WO2015001922A1 - Method for manufacturing organic electroluminescence element, organic electroluminescence element, and organic electroluminescence module - Google Patents

Method for manufacturing organic electroluminescence element, organic electroluminescence element, and organic electroluminescence module Download PDF

Info

Publication number
WO2015001922A1
WO2015001922A1 PCT/JP2014/065303 JP2014065303W WO2015001922A1 WO 2015001922 A1 WO2015001922 A1 WO 2015001922A1 JP 2014065303 W JP2014065303 W JP 2014065303W WO 2015001922 A1 WO2015001922 A1 WO 2015001922A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
transparent electrode
functional layer
transparent
light
Prior art date
Application number
PCT/JP2014/065303
Other languages
French (fr)
Japanese (ja)
Inventor
小島 茂
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015525114A priority Critical patent/JP6337897B2/en
Publication of WO2015001922A1 publication Critical patent/WO2015001922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/221Static displays, e.g. displaying permanent logos
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element, an organic electroluminescence element produced thereby, and an organic electroluminescence module including the same. More specifically, the present invention relates to a method of manufacturing an organic electroluminescence element that has no emission unevenness, has a high definition of a display image shape, and can switch a light emission pattern.
  • light emitting diodes using a light guide plate Light Emitting Diode, abbreviated as LED
  • organic light emitting diodes Organic Light Emitting Diode, abbreviated as OLED, hereinafter also referred to as an organic electroluminescent element
  • the light guide plate LED has been used not only for general illumination but also for various scenes and applications such as a backlight for a liquid crystal display (Liquid Crystal Display, abbreviated as LCD) (for example, see Patent Document 1). .)
  • a light guide plate LED is often incorporated as a backlight for a common function key button at the lower part of the device as another use. Yes.
  • buttons are mainly used in three types: home (displayed with a square mark), back (displayed with an arrow mark, etc.), and search (displayed with a magnifying glass mark, etc.).
  • buttons print a pattern of a mark to be displayed on the cover glass, install the light guide plate LED as described above inside the cover glass, The LED emits light according to the required scene, the light is guided through the light guide plate (film), and the light is extracted to the display side through the dot-shaped diffusion member printed on the pattern portion.
  • Patent Document 1 cannot display images having different shapes at the same position on the display screen.
  • At the time of manufacturing the organic electroluminescence element at least one layer of the organic functional layer or the constituent electrode layer is irradiated with ultraviolet light through a photomask to deactivate the light emitting function, thereby changing the light emitting function of a predetermined pattern region.
  • An organic light emitting device having a specific light emission pattern has been proposed (see, for example, Patent Document 2).
  • the patterning method using a mask during film formation has a problem that the resolution of the display pattern image is low.
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is that the display image of the light emission display pattern is excellent in shape accuracy (sharpness), has high light emission luminance, and the light emission pattern is switched. And a method of manufacturing an organic electroluminescent element capable of displaying a plurality of different images individually or simultaneously in the same display region, an organic electroluminescent element obtained by the method, and further comprising the organic electroluminescent element An organic electroluminescence module is provided.
  • the present inventor has at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, Having a third transparent electrode and a transparent sealing member, the two organic functional layer units can emit light by electrical drive individually or simultaneously, and individually irradiate light from the transparent substrate side and the transparent sealing member side,
  • Each organic functional layer unit forms a different display image composed of a region in which the light emitting function is modulated and a region in which the light emitting function is not modulated.
  • Excellent pattern shape accuracy (sharpness), high emission brightness, switchable emission patterns, and display different images individually or simultaneously in the same display area It found that it is possible to produce machine electroluminescent device, leading to the present invention.
  • An organic electroluminescence device having at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode, and a transparent sealing member in this order on a transparent substrate.
  • a method for producing an organic electroluminescence element to be produced comprising: The first organic functional layer unit and the second organic functional layer unit are independently capable of emitting light by electrical driving individually or simultaneously, Light irradiation is performed in different patterns from the transparent substrate side and the transparent sealing member side, respectively, and the first organic functional layer unit and the second organic functional layer unit are modulated with regions where the light emitting function is modulated.
  • a method for producing an organic electroluminescence element comprising forming different display images composed of regions that are not formed.
  • the patterning method by light irradiation is a method of patterning different display images from the transparent substrate side and the transparent sealing member side using ultraviolet rays as an irradiation light source. Manufacturing method of luminescence element.
  • An organic electroluminescence device manufactured by the method for manufacturing an organic electroluminescence device according to any one of items 1 to 9, On the transparent substrate, at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode and a transparent sealing member are provided in this order, and the first An organic electroluminescent element, wherein the organic functional layer unit and the second organic functional layer unit have a function of displaying different images formed by light irradiation.
  • An organic electroluminescence module comprising the organic electroluminescence element according to item 10.
  • the organic electroluminescence module according to item 11 comprising a polarizing member, a half mirror member, or a black filter on the light emitting surface side of the transparent substrate constituting the organic electroluminescence element.
  • the shape display accuracy (sharpness) of the light emission display pattern image is excellent, the light emission luminance is high, the light emission pattern can be switched, and different images are displayed individually or simultaneously in the same display area.
  • An organic electroluminescence element production method for producing an organic electroluminescence element that can be produced, an organic electroluminescence element obtained thereby, and an organic electroluminescence module equipped with the organic electroluminescence element can be provided.
  • the present inventor has at least a first transparent electrode, a first organic functional layer unit, a first organic electroluminescence element as a configuration. 2 transparent electrodes, a second organic functional layer unit, a third transparent electrode, and a transparent sealing member.
  • the light irradiation is performed in different patterns from the transparent substrate side and the transparent sealing member side, and the first In the organic functional layer unit and the second organic functional layer unit, different display images composed of a region where the light emitting function is modulated and a region where the light emitting function is not modulated are formed, and the first organic functional layer unit and the second organic functional layer unit
  • each organic functional layer unit emit light independently or simultaneously by electrical drive, different image information with high definition can be obtained within the same area.
  • a method of manufacturing an organic electroluminescent device can be displayed instantaneously.
  • the first to third transparent electrodes are all composed of transparent electrodes, so that even if the displayed images are observed from different angles, the color change hardly occurs, and it is excellent. Visibility can be expressed.
  • FIG. 1 Schematic sectional view showing an example of the configuration of an organic electroluminescence element
  • the schematic diagram which shows the other example of the two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit Schematic diagram illustrating an example of a method for displaying two different images
  • the schematic diagram which shows another example of two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit.
  • Schematic diagram showing an example of two different display images and their combined display images formed on the first organic functional layer unit and the second organic functional layer unit Schematic sectional view showing an example of the configuration of an organic electroluminescence module provided with an organic electroluminescence element
  • the manufacturing method of the organic electroluminescent element (hereinafter abbreviated as an organic EL element) of the present invention includes at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, and a second organic material on a transparent substrate.
  • a method for manufacturing an organic electroluminescent element which includes a functional layer unit, a third transparent electrode, and a transparent sealing member in this order
  • the first organic functional layer unit and the second organic functional layer unit Are capable of independently or simultaneously emitting light individually or simultaneously, irradiating light in different patterns from the transparent substrate side and the transparent sealing member side, respectively, the first organic functional layer unit and the first 2
  • the patterning method by light irradiation according to the present invention further uses different ultraviolet light as an irradiation light source to display different display images from the transparent substrate side and the transparent sealing member side.
  • the patterning method is a preferable aspect from the viewpoint that a sharp display image with higher definition can be formed.
  • At least one electrode selected from the first transparent electrode, the second transparent electrode, and the third transparent electrode is formed of a thin film metal, and further, the first transparent electrode, the second transparent electrode, and the third transparent electrode It is preferable that all of the electrodes are formed of a thin film metal from the viewpoint that the hue of the display image does not change when observed from different angles and the visibility of the display image can be improved.
  • setting the thickness of the second transparent electrode to be the thickest is specific to the organic functional layer unit from one surface side. It is preferable from the viewpoint of preventing the influence of light irradiation on the organic functional layer unit disposed on the other surface side when the pattern is irradiated with light.
  • the electrode formed of the thin film metal is a thin silver electrode from the viewpoint of obtaining higher transparency.
  • a base layer containing an organic compound having at least one atom selected from nitrogen and sulfur is provided below the thin silver electrode, and the uniformity of the thin silver electrode formed thereon can be improved. To preferred.
  • the drive circuit it is easy to design the drive circuit by forming the first transparent electrode and the third transparent electrode as anodes, or forming the first transparent electrode and the third transparent electrode as cathodes. preferable.
  • the organic EL element of the present invention can be suitably provided in an organic EL module.
  • the organic EL module of the present invention having a polarizing member, a half mirror member or a black filter on the light emitting surface side of the support substrate constituting the organic EL element displays a clear black image when no light is emitted. It is preferable because it can be used.
  • representing a numerical range is used in the sense that numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the structure of the organic EL element manufactured by the method for manufacturing the organic EL element of the present invention includes at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit on a transparent substrate.
  • the third transparent electrode and the transparent sealing member are configured in this order, and the first organic functional layer unit and the second organic functional layer unit can independently and simultaneously emit light individually or simultaneously, Light irradiation is performed in a different pattern from each of the transparent substrate side and the transparent sealing member side, and the first organic functional layer unit and the second organic functional layer unit have a region in which a light emitting function is modulated by light irradiation, In this case, different display images composed of unmodulated regions are formed.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic electroluminescence element of the present invention.
  • the organic EL element EL includes a first transparent electrode A, a first organic functional layer unit U1, a second transparent electrode B, a second organic functional layer unit U2, and a third transparent substrate on a transparent substrate 1. It consists of an electrode C and a transparent sealing member D.
  • Different display images are formed on the first organic functional layer unit U1 and the second organic functional layer unit U2.
  • a method for forming a display image as shown in FIG. 1, in the process of manufacturing an organic EL element, after producing an organic EL element (EL), light irradiation L1 is performed through a mask member from the transparent substrate 1 side.
  • a region where the light emission function is modulated by the light irradiation L1 and a region where the light emission function is not modulated are formed to form a specific display image.
  • light irradiation L2 is performed from the transparent sealing member D side, and a region where the light emitting function is modulated and a region where the light emitting function is not modulated are formed in the second organic functional layer unit U2, and the first organic functional layer is formed.
  • a specific display image different from the image formed in the unit U1 is formed.
  • the first transparent electrode A and the second transparent electrode B are wired with a lead wire 20A, and a voltage within a range of 2 to 40 V from the drive power source V1 is applied to each connection terminal, thereby providing the first organic function.
  • the layer unit U1 is caused to emit light independently.
  • the second transparent electrode B and the third transparent electrode C are also wired with a lead wire 20B, and a voltage within a range of 2 to 40 V from the drive power supply V2 is applied to each connection terminal, whereby the second organic
  • the functional layer unit U2 emits light independently with an image different from that of the first organic functional layer unit U1.
  • the first organic functional layer unit U1 and the second organic functional layer unit U2 display different images.
  • FIGS. 2A and 2B are schematic views showing examples of two different display images formed by the first organic functional layer unit U1 and the second organic functional layer unit U2.
  • the drive power source V1 is applied between the first transparent electrode A and the second transparent electrode B, and an upward arrow image 22A as shown in FIG. 2A is displayed.
  • the background 21 is a region where the light emitting function formed by light irradiation is modulated, that is, a non-light emitting region where the light emitting function is deactivated by light irradiation.
  • the upward arrow image 22A is formed in an unmodulated area where no light irradiation is performed, that is, a light emitting area maintaining the light emitting function, and displays the upward arrow image 22A as a display image.
  • the drive power source V2 is applied between the second transparent electrode B and the third transparent electrode C, and the downward arrow image 22B shown in FIG. 2B is displayed.
  • the background 21 is a region where the light emitting function formed by light irradiation is modulated, that is, a non-light emitting region.
  • the downward arrow image 22B is formed as an unmodulated area where no light irradiation is performed, that is, a light emitting area, and displays the downward arrow image 22B as a display image.
  • FIG. 3 is a schematic diagram for explaining an example of a method for displaying two different images.
  • an image E is a light emission pattern (upward arrow image 22 ⁇ / b> A in FIG. 2) of the first organic functional layer unit U ⁇ b> 1 sandwiched between the first transparent electrode A and the second transparent electrode B
  • the image F is It is the light emission pattern (downward arrow image 22B in 9 in FIG. 2) of the 2nd organic functional layer unit U2 pinched
  • the image E and the image F are displayed in a state where they do not overlap each other, but a method of displaying images while overlapping each other may be used.
  • FIG. 4 is a schematic diagram illustrating another example of two different display images formed on the organic functional layer unit U1 and the organic functional layer unit U2.
  • the upward and downward arrow images are described as examples of display images.
  • the display image shown in FIG. “ ⁇ ”, “ ⁇ ” display as shown display of different types of traffic signs as shown in FIG. 4B, signal display at pedestrian crossings etc. as shown in FIG. 4C (“advance” and “stop”)
  • FIG. 4D In addition to individually displaying each of the different geometric figures as shown in FIG. 4D, a method of simultaneously displaying (combining patterns) combining them can also be cited.
  • the organic EL element of the present invention in addition to changing the display image shape as exemplified above, a method of changing the emission color between the organic functional layer unit U1 and the organic functional layer unit U2, for example, In the configuration as shown in FIG. 4C, the “advance” display can be displayed in blue, and the “stop” display can be displayed in red.
  • the organic EL device having different light emission patterns of the present invention has a structure in which at least two organic functional layer units are laminated between at least a pair of transparent electrodes, and the light emission patterns differ depending on the state. It is possible to switch between and display.
  • the “light emission pattern” is displayed by an organic EL element, for example, a design (pattern or pattern in the figure), characters, and images as illustrated in FIGS. 2A, 2B, and 4A to 4D.
  • Image shape information such as the above, and in addition, color information for emitting light with different emission colors between the organic functional layer unit U1 and the organic functional layer unit U2.
  • the organic EL element (EL) of the present invention has a first transparent electrode A, a first organic functional layer unit U1, a second transparent electrode B, a second organic functional layer unit U2,
  • the 3rd transparent electrode C and the transparent sealing member D can be manufactured by the process (lamination process) which laminates
  • a transparent substrate 1 is prepared, and a thin film made of a material for forming a first transparent electrode, for example, a material for an anode, is formed on the transparent substrate 1 so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • the first transparent electrode A is formed by a method such as vapor deposition or sputtering.
  • first transparent electrode A for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like are sequentially laminated to form a first organic functional layer unit U1.
  • each of these layers there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a homogeneous layer is easily obtained and pinholes are difficult to generate. Vacuum deposition or spin coating is particularly preferred. Further, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C.
  • the degree of vacuum is 1 ⁇ 10 ⁇ 6 to Within a range of 1 ⁇ 10 ⁇ 2 Pa, a deposition rate within a range of 0.01 to 50 nm / second, a substrate temperature within a range of ⁇ 50 to 300 ° C., and a layer thickness within a range of 0.1 to 5 ⁇ m. Therefore, it is desirable to appropriately select each condition.
  • the second transparent electrode B is formed thereon.
  • each layer of the second organic functional layer unit U2 is formed in the same manner as the formation of the first organic functional layer unit U1.
  • the third transparent electrode C is formed thereon by a film forming method such as a vapor deposition method or a sputtering method.
  • a transparent sealing member D for blocking at least the first organic functional layer unit U1 and the second organic functional layer unit U2 from the outside air is provided on the transparent substrate 1.
  • modulating the light emitting function by light irradiation means deactivating or lowering the light emitting function of the material constituting the light emitting unit by light irradiation.
  • a hole transporting material etc.
  • a method of changing the light emitting function of the light emitting unit by changing the function is preferable.
  • a predetermined pattern region of the first organic functional layer unit U1 and the second organic functional layer unit U2 is irradiated with a predetermined light to make the irradiated part a light emitting region whose luminance has changed. Any method can be used as long as it is possible, and the method is not limited to a specific method.
  • the light irradiated in the light irradiation step may have ultraviolet light, visible light, or infrared light, but light irradiation including ultraviolet light is particularly preferable.
  • the term “ultraviolet rays” as used in the present invention refers to electromagnetic waves having a wavelength longer than that of X-rays and shorter than the shortest wavelength of visible light, and specifically, light having a wavelength in the range of 1 to 400 nm.
  • the ultraviolet ray generating means and the irradiating means are not particularly limited as long as the ultraviolet ray is generated and irradiated by a conventionally known apparatus or the like.
  • the light source include a high-pressure mercury lamp, a low-pressure mercury lamp, a hydrogen (deuterium) lamp, a rare gas (xenon, argon, helium, neon, etc.) discharge lamp, a nitrogen laser, and an excimer laser (XeCl, XeF, KrF, KrCl). Etc.), hydrogen laser, halogen laser, various harmonics of visible (LD) -infrared laser (THG (Third Harmonic Generation) light of YAG laser) and the like.
  • Such a light irradiation step is preferably performed after the sealing step.
  • an organic EL element (EL) having two different light emission patterns can be manufactured.
  • the first transparent electrode D to the third transparent electrode C are manufactured consistently by a single evacuation. May be taken out and subjected to different forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the first transparent electrode A is an anode
  • the second transparent electrode B is a cathode and an anode
  • the third transparent electrode C is a cathode.
  • the first transparent electrode A may be configured as a cathode
  • the second transparent electrode B may be configured as an anode and a cathode
  • the third transparent electrode C may be configured as an anode.
  • the drive system in which the first transparent electrode A and the third transparent electrode C act as anodes and the second transparent electrode B acts as a cathode, or the first transparent electrode A for ease of design of the drive circuit.
  • a driving method in which the third transparent electrode C acts as a cathode and the second transparent electrode B acts as an anode is more preferable.
  • the present invention is characterized in that light irradiation is performed from the transparent substrate side and the transparent sealing member side as described above, and different display images are patterned.
  • the irradiated light passes through the second transparent electrode B and affects the second organic functional layer unit U2.
  • the conditions are set so that the irradiated light passes through the second transparent electrode B and does not affect the first organic functional layer unit U1 when the light emitting pattern of the second organic functional layer unit U2 is formed. This is important in forming a sharp light emission pattern (display image) with high accuracy and excellent sharpness.
  • the film thickness of the second transparent electrode is set to be the thickest among the first transparent electrode, the second transparent electrode, and the third transparent electrode.
  • a method for preventing the passage of unnecessary light a method for controlling the amount of light to be irradiated to an optimum condition, for example, when irradiating ultraviolet rays from the transparent substrate side, the first transparent electrode A or the first first through which the ultraviolet rays pass. Since it is absorbed stepwise by the constituent layers of the organic functional layer unit U1, it is preferable to set the light amount so as not to finally reach or pass through the second transparent electrode B.
  • the light intensity or the irradiation time and controlling the light irradiation amount it is possible to change the light emission luminance of the light irradiation portion according to the light irradiation amount.
  • the ultraviolet light irradiated from the surface side is absorbed and attenuated as it passes through the organic functional layer as described above, and therefore when reaching the second transparent electrode.
  • the amount of light decreases considerably, and the probability of passing through the second transparent electrode and affecting the other organic functional layer unit is low.
  • the light absorptance of each organic layer which is a measure of the light attenuation rate when passing through each organic layer, is, for example, the optical constant (refractive index n, extinction coefficient k) of each organic layer. It can be obtained by performing a simulation based on this measured value.
  • the light passing through the second transparent electrode can be kept low by adjusting the film thickness of the organic layer and the intermediate electrode.
  • a non-transparent processed mask plate so that the non-irradiation region 22A (non-modulated region, light emission region) of FIG. Prepare.
  • the mask plate is fixed by aligning the light emission position of FIG. 2A and the mask plate from the transparent substrate 1 side. After the alignment is completed, a light irradiation process is performed to change the brightness of the arrow-shaped peripheral part (irradiation region 21).
  • the mask plate is fixed by aligning the light emission position of FIG. 2B and the mask plate from the transparent sealing substrate D side. After the alignment is completed, a light irradiation process is performed to change the brightness of the arrow-shaped peripheral part (irradiation region 21).
  • the electrical driving of the first organic functional layer unit U1 and the second organic functional layer unit U2 by the driving voltages V1 and V2 is controlled by a driver IC (Integrated Circuit) based on information from a position sensor or the like.
  • a driver IC Integrated Circuit
  • the luminescent color of the 1st organic functional layer unit U1 and the 2nd organic functional layer unit U2 is arbitrary, and may be the same or different.
  • transparent substrate examples of the transparent substrate 1 applicable to the organic EL element of the present invention include transparent materials such as glass and plastic. Examples of the transparent substrate 1 that is preferably used include glass, quartz, and a resin film.
  • the “transparent substrate” in the present invention is a substrate having a light transmittance of 50% or more at a light wavelength of 550 nm, preferably.
  • the base material is 70% or more, and more preferably 80% or more.
  • the glass material examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary.
  • a combined hybrid coating can be formed.
  • polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), and cellulose acetate.
  • Cellulose esters such as butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene
  • resin polymethylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PE ), Polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade name, Mitsui Chemicals) And other cycloolefin resins (abbreviation: COP).
  • CAP cellulose acetate propionate
  • COP cycloolefin resins
  • the surface of the transparent substrate 1 is preferably made hydrophilic by a surface activation treatment.
  • surface activation treatment include corona treatment, plasma treatment, and flame treatment.
  • the transparent substrate 1 described above may have a configuration in which a gas barrier layer is provided as necessary.
  • the transparent substrate 1 on which the gas barrier layer is formed has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% measured by a method according to JIS K 7129-1992. is preferably / m 2 ⁇ 24h or less, more, oxygen permeability measured by the method based on JIS K 7126-1987 is, 1 ⁇ 10 -3 ml / m 2 ⁇ 24h ⁇ atm (1atm is 1.01325 ⁇ 10 5 Pa) or less, and the water vapor permeability at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% is 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less. Is preferred.
  • any material may be used as long as it has a function of suppressing intrusion into the system, although it causes deterioration of the organic EL element such as moisture and oxygen.
  • An inorganic layer made of an inorganic material such as Furthermore, in order to improve the fragility of the gas barrier layer, a laminated structure of these inorganic layers and an organic layer made of an organic material is more preferable.
  • limiting in particular about the lamination order of an inorganic layer and an organic layer It is preferable that it is the structure which laminates
  • transparent electrode All of the first to third transparent electrodes according to the present invention are transparent electrodes.
  • transparent means that the light transmittance at a light wavelength of 550 nm is 50% or more.
  • all metal materials that can be used for forming electrodes of organic EL elements can be used. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO (indium tin oxide ( Indium Tin Oxide (ITO)), ZnO, TiO 2 , SnO 2 and other oxide semiconductors.
  • ITO indium tin oxide ( Indium Tin Oxide (ITO)
  • ZnO titanium oxide
  • TiO 2 Tin Oxide
  • At least one electrode is preferably formed of a thin film metal, more preferably all of the first transparent electrode, the second transparent electrode, and the third transparent electrode.
  • the electrode is formed of a thin film metal.
  • the electrode film thickness is preferably in the range of 5 to 30 nm, more preferably 5 to 20 nm.
  • the film thickness of a 2nd transparent electrode among the 1st transparent electrode, a 2nd transparent electrode, and a 3rd transparent electrode, and it is preferable to set as a film thickness a 1st transparent electrode and
  • the film thickness of the second transparent electrode is preferably 1.1 to 2.0 times that of the second transparent electrode, and more preferably 1.2 to 1.6 times.
  • the electrode formed of a thin film metal is preferably a thin silver electrode composed of silver or an alloy containing silver as a main component, and has a thickness in the range of 5 to 30 nm.
  • the thickness is preferably 5 to 20 nm.
  • the alloy having silver as a main component in the present invention means that the proportion of silver in the metal constituting the alloy is 60% by mass or more, preferably 80% by mass or more.
  • the first transparent electrode to the third transparent electrode are thin silver electrodes composed of silver or an alloy containing silver as a main component, at least one selected from nitrogen atoms and sulfur atoms is provided below the first transparent electrodes. It is preferable to have a base layer containing an organic compound having the above atoms, and in particular, it is preferable to provide a base layer having the structure between the transparent substrate and the first transparent electrode formed of a thin silver electrode.
  • the material constituting the underlayer is not particularly limited as long as it can suppress aggregation of silver when forming a thin silver electrode made of silver or an alloy containing silver as a main component,
  • the organic compound etc. which have at least 1 sort (s) of atom selected from a nitrogen atom and a sulfur atom are mentioned.
  • the organic compound may be one kind or a mixture of two or more kinds. In addition, it is allowed to mix a compound having no nitrogen atom and sulfur atom within a range that does not impair the effect of the underlayer.
  • the upper limit of the thickness of the underlayer is preferably less than 50 nm, more preferably less than 30 nm, still more preferably less than 10 nm, and particularly preferably less than 5 nm. By making the layer thickness less than 50 nm, optical loss can be minimized.
  • the lower limit of the layer thickness is preferably 0.05 nm or more, more preferably 0.1 nm or more, and particularly preferably 0.3 nm or more.
  • the method for forming the underlayer is not particularly limited.
  • a method using a wet process such as an inkjet method, a coating method, or a dip method, a vapor deposition method (for example, resistance heating, EB method, etc.), a sputtering method
  • a method using a dry process such as a CVD method.
  • the vapor deposition method is preferably applied.
  • the organic compound having a nitrogen atom is preferably a compound having a melting point of 80 ° C. or higher and a molecular weight Mw in the range of 150 to 1200, and having a large interaction with silver or a silver alloy, Examples thereof include nitrogen-containing heterocyclic compounds and phenyl group-substituted amine compounds.
  • the organic compound having a nitrogen atom has an effective unshared electron pair content [n / M] (a ratio of the number n of effective unshared electron pairs to the molecular weight M of the organic compound having a nitrogen atom) of 2.0.
  • the compound is selected so as to be ⁇ 10 ⁇ 3 or more, and more preferably 3.9 ⁇ 10 ⁇ 3 or more.
  • the effective unshared electron pair is an unshared electron pair that is not involved in aromaticity among the unshared electron pairs of the nitrogen atoms constituting the compound.
  • the aromaticity here refers to an unsaturated cyclic structure in which atoms having ⁇ electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”, and is included in the ⁇ electron system on the ring. Is 4n + 2 (n is an integer of 0 or more).
  • the effective unshared electron pair as described above is such that the unshared electron pair possessed by the nitrogen atom is aromatic regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a heteroatom constituting the aromatic ring. It is selected based on whether or not it is involved in the family. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is an effective unshared electron pair. Counted as one of
  • the number n of effective unshared electron pairs coincides with the number of nitrogen atoms having effective unshared electron pairs.
  • the effective unshared electron pair content [n / M] is based on the mixing ratio of each compound and the effective molecular weight M of the mixed compound.
  • the number n of unshared electron pairs is calculated, and the ratio of the number n of effective unshared electron pairs to the molecular weight M is defined as the effective unshared electron pair content [n / M], and this value is within the predetermined range described above. It is preferable that
  • the low molecular weight organic compound having a nitrogen atom constituting the underlayer As the low molecular weight organic compound having a nitrogen atom constituting the underlayer, the above-described exemplary compound No. 1 having an effective unshared electron pair content [n / M] of 2.0 ⁇ 10 ⁇ 3 or more is used. 1 to 45 are shown, but the present invention is not particularly limited thereto.
  • Exemplified Compound No. In 31 copper phthalocyanine among the unshared electron pairs of nitrogen atoms, the unshared electron pairs of nitrogen atoms not coordinated to copper are counted as effective unshared electron pairs.
  • the above exemplified compound No. Table 1 shows the number n of effective unshared electron pairs, the molecular weight M, and the effective unshared electron pair content [n / M] for 1 to 45.
  • a polymer having nitrogen atom in the present invention, a polymer can also be used as the organic compound having a nitrogen atom.
  • the polymer having a nitrogen atom preferably has a weight average molecular weight in the range of 1,000 to 1,000,000.
  • the polymer having a nitrogen atom is preferably a polymer having a partial structure represented by the following general formula (P1) or a partial structure represented by the following general formula (P2).
  • a 1 represents a divalent nitrogen atom-containing group.
  • Y 1 represents a divalent organic group or a bond.
  • n1 represents the number of repetitions with a weight average molecular weight in the range of 1,000 to 1,000,000.
  • a 2 represents a monovalent nitrogen atom-containing group.
  • n2 represents an integer of 1 or more.
  • n2 is preferably an integer in the range of 1 to 3 from the viewpoint of interaction with silver, and more preferably 1 or 2 from the viewpoint of ease of synthesis.
  • the plurality of A 2 may be the same or different.
  • a 3 and A 4 each represent a divalent nitrogen atom-containing group.
  • a 3 and A 4 may be the same or different.
  • n3 and n4 each independently represents 0 or 1.
  • Y 2 represents an (n2 + 2) valent organic group.
  • n1 represents the number of repetitions with a weight average molecular weight in the range of 1,000 to 1,000,000.
  • the polymer having the partial structure represented by the general formula (P1) or (P2) is a homopolymer composed of only a single structural unit derived from the general formula (P1) or (P2). It may be a copolymer (copolymer) composed of only two or more structural units derived from the above general formula (P1) or (P2).
  • the copolymer may be formed by further having another structural unit having no nitrogen atom-containing group.
  • the content of the monomer derived from the other structural unit has the effect of the polymer having a nitrogen atom according to the present invention.
  • it is not particularly limited as long as it is not impaired, it is preferably in the range of 10 to 75 mol%, more preferably in the range of 20 to 50 mol% in the monomers derived from all structural units.
  • the terminal of the polymer having the partial structure represented by the general formula (P1) or (P2) is not particularly limited and is appropriately defined depending on the type of raw material (monomer) used. is there.
  • the monovalent nitrogen atom-containing group represented by A 2 is not particularly limited as long as it is an organic group having a nitrogen atom.
  • nitrogen atom-containing groups include amino groups, dithiocarbamate groups, thioamide groups, cyano groups (—CN), isonitrile groups (—N + ⁇ C ⁇ ), isocyanate groups (—N ⁇ C ⁇ O). ), A thioisocyanate group (—N ⁇ C ⁇ S), or a group containing a substituted or unsubstituted nitrogen-containing aromatic ring.
  • the polymer having a nitrogen atom is composed of a monomer shown below with a repeating number n1 in a range where the weight average molecular weight is in the range of 1,000 to 1,000,000.
  • the low molecular weight organic compound and polymer having a nitrogen atom can be synthesized by a known and well-known method.
  • the organic compound having a sulfur atom applicable to the present invention preferably has a sulfide bond, a disulfide bond, a mercapto group, a sulfone group, a thiocarbonyl bond or the like in the molecule. Among these, it is more preferable to have a sulfide bond or a mercapto group.
  • These organic compounds having a sulfur atom are described in, for example, JP-A No. 2009-163177.
  • the organic compound and polymer having a sulfur atom used in the present invention can be synthesized by a known and well-known method.
  • each layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a light emitting layer, a hole transport layer, an electron transport layer, and a blocking layer.
  • the organic EL element of the present invention is characterized by having at least two organic functional layer units (the first organic functional layer unit U1 and the second organic functional layer unit U2 shown in FIG. 1).
  • the organic functional layer unit may have the same constituent material and the same layer order, or the same constituent material, but the layer order may be reversed, or the constituent material or the layer order may be completely different.
  • the charge injection layer is a layer provided between an electrode and a light emitting layer in order to lower drive voltage or improve light emission luminance.
  • Organic EL element and its industrialization front line June 30, 1998) The details are described in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Nippon TS Co., Ltd.”, and there are a hole injection layer and an electron injection layer.
  • the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer.
  • the hole injection layer according to the present invention is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the drive voltage and improve the light emission luminance.
  • the details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Month 30th, NTS Corporation”.
  • the specific structure of the hole injection layer is described in detail, for example, in JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069, and is used for the hole injection layer.
  • materials that can be used include porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triaryls.
  • PEDOT polyethylenedioxythiophene
  • PSS polystyrenesulfonic acid
  • aniline copolymer polyaniline, polythiophene, etc.
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can be used as the hole transport material.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer for lowering the driving voltage and improving the light emission luminance.
  • the cathode is composed of the transparent electrode according to the present invention
  • Chapter 2 “Electrode materials” pages 123 to 166) of the second edition of “Organic EL devices and their industrialization front line (issued by NTS, November 30, 1998)” ) Is described in detail.
  • the specific structure of the electron injection layer is described in detail in, for example, JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and is preferably used for the electron injection layer.
  • metals include metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metals typified by magnesium fluoride, calcium fluoride, etc.
  • Examples include halide layers, alkaline earth metal compound layers typified by magnesium fluoride, metal oxides typified by molybdenum oxide and aluminum oxide, and metal complexes typified by lithium 8-hydroxyquinolate (Liq). It is done.
  • the electron injection layer is preferably a very thin film, and depending on the constituent materials, the layer thickness is preferably in the range of 0.1 to 10 ⁇ m.
  • the light emitting layer constituting the organic functional layer unit of the organic EL device of the present invention preferably has a structure containing a phosphorescent light emitting compound or a fluorescent light emitting compound as a light emitting material.
  • the light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting region is within the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, the light emitting layers are preferably separated by a non-light emitting intermediate layer.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate
  • each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably within a range of 1 to 20 nm.
  • the light-emitting layer having the above-described structure is prepared by using a light-emitting material or a host compound described below, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Brodgett method), and an inkjet method. It can form by well-known methods, such as.
  • a plurality of light-emitting materials may be mixed, and a phosphorescent light-emitting material (also referred to as a phosphorescent dopant or a phosphorescent compound) and a fluorescent light-emitting material (also referred to as a fluorescent dopant or a fluorescent compound) are the same. You may mix and use in a light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound) and emits light from the light-emitting material.
  • ⁇ Host compound> As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • the host compound a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Tg glass transition point
  • host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002 -75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002 36 No. 227, No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183. No. 2002, No. 2002-299060, No.
  • Light emitting material examples include phosphorescent compounds and fluorescent compounds.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the light emission principle of the phosphorescent compound There are two methods for the light emission principle of the phosphorescent compound.
  • One method is to generate an excited state of the host compound by recombination of the carrier on the host compound to which the carrier is transported, and transfer this energy to the phosphorescent compound. It is an energy transfer type that obtains light emission from.
  • Another method is a carrier trap type in which a phosphorescent compound serves as a carrier trap, carrier recombination occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained. In either case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent dopants include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and the methods described in references in these documents should be applied. Can be synthesized.
  • Fluorescent compounds include, for example, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • the hole transport layer is composed of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer and the electron blocking layer also have a function as a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used. Specifically, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary compounds. It is preferable to use an amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • a polymer material in which these hole transport materials are introduced into a polymer chain or these hole transport materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials from the viewpoint of obtaining a light emitting element with higher luminous efficiency.
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a laminated structure including a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • metal-free or metal phthalocyanine or those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer.
  • distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the material for the electron transport layer, and n-type-Si, n-type-SiC, etc. as well as the hole injection layer and the hole transport layer.
  • These inorganic semiconductors can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • impurities can be doped in the electron transport layer to increase the n property.
  • impurities include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the potassium compound for example, potassium fluoride can be used.
  • the material for the electron transport layer (electron transport compound)
  • the same material as that for the intermediate layer described above may be used. This is the same for the electron transport layer that also serves as the electron injection layer, and the same material as that for the intermediate layer described above may be used.
  • blocking layer examples include a hole blocking layer and an electron blocking layer.
  • these layers are provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons and has a very small ability to transport holes. By blocking holes while transporting electrons, The recombination probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons. By blocking electrons while transporting holes, the electron recombination probability is reduced. Can be improved.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • Transparent sealing member As a sealing means used for sealing the organic EL element of this invention, the method of adhere
  • the transparent sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Moreover, electrical insulation is not particularly limited. Moreover, you may use the transparent substrate demonstrated above as a transparent sealing member.
  • Examples of the transparent sealing member applicable to the present invention include a glass plate, a polymer plate, and a film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • a polymer film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Furthermore, the polymer film has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 Pa amount of) or less, the temperature 25 ⁇ 0.5 ° C., water vapor permeability at a relative humidity of 90 ⁇ 2% is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • the sand sealing process or the chemical etching process is used to process the transparent sealing member into a concave shape.
  • the adhesive include a photo-curing adhesive having a reactive vinyl group such as an acrylic acid oligomer and a methacrylic acid oligomer, a thermosetting adhesive, or a moisture curable adhesive such as 2-cyanoacrylate. And the like.
  • molds such as an epoxy type, and a chemical curing type
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an adhesive that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing member may use commercially available dispenser, and may print like screen printing.
  • the third transparent electrode and the second organic functional layer unit are covered outside the third transparent electrode on the side facing the transparent substrate, and an inorganic or organic layer is formed in contact with the transparent substrate and sealed.
  • a film can also be suitably used.
  • the material for forming the sealing film may be a transparent material having a function of suppressing intrusion of moisture, oxygen, or the like that degrades the organic EL element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. Can be used.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the gap between the sealing member and the display area of the organic EL element it is preferable to inject an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil in the gas phase and the liquid phase.
  • an inert gas such as nitrogen or argon
  • an inert liquid such as fluorinated hydrocarbon or silicon oil
  • the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide or aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate or cobalt sulfate).
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide or magnesium iodide
  • perchloric acids eg perchloric acid Barium or magnesium perchlorate
  • anhydrides are preferably used in sulfates, metal halides and perchloric acids.
  • Organic EL module >> The organic EL element of the present invention is provided in an organic EL module.
  • the organic EL module is an independent function in which the anode and the cathode of at least one organic EL element are connected to a conductive material (connection terminal) and further connected to a wiring board or the like.
  • FIG. 5 is a schematic cross-sectional view showing an example of an organic EL module including the organic EL element of the present invention.
  • the organic EL module 30 mainly includes an organic EL element (EL), an anisotropic conductive film (Anisotropic Conductive Film, abbreviated as ACF) 32, and a flexible printed circuit board (abbreviated as FPC). 34).
  • EL organic EL element
  • ACF anisotropic Conductive Film
  • FPC flexible printed circuit board
  • the organic EL element has a laminate 14 including a transparent electrode and an organic functional layer unit on the transparent substrate 1. At the side end of the transparent substrate 1 on which the laminate 14 is not laminated, a first transparent electrode is drawn to form a takeout electrode A2, and the takeout electrode A2 and the flexible printed circuit board (FPC) 34 are anisotropic. Are electrically connected through an electrically conductive film (ACF) 32.
  • ACF electrically conductive film
  • the flexible printed circuit board (FPC) 34 is bonded onto the organic EL element (EL) (laminated body 14) via an adhesive 36.
  • the flexible printed circuit board (FPC) 34 is connected to a driver IC (not shown) or a printed circuit board.
  • the polarizing member 38 may be provided on the light emitting surface side of the transparent substrate 1.
  • a half mirror or a black filter may be used.
  • the organic EL module 30 of the present invention can express black that cannot be expressed by the light guide dots in the LED used in the conventional method.
  • the anisotropic conductive film 32 constituting the organic EL module of the present invention is obtained by dispersing conductive particles, for example, a metal core itself such as gold, nickel, silver, or a resin core gold-plated in a binder.
  • thermoplastic resin or a thermosetting resin is used, and among them, a thermosetting resin is preferable, and an epoxy resin is more preferable.
  • An anisotropic conductive film in which nickel fiber (fibrous) is oriented as a filler can also be suitably used.
  • a fluid material such as a conductive paste, such as a silver paste, may be used instead of the anisotropic conductive film.
  • Examples of the polarizing member 38 constituting the organic EL module of the present invention include a commercially available polarizing plate or a circularly polarizing plate.
  • a polarizing film which is a main component of a polarizing plate, is an element that transmits only light having a polarization plane in a certain direction, and a typical example is a polyvinyl alcohol polarizing film. This mainly includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • a polarizing film having a polarizing film thickness in the range of 5 to 30 ⁇ m, preferably in the range of 8 to 15 ⁇ m is preferably used. In the present invention, such a polarizing film is also preferably used. it can.
  • a commercially available polarizing plate protective film specifically, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FR -2, KC8UE, KC4UE (manufactured by Konica Minolta Co., Ltd.) and the like.
  • the pressure-sensitive adhesive used for bonding the polarizing member and the support substrate is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
  • acrylic copolymers examples include acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers.
  • an acrylic copolymer can be preferably used because it is most easy to control the adhesive physical properties and is excellent in transparency, weather resistance, durability, and the like.
  • These pressure-sensitive adhesives can be cured after being formed on a substrate by forming a film by a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like.
  • transparent substrate 1 a 125 ⁇ m-thick polyethylene terephthalate film (manufactured by Teijin DuPont Films, Ltd., ultra-high transparency PET Type K) was prepared.
  • the following polysilazane-containing liquid is applied with a wireless bar so that the average film thickness after drying is 300 nm, and heat-treated for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. And dried. Subsequently, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform a dehumidification treatment, thereby forming a polysilazane-containing layer (polysilazane precursor layer).
  • the transparent substrate 1 on which the polysilazane-containing layer is formed is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and under the following reforming treatment condition 1 A modification treatment was performed to form a 300-nm-thick polysilazane modified layer (however, not shown in FIG. 6A), and a transparent substrate 1 was obtained.
  • Polysilazane-containing liquid As the polysilazane-containing liquid, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was prepared.
  • ITO indium tin oxide
  • first organic functional unit U1 hole injection transport layer 3A to electron transport layer 6A
  • the transparent substrate 1 having the first transparent electrode 2-1 made of ITO is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. It fixed to the substrate holder of the vacuum evaporation system.
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • phosphorescent layer 5A ⁇ Formation of phosphorescent layer 5A> Then, using the following compound GD-1, compound RD-1 and compound H-2, compound GD-1 was 17% in concentration, RD-1 was 0.8% in concentration, and compound H-2 was 82.2% The phosphorescent light emitting layer 5A having a film thickness of 15 nm and having a yellow color was formed by co-evaporation at a deposition rate of 0.1 nm / second so as to achieve a concentration of 5 nm.
  • LiF layer 7A (Formation of LiF layer 7A) Furthermore, LiF was vapor-deposited to a film thickness of 1.5 nm to form a LiF layer 7A as a buffer layer.
  • an upward arrow pattern as shown in FIG. 2A was formed using a vapor deposition mask so that the lithium fluoride layer was formed only on the upward arrow portion 22A.
  • Al layer 8A (Formation of Al layer 8A) Further, an aluminum film was deposited with a thickness of 10 nm by an evaporation method to form an Al layer 8A.
  • Adhesion of the transparent sealing substrate 10 uses an epoxy thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as an adhesive, and is carried out at 80 ° C. and 0 ° C. in a glove box having an oxygen concentration of 10 ppm or less and a water concentration of 10 ppm or less.
  • the gas barrier layer of the transparent sealing member 10 is directed to the organic EL element 101 under the condition of 0.04 MPa load under reduced pressure (1 ⁇ 10 ⁇ 3 MPa or less) suction for 20 seconds and pressing for 20 seconds. It vacuum-pressed so that it might become an element side.
  • the adhesive layer was thermally cured by heating on a hot plate at 110 ° C. for 30 minutes to obtain an organic EL element 101.
  • the structure of the produced organic EL element 101 is referred to as structure A, and a schematic cross-sectional view thereof is shown in FIG. 6A.
  • Al layer 8A aluminum was formed into a film with a thickness of 2 nm by a vacuum evaporation method to form an Al layer 8A.
  • ITO was deposited to a thickness of 150 nm to form the second transparent electrode 11-1.
  • the hole injection transport layer 3B to the electron transport layer 6B.
  • the 2nd organic functional layer unit U2 was formed.
  • lithium fluoride was formed in the same manner as the LiF layer 7A, and the LiF layer 7B was formed in the same manner except that the electrode pattern was changed to the downward arrow pattern 22B as shown in FIG. 2B. .
  • Al was vapor-deposited with a thickness of 10 nm to form the Al layer 8B, and the third transparent electrode 9-1 was formed thereon.
  • the transparent sealing member 10 was sealed in the same manner as the organic EL element 101 to obtain an organic EL element 102.
  • the layer configuration of the organic EL 102 is the same as the configuration B described in FIG. 6B shown as the layer configuration of the organic EL element 103 described later.
  • the organic element 102 when the first transparent electrode 2-1 was used as an anode and the second transparent electrode 11-1 was used as a cathode, when the drive power supply V1 was used, light was emitted in an upward arrow pattern 22A as shown in FIG. 2A. Further, when the second transparent electrode 11-1 is used as an anode and the third transparent electrode 9-1 is used as a cathode, when the drive power supply V2 is energized, light is emitted in a downward arrow pattern 22B as shown in FIG. 2B. did.
  • the LiF layers 7A and 7B were formed as uniform LiF films having no image pattern without using a mask.
  • the film thickness of the second transparent electrode 11-2 was changed to 200 nm.
  • a pattern mask and an ultraviolet absorption filter (manufactured by Isuzu Seiko Glass Co., Ltd.) as shown in FIG.
  • a UV tester manufactured by Iwasaki Electric Co., Ltd., SUV-W151: 100 mW / cm 2
  • ultraviolet rays were irradiated from the transparent substrate 1 side for 1 hour to form an arrow image on the organic functional layer unit U1.
  • a mask was prepared so that the region 21 shown in FIG. 2A is a region where the light emitting function is modulated, and the region 22A is a region not modulated, so that only the region 22A emits light.
  • the ultraviolet absorption filter used the thing with the light transmittance of the wavelength component of 320 nm or less 50% or less (cut wavelength: 320 nm).
  • a pattern mask as shown in FIG. 2B is arranged and adhered, and a UV tester (SUV-W151: 100 mW / cm 2 , manufactured by Iwasaki Electric Co., Ltd.) is used. Then, ultraviolet rays were irradiated from the transparent sealing member 10 side for 1 hour to form an arrow image on the organic functional layer unit U2. As an arrow image, a mask was prepared so that the region 21 shown in FIG. 2B is a region where the light emitting function is modulated, and the region 22B is a region not modulated, so that only the region 22B emits light.
  • a UV tester SUV-W151: 100 mW / cm 2 , manufactured by Iwasaki Electric Co., Ltd.
  • the produced organic EL element 104 it patterned by the ultraviolet irradiation from the transparent substrate side and the transparent sealing member side similarly to the pattern formation of the said organic EL element 103, and formed the display image shown to FIG. 2A and FIG. 2B. .
  • the first transparent electrode 2-1 (ITO) is changed to the first transparent electrode 2-2 (thin silver electrode) shown below, and the transparent substrate 1 and the first transparent electrode are further changed.
  • the undercoat layer 12 described below was provided between the 2-2 and 2-2.
  • underlayer 12 On the transparent substrate 1 which is a 125 ⁇ m thick polyethylene terephthalate film (manufactured by Teijin DuPont Films Co., Ltd., ultra-high transparency PET Type K), the following compound (R-1) is deposited at a thickness of 25 nm by a known vapor deposition method.
  • the underlayer 12 was formed by vapor deposition.
  • First transparent electrode 2-2 thin silver electrode
  • silver was vapor-deposited with a thickness of 10 nm on the underlayer 12 by vapor deposition to form a first transparent electrode 2-2 (thin silver electrode).
  • the organic EL element 105 was produced in the same manner as the production of the organic EL element 104.
  • the configuration of the organic EL element 105 manufactured as described above is shown as configuration D in FIG.
  • the layer 4B and the hole injecting and transporting layer 3B were stacked in this order.
  • the first transparent electrode 2-2 and the third transparent electrode 9-2 were used as anodes, and the second transparent electrode 11-2 was used as cathodes.
  • the first transparent electrode 2-2 was used as the anode and the second transparent electrode 11-2 was used as the cathode
  • the drive power supply V1 when used, light was emitted in the pattern of the upward arrow 22A as shown in FIG. 2A.
  • the second transparent electrode 11-2 is used as a cathode
  • the third transparent electrode 9-2 is used as an anode
  • light is emitted in a pattern of a downward arrow 22B as shown in FIG. did.
  • the second transparent electrode 11-2 is always operated as a cathode, switching of lighting becomes easy. Moreover, it was easy to emit light by overlapping arrows.
  • an Al layer 8A on the first transparent electrode 2-2, an Al layer 8A, a LiF layer 7A, an electron transport layer 6A, a phosphorescent light emitting layer 5A, and a fluorescent light emitting layer 4A.
  • the hole injection transport layer 3A was formed in this order.
  • the first transparent electrode 2-2 and the third transparent electrode 9-2 were used as cathodes, and the second transparent electrode 11-2 was used as anodes.
  • the first transparent electrode 2-2 was used as a cathode and the second transparent electrode 11-2 was used as an anode
  • the drive power supply V1 when used, light was emitted in the pattern of the upward arrow 22A as shown in FIG. 2A.
  • the second transparent electrode 11-2 is used as an anode
  • the third transparent electrode 9-2 is used as a cathode
  • light is emitted in a pattern of a downward arrow 22B as shown in FIG. did.
  • the second transparent electrode 11-2 is always operated as an anode, switching of lighting becomes easy. Moreover, it was easy to emit light by overlapping arrows.
  • A The blur width at the boundary is less than 0.4 mm, and the image is clear.
  • B The blur width at the boundary is not less than 0.4 mm and less than 0.8 mm, and the image is almost clear.
  • C The blur width at the boundary is 0.8 mm or more, and the image is unclear [Measurement of display pattern luminance]
  • An image pattern (22A in FIG. 2A and 22B in FIG. 2B) was displayed by applying a current of 5 mA / cm 2 to each of the drive power supply V1 and the drive power supply V2 (however, the organic EL element 101 is only the drive power supply V1). .
  • the luminance of the first organic functional layer unit U1 provided on the transparent substrate side and the second organic functional layer unit U2 provided on the transparent sealing member side is measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta). And measured from the transparent substrate 1 side.
  • the relative luminance of each organic EL element was determined with the luminance of the first organic functional layer unit U1 of the organic EL element 101 as 100.
  • Table 2 shows the results obtained as described above.
  • the blur in the boundary region of the display image was small and excellent in clarity, and transparent. It can be seen that the brightness is increased by using a thin film electrode, specifically, a thin silver electrode as the electrode. Furthermore, it can be seen that the use of thin silver electrodes for all the transparent electrodes reduces the luminance difference between the first organic functional layer unit U1 and the second organic functional layer unit U2.
  • the first transparent electrode and the third transparent electrode are configured to have the same polarity, so that switching of lighting is easy.
  • a polarizing member, a half mirror member, or a black filter is provided on the light emitting surface side of the transparent substrate 1 of each of the organic EL elements of the present invention produced above via an adhesive, and the organic EL as shown in FIG.
  • the organic EL module of the present invention including the organic EL element of the present invention can exhibit good display performance.
  • the manufacturing method of the organic electroluminescence element of the present invention is excellent in the shape display accuracy (sharpness) of the light emission display pattern image, has high light emission luminance, can switch the light emission pattern, and displays different images in the same display area.
  • An organic electroluminescent element that can be displayed individually or simultaneously can be manufactured, and the organic electroluminescent element can easily switch a light emission pattern, and is suitable for smart devices such as smartphones and tablets that are portable terminals. Available.

Abstract

 The present invention addresses the problem of providing a method for manufacturing an organic EL element, etc., in which a light-emitting display pattern has an excellent shape accuracy (sharpness), the light emission brightness is high, the light emission pattern can be switched, and different images can be displayed simultaneously or individually on the same display region. This method for manufacturing an organic EL element which has, on a transparent substrate, a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode, and a transparent sealing member is characterized in that the first organic functional layer unit and the second organic functional layer unit can be electrically driven to emit light individually or simultaneously, light is emitted at different patterns from the transparent substrate side and the transparent sealing member side, and different display images constituted by a region in which the light-emitting function is modulated and a region in which the light-emitting function is not modulated are formed in the first organic functional layer unit and the second organic functional layer unit.

Description

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスモジュールOrganic electroluminescence device manufacturing method, organic electroluminescence device, and organic electroluminescence module
 本発明は、有機エレクトロルミネッセンス素子の製造方法、それにより製造される有機エレクトロルミネッセンス素子と、それを具備した有機エレクトロルミネッセンスモジュールに関する。より詳しくは、発光ムラがなく、表示画像形状の鮮明度が高く、発光パターンの切り替えが可能な有機エレクトロルミネッセンス素子の製造方法等に関する。 The present invention relates to a method for producing an organic electroluminescence element, an organic electroluminescence element produced thereby, and an organic electroluminescence module including the same. More specifically, the present invention relates to a method of manufacturing an organic electroluminescence element that has no emission unevenness, has a high definition of a display image shape, and can switch a light emission pattern.
 近年、平面状の光源体として、導光板を用いた発光ダイオード(Light Emitting Diode、略称:LED)及び有機発光ダイオード(Organic Light Emitting Diode、略称:OLED、以下、有機エレクトロルミネッセンス素子ともいう。)が注目されている。導光板LEDについては、一般照明のみならず、液晶表示装置(Liquid Crystal Display、略称:LCD)用バックライトなど、様々な場面、用途で使用されるようになってきた(例えば、特許文献1参照。)。 In recent years, light emitting diodes using a light guide plate (Light Emitting Diode, abbreviated as LED) and organic light emitting diodes (Organic Light Emitting Diode, abbreviated as OLED, hereinafter also referred to as an organic electroluminescent element) are used as planar light sources. Attention has been paid. The light guide plate LED has been used not only for general illumination but also for various scenes and applications such as a backlight for a liquid crystal display (Liquid Crystal Display, abbreviated as LCD) (for example, see Patent Document 1). .)
 特に、2008年頃から、携帯用端末として、スマートデバイス(例えば、スマートフォン、タブレット等。)の生産量が大きく伸長し、そこには、導光板LEDが広く使用されている。 In particular, since around 2008, the production of smart devices (for example, smartphones, tablets, etc.) has increased greatly as portable terminals, and light guide plate LEDs are widely used there.
 主には、メインディスプレイ(例えば、LCD)のバックライト用途であるが、その他の使用用途として、デバイス下部にある共通機能キーボタンのバックライトとしても、導光板LEDが組み込まれることが多くなっている。 Although it is mainly used as a backlight for a main display (for example, LCD), a light guide plate LED is often incorporated as a backlight for a common function key button at the lower part of the device as another use. Yes.
 共通機能キーボタンには、主に、ホーム(四角形などのマークで表示)、戻る(矢印マークなどで表示)、検索(虫眼鏡マークなどで表示)の3種類が使用されることが多い。 The common function key buttons are mainly used in three types: home (displayed with a square mark), back (displayed with an arrow mark, etc.), and search (displayed with a magnifying glass mark, etc.).
 前述の特許文献1に記載されている方法では、これら共通機能キーボタンは、カバーガラスに表示したいマークのパターンを印刷しておき、カバーガラスの内部に上記のような導光板LEDを設置し、必要な場面に応じてLEDが発光して光が導光板(フィルム)を通して導光され、パターン部分に印刷されたドット形状の拡散部材を通して表示側へ光を取り出す構成になっている。 In the method described in Patent Document 1 described above, these common function key buttons print a pattern of a mark to be displayed on the cover glass, install the light guide plate LED as described above inside the cover glass, The LED emits light according to the required scene, the light is guided through the light guide plate (film), and the light is extracted to the display side through the dot-shaped diffusion member printed on the pattern portion.
 しかしながら、特許文献1で開示されている方法では、表示画面上の同一の位置に異なる形状の画像を表示することができない。 However, the method disclosed in Patent Document 1 cannot display images having different shapes at the same position on the display screen.
 一方、有機エレクトロルミネッセンス素子の製造時に、有機機能層あるいは構成電極層の少なくとも一層にフォトマスクを介して、紫外光を照射して発光機能を失活させ、所定のパターン領域の発光機能を変化させる特定の発光パターンを有する有機発光素子が提案されている(例えば、特許文献2参照。)。 On the other hand, at the time of manufacturing the organic electroluminescence element, at least one layer of the organic functional layer or the constituent electrode layer is irradiated with ultraviolet light through a photomask to deactivate the light emitting function, thereby changing the light emitting function of a predetermined pattern region. An organic light emitting device having a specific light emission pattern has been proposed (see, for example, Patent Document 2).
 しかしながら、特許文献2で開示されている方法でも、形成することのできるパターンは、同一平面上の異なる領域には異なる一つのパターンを形成することはできるが、同一の領域内に、異なる二つ以上のパターンを形成することができない。 However, even with the method disclosed in Patent Document 2, it is possible to form different patterns in different regions on the same plane, but two different patterns can be formed in the same region. The above pattern cannot be formed.
 また、有機エレクトロルミネッセンス素子の作製時に、マスクによりキー表示に対応した形状をパターニングすることも可能ではあるが、この方法でも、場面表示に応じて、同一場所に、任意のマーク形状を切り替えるような複数の発光パターンを表示することは不可能であった。 In addition, it is possible to pattern the shape corresponding to the key display with a mask at the time of manufacturing the organic electroluminescence element, but this method also switches an arbitrary mark shape to the same place according to the scene display. It was impossible to display a plurality of light emission patterns.
 さらに、製膜時にマスクを用いたパターニング形成方法では、表示パターン画像の解像度が低いという問題点もあった。 Furthermore, the patterning method using a mask during film formation has a problem that the resolution of the display pattern image is low.
米国特許第8,330,724号明細書US Pat. No. 8,330,724 特開2012-28335号公報JP 2012-28335 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光表示パターンの表示画像の形状精度(鮮明度)に優れ、高い発光輝度を有し、発光パターンの切り替えが可能で、同一表示領域中に異なる複数の画像を個別又は同時に表示することができる有機エレクトロルミネッセンス素子の製造方法と、それにより得られる有機エレクトロルミネッセンス素子、更には、当該有機エレクトロルミネッセンス素子を具備した有機エレクトロルミネッセンスモジュールを提供することである。 The present invention has been made in view of the above-described problems and situations, and the problem to be solved is that the display image of the light emission display pattern is excellent in shape accuracy (sharpness), has high light emission luminance, and the light emission pattern is switched. And a method of manufacturing an organic electroluminescent element capable of displaying a plurality of different images individually or simultaneously in the same display region, an organic electroluminescent element obtained by the method, and further comprising the organic electroluminescent element An organic electroluminescence module is provided.
 本発明者は、上記課題を解決すべく、鋭意検討を進めた結果、透明基板上に、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材を有し、2つの有機機能層ユニットは個別又は同時に電気的駆動による発光を可能とし、透明基板側と透明封止部材側から、個別に光照射を行い、各有機機能層ユニットに、発光機能が変調されている領域と、変調されていない領域とで構成されるそれぞれ異なる表示画像を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法により、発光表示パターンの形状精度(鮮明度)に優れ、高い発光輝度を有し、発光パターンの切り替えが可能で、同一表示領域中に異なる画像を個別又は同時に表示することができる有機エレクトロルミネッセンス素子を製造することができることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventor has at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, Having a third transparent electrode and a transparent sealing member, the two organic functional layer units can emit light by electrical drive individually or simultaneously, and individually irradiate light from the transparent substrate side and the transparent sealing member side, Each organic functional layer unit forms a different display image composed of a region in which the light emitting function is modulated and a region in which the light emitting function is not modulated. Excellent pattern shape accuracy (sharpness), high emission brightness, switchable emission patterns, and display different images individually or simultaneously in the same display area It found that it is possible to produce machine electroluminescent device, leading to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.透明基板上に、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材をこの順で有する有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法であって、
 前記第1有機機能層ユニット及び第2有機機能層ユニットは、それぞれ独立して、個別又は同時に電気的駆動による発光を可能とし、
 前記透明基板側と前記透明封止部材側から、それぞれ異なるパターンで光照射を行い、前記第1有機機能層ユニット及び第2有機機能層ユニットに、発光機能が変調されている領域と、変調されていない領域とで構成されるそれぞれ異なる表示画像を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
1. An organic electroluminescence device having at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode, and a transparent sealing member in this order on a transparent substrate. A method for producing an organic electroluminescence element to be produced, comprising:
The first organic functional layer unit and the second organic functional layer unit are independently capable of emitting light by electrical driving individually or simultaneously,
Light irradiation is performed in different patterns from the transparent substrate side and the transparent sealing member side, respectively, and the first organic functional layer unit and the second organic functional layer unit are modulated with regions where the light emitting function is modulated. A method for producing an organic electroluminescence element, comprising forming different display images composed of regions that are not formed.
 2.前記光照射によるパターニング方法が、照射光源として紫外線を用い、前記透明基板側及び前記透明封止部材側からそれぞれ異なる表示画像をパターニングする方法であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子の製造方法。 2. 2. The organic electro according to claim 1, wherein the patterning method by light irradiation is a method of patterning different display images from the transparent substrate side and the transparent sealing member side using ultraviolet rays as an irradiation light source. Manufacturing method of luminescence element.
 3.前記第1透明電極、第2透明電極及び第3透明電極から選ばれる少なくとも一つの電極を、薄膜金属により形成することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子の製造方法。 3. 3. The organic electroluminescence device according to claim 1, wherein at least one electrode selected from the first transparent electrode, the second transparent electrode, and the third transparent electrode is formed of a thin film metal. Method.
 4.前記第1透明電極、第2透明電極及び第3透明電極の全ての電極を、薄膜金属により形成することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子の製造方法。 4. 3. The method for producing an organic electroluminescent element according to claim 1, wherein all of the first transparent electrode, the second transparent electrode, and the third transparent electrode are formed of a thin film metal.
 5.前記第1透明電極、第2透明電極及び第3透明電極のなかで、前記第2透明電極の膜厚を最も厚く設定することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 5. The first transparent electrode, the second transparent electrode, or the third transparent electrode, wherein the thickness of the second transparent electrode is set to be the thickest. The manufacturing method of the organic electroluminescent element of description.
 6.前記薄膜金属により形成する電極が、薄銀電極であることを特徴とする第3項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 6. The method for producing an organic electroluminescent element according to any one of items 3 to 5, wherein the electrode formed of the thin film metal is a thin silver electrode.
 7.前記薄銀電極の下部に、窒素及び硫黄から選択される少なくとも一種の原子を有する有機化合物を含有する下地層を設けることを特徴とする第6項に記載の有機エレクトロルミネッセンス素子の製造方法。 7. 7. The method for producing an organic electroluminescent element according to claim 6, wherein a base layer containing an organic compound having at least one atom selected from nitrogen and sulfur is provided below the thin silver electrode.
 8.前記第1透明電極と第3透明電極を、陽極として形成することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 8. The method for producing an organic electroluminescent element according to any one of claims 1 to 7, wherein the first transparent electrode and the third transparent electrode are formed as anodes.
 9.前記第1透明電極と第3透明電極を、陰極として形成することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 9. The method for producing an organic electroluminescent element according to any one of items 1 to 7, wherein the first transparent electrode and the third transparent electrode are formed as cathodes.
 10.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法により製造された有機エレクトロルミネッセンス素子であって、
 透明基板上に、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材をこの順で有し、前記第1有機機能層ユニット及び第2有機機能層ユニットが、光照射により形成したそれぞれ異なる画像を表示する機能を有することを特徴とする有機エレクトロルミネッセンス素子。
10. An organic electroluminescence device manufactured by the method for manufacturing an organic electroluminescence device according to any one of items 1 to 9,
On the transparent substrate, at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode and a transparent sealing member are provided in this order, and the first An organic electroluminescent element, wherein the organic functional layer unit and the second organic functional layer unit have a function of displaying different images formed by light irradiation.
 11.第10項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする有機エレクトロルミネッセンスモジュール。 11. An organic electroluminescence module comprising the organic electroluminescence element according to item 10.
 12.前記有機エレクトロルミネッセンス素子を構成する透明基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを有することを特徴とする第11項に記載の有機エレクトロルミネッセンスモジュール。 12. 12. The organic electroluminescence module according to item 11, comprising a polarizing member, a half mirror member, or a black filter on the light emitting surface side of the transparent substrate constituting the organic electroluminescence element.
 本発明の上記手段により、発光表示パターン画像の形状表示精度(鮮明度)に優れ、高い発光輝度を有し、発光パターンの切り替えが可能で、同一表示領域中に異なる画像を個別又は同時に表示することができる有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法と、それにより得られる有機エレクトロルミネッセンス素子、更には、有機エレクトロルミネッセンス素子を具備した有機エレクトロルミネッセンスモジュールを提供することができる。 By the above means of the present invention, the shape display accuracy (sharpness) of the light emission display pattern image is excellent, the light emission luminance is high, the light emission pattern can be switched, and different images are displayed individually or simultaneously in the same display area. An organic electroluminescence element production method for producing an organic electroluminescence element that can be produced, an organic electroluminescence element obtained thereby, and an organic electroluminescence module equipped with the organic electroluminescence element can be provided.
 本発明の効果の発現機構・作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明者は、同一領域内に、異なる画像を表示することができる方法について、検討を進めた結果、有機エレクトロルミネッセンス素子の構成として、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材からなる構成とし、前記透明基板側と前記透明封止部材側から、それぞれ異なるパターンで光照射を行い、前記第1有機機能層ユニット及び第2有機機能層ユニットに、発光機能が変調されている領域と、変調されていない領域とで構成されるそれぞれ異なる表示画像を形成し、第1有機機能層ユニットと第2有機機能層ユニットを、それぞれ独立して、個別又は同時に電気的駆動により発光させることにより、同一領域内で、鮮明度の高い異なる画像情報を、任意に、かつ瞬時に表示することができる有機エレクトロルミネッセンス素子の製造方法を見出したものである。 As a result of studying a method capable of displaying different images in the same region, the present inventor has at least a first transparent electrode, a first organic functional layer unit, a first organic electroluminescence element as a configuration. 2 transparent electrodes, a second organic functional layer unit, a third transparent electrode, and a transparent sealing member. The light irradiation is performed in different patterns from the transparent substrate side and the transparent sealing member side, and the first In the organic functional layer unit and the second organic functional layer unit, different display images composed of a region where the light emitting function is modulated and a region where the light emitting function is not modulated are formed, and the first organic functional layer unit and the second organic functional layer unit By making each organic functional layer unit emit light independently or simultaneously by electrical drive, different image information with high definition can be obtained within the same area. Optionally, and it has been found a method of manufacturing an organic electroluminescent device can be displayed instantaneously.
 また、本発明においては、第1透明電極~第3透明電極を全て透明電極により構成することにより、表示されている画像を、異なる角度から観察しても、色の変化が生じにくく、優れた視認性を発現することができる。 In the present invention, the first to third transparent electrodes are all composed of transparent electrodes, so that even if the displayed images are observed from different angles, the color change hardly occurs, and it is excellent. Visibility can be expressed.
有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of an organic electroluminescence element 第1有機機能層ユニット及び第2有機機能層ユニットに形成する2つの異なる表示画像の一方の例を示す模式図The schematic diagram which shows one example of two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit 第1有機機能層ユニット及び第2有機機能層ユニットに形成する2つの異なる表示画像の他方の例を示す模式図The schematic diagram which shows the other example of the two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit 2つの異なる画像を表示する方法の一例を説明する模式図Schematic diagram illustrating an example of a method for displaying two different images 第1有機機能層ユニット及び第2有機機能層ユニットに形成する2つの異なる表示画像の一例を示す模式図The schematic diagram which shows an example of two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit 第1有機機能層ユニット及び第2有機機能層ユニットに形成する2つの異なる表示画像の他の一例を示す模式図The schematic diagram which shows another example of two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit. 第1有機機能層ユニット及び第2有機機能層ユニットに形成する2つの異なる表示画像の他の一例を示す模式図The schematic diagram which shows another example of two different display images formed in a 1st organic functional layer unit and a 2nd organic functional layer unit. 第1有機機能層ユニット及び第2有機機能層ユニットに形成する2つの異なる表示画像とその合成表示画像の一例を示す模式図Schematic diagram showing an example of two different display images and their combined display images formed on the first organic functional layer unit and the second organic functional layer unit 有機エレクトロルミネッセンス素子を具備した有機エレクトロルミネッセンスモジュールの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of an organic electroluminescence module provided with an organic electroluminescence element 実施例で作製した有機EL素子101の構成Aを示す概略断面図Schematic sectional view showing the configuration A of the organic EL element 101 produced in the example 実施例で作製した有機EL素子103の構成Bを示す概略断面図Schematic sectional view showing the configuration B of the organic EL element 103 produced in the example 実施例で作製した有機EL素子104の構成Cを示す概略断面図Schematic sectional view showing the configuration C of the organic EL element 104 produced in the example 実施例で作製した有機EL素子105の構成Dを示す概略断面図Schematic sectional view showing the configuration D of the organic EL element 105 produced in the example 実施例で作製した有機EL素子106の構成Eを示す概略断面図Schematic sectional view showing the configuration E of the organic EL element 106 produced in the example 実施例で作製した有機EL素子107の構成Fを示す概略断面図Schematic sectional view showing the configuration F of the organic EL element 107 produced in the example
 本発明の有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する。)の製造方法は、透明基板上に、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材をこの順で有する有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法であって、前記第1有機機能層ユニット及び第2有機機能層ユニットは、それぞれ独立して、個別又は同時に電気的駆動による発光を可能とし、前記透明基板側と前記透明封止部材側から、それぞれ異なるパターンで光照射を行い、前記第1有機機能層ユニット及び第2有機機能層ユニットに対し、発光機能が変調されている領域と、変調されていない領域とで構成されるそれぞれ異なる表示画像を形成することを特徴とする。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。 The manufacturing method of the organic electroluminescent element (hereinafter abbreviated as an organic EL element) of the present invention includes at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, and a second organic material on a transparent substrate. A method for manufacturing an organic electroluminescent element, which includes a functional layer unit, a third transparent electrode, and a transparent sealing member in this order, the first organic functional layer unit and the second organic functional layer unit Are capable of independently or simultaneously emitting light individually or simultaneously, irradiating light in different patterns from the transparent substrate side and the transparent sealing member side, respectively, the first organic functional layer unit and the first 2 For the organic functional layer unit, different areas composed of a region where the light emitting function is modulated and a region which is not modulated And forming a display image. This feature is a technical feature common to the inventions according to claims 1 to 12.
 本発明の有機EL素子の製造方法においては、さらに、本発明に係る光照射によるパターニング方法が、照射光源として紫外線を用いて、前記透明基板側及び前記透明封止部材側からそれぞれ異なる表示画像をパターニングする方法とすることが、より鮮明度の高いシャープな表示画像を形成することができる観点から好ましい態様である。 In the manufacturing method of the organic EL element of the present invention, the patterning method by light irradiation according to the present invention further uses different ultraviolet light as an irradiation light source to display different display images from the transparent substrate side and the transparent sealing member side. The patterning method is a preferable aspect from the viewpoint that a sharp display image with higher definition can be formed.
 また、前記第1透明電極、第2透明電極及び第3透明電極から選ばれる少なくとも一つの電極を、薄膜金属により形成すること、さらには前記第1透明電極、第2透明電極及び第3透明電極の全ての電極を、薄膜金属により形成することが、異なる角度から観察した際に、色相の変化が無く、表示画像の視認性を向上させることができる観点から好ましい。 Further, at least one electrode selected from the first transparent electrode, the second transparent electrode, and the third transparent electrode is formed of a thin film metal, and further, the first transparent electrode, the second transparent electrode, and the third transparent electrode It is preferable that all of the electrodes are formed of a thin film metal from the viewpoint that the hue of the display image does not change when observed from different angles and the visibility of the display image can be improved.
 また、前記第1透明電極、第2透明電極及び第3透明電極のなかで、前記第2透明電極の膜厚を最も厚く設定することが、一方の面側から、有機機能層ユニットに特定のパターンで光照射した際に、他方の面側に配置されている有機機能層ユニットに対する光照射の影響を防止することができる観点から好ましい。 Further, among the first transparent electrode, the second transparent electrode, and the third transparent electrode, setting the thickness of the second transparent electrode to be the thickest is specific to the organic functional layer unit from one surface side. It is preferable from the viewpoint of preventing the influence of light irradiation on the organic functional layer unit disposed on the other surface side when the pattern is irradiated with light.
 また、前記薄膜金属により形成する電極が、薄銀電極であることが、より高い透明性を得ることができる観点から好ましい。 In addition, it is preferable that the electrode formed of the thin film metal is a thin silver electrode from the viewpoint of obtaining higher transparency.
 また、薄銀電極の下部に、窒素及び硫黄から選択される少なくとも一種の原子を有する有機化合物を含有する下地層を設けること、その上に形成する薄銀電極の均一性を高めることができる観点から好ましい。 In addition, a base layer containing an organic compound having at least one atom selected from nitrogen and sulfur is provided below the thin silver electrode, and the uniformity of the thin silver electrode formed thereon can be improved. To preferred.
 また、前記第1透明電極と第3透明電極を、陽極として形成すること、あるいは前記第1透明電極と第3透明電極を、陰極として形成することが、駆動回路の設計が容易になる点から好ましい。 In addition, it is easy to design the drive circuit by forming the first transparent electrode and the third transparent electrode as anodes, or forming the first transparent electrode and the third transparent electrode as cathodes. preferable.
 また、本発明の有機EL素子は、有機ELモジュールに好適に具備され得る。 Moreover, the organic EL element of the present invention can be suitably provided in an organic EL module.
 本発明の有機ELモジュールの構成としては、有機EL素子を構成する支持基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを有することが、非発光時に、明瞭な黒色画像を表示することができる点から好ましい。 As a configuration of the organic EL module of the present invention, having a polarizing member, a half mirror member or a black filter on the light emitting surface side of the support substrate constituting the organic EL element displays a clear black image when no light is emitted. It is preferable because it can be used.
 以下、本発明とその構成要素、及び本発明を実施するための形態と態様について、その詳細を説明する。なお、本発明において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, details of the present invention, its components, and modes and modes for carrying out the present invention will be described. In the present invention, “˜” representing a numerical range is used in the sense that numerical values described before and after it are included as a lower limit value and an upper limit value.
 《有機EL素子の構成》
 (有機EL素子の全体構成概要)
 本発明の有機EL素子の製造方法により製造する有機EL素子の構成は、透明基板上に、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材をこの順で構成され、前記第1有機機能層ユニット及び第2有機機能層ユニットは、それぞれ独立して、個別又は同時に電気的駆動による発光を可能とし、前記透明基板側と前記透明封止部材側から、それぞれ異なるパターンで光照射を行い、前記第1有機機能層ユニット及び第2有機機能層ユニットに、光照射により、発光機能が変調されている領域と、変調されていない領域とで構成されるそれぞれ異なる表示画像を形成することを特徴とする。
<< Configuration of organic EL element >>
(Overview of overall configuration of organic EL element)
The structure of the organic EL element manufactured by the method for manufacturing the organic EL element of the present invention includes at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit on a transparent substrate. The third transparent electrode and the transparent sealing member are configured in this order, and the first organic functional layer unit and the second organic functional layer unit can independently and simultaneously emit light individually or simultaneously, Light irradiation is performed in a different pattern from each of the transparent substrate side and the transparent sealing member side, and the first organic functional layer unit and the second organic functional layer unit have a region in which a light emitting function is modulated by light irradiation, In this case, different display images composed of unmodulated regions are formed.
 図1は、本発明の有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic electroluminescence element of the present invention.
 図1に示すように、有機EL素子ELは、透明基板1上に、第1透明電極A、第1有機機能層ユニットU1、第2透明電極B、第2有機機能層ユニットU2、第3透明電極C及び透明封止部材Dから構成されている。 As shown in FIG. 1, the organic EL element EL includes a first transparent electrode A, a first organic functional layer unit U1, a second transparent electrode B, a second organic functional layer unit U2, and a third transparent substrate on a transparent substrate 1. It consists of an electrode C and a transparent sealing member D.
 第1有機機能層ユニットU1及び第2有機機能層ユニットU2には、それぞれ異なる表示画像が形成されている。表示画像の形成方法としては、有機EL素子の製造過程で、図1に示すように、有機EL素子(EL)を作製した後、透明基板1側からマスク部材を介して光照射L1を行い、第1有機機能層ユニットU1に、光照射L1により発光機能が変調されている領域と、変調されていない領域とを形成して、特定の表示画像を形成する。同様に、透明封止部材D側から光照射L2を行い、第2有機機能層ユニットU2に発光機能が変調されている領域と、変調されていない領域とを形成して、第1有機機能層ユニットU1に形成した画像とは異なる特定の表示画像を形成する。詳細な作製方法については、後述の有機EL素子の製造方法で説明する。 Different display images are formed on the first organic functional layer unit U1 and the second organic functional layer unit U2. As a method for forming a display image, as shown in FIG. 1, in the process of manufacturing an organic EL element, after producing an organic EL element (EL), light irradiation L1 is performed through a mask member from the transparent substrate 1 side. In the first organic functional layer unit U1, a region where the light emission function is modulated by the light irradiation L1 and a region where the light emission function is not modulated are formed to form a specific display image. Similarly, light irradiation L2 is performed from the transparent sealing member D side, and a region where the light emitting function is modulated and a region where the light emitting function is not modulated are formed in the second organic functional layer unit U2, and the first organic functional layer is formed. A specific display image different from the image formed in the unit U1 is formed. A detailed manufacturing method will be described in a method for manufacturing an organic EL element described later.
 また、第1透明電極Aと、第2透明電極B間はリード線20Aで配線され、それぞれの接続端子に駆動電源V1より2~40Vの範囲内の電圧を印加することにより、第1有機機能層ユニットU1を独立して発光させる。同様に、第2透明電極Bと、第3透明電極C間もリード線20Bで配線され、それぞれの接続端子に駆動電源V2より2~40Vの範囲内の電圧を印加することにより、第2有機機能層ユニットU2を、第1有機機能層ユニットU1とは異なる画像で、独立して発光させる。 The first transparent electrode A and the second transparent electrode B are wired with a lead wire 20A, and a voltage within a range of 2 to 40 V from the drive power source V1 is applied to each connection terminal, thereby providing the first organic function. The layer unit U1 is caused to emit light independently. Similarly, the second transparent electrode B and the third transparent electrode C are also wired with a lead wire 20B, and a voltage within a range of 2 to 40 V from the drive power supply V2 is applied to each connection terminal, whereby the second organic The functional layer unit U2 emits light independently with an image different from that of the first organic functional layer unit U1.
 上記のような構成の有機EL素子においては、発光時にはそれぞれ異なる画像を表示するが、非発光時には、形成したパターンは、全く出現しない構成となっている。 In the organic EL element having the above-described configuration, different images are displayed at the time of light emission, but the formed pattern does not appear at all at the time of non-light emission.
 (有機EL素子の画像表示)
 次いで、本発明の有機EL素子により表示する異なる画像について説明する。
(Image display of organic EL elements)
Next, different images displayed by the organic EL element of the present invention will be described.
 上記のように、本発明の有機EL素子においては、第1有機機能層ユニットU1と、第2有機機能層ユニットU2とで、異なる画像表示を行う。 As described above, in the organic EL element of the present invention, the first organic functional layer unit U1 and the second organic functional layer unit U2 display different images.
 図2A及び図2Bは、第1有機機能層ユニットU1及び第2有機機能層ユニットU2が形成する2つの異なる表示画像の一例を示す模式図である。 2A and 2B are schematic views showing examples of two different display images formed by the first organic functional layer unit U1 and the second organic functional layer unit U2.
 例えば、第1透明電極Aと、第2透明電極B間に駆動電源V1を印加して、図2Aで示すような上向き矢印画像22Aを表示する。この時、背景21は、光照射により形成された発光機能が変調されている領域、すなわち、光照射により発光機能が失活している非発光領域である。上向き矢印画像22Aは、光照射を行わなかった変調されていない領域、すなわち発光機能を維持している発光領域に形成され、表示画像として上向き矢印画像22Aを表示する。 For example, the drive power source V1 is applied between the first transparent electrode A and the second transparent electrode B, and an upward arrow image 22A as shown in FIG. 2A is displayed. At this time, the background 21 is a region where the light emitting function formed by light irradiation is modulated, that is, a non-light emitting region where the light emitting function is deactivated by light irradiation. The upward arrow image 22A is formed in an unmodulated area where no light irradiation is performed, that is, a light emitting area maintaining the light emitting function, and displays the upward arrow image 22A as a display image.
 同様に、第2透明電極Bと、第3透明電極C間に駆動電源V2を印加して、図2Bで示す下向き矢印画像22Bを表示する。この時、背景21は、光照射により形成された発光機能が変調されている領域、すなわち非発光領域である。下向きの矢印画像22Bは、光照射を行わなかった変調されていない領域、すなわち発光領域として形成され、表示画像として下向き矢印画像22Bを表示する。 Similarly, the drive power source V2 is applied between the second transparent electrode B and the third transparent electrode C, and the downward arrow image 22B shown in FIG. 2B is displayed. At this time, the background 21 is a region where the light emitting function formed by light irradiation is modulated, that is, a non-light emitting region. The downward arrow image 22B is formed as an unmodulated area where no light irradiation is performed, that is, a light emitting area, and displays the downward arrow image 22B as a display image.
 図3は、2つの異なる画像を表示する方法の一例を説明する模式図である。 FIG. 3 is a schematic diagram for explaining an example of a method for displaying two different images.
 図2に示すような上向き矢印画像及び下向き矢印画像をそれぞれ独立して表示する方法について、更に説明する。 A method for independently displaying an upward arrow image and a downward arrow image as shown in FIG. 2 will be further described.
 図3において、画像Eは、第1透明電極Aと第2透明電極Bに挟まれた、第1有機機能層ユニットU1の発光パターン(図2における上向き矢印画像22A)であり、画像Fは、第2透明電極Bと第3透明電極Cに挟まれた、第2有機機能層ユニットU2の発光パターン(図2に9おける下向き矢印画像22B)である。 In FIG. 3, an image E is a light emission pattern (upward arrow image 22 </ b> A in FIG. 2) of the first organic functional layer unit U <b> 1 sandwiched between the first transparent electrode A and the second transparent electrode B, and the image F is It is the light emission pattern (downward arrow image 22B in 9 in FIG. 2) of the 2nd organic functional layer unit U2 pinched | interposed into the 2nd transparent electrode B and the 3rd transparent electrode C. FIG.
 図3においては、画像Eと画像Fとはそれぞれ重なり合わない状態で表示されているが、重なり合って画像表示を行う方法でも良い。 In FIG. 3, the image E and the image F are displayed in a state where they do not overlap each other, but a method of displaying images while overlapping each other may be used.
 図4は、有機機能層ユニットU1及び有機機能層ユニットU2に形成する2つの異なる表示画像の他の例を示す模式図である。
 図2A、図2B及び図3においては、表示画像として、上向き及び下向きの矢印画像を例に説明したが、本発明の有機EL素子においては、その他に、適用する分野に応じて、図4Aに示したような「○」、「×」表示、図4Bに示したような異なる種類の交通標識の表示、図4Cに示したような横断歩道等における信号表示(「進め」と「止まれ」)、図4Dに示したような異なる幾何学図形のそれぞれを個別に表示するとともに、両者を組み合わせた同時表示(合成パターン)する方法等も挙げることができる。なお、本発明の有機EL素子においては、上記で例示したような表示画像形状を変化させることのほかに、有機機能層ユニットU1と有機機能層ユニットU2とで発光色をそれぞれ変化させる方法、例えば、図4Cのような構成においては、「進め」の表示を青色とし、「止まれ」の表示を赤色として表示することもできる。
FIG. 4 is a schematic diagram illustrating another example of two different display images formed on the organic functional layer unit U1 and the organic functional layer unit U2.
In FIGS. 2A, 2B, and 3, the upward and downward arrow images are described as examples of display images. However, in the organic EL element of the present invention, the display image shown in FIG. “○”, “×” display as shown, display of different types of traffic signs as shown in FIG. 4B, signal display at pedestrian crossings etc. as shown in FIG. 4C (“advance” and “stop”) In addition to individually displaying each of the different geometric figures as shown in FIG. 4D, a method of simultaneously displaying (combining patterns) combining them can also be cited. In addition, in the organic EL element of the present invention, in addition to changing the display image shape as exemplified above, a method of changing the emission color between the organic functional layer unit U1 and the organic functional layer unit U2, for example, In the configuration as shown in FIG. 4C, the “advance” display can be displayed in blue, and the “stop” display can be displayed in red.
 《異なる発光パターンを有する有機EL素子の製造方法》
 本発明において、本発明の異なる発光パターンを有する有機EL素子は、少なくとも一対の透明電極間に有機機能層ユニットを有する構成を、少なくとも2つ積層した構成からなり、状態に応じて、異なる発光パターンを切り替えて表示が可能なことを特徴とする。
<< Method for producing organic EL element having different light emission patterns >>
In the present invention, the organic EL device having different light emission patterns of the present invention has a structure in which at least two organic functional layer units are laminated between at least a pair of transparent electrodes, and the light emission patterns differ depending on the state. It is possible to switch between and display.
 なお、ここでいう「発光パターン」とは、有機EL素子により表示される、例えば、図2A、図2B及び図4A~図4Dで例示したような図案(図の柄や模様)、文字、画像等の画像形状情報や、それに加えて、有機機能層ユニットU1と有機機能層ユニットU2とで異なる発光色で発光させる色情報を含むものとする。 Here, the “light emission pattern” is displayed by an organic EL element, for example, a design (pattern or pattern in the figure), characters, and images as illustrated in FIGS. 2A, 2B, and 4A to 4D. Image shape information such as the above, and in addition, color information for emitting light with different emission colors between the organic functional layer unit U1 and the organic functional layer unit U2.
 ここでは、一例として、図1に示す有機EL素子(EL)の製造方法を説明する。 Here, as an example, a method for manufacturing the organic EL element (EL) shown in FIG. 1 will be described.
 (1)積層工程
 本発明の有機EL素子(EL)は、透明基板1上に、第1透明電極A、第1有機機能層ユニットU1、第2透明電極B、第2有機機能層ユニットU2、第3透明電極C及び透明封止部材Dをこの順で積層する工程(積層工程)により製造することができる。
(1) Laminating Step The organic EL element (EL) of the present invention has a first transparent electrode A, a first organic functional layer unit U1, a second transparent electrode B, a second organic functional layer unit U2, The 3rd transparent electrode C and the transparent sealing member D can be manufactured by the process (lamination process) which laminates | stacks in this order.
 まず、透明基板1を準備し、当該透明基板1上に、第1透明電極の形成物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着法やスパッタリング法等の方法により、第1透明電極Aを形成する。 First, a transparent substrate 1 is prepared, and a thin film made of a material for forming a first transparent electrode, for example, a material for an anode, is formed on the transparent substrate 1 so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm. In addition, the first transparent electrode A is formed by a method such as vapor deposition or sputtering.
 次に、この第1透明電極A上に、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層等を順に積層して、第1有機機能層ユニットU1を形成する。 Next, on the first transparent electrode A, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like are sequentially laminated to form a first organic functional layer unit U1.
 これらの各層の形成方法としては、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる形成法を適用してもよい。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度として50~450℃の範囲内で、真空度として1×10-6~1×10-2Paの範囲内で、蒸着速度として0.01~50nm/秒の範囲内で、基板温度として-50~300℃の範囲内で、層厚として0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。 As a method of forming each of these layers, there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but from the point that a homogeneous layer is easily obtained and pinholes are difficult to generate. Vacuum deposition or spin coating is particularly preferred. Further, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C. and the degree of vacuum is 1 × 10 −6 to Within a range of 1 × 10 −2 Pa, a deposition rate within a range of 0.01 to 50 nm / second, a substrate temperature within a range of −50 to 300 ° C., and a layer thickness within a range of 0.1 to 5 μm. Therefore, it is desirable to appropriately select each condition.
 これらの層を形成した後、その上に第2透明電極Bを形成する。 After forming these layers, the second transparent electrode B is formed thereon.
 次いで、第1有機機能層ユニットU1の形成と同様にして、第2有機機能層ユニットU2の各層を形成する。 Next, each layer of the second organic functional layer unit U2 is formed in the same manner as the formation of the first organic functional layer unit U1.
 以上のようにして第2有機機能層ユニットU2を形成した後、この上部に第3透明電極Cを、蒸着法やスパッタ法などの製膜法によって形成する。 After forming the second organic functional layer unit U2 as described above, the third transparent electrode C is formed thereon by a film forming method such as a vapor deposition method or a sputtering method.
 (2)封止工程
 上記積層工程の後には、有機EL素子(EL)を封止する処理(封止工程)を行う。
(2) Sealing process After the said lamination process, the process (sealing process) which seals an organic EL element (EL) is performed.
 すなわち、透明基板1上に、少なくとも第1有機機能層ユニットU1及び第2有機機能層ユニットU2を外気から遮断するための透明封止部材Dを設ける。 That is, a transparent sealing member D for blocking at least the first organic functional layer unit U1 and the second organic functional layer unit U2 from the outside air is provided on the transparent substrate 1.
 (3)光照射工程
 本発明においては、第1有機機能層ユニットU1及び第2有機機能層ユニットU2を形成して封止した後、透明基板1側と透明封止部材D側から、それぞれ異なるパターンで光照射L1及びL2を行い、発光機能が変調されている領域と、変調されていない領域とに区画する2つの異なる表示画像(発光パターン)を形成するパターニング方法を用いて、有機EL素子を製造することを特徴とする。
(3) Light irradiation process In this invention, after forming and sealing the 1st organic functional layer unit U1 and the 2nd organic functional layer unit U2, it differs from the transparent substrate 1 side and the transparent sealing member D side, respectively. An organic EL element using a patterning method in which light irradiations L1 and L2 are performed in a pattern to form two different display images (light emission patterns) that are divided into a region where the light emission function is modulated and a region where the light emission function is not modulated It is characterized by manufacturing.
 ここで、光照射により発光機能を変調させるとは、光照射により、発光ユニットを構成する材料の発光機能を失活あるいは低下させることをいうが、本発明において、特に、正孔輸送材料等の機能を変化させることにより、当該発光ユニットの発光機能を変化させる方法が好ましい。 Here, modulating the light emitting function by light irradiation means deactivating or lowering the light emitting function of the material constituting the light emitting unit by light irradiation. In the present invention, in particular, a hole transporting material, etc. A method of changing the light emitting function of the light emitting unit by changing the function is preferable.
 光照射工程における光照射方法としては、第1有機機能層ユニットU1及び第2有機機能層ユニットU2の所定パターン領域に、所定の光照射することで当該照射部分を輝度が変化した発光領域とすることができれば、いずれの方法であってもよく、特定の方法に限定されるものではない。 As a light irradiating method in the light irradiating step, a predetermined pattern region of the first organic functional layer unit U1 and the second organic functional layer unit U2 is irradiated with a predetermined light to make the irradiated part a light emitting region whose luminance has changed. Any method can be used as long as it is possible, and the method is not limited to a specific method.
 本発明においては、光照射工程において照射される光は、紫外線、可視光線又は赤外線を有していてもよいが、特に、紫外線を含む光照射であることが好ましい。 In the present invention, the light irradiated in the light irradiation step may have ultraviolet light, visible light, or infrared light, but light irradiation including ultraviolet light is particularly preferable.
 ここで、本発明でいう紫外線とは、その波長がX線よりも長く、可視光線の最短波長より短い電磁波をいい、具体的には波長が1~400nmの範囲内の光である。 Here, the term “ultraviolet rays” as used in the present invention refers to electromagnetic waves having a wavelength longer than that of X-rays and shorter than the shortest wavelength of visible light, and specifically, light having a wavelength in the range of 1 to 400 nm.
 紫外線の発生手段及び照射手段は、従来公知の装置等により紫外線を発生させ、かつ、照射すればよく、特段の制限を受けるものではない。具体的な光源としては、高圧水銀ランプ、低圧水銀ランプ、水素(重水素)ランプ、希ガス(キセノン、アルゴン、ヘリウム、ネオンなど)放電ランプ、窒素レーザー、エキシマレーザー(XeCl,XeF,KrF,KrClなど)、水素レーザー、ハロゲンレーザー、各種可視(LD)-赤外レーザーの高調波(YAGレーザーのTHG(Third HarmonicGeneration)光など)等が挙げられる。 The ultraviolet ray generating means and the irradiating means are not particularly limited as long as the ultraviolet ray is generated and irradiated by a conventionally known apparatus or the like. Specific examples of the light source include a high-pressure mercury lamp, a low-pressure mercury lamp, a hydrogen (deuterium) lamp, a rare gas (xenon, argon, helium, neon, etc.) discharge lamp, a nitrogen laser, and an excimer laser (XeCl, XeF, KrF, KrCl). Etc.), hydrogen laser, halogen laser, various harmonics of visible (LD) -infrared laser (THG (Third Harmonic Generation) light of YAG laser) and the like.
 このような光照射工程は、封止工程の後に行うことが好ましい。 Such a light irradiation step is preferably performed after the sealing step.
 以上により、2つの異なる発光パターンを有する有機EL素子(EL)を製造することができる。このような有機EL素子(EL)の製造においては、1回の真空引きで一貫して第1透明電極D~第3透明電極Cまで作製するのが好ましいが、途中で真空雰囲気から透明基板1を取り出して異なる形成法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 As described above, an organic EL element (EL) having two different light emission patterns can be manufactured. In the manufacture of such an organic EL element (EL), it is preferable that the first transparent electrode D to the third transparent electrode C are manufactured consistently by a single evacuation. May be taken out and subjected to different forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 また、このようにして得られた有機EL素子(EL)に直流電圧を印加する場合には、第1透明電極Aを陽極、第2透明電極Bを陰極及び陽極、第3透明電極Cを陰極として構成してもよく、また、第1透明電極Aを陰極、第2透明電極Bを陽極及び陰極、第3透明電極Cを陽極として構成してもよい。本発明においては、駆動回路の設計の容易性から、第1透明電極Aと第3透明電極Cを陽極として作用させ、第2透明電極Bを陰極として作用させる駆動方式、あるいは第1透明電極Aと第3透明電極Cを陰極として作用させ、第2透明電極Bを陽極として作用させる駆動方式がより好ましい。 In addition, when applying a DC voltage to the organic EL element (EL) thus obtained, the first transparent electrode A is an anode, the second transparent electrode B is a cathode and an anode, and the third transparent electrode C is a cathode. The first transparent electrode A may be configured as a cathode, the second transparent electrode B may be configured as an anode and a cathode, and the third transparent electrode C may be configured as an anode. In the present invention, the drive system in which the first transparent electrode A and the third transparent electrode C act as anodes and the second transparent electrode B acts as a cathode, or the first transparent electrode A, for ease of design of the drive circuit. A driving method in which the third transparent electrode C acts as a cathode and the second transparent electrode B acts as an anode is more preferable.
 《有機EL素子の発光パターンの形成方法》
 2つの第1有機機能層ユニットU1及び第2有機機能層ユニットU2を有する有機EL素子に光照射して発光輝度を変化、低減させる場合、封止工程を終えた有機EL素子の一方の面側からの一括光照射では、当然のことながら、それぞれの発光ユニットで異なった図柄やマークを表示させることができなくなる。
<< Method of forming light emission pattern of organic EL element >>
When the organic EL element having the two first organic functional layer units U1 and the second organic functional layer unit U2 is irradiated with light to change or reduce the emission luminance, one surface side of the organic EL element after the sealing process is finished As a matter of course, it is impossible to display different symbols and symbols for each light emitting unit.
 本発明では、上述のように光照射を透明基板側と透明封止部材側から行い、それぞれ異なる表示画像をパターニングする方法であることを特徴とする。 The present invention is characterized in that light irradiation is performed from the transparent substrate side and the transparent sealing member side as described above, and different display images are patterned.
 この光照射においては、光照射工程で、例えば、第1有機機能層ユニットU1の発光パターン形成時に、照射した光が第2透明電極Bを通過し、第2有機機能層ユニットU2に影響を与えないこと、あるいは、第2有機機能層ユニットU2の発光パターン形成時に、照射した光が第2透明電極Bを通過し、第1有機機能層ユニットU1に影響を与えないように、条件を設定することが、精度が高く、鮮明度に優れたシャープな発光パターン(表示画像)を形成する上では、重要となる。 In this light irradiation, in the light irradiation process, for example, when the light emission pattern of the first organic functional layer unit U1 is formed, the irradiated light passes through the second transparent electrode B and affects the second organic functional layer unit U2. The conditions are set so that the irradiated light passes through the second transparent electrode B and does not affect the first organic functional layer unit U1 when the light emitting pattern of the second organic functional layer unit U2 is formed. This is important in forming a sharp light emission pattern (display image) with high accuracy and excellent sharpness.
 上記のような不要な光照射(光漏れ)を防止する方法としては、第1透明電極、第2透明電極及び第3透明電極のなかで、第2透明電極の膜厚を最も厚く設定して、不要な光の通過を防止する方法、照射する光の光量を最適条件に制御する方法、例えば、透明基板側から紫外線を照射する場合には、紫外線は通過する第1透明電極Aや第1有機機能層ユニットU1の構成層に段階的に吸収されるため、最終的に、第2透明電極Bに到着しないあるいは通過しない光量となるように設定することが好ましい。 As a method for preventing the unnecessary light irradiation (light leakage) as described above, the film thickness of the second transparent electrode is set to be the thickest among the first transparent electrode, the second transparent electrode, and the third transparent electrode. , A method for preventing the passage of unnecessary light, a method for controlling the amount of light to be irradiated to an optimum condition, for example, when irradiating ultraviolet rays from the transparent substrate side, the first transparent electrode A or the first first through which the ultraviolet rays pass. Since it is absorbed stepwise by the constituent layers of the organic functional layer unit U1, it is preferable to set the light amount so as not to finally reach or pass through the second transparent electrode B.
 また、光強度、あるいは照射時間等を適宜調整して、光照射量を制御することにより、当該光照射量に応じて光照射部分の発光輝度を変化させることが可能である。光照射量が多いほど発光輝度は減衰し、光照射量が少ないほど発光輝度の減衰率は小さい。したがって、光照射量が0、すなわち、光未照射の場合には、発光輝度は最大である。また、光照射、例えば、紫外線照射のケースでは、表面側から照射された紫外光は、上記のように有機機能層内を通過するに従って、吸収及び減衰するため、第2透明電極に到達する際には、その光量がかなり低下し、第2透明電極を通過して、他方の有機機能層ユニットに影響を与える確率は低くなる。 Further, by appropriately adjusting the light intensity or the irradiation time and controlling the light irradiation amount, it is possible to change the light emission luminance of the light irradiation portion according to the light irradiation amount. The greater the light irradiation amount, the lower the emission luminance, and the smaller the light irradiation amount, the smaller the emission luminance attenuation rate. Therefore, when the light irradiation amount is 0, that is, when no light is irradiated, the light emission luminance is maximum. Further, in the case of light irradiation, for example, ultraviolet irradiation, the ultraviolet light irradiated from the surface side is absorbed and attenuated as it passes through the organic functional layer as described above, and therefore when reaching the second transparent electrode. The amount of light decreases considerably, and the probability of passing through the second transparent electrode and affecting the other organic functional layer unit is low.
 なお、本発明においては、各有機層を通過する際の光減衰率の尺度となる各有機層の光吸収率は、例えば、各有機層の光学定数(屈折率n、消衰係数k)を求め、この測定値を元にシミュレーションを行うことで求めることができる。 In the present invention, the light absorptance of each organic layer, which is a measure of the light attenuation rate when passing through each organic layer, is, for example, the optical constant (refractive index n, extinction coefficient k) of each organic layer. It can be obtained by performing a simulation based on this measured value.
 また、有機層や中間電極の膜厚を調整することで、第2透明電極を通過する光を低く抑えることができる。 Also, the light passing through the second transparent electrode can be kept low by adjusting the film thickness of the organic layer and the intermediate electrode.
 以下、図面を用いて、図1で示される有機EL素子1について、より詳細に説明する。 Hereinafter, the organic EL element 1 shown in FIG. 1 will be described in more detail with reference to the drawings.
 本発明の有機EL素子の製造方法においては、有機EL素子の各構成要素の成膜及び透明封止部材Dで封止した後、透明基板1側及び透明封止部材D側からそれぞれ異なる表示画像を、光照射によりパターニングする。 In the manufacturing method of the organic EL element of the present invention, after forming each component of the organic EL element and sealing with the transparent sealing member D, different display images from the transparent substrate 1 side and the transparent sealing member D side, respectively. Are patterned by light irradiation.
 光照射工程においては、例えば、図2Aに示すような発光形状を得るため、図2Aの非照射領域22A(変調されていない領域、発光領域)に光が当たらないよう、非透過加工したマスク板を用意する。次に、第1ステップとして、透明基板1側から、図2Aの発光位置と上記マスク板を位置合わせしてマスク板を固定する。位置合わせ終了後、光照射工程を実施し、矢印形状の周囲部(照射領域21)を輝度変化させる。第2ステップとして、透明封止基板D側から、図2Bの発光位置と上記マスク板を位置合わせしてマスク板を固定する。位置合わせ終了後、光照射工程を実施し、矢印形状の周囲部(照射領域21)を輝度変化させる。 In the light irradiation step, for example, in order to obtain a light emission shape as shown in FIG. 2A, a non-transparent processed mask plate so that the non-irradiation region 22A (non-modulated region, light emission region) of FIG. Prepare. Next, as a first step, the mask plate is fixed by aligning the light emission position of FIG. 2A and the mask plate from the transparent substrate 1 side. After the alignment is completed, a light irradiation process is performed to change the brightness of the arrow-shaped peripheral part (irradiation region 21). As a second step, the mask plate is fixed by aligning the light emission position of FIG. 2B and the mask plate from the transparent sealing substrate D side. After the alignment is completed, a light irradiation process is performed to change the brightness of the arrow-shaped peripheral part (irradiation region 21).
 このようにして作製された有機EL素子(EL)は、第1有機機能層ユニットU1のみを駆動すれば、図2Aに示すような上向き矢印形状の発光パターン22Aが観測され、第2有機機能層ユニットU2のみを駆動すれば、図2Bに示す下向き矢印形状の発光パターン22Bが観測される。 In the organic EL element (EL) thus manufactured, when only the first organic functional layer unit U1 is driven, an upward arrow-shaped light emission pattern 22A as shown in FIG. 2A is observed, and the second organic functional layer is observed. If only the unit U2 is driven, a light emission pattern 22B having a downward arrow shape shown in FIG. 2B is observed.
 第1有機機能層ユニットU1及び第2有機機能層ユニットU2の駆動電圧V1及びV2による電気的駆動は、位置センサー等の情報に基づいて、ドライバーIC(Integrated Circuit)で制御される。 The electrical driving of the first organic functional layer unit U1 and the second organic functional layer unit U2 by the driving voltages V1 and V2 is controlled by a driver IC (Integrated Circuit) based on information from a position sensor or the like.
 なお、上記発光パターンにおいては、第1有機機能層ユニットU1及び第2有機機能層ユニットU2の発光色は任意であり、同一であっても、異なっていてもよい。 In addition, in the said light emission pattern, the luminescent color of the 1st organic functional layer unit U1 and the 2nd organic functional layer unit U2 is arbitrary, and may be the same or different.
 《有機EL素子の構成材料》
 次いで、有機EL素子を構成する各構成要素の詳細について説明する。
<< Constituent materials for organic EL elements >>
Subsequently, the detail of each component which comprises an organic EL element is demonstrated.
 〔透明基板〕
 本発明の有機EL素子に適用可能な透明基板1としては、例えば、ガラス、プラスチック等の透明材料を挙げることができる。好ましく用いられる透明基板1としては、ガラス、石英、樹脂フィルムを挙げることができる。本発明でいう「透明基材」とは、光波長550nmでの光透過率が50%以上である基材であり、好ましくは。70%以上であり、より好ましくは80%以上の基材である。
[Transparent substrate]
Examples of the transparent substrate 1 applicable to the organic EL element of the present invention include transparent materials such as glass and plastic. Examples of the transparent substrate 1 that is preferably used include glass, quartz, and a resin film. The “transparent substrate” in the present invention is a substrate having a light transmittance of 50% or more at a light wavelength of 550 nm, preferably. The base material is 70% or more, and more preferably 80% or more.
 ガラス材料としては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、隣接する層との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜を形成することができる。 Examples of the glass material include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. On the surface of these glass materials, from the viewpoint of adhesion with adjacent layers, durability, and smoothness, a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary. A combined hybrid coating can be formed.
 樹脂フィルムを構成材料としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン略称:樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名JSR社製)及びアペル(商品名三井化学社製)等のシクロオレフィン系樹脂(略称:COP)等を挙げることができる。 Examples of the constituent material of the resin film include polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), and cellulose acetate. Cellulose esters such as butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene Abbreviations: resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PE ), Polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade name, Mitsui Chemicals) And other cycloolefin resins (abbreviation: COP).
 透明基板1の表面は、表面活性化処理により親水化されていることが好ましい。このような表面活性化処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理が挙げられる。 The surface of the transparent substrate 1 is preferably made hydrophilic by a surface activation treatment. Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
 本発明の有機EL素子においては、上記説明した透明基板1では、必要に応じて、ガスバリアー層を設ける構成であってもよい。 In the organic EL element of the present invention, the transparent substrate 1 described above may have a configuration in which a gas barrier layer is provided as necessary.
 ガスバリアー層を形成した透明基板1は、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%における水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%における水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。 The transparent substrate 1 on which the gas barrier layer is formed has a water vapor transmission rate of 1 × 10 −3 g at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% measured by a method according to JIS K 7129-1992. is preferably / m 2 · 24h or less, more, oxygen permeability measured by the method based on JIS K 7126-1987 is, 1 × 10 -3 ml / m 2 · 24h · atm (1atm is 1.01325 × 10 5 Pa) or less, and the water vapor permeability at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% is 1 × 10 −3 g / m 2 · 24 h or less. Is preferred.
 ガスバリアー層を形成する材料としては、水分や酸素など、有機EL素子の劣化をもたらすものの系内への浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機物により構成されている無機層を挙げることができる。更に、ガスバリアー層の脆弱性を改良するため、これら無機層と有機材料からなる有機層との積層構造とすることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させる構成であることが好ましい。 As a material for forming the gas barrier layer, any material may be used as long as it has a function of suppressing intrusion into the system, although it causes deterioration of the organic EL element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride An inorganic layer made of an inorganic material such as Furthermore, in order to improve the fragility of the gas barrier layer, a laminated structure of these inorganic layers and an organic layer made of an organic material is more preferable. Although there is no restriction | limiting in particular about the lamination order of an inorganic layer and an organic layer, It is preferable that it is the structure which laminates | stacks both alternately several times.
 〔透明電極〕
 本発明に係る第1透明電極~第3透明電極は、いずれも透明電極である。ここでいう「透明」とは、光波長550nmでの光透過率が50%以上であることをいう。
[Transparent electrode]
All of the first to third transparent electrodes according to the present invention are transparent electrodes. Here, “transparent” means that the light transmittance at a light wavelength of 550 nm is 50% or more.
 第1透明電極~第3透明電極に用いることのできる材料群としては、通常、有機EL素子の電極形成に使用可能な全ての金属材料を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。 As a group of materials that can be used for the first transparent electrode to the third transparent electrode, all metal materials that can be used for forming electrodes of organic EL elements can be used. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO (indium tin oxide ( Indium Tin Oxide (ITO)), ZnO, TiO 2 , SnO 2 and other oxide semiconductors.
 本発明では、第1透明電極~第3透明電極においては、少なくとも一つの電極を、薄膜金属により形成することが好ましく、更に好ましくは第1透明電極、第2透明電極及び第3透明電極の全ての電極を、薄膜金属により形成する構成である。 In the present invention, in the first transparent electrode to the third transparent electrode, at least one electrode is preferably formed of a thin film metal, more preferably all of the first transparent electrode, the second transparent electrode, and the third transparent electrode. The electrode is formed of a thin film metal.
 本発明では、第1透明電極~第3透明電極が薄膜金属により構成されている場合、電極膜厚としては、5~30nmの範囲内であることが好ましく、更に好ましくは5~20nmである。 In the present invention, when the first transparent electrode to the third transparent electrode are made of a thin film metal, the electrode film thickness is preferably in the range of 5 to 30 nm, more preferably 5 to 20 nm.
 また、本発明においては、第1透明電極、第2透明電極及び第3透明電極のなかで、第2透明電極の膜厚を最も厚く設定することが好ましく、膜厚としては第1透明電極及び第2透明電極に対し、第2透明電極の膜厚を1.1~2.0倍の範囲内とすることが好ましく、より好ましくは1.2~1.6倍の範囲内である。 Moreover, in this invention, it is preferable to set the film thickness of a 2nd transparent electrode among the 1st transparent electrode, a 2nd transparent electrode, and a 3rd transparent electrode, and it is preferable to set as a film thickness a 1st transparent electrode and The film thickness of the second transparent electrode is preferably 1.1 to 2.0 times that of the second transparent electrode, and more preferably 1.2 to 1.6 times.
 本発明においては、更には、薄膜金属により形成する電極が、銀又は銀を主成分とする合金を用いて構成された薄銀電極であることが好ましく、厚さとしては5~30nmの範囲内であることが好ましく、更に好ましくは5~20nmである。本発明でいう銀を主成分とする合金とは、合金を構成する金属のうち、銀が占める比率が60質量%以上であることをいい、好ましくは80質量%以上である。 In the present invention, the electrode formed of a thin film metal is preferably a thin silver electrode composed of silver or an alloy containing silver as a main component, and has a thickness in the range of 5 to 30 nm. The thickness is preferably 5 to 20 nm. The alloy having silver as a main component in the present invention means that the proportion of silver in the metal constituting the alloy is 60% by mass or more, preferably 80% by mass or more.
 〔下地層〕
 第1透明電極~第3透明電極が、銀又は銀を主成分とする合金を用いて構成された薄銀電極である場合は、その下部に、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を含有する下地層を有することが好ましく、特には、透明基板と薄銀電極で構成される第1透明電極との間に当該構成からなる下地層を設けることが好ましい。
[Underlayer]
When the first transparent electrode to the third transparent electrode are thin silver electrodes composed of silver or an alloy containing silver as a main component, at least one selected from nitrogen atoms and sulfur atoms is provided below the first transparent electrodes. It is preferable to have a base layer containing an organic compound having the above atoms, and in particular, it is preferable to provide a base layer having the structure between the transparent substrate and the first transparent electrode formed of a thin silver electrode.
 下地層を構成する材料としては、特に限定されるものではなく、銀又は銀を主成分とする合金からなる薄銀電極を成膜する際に、銀の凝集を抑制できるものであれば良く、例えば、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物等が挙げられる。 The material constituting the underlayer is not particularly limited as long as it can suppress aggregation of silver when forming a thin silver electrode made of silver or an alloy containing silver as a main component, For example, the organic compound etc. which have at least 1 sort (s) of atom selected from a nitrogen atom and a sulfur atom are mentioned.
 上記有機化合物は、1種でもよく、2種以上を混合してもよい。また、窒素原子及び硫黄原子を有していない化合物を、下地層の効果を阻害しない範囲で混合することも許される。 The organic compound may be one kind or a mixture of two or more kinds. In addition, it is allowed to mix a compound having no nitrogen atom and sulfur atom within a range that does not impair the effect of the underlayer.
 下地層の層厚の上限としては、50nm未満であることが好ましく、30nm未満であることがより好ましく、10nm未満であることが更に好ましく、5nm未満であることが特に好ましい。層厚を50nm未満とすることにより、光学的ロスを最小限に抑えられる。一方、層厚の下限としては、0.05nm以上であることが好ましく、0.1nm以上であることがより好ましく、0.3nm以上であることが特に好ましい。層厚を0.05nm以上とすることにより、下地層の成膜を均一とし、下地層としての上記効果(銀の凝集抑制)を発現し、薄銀電極層を均一化することができる。 The upper limit of the thickness of the underlayer is preferably less than 50 nm, more preferably less than 30 nm, still more preferably less than 10 nm, and particularly preferably less than 5 nm. By making the layer thickness less than 50 nm, optical loss can be minimized. On the other hand, the lower limit of the layer thickness is preferably 0.05 nm or more, more preferably 0.1 nm or more, and particularly preferably 0.3 nm or more. By setting the layer thickness to 0.05 nm or more, the underlayer can be uniformly formed, the above effect as the underlayer (inhibition of silver aggregation) can be exhibited, and the thin silver electrode layer can be made uniform.
 下地層の成膜方法としては、特に制限はなく、例えば、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(例えば、抵抗加熱、EB法等。)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。 The method for forming the underlayer is not particularly limited. For example, a method using a wet process such as an inkjet method, a coating method, or a dip method, a vapor deposition method (for example, resistance heating, EB method, etc.), a sputtering method, Examples include a method using a dry process such as a CVD method. Among these, the vapor deposition method is preferably applied.
 以下、下地層の形成に適用が可能な、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物について説明する。 Hereinafter, an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom that can be applied to the formation of the underlayer will be described.
 (窒素原子を有する有機化合物)
 窒素原子を有する有機化合物としては、融点が80℃以上であり、分子量Mwが150~1200の範囲内である化合物であり、銀又は銀の合金との相互作用が大きい化合物であることが好ましく、例えば、含窒素複素環化合物、フェニル基置換アミン化合物等が挙げられる。
(Organic compounds having nitrogen atoms)
The organic compound having a nitrogen atom is preferably a compound having a melting point of 80 ° C. or higher and a molecular weight Mw in the range of 150 to 1200, and having a large interaction with silver or a silver alloy, Examples thereof include nitrogen-containing heterocyclic compounds and phenyl group-substituted amine compounds.
 また、窒素原子を有する有機化合物としては、有効非共有電子対含有率[n/M](窒素原子を有する有機化合物の分子量Mに対する有効非共有電子対の数nの割合)が、2.0×10-3以上となるように選択された化合物であることが好ましく、3.9×10-3以上であることがより好ましい。 The organic compound having a nitrogen atom has an effective unshared electron pair content [n / M] (a ratio of the number n of effective unshared electron pairs to the molecular weight M of the organic compound having a nitrogen atom) of 2.0. Preferably, the compound is selected so as to be × 10 −3 or more, and more preferably 3.9 × 10 −3 or more.
 ここでいう有効非共有電子対とは、化合物を構成する窒素原子が有する非共有電子対のうち、芳香族性に関与していない非共有電子対である。 Here, the effective unshared electron pair is an unshared electron pair that is not involved in aromaticity among the unshared electron pairs of the nitrogen atoms constituting the compound.
 ここでいう芳香族性とは、π電子を持つ原子が環状に配列された不飽和環状構造をいい、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(nは0以上の整数)個であることを条件としている。 The aromaticity here refers to an unsaturated cyclic structure in which atoms having π electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”, and is included in the π electron system on the ring. Is 4n + 2 (n is an integer of 0 or more).
 以上のような有効非共有電子対は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かに関わらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は有効非共有電子対の一つとしてカウントされる。 The effective unshared electron pair as described above is such that the unshared electron pair possessed by the nitrogen atom is aromatic regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a heteroatom constituting the aromatic ring. It is selected based on whether or not it is involved in the family. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is an effective unshared electron pair. Counted as one of
 これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は有効非共有電子対としてカウントされることはない。 In contrast, even if a nitrogen atom is not a heteroatom that constitutes an aromatic ring, if all of the non-shared electron pairs of the nitrogen atom are involved in aromaticity, the nitrogen atom is not shared. An electron pair is not counted as a valid unshared electron pair.
 なお、各化合物において、有効非共有電子対の数nは、有効非共有電子対を有する窒素原子の数と一致する。 In each compound, the number n of effective unshared electron pairs coincides with the number of nitrogen atoms having effective unshared electron pairs.
 下地層が、複数の窒素原子を有する有機化合物を用いて構成されている場合、有効非共有電子対含有率[n/M]は、各化合物の混合比に基づき、混合化合物の分子量Mと有効非共有電子対の数nを算出し、この分子量Mに対しての有効非共有電子対の数nの割合を有効非共有電子対含有率[n/M]とし、この値が上述した所定範囲であることが好ましい。 When the underlayer is composed of an organic compound having a plurality of nitrogen atoms, the effective unshared electron pair content [n / M] is based on the mixing ratio of each compound and the effective molecular weight M of the mixed compound. The number n of unshared electron pairs is calculated, and the ratio of the number n of effective unshared electron pairs to the molecular weight M is defined as the effective unshared electron pair content [n / M], and this value is within the predetermined range described above. It is preferable that
 以下に、下地層を構成する窒素原子を有する低分子有機化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10-3以上である例示化合物No.1~45を示すが、特にこれに限定されるものではない。なお、例示化合物No.31の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち、銅に配位していない窒素原子の非共有電子対が有効非共有電子対としてカウントされる。 Hereinafter, as the low molecular weight organic compound having a nitrogen atom constituting the underlayer, the above-described exemplary compound No. 1 having an effective unshared electron pair content [n / M] of 2.0 × 10 −3 or more is used. 1 to 45 are shown, but the present invention is not particularly limited thereto. In addition, Exemplified Compound No. In 31 copper phthalocyanine, among the unshared electron pairs of nitrogen atoms, the unshared electron pairs of nitrogen atoms not coordinated to copper are counted as effective unshared electron pairs.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 上記例示化合物No.1~45について、有効非共有電子対の数n、分子量M及び有効非共有電子対含有率[n/M]を表1に示す。 The above exemplified compound No. Table 1 shows the number n of effective unshared electron pairs, the molecular weight M, and the effective unshared electron pair content [n / M] for 1 to 45.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 (窒素原子を有するポリマー)
 本発明においては、窒素原子を有する有機化合物として、ポリマーを用いることもできる。
(Polymer having nitrogen atom)
In the present invention, a polymer can also be used as the organic compound having a nitrogen atom.
 窒素原子を有するポリマーは、重量平均分子量が1000~1000000の範囲内であることが好ましい。 The polymer having a nitrogen atom preferably has a weight average molecular weight in the range of 1,000 to 1,000,000.
 窒素原子を有するポリマーとしては、下記一般式(P1)で表される部分構造、又は下記一般式(P2)で表される部分構造を有するポリマーであることが好ましい。 The polymer having a nitrogen atom is preferably a polymer having a partial structure represented by the following general formula (P1) or a partial structure represented by the following general formula (P2).
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 一般式(P1)中、Aは、2価の窒素原子含有基を表す。Yは、2価の有機基又は結合手を表す。n1は、重量平均分子量が1000~1000000の範囲内となる繰り返し数を表す。 In General Formula (P1), A 1 represents a divalent nitrogen atom-containing group. Y 1 represents a divalent organic group or a bond. n1 represents the number of repetitions with a weight average molecular weight in the range of 1,000 to 1,000,000.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 一般式(P2)中、Aは、1価の窒素原子含有基を表す。n2は、1以上の整数を表す。n2は、銀との相互作用性の点から1~3の範囲内の整数であることが好ましく、合成容易性の点から1又は2であることがより好ましい。n2が2以上である場合、複数のAは、それぞれ同一であってもよいし、異なっていてもよい。A及びAは、おのおの2価の窒素原子含有基を表す。A及びAは、同一であってもよいし、異なっていてもよい。n3及びn4は、それぞれ独立に、0又は1を表す。Yは、(n2+2)価の有機基を表す。n1は、重量平均分子量が1000~1000000の範囲内となる繰り返し数を表す。 In General Formula (P2), A 2 represents a monovalent nitrogen atom-containing group. n2 represents an integer of 1 or more. n2 is preferably an integer in the range of 1 to 3 from the viewpoint of interaction with silver, and more preferably 1 or 2 from the viewpoint of ease of synthesis. When n2 is 2 or more, the plurality of A 2 may be the same or different. A 3 and A 4 each represent a divalent nitrogen atom-containing group. A 3 and A 4 may be the same or different. n3 and n4 each independently represents 0 or 1. Y 2 represents an (n2 + 2) valent organic group. n1 represents the number of repetitions with a weight average molecular weight in the range of 1,000 to 1,000,000.
 上記一般式(P1)又は(P2)で表される部分構造を有するポリマーは、上記一般式(P1)又は(P2)由来の単一の構成単位のみから構成される単独重合体(ホモポリマー)であってもよいし、上記一般式(P1)又は(P2)由来の2種以上の構成単位のみから構成される共重合体(コポリマー)であってもよい。 The polymer having the partial structure represented by the general formula (P1) or (P2) is a homopolymer composed of only a single structural unit derived from the general formula (P1) or (P2). It may be a copolymer (copolymer) composed of only two or more structural units derived from the above general formula (P1) or (P2).
 また、上記一般式(P1)又は(P2)で示される構造単位に加えて、更に窒素原子含有基を有さない他の構造単位を有して共重合体を形成していてもよい。 Further, in addition to the structural unit represented by the general formula (P1) or (P2), the copolymer may be formed by further having another structural unit having no nitrogen atom-containing group.
 窒素原子を有するポリマーが窒素原子含有基を有していない他の構造単位を有する場合、当該他の構造単位由来の単量体の含有量は、本発明に係る窒素原子を有するポリマーによる効果を損なわない程度であれば特に制限されないが、全構造単位由来の単量体中、好ましくは10~75モル%の範囲内、より好ましくは20~50モル%の範囲内である。 When the polymer having a nitrogen atom has another structural unit not having a nitrogen atom-containing group, the content of the monomer derived from the other structural unit has the effect of the polymer having a nitrogen atom according to the present invention. Although it is not particularly limited as long as it is not impaired, it is preferably in the range of 10 to 75 mol%, more preferably in the range of 20 to 50 mol% in the monomers derived from all structural units.
 一般式(P1)又は(P2)で表される部分構造を有するポリマーの末端は、特に制限されず、使用される原料(単量体)の種類によって適宜規定されるが、通常、水素原子である。 The terminal of the polymer having the partial structure represented by the general formula (P1) or (P2) is not particularly limited and is appropriately defined depending on the type of raw material (monomer) used. is there.
 一般式(P2)において、Aで表される1価の窒素原子含有基は、窒素原子を有する有機基であれば特に制限されない。そのような窒素原子含有基としては、例えば、アミノ基、ジチオカルバメート基、チオアミド基、シアノ基(-CN)、イソニトリル基(-N≡C)、イソシアナート基(-N=C=O)、チオイソシアナート基(-N=C=S)、又は置換若しくは無置換の含窒素芳香族環を含む基が挙げられる。 In the general formula (P2), the monovalent nitrogen atom-containing group represented by A 2 is not particularly limited as long as it is an organic group having a nitrogen atom. Examples of such nitrogen atom-containing groups include amino groups, dithiocarbamate groups, thioamide groups, cyano groups (—CN), isonitrile groups (—N + ≡C ), isocyanate groups (—N═C═O). ), A thioisocyanate group (—N═C═S), or a group containing a substituted or unsubstituted nitrogen-containing aromatic ring.
 以下に、本発明に係る窒素原子を有するポリマーを構成するモノマーの具体例(PN1~41)を示すが、特にこれに限定されるものではない。なお、窒素原子を有するポリマーは、下記に示すモノマーを重量平均分子量が1000~1000000の範囲内となる範囲の繰り返し数n1で構成されている。 Hereinafter, specific examples (PN1 to 41) of monomers constituting the polymer having a nitrogen atom according to the present invention are shown, but the invention is not particularly limited thereto. The polymer having a nitrogen atom is composed of a monomer shown below with a repeating number n1 in a range where the weight average molecular weight is in the range of 1,000 to 1,000,000.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
 本発明において、窒素原子を有する低分子有機化合物及びポリマーは、公知、周知の方法で合成することができる。 In the present invention, the low molecular weight organic compound and polymer having a nitrogen atom can be synthesized by a known and well-known method.
 (硫黄原子を有する有機化合物)
 本発明に適用可能な硫黄原子を有する有機化合物は、分子内に、スルフィド結合、ジスルフィド結合、メルカプト基、スルホン基、チオカルボニル結合等を有していることが好ましい。これらの中でも、スルフィド結合又はメルカプト基を有していることがより好ましい。これらの硫黄原子を有する有機化合物は、例えば、特開2009-163177号公報等に記載されている。
(Organic compounds having sulfur atoms)
The organic compound having a sulfur atom applicable to the present invention preferably has a sulfide bond, a disulfide bond, a mercapto group, a sulfone group, a thiocarbonyl bond or the like in the molecule. Among these, it is more preferable to have a sulfide bond or a mercapto group. These organic compounds having a sulfur atom are described in, for example, JP-A No. 2009-163177.
 本発明に用いられる硫黄原子を有する有機化合物及びポリマーは、公知、周知の方法で合成することができる。 The organic compound and polymer having a sulfur atom used in the present invention can be synthesized by a known and well-known method.
 〔有機機能層ユニット〕
 次いで、有機機能層ユニットを構成する各層について、電荷注入層、発光層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
[Organic functional layer unit]
Next, each layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a light emitting layer, a hole transport layer, an electron transport layer, and a blocking layer.
 本発明の有機EL素子においては、少なくとも2つの有機機能層ユニット(図1に示す第1の有機機能層ユニットU1及び第2の有機機能層ユニットU2)を有することを特徴とするが、これらの有機機能層ユニットは、同一構成材料及同一層順であっても、同一構成材料であるが層順が逆であっても、あるいは構成材料あるいは層順が全く異なる構成であっても良い。 The organic EL element of the present invention is characterized by having at least two organic functional layer units (the first organic functional layer unit U1 and the second organic functional layer unit U2 shown in FIG. 1). The organic functional layer unit may have the same constituent material and the same layer order, or the same constituent material, but the layer order may be reversed, or the constituent material or the layer order may be completely different.
 (電荷注入層)
 本発明において、電荷注入層とは、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
(Charge injection layer)
In the present invention, the charge injection layer is a layer provided between an electrode and a light emitting layer in order to lower drive voltage or improve light emission luminance. “Organic EL element and its industrialization front line (November 30, 1998) The details are described in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Nippon TS Co., Ltd.”, and there are a hole injection layer and an electron injection layer.
 電荷注入層としては、一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができるが、本発明においては、透明電極に隣接して電荷注入層を配置させることが好ましい態様である。 In general, the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer. However, in the present invention, it is a preferable aspect to dispose the charge injection layer adjacent to the transparent electrode.
 本発明に係る正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に、その詳細が記載されている。 The hole injection layer according to the present invention is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the drive voltage and improve the light emission luminance. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Month 30th, NTS Corporation”.
 正孔注入層の具体的構成は、例えば、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The specific structure of the hole injection layer is described in detail, for example, in JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069, and is used for the hole injection layer. Examples of materials that can be used include porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triaryls. Amine derivatives, carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinyl carbazole, aromatic amine main chain Is a polymer material or oligomer introduced into the side chain, polysilane, conductive polymer or oligomer (for example, PEDOT (polyethylenedioxythiophene): PSS (polystyrenesulfonic acid), aniline copolymer, polyaniline, polythiophene, etc.) Can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も、正孔輸送材料として用いることができる。 Also, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can be used as the hole transport material.
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極と発光層との間に設けられる層のことであり、陰極が本発明に係る透明電極で構成されている場合には、当該透明電極に隣接して設けられ、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The electron injection layer is a layer provided between the cathode and the light emitting layer for lowering the driving voltage and improving the light emission luminance. When the cathode is composed of the transparent electrode according to the present invention, Chapter 2 “Electrode materials” (pages 123 to 166) of the second edition of “Organic EL devices and their industrialization front line (issued by NTS, November 30, 1998)” ) Is described in detail.
 電子注入層の具体的構成は、例えば、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。 The specific structure of the electron injection layer is described in detail in, for example, JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and is preferably used for the electron injection layer. Specific examples of such metals include metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metals typified by magnesium fluoride, calcium fluoride, etc. Examples include halide layers, alkaline earth metal compound layers typified by magnesium fluoride, metal oxides typified by molybdenum oxide and aluminum oxide, and metal complexes typified by lithium 8-hydroxyquinolate (Liq). It is done.
 電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は0.1~10μmの範囲内であることが好ましい。 The electron injection layer is preferably a very thin film, and depending on the constituent materials, the layer thickness is preferably in the range of 0.1 to 10 μm.
 (発光層)
 本発明の有機EL素子の有機機能層ユニットを構成する発光層には、発光材料としてリン光発光化合物、又は蛍光発光化合物が含有されている構成が好ましい。
(Light emitting layer)
The light emitting layer constituting the organic functional layer unit of the organic EL device of the present invention preferably has a structure containing a phosphorescent light emitting compound or a fluorescent light emitting compound as a light emitting material.
 当該発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する領域は発光層の層内であっても発光層と隣接する層との界面であってもよい。 The light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting region is within the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間は非発光性の中間層により分離されている構成であることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, the light emitting layers are preferably separated by a non-light emitting intermediate layer.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから、1~30nmの範囲内であることがさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 本発明においては、発光層の1層当たりの厚さとしては、1~50nmの範囲内に調整することが好ましく、さらには1~20nmの範囲内に調整することがより好ましい。 In the present invention, the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably within a range of 1 to 20 nm.
 以上のような構成よりなる発光層は、以下に説明する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。 The light-emitting layer having the above-described structure is prepared by using a light-emitting material or a host compound described below, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Brodgett method), and an inkjet method. It can form by well-known methods, such as.
 また発光層は、複数の発光材料を混合してもよく、リン光発光材料(リン光ドーパント、リン光性化合物ともいう。)と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう。)を同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう。)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 In the light-emitting layer, a plurality of light-emitting materials may be mixed, and a phosphorescent light-emitting material (also referred to as a phosphorescent dopant or a phosphorescent compound) and a fluorescent light-emitting material (also referred to as a fluorescent dopant or a fluorescent compound) are the same. You may mix and use in a light emitting layer. The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound) and emits light from the light-emitting material.
 〈ホスト化合物〉
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
<Host compound>
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、あるいは、複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移点)である化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound that has a hole transporting ability or an electron transporting ability, prevents emission light from being increased in wavelength, and has a high Tg (glass transition point) is preferable. The glass transition point (Tg) here is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第2003/0175553号明細書、米国特許公開第2006/0280965号明細書、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0017330号明細書、米国特許公開第2009/0030202号明細書、米国特許公開第2005/238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002 -75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002 36 No. 227, No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183. No. 2002, No. 2002-299060, No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, US Patent Publication No. 2003/0175553, US Patent Publication No. 2006/0280965, United States Patent Publication No. 2005/0112407, United States Patent Publication No. 2009/0017330, United States Patent Publication No. 2009/0030202, United States Patent Publication No. 2005/2389. No. 9, International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007 / No. 063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898 And compounds described in International Publication No. 2012/023947, JP 2008-074939 A, JP 2007-254297 A, European Patent No. 2034538, and the like.
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物及び蛍光発光性化合物が挙げられる。
<Light emitting material>
Examples of the light-emitting material that can be used in the present invention include phosphorescent compounds and fluorescent compounds.
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
<Phosphorescent compound>
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物の発光の原理としては、二つの方法が挙げられる。一つの方法は、キャリアが輸送されるホスト化合物上で、キャリアの再結合が起こることによりホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型である。もう一つの方法は、リン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が生じ、リン光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光性化合物の励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件となる。 There are two methods for the light emission principle of the phosphorescent compound. One method is to generate an excited state of the host compound by recombination of the carrier on the host compound to which the carrier is transported, and transfer this energy to the phosphorescent compound. It is an energy transfer type that obtains light emission from. Another method is a carrier trap type in which a phosphorescent compound serves as a carrier trap, carrier recombination occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained. In either case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献あるいは特許に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents or patents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194. The compounds described in the specification, US Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, and the like can be mentioned.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許公開第2009/0108737号明細書、米国特許公開第2009/0039776号、米国特許第6921915号、米国特許第6687266号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2009/0165846号明細書、米国特許公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許公開第2006/0263635号明細書、米国特許公開第2003/0138657号明細書、米国特許公開第2003/0152802号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Publication No. 2002/0034656, US Pat. No. 7,332,232, US Patent Publication No. 2009/0108737, US Patent Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Publication No. 2007/0190359, US Patent Publication No. 2006 No./0008670, U.S. Patent Publication No. 2009/0165846, U.S. Patent Publication No. 2008/0015355, U.S. Pat. No. 7,250,226, U.S. Pat. No. 7,396,598, U.S. Patent Publication No. 2006 / 026363 Pat, U.S. Patent Publication No. 2003/0138657, U.S. Patent Publication No. 2003/0152802, may be mentioned compounds described in U.S. Patent No. 7,090,928 Pat like.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許公開第2006/0251923号明細書、米国特許公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許公開第2006/098120号明細書、米国特許公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Publication No. 2006/0251923, US Publication No. 2005/0260441, US Pat. No. 7,393,599. U.S. Pat. No. 7,534,505, U.S. Pat. No. 7,445,855, U.S. Patent Publication No. 2007/0190359, U.S. Patent Publication No. 2008/0297033, U.S. Pat. No. 7,338,722, U.S. Pat. No. 2002 0134984 Pat, U.S. Pat. No. 7279704, U.S. Patent Publication No. 2006/098120, compounds described in U.S. Patent Publication No. 2006/103874 Pat like can be mentioned.
 さらには、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、特開2012-069737号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 Furthermore, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339. No., International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, JP2012-069737, JP2009-114086, JP2003-81988, JP2002-302671, JP2002-363552, and the like.
 本発明においては、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent dopants include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中の参考文献等に記載されている方法を適用することにより合成できる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and the methods described in references in these documents should be applied. Can be synthesized.
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent compound>
Fluorescent compounds include, for example, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
 (正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料より構成され、広い意味で正孔注入層及び電子阻止層も正孔輸送層としての機能を有する。正孔輸送層は単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer is composed of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer and the electron blocking layer also have a function as a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかの特性を有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、チオフェンオリゴマー等が挙げられる。 The hole transport material has characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記記載のものを使用することができるが、具体的には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used. Specifically, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary compounds. It is preferable to use an amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 さらには、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(略称:NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(略称:MTDATA)等が挙げられる。 Further, those having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino ] Biphenyl (abbreviation: NPD), 4,4 ′, 4 ″ -tris [N- (3-methyl) in which triphenylamine units described in JP-A-4-308688 are linked in a three star burst type Phenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA) and the like.
 さらに、これらの正孔輸送材料を高分子鎖に導入した、あるいはこれらの正孔輸送材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Furthermore, a polymer material in which these hole transport materials are introduced into a polymer chain or these hole transport materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高い発光効率の発光素子が得られる観点から、これらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. A so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials from the viewpoint of obtaining a light emitting element with higher luminous efficiency.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。 For the hole transport layer, the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an element with lower power consumption can be manufactured.
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層より構成される積層構造として設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a laminated structure including a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 その他、メタルフリー又はメタルフタロシアニン若しくはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層の材料として好ましく用いることができる。また、発光層の材料としても例示されるジスチリルピラジン誘導体も電子輸送層の材料として用いることができるし、正孔注入層及び正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送層の材料として用いることができる。 In addition, metal-free or metal phthalocyanine or those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer. Further, distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the material for the electron transport layer, and n-type-Si, n-type-SiC, etc. as well as the hole injection layer and the hole transport layer. These inorganic semiconductors can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単層構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、電子輸送層に不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載された方法が挙げられる。さらに、電子輸送層には、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように、電子輸送層のn性を高くすることにより、より低消費電力の有機EL素子を得ることができる。 Also, impurities can be doped in the electron transport layer to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable to contain potassium, a potassium compound, etc. in an electron carrying layer. As the potassium compound, for example, potassium fluoride can be used. Thus, by increasing the n property of the electron transport layer, an organic EL element with lower power consumption can be obtained.
 また、電子輸送層の材料(電子輸送性化合物)として、上述した中間層を構成する材料と同様のものを用いても良い。これは、電子注入層を兼ねた電子輸送層であっても同様であり、上述した中間層を構成する材料と同様のものを用いても良い。 Further, as the material for the electron transport layer (electron transport compound), the same material as that for the intermediate layer described above may be used. This is the same for the electron transport layer that also serves as the electron injection layer, and the same material as that for the intermediate layer described above may be used.
 (阻止層)
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニットを構成する各層の他に、必要に応じて設けられる層であり、例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
(Blocking layer)
Examples of the blocking layer include a hole blocking layer and an electron blocking layer. In addition to the layers constituting the organic functional layer unit described above, these layers are provided as necessary. For example, JP-A-11-204258 No. 11-204359, and “Organic EL devices and their forefront of industrialization” (issued on November 30, 1998 by NTS), page 237, etc. ) Layer.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ、正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を、必要に応じ、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons and has a very small ability to transport holes. By blocking holes while transporting electrons, The recombination probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を、必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons. By blocking electrons while transporting holes, the electron recombination probability is reduced. Can be improved. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 〔透明封止部材〕
 本発明の有機EL素子を封止するのに用いられる封止手段としては、例えば、透明封止部材と、第2透明電極及び透明基板とを接着剤で接着する方法を挙げることができる。
(Transparent sealing member)
As a sealing means used for sealing the organic EL element of this invention, the method of adhere | attaching a transparent sealing member, a 2nd transparent electrode, and a transparent substrate with an adhesive agent can be mentioned, for example.
 透明封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また電気絶縁性は特に限定されない。また、前記説明した透明基板を透明封止部材として用いても良い。 The transparent sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Moreover, electrical insulation is not particularly limited. Moreover, you may use the transparent substrate demonstrated above as a transparent sealing member.
 本発明に適用可能な透明封止部材としては、例えば、ガラス板、ポリマー板、フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。 Examples of the transparent sealing member applicable to the present invention include a glass plate, a polymer plate, and a film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
 透明封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルムを好ましく使用することができる。さらに、ポリマーフィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%における水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%における水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。 As the transparent sealing member, a polymer film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Furthermore, the polymer film has a water vapor transmission rate of 1 × 10 −3 g / m 2 · 24 h at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% measured by a method according to JIS K 7129-1992. The oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / m 2 · 24 h · atm (1 atm is 1.01325 × 10 5 Pa amount of) or less, the temperature 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% is preferably not more than 1 × 10 -3 g / m 2 · 24h.
 透明封止部材を凹状に加工するのは、サンドブラスト加工又は化学エッチング加工等が使われる。接着剤としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマー等の反応性ビニル基を有する光硬化接着剤、熱硬化型接着剤、あるいは2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱硬化型及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル及びポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 The sand sealing process or the chemical etching process is used to process the transparent sealing member into a concave shape. Specific examples of the adhesive include a photo-curing adhesive having a reactive vinyl group such as an acrylic acid oligomer and a methacrylic acid oligomer, a thermosetting adhesive, or a moisture curable adhesive such as 2-cyanoacrylate. And the like. Moreover, the thermosetting type | molds, such as an epoxy type, and a chemical curing type | mold (two-component mixing) can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できる接着剤が好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部材への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since the organic EL element may be deteriorated by heat treatment, an adhesive that can be adhesively cured from room temperature to 80 ° C. is preferable. Further, a desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing member may use commercially available dispenser, and may print like screen printing.
 また、透明基板と対向する側の第3透明電極の外側に、第3透明電極と第2の有機機能層ユニットを被覆し、透明基板と接する形で無機物又は有機物の層を形成して封止膜とすることも好適に用いることができる。この場合、封止膜を形成する材料としては、有機EL素子を劣化させる水分や酸素等の浸入を抑制する機能を有する透明材料であればよく、例えば、酸化ケイ素、二酸化ケイ素及び窒化ケイ素等を用いることができる。さらに、封止膜の脆弱性を改良するためにこれら無機層と有機材料からなる有機層の積層構造をもたせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法及びコーティング法等を用いることができる。 In addition, the third transparent electrode and the second organic functional layer unit are covered outside the third transparent electrode on the side facing the transparent substrate, and an inorganic or organic layer is formed in contact with the transparent substrate and sealed. A film can also be suitably used. In this case, the material for forming the sealing film may be a transparent material having a function of suppressing intrusion of moisture, oxygen, or the like that degrades the organic EL element. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. Can be used. Furthermore, in order to improve the brittleness of the sealing film, it is preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム又は酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム又は硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム又はヨウ化マグネシウム等)及び過塩素酸類(例えば、過塩素酸バリウム又は過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水物が好適に用いられる。 In the gap between the sealing member and the display area of the organic EL element, it is preferable to inject an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil in the gas phase and the liquid phase. . Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide or aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate or cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide or magnesium iodide) and perchloric acids (eg perchloric acid) Barium or magnesium perchlorate) and the like, and anhydrides are preferably used in sulfates, metal halides and perchloric acids.
 《有機ELモジュール》
 本発明の有機EL素子は、有機ELモジュールに具備させることを特徴とする。
<< Organic EL module >>
The organic EL element of the present invention is provided in an organic EL module.
 〔有機ELモジュールの構成〕
 本発明において、有機ELモジュールとは、少なくとも1つの有機EL素子の陽極及び陰極が、導電性材料(接続用端子)に接続され、更に、配線基板等に接続された、それ自体が独立の機能を有する実装体のことをいう。
[Configuration of organic EL module]
In the present invention, the organic EL module is an independent function in which the anode and the cathode of at least one organic EL element are connected to a conductive material (connection terminal) and further connected to a wiring board or the like. This means a mounting body having
 図5は、本発明の有機EL素子を具備した有機ELモジュールの一例を示す概略断面図である。 FIG. 5 is a schematic cross-sectional view showing an example of an organic EL module including the organic EL element of the present invention.
 図5に示すように、有機ELモジュール30は、主に、有機EL素子(EL)、異方性導電フィルム(Anisotropic Condactive Film、略称:ACF)32及びフレキシブルプリント基板(Flexible Printed Circuits、略称:FPC)34から構成されている。 As shown in FIG. 5, the organic EL module 30 mainly includes an organic EL element (EL), an anisotropic conductive film (Anisotropic Conductive Film, abbreviated as ACF) 32, and a flexible printed circuit board (abbreviated as FPC). 34).
 有機EL素子(EL)は、透明基板1上に、透明電極や有機機能層ユニットを含む積層体14を有している。積層体14が積層されていない透明基板1の側端部には、第1透明電極が引き出されて取出し電極A2を形成し、当該取出し電極A2とフレキシブルプリント基板(FPC)34とが、異方性導電フィルム(ACF)32を介して、電気的に接続されている。 The organic EL element (EL) has a laminate 14 including a transparent electrode and an organic functional layer unit on the transparent substrate 1. At the side end of the transparent substrate 1 on which the laminate 14 is not laminated, a first transparent electrode is drawn to form a takeout electrode A2, and the takeout electrode A2 and the flexible printed circuit board (FPC) 34 are anisotropic. Are electrically connected through an electrically conductive film (ACF) 32.
 フレキシブルプリント基板(FPC)34は、有機EL素子(EL)(積層体14)上に、接着剤36を介して、接合されている。フレキシブルプリント基板(FPC)34は、図示しないドライバーICやプリント基板に接続されている。 The flexible printed circuit board (FPC) 34 is bonded onto the organic EL element (EL) (laminated body 14) via an adhesive 36. The flexible printed circuit board (FPC) 34 is connected to a driver IC (not shown) or a printed circuit board.
 また、本発明においては、透明基板1の発光面側に偏光部材38を設けてもよい。偏光部材38に代えて、ハーフミラーや黒色フィルターを用いることもできる。これにより、本発明の有機ELモジュール30は、従来の方式で用いられていたLEDにおいて、導光ドットにより表現することができなかった黒色を表現が可能となる。 In the present invention, the polarizing member 38 may be provided on the light emitting surface side of the transparent substrate 1. Instead of the polarizing member 38, a half mirror or a black filter may be used. Thereby, the organic EL module 30 of the present invention can express black that cannot be expressed by the light guide dots in the LED used in the conventional method.
 〈異方性導電フィルム〉
 本発明の有機ELモジュールを構成する異方性導電フィルム32は、導電性粒子、例えば、金、ニッケル、銀等の金属核そのものや樹脂核に金メッキしたもの等をバインダーに分散したものである。
<Anisotropic conductive film>
The anisotropic conductive film 32 constituting the organic EL module of the present invention is obtained by dispersing conductive particles, for example, a metal core itself such as gold, nickel, silver, or a resin core gold-plated in a binder.
 バインダーとしては、熱可塑性樹脂や熱硬化性樹脂が使われており、中でも、熱硬化性樹脂が好ましく、エポキシ樹脂を用いたものがより好ましい。 As the binder, a thermoplastic resin or a thermosetting resin is used, and among them, a thermosetting resin is preferable, and an epoxy resin is more preferable.
 フィラーとしてニッケルファイバー(繊維状)を配向させた異方性導電性フィルムも好適に使用できる。 An anisotropic conductive film in which nickel fiber (fibrous) is oriented as a filler can also be suitably used.
 また、本発明においては、異方導電性フィルムに代えて、導電性ペースト等の流動性材料、例えば、銀ペースト等を用いてもよい。 In the present invention, a fluid material such as a conductive paste, such as a silver paste, may be used instead of the anisotropic conductive film.
 〈偏光部材〉
 本発明の有機ELモジュールを構成する偏光部材38としては、市販の偏光板又は円偏光板が挙げられる。
<Polarizing member>
Examples of the polarizing member 38 constituting the organic EL module of the present invention include a commercially available polarizing plate or a circularly polarizing plate.
 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、代表的なものとして、ポリビニルアルコール系偏光フィルムがある。これは、主に、ポリビニルアルコール系フィルムにヨウ素を染色させたものと2色性染料を染色させたものとがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚としては、5~30μmの範囲内、好ましくは8~15μmの範囲内である偏光膜が好ましく用いられており、本発明においては、このような偏光膜も好適に用いることができる。 A polarizing film, which is a main component of a polarizing plate, is an element that transmits only light having a polarization plane in a certain direction, and a typical example is a polyvinyl alcohol polarizing film. This mainly includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a polarizing film thickness in the range of 5 to 30 μm, preferably in the range of 8 to 15 μm is preferably used. In the present invention, such a polarizing film is also preferably used. it can.
 また、市販の偏光板保護フィルムを用いることも好ましく、具体的には、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(以上、コニカミノルタ(株)製)等が挙げられる。 It is also preferable to use a commercially available polarizing plate protective film, specifically, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FR -2, KC8UE, KC4UE (manufactured by Konica Minolta Co., Ltd.) and the like.
 偏光部材と支持基板とを貼り合わせるために用いられる粘着剤は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。 The pressure-sensitive adhesive used for bonding the polarizing member and the support substrate is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
 具体的には、アクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴム等が挙げられる。中でも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていることから好ましく用いることができる。 Specific examples include acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers. Among these, an acrylic copolymer can be preferably used because it is most easy to control the adhesive physical properties and is excellent in transparency, weather resistance, durability, and the like.
 これら粘着剤は、基板上に塗設後、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化させることができる。 These pressure-sensitive adhesives can be cured after being formed on a substrate by forming a film by a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 《有機EL素子の作製》
 〔有機EL素子101の作製〕
 下記の方法に従って、図6Aに記載の構成Aとして示す構成からなる有機EL素子101を作製した。
<< Production of organic EL element >>
[Production of Organic EL Element 101]
According to the following method, the organic EL element 101 having the configuration shown as configuration A in FIG. 6A was produced.
 (透明基板1の準備)
 透明基材1として、厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)を準備した。
(Preparation of transparent substrate 1)
As the transparent substrate 1, a 125 μm-thick polyethylene terephthalate film (manufactured by Teijin DuPont Films, Ltd., ultra-high transparency PET Type K) was prepared.
 上記透明基板1上に、下記ポリシラザン含有液を、ワイヤレスバーにて、乾燥後の平均膜厚が300nmとなるように塗布し、温度85℃、湿度55%RHの雰囲気下で1分間加熱処理して乾燥させた。次いで、温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン含有層(ポリシラザン前駆体層)を形成した。 On the transparent substrate 1, the following polysilazane-containing liquid is applied with a wireless bar so that the average film thickness after drying is 300 nm, and heat-treated for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. And dried. Subsequently, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature −8 ° C.) for 10 minutes to perform a dehumidification treatment, thereby forming a polysilazane-containing layer (polysilazane precursor layer).
 次に、ポリシラザン含有層を形成した透明基板1を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の改質処理条件1で改質処理を行い、厚さ300nmのポリシラザン改質層(ただし、図6Aには記載していない)を形成し、透明基板1を得た。 Next, the transparent substrate 1 on which the polysilazane-containing layer is formed is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and under the following reforming treatment condition 1 A modification treatment was performed to form a 300-nm-thick polysilazane modified layer (however, not shown in FIG. 6A), and a transparent substrate 1 was obtained.
 〈ポリシラザン含有液〉
 ポリシラザン含有液としては、パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を作製した。
<Polysilazane-containing liquid>
As the polysilazane-containing liquid, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was prepared.
 〈改質処理条件1〉
 照射波長:172nm
 ランプ封入ガス:Xe
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:0.5%
 エキシマランプ照射時間:5秒
 (第1透明電極2-1の形成)
 上記透明基板1上に、市販のスパッタ装置を用いて、ITO(インジウムチンオキシド)を150nmの厚さで成膜して、第1透明電極2-1(ITO)を形成した。さらにパターニングを行い、発光面積が30×30mmとなるような電極パターンを形成した。
<Reforming treatment condition 1>
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.5%
Excimer lamp irradiation time: 5 seconds (Formation of the first transparent electrode 2-1)
A first transparent electrode 2-1 (ITO) was formed on the transparent substrate 1 by using a commercially available sputtering apparatus to deposit ITO (indium tin oxide) with a thickness of 150 nm. Further patterning was performed to form an electrode pattern having a light emitting area of 30 × 30 mm.
 (第1の有機機能性ユニットU1の形成:正孔注入輸送層3A~電子輸送層6A)
 このITOから構成される第1透明電極2-1を有する透明基板1をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板1を市販の真空蒸着装置の基板ホルダーに固定した。
(Formation of first organic functional unit U1: hole injection transport layer 3A to electron transport layer 6A)
The transparent substrate 1 having the first transparent electrode 2-1 made of ITO is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. It fixed to the substrate holder of the vacuum evaporation system.
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に対し最適な量を充填した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 〈正孔注入輸送層3Aの形成〉
 真空蒸着装置の真空度を1×10-4Paまで減圧した後、下記化合物M-2の入った蒸着用るつぼを通電加熱し、蒸着速度0.1nm/秒で透明基板1の第1透明電極2-1上に蒸着し、膜厚40nmの正孔注入輸送層3Aを形成した。
<Formation of hole injection transport layer 3A>
After reducing the vacuum degree of the vacuum deposition apparatus to 1 × 10 −4 Pa, the deposition crucible containing the following compound M-2 was heated by energization, and the first transparent electrode of the transparent substrate 1 was deposited at a deposition rate of 0.1 nm / second. Vapor deposition was performed on 2-1 to form a hole injection transport layer 3A having a thickness of 40 nm.
 〈蛍光発光層4Aの形成〉
 次いで、下記化合物BD-1及び化合物H-1を用い、化合物BD-1が5%の濃度、化合物H-1が95%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの青色発光を呈する蛍光発光層4Aを形成した。
<Formation of fluorescent light emitting layer 4A>
Next, using the following compound BD-1 and compound H-1, co-evaporation was performed at a deposition rate of 0.1 nm / second so that the compound BD-1 had a concentration of 5% and the compound H-1 had a concentration of 95%. A fluorescent light emitting layer 4A having a film thickness of 15 nm and emitting blue light was formed.
 〈リン光発光層5Aの形成〉
 次いで、下記化合物GD-1、化合物RD-1及び化合物H-2を用い、化合物GD-1が17%の濃度、RD-1が0.8%の濃度、化合物H-2が82.2%の濃度となるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの黄色を呈するリン光発光層5Aを形成した。
<Formation of phosphorescent layer 5A>
Then, using the following compound GD-1, compound RD-1 and compound H-2, compound GD-1 was 17% in concentration, RD-1 was 0.8% in concentration, and compound H-2 was 82.2% The phosphorescent light emitting layer 5A having a film thickness of 15 nm and having a yellow color was formed by co-evaporation at a deposition rate of 0.1 nm / second so as to achieve a concentration of 5 nm.
 〈電子輸送層6Aの形成〉
 その後、下記化合物E-1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層6Aを形成した。
<Formation of Electron Transport Layer 6A>
Thereafter, the following compound E-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer 6A having a thickness of 30 nm.
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
 (LiF層7Aの形成)
 さらに、LiFを膜厚1.5nmとなるように蒸着して、バッファー層であるLiF層7Aを形成した。LiF層7Aの形成の際、蒸着マスクを用いて、図2Aに示すような上向矢印パターンを形成し、上向矢印部分22Aにのみフッ化リチウム層が成膜されるようにした。
(Formation of LiF layer 7A)
Furthermore, LiF was vapor-deposited to a film thickness of 1.5 nm to form a LiF layer 7A as a buffer layer. When forming the LiF layer 7A, an upward arrow pattern as shown in FIG. 2A was formed using a vapor deposition mask so that the lithium fluoride layer was formed only on the upward arrow portion 22A.
 (Al層8Aの形成)
 さらに、蒸着法によりアルミニウム膜を厚さ10nmで蒸着して、Al層8Aを形成した。
(Formation of Al layer 8A)
Further, an aluminum film was deposited with a thickness of 10 nm by an evaporation method to form an Al layer 8A.
 (第3透明電極9-1の形成)
 次いで、市販のスパッタ装置を用い、ITOを厚さ150nmで成膜し、第3透明電極9-1とした。
(Formation of third transparent electrode 9-1)
Next, using a commercially available sputtering apparatus, ITO was deposited to a thickness of 150 nm to form a third transparent electrode 9-1.
 (透明封止基板10の作製)
 前記透明基板1と同様に、厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)上に、前記と同様のポリシラザン含有液を塗布し、エキシマランプで処理してガスバリアー層を形成して、ガスバリアー層付の透明封止基板10を得た。
(Preparation of transparent sealing substrate 10)
As with the transparent substrate 1, a polysilazane-containing liquid similar to that described above is applied onto a 125 μm thick polyethylene terephthalate film (manufactured by Teijin DuPont Films, Ltd., PET Type K), and treated with an excimer lamp. Thus, a gas barrier layer was formed to obtain a transparent sealing substrate 10 with a gas barrier layer.
 (有機EL素子101の封止)
 透明封止基板10の接着は、接着剤としてエポキシ系熱硬化型接着剤(巴川製紙所社製エレファンCS)を用い、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内で、80℃、0.04MPa荷重下、減圧(1×10-3MPa以下)吸引を20秒、プレスを20秒の条件で、有機EL素子101に向けて、前記透明封止部材10が有するガスバリアー層が有機EL素子側になるように真空プレスした。
(Sealing of organic EL element 101)
Adhesion of the transparent sealing substrate 10 uses an epoxy thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as an adhesive, and is carried out at 80 ° C. and 0 ° C. in a glove box having an oxygen concentration of 10 ppm or less and a water concentration of 10 ppm or less. The gas barrier layer of the transparent sealing member 10 is directed to the organic EL element 101 under the condition of 0.04 MPa load under reduced pressure (1 × 10 −3 MPa or less) suction for 20 seconds and pressing for 20 seconds. It vacuum-pressed so that it might become an element side.
 その後、グローブボックス内で、110℃のホットプレート上で30分間加熱して接着層を熱硬化させ、有機EL素子101を得た。上記作製した有機EL素子101の構成を構成Aと称し、その概略断面図を、図6Aに示す。 Thereafter, in the glove box, the adhesive layer was thermally cured by heating on a hot plate at 110 ° C. for 30 minutes to obtain an organic EL element 101. The structure of the produced organic EL element 101 is referred to as structure A, and a schematic cross-sectional view thereof is shown in FIG. 6A.
 作製した有機機能層ユニットを1セット有する有機EL素子101を、発光させたところ、フッ化リチウムを真空蒸着により成膜したときに使用したマスクと同様に図2Aに示す上向矢印パターンに発光した。 When the organic EL element 101 having one set of the prepared organic functional layer unit was caused to emit light, light was emitted in the upward arrow pattern shown in FIG. 2A in the same manner as the mask used when lithium fluoride was deposited by vacuum deposition. .
 有機EL素子101を作製した有機機能層ユニットを1セット有する方式では、ひとつの形状を光らせることは可能であったが、当然のことながら、2つ以上の異なる形状を個別表示、あるいは組み合わせ表示することはできなかった。 In the system having one set of organic functional layer units for producing the organic EL element 101, it was possible to shine one shape, but naturally, two or more different shapes are displayed individually or in combination. I couldn't.
 〔有機EL素子102の作製〕
 上記有機EL素子101の作製と同様にして、透明基板1上に、正孔注入輸送層3A~電子輸送層6Aまでの第1有機機能層ユニット1及びLiF層7Aまでを形成した。このとき、有機EL素子101の作製と同様にして、LiF層7A形成時に、図2Aに示すような上向矢印パターン22Aを形成した。
[Production of Organic EL Element 102]
Similar to the production of the organic EL element 101, the first organic functional layer unit 1 from the hole injection transport layer 3A to the electron transport layer 6A and the LiF layer 7A were formed on the transparent substrate 1. At this time, the upward arrow pattern 22A as shown in FIG. 2A was formed at the time of forming the LiF layer 7A in the same manner as the fabrication of the organic EL element 101.
 次いで、アルミニウムを、真空蒸着法により厚さ2nmで成膜して、Al層8Aを形成した。 Next, aluminum was formed into a film with a thickness of 2 nm by a vacuum evaporation method to form an Al layer 8A.
 次いで、市販のスパッタ装置を用いて、ITOを厚さ150nmで成膜し、第2透明電極11-1を形成した。 Next, using a commercially available sputtering apparatus, ITO was deposited to a thickness of 150 nm to form the second transparent electrode 11-1.
 続いて、有機EL素子101の製作に用いた第1有機機能層ユニットU1(正孔注入輸送層3A~電子輸送層6A)の形成と同様にして、正孔注入輸送層3B~電子輸送層6Bまでの第2有機機能層ユニットU2を形成した。 Subsequently, in the same manner as the formation of the first organic functional layer unit U1 (hole injection transport layer 3A to electron transport layer 6A) used for the manufacture of the organic EL element 101, the hole injection transport layer 3B to the electron transport layer 6B. The 2nd organic functional layer unit U2 was formed.
 次いで、前記LiF層7Aと同様にして、フッ化リチウムを成膜し、電極パターンとしては、図2Bに示すような下向矢印パターン22Bに変更した以外は同様にして、LiF層7Bを形成した。 Next, lithium fluoride was formed in the same manner as the LiF layer 7A, and the LiF layer 7B was formed in the same manner except that the electrode pattern was changed to the downward arrow pattern 22B as shown in FIG. 2B. .
 さらに、有機EL素子101におけるAl層8Aの形成と同様にして、Alを厚さ10nmで蒸着してAl層8Bを形成し、その上に、第3透明電極9-1を形成した。 Further, similarly to the formation of the Al layer 8A in the organic EL element 101, Al was vapor-deposited with a thickness of 10 nm to form the Al layer 8B, and the third transparent electrode 9-1 was formed thereon.
 次いで、透明封止部材10で、有機EL素子101と同様に封止を行い、有機EL素子102とした。有機EL102の層構成は、後述する有機EL素子103の層構成として示した図6Bに記載した構成Bと同じである。 Then, the transparent sealing member 10 was sealed in the same manner as the organic EL element 101 to obtain an organic EL element 102. The layer configuration of the organic EL 102 is the same as the configuration B described in FIG. 6B shown as the layer configuration of the organic EL element 103 described later.
 有機素子102においては、第1透明電極2-1を陽極、第2透明電極11-1を陰極として、駆動電源V1により通電すると、図2Aで示すような上向矢印のパターン22Aに発光した。また、第2透明電極11-1を陽極、第3透明電極9-1を陰極として、駆動電源V2により通電すると、先ほどとは逆の、図2Bに示すような下向矢印のパターン22Bで発光した。 In the organic element 102, when the first transparent electrode 2-1 was used as an anode and the second transparent electrode 11-1 was used as a cathode, when the drive power supply V1 was used, light was emitted in an upward arrow pattern 22A as shown in FIG. 2A. Further, when the second transparent electrode 11-1 is used as an anode and the third transparent electrode 9-1 is used as a cathode, when the drive power supply V2 is energized, light is emitted in a downward arrow pattern 22B as shown in FIG. 2B. did.
 〔有機EL素子103の作製〕
 上記有機EL素子102の作製と同様にして、図6Bに記載の構成Bで示す層構成からなる有機EL素子103を作製した。
[Production of Organic EL Element 103]
In the same manner as in the production of the organic EL element 102, an organic EL element 103 having a layer configuration shown in the configuration B illustrated in FIG. 6B was produced.
 ただし、LiF層7A及び7Bは、マスクは使用せずに、画像パターンを有さない均一のLiF膜として形成した。また、第2透明電極11-2の膜厚を200nmに変更した。 However, the LiF layers 7A and 7B were formed as uniform LiF films having no image pattern without using a mask. The film thickness of the second transparent electrode 11-2 was changed to 200 nm.
 次いで、透明封止部材10まで設けた有機EL素子103の透明基板1面側に、図2Aで示すようなパターンマスク及び紫外線吸収フィルター(五鈴精工硝子株式会社製)を配置して密着させ、UVテスター(岩崎電気株式会社製、SUV-W151:100mW/cm)を用いて、透明基板1側から紫外線を1時間照射し、有機機能層ユニットU1に矢印画像を形成した。矢印画像としては、図2Aに示す領域21が、発光機能が変調されている領域とし、領域22Aが変調されていない領域となるようにマスクを作製し、領域22Aのみが発光するようにした。 Next, on the transparent substrate 1 surface side of the organic EL element 103 provided up to the transparent sealing member 10, a pattern mask and an ultraviolet absorption filter (manufactured by Isuzu Seiko Glass Co., Ltd.) as shown in FIG. Using a UV tester (manufactured by Iwasaki Electric Co., Ltd., SUV-W151: 100 mW / cm 2 ), ultraviolet rays were irradiated from the transparent substrate 1 side for 1 hour to form an arrow image on the organic functional layer unit U1. As an arrow image, a mask was prepared so that the region 21 shown in FIG. 2A is a region where the light emitting function is modulated, and the region 22A is a region not modulated, so that only the region 22A emits light.
 なお、紫外線吸収フィルターは、320nm以下の波長成分の光透過率が50%以下のもの(カット波長:320nm)を用いた。 In addition, the ultraviolet absorption filter used the thing with the light transmittance of the wavelength component of 320 nm or less 50% or less (cut wavelength: 320 nm).
 次いで、同様にして、透明封止部材10側からも、図2Bで示すようなパターンマスクを配置して密着させ、UVテスター(岩崎電気株式会社製、SUV-W151:100mW/cm)を用いて、透明封止部材10側から紫外線を1時間照射し、有機機能層ユニットU2に矢印画像を形成した。矢印画像としては、図2Bに示す領域21が、発光機能が変調されている領域とし、領域22Bが変調されていない領域となるようにマスクを作製し、領域22Bのみが発光するようにした。 Next, similarly, from the transparent sealing member 10 side, a pattern mask as shown in FIG. 2B is arranged and adhered, and a UV tester (SUV-W151: 100 mW / cm 2 , manufactured by Iwasaki Electric Co., Ltd.) is used. Then, ultraviolet rays were irradiated from the transparent sealing member 10 side for 1 hour to form an arrow image on the organic functional layer unit U2. As an arrow image, a mask was prepared so that the region 21 shown in FIG. 2B is a region where the light emitting function is modulated, and the region 22B is a region not modulated, so that only the region 22B emits light.
 上記作製した有機EL素子103は、第1透明電極2-1を陽極、第2透明電極11-1を陰極として、駆動電源V1により通電すると、図2Aで示すような上向矢印のパターン22Aに発光した。また、第2透明電極11-1を陽極、第3透明電極9-1を陰極として、駆動電源V2により通電すると、先ほどとは逆の、図2Bに示すような下向矢印のパターン22Bで発光した。 When the organic EL element 103 produced as described above is energized by the driving power source V1 with the first transparent electrode 2-1 as an anode and the second transparent electrode 11-1 as a cathode, an upward arrow pattern 22A as shown in FIG. 2A is formed. Emitted light. Further, when the second transparent electrode 11-1 is used as an anode and the third transparent electrode 9-1 is used as a cathode, when the drive power supply V2 is energized, light is emitted in a downward arrow pattern 22B as shown in FIG. 2B. did.
 〔有機EL素子104の作製〕
 上記有機EL素子103の作製において、第2透明電極11-1(ITO)に代えて、蒸着法により銀を厚さ15nmで成膜して第2透明電極11-2(薄銀電極)とし、同様に第3透明電極9-1(ITO)に代えて、蒸着法により銀を厚さ10nmで成膜して第3透明電極9-2(薄銀電極)とし、更に、第3透明電極9-2と、透明封止部材10との間に、正孔注入輸送層3Aと同一組成の正孔注入輸送層3Cを厚さ50nmで成膜した以外は同様にして、有機EL素子104を作製した。当該有機EL素子104の構成を、図6Cに構成Cとして示す。
[Production of Organic EL Element 104]
In the production of the organic EL element 103, instead of the second transparent electrode 11-1 (ITO), silver was deposited to a thickness of 15 nm by vapor deposition to form a second transparent electrode 11-2 (thin silver electrode). Similarly, instead of the third transparent electrode 9-1 (ITO), silver is formed into a third transparent electrode 9-2 (thin silver electrode) by vapor deposition to form a third transparent electrode 9-2 (thin silver electrode). 2 and the transparent sealing member 10, an organic EL element 104 was produced in the same manner except that a hole injection / transport layer 3C having the same composition as the hole injection / transport layer 3A was formed to a thickness of 50 nm. did. The configuration of the organic EL element 104 is shown as configuration C in FIG.
 作製した有機EL素子104について、上記有機EL素子103のパターン形成と同様にして、透明基板側及び透明封止部材側から紫外線照射によるパターニングを行い、図2A及び図2Bに示す表示画像を形成した。 About the produced organic EL element 104, it patterned by the ultraviolet irradiation from the transparent substrate side and the transparent sealing member side similarly to the pattern formation of the said organic EL element 103, and formed the display image shown to FIG. 2A and FIG. 2B. .
 上記作製した有機EL素子104は、第1透明電極2-1を陽極、第2透明電極11-2を陰極として、駆動電源V1により通電すると、図2Aで示すような上向矢印のパターン22Aに発光した。また、第2透明電極11-2を陽極、第3透明電極9-2を陰極として、駆動電源V2により通電すると、先ほどとは逆の、図2Bに示すような下向矢印のパターン22Bで発光した。 When the organic EL element 104 produced as described above is energized by the driving power source V1 with the first transparent electrode 2-1 as an anode and the second transparent electrode 11-2 as a cathode, an upward arrow pattern 22A as shown in FIG. 2A is formed. Emitted light. When the second transparent electrode 11-2 is used as an anode and the third transparent electrode 9-2 is used as a cathode, when a drive power supply V2 is energized, light is emitted in a downward arrow pattern 22B as shown in FIG. 2B. did.
 〔有機EL素子105の作製〕
 上記有機EL素子104の作製において、第1透明電極2-1(ITO)を、下記に示す第1透明電極2-2(薄銀電極)に変更し、更に、透明基板1と第1透明電極2-2との間に、下記に記載の下地層12を設けた。
[Production of Organic EL Element 105]
In the production of the organic EL element 104, the first transparent electrode 2-1 (ITO) is changed to the first transparent electrode 2-2 (thin silver electrode) shown below, and the transparent substrate 1 and the first transparent electrode are further changed. The undercoat layer 12 described below was provided between the 2-2 and 2-2.
 (下地層12の形成)
 厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)である透明基板1上に、下記化合物(R-1)を、公知の蒸着法により、厚さ25nmで蒸着して、下地層12を形成した。
(Formation of underlayer 12)
On the transparent substrate 1 which is a 125 μm thick polyethylene terephthalate film (manufactured by Teijin DuPont Films Co., Ltd., ultra-high transparency PET Type K), the following compound (R-1) is deposited at a thickness of 25 nm by a known vapor deposition method. The underlayer 12 was formed by vapor deposition.
 (第1透明電極2-2:薄銀電極)
 次いで、下地層12上に、蒸着法により銀を10nmの厚さで蒸着し、第1透明電極2-2(薄銀電極)を形成した。
(First transparent electrode 2-2: thin silver electrode)
Next, silver was vapor-deposited with a thickness of 10 nm on the underlayer 12 by vapor deposition to form a first transparent electrode 2-2 (thin silver electrode).
 それ以外は、有機EL素子104の作製と同様にして、有機EL素子105を作製した。以上のようにして作製した有機EL素子105の構成を、図7Aに構成Dとして示す。 Other than that, the organic EL element 105 was produced in the same manner as the production of the organic EL element 104. The configuration of the organic EL element 105 manufactured as described above is shown as configuration D in FIG.
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
 上記作製した有機EL素子105は、第1透明電極2-2を陽極、第2透明電極11-2を陰極として、駆動電源V1により通電すると、図2Aで示すような上向矢印のパターン22Aに発光した。また、第2透明電極11-2を陽極、第3透明電極9-2を陰極として、駆動電源V2により通電すると、先ほどとは逆の、図2Bに示すような下向矢印のパターン22Bで発光した。 When the organic EL element 105 produced as described above is energized by the driving power source V1 with the first transparent electrode 2-2 as an anode and the second transparent electrode 11-2 as a cathode, an upward arrow pattern 22A as shown in FIG. 2A is formed. Emitted light. When the second transparent electrode 11-2 is used as an anode and the third transparent electrode 9-2 is used as a cathode, when a drive power supply V2 is energized, light is emitted in a downward arrow pattern 22B as shown in FIG. 2B. did.
 〔有機EL素子106の作製〕
 上記有機EL素子105の作製において、図7Bに記載の構成Eに示すように、第2有機機能層ユニットU2、LiF層7B及びAl層8Bの層配置を逆の構成とした以外は同様にして、有機EL素子106を作製した。
[Production of Organic EL Element 106]
In the production of the organic EL element 105, as shown in the configuration E shown in FIG. 7B, the arrangement of the second organic functional layer unit U2, the LiF layer 7B, and the Al layer 8B is the same except that the configuration is reversed. An organic EL element 106 was produced.
 具体的には、図7Bに断面図として示した構成Eのように、第2透明電極11-2上に、Al層8B、LiF層7B、電子輸送層6B、リン光発光層5B、蛍光発光層4B、正孔注入輸送層3Bの順に積層して形成した。 Specifically, as in the configuration E shown as a cross-sectional view in FIG. 7B, the Al layer 8B, the LiF layer 7B, the electron transport layer 6B, the phosphorescent light emitting layer 5B, the fluorescent light emission, on the second transparent electrode 11-2. The layer 4B and the hole injecting and transporting layer 3B were stacked in this order.
 上記作製した有機EL素子106では、第1透明電極2-2及び第3透明電極9-2を陽極とし、第2透明電極11-2を陰極とした。第1透明電極2-2を陽極、第2透明電極11-2を陰極として、駆動電源V1により通電すると、図2Aで示すような上向矢印22Aのパターンに発光した。また、第2透明電極11-2を陰極、第3透明電極9-2を陽極として、駆動電源V2により通電すると、先ほどとは逆の、図2Bに示すような下向矢印22Bのパターンで発光した。 In the produced organic EL element 106, the first transparent electrode 2-2 and the third transparent electrode 9-2 were used as anodes, and the second transparent electrode 11-2 was used as cathodes. When the first transparent electrode 2-2 was used as the anode and the second transparent electrode 11-2 was used as the cathode, when the drive power supply V1 was used, light was emitted in the pattern of the upward arrow 22A as shown in FIG. 2A. In addition, when the second transparent electrode 11-2 is used as a cathode and the third transparent electrode 9-2 is used as an anode, when a drive power supply V2 is energized, light is emitted in a pattern of a downward arrow 22B as shown in FIG. did.
 有機EL素子106においては、第2透明電極11-2を常に陰極として作動させるため、点灯の切り替えが容易になった。また、矢印を重ねて発光させることも容易にできた。 In the organic EL element 106, since the second transparent electrode 11-2 is always operated as a cathode, switching of lighting becomes easy. Moreover, it was easy to emit light by overlapping arrows.
 〔有機EL素子107の作製〕
 上記有機EL素子105の作製において、図7Cに記載の構成Fに示すように、第1有機機能層ユニットU1、LiF層7A及びAl層8Aの構成を逆層構成とした以外は同様にして、有機EL素子107を作製した。
[Production of Organic EL Element 107]
In the production of the organic EL element 105, as shown in the configuration F shown in FIG. 7C, the configuration of the first organic functional layer unit U1, the LiF layer 7A, and the Al layer 8A is the same except that the configuration is reversed. An organic EL element 107 was produced.
 具体的には、図7Cに記載の構成Fに示すように、第1透明電極2-2上に、Al層8A、LiF層7A、電子輸送層6A、リン光発光層5A、蛍光発光層4A、正孔注入輸送層3Aの順に形成した。 Specifically, as shown in Configuration F in FIG. 7C, on the first transparent electrode 2-2, an Al layer 8A, a LiF layer 7A, an electron transport layer 6A, a phosphorescent light emitting layer 5A, and a fluorescent light emitting layer 4A. The hole injection transport layer 3A was formed in this order.
 上記作製した有機EL素子107では、第1透明電極2-2及び第3透明電極9-2を陰極とし、第2透明電極11-2を陽極とした。第1透明電極2-2を陰極、第2透明電極11-2を陽極として、駆動電源V1により通電すると、図2Aで示すような上向矢印22Aのパターンに発光した。また、第2透明電極11-2を陽極、第3透明電極9-2を陰極として、駆動電源V2により通電すると、先ほどとは逆の、図2Bに示すような下向矢印22Bのパターンで発光した。 In the produced organic EL element 107, the first transparent electrode 2-2 and the third transparent electrode 9-2 were used as cathodes, and the second transparent electrode 11-2 was used as anodes. When the first transparent electrode 2-2 was used as a cathode and the second transparent electrode 11-2 was used as an anode, when the drive power supply V1 was used, light was emitted in the pattern of the upward arrow 22A as shown in FIG. 2A. When the second transparent electrode 11-2 is used as an anode and the third transparent electrode 9-2 is used as a cathode, when the drive power supply V2 is energized, light is emitted in a pattern of a downward arrow 22B as shown in FIG. did.
 有機EL素子107においては、第2透明電極11-2を常に陽極として作動させるため、点灯の切り替えが容易になった。また、矢印を重ねて発光させることも容易にできた。 In the organic EL element 107, since the second transparent electrode 11-2 is always operated as an anode, switching of lighting becomes easy. Moreover, it was easy to emit light by overlapping arrows.
 《有機EL素子の評価》
 〔表示パターンの鮮明性の評価〕
 それぞれ個別に駆動電源V1及び駆動電源V2(ただし、有機EL素子101は、駆動電源V1のみ)に5mA/cmの電流を流し、それぞれの画像パターンを表示した。次いで、表示した矢印画像と未発光部(図2における領域21)との界面において、境界部におけるボケの幅を目視及び市販のマイクロスコープで観察し、下記の基準に従って表示パターンの鮮明性を評価した。
<< Evaluation of organic EL elements >>
[Evaluation of sharpness of display pattern]
A current of 5 mA / cm 2 was passed through each of the drive power supply V1 and the drive power supply V2 (however, the organic EL element 101 was only the drive power supply V1) to display the respective image patterns. Next, at the interface between the displayed arrow image and the non-light emitting portion (region 21 in FIG. 2), the blur width at the boundary portion is observed visually and with a commercially available microscope, and the sharpness of the display pattern is evaluated according to the following criteria: did.
 A:境界部におけるボケの幅が、0.4mm未満であり、鮮明な画像である
 B:境界部におけるボケの幅が、0.4mm以上、0.8mm未満であり、ほぼ鮮明な画像である
 C:境界部におけるボケの幅が、0.8mm以上であり、不鮮明な画像である
 〔表示パターンの輝度の測定〕
 それぞれ個別に駆動電源V1及び駆動電源V2(ただし、有機EL素子101は、駆動電源V1のみ)に5mA/cmの電流を流して画像パターン(図2Aにおける22A及び図2Bにおける22B)を表示した。次いで、透明基板側に設けた第1有機機能層ユニットU1と、透明封止部材側に設けた第2有機機能層ユニットU2の輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、透明基板1側から測定した。
A: The blur width at the boundary is less than 0.4 mm, and the image is clear. B: The blur width at the boundary is not less than 0.4 mm and less than 0.8 mm, and the image is almost clear. C: The blur width at the boundary is 0.8 mm or more, and the image is unclear [Measurement of display pattern luminance]
An image pattern (22A in FIG. 2A and 22B in FIG. 2B) was displayed by applying a current of 5 mA / cm 2 to each of the drive power supply V1 and the drive power supply V2 (however, the organic EL element 101 is only the drive power supply V1). . Next, the luminance of the first organic functional layer unit U1 provided on the transparent substrate side and the second organic functional layer unit U2 provided on the transparent sealing member side is measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta). And measured from the transparent substrate 1 side.
 有機EL素子101の第1有機機能層ユニットU1の輝度を100として、それぞれの有機EL素子の各相対輝度を求めた。 The relative luminance of each organic EL element was determined with the luminance of the first organic functional layer unit U1 of the organic EL element 101 as 100.
 以上により得られた結果を、表2に示す。 Table 2 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000018
 
Figure JPOXMLDOC01-appb-T000018
 
 表2に記載の結果より明らかなように、表示画像の形成を紫外線パターニングにより行った本発明の有機EL素子103~107では、表示画像の境界領域におけるボケが小さく鮮明性に優れ、また、透明電極として、薄膜電極、具体的には薄銀電極を用いることにより、輝度が高くなっていることが分かる。更には、全ての透明電極に、薄銀電極を採用することにより、第1有機機能層ユニットU1と第2有機機能層ユニットU2との輝度差が小さくなっていることが分かる。 As is clear from the results shown in Table 2, in the organic EL elements 103 to 107 of the present invention in which the display image was formed by ultraviolet patterning, the blur in the boundary region of the display image was small and excellent in clarity, and transparent. It can be seen that the brightness is increased by using a thin film electrode, specifically, a thin silver electrode as the electrode. Furthermore, it can be seen that the use of thin silver electrodes for all the transparent electrodes reduces the luminance difference between the first organic functional layer unit U1 and the second organic functional layer unit U2.
 また、有機EL素子106及び107において、第1透明電極と第3透明電極を同極として構成することにより、点灯の切り替えが容易であった。 Moreover, in the organic EL elements 106 and 107, the first transparent electrode and the third transparent electrode are configured to have the same polarity, so that switching of lighting is easy.
 また、上記作製した本発明の各有機EL素子の透明基板1の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを、接着剤を介して設けて、図5に記載のような有機ELモジュールを作製し、その機能を評価した結果、本発明の有機EL素子を具備した本発明の有機ELモジュールは、良好な表示性能を発現することができることを確認することができた。 Moreover, a polarizing member, a half mirror member, or a black filter is provided on the light emitting surface side of the transparent substrate 1 of each of the organic EL elements of the present invention produced above via an adhesive, and the organic EL as shown in FIG. As a result of producing a module and evaluating its function, it was confirmed that the organic EL module of the present invention including the organic EL element of the present invention can exhibit good display performance.
 本発明の有機エレクトロルミネッセンス素子の製造方法は、発光表示パターン画像の形状表示精度(鮮明度)に優れ、高い発光輝度を有し、発光パターンの切り替えが可能で、同一表示領域中に異なる画像を個別又は同時に表示することができる有機エレクトロルミネッセンス素子を製造することができ、当該有機エレクトロルミネッセンス素子は、発光パターンの切り替えが容易であり、携帯用端末であるスマートフォン、タブレット等のスマートデバイスに好適に利用できる。 The manufacturing method of the organic electroluminescence element of the present invention is excellent in the shape display accuracy (sharpness) of the light emission display pattern image, has high light emission luminance, can switch the light emission pattern, and displays different images in the same display area. An organic electroluminescent element that can be displayed individually or simultaneously can be manufactured, and the organic electroluminescent element can easily switch a light emission pattern, and is suitable for smart devices such as smartphones and tablets that are portable terminals. Available.
 1 透明基板
 2-1 第1透明電極(ITO)
 2-2 第1透明電極(薄銀電極)
 3A、3B 正孔注入輸送層
 4A、4B 蛍光発光層
 5A、5B リン光発光層
 6A、6B 電子輸送層
 7A、7B LiF層
 8A、8B Al層
 9-1 第2透明電極(ITO)
 9-2 第2透明電極(薄銀電極)
 10、D 透明封止部材
 11-1 第3透明電極(ITO)
 11-2 第3透明電極(薄銀電極)
 12 下地層
 14 積層体
 20A、20B リード線
 21 背景(発光機能が変調されている領域)
 22A、22B 矢印画像(発光機能が変調されていない領域)
 30 有機ELモジュール
 32 異方性導電フィルム
 34 フレキシブルプリント基板
 36 接着剤
 38 偏光部材
 A 第1透明電極
 A2 取出し電極
 B 第2透明電極
 C 第3透明電極
 E、F 画像
 EL 有機EL素子
 L1、L2 光照射
 U1 第1有機機能層ユニット
 U2 第2有機機能層ユニット
1 Transparent substrate 2-1 First transparent electrode (ITO)
2-2 First transparent electrode (thin silver electrode)
3A, 3B Hole injection transport layer 4A, 4B Fluorescent light emitting layer 5A, 5B Phosphorescent light emitting layer 6A, 6B Electron transport layer 7A, 7B LiF layer 8A, 8B Al layer 9-1 Second transparent electrode (ITO)
9-2 Second transparent electrode (thin silver electrode)
10, D Transparent sealing member 11-1 Third transparent electrode (ITO)
11-2 Third transparent electrode (thin silver electrode)
12 Underlayer 14 Laminate 20A, 20B Lead wire 21 Background (area where light emitting function is modulated)
22A, 22B Arrow image (area where the light emission function is not modulated)
30 Organic EL Module 32 Anisotropic Conductive Film 34 Flexible Printed Circuit Board 36 Adhesive 38 Polarizing Member A First Transparent Electrode A2 Extraction Electrode B Second Transparent Electrode C Third Transparent Electrode E, F Image EL Organic EL Element L1, L2 Light Irradiation U1 First organic functional layer unit U2 Second organic functional layer unit

Claims (12)

  1.  透明基板上に、少なくとも第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材をこの順で有する有機エレクトロルミネッセンス素子を製造する有機エレクトロルミネッセンス素子の製造方法であって、
     前記第1有機機能層ユニット及び第2有機機能層ユニットは、それぞれ独立して、個別又は同時に電気的駆動による発光を可能とし、
     前記透明基板側と前記透明封止部材側から、それぞれ異なるパターンで光照射を行い、前記第1有機機能層ユニット及び第2有機機能層ユニットに、発光機能が変調されている領域と、変調されていない領域とで構成されるそれぞれ異なる表示画像を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
    An organic electroluminescence device having at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode, and a transparent sealing member in this order on a transparent substrate is manufactured. A method for producing an organic electroluminescent device comprising:
    The first organic functional layer unit and the second organic functional layer unit are independently capable of emitting light by electrical driving individually or simultaneously,
    Light irradiation is performed in different patterns from the transparent substrate side and the transparent sealing member side, respectively, and the first organic functional layer unit and the second organic functional layer unit are modulated with regions where the light emitting function is modulated. A method for producing an organic electroluminescence element, comprising forming different display images composed of regions that are not formed.
  2.  前記光照射によるパターニング方法が、照射光源として紫外線を用い、前記透明基板側及び前記透明封止部材側からそれぞれ異なる表示画像をパターニングする方法であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 2. The organic electro according to claim 1, wherein the patterning method by light irradiation is a method of patterning different display images from the transparent substrate side and the transparent sealing member side by using ultraviolet rays as an irradiation light source. Manufacturing method of luminescence element.
  3.  前記第1透明電極、第2透明電極及び第3透明電極から選ばれる少なくとも一つの電極を、薄膜金属により形成することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. The organic electroluminescence device according to claim 1, wherein at least one electrode selected from the first transparent electrode, the second transparent electrode, and the third transparent electrode is formed of a thin film metal. Method.
  4.  前記第1透明電極、第2透明電極及び第3透明電極の全ての電極を、薄膜金属により形成することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. The method of manufacturing an organic electroluminescent element according to claim 1, wherein all of the first transparent electrode, the second transparent electrode, and the third transparent electrode are formed of a thin film metal.
  5.  前記第1透明電極、第2透明電極及び第3透明電極のなかで、前記第2透明電極の膜厚を最も厚く設定することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 5. The film thickness of the second transparent electrode is set to be the thickest among the first transparent electrode, the second transparent electrode, and the third transparent electrode. 6. The manufacturing method of the organic electroluminescent element of description.
  6.  前記薄膜金属により形成する電極が、薄銀電極であることを特徴とする請求項3から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to any one of claims 3 to 5, wherein the electrode formed of the thin film metal is a thin silver electrode.
  7.  前記薄銀電極の下部に、窒素及び硫黄から選択される少なくとも一種の原子を有する有機化合物を含有する下地層を設けることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 6, wherein a base layer containing an organic compound having at least one atom selected from nitrogen and sulfur is provided below the thin silver electrode.
  8.  前記第1透明電極と第3透明電極を、陽極として形成することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to any one of claims 1 to 7, wherein the first transparent electrode and the third transparent electrode are formed as anodes.
  9.  前記第1透明電極と第3透明電極を、陰極として形成することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to any one of claims 1 to 7, wherein the first transparent electrode and the third transparent electrode are formed as cathodes.
  10.  請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法により製造された有機エレクトロルミネッセンス素子であって、
     透明基板上に、少なくとも、第1透明電極、第1有機機能層ユニット、第2透明電極、第2有機機能層ユニット、第3透明電極及び透明封止部材をこの順で有し、前記第1有機機能層ユニット及び第2有機機能層ユニットが、光照射により形成したそれぞれ異なる画像を表示する機能を有することを特徴とする有機エレクトロルミネッセンス素子。
    An organic electroluminescent element manufactured by the method for manufacturing an organic electroluminescent element according to any one of claims 1 to 9,
    On the transparent substrate, at least a first transparent electrode, a first organic functional layer unit, a second transparent electrode, a second organic functional layer unit, a third transparent electrode and a transparent sealing member are provided in this order, and the first An organic electroluminescent element, wherein the organic functional layer unit and the second organic functional layer unit have a function of displaying different images formed by light irradiation.
  11.  請求項10に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする有機エレクトロルミネッセンスモジュール。 An organic electroluminescence module comprising the organic electroluminescence element according to claim 10.
  12.  前記有機エレクトロルミネッセンス素子を構成する透明基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを有することを特徴とする請求項11に記載の有機エレクトロルミネッセンスモジュール。 The organic electroluminescence module according to claim 11, further comprising a polarizing member, a half mirror member, or a black filter on a light emitting surface side of the transparent substrate constituting the organic electroluminescence element.
PCT/JP2014/065303 2013-07-05 2014-06-10 Method for manufacturing organic electroluminescence element, organic electroluminescence element, and organic electroluminescence module WO2015001922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525114A JP6337897B2 (en) 2013-07-05 2014-06-10 Method for manufacturing organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-141252 2013-07-05
JP2013141252 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015001922A1 true WO2015001922A1 (en) 2015-01-08

Family

ID=52143506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065303 WO2015001922A1 (en) 2013-07-05 2014-06-10 Method for manufacturing organic electroluminescence element, organic electroluminescence element, and organic electroluminescence module

Country Status (2)

Country Link
JP (1) JP6337897B2 (en)
WO (1) WO2015001922A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394593A (en) * 1986-10-07 1988-04-25 シャープ株式会社 Traffic signal
WO2010046830A1 (en) * 2008-10-21 2010-04-29 Koninklijke Philips Electronics N.V. Patterned oled device, method of generating a patterning, system for patterning and method of calibrating the system
JP2012506604A (en) * 2008-10-21 2012-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent OLED device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865484B1 (en) * 2006-06-08 2020-11-04 Eaton Intelligent Power Limited Illuminated information sign and light control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394593A (en) * 1986-10-07 1988-04-25 シャープ株式会社 Traffic signal
WO2010046830A1 (en) * 2008-10-21 2010-04-29 Koninklijke Philips Electronics N.V. Patterned oled device, method of generating a patterning, system for patterning and method of calibrating the system
JP2012506604A (en) * 2008-10-21 2012-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent OLED device

Also Published As

Publication number Publication date
JP6337897B2 (en) 2018-06-06
JPWO2015001922A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6337883B2 (en) Electronic devices
JP2007180277A (en) Organic electroluminescent device, display and illuminator
JP5664715B2 (en) Organic electroluminescence device
WO2011132550A1 (en) Organic electroluminescent element, display device, and illumination device
WO2007119420A1 (en) Organic electroluminescence element, method for stabilizing emission chromaticity of organic electroluminescence element, illuminating device and electronic display device
US9876057B2 (en) Organic electroluminescence panel, method for manufacturing the same, organic electroluminescence module, and information device
JP6939795B2 (en) Transparent electrodes and electronic devices
JP6592915B2 (en) Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device
JP4985602B2 (en) Method for manufacturing organic electroluminescent element and organic electroluminescent element
JP6372265B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6519139B2 (en) Transparent electrode, electronic device and organic electroluminescent device
JP6409771B2 (en) Organic electroluminescence device and method for manufacturing the same
US10186559B2 (en) Organic electroluminescence module and information device
JPWO2016152792A1 (en) Organic electroluminescence panel module
WO2014200067A1 (en) Organic electroluminescent element and electronic device
WO2014185219A1 (en) Method for producing organic electroluminescent element and organic electroluminescent element
JP6337897B2 (en) Method for manufacturing organic electroluminescence element
JP2009152033A (en) Method of manufacturing organic electroluminescent element, organic electroluminescent element, display device, and illumination device
JP2009289716A (en) Organic electroluminescence element and its manufacturing method
WO2018116923A1 (en) Transparent electrode and electronic device
JP2015156253A (en) Organic electroluminescent element and manufacturing method of the same
WO2014181695A1 (en) Organic electroluminescent element
JP2007221028A (en) Organic electroluminescence element, display, and illumination device
JP6252590B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2012234972A (en) Organic electroluminescent element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820023

Country of ref document: EP

Kind code of ref document: A1