜7(または、金属粒子層8)とを接触させる。次いで、光源12から所定の光を、光源側光ファイバ15を介してSPRセンサセル41(コア層4)に導入する(図9に示す破線矢印L1参照)。 In this aspect, for example, first, a sample is accommodated (arranged) in the sample arrangement portion 31 of the SPR sensor cell 41 shown in FIG. 9, and the sample and the metal thin film 7 (or the metal particle layer 8) are brought into contact with each other. Next, predetermined light from the light source 12 is introduced into the SPR sensor cell 41 (core layer 4) through the light source side optical fiber 15 (see the broken line arrow L1 shown in FIG. 9).
 SPRセンサセル41(コア層4)に導入された光は、コア層4内において全反射を繰り返しながら、SPRセンサセル41(コア層4)を透過するとともに、一部の光は、コア層4の上面において、保護層5を介して金属薄膜7(または、金属粒子層8)に入射され、表面プラズモン共鳴により減衰される。 The light introduced into the SPR sensor cell 41 (core layer 4) passes through the SPR sensor cell 41 (core layer 4) while repeating total reflection in the core layer 4, and part of the light is on the upper surface of the core layer 4. , The light is incident on the metal thin film 7 (or the metal particle layer 8) through the protective layer 5 and is attenuated by surface plasmon resonance.
 その後、SPRセンサセル41(コア層4)を透過した光は、計測器側光ファイバ18を介して光計測器13に導入される(図9に示す破線矢印L2参照)。 Thereafter, the light transmitted through the SPR sensor cell 41 (core layer 4) is introduced into the optical measuring instrument 13 through the measuring instrument side optical fiber 18 (see the broken line arrow L2 shown in FIG. 9).
 つまり、このSPRセンサ42において、光計測器13に導入される光は、コア層4において表面プラズモン共鳴を発生させた波長の光強度が減衰している。 That is, in the SPR sensor 42, the light intensity of the light introduced into the optical measuring instrument 13 is attenuated at the wavelength at which the surface plasmon resonance is generated in the core layer 4.
 表面プラズモン共鳴を発生させる波長は、SPRセンサセル41に収容(配置)されたサンプルの屈折率などに依存するため、光計測器13に導入される光の、光強度の減衰を検出することにより、サンプルの屈折率の変化を検出することができる。 Since the wavelength for generating the surface plasmon resonance depends on the refractive index of the sample accommodated (arranged) in the SPR sensor cell 41, by detecting the attenuation of the light intensity of the light introduced into the optical measuring instrument 13, A change in the refractive index of the sample can be detected.
 より具体的には、例えば、光源12として白色光源を用いる場合には、光計測器13によって、SPRセンサセル41の透過後に光強度が減衰する波長(表面プラズモン共鳴を発生させる波長)を計測し、その減衰する波長が変化したこと検出すれば、サンプルの屈折率の変化を確認することができる。 More specifically, for example, when a white light source is used as the light source 12, the optical measuring instrument 13 measures a wavelength at which the light intensity attenuates after transmission through the SPR sensor cell 41 (a wavelength that generates surface plasmon resonance), If it is detected that the attenuation wavelength has changed, the change in the refractive index of the sample can be confirmed.
 また、例えば、光源12として単色光光源を用いる場合には、光計測器13によって、SPRセンサセル41の透過後における単色光の光強度の変化(減衰の度合い)を計測し、その減衰の度合いが変化したことを検出すれば、上記と同様に、表面プラズモン共鳴を発生させる波長が変化したことを確認でき、サンプルの屈折率の変化を確認することができる。 Further, for example, when a monochromatic light source is used as the light source 12, the optical measuring instrument 13 measures the change (degree of attenuation) of the monochromatic light after passing through the SPR sensor cell 41, and the degree of attenuation is measured. If the change is detected, it can be confirmed that the wavelength for generating the surface plasmon resonance has changed, and the change in the refractive index of the sample can be confirmed as described above.
 そのため、このようなSPRセンサ42では、サンプルの屈折率の変化に基づいて、例えば、サンプルの濃度の測定や、免疫反応の検出など、種々の化学分析や生物化学分析に用いることができる。 Therefore, such an SPR sensor 42 can be used for various chemical analysis and biochemical analysis such as measurement of sample concentration and detection of immune reaction based on the change in the refractive index of the sample.
 より具体的には、例えば、サンプルが溶液である場合には、サンプル(溶液)の屈折率は、溶液の濃度に依存するため、そのサンプル(溶液)を金属薄膜7(または、金属粒子層8)に接触させたSPRセンサ42において、サンプル(溶液)の屈折率を検出すれば、そのサンプルの濃度を測定することができる。また、サンプル(溶液)の屈折率が変化したことを検出すれば、サンプル(溶液)の濃度が変化したことを確認することができる。 More specifically, for example, when the sample is a solution, since the refractive index of the sample (solution) depends on the concentration of the solution, the sample (solution) is removed from the metal thin film 7 (or the metal particle layer 8). If the refractive index of the sample (solution) is detected in the SPR sensor 42 brought into contact with (), the concentration of the sample can be measured. Moreover, if it detects that the refractive index of the sample (solution) has changed, it can be confirmed that the concentration of the sample (solution) has changed.
 また、免疫反応の検出においては、例えば、SPRセンサセル41の金属薄膜7(または、金属粒子層8)上に、誘電体膜を介して抗体を固定し、抗体に検体を接触させる。このとき、抗体と検体とが免疫反応すればサンプルの屈折率が変化するため、抗体と検体との接触前後においてサンプルの屈折率が変化することを検出することにより、その抗体と検体とが免疫反応したものと判断することができる。 In the detection of an immune reaction, for example, an antibody is immobilized on the metal thin film 7 (or metal particle layer 8) of the SPR sensor cell 41 via a dielectric film, and a specimen is brought into contact with the antibody. At this time, since the refractive index of the sample changes if the antibody and the specimen undergo an immunoreaction, by detecting that the refractive index of the sample changes before and after contact between the antibody and the specimen, the antibody and the specimen are immune. It can be judged that it reacted.
 そして、このようなSPRセンサセル41、SPRセンサ42、および、SPRセンサセル41の製造方法によれば、簡易な構成により、検出感度の向上を図ることができる。 And according to the manufacturing method of such SPR sensor cell 41, SPR sensor 42, and SPR sensor cell 41, improvement in detection sensitivity can be aimed at by simple composition.
 なお、上記した実施形態では、SPRセンサセル41には、コア層4を1つ形成したが、コア層4の数は、特に制限されず、互いに幅方向に間隔を隔てて、複数形成することもできる。 In the above-described embodiment, one core layer 4 is formed in the SPR sensor cell 41, but the number of core layers 4 is not particularly limited, and a plurality of core layers 4 may be formed at intervals in the width direction. it can.
 光導波路2が複数のコア層4を備える場合には、このSPRセンサセル41を備えるSPRセンサ42により、サンプルを複数回同時に分析できるため、分析効率を向上することができる。 When the optical waveguide 2 includes a plurality of core layers 4, the SPR sensor 42 including the SPR sensor cell 41 can simultaneously analyze the sample a plurality of times, so that the analysis efficiency can be improved.
 また、上記した実施形態では、コア層4を、略角柱形状に形成したが、コア層4の形状としては、特に制限されず、コア層4を、例えば、断面視略半円形状(半円柱形状)、断面視略凸形状(凸柱形状)など、任意の形状に形成することができる。 In the above-described embodiment, the core layer 4 is formed in a substantially prismatic shape. However, the shape of the core layer 4 is not particularly limited, and the core layer 4 is, for example, a substantially semicircular shape (semi-cylinder in a cross-sectional view). Shape) and a substantially convex shape (convex column shape) in cross-sectional view.
 また、上記した実施形態では、金属薄膜7(または、金属粒子層8)を、サンプル配置部31内において、保護層5をすべて被覆するように形成したが、金属薄膜7(または、金属粒子層8)を、少なくとも、コア層4を被覆するように、コア層4の上側のみに形成することもできる。 In the embodiment described above, the metal thin film 7 (or the metal particle layer 8) is formed so as to cover the entire protective layer 5 in the sample placement portion 31, but the metal thin film 7 (or the metal particle layer) is formed. 8) may be formed only on the upper side of the core layer 4 so as to cover at least the core layer 4.
 また、上記した実施形態では、SPRセンサセル41の上端部は開放されているが、SPRセンサセル41の上端部には、サンプル配置部31を被覆する蓋を設けることもできる。これによれば、測定中に、サンプルが外気に接触することを防止することができる。 In the above-described embodiment, the upper end portion of the SPR sensor cell 41 is open, but a lid that covers the sample placement portion 31 can be provided on the upper end portion of the SPR sensor cell 41. According to this, it can prevent that a sample contacts external air during a measurement.
 また、サンプル配置部31を被覆する蓋に、サンプル配置部31内へサンプル(液状)を注入するための注入口と、サンプル配置部31からサンプルを排出するための排出口とを設け、サンプルを、注入口から注入し、サンプル配置部31内を通過させて、排出口から排出することもできる。これによれば、サンプル配置部31内にサンプルを流しながら、サンプルの物性を連続的に測定することができる。 In addition, the lid that covers the sample placement unit 31 is provided with an injection port for injecting the sample (liquid) into the sample placement unit 31 and a discharge port for discharging the sample from the sample placement unit 31. It is also possible to inject from the injection port, pass through the inside of the sample placement portion 31, and discharge from the discharge port. According to this, it is possible to continuously measure the physical properties of the sample while flowing the sample through the sample placement unit 31.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明は、何ら実施例および比較例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples and comparative examples.
  製造例1(第1樹脂の製造)
 ビスフェノキシエタノールフルオレングリシジルエーテル35質量部、脂環式エポキシ樹脂である3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート40質量部、(3’,4’-エポキシシクロヘキサン)メチル-3’,4’-エポキシシクロヘキシルカルボキシレート25質量部および4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド-ビス-ヘキサフルオロアンチモネートの50質量%プロピオンカーボネート溶液2質量部を混合することにより、第1樹脂(非溶剤系の感光性エポキシ樹脂組成物)を調製した。
Production Example 1 (Production of first resin)
35 parts by mass of bisphenoxyethanol fluorene glycidyl ether, 40 parts by mass of 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate which is an alicyclic epoxy resin, (3 ′, 4′-epoxycyclohexane) methyl- 25 parts by weight of 3 ′, 4′-epoxycyclohexylcarboxylate and 50% by weight propionate carbonate solution of 4,4′-bis [di (β-hydroxyethoxy) phenylsulfinio] phenyl sulfide-bis-hexafluoroantimonate 2 The first resin (non-solvent photosensitive epoxy resin composition) was prepared by mixing parts by mass.
  製造例2(第2樹脂の製造)
 ビスフェノキシエクノールフルオレングリシジルエーテル70質量部、1,3,3-トリス{4-〔2-(3-オキセクニル)〕ブトキシフェニル}ブタン30質量部および4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド-ビス-ヘキサフルオロアンチモネートの50質量%プロピオンカーボネート溶液1質量部を乳酸エチルに溶解することにより、第2樹脂(感光性エポキシ樹脂組成物)を調製した。
<比色センサセル>
  実施例1
 シリコン基板(基板)の上に、製造例2で得られた第2樹脂を用いて、厚み50μm、幅50μmの略角柱形状に塗布した後、70℃で10分加熱することにより溶剤を揮発させた。次に、フオトマスクを介して、紫外線照射し、さらに70℃で10分加熱して反応を完了させた。次に、γ-ブチロラクトンの現像液で現像し、厚み50μm、幅110μmの略角柱形状のコア層を形成した(図3(a)参照)。
Production Example 2 (Production of second resin)
70 parts by mass of bisphenoxyecnol fluorene glycidyl ether, 30 parts by mass of 1,3,3-tris {4- [2- (3-oxecenyl)] butoxyphenyl} butane and 4,4′-bis [di (β-hydroxy A second resin (photosensitive epoxy resin composition) was prepared by dissolving 1 part by mass of a 50 mass% propion carbonate solution of (ethoxy) phenylsulfinio] phenyl sulfide-bis-hexafluoroantimonate in ethyl lactate.
<Colorimetric sensor cell>
Example 1
On the silicon substrate (substrate), the second resin obtained in Production Example 2 was applied to form a substantially prismatic shape having a thickness of 50 μm and a width of 50 μm, and then the solvent was volatilized by heating at 70 ° C. for 10 minutes. It was. Next, the reaction was completed by irradiation with ultraviolet rays through a photomask and further heating at 70 ° C. for 10 minutes. Next, development was performed with a developer of γ-butyrolactone to form a substantially prismatic core layer having a thickness of 50 μm and a width of 110 μm (see FIG. 3A).
 次いで、製造例1で得られた第1樹脂を、コア層の表面(上面)からの厚みが100μmとなるように、コア層を披覆するように基板上に塗布し、140℃で20分加熱した。この加熱処理により、第1樹脂がコア層の表層の第2樹脂に浸透した(図3(b)参照)。 Next, the first resin obtained in Production Example 1 was applied on the substrate so as to show the core layer so that the thickness from the surface (upper surface) of the core layer was 100 μm, and the coating was performed at 140 ° C. for 20 minutes. Heated. By this heat treatment, the first resin penetrated into the second resin on the surface layer of the core layer (see FIG. 3B).
 次いで、紫外線照射して、さらに120℃で10分加熱することにより反応を完了させた。これにより、アンダークラッド層を形成するとともに、コア層のアンダークラッド層と接触する表層に、第1樹脂が第2樹脂に浸透されている樹脂混合層を形成し、また、樹脂混合層に埋設される単一樹脂層を形成した(図3(c)参照)。 Then, the reaction was completed by irradiation with ultraviolet rays and further heating at 120 ° C. for 10 minutes. As a result, an undercladding layer is formed, and a resin mixed layer in which the first resin is infiltrated into the second resin is formed on the surface layer that is in contact with the undercladding layer of the core layer, and is embedded in the resin mixed layer. A single resin layer was formed (see FIG. 3C).
 次いで、アンダークラッド層およびコア層からシリコン基板を剥離させ(図3(d)参照)、アンダークラッド層およびコア層を上下反転させた。 Next, the silicon substrate was peeled from the under cladding layer and the core layer (see FIG. 3D), and the under cladding layer and the core layer were turned upside down.
 次いで、アンダークラッド層およびコア層の上に、スパッタリング法により、厚み10nmの二酸化ケイ素薄膜を保護層として形成した(図3(e)参照)。 Next, a 10 nm thick silicon dioxide thin film was formed as a protective layer on the undercladding layer and the core layer by sputtering (see FIG. 3E).
 別途、平面視においてシリコン基板と略同一形状であり、かつ、幅方向長さ1mm、伝播方向長さ12mmの開口部が形成されたシリコーンゴムシートを用意し、保護層に積層した。これにより、幅方向長さ1mm、伝播方向長さ12mmのサンプル配置部を区画した(図3(f)参照)。 Separately, a silicone rubber sheet having substantially the same shape as the silicon substrate in plan view and having an opening having a width direction length of 1 mm and a propagation direction length of 12 mm was prepared and laminated on the protective layer. Thereby, the sample arrangement | positioning part of width direction length 1mm and propagation direction length 12mm was divided (refer FIG.3 (f)).
 このようにして、比色センサセルを得た。なお、アンダークラッド層の屈折率は、1.531、樹脂混合層の屈折率は、1.584であり、混合樹脂層の屈折率は、その積層方向において、アンダークラッド層側から単一樹脂層側に向けて、1.531から1.584に連続的に変化していた。 Thus, a colorimetric sensor cell was obtained. The refractive index of the under cladding layer is 1.531, the refractive index of the resin mixed layer is 1.584, and the refractive index of the mixed resin layer is a single resin layer from the under cladding layer side in the stacking direction. Towards the side, it continuously changed from 1.531 to 1.584.
  比較例1
 140℃で20分加熱する工程を省略して、第1樹脂が第2樹脂(コア層の表層)に浸透しないようにした以外は、実施例1と同様にして、樹脂混合層を備えていない比色センサセルを得た。
Comparative Example 1
The resin mixing layer is not provided in the same manner as in Example 1 except that the step of heating at 140 ° C. for 20 minutes is omitted so that the first resin does not penetrate into the second resin (surface layer of the core layer). A colorimetric sensor cell was obtained.
  評価
 各実施例および各比較例により得られた比色センサセルを、比色センサ(図4参照)に固定した。
Evaluation The colorimetric sensor cell obtained in each example and each comparative example was fixed to a colorimetric sensor (see FIG. 4).
 その後、比色センサセルのサンプル収容部に、サンプルとして、溶質の濃度に応じて色の濃度が異なる4種のローダミンB(別名:ベーシックバイオレット10)水溶液(濃度:1ng/mL(薄い赤色)、10ng/mL(やや薄い赤色)、100ng/mL(やや濃い赤色)、1000ng/mL(濃い赤色))、および、水(ローダミンB濃度0ng/mL)を50μL投入し、コア層の一端から波長555nmの光を入射し、他端から射出した光の強度を測定した。 Thereafter, in the sample container of the colorimetric sensor cell, as a sample, four types of rhodamine B (also known as Basic Violet 10) aqueous solutions (concentration: 1 ng / mL (light red), 10 ng) having different color concentrations depending on the solute concentration. / ML (slightly red), 100 ng / mL (slightly red), 1000 ng / mL (dark red)), and 50 μL of water (rhodamine B concentration 0 ng / mL) are added, and a wavelength of 555 nm is applied from one end of the core layer. Light was incident and the intensity of the light emitted from the other end was measured.
 そして、ローダミンB水溶液や水が無い状態での光の強度を100%とした場合の透過率(%)を求めた。その結果を、表1に示す。 And the transmittance | permeability (%) when the intensity | strength of light in the state which does not have rhodamine B aqueous solution or water was set to 100% was calculated | required. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そして、ローダミンB水溶液の濃度をX軸、透過率をY軸として、それらの関係をXY座標にプロットした。その結果を、図10に示す。 Then, the concentration of the rhodamine B aqueous solution was plotted on the XY coordinates with the X axis as the concentration and the transmittance as the Y axis. The result is shown in FIG.
  結果
 樹脂混合層を形成した実施例では、樹脂混合層を形成していない比較例に比べ、ローダミンB水溶液の濃度を精度よく検出することができた。
<SPRセンサセル>
 実施例2
 シリコン基板(基板)の上に、製造例2で得られた第2樹脂を用いて、厚み50μm、幅50μmの略角柱形状に塗布した後、70℃で10分加熱することにより溶剤を揮発させた。次に、フオトマスクを介して、紫外線照射し、さらに70℃で10分加熱して反応を完了させた。次に、γ-ブチロラクトンの現像液で現像し、厚み50μm、幅50μmの略角柱形状のコア層を形成した(図7(a)参照)。
Results In the example in which the resin mixed layer was formed, the concentration of the rhodamine B aqueous solution could be detected with higher accuracy than in the comparative example in which the resin mixed layer was not formed.
<SPR sensor cell>
Example 2
On the silicon substrate (substrate), the second resin obtained in Production Example 2 was applied to form a substantially prismatic shape having a thickness of 50 μm and a width of 50 μm, and then the solvent was volatilized by heating at 70 ° C. for 10 minutes. It was. Next, the reaction was completed by irradiation with ultraviolet rays through a photomask and further heating at 70 ° C. for 10 minutes. Next, development was performed with a developer of γ-butyrolactone to form a substantially prismatic core layer having a thickness of 50 μm and a width of 50 μm (see FIG. 7A).
 次いで、製造例1で得られた第1樹脂を、コア層の表面(上面)からの厚みが100μmとなるように、コア層を披覆するように基板上に塗布し、140℃で5分加熱した。この加熱処理により、第1樹脂がコア層の表層の第2樹脂に浸透した(図7(b)参照)。 Next, the first resin obtained in Production Example 1 was applied on the substrate so as to show the core layer so that the thickness from the surface (upper surface) of the core layer was 100 μm, and the coating was performed at 140 ° C. for 5 minutes. Heated. By this heat treatment, the first resin penetrated into the second resin on the surface layer of the core layer (see FIG. 7B).
 次いで、紫外線照射して、さらに120℃で10分加熱することにより反応を完了させた。これにより、アンダークラッド層を形成するとともに、コア層のアンダークラッド層と接触する表層に、第1樹脂が第2樹脂に浸透されている樹脂混合層を形成し、また、樹脂混合層に埋設される単一樹脂層を形成した(図7(c)参照)。 Then, the reaction was completed by irradiation with ultraviolet rays and further heating at 120 ° C. for 10 minutes. As a result, an undercladding layer is formed, and a resin mixed layer in which the first resin is infiltrated into the second resin is formed on the surface layer that is in contact with the undercladding layer of the core layer, and is embedded in the resin mixed layer. A single resin layer was formed (see FIG. 7C).
 次いで、アンダークラッド層およびコア層からシリコン基板を剥離させ(図7(d)参照)、アンダークラッド層およびコア層を上下反転させた。 Next, the silicon substrate was peeled from the under cladding layer and the core layer (see FIG. 7D), and the under cladding layer and the core layer were turned upside down.
 次いで、アンダークラッド層およびコア層の上に、スパッタリング法により、厚み10nmの二酸化ケイ素薄膜を保護層として形成した(図7(e)参照)。 Next, a 10 nm-thick silicon dioxide thin film was formed as a protective layer on the undercladding layer and the core layer by sputtering (see FIG. 7 (e)).
 次いで、アンダークラッド層およびコア層の上に、オーバークラッド層を、第1樹脂を用いて、開口部を備える形状に形成し、これにより、サンプル配置部を区画した(図7(f)参照)。 Next, an over clad layer is formed on the under clad layer and the core layer in a shape having an opening using the first resin, thereby partitioning the sample placement portion (see FIG. 7F). .
 次いで、サンプル配置部(オーバークラッド層の開口部)に、スパッタリング法により、1nmのクロム薄膜、および、50nmの金薄膜を順次積層し、金属薄膜を形成した(図7(g)参照)。 Next, a 1 nm chromium thin film and a 50 nm gold thin film were sequentially laminated on the sample arrangement part (opening of the over clad layer) by sputtering to form a metal thin film (see FIG. 7G).
 このようにして、SPRセンサセルを得た。なお、アンダークラッド層の屈折率は、1.584、単一樹脂層の屈折率は、1.531であり、混合樹脂層の屈折率は、その積層方向において、アンダークラッド層側から単一樹脂層側に向けて、1.531から1.584に連続的に変化していた。 Thus, an SPR sensor cell was obtained. The refractive index of the under cladding layer is 1.584, the refractive index of the single resin layer is 1.531, and the refractive index of the mixed resin layer is a single resin from the under cladding layer side in the stacking direction. It changed continuously from 1.531 to 1.584 toward the layer side.
  実施例3
 クロム薄膜および金薄膜の積層に代えて、金粒子分散液(EMGC50、British BioCell International Ltd.製)を、サンプル収容部内の保護層に塗布し、乾燥した後、保護層に付着していない金粒子を除去するために、サンプル収容部内の保護層をエタノールで洗浄し、保護層の上に金属粒子層を形成した以外は、実施例2と同様にして、SPRセンサセルを得た(図8参照)。なお、金属粒子(金粒子)による被覆率は、30%であった。
Example 3
A gold particle dispersion liquid (EMGC50, manufactured by British BioCell International Ltd.) was applied to the protective layer in the sample storage portion instead of the chromium thin film and the gold thin film, dried, and then the gold particles not attached to the protective layer. The SPR sensor cell was obtained in the same manner as in Example 2 except that the protective layer in the sample container was washed with ethanol and a metal particle layer was formed on the protective layer (see FIG. 8). . The coverage with metal particles (gold particles) was 30%.
  比較例2
 140℃で5分加熱する工程を省略して、第1樹脂が第2樹脂(コア層の表層)に浸透しないようにした以外は、実施例2と同様にして、樹脂混合層を備えていないSPRセンサセルを得た。
Comparative Example 2
The resin mixing layer is not provided in the same manner as in Example 2 except that the step of heating at 140 ° C. for 5 minutes is omitted so that the first resin does not penetrate into the second resin (surface layer of the core layer). An SPR sensor cell was obtained.
  比較例3
 140℃で5分加熱する工程を省略して、第1樹脂が第2樹脂(コア層の表層)に浸透しないようにした以外は、実施例3と同様にして、樹脂混合層を備えていないSPRセンサセルを得た。
Comparative Example 3
The resin mixing layer is not provided in the same manner as in Example 3 except that the step of heating at 140 ° C. for 5 minutes is omitted so that the first resin does not penetrate into the second resin (surface layer of the core layer). An SPR sensor cell was obtained.
  評価
 各実施例および各比較例により得られたSPRセンサセルを、SPRセンサ(図9参照)に固定した。
Evaluation The SPR sensor cell obtained by each Example and each comparative example was fixed to the SPR sensor (see FIG. 9).
 その後、SPRセンサセルのサンプル収容部に、サンプルとして濃度が異なる5種のエチレングリコール水溶液(濃度:1質量%(屈折率:1.33389)、5質量%(屈折率:1.33764)、10質量%(屈折率:1.34245)、20質量%(屈折率:1.35231)、30質量%(屈折率:1.36249))を50μL投入し、コア層の一端から、実施例2および比較例2では波長555nm、実施例3および比較例3では波長633nmの光を入射し、他端から射出した光の強度を測定した。 Thereafter, five types of ethylene glycol aqueous solutions having different concentrations as samples (concentration: 1 mass% (refractive index: 1.33389), 5 mass% (refractive index: 1.33764), 10 mass in the sample storage portion of the SPR sensor cell. % (Refractive index: 1.34245), 20% by mass (refractive index: 1.325231), 30% by mass (refractive index: 1.36249)) were added in an amount of 50 μL. In Example 2, light having a wavelength of 555 nm was used. In Example 3 and Comparative Example 3, light having a wavelength of 633 nm was incident, and the intensity of the light emitted from the other end was measured.
 そして、エチレングリコール水溶液が無い状態での光の強度を100%とした場合の透過率(%)を求めた。 Then, the transmittance (%) was determined when the light intensity in the absence of the aqueous ethylene glycol solution was 100%.
 そして、エチレングリコール水溶液の屈折率をX軸、透過率をY軸として、それらの関係をXY座標にプロットして、検量線を作成し、その傾きを求めた。その値を表2に示す。なお、傾き(絶対値)が大きいほど検出感度が高いことを示す。 Then, with the refractive index of the ethylene glycol aqueous solution as the X axis and the transmittance as the Y axis, the relationship was plotted on the XY coordinates, a calibration curve was created, and the slope was determined. The values are shown in Table 2. In addition, it shows that a detection sensitivity is so high that inclination (absolute value) is large.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  結果
 樹脂混合層を形成した各実施例は、樹脂混合層を形成していない比較例に比べ、傾き(絶対値)が大きかった。
Results Each example in which the resin mixed layer was formed had a larger slope (absolute value) than the comparative example in which the resin mixed layer was not formed.
 本発明の比色センサセルの製造方法により得られる本発明の比色センサセルを備える本発明の比色センサ、および、本発明のSPRセンサセルの製造方法により得られる本発明のSPRセンサセルを備える本発明のSPRセンサは、化学分析や生物化学分析などの分野において、サンプルの濃度や、その変化を検出するセンサとして、好適に用いられる。 The colorimetric sensor of the present invention comprising the colorimetric sensor cell of the present invention obtained by the method of producing a colorimetric sensor cell of the present invention, and the SPR sensor cell of the present invention obtained by the method of producing the SPR sensor cell of the present invention. The SPR sensor is suitably used as a sensor for detecting the concentration of a sample and its change in fields such as chemical analysis and biochemical analysis.

Claims (6)

  1.  検知部と、前記検知部に隣接するサンプル配置部とを備え、
      前記検知部は、第1樹脂からなるアンダークラッド層と、第2樹脂からなり、前記アンダークラッド層に被覆されるコア層とを備える光導波路を備え、
     前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層が、形成されていることを特徴とする、比色センサセル。
    A detection unit, and a sample placement unit adjacent to the detection unit,
    The detection unit includes an optical waveguide including an under cladding layer made of a first resin and a core layer made of a second resin and covered with the under cladding layer,
    A colorimetric sensor cell, wherein a resin mixed layer in which the first resin is infiltrated into the second resin is formed on a surface layer of the core layer that is in contact with the under cladding layer.
  2.  請求項1に記載の比色センサセルを備えることを特徴とする比色センサ。 A colorimetric sensor comprising the colorimetric sensor cell according to claim 1.
  3.  基板の上に、第2樹脂からなるコア層を所定パターンで形成する工程と、
     前記基板の上において、第1樹脂を、前記コア層を被覆するとともに、前記コア層の表層に前記第1樹脂を浸透させるように、塗布および加熱する工程と、
     前記第1樹脂を硬化させることにより、前記第1樹脂からなるアンダークラッド層を形成するとともに、前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層を形成する工程と
    を備えることを特徴とする、比色センサセルの製造方法。
    Forming a core layer made of the second resin in a predetermined pattern on the substrate;
    Applying and heating the first resin on the substrate so as to cover the core layer and to allow the first resin to penetrate into the surface layer of the core layer;
    By curing the first resin, an undercladding layer made of the first resin is formed, and the first resin is infiltrated into the second resin in a surface layer of the core layer that contacts the undercladding layer. And a step of forming a resin mixed layer. A method for producing a colorimetric sensor cell.
  4.  検知部と、前記検知部に隣接するサンプル配置部とを備え、
      前記検知部は、第1樹脂からなるアンダークラッド層と、第2樹脂からなり、前記アンダークラッド層に被覆されるコア層とを備える光導波路を備え、
     前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層が、形成されていることを特徴とする、SPRセンサセル。
    A detection unit, and a sample placement unit adjacent to the detection unit,
    The detection unit includes an optical waveguide including an under cladding layer made of a first resin and a core layer made of a second resin and covered with the under cladding layer,
    An SPR sensor cell, wherein a resin mixed layer in which the first resin is infiltrated into the second resin is formed on a surface layer of the core layer that is in contact with the under cladding layer.
  5.  請求項4に記載のSPRセンサセルを備えることを特徴とするSPRセンサ。 An SPR sensor comprising the SPR sensor cell according to claim 4.
  6.  基板の上に、第2樹脂からなるコア層を所定パターンで形成する工程と、
     前記基板の上において、第1樹脂を、前記コア層を被覆するとともに、前記コア層の表層に前記第1樹脂を浸透させるように、塗布および加熱する工程と、
     前記第1樹脂を硬化させることにより、前記第1樹脂からなるアンダークラッド層を形成するとともに、前記コア層の前記アンダークラッド層と接触する表層に、前記第1樹脂が前記第2樹脂に浸透されている樹脂混合層を形成する工程と
    を備えることを特徴とする、SPRセンサセルの製造方法。
    Forming a core layer made of the second resin in a predetermined pattern on the substrate;
    Applying and heating the first resin on the substrate so as to cover the core layer and to allow the first resin to penetrate into the surface layer of the core layer;
    By curing the first resin, an undercladding layer made of the first resin is formed, and the first resin is infiltrated into the second resin in a surface layer of the core layer that contacts the undercladding layer. Forming a resin mixed layer. A method for manufacturing an SPR sensor cell.
PCT/JP2011/067883 2010-11-15 2011-08-04 Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, spr sensor cell, spr sensor, and method for producing spr sensor cell WO2012066829A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010255167A JP5503505B2 (en) 2010-11-15 2010-11-15 Colorimetric sensor cell, colorimetric sensor and method for producing colorimetric sensor cell
JP2010-255168 2010-11-15
JP2010255168A JP2012107902A (en) 2010-11-15 2010-11-15 Spr sensor cell, spr sensor, and method for manufacturing spr sensor cell
JP2010-255167 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012066829A1 true WO2012066829A1 (en) 2012-05-24

Family

ID=46083773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067883 WO2012066829A1 (en) 2010-11-15 2011-08-04 Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, spr sensor cell, spr sensor, and method for producing spr sensor cell

Country Status (1)

Country Link
WO (1) WO2012066829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081929A (en) * 2013-10-21 2015-04-27 日東電工株式会社 Optical waveguide, and spr sensor cell and colorimetric sensor cell using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019100A (en) * 1998-07-06 2000-01-21 Suzuki Motor Corp Spr sensor cell and immunoreaction-measuring device using the same
JP2000356585A (en) * 1999-06-16 2000-12-26 Suzuki Motor Corp Spr sensor cell and immune reaction-measuring device using it
JP2007033203A (en) * 2005-07-26 2007-02-08 Toshiba Corp Optical sensor chip
JP2008009150A (en) * 2006-06-29 2008-01-17 Nitto Denko Corp Method of manufacturing optical waveguide
JP2009103827A (en) * 2007-10-22 2009-05-14 Panasonic Electric Works Co Ltd Photoelectric complex substrate, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019100A (en) * 1998-07-06 2000-01-21 Suzuki Motor Corp Spr sensor cell and immunoreaction-measuring device using the same
JP2000356585A (en) * 1999-06-16 2000-12-26 Suzuki Motor Corp Spr sensor cell and immune reaction-measuring device using it
JP2007033203A (en) * 2005-07-26 2007-02-08 Toshiba Corp Optical sensor chip
JP2008009150A (en) * 2006-06-29 2008-01-17 Nitto Denko Corp Method of manufacturing optical waveguide
JP2009103827A (en) * 2007-10-22 2009-05-14 Panasonic Electric Works Co Ltd Photoelectric complex substrate, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081929A (en) * 2013-10-21 2015-04-27 日東電工株式会社 Optical waveguide, and spr sensor cell and colorimetric sensor cell using the same

Similar Documents

Publication Publication Date Title
JP5479314B2 (en) SPR sensor cell and SPR sensor
WO2011158660A1 (en) Spr sensor cell and spr sensor
JP5425141B2 (en) SPR sensor cell and SPR sensor
WO2013129378A1 (en) Spr sensor cell, and spr sensor
WO2014038475A1 (en) Spr sensor cell and spr sensor
JP5503505B2 (en) Colorimetric sensor cell, colorimetric sensor and method for producing colorimetric sensor cell
JP5946330B2 (en) SPR sensor cell and SPR sensor
WO2013001848A1 (en) Spr sensor cell and spr sensor
WO2012066829A1 (en) Colorimetric sensor cell, colorimetric sensor, method for producing colorimetric sensor cell, spr sensor cell, spr sensor, and method for producing spr sensor cell
JP2012107902A (en) Spr sensor cell, spr sensor, and method for manufacturing spr sensor cell
JP6076786B2 (en) SPR sensor cell and SPR sensor
WO2013038830A1 (en) Spr sensor cell and spr sensor
JP2016085160A (en) Spr sensor cell and spr sensor
WO2013129379A1 (en) Spr sensor cell, and spr sensor
WO2015002009A1 (en) Spr sensor cell, and spr sensor
JP2013117545A (en) Spr sensor cell and spr sensor
JP2014185894A (en) SPR sensor cell and SPR sensor
JP2011179978A (en) Spr sensor cell and spr sensor
JP2016085161A (en) Spr sensor cell and spr sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841946

Country of ref document: EP

Kind code of ref document: A1