WO2015001768A1 - Method for producing magnetic recording medium - Google Patents

Method for producing magnetic recording medium Download PDF

Info

Publication number
WO2015001768A1
WO2015001768A1 PCT/JP2014/003400 JP2014003400W WO2015001768A1 WO 2015001768 A1 WO2015001768 A1 WO 2015001768A1 JP 2014003400 W JP2014003400 W JP 2014003400W WO 2015001768 A1 WO2015001768 A1 WO 2015001768A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic recording
recording layer
layer
recording medium
magnetic
Prior art date
Application number
PCT/JP2014/003400
Other languages
French (fr)
Japanese (ja)
Inventor
由沢 剛
島津 武仁
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2015001768A1 publication Critical patent/WO2015001768A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a method for manufacturing a magnetic recording medium. More specifically, the present invention relates to a method of manufacturing a magnetic recording medium that can achieve both excellent thermal stability and good writeability.
  • Perpendicular magnetic recording is used as a technology for realizing high density magnetic recording.
  • the perpendicular magnetic recording medium includes at least a nonmagnetic substrate and a magnetic recording layer formed of a hard magnetic material.
  • the perpendicular magnetic recording medium optionally includes a soft magnetic backing layer that plays a role of concentrating the magnetic flux generated by the magnetic head on the magnetic recording layer, and an underlayer for orienting the hard magnetic material of the magnetic recording layer in a desired direction Further, it may further include a protective film for protecting the surface of the magnetic recording layer.
  • CoCr-based disordered alloy magnetic layers such as CoCrPt have been mainly studied as metal magnetic materials for perpendicular magnetic recording media.
  • the reduction in the grain size of the magnetic crystal grains reduces the thermal stability of the recorded magnetization (also referred to as a recording signal). Therefore, in order to compensate for the decrease in thermal stability due to the reduction in the grain size of the magnetic crystal grains, it is required to form the magnetic crystal grains in the magnetic layer using a material having higher magnetocrystalline anisotropy. ing.
  • L1 0 type ordered alloys As a material having a high crystal magnetic anisotropy required, L1 0 type ordered alloys have been proposed.
  • Japanese Patent No. 3318204, Japanese Patent No. 3010156, Japanese Patent Application Laid-Open No. 2001-101645, Japanese Patent Application Laid-Open No. 2004-178653, and Japanese Translation of PCT International Publication No. 2010-503139 are selected from the group consisting of Fe, Co, and Ni. proposes at least one element, Pt, Pd, an L1 0 type ordered alloy containing at least one element selected from the group consisting of Au and Ir (see Patent documents 1-5).
  • These L1 0 type ordered alloy include FePt, CoPt, FePd, CoPd the like.
  • these documents propose various manufacturing methods L1 0 type ordered alloy thin film.
  • the thickness of the magnetic recording layer is basically uniform in the in-plane direction of the medium, reducing the magnetic crystal grain reduces the cross-sectional area of the magnetic crystal grain having a certain height. Means. As a result, the demagnetizing field acting on the magnetic crystal grains themselves is reduced, and the magnetic field (reversal magnetic field) necessary for reversing the magnetization of the magnetic crystal grains is increased.
  • the improvement in recording density means that a larger magnetic field is required when writing magnetization (or recording signals). In other words, as the recording density increases, the problem that the writeability of the magnetic recording medium decreases becomes obvious.
  • Zha et al. also proposed a gradient magnetic film having a magnetic recording layer made of an (FePt) 100-x Cu x alloy and monotonically decreasing the Cu content x from 30 at the bottom to 0 at the top.
  • (FePt) 100- was compared with a magnetic film of uniform composition made of (Fe 53 Pt 47 ) 85 Cu 15 alloy having a coercive force of 7.21 kOe (about 574 A / mm). It is reported that the gradient magnetic film made of x Cu x alloy (x monotonously decreases from 30 to 0) has a coercive force of 5.67 kOe (about 451 A / mm).
  • International Publication No. 2012/105908 pamphlet performs ion implantation into a magnetic recording medium, and the peak of the ion implantation amount is used as the top surface of the magnetic recording layer, so that the ion implantation amount is gradually decreased in the depth direction.
  • the formation of a magnetic recording layer is disclosed (see Patent Document 6).
  • the ions to be implanted are selected from the group consisting of He + , C + , N 2+ , Ar + , Co + and Sb + .
  • Japanese Patent No. 3318204 Japanese Patent No. 3010156 JP 2001-101645 A Japanese Patent Application Laid-Open No. 2004-178753 Special table 2010-503139 International Publication No. 2012/105908 Pamphlet
  • a method of manufacturing a magnetic recording medium according to the present invention includes a nonmagnetic substrate, a first magnetic recording layer containing a binary ordered alloy composed of a first element and a second element, a first element, a second element, and one kind.
  • a method for producing a magnetic recording medium comprising a magnetic recording layer comprising a second magnetic recording layer comprising a ternary or higher order ordered alloy comprising a plurality of additional elements, (A) depositing a binary ordered alloy while monotonically changing the temperature of the nonmagnetic substrate to form a first magnetic recording layer; (B) forming a second magnetic recording layer by depositing a ternary or higher order ordered alloy while monotonically changing the deposition rate of the additional element.
  • the step (A) is performed before the step (B) to form the second magnetic recording layer on the first magnetic recording layer.
  • the temperature of the nonmagnetic substrate at the end of the step (A) is a temperature not less than the maximum value of the temperature range in which the binary ordered alloy transitions from the disordered phase to the ordered phase, more preferably from the disordered phase to the ordered phase. It can be set to a temperature that is 20 ° C. or more higher than the maximum value of the above-mentioned temperature range where the transition occurs.
  • the step (A) when the step (A) is performed before the step (B), it is desirable to monotonically increase the deposition rate of the additional element in the step (B).
  • the deposition rate of the additional element can be monotonously increased by performing the step (B) by a sputtering method and increasing the sputtering power.
  • the sputtering power of the additional element is 0 at the start of step (B), and the temperature of the nonmagnetic substrate can be made equal to the temperature of the nonmagnetic substrate at the end of step (A).
  • the first element is at least one element selected from the group consisting of Fe, Co, and Ni
  • the second element is Pt, Pd, Au And at least one element selected from the group consisting of Ir and Ir.
  • each of the first magnetic recording layer and the second magnetic recording layer may further include a nonmagnetic grain boundary material.
  • the nonmagnetic grain boundary material that can be used is at least one selected from the group consisting of C, B, Ag, Ge, W, SiO 2 , Al 2 O 3 , TiO 2 , GeO 2, and B 2 O 3 . Material can be included.
  • a magnetic recording layer having excellent thermal stability and good writeability and a magnetic recording medium including the magnetic recording layer can be manufactured by a simple method.
  • FIG. 3 is a graph showing a substrate temperature profile when forming a first magnetic recording layer in Example 1.
  • FIG. 3 is a graph showing a sputtering power profile of a Cu target when forming a second magnetic recording layer in Example 1.
  • FIG. 6 is a graph showing a substrate temperature profile when forming a first magnetic recording layer in Comparative Example 1;
  • 10 is a graph showing a sputtering power profile of a Cu target when forming a second magnetic recording layer in Comparative Example 2.
  • a magnetic recording medium produced by the method according to the present invention includes a nonmagnetic substrate and a magnetic recording layer, and the magnetic recording layer includes a first ordered magnetic recording including a binary ordered alloy composed of a first element and a second element. And a second magnetic recording layer including a ternary or higher order ordered alloy composed of a first element, a second element, and one or more additional elements.
  • FIG. 1 A configuration example of a magnetic recording medium is shown in FIG. In the configuration example of FIG. 1, the magnetic recording medium includes a nonmagnetic substrate 10, a soft magnetic backing layer 20, a seed layer 30, a magnetic recording layer 40, a protective layer 50, and a liquid lubricant layer 60. The first magnetic recording layer 41 and the second magnetic recording layer 42 are included.
  • the soft magnetic backing layer 20, the seed layer 30, the protective layer 50, and the liquid lubricant layer 60 are optional constituent layers that can be provided as necessary.
  • the magnetic recording medium manufactured by the method according to the present invention may further include an adhesion layer, an intermediate layer, and the like between the nonmagnetic substrate 10 and the magnetic recording layer 40.
  • the nonmagnetic substrate 10 may be various substrates having a smooth surface.
  • the nonmagnetic substrate 10 can be formed using a material generally used for a magnetic recording medium (Al alloy plated with NiP, tempered glass, crystallized glass, etc.).
  • the soft magnetic backing layer 20 which may be optionally provided controls the magnetic flux from the magnetic head and improves the recording / reproducing characteristics of the magnetic recording medium.
  • Materials for forming the soft magnetic backing layer 20 include NiFe alloy, Sendust (FeSiAl) alloy, crystalline material such as CoFe alloy, microcrystalline material such as FeTaC, CoFeNi, CoNiP, and Co alloy such as CoZrNb and CoTaZr. Including amorphous material.
  • the optimum value of the thickness of the soft magnetic underlayer 20 depends on the structure and characteristics of the magnetic head used for magnetic recording. When the soft magnetic backing layer 20 is formed by continuous film formation with other layers, the soft magnetic backing layer 20 preferably has a thickness in the range of 10 nm to 500 nm (including both ends) in consideration of productivity. .
  • an adhesion layer (not shown) that may be optionally provided is used to improve adhesion between a layer formed thereon and a layer (including the nonmagnetic substrate 10) formed thereunder.
  • the adhesion layer can be formed using a material having good adhesion to the material of the nonmagnetic substrate 10 described above. Such materials include CrTi alloys and the like.
  • the material for forming the adhesion layer is a metal such as Ni, W, Ta, Cr, Ru, or the aforementioned metal. Including alloys.
  • the adhesion layer may be a single layer or may have a laminated structure of a plurality of layers.
  • the function of the seed layer 30 is to control the grain size and crystal orientation of the magnetic crystal grains in the upper magnetic recording layer 40.
  • the seed layer 30 may have a function of ensuring adhesion between the layer under the seed layer 30 and the magnetic recording layer 40. Further, another layer such as an intermediate layer may be disposed between the seed layer 30 and the magnetic recording layer 40. When an intermediate layer or the like is disposed, the seed layer 30 has a function of controlling the grain size and crystal orientation of the magnetic crystal grains of the magnetic recording layer 40 by controlling the grain size and crystal orientation of the crystal grains of the intermediate layer and the like. Will bear.
  • the seed layer 30 is preferably nonmagnetic.
  • the material of the seed layer 30 is appropriately selected according to the material of the magnetic recording layer 40.
  • the material of the seed layer 30 is selected according to the material of the magnetic crystal grains of the magnetic recording layer.
  • the magnetic crystal grains in the magnetic recording layer 40 is formed by L1 0 type ordered alloy, it is preferable to form the seed layer 30 by using a NaCl-type compounds.
  • the seed layer 30 is formed using an oxide such as MgO or SrTiO 3 or a nitride such as TiN.
  • the seed layer 30 can also be formed by stacking a plurality of layers made of the above materials.
  • the seed layer 30 preferably has a thickness of 1 nm to 60 nm, preferably 1 nm to 20 nm.
  • the seed layer 30 can be formed using any method known in the art, such as sputtering (including RF magnetron sputtering, DC magnetron sputtering, etc.), vacuum deposition, and the like.
  • the intermediate layer (not shown) is a layer disposed to increase the crystal orientation of the magnetic recording layer 40 and to control the size of the magnetic crystal grains in the magnetic recording layer 40.
  • the intermediate layer may have a function of inheriting the crystal structure of the layer formed under the intermediate layer and inheriting it to the magnetic recording layer 40. Further, when the soft magnetic backing layer 20 is provided, the intermediate layer may have a function of suppressing the magnetic influence of the soft magnetic backing layer 20 on the magnetic recording layer 40.
  • the intermediate layer is preferably nonmagnetic. Materials for forming the intermediate layer include metals such as Cr and Ta, NiW alloys, and alloys based on Cr such as CrTi, CrZr, CrTa, and CrW.
  • the intermediate layer can be formed using any method known in the art, such as sputtering.
  • the protective layer 50 can be formed using a material conventionally used in the field of magnetic recording media. Specifically, the protective layer 50 can be formed using a carbon-based material such as diamond-like carbon or a silicon-based material such as silicon nitride. The protective layer 50 may be a single layer or may have a laminated structure. The laminated protective layer 50 may be, for example, a laminated structure of two types of carbon materials having different characteristics, a laminated structure of a metal and a carbon material, or a laminated structure of a metal oxide film and a carbon material. Good. The protective layer 50 can be formed using any method known in the art, such as CVD, sputtering (including DC magnetron sputtering), and vacuum deposition.
  • the magnetic recording medium of the present invention may further include a liquid lubricant layer 60 provided on the protective layer 50.
  • the liquid lubricant layer 60 can be formed using a material conventionally used in the field of magnetic recording media (for example, a perfluoropolyether lubricant).
  • the liquid lubricant layer 60 can be formed using, for example, a coating method such as a dip coating method or a spin coating method.
  • the magnetic recording layer 40 includes a first magnetic recording layer 41 including a binary ordered alloy composed of a first element and a second element, a first element, a second element, and three or more kinds of additional elements. And a second magnetic recording layer 42 containing an ordered alloy of the original or higher system.
  • the stacking order of the first magnetic recording layer 41 and the second magnetic recording layer 42 can be arbitrarily set.
  • a configuration in which the first magnetic recording layer 41 is a layer close to the nonmagnetic substrate 10 and the second magnetic recording layer 42 is formed on the first magnetic recording layer 41 is preferable.
  • FIG. 1 shows a preferred configuration in which a first magnetic recording layer 41 and a second magnetic recording layer 42 are laminated in order from the nonmagnetic substrate 10 side.
  • the first magnetic recording layer 41 may be composed of only a binary ordered alloy or has a granular structure composed of magnetic crystal grains composed of a binary ordered alloy and nonmagnetic grain boundaries. May be.
  • the second magnetic recording layer 42 may be composed of only a ternary or higher order ordered alloy, or a magnetic crystal grain made of a ternary or higher order ordered alloy and a nonmagnetic grain boundary. You may have the granular structure comprised.
  • the binary ordered alloy in the first magnetic recording layer 41 is composed of a first element and a second element.
  • binary ordered alloy is L1 0 type ordered alloy.
  • the first element includes at least one element selected from the group consisting of Fe, Co, and Ni.
  • the second element includes at least one element selected from the group consisting of Pt, Pd, Au, and Ir.
  • Preferred binary ordered alloys include FePt, CoPt, FePd, CoPd, and the like.
  • the ordered alloy of the ternary or higher system in the second magnetic recording layer 42 is composed of a first element, a second element, and one or more additional elements.
  • it ordered alloy ternary or more systems are L1 0 type ordered alloy.
  • the first element and the second element are equivalent to the binary ordered alloy in the first magnetic recording layer 41.
  • the additional elements include nonmagnetic elements such as Cu, Mn, Ni, Ag, and Ti.
  • Preferred ternary or higher order ordered alloys include FePtCu, FePtMn, CoPtNi, and the like.
  • the material of the nonmagnetic grain boundary is at least one selected from the group consisting of C, B, Ag, Ge, and W Or an oxide selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , GeO 2 and B 2 O 3 .
  • the first magnetic recording layer 41 and the second magnetic recording layer 42 can be formed by a sputtering method.
  • a target containing the first element and the second element it is preferable to use a target containing the first element and the second element in a predetermined ratio.
  • a target including a first element, a second element, and a nonmagnetic grain boundary material in a predetermined ratio can be used.
  • the second magnetic recording layer 42 it is preferable to use a target containing the first element and the second element at a predetermined ratio and a target containing an additional element. In forming the second magnetic recording layer 42, it is necessary to independently control the sputtering power for the target containing the first element and the second element and the sputtering power for the target containing the additional element. . In forming the second magnetic recording layer 42 having a granular structure, a nonmagnetic grain boundary material in a predetermined ratio is added to a target including the first element and the second element.
  • the first magnetic recording layer 41 and the second magnetic recording layer 42 each have uniaxial magnetic anisotropy in a direction perpendicular to the surface of the layer (that is, the film formation surface of the nonmagnetic substrate 10).
  • the magnetic recording layer 40 has a distribution of a magnetic anisotropy constant Ku that monotonously changes from the outer surface of the first magnetic recording layer 41 toward the outer surface of the second magnetic recording layer 42.
  • the “outer surface” of the first magnetic recording layer 41 and the second magnetic recording layer 42 is opposite to the interface between the first magnetic recording layer 41 and the second magnetic recording layer 42 in each layer. Means the side face.
  • the magnetic recording layer 40 has a distribution of a magnetic anisotropy constant Ku that continuously changes from the outer surface of the first magnetic recording layer 41 toward the outer surface of the second magnetic recording layer 42.
  • the “monotonic change” in this specification means that a certain characteristic value always increases or decreases along the film thickness direction. Monotonic changes allow the presence of discontinuities in characteristic values.
  • the “continuous change” in this specification means a monotonous change in which there is no discontinuous point of the characteristic value.
  • the distribution of the magnetic anisotropy constant Ku in the first magnetic recording layer 41 is such that the temperature of the nonmagnetic substrate at the time of formation (hereinafter simply referred to as “substrate temperature”) is monotonously changed, and the degree of order of the binary ordered alloy is changed. Can be obtained by changing monotonously.
  • Ku may be increased from the lower surface to the upper surface of the first magnetic recording layer 41 by monotonically increasing the substrate temperature at the time of formation and monotonically increasing the degree of order of the binary ordered alloy.
  • Ku may be decreased from the lower surface to the upper surface of the first magnetic recording layer 41 by monotonically lowering the substrate temperature during formation and monotonously lowering the degree of order of the binary ordered alloy.
  • the change in the substrate temperature during formation is preferably continuous.
  • the minimum temperature at the time of forming the first magnetic recording layer 41 be equal to or higher than the maximum value in the temperature region where the transition between the disordered phase and the ordered phase of the binary ordered alloy occurs. More preferably, the minimum temperature at the time of forming the first magnetic recording layer 41 is set to a temperature that is 20 ° C. or more higher than the maximum value in the temperature range where the transition between the disordered phase and the ordered phase of the binary ordered alloy occurs. be able to.
  • the lowest temperature when forming the first magnetic recording layer 41 is the substrate temperature at the end of the formation of the first magnetic recording layer 41 when the substrate temperature is monotonously lowered, and when the substrate temperature is monotonically raised, the first magnetic recording layer is formed. This is the substrate temperature at the start of layer 41 formation.
  • the distribution of the magnetic anisotropy constant Ku in the second magnetic recording layer 42 can be obtained by monotonically changing the sputtering power of the additional element and monotonically changing the deposition rate of the additional element at the time of formation.
  • Ku may be decreased from the lower surface to the upper surface of the second magnetic recording layer 42 by monotonically increasing the sputtering power of the additional element during the formation and monotonically increasing the deposition rate of the additional element.
  • Ku may be increased from the lower surface to the upper surface of the second magnetic recording layer 42 by monotonically decreasing the sputtering power of the additional element and monotonically decreasing the deposition rate of the additional element during formation.
  • the change in sputtering power of the additional element during formation is preferably continuous.
  • the sputtering conditions of both layers at the interface between the first magnetic recording layer 41 and the second magnetic recording layer 42 include the types and ratios of the first element and the second element, the ratio of the additional element, and the substrate temperature. It is desirable that the first element and the second element used in the first magnetic recording layer 41 and the second magnetic recording layer 42 are the same and the ratios thereof are also the same.
  • the substrate temperature at the time of forming the first magnetic recording layer 41 is monotonously lowered, and the second magnetic recording layer 42 is formed.
  • the substrate temperature during the formation of the first magnetic recording layer 41 is set as the temperature at the end of the formation of the first magnetic recording layer 41, and the sputtering power of the additional element during the formation of the second magnetic recording layer 42 is monotonously increased from 0, thereby increasing the magnetic anisotropy.
  • a continuous distribution of the constant Ku can be achieved.
  • the sputtering power of the additional element at the time of forming the second magnetic recording layer 42 is monotonously decreased to be the final.
  • the substrate temperature at the time of forming the first magnetic recording layer 41 is monotonically increased from the temperature at the end of the formation of the second magnetic recording layer 42, thereby achieving a continuous distribution of the magnetic anisotropy constant Ku. can do.
  • the distribution of Ku is controlled by the substrate temperature at the time of formation.
  • Ku cannot be appropriately controlled when Ku is to be changed greatly depending on the substrate temperature.
  • the binary ordered alloy consisting of FePt transition between the L1 0 ordered phase and A1 disordered phase in the temperature range of 300 ° C. ⁇ 350 ° C. is rapidly generated. Therefore, it is difficult to appropriately control Ku in a region where Ku is relatively low.
  • the substrate temperature at the time of forming the first magnetic recording layer 41 is changed to a temperature at which a transition between an irregular phase and an ordered phase occurs (for example, FePt Therefore, the distribution of Ku in the first magnetic recording layer 41 can be satisfactorily controlled.
  • the deposition rate of the additional element causes the Ku to increase. Control the distribution.
  • the amount of additional element added to the ordered alloy is a certain amount or more, there is a problem that the decrease in saturation magnetization (Ms) becomes significant. For this reason, obtaining a wide distribution of Ku only with the deposition rate of the additional element may reduce the uniformity of Ms.
  • the deposition rate of the additional element in the second magnetic recording layer 42 can be limited to a narrow range of a certain amount or less, and the uniformity of Ms is ensured. It becomes possible.
  • the obtained magnetic recording layer 40 exhibits excellent writeability by sufficiently reducing the coercive force, and at the same time exhibits excellent thermal stability of the recording signal even when the recording density is improved.
  • Example 1 A chemically strengthened glass substrate having a smooth surface (N-10 glass substrate manufactured by HOYA) was washed to prepare a nonmagnetic substrate 10. The nonmagnetic substrate 10 after cleaning was introduced into the sputtering apparatus.
  • the soft magnetic backing layer 20 was formed by a DC magnetron sputtering method using a NiFe target in Ar gas at a pressure of 0.67 Pa.
  • a seed layer 30 having a two-layer structure composed of a Ta layer and an MgO layer was formed. Specifically, a 10 nm-thick Ta layer was formed by DC magnetron sputtering using a Ta target in Ar gas at a pressure of 0.67 Pa. Next, the stacked body on which the Ta layer is formed is heated to 250 ° C., an MgO layer having a thickness of 5 nm is formed by RF sputtering using an MgO target in an Ar gas having a pressure of 0.06 Pa, and the seed layer 30 is formed.
  • a 10 nm-thick Ta layer was formed by DC magnetron sputtering using a Ta target in Ar gas at a pressure of 0.67 Pa.
  • the stacked body on which the Ta layer is formed is heated to 250 ° C.
  • an MgO layer having a thickness of 5 nm is formed by RF sputtering using an MgO target in an Ar gas having a pressure of 0.06 Pa, and the seed
  • the film thickness of the deposited layer was monitored using a film thickness measurement sensor disposed in the chamber of the sputtering apparatus.
  • the substrate temperature was continuously lowered with respect to the film thickness, and the final substrate temperature was set to 370.degree.
  • the second magnetic recording layer 42 made of (Fe 50 Pt 50 ) x Cu (1-x) 2 -SiO 2 with a film thickness of 10 nm is formed using the aforementioned Fe 50 Pt 50 —SiO 2 target and Cu target.
  • the magnetic recording layer 40 was obtained.
  • the substrate temperature was fixed at 370 ° C., which is the final substrate temperature when the first magnetic recording layer 41 was formed.
  • the sputtering power of the Cu target was continuously increased as shown in FIG. 3 with respect to the film thickness monitored using the film thickness measurement sensor. In this example, the sputtering power of the Cu target was changed from 0 W at the start of formation to 80 W at the end of formation.
  • a protective layer 50 made of carbon having a thickness of 2 nm was formed by a DC magnetron sputtering method using a carbon target in an Ar gas atmosphere. After the formation of the protective layer 50, the stacked body was taken out from the sputtering apparatus. Finally, perfluoropolyether was applied using a dip coating method to form a liquid lubricant layer 60 having a thickness of 2 nm to obtain the magnetic recording medium shown in FIG.
  • Example 1 The second magnetic recording layer 42 ((Fe 50 Pt 50 ) x Cu (1-x) 2 —SiO 2 layer) was not formed, and the film of the first magnetic recording layer 41 (Fe 50 Pt 50 —SiO 2 layer) The procedure of Example 1 was repeated except that the thickness was 20 nm and the substrate temperature during the formation of the first magnetic recording layer 41 was continuously changed from 500 ° C. to 300 ° C. as shown in FIG. Thus, a magnetic recording medium having a single-layer magnetic recording layer was obtained.
  • Example 2 The first magnetic recording layer 41 (Fe 50 Pt 50 —SiO 2 layer) was not formed, and the second magnetic recording layer 42 ((Fe 50 Pt 50 ) x Cu (1-x) —SiO 2 layer) was formed.
  • FIG. 5 shows the thickness of 20 nm, the substrate temperature at the time of forming the second magnetic recording layer 42 fixed at 370 ° C., and the sputtering power of the Cu target at the time of forming the second magnetic recording layer 42 with respect to the film thickness.
  • the procedure of Example 1 was repeated except that the power was continuously increased from 0 W to 120 W to obtain a magnetic recording medium having a single-layered magnetic recording layer.
  • Example 3 The second magnetic recording layer 42 ((Fe 50 Pt 50 ) x Cu (1-x) 2 —SiO 2 layer) was not formed, and the film of the first magnetic recording layer 41 (Fe 50 Pt 50 —SiO 2 layer) The procedure of Example 1 was repeated except that the thickness was 20 nm and the substrate temperature during the formation of the first magnetic recording layer 41 was fixed at 500 ° C. A medium was obtained.
  • Example 4 The procedure of Example 1 was performed except that the substrate temperature during the formation of the first magnetic recording layer 41 was fixed at 500 ° C. and the sputtering power of the Cu target during the formation of the second magnetic recording layer 42 was fixed at 120 W. Repeatedly, a magnetic recording medium having a two-layer magnetic recording layer was obtained.
  • the magnetic recording medium of Example 1 according to the present invention has Hc of 7.5 kOe (about 597 A / mm), and has a magnetic recording layer composed only of the first magnetic recording layer 41.
  • the magnetic recording medium of Comparative Example 3 had a Hc of 15.3 kOe (about 1220 A / mm).
  • the magnetic recording medium of Example 1 has Hc reduced by about 50% compared to the magnetic recording medium of Comparative Example 3.
  • the decrease in ⁇ of the magnetic recording medium of Example 1 was about 20%. From this, it can be seen that the magnetic recording medium of Example 1 according to the present invention achieves both excellent writeability and high thermal stability of the recording signal.
  • the magnetic recording medium of Comparative Example 1 in which the substrate temperature change range is expanded to 500 ° C. to 300 ° C. is the same as that of Example 1. Although it showed the same ⁇ , it had a clearly higher Hc compared with Example 1. This is because the continuity of the change of Ku in the film thickness direction at 350 ° C. as a boundary is impaired by the abrupt transition from the L1 0 ordered phase to the A1 disordered phase in the temperature range of 300 ° C. to 350 ° C. This is thought to be due to this.
  • Example 1 of the present invention the final substrate temperature during the first magnetic recording layer 41 formed is 370 ° C., transition from L1 0 ordered phase of FePt alloy with the A1 disordered phase is not generated, the ideal It is thought that a typical Ku distribution was obtained.
  • the magnetic recording medium of Comparative Example 2 in which the change range of the sputtering power of the Cu target is expanded from 0 W to 120 W in the magnetic recording medium consisting only of the second magnetic recording layer 42 made of the ternary ordered alloy is also an example. Although ⁇ of the same level as 1 was exhibited, it had a clearly higher Hc compared to Example 1. This is presumably because the Ms decrease with the increase of the Cu concentration becomes remarkable at the upper part of the second magnetic recording layer 42, and the uniformity of Ms in the film thickness direction is lowered.
  • Example 1 the sputtering power of the Cu target at the time of forming the second magnetic recording layer 42 is 80 W at maximum, and it is considered that an excessive decrease in Ms was suppressed and an ideal Ku distribution was obtained. It is done.
  • the magnetic recording medium of Comparative Example 4 in which the substrate temperature at the time of forming the first magnetic recording layer 41 and the sputtering power of the Cu target at the time of forming the second magnetic recording layer 42 are fixed has a conventional hard / soft stack structure. It is a magnetic recording medium.
  • the magnetic recording medium of Example 1 had a Hc decreased by about 34%, although a ⁇ reduction of about 6% was observed. From this, it can be seen that the magnetic recording medium of Example 1 according to the present invention has excellent writeability and high thermal stability of the recording signal as compared with the conventional magnetic recording medium.
  • Nonmagnetic base material 20
  • Soft magnetic backing layer 30
  • Seed layer 40
  • Magnetic recording layer 41
  • 1st magnetic recording layer 42
  • 2nd magnetic recording layer 50
  • Protective layer 60

Abstract

Provided is a method for producing a magnetic recording medium which comprises a magnetic recording layer having excellent thermal stability and good writability. The present invention relates to a method for producing a magnetic recording medium which comprises a non-magnetic base and a magnetic recording layer that is composed of a first magnetic recording layer containing a binary ordered alloy which is composed of a first element and a second element and a second magnetic recording layer containing a ternary or higher-order ordered alloy which is composed of a first element, a second element and one or more additional elements. This method for producing a magnetic recording medium comprises (A) a step for forming the first magnetic recording layer by depositing the binary ordered alloy, while monotonically changing the temperature of the non-magnetic base, and (B) a step for forming the second magnetic recording layer by depositing the ternary or higher-order ordered alloy, while monotonically changing the deposition rate of the additional element(s).

Description

磁気記録媒体の製造方法Method for manufacturing magnetic recording medium
 本発明は、磁気記録媒体の製造方法に関する。より詳細には、本発明は、優れた熱安定性と良好なライタビリティとを両立することができる磁気記録媒体の製造方法に関する。 The present invention relates to a method for manufacturing a magnetic recording medium. More specifically, the present invention relates to a method of manufacturing a magnetic recording medium that can achieve both excellent thermal stability and good writeability.
 磁気記録の高密度化を実現する技術として、垂直磁気記録方式が採用されている。垂直磁気記録媒体は、非磁性基体と、硬質磁性材料から形成される磁気記録層を少なくとも含む。垂直磁気記録媒体は、任意選択的に、磁気ヘッドが発生する磁束を磁気記録層に集中させる役割を担う軟磁性裏打ち層、磁気記録層の硬質磁性材料を目的の方向に配向させるための下地層、磁気記録層の表面を保護する保護膜などをさらに含んでもよい。 垂直 Perpendicular magnetic recording is used as a technology for realizing high density magnetic recording. The perpendicular magnetic recording medium includes at least a nonmagnetic substrate and a magnetic recording layer formed of a hard magnetic material. The perpendicular magnetic recording medium optionally includes a soft magnetic backing layer that plays a role of concentrating the magnetic flux generated by the magnetic head on the magnetic recording layer, and an underlayer for orienting the hard magnetic material of the magnetic recording layer in a desired direction Further, it may further include a protective film for protecting the surface of the magnetic recording layer.
 従来、垂直磁気記録媒体用の金属磁性材料として、CoCrPtをはじめとするCoCr系不規則合金磁性層が主に研究されてきた。近年、垂直磁気記録媒体の記録密度のさらなる向上を目的として、磁性層中の磁性結晶粒の粒径を縮小させる必要に迫られている。一方で、磁性結晶粒の粒径の縮小は、記録された磁化(または記録信号とも呼ぶ)の熱安定性を低下させる。そのため、磁性結晶粒の粒径の縮小による熱安定性の低下を補償するために、磁性層中の磁性結晶粒を、より高い結晶磁気異方性を有する材料を用いて形成することが求められている。 Conventionally, CoCr-based disordered alloy magnetic layers such as CoCrPt have been mainly studied as metal magnetic materials for perpendicular magnetic recording media. In recent years, there has been an urgent need to reduce the grain size of magnetic crystal grains in a magnetic layer for the purpose of further improving the recording density of a perpendicular magnetic recording medium. On the other hand, the reduction in the grain size of the magnetic crystal grains reduces the thermal stability of the recorded magnetization (also referred to as a recording signal). Therefore, in order to compensate for the decrease in thermal stability due to the reduction in the grain size of the magnetic crystal grains, it is required to form the magnetic crystal grains in the magnetic layer using a material having higher magnetocrystalline anisotropy. ing.
 求められる高い結晶磁気異方性を有する材料として、L1型規則合金が提案されている。特許第3318204号公報、特許第3010156号公報、特開2001-101645号公報、特開2004-178753号公報、および特表2010-503139号公報は、Fe、CoおよびNiからなる群から選択される少なくとも一種の元素と、Pt、Pd、AuおよびIrからなる群から選択される少なくとも一種の元素とを含むL1系規則合金を提案している(特許文献1~5参照)。これらのL1型規則合金は、FePt、CoPt、FePd、CoPdなどを含む。さらに、これらの文献は、L1型規則合金薄膜の種々の製造方法を提案している。 As a material having a high crystal magnetic anisotropy required, L1 0 type ordered alloys have been proposed. Japanese Patent No. 3318204, Japanese Patent No. 3010156, Japanese Patent Application Laid-Open No. 2001-101645, Japanese Patent Application Laid-Open No. 2004-178653, and Japanese Translation of PCT International Publication No. 2010-503139 are selected from the group consisting of Fe, Co, and Ni. proposes at least one element, Pt, Pd, an L1 0 type ordered alloy containing at least one element selected from the group consisting of Au and Ir (see Patent documents 1-5). These L1 0 type ordered alloy include FePt, CoPt, FePd, CoPd the like. Furthermore, these documents propose various manufacturing methods L1 0 type ordered alloy thin film.
 一方、基本的に磁気記録層の膜厚は媒体面内方向に一様であるため、磁性結晶粒を小さくしていくことは、一定の高さを有する磁性結晶粒の断面積を小さくすることを意味する。その結果、磁性結晶粒自身に作用する反磁界が小さくなり、磁性結晶粒の磁化を反転させるために必要な磁界(反転磁界)は大きくなる。このように、磁性結晶粒の形状で考えた場合、記録密度の向上は、磁化の書込み(または信号の記録)の際により大きな磁界が必要となることを意味する。言い換えると、記録密度の向上に伴って、磁気記録媒体のライタビリティが低下する問題点が顕在化する。 On the other hand, since the thickness of the magnetic recording layer is basically uniform in the in-plane direction of the medium, reducing the magnetic crystal grain reduces the cross-sectional area of the magnetic crystal grain having a certain height. Means. As a result, the demagnetizing field acting on the magnetic crystal grains themselves is reduced, and the magnetic field (reversal magnetic field) necessary for reversing the magnetization of the magnetic crystal grains is increased. Thus, when considered in terms of the shape of magnetic crystal grains, the improvement in recording density means that a larger magnetic field is required when writing magnetization (or recording signals). In other words, as the recording density increases, the problem that the writeability of the magnetic recording medium decreases becomes obvious.
 記録信号の熱安定性を維持しつつ、磁気記録媒体のライタビリティを向上させる試みとして、Chenらは、高い磁気異方性定数(Ku)を有する底層、中程度のKuを有する中層および低いKuを有する頂層の順に積層された傾斜(graded)磁気記録層を有する磁気記録媒体を提案している(非特許文献1参照)。ここで、底層、中層および頂層は、L1型FePt規則合金およびC粒界部からなるグラニュラー構造を有する。そして、底層、中層および頂層の形成温度を変化させてL1型FePt規則合金の規則度を調整し、各層のKuを制御している。Chenらは、高Ku層単独では11.4kOe(約907A/mm)の保磁力を有するが、上記の3層構成では、保磁力が5.9kOe(約470A/mm)まで減少したことを報告している。 In an attempt to improve the writeability of magnetic recording media while maintaining the thermal stability of the recording signal, Chen et al. Describe a bottom layer having a high magnetic anisotropy constant (Ku), a middle layer having a moderate Ku, and a low Ku. A magnetic recording medium having a graded magnetic recording layer that is stacked in the order of the top layer having a magnetic layer has been proposed (see Non-Patent Document 1). Here, the bottom layer, middle layer and top layer has a granular structure consisting of L1 0 type FePt ordered alloy and C grain boundaries. Then, the bottom layer, by changing the formation temperature of the middle layer and top layer was adjusted rules of the L1 0 type FePt ordered alloy, and controls the respective layers of Ku. Chen et al. Reported that the high Ku layer alone had a coercivity of 11.4 kOe (about 907 A / mm), but the three-layer configuration described above reduced the coercivity to 5.9 kOe (about 470 A / mm). is doing.
 また、Zhaらは、(FePt)100-xCu合金からなる磁気記録層を有し、Cuの含有量xを底部における30から頂部における0へと単調に減少させた傾斜磁性膜を提案している(非特許文献2参照)。Zhaらは、(Fe53Pt4785Cu15合金からなる均一組成の磁性膜が7.21kOe(約574A/mm)の保磁力を有したのに対して、(Fe53Pt47100-xCu合金(xは30から0まで単調減少する)からなる傾斜磁性膜が5.67kOe(約451A/mm)の保磁力を有したことを報告している。 Zha et al. Also proposed a gradient magnetic film having a magnetic recording layer made of an (FePt) 100-x Cu x alloy and monotonically decreasing the Cu content x from 30 at the bottom to 0 at the top. (See Non-Patent Document 2). Zha et al. Reported that (Fe 53 Pt 47 ) 100- was compared with a magnetic film of uniform composition made of (Fe 53 Pt 47 ) 85 Cu 15 alloy having a coercive force of 7.21 kOe (about 574 A / mm). It is reported that the gradient magnetic film made of x Cu x alloy (x monotonously decreases from 30 to 0) has a coercive force of 5.67 kOe (about 451 A / mm).
 さらに国際公開第2012/105908号パンフレットは、磁気記録媒体にイオン注入を行い、イオン注入量のピークを磁気記録層の頂面とし、深さ方向に向かってイオン注入量を傾斜的に減少させる傾斜磁気記録層を形成することを開示している(特許文献6参照)。ここで、注入されるイオンは、He、C、N2+、Ar、CoおよびSbからなる群から選択される。 Further, International Publication No. 2012/105908 pamphlet performs ion implantation into a magnetic recording medium, and the peak of the ion implantation amount is used as the top surface of the magnetic recording layer, so that the ion implantation amount is gradually decreased in the depth direction. The formation of a magnetic recording layer is disclosed (see Patent Document 6). Here, the ions to be implanted are selected from the group consisting of He + , C + , N 2+ , Ar + , Co + and Sb + .
特許第3318204号公報Japanese Patent No. 3318204 特許第3010156号公報Japanese Patent No. 3010156 特開2001-101645号公報JP 2001-101645 A 特開2004-178753号公報Japanese Patent Application Laid-Open No. 2004-178753 特表2010-503139号公報Special table 2010-503139 国際公開第2012/105908号パンフレットInternational Publication No. 2012/105908 Pamphlet
 L1型規則合金を含み、優れた熱安定性と良好なライタビリティとを有する磁気記録層を含む磁気記録媒体の製造方法に対する要求が存在する。 It includes an L1 0 type ordered alloys, demand for a method of manufacturing a magnetic recording medium comprising a magnetic recording layer having excellent thermal stability and good writer capability exists.
 本発明の磁気記録媒体の製造方法は、非磁性基体と、第1元素および第2元素からなる2元系規則合金を含む第1磁気記録層と、第1元素、第2元素、および1種または複数種の追加元素からなる3元以上の系の規則合金を含む第2磁気記録層からなる磁気記録層とを含む磁気記録媒体の製造方法であって、
(A) 非磁性基体の温度を単調に変化させながら2元系規則合金を堆積させて、第1磁気記録層を形成する工程と、
(B) 追加元素の堆積速度を単調に変化させながら3元以上の系の規則合金を堆積させて、第2磁気記録層を形成する工程と
を含むことを特徴とする。ここで、工程(A)を工程(B)の前に実施して、前記第1磁気記録層の上に前記第2磁気記録層を形成することが望ましい。
A method of manufacturing a magnetic recording medium according to the present invention includes a nonmagnetic substrate, a first magnetic recording layer containing a binary ordered alloy composed of a first element and a second element, a first element, a second element, and one kind. Or a method for producing a magnetic recording medium comprising a magnetic recording layer comprising a second magnetic recording layer comprising a ternary or higher order ordered alloy comprising a plurality of additional elements,
(A) depositing a binary ordered alloy while monotonically changing the temperature of the nonmagnetic substrate to form a first magnetic recording layer;
(B) forming a second magnetic recording layer by depositing a ternary or higher order ordered alloy while monotonically changing the deposition rate of the additional element. Here, it is preferable that the step (A) is performed before the step (B) to form the second magnetic recording layer on the first magnetic recording layer.
 また、工程(A)を工程(B)の前に実施する場合、工程(A)において、非磁性基体の温度を単調に下降させることが望ましい。工程(A)終了時の非磁性基体の温度は、前記2元系規則合金が不規則相から規則相に転移する温度領域の最大値以上の温度、より好ましくは、不規則相から規則相に転移する前述の温度領域の最大値より20℃以上高い温度に設定することができる。 Further, when the step (A) is performed before the step (B), it is desirable that the temperature of the non-magnetic substrate is monotonously lowered in the step (A). The temperature of the nonmagnetic substrate at the end of the step (A) is a temperature not less than the maximum value of the temperature range in which the binary ordered alloy transitions from the disordered phase to the ordered phase, more preferably from the disordered phase to the ordered phase. It can be set to a temperature that is 20 ° C. or more higher than the maximum value of the above-mentioned temperature range where the transition occurs.
 さらに、工程(A)を工程(B)の前に実施する場合、工程(B)において追加元素の堆積速度を単調に増大させることが望ましい。具体的には、工程(B)をスパッタ法により実施し、スパッタリングパワーを増大させることによって追加元素の堆積速度を単調に増大させることができる。好ましくは、工程(B)の開始時において、追加元素のスパッタリングパワーは0であり、非磁性基体の温度が工程(A)の終了時の非磁性基体の温度に等しくすることができる。 Furthermore, when the step (A) is performed before the step (B), it is desirable to monotonically increase the deposition rate of the additional element in the step (B). Specifically, the deposition rate of the additional element can be monotonously increased by performing the step (B) by a sputtering method and increasing the sputtering power. Preferably, the sputtering power of the additional element is 0 at the start of step (B), and the temperature of the nonmagnetic substrate can be made equal to the temperature of the nonmagnetic substrate at the end of step (A).
 また、第1磁気記録層および第2磁気記録層において、第1元素は、Fe、CoおよびNiからなる群から選択される少なくとも1種の元素であり、第2元素は、Pt、Pd、AuおよびIrからなる群から選択される少なくとも1種の元素であることが望ましい。加えて、第1磁気記録層および第2磁気記録層のそれぞれは、非磁性粒界材料をさらに含んでもよい。用いることができる非磁性粒界材料は、C、B、Ag、Ge、W、SiO、Al、TiO、GeOおよびBからなる群から選択される少なくとも1種の材料を含むことができる。 In the first magnetic recording layer and the second magnetic recording layer, the first element is at least one element selected from the group consisting of Fe, Co, and Ni, and the second element is Pt, Pd, Au And at least one element selected from the group consisting of Ir and Ir. In addition, each of the first magnetic recording layer and the second magnetic recording layer may further include a nonmagnetic grain boundary material. The nonmagnetic grain boundary material that can be used is at least one selected from the group consisting of C, B, Ag, Ge, W, SiO 2 , Al 2 O 3 , TiO 2 , GeO 2, and B 2 O 3 . Material can be included.
 上記の構成を採用することにより、優れた熱安定性と良好なライタビリティとを有する磁気記録層ならびに当該磁気記録層を含む磁気記録媒体を、簡便な方法で製造することが可能となる。 By adopting the above configuration, a magnetic recording layer having excellent thermal stability and good writeability and a magnetic recording medium including the magnetic recording layer can be manufactured by a simple method.
本発明の方法で得られる磁気記録媒体の構成例を示す断面図である。It is sectional drawing which shows the structural example of the magnetic recording medium obtained by the method of this invention. 実施例1における第1磁気記録層形成時の基板温度のプロファイルを示すグラフである。3 is a graph showing a substrate temperature profile when forming a first magnetic recording layer in Example 1. FIG. 実施例1における第2磁気記録層形成時のCuターゲットのスパッタリングパワーのプロファイルを示すグラフである。3 is a graph showing a sputtering power profile of a Cu target when forming a second magnetic recording layer in Example 1. FIG. 比較例1における第1磁気記録層形成時の基板温度のプロファイルを示すグラフである。6 is a graph showing a substrate temperature profile when forming a first magnetic recording layer in Comparative Example 1; 比較例2における第2磁気記録層形成時のCuターゲットのスパッタリングパワーのプロファイルを示すグラフである。10 is a graph showing a sputtering power profile of a Cu target when forming a second magnetic recording layer in Comparative Example 2.
 本発明に係る方法によって製造される磁気記録媒体は、非磁性基体と磁気記録層とを含み、磁気記録層は、第1元素および第2元素からなる2元系規則合金を含む第1磁気記録層と、第1元素、第2元素、および1種または複数種の追加元素からなる3元以上の系の規則合金を含む第2磁気記録層とから構成される。磁気記録媒体の構成例を図1に示す。図1の構成例において、磁気記録媒体は、非磁性基体10、軟磁性裏打ち層20、シード層30、磁気記録層40、保護層50、および液体潤滑剤層60を含み、磁気記録層40は、第1磁気記録層41と第2磁気記録層42とからなる。ここで、軟磁性裏打ち層20、シード層30、保護層50、および液体潤滑剤層60は、必要に応じて設けることができる任意選択的な構成層である。本発明に係る方法によって製造される磁気記録媒体は、非磁性基体10と磁気記録層40との間に、密着層、中間層などをさらに含んでもよい。 A magnetic recording medium produced by the method according to the present invention includes a nonmagnetic substrate and a magnetic recording layer, and the magnetic recording layer includes a first ordered magnetic recording including a binary ordered alloy composed of a first element and a second element. And a second magnetic recording layer including a ternary or higher order ordered alloy composed of a first element, a second element, and one or more additional elements. A configuration example of a magnetic recording medium is shown in FIG. In the configuration example of FIG. 1, the magnetic recording medium includes a nonmagnetic substrate 10, a soft magnetic backing layer 20, a seed layer 30, a magnetic recording layer 40, a protective layer 50, and a liquid lubricant layer 60. The first magnetic recording layer 41 and the second magnetic recording layer 42 are included. Here, the soft magnetic backing layer 20, the seed layer 30, the protective layer 50, and the liquid lubricant layer 60 are optional constituent layers that can be provided as necessary. The magnetic recording medium manufactured by the method according to the present invention may further include an adhesion layer, an intermediate layer, and the like between the nonmagnetic substrate 10 and the magnetic recording layer 40.
 非磁性基体10は、表面が平滑である様々な基体であってもよい。たとえば、磁気記録媒体に一般的に用いられる材料(NiPメッキを施したAl合金、強化ガラス、結晶化ガラス等)を用いて、非磁性基体10を形成することができる。 The nonmagnetic substrate 10 may be various substrates having a smooth surface. For example, the nonmagnetic substrate 10 can be formed using a material generally used for a magnetic recording medium (Al alloy plated with NiP, tempered glass, crystallized glass, etc.).
 任意選択的に設けてもよい軟磁性裏打ち層20は、磁気ヘッドからの磁束を制御して、磁気記録媒体の記録・再生特性を向上させる。軟磁性裏打ち層20を形成するための材料は、NiFe合金、センダスト(FeSiAl)合金、CoFe合金などの結晶質材料、FeTaC,CoFeNi,CoNiPなどの微結晶質材料、CoZrNb、CoTaZrなどのCo合金を含む非晶質材料を含む。軟磁性裏打ち層20の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造および特性に依存する。他の層と連続成膜で軟磁性裏打ち層20を形成する場合、生産性との兼ね合いから、軟磁性裏打ち層20が10nm~500nmの範囲内(両端を含む)の膜厚を有することが好ましい。 The soft magnetic backing layer 20 which may be optionally provided controls the magnetic flux from the magnetic head and improves the recording / reproducing characteristics of the magnetic recording medium. Materials for forming the soft magnetic backing layer 20 include NiFe alloy, Sendust (FeSiAl) alloy, crystalline material such as CoFe alloy, microcrystalline material such as FeTaC, CoFeNi, CoNiP, and Co alloy such as CoZrNb and CoTaZr. Including amorphous material. The optimum value of the thickness of the soft magnetic underlayer 20 depends on the structure and characteristics of the magnetic head used for magnetic recording. When the soft magnetic backing layer 20 is formed by continuous film formation with other layers, the soft magnetic backing layer 20 preferably has a thickness in the range of 10 nm to 500 nm (including both ends) in consideration of productivity. .
 任意選択的に設けてもよい密着層(不図示)は、その上に形成される層とその下に形成される層(非磁性基体10を含む)との密着性を高めるために用いられる。密着層を非磁性基体10の上面に設ける場合、密着層は、前述の非磁性基体10の材料との密着性が良好な材料を用いて形成することができる。そのような材料は、CrTi合金などを含む。あるいはまた、非磁性基体10以外の2つの構成層の間に密着層20を形成する場合、密着層を形成するための材料はNi、W、Ta、Cr、Ruなどの金属、前述の金属を含む合金を含む。密着層は、単一の層であってもよいし、複数の層の積層構造を有してもよい。 An adhesion layer (not shown) that may be optionally provided is used to improve adhesion between a layer formed thereon and a layer (including the nonmagnetic substrate 10) formed thereunder. When the adhesion layer is provided on the upper surface of the nonmagnetic substrate 10, the adhesion layer can be formed using a material having good adhesion to the material of the nonmagnetic substrate 10 described above. Such materials include CrTi alloys and the like. Alternatively, when the adhesion layer 20 is formed between two constituent layers other than the non-magnetic substrate 10, the material for forming the adhesion layer is a metal such as Ni, W, Ta, Cr, Ru, or the aforementioned metal. Including alloys. The adhesion layer may be a single layer or may have a laminated structure of a plurality of layers.
 シード層30の機能は、上層である磁気記録層40中の磁性結晶粒の粒径および結晶配向を制御することである。シード層30に、シード層30の下にある層と磁気記録層40との密着性を確保する機能を持たせてもよい。また、シード層30と磁気記録層40の間に中間層等の他の層を配置してもよい。中間層等を配置する場合は、シード層30は、中間層等の結晶粒の粒径および結晶配向を制御することにより磁気記録層40の磁性結晶粒の粒径および結晶配向を制御する機能を担うことになる。シード層30は非磁性であることが好ましい。シード層30の材料は、磁気記録層40の材料に合わせて適宜選択される。より具体的には、シード層30の材料は、磁気記録層の磁性結晶粒の材料に合わせて選択される。たとえば、磁気記録層40の磁性結晶粒がL1型規則合金で形成される場合、NaCl型の化合物を用いてシード層30を形成することが好ましい。特に好ましくは、MgO、SrTiOなどの酸化物、あるいはTiNなどの窒化物を用いてシード層30を形成する。また、上記の材料からなる複数の層を積層して、シード層30を形成することもできる。磁気記録層40の磁性結晶粒の結晶性の向上、および生産性の向上の観点から、シード層30は、1nm~60nm、好ましくは1nm~20nmの膜厚を有することが好ましい。シード層30は、スパッタ法(RFマグネトロンスパッタ法、DCマグネトロンスパッタリング法などを含む)、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。 The function of the seed layer 30 is to control the grain size and crystal orientation of the magnetic crystal grains in the upper magnetic recording layer 40. The seed layer 30 may have a function of ensuring adhesion between the layer under the seed layer 30 and the magnetic recording layer 40. Further, another layer such as an intermediate layer may be disposed between the seed layer 30 and the magnetic recording layer 40. When an intermediate layer or the like is disposed, the seed layer 30 has a function of controlling the grain size and crystal orientation of the magnetic crystal grains of the magnetic recording layer 40 by controlling the grain size and crystal orientation of the crystal grains of the intermediate layer and the like. Will bear. The seed layer 30 is preferably nonmagnetic. The material of the seed layer 30 is appropriately selected according to the material of the magnetic recording layer 40. More specifically, the material of the seed layer 30 is selected according to the material of the magnetic crystal grains of the magnetic recording layer. For example, if the magnetic crystal grains in the magnetic recording layer 40 is formed by L1 0 type ordered alloy, it is preferable to form the seed layer 30 by using a NaCl-type compounds. Particularly preferably, the seed layer 30 is formed using an oxide such as MgO or SrTiO 3 or a nitride such as TiN. The seed layer 30 can also be formed by stacking a plurality of layers made of the above materials. From the viewpoint of improving the crystallinity of the magnetic crystal grains of the magnetic recording layer 40 and improving the productivity, the seed layer 30 preferably has a thickness of 1 nm to 60 nm, preferably 1 nm to 20 nm. The seed layer 30 can be formed using any method known in the art, such as sputtering (including RF magnetron sputtering, DC magnetron sputtering, etc.), vacuum deposition, and the like.
 中間層(不図示)は、磁気記録層40の結晶配向性を高めるため、および磁気記録層40中の磁性結晶粒のサイズなどを制御するために配置する層である。中間層は、中間層の下に形成される層の結晶構造を引き継いで磁気記録層40に継承する機能を担ってもよい。また、軟磁性裏打ち層20を設ける場合、中間層は、軟磁性裏打ち層20が磁気記録層40に与える磁気的影響を抑制する機能を担ってもよい。中間層は非磁性であることが好ましい。中間層を形成するための材料は、CrおよびTaなどの金属、NiW合金、およびCrTi、CrZr、CrTa、およびCrWなどのCrをベースとする合金を含む。中間層は、スパッタ法などの当該技術において知られている任意の方法を用いて形成することができる。 The intermediate layer (not shown) is a layer disposed to increase the crystal orientation of the magnetic recording layer 40 and to control the size of the magnetic crystal grains in the magnetic recording layer 40. The intermediate layer may have a function of inheriting the crystal structure of the layer formed under the intermediate layer and inheriting it to the magnetic recording layer 40. Further, when the soft magnetic backing layer 20 is provided, the intermediate layer may have a function of suppressing the magnetic influence of the soft magnetic backing layer 20 on the magnetic recording layer 40. The intermediate layer is preferably nonmagnetic. Materials for forming the intermediate layer include metals such as Cr and Ta, NiW alloys, and alloys based on Cr such as CrTi, CrZr, CrTa, and CrW. The intermediate layer can be formed using any method known in the art, such as sputtering.
 保護層50は、磁気記録媒体の分野で慣用的に使用されている材料を用いて形成することができる。具体的には、ダイアモンドライクカーボンなどのカーボン系材料、あるいは窒化シリコンなどのシリコン系材料を用いて、保護層50を形成することができる。また、保護層50は、単層であってもよく、積層構造を有してもよい。積層構造の保護層50は、たとえば、特性の異なる2種のカーボン系材料の積層構造、金属とカーボン系材料との積層構造、または金属酸化物膜とカーボン系材料との積層構造であってもよい。保護層50は、CVD法、スパッタ法(DCマグネトロンスパッタリング法などを含む)、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。 The protective layer 50 can be formed using a material conventionally used in the field of magnetic recording media. Specifically, the protective layer 50 can be formed using a carbon-based material such as diamond-like carbon or a silicon-based material such as silicon nitride. The protective layer 50 may be a single layer or may have a laminated structure. The laminated protective layer 50 may be, for example, a laminated structure of two types of carbon materials having different characteristics, a laminated structure of a metal and a carbon material, or a laminated structure of a metal oxide film and a carbon material. Good. The protective layer 50 can be formed using any method known in the art, such as CVD, sputtering (including DC magnetron sputtering), and vacuum deposition.
 また、任意選択的に、本発明の磁気記録媒体は、保護層50の上に設けられる液体潤滑剤層60をさらに含んでもよい。液体潤滑剤層60は、磁気記録媒体の分野で慣用的に使用されている材料(たとえば、パーフルオロポリエーテル系の潤滑剤など)を用いて形成することができる。液体潤滑剤層60は、たとえば、ディップコート法、スピンコート法などの塗布法を用いて形成することができる。 Also, optionally, the magnetic recording medium of the present invention may further include a liquid lubricant layer 60 provided on the protective layer 50. The liquid lubricant layer 60 can be formed using a material conventionally used in the field of magnetic recording media (for example, a perfluoropolyether lubricant). The liquid lubricant layer 60 can be formed using, for example, a coating method such as a dip coating method or a spin coating method.
 磁気記録層40は、第1元素および第2元素からなる2元系規則合金を含む第1磁気記録層41と、第1元素、第2元素、および1種または複数種の追加元素からなる3元以上の系の規則合金を含む第2磁気記録層42とから構成される。第1磁気記録層41および第2磁気記録層42の積層順序は任意に設定することができる。第1磁気記録層41が非磁性基体10に近い層であり、第2磁気記録層42が第1磁気記録層41上に形成される構成が好ましい。図1には、非磁性基体10側から順に、第1磁気記録層41および第2磁気記録層42が積層された好ましい構成を示した。 The magnetic recording layer 40 includes a first magnetic recording layer 41 including a binary ordered alloy composed of a first element and a second element, a first element, a second element, and three or more kinds of additional elements. And a second magnetic recording layer 42 containing an ordered alloy of the original or higher system. The stacking order of the first magnetic recording layer 41 and the second magnetic recording layer 42 can be arbitrarily set. A configuration in which the first magnetic recording layer 41 is a layer close to the nonmagnetic substrate 10 and the second magnetic recording layer 42 is formed on the first magnetic recording layer 41 is preferable. FIG. 1 shows a preferred configuration in which a first magnetic recording layer 41 and a second magnetic recording layer 42 are laminated in order from the nonmagnetic substrate 10 side.
 第1磁気記録層41は、2元系規則合金のみから構成されていてもよいし、2元系規則合金からなる磁性結晶粒と、非磁性粒界とで構成されるグラニュラー構造を有していてもよい。同様に、第2磁気記録層42は、3元以上の系の規則合金のみから構成されていてもよいし、3元以上の系の規則合金からなる磁性結晶粒と、非磁性粒界とで構成されるグラニュラー構造を有していてもよい。 The first magnetic recording layer 41 may be composed of only a binary ordered alloy or has a granular structure composed of magnetic crystal grains composed of a binary ordered alloy and nonmagnetic grain boundaries. May be. Similarly, the second magnetic recording layer 42 may be composed of only a ternary or higher order ordered alloy, or a magnetic crystal grain made of a ternary or higher order ordered alloy and a nonmagnetic grain boundary. You may have the granular structure comprised.
 第1磁気記録層41中の2元系規則合金は、第1元素および第2元素から構成される。好ましくは、2元系規則合金はL1型規則合金である。第1元素は、Fe、CoおよびNiからなる群から選択される少なくとも1種の元素を含む。第2元素は、Pt、Pd、AuおよびIrからなる群から選択される少なくとも1種の元素を含む。好ましい2元系規則合金は、FePt、CoPt、FePd、CoPdなどを含む。第2磁気記録層42中の3元以上の系の規則合金は、第1元素、第2元素、および1種または複数種の追加元素から構成される。好ましくは、3元以上の系の規則合金はL1型規則合金である。第1元素および第2元素は、第1磁気記録層41中の2元系規則合金と同等である。追加元素は、Cu、Mn、Ni、Ag、Tiなどの非磁性元素を含む。好ましい3元以上の系の規則合金は、FePtCu、FePtMn、CoPtNiなどを含む。 The binary ordered alloy in the first magnetic recording layer 41 is composed of a first element and a second element. Preferably, binary ordered alloy is L1 0 type ordered alloy. The first element includes at least one element selected from the group consisting of Fe, Co, and Ni. The second element includes at least one element selected from the group consisting of Pt, Pd, Au, and Ir. Preferred binary ordered alloys include FePt, CoPt, FePd, CoPd, and the like. The ordered alloy of the ternary or higher system in the second magnetic recording layer 42 is composed of a first element, a second element, and one or more additional elements. Preferably, it ordered alloy ternary or more systems are L1 0 type ordered alloy. The first element and the second element are equivalent to the binary ordered alloy in the first magnetic recording layer 41. The additional elements include nonmagnetic elements such as Cu, Mn, Ni, Ag, and Ti. Preferred ternary or higher order ordered alloys include FePtCu, FePtMn, CoPtNi, and the like.
 第1磁気記録層41および/または第2磁気記録層42がグラニュラー構造を有する場合、非磁性粒界の材料は、C、B、Ag、Ge、およびWからなる群から選択される少なくとも1種の元素、またはSiO、Al、TiO、GeOおよびBからなる群から選択される酸化物を含む。 When the first magnetic recording layer 41 and / or the second magnetic recording layer 42 has a granular structure, the material of the nonmagnetic grain boundary is at least one selected from the group consisting of C, B, Ag, Ge, and W Or an oxide selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , GeO 2 and B 2 O 3 .
 第1磁気記録層41および第2磁気記録層42は、スパッタ法で形成することができる。第1磁気記録層41の形成の際には、第1元素および第2元素を所定の比率で含むターゲットを用いることが好ましい。グラニュラー構造を有する第1磁気記録層41の形成には、第1元素、第2元素および非磁性粒界の材料を所定の比率で含むターゲットを用いることができる。 The first magnetic recording layer 41 and the second magnetic recording layer 42 can be formed by a sputtering method. When forming the first magnetic recording layer 41, it is preferable to use a target containing the first element and the second element in a predetermined ratio. For the formation of the first magnetic recording layer 41 having a granular structure, a target including a first element, a second element, and a nonmagnetic grain boundary material in a predetermined ratio can be used.
 第2磁気記録層42の形成の際には、第1元素および第2元素を所定の比率で含むターゲットと、追加元素を含むターゲットを用いることが好ましい。また、第2磁気記録層42の形成の際には、第1元素および第2元素を含むターゲットに対するスパッタリングパワーと、追加元素を含むターゲットに対するスパッタリングパワーとを独立的に制御することが必要である。グラニュラー構造を有する第2磁気記録層42の形成においては、第1元素および第2元素を含むターゲットに、所定の比率の非磁性粒界の材料を添加する。 In forming the second magnetic recording layer 42, it is preferable to use a target containing the first element and the second element at a predetermined ratio and a target containing an additional element. In forming the second magnetic recording layer 42, it is necessary to independently control the sputtering power for the target containing the first element and the second element and the sputtering power for the target containing the additional element. . In forming the second magnetic recording layer 42 having a granular structure, a nonmagnetic grain boundary material in a predetermined ratio is added to a target including the first element and the second element.
 第1磁気記録層41および第2磁気記録層42は、それぞれ層表面(すなわち、非磁性基体10の被成膜面)に垂直な方向に一軸磁気異方性を有する。磁気記録層40は、第1磁気記録層41の外表面から第2磁気記録層42の外表面に向かって、単調に変化する磁気異方性定数Kuの分布を有する。本明細書において、第1磁気記録層41および第2磁気記録層42の「外表面」とは、それぞれの層において、第1磁気記録層41と第2磁気記録層42との界面とは反対側の面を意味する。好ましくは、磁気記録層40は、第1磁気記録層41の外表面から第2磁気記録層42の外表面に向かって、連続的に変化する磁気異方性定数Kuの分布を有する。本明細書における「単調変化」とは、ある特性値が、膜厚方向に沿って常に増大または減少することを意味する。単調変化は特性値の不連続点の存在を許容する。本明細書における「連続変化」とは、特性値の不連続点が存在しない単調変化を意味する。 The first magnetic recording layer 41 and the second magnetic recording layer 42 each have uniaxial magnetic anisotropy in a direction perpendicular to the surface of the layer (that is, the film formation surface of the nonmagnetic substrate 10). The magnetic recording layer 40 has a distribution of a magnetic anisotropy constant Ku that monotonously changes from the outer surface of the first magnetic recording layer 41 toward the outer surface of the second magnetic recording layer 42. In this specification, the “outer surface” of the first magnetic recording layer 41 and the second magnetic recording layer 42 is opposite to the interface between the first magnetic recording layer 41 and the second magnetic recording layer 42 in each layer. Means the side face. Preferably, the magnetic recording layer 40 has a distribution of a magnetic anisotropy constant Ku that continuously changes from the outer surface of the first magnetic recording layer 41 toward the outer surface of the second magnetic recording layer 42. The “monotonic change” in this specification means that a certain characteristic value always increases or decreases along the film thickness direction. Monotonic changes allow the presence of discontinuities in characteristic values. The “continuous change” in this specification means a monotonous change in which there is no discontinuous point of the characteristic value.
 第1磁気記録層41における磁気異方性定数Kuの分布は、形成時の非磁性基体の温度(以下、単に「基板温度」と称する)を単調に変化させ、2元系規則合金の規則度を単調に変化させることによって得ることができる。形成時の基板温度を単調に上昇させて2元系規則合金の規則度を単調に上昇させることによって、第1磁気記録層41の下面から上面に向かってKuを増大させてもよい。あるいはまた、形成時の基板温度を単調に下降させて2元系規則合金の規則度を単調に下降させることによって、第1磁気記録層41の下面から上面に向かってKuを減少させてもよい。形成時の基板温度の変化は連続的であることが好ましい。第1磁気記録層41形成時の最低温度を、2元系規則合金の不規則相と規則相との間の転移が発生する温度領域の最大値以上とすることが望ましい。より好ましくは、第1磁気記録層41形成時の最低温度を、2元系規則合金の不規則相と規則相との間の転移が発生する温度領域の最大値より20℃以上高い温度とすることができる。第1磁気記録層41形成時の最低温度は、基板温度を単調下降させる場合には第1磁気記録層41形成終了時の基板温度であり、基板温度を単調上昇させる場合には第1磁気記録層41形成開始時の基板温度である。 The distribution of the magnetic anisotropy constant Ku in the first magnetic recording layer 41 is such that the temperature of the nonmagnetic substrate at the time of formation (hereinafter simply referred to as “substrate temperature”) is monotonously changed, and the degree of order of the binary ordered alloy is changed. Can be obtained by changing monotonously. Ku may be increased from the lower surface to the upper surface of the first magnetic recording layer 41 by monotonically increasing the substrate temperature at the time of formation and monotonically increasing the degree of order of the binary ordered alloy. Alternatively, Ku may be decreased from the lower surface to the upper surface of the first magnetic recording layer 41 by monotonically lowering the substrate temperature during formation and monotonously lowering the degree of order of the binary ordered alloy. . The change in the substrate temperature during formation is preferably continuous. It is desirable that the minimum temperature at the time of forming the first magnetic recording layer 41 be equal to or higher than the maximum value in the temperature region where the transition between the disordered phase and the ordered phase of the binary ordered alloy occurs. More preferably, the minimum temperature at the time of forming the first magnetic recording layer 41 is set to a temperature that is 20 ° C. or more higher than the maximum value in the temperature range where the transition between the disordered phase and the ordered phase of the binary ordered alloy occurs. be able to. The lowest temperature when forming the first magnetic recording layer 41 is the substrate temperature at the end of the formation of the first magnetic recording layer 41 when the substrate temperature is monotonously lowered, and when the substrate temperature is monotonically raised, the first magnetic recording layer is formed. This is the substrate temperature at the start of layer 41 formation.
 第2磁気記録層42における磁気異方性定数Kuの分布は、形成時に追加元素のスパッタリングパワーを単調に変化させ、追加元素の堆積速度を単調に変化させることによって得ることができる。形成時に追加元素のスパッタリングパワーを単調に増大させて追加元素の堆積速度を単調に増大させることによって、第2磁気記録層42の下面から上面に向かってKuを減少させてもよい。あるいはまた、形成時に追加元素のスパッタリングパワーを単調に減少させて追加元素の堆積速度を単調に減少させることによって、第2磁気記録層42の下面から上面に向かってKuを増大させてもよい。形成時の追加元素のスパッタリングパワーの変化は連続的であることが好ましい。 The distribution of the magnetic anisotropy constant Ku in the second magnetic recording layer 42 can be obtained by monotonically changing the sputtering power of the additional element and monotonically changing the deposition rate of the additional element at the time of formation. Ku may be decreased from the lower surface to the upper surface of the second magnetic recording layer 42 by monotonically increasing the sputtering power of the additional element during the formation and monotonically increasing the deposition rate of the additional element. Alternatively, Ku may be increased from the lower surface to the upper surface of the second magnetic recording layer 42 by monotonically decreasing the sputtering power of the additional element and monotonically decreasing the deposition rate of the additional element during formation. The change in sputtering power of the additional element during formation is preferably continuous.
 磁気記録層40の磁気異方性定数Kuの分布を連続にするために、第1磁気記録層41と第2磁気記録層42との界面において、両層のスパッタ条件を一致させることが好ましい。一致させるスパッタ条件は、第1元素および第2元素の種類および比率、追加元素の比率、および基板温度を含む。第1磁気記録層41および第2磁気記録層42において用いる第1元素および第2元素をそれぞれ同一とし、その比率も同一とすることが望ましい。非磁性基体10側から第1磁気記録層41、第2磁気記録層42の順で形成する場合、第1磁気記録層41の形成時の基板温度を単調に下降させ、第2磁気記録層42の形成時の基板温度を第1磁気記録層41の形成終了時の温度とし、第2磁気記録層42の形成時の追加元素のスパッタリングパワーを0から単調に増大させることで、磁気異方性定数Kuの連続的分布を達成することができる。一方、非磁性基体10側から第2磁気記録層42、第1磁気記録層41の順で形成する場合、第2磁気記録層42の形成時の追加元素のスパッタリングパワーを単調に減少させて最終的に0とし、第1磁気記録層41の形成時の基板温度を第2磁気記録層42の形成終了時の温度から単調に上昇させることで、磁気異方性定数Kuの連続的分布を達成することができる。 In order to make the distribution of the magnetic anisotropy constant Ku of the magnetic recording layer 40 continuous, it is preferable to match the sputtering conditions of both layers at the interface between the first magnetic recording layer 41 and the second magnetic recording layer 42. The sputtering conditions to be matched include the types and ratios of the first element and the second element, the ratio of the additional element, and the substrate temperature. It is desirable that the first element and the second element used in the first magnetic recording layer 41 and the second magnetic recording layer 42 are the same and the ratios thereof are also the same. In the case of forming the first magnetic recording layer 41 and the second magnetic recording layer 42 in this order from the nonmagnetic substrate 10 side, the substrate temperature at the time of forming the first magnetic recording layer 41 is monotonously lowered, and the second magnetic recording layer 42 is formed. The substrate temperature during the formation of the first magnetic recording layer 41 is set as the temperature at the end of the formation of the first magnetic recording layer 41, and the sputtering power of the additional element during the formation of the second magnetic recording layer 42 is monotonously increased from 0, thereby increasing the magnetic anisotropy. A continuous distribution of the constant Ku can be achieved. On the other hand, when the second magnetic recording layer 42 and the first magnetic recording layer 41 are formed in this order from the non-magnetic substrate 10 side, the sputtering power of the additional element at the time of forming the second magnetic recording layer 42 is monotonously decreased to be the final. The substrate temperature at the time of forming the first magnetic recording layer 41 is monotonically increased from the temperature at the end of the formation of the second magnetic recording layer 42, thereby achieving a continuous distribution of the magnetic anisotropy constant Ku. can do.
 本発明の方法で得られる好ましい磁気記録媒体において、Kuが比較的高い2元系規則合金を含む第1磁気記録層41を形成する際に、形成時の基板温度によってKuの分布を制御する。基板温度によりKuを大きく変化させようとする場合に、Kuを適切に制御できない問題があった。たとえばFePtからなる2元系規則合金の場合、300℃~350℃の温度範囲でL1規則相とA1不規則相との間の転移が急激に発生する。そのため、Kuが比較的低い領域でKuを適切に制御することが困難であった。本発明の方法においては、第2磁気記録層42と組み合わせることによって、第1磁気記録層41の形成時の基板温度を不規則相と規則相との間の転移が発生する温度(たとえば、FePtにおける350℃)まで下降させる必要が排除されるため、第1磁気記録層41におけるKuの分布を良好に制御することが可能となる。 In the preferred magnetic recording medium obtained by the method of the present invention, when forming the first magnetic recording layer 41 containing a binary ordered alloy having a relatively high Ku, the distribution of Ku is controlled by the substrate temperature at the time of formation. There is a problem that Ku cannot be appropriately controlled when Ku is to be changed greatly depending on the substrate temperature. For example, if the binary ordered alloy consisting of FePt, transition between the L1 0 ordered phase and A1 disordered phase in the temperature range of 300 ° C. ~ 350 ° C. is rapidly generated. Therefore, it is difficult to appropriately control Ku in a region where Ku is relatively low. In the method of the present invention, by combining with the second magnetic recording layer 42, the substrate temperature at the time of forming the first magnetic recording layer 41 is changed to a temperature at which a transition between an irregular phase and an ordered phase occurs (for example, FePt Therefore, the distribution of Ku in the first magnetic recording layer 41 can be satisfactorily controlled.
 一方、本発明の方法で得られる好ましい磁気記録媒体において、Kuが比較的低い3元以上の系の規則合金を含む第2磁気記録層42を形成する際に、追加元素の堆積速度によってKuの分布を制御する。規則合金に対する追加元素の添加量が一定量以上となる領域では、飽和磁化(Ms)の減少が顕著になる問題があった。このため、追加元素の堆積速度のみでKuの広い分布を得ることは、Msの均一性を低下させる恐れがある。本発明においては、第1磁気記録層41と組み合わせることによって、第2磁気記録層42における追加元素の堆積速度を一定量以下の狭い範囲に限定することが可能となり、Msの均一性を確保することが可能となる。 On the other hand, in the preferred magnetic recording medium obtained by the method of the present invention, when the second magnetic recording layer 42 containing a ternary or higher order ordered alloy having a relatively low Ku is formed, the deposition rate of the additional element causes the Ku to increase. Control the distribution. In a region where the amount of additional element added to the ordered alloy is a certain amount or more, there is a problem that the decrease in saturation magnetization (Ms) becomes significant. For this reason, obtaining a wide distribution of Ku only with the deposition rate of the additional element may reduce the uniformity of Ms. In the present invention, by combining with the first magnetic recording layer 41, the deposition rate of the additional element in the second magnetic recording layer 42 can be limited to a narrow range of a certain amount or less, and the uniformity of Ms is ensured. It becomes possible.
 その結果、第1磁気記録層41または第2磁気記録層42単独では不可能な広い範囲においてKuの膜厚方向の連続的変化を可能とし、同時に第1磁気記録層41および第2磁気記録層42におけるMsの均一性を確保することができる。得られる磁気記録層40は、十分に保磁力が減少することによって優れたライタビリティを示し、同時に記録密度の向上の際にも優れた記録信号の熱安定性を示す。 As a result, it is possible to continuously change Ku in the film thickness direction over a wide range that is impossible with the first magnetic recording layer 41 or the second magnetic recording layer 42 alone, and at the same time, the first magnetic recording layer 41 and the second magnetic recording layer. Uniformity of Ms in 42 can be ensured. The obtained magnetic recording layer 40 exhibits excellent writeability by sufficiently reducing the coercive force, and at the same time exhibits excellent thermal stability of the recording signal even when the recording density is improved.
  (実施例1)
 表面が平滑な化学強化ガラス基体(HOYA社製N-10ガラス基体)を洗浄し、非磁性基体10を準備した。洗浄後の非磁性基体10を、スパッタ装置内に導入した。
Example 1
A chemically strengthened glass substrate having a smooth surface (N-10 glass substrate manufactured by HOYA) was washed to prepare a nonmagnetic substrate 10. The nonmagnetic substrate 10 after cleaning was introduced into the sputtering apparatus.
 そして、圧力0.67PaのArガス中でNiFeターゲットを用いたDCマグネトロンスパッタリング法により、軟磁性裏打ち層20を形成した。 Then, the soft magnetic backing layer 20 was formed by a DC magnetron sputtering method using a NiFe target in Ar gas at a pressure of 0.67 Pa.
 次に、Ta層およびMgO層からなる2層構造のシード層30を形成した。具体的には、圧力0.67PaのArガス中で、Taターゲットを用いたDCマグネトロンスバッタ法により、膜厚10nmのTa層を形成した。次に、Ta層が形成された積層体を250℃に加熱し、圧力0.06PaのArガス中でMgOターゲットを用いたRFスパッタ法により膜厚5nmのMgO層を形成して、シード層30を得た。 Next, a seed layer 30 having a two-layer structure composed of a Ta layer and an MgO layer was formed. Specifically, a 10 nm-thick Ta layer was formed by DC magnetron sputtering using a Ta target in Ar gas at a pressure of 0.67 Pa. Next, the stacked body on which the Ta layer is formed is heated to 250 ° C., an MgO layer having a thickness of 5 nm is formed by RF sputtering using an MgO target in an Ar gas having a pressure of 0.06 Pa, and the seed layer 30 is formed. Got.
 次に、シード層30を形成した積層体を500℃に加熱した。80体積%のFe50Pt50と20体積パーセントのSiOを混合したFe50Pt50-SiOターゲットを用いて、膜厚10nmのFe50Pt50-SiOからなる第1磁気記録層41を形成した。ここで、スパッタ装置のチャンバー内に配置された膜厚測定用センサを用いて堆積した層の膜厚をモニターした。加えて、図2に示すように、基板温度を膜厚に対して連続的に下降させ、最終基板温度を370℃とした。 Next, the stacked body on which the seed layer 30 was formed was heated to 500 ° C. A first magnetic recording layer 41 made of Fe 50 Pt 50 —SiO 2 having a thickness of 10 nm is formed using an Fe 50 Pt 50 —SiO 2 target in which 80 volume% Fe 50 Pt 50 and 20 volume percent SiO 2 are mixed. Formed. Here, the film thickness of the deposited layer was monitored using a film thickness measurement sensor disposed in the chamber of the sputtering apparatus. In addition, as shown in FIG. 2, the substrate temperature was continuously lowered with respect to the film thickness, and the final substrate temperature was set to 370.degree.
 次に、前述のFe50Pt50-SiOターゲットとCuターゲットとを用いて、膜厚10nmの(Fe50Pt50Cu(1-x)-SiOからなる第2磁気記録層42を形成して、磁気記録層40を得た。ここで、基板温度を第1磁気記録層41形成時の最終基板温度である370℃に固定した。加えて、膜厚測定用センサを用いてモニターしている膜厚に対してCuターゲットのスパッタリングパワーを図3に示すように連続的に増大させた。本実施例において、Cuターゲットのスパッタリングパワーを、形成開始時の0Wから形成終了時の80Wまで変化させた。 Next, the second magnetic recording layer 42 made of (Fe 50 Pt 50 ) x Cu (1-x) 2 -SiO 2 with a film thickness of 10 nm is formed using the aforementioned Fe 50 Pt 50 —SiO 2 target and Cu target. Thus, the magnetic recording layer 40 was obtained. Here, the substrate temperature was fixed at 370 ° C., which is the final substrate temperature when the first magnetic recording layer 41 was formed. In addition, the sputtering power of the Cu target was continuously increased as shown in FIG. 3 with respect to the film thickness monitored using the film thickness measurement sensor. In this example, the sputtering power of the Cu target was changed from 0 W at the start of formation to 80 W at the end of formation.
 次に、Arガス雰囲気中でカーボンターゲットを用いたDCマグネトロンスパッタ法により、膜厚2nmのカーボンからなる保護層50を形成した。保護層50の形成後、積層体をスパッタ装置から取り出した。最後に、ディップコート法を用いてパーフルオロポリエーテルを塗布して膜厚2nmの液体潤滑剤層60を形成し、図1に示す磁気記録媒体を得た。 Next, a protective layer 50 made of carbon having a thickness of 2 nm was formed by a DC magnetron sputtering method using a carbon target in an Ar gas atmosphere. After the formation of the protective layer 50, the stacked body was taken out from the sputtering apparatus. Finally, perfluoropolyether was applied using a dip coating method to form a liquid lubricant layer 60 having a thickness of 2 nm to obtain the magnetic recording medium shown in FIG.
  (比較例1)
 第2磁気記録層42((Fe50Pt50Cu(1-x)-SiO層)を形成しなかったこと、第1磁気記録層41(Fe50Pt50-SiO層)の膜厚を20nmとしたこと、および第1磁気記録層41形成中の基板温度を図4に示すように500℃から300℃まで連続的に変化させたことを除いて、実施例1の手順を繰り返して、単層構造の磁気記録層を有する磁気記録媒体を得た。
(Comparative Example 1)
The second magnetic recording layer 42 ((Fe 50 Pt 50 ) x Cu (1-x) 2 —SiO 2 layer) was not formed, and the film of the first magnetic recording layer 41 (Fe 50 Pt 50 —SiO 2 layer) The procedure of Example 1 was repeated except that the thickness was 20 nm and the substrate temperature during the formation of the first magnetic recording layer 41 was continuously changed from 500 ° C. to 300 ° C. as shown in FIG. Thus, a magnetic recording medium having a single-layer magnetic recording layer was obtained.
  (比較例2)
 第1磁気記録層41(Fe50Pt50-SiO層)を形成しなかったこと、第2磁気記録層42((Fe50Pt50Cu(1-x)-SiO層)の膜厚を20nmとしたこと、第2磁気記録層42形成時の基板温度を370℃に固定したこと、第2磁気記録層42形成時のCuターゲットのスパッタリングパワーを膜厚に対して図5に示すように0Wから120Wまで連続的に増大させたことを除いて、実施例1の手順を繰り返して、単層構造の磁気記録層を有する磁気記録媒体を得た。
(Comparative Example 2)
The first magnetic recording layer 41 (Fe 50 Pt 50 —SiO 2 layer) was not formed, and the second magnetic recording layer 42 ((Fe 50 Pt 50 ) x Cu (1-x) —SiO 2 layer) was formed. FIG. 5 shows the thickness of 20 nm, the substrate temperature at the time of forming the second magnetic recording layer 42 fixed at 370 ° C., and the sputtering power of the Cu target at the time of forming the second magnetic recording layer 42 with respect to the film thickness. Thus, the procedure of Example 1 was repeated except that the power was continuously increased from 0 W to 120 W to obtain a magnetic recording medium having a single-layered magnetic recording layer.
  (比較例3)
 第2磁気記録層42((Fe50Pt50Cu(1-x)-SiO層)を形成しなかったこと、第1磁気記録層41(Fe50Pt50-SiO層)の膜厚を20nmとしたこと、および第1磁気記録層41形成中の基板温度を500℃に固定したことを除いて、実施例1の手順を繰り返して、単層構造の磁気記録層を有する磁気記録媒体を得た。
(Comparative Example 3)
The second magnetic recording layer 42 ((Fe 50 Pt 50 ) x Cu (1-x) 2 —SiO 2 layer) was not formed, and the film of the first magnetic recording layer 41 (Fe 50 Pt 50 —SiO 2 layer) The procedure of Example 1 was repeated except that the thickness was 20 nm and the substrate temperature during the formation of the first magnetic recording layer 41 was fixed at 500 ° C. A medium was obtained.
  (比較例4)
 第1磁気記録層41形成中の基板温度を500℃に固定したこと、および第2磁気記録層42形成時のCuターゲットのスパッタリングパワーを120Wに固定したことを除いて、実施例1の手順を繰り返して、2層構造の磁気記録層を有する磁気記録媒体を得た。
(Comparative Example 4)
The procedure of Example 1 was performed except that the substrate temperature during the formation of the first magnetic recording layer 41 was fixed at 500 ° C. and the sputtering power of the Cu target during the formation of the second magnetic recording layer 42 was fixed at 120 W. Repeatedly, a magnetic recording medium having a two-layer magnetic recording layer was obtained.
  (評価)
 実施例1および比較例1~4で作製した磁気記録媒体のそれぞれについて、振動試料型磁力計(VSM)で磁化曲線を測定し、保磁力Hcを求めた。さらに、それぞれの磁気記録媒体のダイナミック保持力を複数種の時間スケールで測定し、結果をシャーロックの式にフィッティングさせることにより、絶対温度300Kにおける熱安定性指標β(=ΔE/kT、ΔEはエネルギー障壁、kはボルツマン定数、Tは絶対温度)を求めた。それぞれの磁気記録媒体の磁気記録層の形成条件、Hcおよびβを第1表に示す。
(Evaluation)
For each of the magnetic recording media manufactured in Example 1 and Comparative Examples 1 to 4, the magnetization curve was measured with a vibrating sample magnetometer (VSM) to determine the coercive force Hc. Furthermore, the dynamic coercive force of each magnetic recording medium was measured at a plurality of kinds of time scales, by fitting the results to equations Sherlock, thermal stability index at an absolute temperature of 300K β (= ΔE / k b T, ΔE energy barrier, k b is the Boltzmann constant, T is sought absolute temperature) it is. Table 1 shows the formation conditions, Hc and β of the magnetic recording layer of each magnetic recording medium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1表から明らかなように、本発明に係る実施例1の磁気記録媒体は7.5kOe(約597A/mm)のHcを有し、第1磁気記録層41のみからなる磁気記録層を有する比較例3の磁気記録媒体は、15.3kOe(約1220A/mm)のHcを有した。実施例1の磁気記録媒体は、比較例3の磁気記録媒体に比較して、約50%減少したHcを有する。一方、比較例3の磁気記録媒体に比較して、実施例1の磁気記録媒体のβの減少は20%程度であった。このことから、本発明に係る実施例1の磁気記録媒体は、優れたライタビリティと記録信号の高い熱安定性とを両立していることが分かる。 As is apparent from Table 1, the magnetic recording medium of Example 1 according to the present invention has Hc of 7.5 kOe (about 597 A / mm), and has a magnetic recording layer composed only of the first magnetic recording layer 41. The magnetic recording medium of Comparative Example 3 had a Hc of 15.3 kOe (about 1220 A / mm). The magnetic recording medium of Example 1 has Hc reduced by about 50% compared to the magnetic recording medium of Comparative Example 3. On the other hand, compared with the magnetic recording medium of Comparative Example 3, the decrease in β of the magnetic recording medium of Example 1 was about 20%. From this, it can be seen that the magnetic recording medium of Example 1 according to the present invention achieves both excellent writeability and high thermal stability of the recording signal.
 また、2元系規則合金を含む第1磁気記録層41のみからなる磁気記録媒体において、基板温度の変化範囲を500℃~300℃まで拡大した比較例1の磁気記録媒体は、実施例1と同程度のβを示すものの、実施例1と比較して明らかに高いHcを有した。このことは、300℃~350℃の温度範囲におけるFePt合金のL1規則相からA1不規則相への急激な転移によって、350℃付近を境界として膜厚方向のKuの変化の連続性が損なわれたためと考えられる。一方、本発明に係る実施例1において、第1磁気記録層41形成時の最終基板温度は370℃であり、FePt合金のL1規則相からA1不規則相への転移が発生せず、理想的なKu分布が得られたと考えられる。 Further, in the magnetic recording medium including only the first magnetic recording layer 41 containing the binary system ordered alloy, the magnetic recording medium of Comparative Example 1 in which the substrate temperature change range is expanded to 500 ° C. to 300 ° C. is the same as that of Example 1. Although it showed the same β, it had a clearly higher Hc compared with Example 1. This is because the continuity of the change of Ku in the film thickness direction at 350 ° C. as a boundary is impaired by the abrupt transition from the L1 0 ordered phase to the A1 disordered phase in the temperature range of 300 ° C. to 350 ° C. This is thought to be due to this. On the other hand, in Example 1 of the present invention, the final substrate temperature during the first magnetic recording layer 41 formed is 370 ° C., transition from L1 0 ordered phase of FePt alloy with the A1 disordered phase is not generated, the ideal It is thought that a typical Ku distribution was obtained.
 さらに、3元系規則合金からなる第2磁気記録層42のみからなる磁気記録媒体において、Cuターゲットのスパッタリングパワーの変化範囲を0W~120Wまで拡大した比較例2の磁気記録媒体もまた、実施例1と同程度のβを示すものの、実施例1と比較して明らかに高いHcを有した。このことは、第2磁気記録層42の上部において、Cu濃度の増大に伴うMsの減少が顕著となり、膜厚方向におけるMsの均一性が低下したためと考えられる。一方、本発明に係る実施例1において、第2磁気記録層42形成時のCuターゲットのスパッタリングパワーは最大80Wであり、Msの過度の減少が抑制され、理想的なKu分布が得られたと考えられる。 Further, the magnetic recording medium of Comparative Example 2 in which the change range of the sputtering power of the Cu target is expanded from 0 W to 120 W in the magnetic recording medium consisting only of the second magnetic recording layer 42 made of the ternary ordered alloy is also an example. Although β of the same level as 1 was exhibited, it had a clearly higher Hc compared to Example 1. This is presumably because the Ms decrease with the increase of the Cu concentration becomes remarkable at the upper part of the second magnetic recording layer 42, and the uniformity of Ms in the film thickness direction is lowered. On the other hand, in Example 1 according to the present invention, the sputtering power of the Cu target at the time of forming the second magnetic recording layer 42 is 80 W at maximum, and it is considered that an excessive decrease in Ms was suppressed and an ideal Ku distribution was obtained. It is done.
 また、第1磁気記録層41形成時の基板温度および第2磁気記録層42形成時のCuターゲットのスパッタリングパワーを固定した比較例4の磁気記録媒体は、従来型のハード・ソフトスタック構造を有する磁気記録媒体である。比較例4の磁気記録媒体との比較において、実施例1の磁気記録媒体は、約6%のβの低下が認められるものの、約34%減少したHcを有した。このことからも、本発明に係る実施例1の磁気記録媒体は、従来型の磁気記録媒体に比べて、優れたライタビリティと記録信号の高い熱安定性とを有していることが分かる。 In addition, the magnetic recording medium of Comparative Example 4 in which the substrate temperature at the time of forming the first magnetic recording layer 41 and the sputtering power of the Cu target at the time of forming the second magnetic recording layer 42 are fixed has a conventional hard / soft stack structure. It is a magnetic recording medium. In comparison with the magnetic recording medium of Comparative Example 4, the magnetic recording medium of Example 1 had a Hc decreased by about 34%, although a β reduction of about 6% was observed. From this, it can be seen that the magnetic recording medium of Example 1 according to the present invention has excellent writeability and high thermal stability of the recording signal as compared with the conventional magnetic recording medium.
  10 非磁性基体
  20 軟磁性裏打ち層
  30 シード層
  40 磁気記録層
    41 第1磁気記録層
    42 第2磁気記録層
  50 保護層
  60 液体潤滑剤層
DESCRIPTION OF SYMBOLS 10 Nonmagnetic base material 20 Soft magnetic backing layer 30 Seed layer 40 Magnetic recording layer 41 1st magnetic recording layer 42 2nd magnetic recording layer 50 Protective layer 60 Liquid lubricant layer

Claims (11)

  1.  非磁性基体と、第1元素および第2元素からなる2元系規則合金を含む第1磁気記録層と、第1元素、第2元素、および1種または複数種の追加元素からなる3元以上の系の規則合金を含む第2磁気記録層からなる磁気記録層とを含む磁気記録媒体の製造方法であって、
    (A) 非磁性基体の温度を単調に変化させながら2元系規則合金を堆積させて、第1磁気記録層を形成する工程と、
    (B) 追加元素の堆積速度を単調に変化させながら3元以上の系の規則合金を堆積させて、第2磁気記録層を形成する工程と
    を含むことを特徴とする磁気記録媒体の製造方法。
    A nonmagnetic substrate, a first magnetic recording layer including a binary ordered alloy composed of a first element and a second element, and a ternary or more composed of a first element, a second element, and one or more additional elements. A magnetic recording medium comprising a magnetic recording layer comprising a second magnetic recording layer containing an ordered alloy of the following system:
    (A) depositing a binary ordered alloy while monotonically changing the temperature of the nonmagnetic substrate to form a first magnetic recording layer;
    And (B) depositing a ternary or higher system ordered alloy while monotonically changing the deposition rate of the additional element to form a second magnetic recording layer, and a method for manufacturing a magnetic recording medium .
  2.  工程(A)を工程(B)の前に実施して、前記第1磁気記録層の上に前記第2磁気記録層を形成することを特徴とする、請求項1に記載の磁気記録媒体の製造方法。 2. The magnetic recording medium according to claim 1, wherein step (A) is performed before step (B) to form the second magnetic recording layer on the first magnetic recording layer. 3. Production method.
  3.  工程(A)において、非磁性基体の温度を単調に下降させることを特徴とする請求項2に記載の磁気記録媒体の製造方法。 3. The method of manufacturing a magnetic recording medium according to claim 2, wherein in step (A), the temperature of the non-magnetic substrate is monotonously lowered.
  4.  工程(A)終了時の非磁性基体の温度は、前記2元系規則合金の不規則相と規則相との間の転移が発生する温度領域の最大値以上であることを特徴とする請求項3に記載の磁気記録媒体の製造方法。 The temperature of the nonmagnetic substrate at the end of the step (A) is equal to or higher than a maximum value in a temperature region in which a transition between the disordered phase and the ordered phase of the binary ordered alloy occurs. 4. A method for producing a magnetic recording medium according to item 3.
  5.  工程(A)終了時の非磁性基体の温度は、前記2元系規則合金の不規則相と規則相との間の転移が発生する温度領域の最大値より20℃以上高いことを特徴とする請求項4に記載の磁気記録媒体の製造方法。 The temperature of the nonmagnetic substrate at the end of the step (A) is 20 ° C. or more higher than the maximum value in the temperature region where the transition between the disordered phase and the ordered phase of the binary ordered alloy occurs. The method for manufacturing a magnetic recording medium according to claim 4.
  6.  工程(B)において、追加元素の堆積速度を単調に増大させることを特徴とする請求項2に記載の磁気記録媒体の製造方法。 3. The method of manufacturing a magnetic recording medium according to claim 2, wherein in the step (B), the deposition rate of the additional element is monotonously increased.
  7.  工程(B)をスパッタ法により実施し、スパッタリングパワーを増大させることによって追加元素の堆積速度を単調に増大させることを特徴とする請求項6に記載の磁気記録媒体の製造方法。 7. The method of manufacturing a magnetic recording medium according to claim 6, wherein the step (B) is performed by a sputtering method, and the deposition rate of the additional element is monotonously increased by increasing the sputtering power.
  8.  工程(B)の開始時において、追加元素のスパッタリングパワーは0であり、非磁性基体の温度が工程(A)の終了時の非磁性基体の温度に等しいことを特徴とする請求項7に記載の磁気記録媒体の製造方法。 The sputtering power of the additional element is 0 at the start of the step (B), and the temperature of the nonmagnetic substrate is equal to the temperature of the nonmagnetic substrate at the end of the step (A). Manufacturing method of magnetic recording medium.
  9.  前記第1磁気記録層および前記第2磁気記録層の第1元素は、Fe、CoおよびNiからなる群から選択される少なくとも1種の元素であり、前記第1磁気記録層および前記第2磁気記録層の第2元素は、Pt、Pd、AuおよびIrからなる群から選択される少なくとも1種の元素であることを特徴とする請求項1に記載の磁気記録媒体の製造方法。 The first element of the first magnetic recording layer and the second magnetic recording layer is at least one element selected from the group consisting of Fe, Co, and Ni, and the first magnetic recording layer and the second magnetic recording layer 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the second element of the recording layer is at least one element selected from the group consisting of Pt, Pd, Au, and Ir.
  10.  前記第1磁気記録層および前記第2磁気記録層のそれぞれは、非磁性粒界材料をさらに含むことを特徴とする請求項1に記載の磁気記録媒体の製造方法。 The method of manufacturing a magnetic recording medium according to claim 1, wherein each of the first magnetic recording layer and the second magnetic recording layer further includes a nonmagnetic grain boundary material.
  11.  前記非磁性粒界材料は、C、B、Ag、Ge、W、SiO、Al、TiO、GeOおよびBからなる群から選択される少なくとも1種の材料を含むことを特徴とする請求項10に記載の磁気記録媒体の製造方法。 The nonmagnetic grain boundary material includes at least one material selected from the group consisting of C, B, Ag, Ge, W, SiO 2 , Al 2 O 3 , TiO 2 , GeO 2, and B 2 O 3. The method of manufacturing a magnetic recording medium according to claim 10.
PCT/JP2014/003400 2013-07-03 2014-06-25 Method for producing magnetic recording medium WO2015001768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013140034A JP2015015062A (en) 2013-07-03 2013-07-03 Manufacturing method of magnetic recording medium
JP2013-140034 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015001768A1 true WO2015001768A1 (en) 2015-01-08

Family

ID=52143371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003400 WO2015001768A1 (en) 2013-07-03 2014-06-25 Method for producing magnetic recording medium

Country Status (2)

Country Link
JP (1) JP2015015062A (en)
WO (1) WO2015001768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024378A1 (en) * 2014-08-12 2016-02-18 富士電機株式会社 Process for producing magnetic recording medium
CN112106134A (en) * 2018-07-31 2020-12-18 田中贵金属工业株式会社 Sputtering target for magnetic recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207917A (en) * 1988-02-16 1989-08-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of cocr perpendicular magnetic anisotropy medium
JPH05205328A (en) * 1992-01-23 1993-08-13 Sanyo Electric Co Ltd Magnetooptical recording medium
JPH10154328A (en) * 1996-11-22 1998-06-09 Fuji Photo Film Co Ltd Production of magnetic recording medium
JP2002050043A (en) * 2000-05-26 2002-02-15 Tosoh Corp Surface reproduction type optical recording medium
JP2009283044A (en) * 2008-05-20 2009-12-03 Fuji Electric Device Technology Co Ltd Method for depositing thin film for magnetic recording medium and deposition apparatus using the same
JP2011081903A (en) * 2004-07-07 2011-04-21 Fuji Electric Device Technology Co Ltd Method for manufacturing perpendicular magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207917A (en) * 1988-02-16 1989-08-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of cocr perpendicular magnetic anisotropy medium
JPH05205328A (en) * 1992-01-23 1993-08-13 Sanyo Electric Co Ltd Magnetooptical recording medium
JPH10154328A (en) * 1996-11-22 1998-06-09 Fuji Photo Film Co Ltd Production of magnetic recording medium
JP2002050043A (en) * 2000-05-26 2002-02-15 Tosoh Corp Surface reproduction type optical recording medium
JP2011081903A (en) * 2004-07-07 2011-04-21 Fuji Electric Device Technology Co Ltd Method for manufacturing perpendicular magnetic recording medium
JP2009283044A (en) * 2008-05-20 2009-12-03 Fuji Electric Device Technology Co Ltd Method for depositing thin film for magnetic recording medium and deposition apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024378A1 (en) * 2014-08-12 2016-02-18 富士電機株式会社 Process for producing magnetic recording medium
JP2016040748A (en) * 2014-08-12 2016-03-24 富士電機株式会社 Manufacturing method of magnetic recording medium
US10152996B2 (en) 2014-08-12 2018-12-11 Fuji Electric Co., Ltd. Process for producing magnetic recording medium
CN112106134A (en) * 2018-07-31 2020-12-18 田中贵金属工业株式会社 Sputtering target for magnetic recording medium
CN112106134B (en) * 2018-07-31 2022-05-03 田中贵金属工业株式会社 Sputtering target for magnetic recording medium

Also Published As

Publication number Publication date
JP2015015062A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP4812254B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US8941950B2 (en) Underlayers for heat assisted magnetic recording (HAMR) media
JP4893854B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP6439869B2 (en) Method for manufacturing magnetic recording medium
JP5999277B2 (en) Perpendicular magnetic recording medium
US20070026260A1 (en) Granular recording medium for perpendicular recording and recording apparatus
JP5923337B2 (en) Laminated body and method for producing the laminated body
JPWO2007116813A1 (en) Method for manufacturing perpendicular magnetic recording disk and perpendicular magnetic recording disk
JP5999290B2 (en) Magnetic recording medium
JP6163744B2 (en) Perpendicular magnetic recording medium
JP6156518B2 (en) Perpendicular magnetic recording medium
JP2005243226A (en) Perpendicular magnetic recording medium and method of manufacturing the same
WO2015037425A1 (en) Perpendicular magnetic recording medium and method for manufacturing same
JP2007164941A (en) Perpendicular magnetic recording medium
JP5954376B2 (en) Method for manufacturing magnetic recording medium
JP5782819B2 (en) Perpendicular magnetic recording medium
WO2015001768A1 (en) Method for producing magnetic recording medium
WO2017002348A1 (en) Magnetic recording medium
JP4367326B2 (en) Perpendicular magnetic recording medium
JP2004288348A (en) Perpendicular magnetic recording medium and method of manufacturing the same
WO2016067579A1 (en) Magnetic recording medium
KR20040029495A (en) Magnetic recording media
JP2008090918A (en) Method for manufacturing magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819975

Country of ref document: EP

Kind code of ref document: A1