WO2015001672A1 - Control apparatus and method, and wireless power transfer apparatus - Google Patents

Control apparatus and method, and wireless power transfer apparatus Download PDF

Info

Publication number
WO2015001672A1
WO2015001672A1 PCT/JP2013/068542 JP2013068542W WO2015001672A1 WO 2015001672 A1 WO2015001672 A1 WO 2015001672A1 JP 2013068542 W JP2013068542 W JP 2013068542W WO 2015001672 A1 WO2015001672 A1 WO 2015001672A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
communication
unit
information
transmission
Prior art date
Application number
PCT/JP2013/068542
Other languages
French (fr)
Japanese (ja)
Inventor
寛明 石原
浩平 鬼塚
芙美 杜塚
克之 池内
大高 章二
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2013/068542 priority Critical patent/WO2015001672A1/en
Priority to JP2015524998A priority patent/JP6271548B2/en
Publication of WO2015001672A1 publication Critical patent/WO2015001672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • Embodiments described herein relate generally to a control apparatus and method, and a wireless power transmission apparatus.
  • the embodiment of the present invention is intended to enable a high-speed control operation in wireless power transmission.
  • the control device as an embodiment of the present invention includes an information acquisition unit and a control unit.
  • the information acquisition unit executes at least one of an acquisition process of transmission power information from a power transmission unit and an acquisition process of received power information from a power reception unit that receives power transmitted from the power transmission unit.
  • the control unit includes a power transmission adjustment process of the power transmission unit according to the transmission power information, an impedance adjustment process of the power reception unit according to the transmission power information, and a power transmission adjustment of the power transmission unit according to the power reception information.
  • a plurality of processes can be executed among the process and the impedance adjustment process of the power receiving unit according to the received power information, and one of the plurality of processes is switched and selected based on a predetermined condition. Execute the process.
  • FIG. 1 is a diagram showing a configuration of a wireless power transmission device according to a first embodiment.
  • FIG. 2 is a diagram showing an operation flow of the control device shown in FIG.
  • FIG. 5 is a diagram showing an operation flow of the control device shown in FIG.
  • FIG. 10 is a diagram illustrating a configuration of a wireless power transmission device according to a third embodiment.
  • FIG. 9 is a diagram showing an operation flow of the control device shown in FIG.
  • FIG. 11 is a diagram showing an operation flow of the control device shown in FIG.
  • FIG. 9 is a diagram illustrating a configuration of a wireless power transmission device according to a fifth embodiment.
  • FIG. 13 is a diagram showing an operation flow of the control device shown in FIG.
  • FIG. 15 is a diagram showing an operation flow of the control device shown in FIG.
  • FIG. 10 is a diagram showing a configuration of a wireless power transmission apparatus according to a seventh embodiment.
  • FIG. 19 is a diagram showing a control flow in the configuration shown in FIG.
  • FIG. 20 is a diagram showing another configuration example according to the ninth embodiment.
  • FIG. 1 shows a wireless power transmission apparatus including the control apparatus according to the first embodiment.
  • the wireless power transmission device includes a power transmission unit 21 that wirelessly transmits power, a power reception unit 31 that receives power, and a control device 11.
  • the control device 11 may be incorporated in the power transmission unit 21 or the power reception unit 31, or may be provided separately from the power transmission unit 21 and the power reception unit 31.
  • the power transmission unit 21 includes an AC power source 22 that generates AC power and a power transmission unit connected to the AC power source 22.
  • the power transmission unit includes a coil 1 and a capacitor 1. The coil 1 and the capacitor 1 are connected in series.
  • a power transmission adjustment signal for adjusting the output of the AC power supply is input from the control device 11 to the AC power supply 22.
  • the power receiving unit 31 includes a load 32 and a power receiving unit connected to the load 32.
  • the power receiving unit includes a coil 2 and a capacitor 2.
  • the coil 2 and the capacitor 2 are connected in series.
  • the load 32 may be any device that consumes or stores power.
  • the power receiving unit 31 includes a wireless communication device 33, and the wireless communication device 33 performs wireless communication with the control device 11.
  • the power transmission / reception unit 41 is formed by the coil 1 and the capacity 1 on the power transmission side and the coil 2 and the capacity 2 on the power reception side.
  • power transmission is performed between the coils 1 and 2 via magnetic coupling. That is, in the coil 1, a magnetic field corresponding to the power signal from the AC power supply 22 is generated, and this magnetic field is coupled to the coil 2 so that the power signal is transmitted to the power receiving side.
  • the transmitted electric power is supplied to the load 32 and consumed or stored in the load 32.
  • V 1 transmission voltage amplitude (rms)
  • Q 1 and Q 2 are Q values of coil 1 and coil 2
  • L 1 and L 2 are coil 1
  • inductance k of coil 2 is coil 1 And the coupling coefficient of coil 2. From the equation (1), the load power can be changed by adjusting the transmission voltage amplitude V 1 . Although the case where the AC power source is a voltage source is shown here, even when a current source is connected, the power can be similarly changed by the current amplitude.
  • the method for adjusting the output of the AC power supply may be any method as long as the output power can be changed.
  • the transmission voltage amplitude or current amplitude may be changed to a value corresponding to the transmission adjustment signal.
  • the transmission power may be controlled to be constant at a value indicated by the power transmission adjustment signal.
  • the AC power supply may be realized by, for example, a combination of a DC voltage source and an inverter.
  • the AC power source is equivalent by adjusting the output voltage of the DC voltage source or changing the phase difference between phases in the multiphase inverter.
  • the amplitude of the AC output may be changed.
  • the power transmission inductance or the coupling coefficient may be changed by adjusting the position of the coil on the power transmission side, the amount of ferrite, the coil shape, and the like by the power transmission adjustment signal. Also by this, transmission power can be changed.
  • the power transmission unit 21 is provided with a function of notifying the control device 11 of information related to power transmitted from the power transmission unit as transmission power information.
  • the transmitted power information may be information indicating the power itself at an arbitrary location in the power transmission unit, or may be information on voltage or current at an arbitrary location.
  • the power receiving unit 31 is provided with a function of detecting information related to power supplied to the power receiving unit and notifying the control device 11 as received power information.
  • the received power information may be information indicating the power itself at an arbitrary location in the power receiving unit, or information on voltage or current at an arbitrary location.
  • a power reception adjustment signal (impedance adjustment signal) for adjusting the impedance of the power reception unit 31 may be input from the control device 11 (see an embodiment described later).
  • a method of adjusting the load impedance by the power reception adjustment signal for example, there is a method of changing the power consumed or accumulated by the load.
  • the load includes a device whose impedance is variable in addition to a device that consumes or stores electric power
  • the load impedance may be changed by adjusting the value of the device.
  • Information on the power consumed or accumulated by the load 32 is output to the control device 11.
  • the power information may be, for example, information indicating the power itself, or information on voltage or current.
  • Information on the power consumed or accumulated by the load corresponds to an example of the received power information described above.
  • the control device 11 realizes a stable control operation even when the load state or the coupling state between the power transmission unit and the power receiving unit changes during power supply to the load in the power receiving unit 31 (for example, during charging).
  • the control device 11 includes a calculation unit (control unit, information acquisition unit) 12 that controls the overall operation of the control device 11, and a wireless communication device (information acquisition unit) 13.
  • the wireless communication device 13 acquires received power information from the wireless communication device 32 of the power reception unit 31 via wireless communication.
  • the wireless communication device 13 includes an information acquisition unit that acquires received power information.
  • the wireless communication device 13 and the wireless communication device 33 of the power receiving unit 31 may be any communication device.
  • a general wireless communication standard such as a wireless LAN or Bluetooth may be used, or an original wireless communication standard may be used.
  • inter-coil communication using the magnetic coupling of the coils 1 and 2 in the power transmission / reception unit 41 may be used.
  • the control device 11 is connected to the power transmission unit 21 in a form in which communication is possible by a method with a smaller delay than wireless communication with the power reception unit 31.
  • the communication between the control device 11 and the power transmission unit 21 may be wired communication or may be wireless communication like the power receiving unit 31.
  • the control device 11 has an input terminal to which transmission power information is input, and an output terminal that outputs a power transmission adjustment signal to the power transmission unit.
  • the input terminal and the output terminal are connected to the power transmission unit 21 by wire.
  • the input terminal and the output terminal may be one common terminal.
  • the control device 11 includes an information acquisition unit that acquires transmission power information via an input terminal.
  • the communication of the power transmission adjustment signal and the transmitted power information is the same wired communication, they may be transmitted and received by different communications.
  • one may be wireless and the other may be wired, or both may be wired and only the method may be different. It is assumed that both communications have a smaller delay than that of received power information.
  • the capacitor 1 is connected to the output side of the AC power source 22 and the coil 1 is connected to the ground terminal side.
  • the power receiving side may have the same configuration.
  • either one or both of the capacitor 1 and the coil 1 may be divided and connected.
  • the capacitors 1a and 1b are connected to both sides of the coil 1 as shown in FIG.
  • the coils 1a and 1b are respectively connected to both sides of the capacitor 1 as shown in FIG. In this case, electric power is transmitted to the power receiving side by the two coils 1a and 1b.
  • the number of divisions is not limited to 2, and may be 3 or more.
  • the power receiving side may have the same configuration.
  • FIG. 3 (a) and 3 (b) show a flowchart of the operation of the control device 11.
  • the control device 11 changes the power transmission adjustment signal
  • one of the control flows in FIG. 3 (a) or FIG. 3 (b) is used. This operation is executed by the calculation unit 12 of the control device 11. A method for determining which control operation to select will be described later.
  • the control device 11 acquires received power information detected in the power receiving unit 31 via wireless communication (step S11).
  • the first predetermined range can take an arbitrary value such as a value determined from the power required by the load or a value defined by the power transmission unit.
  • the first predetermined range may be a value updated at regular intervals according to the coupling state between the coils, the load state, and the power transmission unit state.
  • the control device 11 ends without changing the power transmission adjustment signal.
  • the control device 11 changes the power transmission adjustment signal so that the received power is corrected in a direction approaching the first predetermined range (step S13). For example, when the received power is larger than the upper limit of the first predetermined range, the power transmission adjustment signal is changed so that the received power decreases, that is, the received power is corrected in a direction approaching the upper limit. To do. Conversely, when the received power is smaller than the lower limit of the predetermined range, the power transmission adjustment signal may be changed so that the received power increases, that is, the received power is corrected in a direction approaching the lower limit. .
  • the changed power transmission adjustment signal is transmitted to the power transmission unit 21 via wired communication.
  • the first predetermined range is not limited to a range having a certain width, but includes a case of a single value such as a predetermined value. In this case, determining whether the received power is outside the predetermined range is synonymous with determining whether the received power matches a predetermined value.
  • control device 11 acquires transmission power information via wired communication (step S21). Next, it is determined whether or not the transmitted power is within a second predetermined range (step S22). In other words, it is determined whether the transmission power exceeds the upper limit (threshold value) and the lower limit (threshold value) of the second predetermined range.
  • the control device 11 ends without changing the power transmission adjustment signal (step S23).
  • the control device 11 changes the power transmission adjustment signal so that the transmitted power is corrected in a direction approaching the second predetermined range. For example, when the transmission power is larger than the upper limit of the second predetermined range, the transmission adjustment signal is changed so that the transmission power decreases, that is, the transmission power is corrected in a direction approaching the upper limit. To do. Conversely, when the transmitted power is smaller than the lower limit of the second predetermined range, the transmission adjustment signal is changed so that the transmitted power increases, that is, the transmission power is corrected in a direction approaching the lower limit. To do. The changed power transmission adjustment signal is transmitted to the power transmission unit 21. By repeating this flow as necessary, the transmitted power is adjusted to the second predetermined range.
  • the control device 11 may continuously perform an operation of selecting and executing any one of the control flows of FIG. 3 (a) and FIG. 3 (b) at regular intervals.
  • the operation may be performed every time transmission power information or received power information changes by a certain amount or more from a value when the operation was performed last time.
  • the operation may be performed at other timing.
  • control device 11 selects the control flow shown in FIG. 3 (a) as a basic operation flow in advance, and operates according to this control flow.
  • the received power, voltage, current, or the like is constantly controlled within the target range. This is suitable when the load 32 requires constant power.
  • the reference for switching to the control flow in FIG. 3 (b) may be, for example, a case where the received power increases by a certain amount or more from the upper limit of the first predetermined range. This is because even though the received power is controlled so as to approach the first predetermined range by the control flow of FIG. This is because it can be determined that the state of some element is changing at a speed that cannot be followed by the control flow of FIG.
  • switching may be performed when the received power falls below a certain amount from the lower limit of the first predetermined range.
  • control flow may be switched to the control flow in FIG.
  • control flow may be switched to the control flow in FIG.
  • control flow may be switched to the control flow in FIG. 3B that does not use the wireless communication.
  • a function for determining switching of the control flow may be provided in the power receiving unit or as another device connected to the power receiving unit, and a control flow switching command may be notified to the control device 11 via a wireless communication device.
  • the standard for switching from the state using the control flow in FIG. 3 (b) to the state using the control flow in FIG. 3 (a) is changed to a state using the control flow in FIG. It may be the case when it has passed.
  • the received power or the magnitude of the transmitted power may be used as a reference.
  • the control flow may be switched to the control flow in FIG.
  • the received power is monitored at regular intervals, and when the received power is within the first predetermined range, the control flow of FIG. You may switch. At this time, for example, the received power is monitored at a predetermined interval by another device provided in the power receiving unit 31, and when the received power falls within the first predetermined range, a signal for instructing switching of the control flow is transmitted wirelessly. You may notify a control apparatus via communication.
  • control flow switching criteria may be used in combination of a plurality of those described above.
  • the second predetermined range of transmission power can be set arbitrarily.
  • the upper limit of the second predetermined range is the maximum power supplied to the power receiving unit 31 at the upper limit of the first predetermined range. You may determine that the following electric power is supplied from the power transmission side. In this case, power that is lower than the transmitted power by the loss during transmission is supplied to the power receiving side, so that power that does not exceed the upper limit of the first predetermined range can be supplied to the power receiving unit.
  • the transmission power information when the received power is within the first predetermined range is retained, and the second predetermined range may be set according to the value. Good. In this case, if the change in efficiency is small, power close to the first predetermined range can be supplied to the power receiving unit.
  • the second predetermined range may be determined so that power sufficiently lower than the first predetermined range is supplied to the power receiving unit.
  • a threshold value for turning on the protection stop operation may be provided separately, and the upper limit value of the second predetermined range may be set so as to be a value lower than the threshold value.
  • the lower limit value of the second predetermined range may be set to a sufficiently low value within a range where power transmission can be maintained.
  • FIG. 4 shows a wireless power transmission apparatus provided with a control apparatus according to the second embodiment.
  • the power receiving unit and the control device are connected wirelessly, but in the second embodiment, as shown in FIG. 4, the power receiving unit and the control device are connected by wire, and the power transmission unit 22 and the control device 41 are connected wirelessly.
  • the power transmission unit 22 includes a wireless communication device 22, and the wireless communication device 22 wirelessly communicates with the wireless communication device 43 of the control device 41.
  • the control device 41 includes a calculation unit 42 and a wireless communication device 43.
  • the wireless communication device 43 communicates with the wireless communication device 22 of the power transmission unit 21.
  • the calculation unit 42 generates a power reception adjustment signal (impedance adjustment signal) that is a signal for adjusting the impedance of the load, and outputs the power reception adjustment signal to the power reception unit 31.
  • the received power can be changed by changing the load impedance.
  • the received power adjustment signal may be changed so that the load resistance is large when the received power is increased, and the load resistance is decreased when the received power is decreased.
  • this relationship can be reversed depending on the connection and coupling state between the coil and the capacitor.
  • FIG. 5 shows the control flow in the second embodiment.
  • FIG. 5 (a) corresponds to FIG. 3 (a)
  • FIG. 5 (b) corresponds to FIG. 3 (b) in the first embodiment.
  • the operation of these control flows is executed by the calculation unit 42.
  • the control device 41 first acquires received power information (step S31). If the received power is within the first predetermined range (YES in step S32), the process ends without doing anything. On the other hand, when the received power is outside the first predetermined range (NO in step S32), the power transmission adjustment signal is transmitted via wireless communication so that the received power is corrected in a direction approaching the first predetermined range. To change.
  • the control device 41 first acquires received power information (step S41). If the received power is within the second predetermined range (YES in step S42), the process ends without doing anything. On the other hand, when the received power is outside the second predetermined range (NO in step S42), the received power adjustment signal is changed so that the received power is corrected in a direction approaching the second predetermined range (step S43). ). In the operation of FIG. 5 (b), high-speed control is possible because wireless communication is not performed.
  • first predetermined range and the second predetermined range shown in the flow of FIG. 5 are particularly related to the first predetermined range and the second predetermined range used in the first embodiment.
  • the range value is determined independently. The same applies to other embodiments described below.
  • FIG. 6 shows an example of a load including a device whose impedance can be changed.
  • the configuration shown in FIG. 6 includes an AC-DC converter (rectifier) 104 and a DC-DC converter 103 in addition to a device 102 that consumes or stores electric power.
  • the impedance can be adjusted by adjusting the voltage conversion ratio of the DC-DC converter 103 using the power reception adjustment signal.
  • the AC-AC converter 106 and the AC-DC converter (rectifier) 105 are used, and the voltage conversion ratio of the AC-AC converter 106 can be changed according to the power reception adjustment signal. Good.
  • variable capacitor and a variable inductance may be connected in series or in parallel, and the values of these variable elements may be adjusted by a power reception adjustment signal.
  • impedance of the load may be changed by changing the power received by the device that consumes or stores the power.
  • the equivalent impedance viewed from the power transmission side may be changed by changing the inductance, coupling coefficient, etc. of the coil 2 by changing the position of the coil 2, the amount of ferrite, and the like.
  • FIG. 8 shows a wireless power transmission device including a control device according to the third embodiment.
  • the received power is controlled within a certain range both during normal control and during high-speed control.
  • the transmitted power is controlled within a certain range during normal control.
  • the received power is controlled within a certain range.
  • transmission power information is input to the control device 61 via wireless communication.
  • FIG. 9 shows a control flow in the third embodiment.
  • FIG. 5 (a) corresponds to FIG. 3 (a) in the case of the first embodiment
  • FIG. 5 (b) corresponds to FIG. 3 (b).
  • These control flows are executed by the calculation unit 42.
  • the control device 61 first acquires transmission power information (step S51). If the transmitted power is within the first predetermined range (YES in step S52), the process ends without doing anything. On the other hand, when the transmitted power is outside the first predetermined range (NO in step S52), the power transmission adjustment signal is transmitted via wireless communication so that the transmitted power is corrected in a direction approaching the first predetermined range. To change.
  • the control device 61 first acquires received power information (step S61). If the received power is within the second predetermined range (YES in step S62), the process ends without doing anything. On the other hand, when the received power is outside the second predetermined range (NO in step S62), the received power adjustment signal is changed so that the received power is corrected in a direction approaching the second predetermined range (step S63). ). In the operation of FIG. 9 (b), high-speed control is possible because wireless communication is not performed.
  • FIG. 10 shows a wireless power transmission device including a control device according to the fourth embodiment.
  • the transmission power is controlled by the transmission adjustment signal during normal control (see FIG. 9A), but in the fourth embodiment, the transmission power is adjusted by the power reception adjustment signal. During high speed control, the received power is controlled within a predetermined range using the received power adjustment signal.
  • FIG. 11 shows a control flow in the third embodiment.
  • FIG. 11 (a) corresponds to FIG. 3 (a) and
  • FIG. 11 (b) corresponds to FIG. 3 (b) in the case of the first embodiment.
  • These control flows are executed by the calculation unit 42.
  • the control device 51 first acquires transmission power information via wireless communication (step S71). If the transmitted power is within the first predetermined range (YES in step S72), the process ends without doing anything. On the other hand, when the transmitted power is outside the first predetermined range (NO in step S72), the power reception adjustment signal is changed so that the transmitted power is corrected in a direction approaching the first predetermined range.
  • the control device 51 first acquires received power information (step S81). If the received power is within the second predetermined range (YES in step S82), the process ends without doing anything. On the other hand, when the received power is outside the second predetermined range (NO in step S82), the received power adjustment signal is changed so that the received power is corrected in a direction approaching the second predetermined range (step S83). ). In the operation of FIG. 11 (b), since wireless communication is not performed, high-speed control is possible.
  • FIG. 12 shows a wireless power transmission device including a control device according to the fifth embodiment.
  • the control device 71 is connected to the power receiving unit 31 via wireless communication, and is connected to the power transmission unit 21 by wire.
  • the received power is adjusted to a predetermined range by the received power adjustment signal.
  • the transmission power is controlled within a predetermined range using the transmission adjustment signal.
  • FIG. 13 shows a control flow in the fifth embodiment.
  • FIG. 13 (a) corresponds to FIG. 3 (a) and
  • FIG. 13 (b) corresponds to FIG. 3 (b) in the case of the first embodiment.
  • These control flows are executed by the calculation unit 12.
  • the control device 71 first acquires received power information via wireless communication (step S91). If the received power is within the first predetermined range (YES in step S92), the process ends without doing anything. On the other hand, if the received power is outside the first predetermined range (NO in step S92), the power reception adjustment signal is transmitted via wireless communication so that the received power is corrected in a direction approaching the first predetermined range. To change.
  • the control device 71 first acquires transmission power information (step S101). If the transmitted power is within the second predetermined range (YES in step S102), the process ends without doing anything. On the other hand, when the transmitted power is outside the second predetermined range (NO in step S102), the transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range (step S103). ). In the operation of FIG. 13 (b), high-speed control is possible because wireless communication is not performed.
  • FIG. 14 shows a wireless power transmission device including a control device according to the sixth embodiment.
  • the control device 81 is connected to the power transmission unit 21 by wire and is connected to the power reception unit 31 wirelessly.
  • the received power is controlled within a predetermined range by the power reception adjustment signal, but in this embodiment, the transmitted power is controlled within the predetermined range by the power reception adjustment signal.
  • transmission power is controlled within a predetermined range by a transmission adjustment signal.
  • FIG. 15 shows a control flow in the fifth embodiment.
  • FIG. 15 (a) corresponds to FIG. 3 (a) in the case of the first embodiment
  • FIG. 15 (b) corresponds to FIG. 3 (b). These control flows are executed by the calculation unit 12.
  • the control device 81 first acquires transmission power information (step S111). If the transmitted power is within the first predetermined range (YES in step S112), the process ends without doing anything. On the other hand, when the transmitted power is outside the first predetermined range (NO in step S112), the power reception adjustment signal is transmitted via wireless communication so that the transmitted power is corrected in a direction approaching the first predetermined range. To change.
  • the control device 71 first acquires transmission power information (step S121). If the transmitted power is within the second predetermined range (YES in step S122), the process ends without doing anything. On the other hand, when the transmitted power is outside the second predetermined range (NO in step S122), the transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range (step S123). ). In the operation of FIG. 15 (b), since wireless communication is not performed, high-speed control is possible.
  • FIG. 16 shows a wireless power transmission device including a control device according to the seventh embodiment.
  • the control device 11 is connected to the power transmission unit 21 by wire and is connected to the power reception unit 31 by radio.
  • the seventh embodiment includes a coil position detector 17 in addition to the first embodiment.
  • the coil position detector 17 may be included in either the power transmission unit 21 or the power reception unit 31, and may be provided as a separate device. Further, the control device 11 and the coil position detector 17 may be connected by any method, for example, wireless connection or wired connection.
  • the switching of the control flow in FIG. 3 (a) and FIG. 3 (b) is performed according to the output of the coil position detector 17.
  • the eighth embodiment will be described.
  • a transmission efficiency adjustment operation is added to the control flow operation during normal control in the fifth embodiment.
  • movement at the time of normal control adjustment of both transmission efficiency and electric power (transmitted power, received electric power) is attained.
  • a high-speed control operation is required, a high-speed control operation is realized by using a control flow that adjusts only the transmission power.
  • FIG. 17 shows an example of a flowchart according to the eighth embodiment. Since the control flow in FIG. 17B during high-speed control is the same as that in FIG. 13B, the description thereof will be omitted, and only the control flow in FIG. 17A will be described here.
  • transmission power information is acquired (step S131), received power information is acquired via wireless communication (step S132), and transmission efficiency is calculated (step S133). ).
  • step S134 It is determined whether or not the transmission efficiency is greater than a predetermined value (step S134). If the transmission efficiency is equal to or less than the predetermined value, the power reception adjustment signal is changed so that the transmission efficiency is improved via wireless communication (step S134). S137).
  • the transmission efficiency is larger than a predetermined value, it is determined whether the received power is in the first predetermined range.
  • the received power adjustment signal is changed so that the received power is corrected in a direction approaching the first predetermined range.
  • the means for adjusting the transmission efficiency is shown here using the transmission efficiency itself as an index, the index may not be the transmission efficiency itself.
  • loss may be used as an index.
  • a ratio or difference between voltages at arbitrary points on the power transmission side and the power reception side correlated with the transmission efficiency may be obtained as an estimated value of the transmission efficiency and used as an index.
  • the adjustment signal may be increased / decreased accordingly. If the change direction of the adjustment signal that improves the transmission efficiency is unknown, for example, the direction to be changed may be determined by sweeping a certain range. Further, a point where the transmission efficiency is maximized by sweeping may be searched.
  • the received power is determined after determining the transmission efficiency, but this order may be reversed. Further, the determination of whether or not the first predetermined range may be performed may be divided. For example, the transmission efficiency may be determined after determining the upper limit of power, and then the lower limit of power may be determined. The determination of the transmission efficiency may also be made based on whether or not it is within a predetermined range, not whether or not it is less than a predetermined value.
  • FIG. 18 shows the configuration of the wireless power transmission apparatus according to the ninth embodiment.
  • the two control devices include a control device 201 connected to the power receiving unit 31 and a control device 202 connected to the power transmission unit 21.
  • FIG. 18 shows an example in which the configuration of FIG. 1 is modified to the configuration of two control devices.
  • the control device 201 on the power receiving side includes a calculation unit 211 and a wireless communication device 221.
  • the power transmission side control device 202 includes a calculation unit 212 and a wireless communication device 222.
  • the power transmission side control device 201 and the power reception side control device 202 are wirelessly connected by wireless communication devices 221 and 222.
  • FIG. 19 shows an operation flow in this embodiment.
  • FIG. 19 (a) shows the operation of the control device 201 on the power receiving side
  • FIG. 19 (b) shows the operation of the control device 202 on the power transmission side.
  • the calculation unit 211 of the control device 201 on the power receiving side acquires received power information (step S141), and determines whether the received power is within a first predetermined range. (Step S142). If the received power is not within the first predetermined range, an instruction to change the power transmission adjustment signal is sent via wireless communication so that the received power is corrected in a direction approaching the first predetermined range.
  • the control device 202 is notified (step S143).
  • the change instruction may include designation of the adjustment amount of the power transmission adjustment signal.
  • the control device 202 on the power transmission side changes and transmits the power transmission adjustment signal according to the adjustment amount designated from the power reception side. If the adjustment amount specification is not included, the power transmission side may change the amount specified in advance.
  • the calculation unit 212 of the control device 202 on the power transmission side acquires transmission power information (step S151), and the transmission power is within the second predetermined range. Is determined (step S152). If the transmitted power is not within the second predetermined range, the power transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range (step S153).
  • the power transmission adjustment signal is determined to be changed on the power receiving side, and control is performed by notifying the power transmission side.
  • high-speed control is realized by determining the change of the power transmission adjustment signal on the power transmission side and changing the transmission power.
  • any configuration of the second to sixth embodiments can be modified to a configuration using two control devices as in the present embodiment.
  • FIG. 20 shows an example in which two control devices are used in the third embodiment shown in FIG. Control devices 231 and 232 are arranged on the power reception side and the power transmission side, respectively.
  • the power receiving side control device 231 includes a calculation unit 241 and a wireless communication device 251
  • the power transmission side control device 232 includes a calculation unit 242 and a wireless communication device 252.
  • FIG. 21 shows a control flow when the eighth embodiment is further combined with the configuration shown in FIG.
  • FIG. 21A shows the operation of the control device 231 on the power receiving side
  • FIG. 21B shows the operation of the control device 232 on the power transmission side.
  • the calculation unit 241 of the control device 231 on the power receiving side acquires transmission power information (step S161), acquires received power information (step S162), and transmits. Efficiency is calculated (step S163). It is determined whether the transmission efficiency is equal to or lower than a predetermined value (step S164). If the transmission efficiency is equal to or lower than the predetermined value, the calculation unit 241 changes the power reception adjustment signal so that the transmission efficiency is improved (step S167). On the other hand, if the transmission efficiency is greater than a predetermined value, it is determined whether the received power is within the first predetermined range. If the transmission efficiency is not within the first predetermined range, the received power approaches the first predetermined range.
  • the power transmission adjustment signal change instruction is notified to the power transmission-side control device 232 (step S166).
  • the change instruction may include designation of the adjustment amount of the power transmission adjustment signal.
  • the control device 232 on the power transmission side changes the power transmission adjustment signal according to the adjustment amount specified from the power reception side. If the adjustment amount designation is not included, the power transmission adjustment signal may be changed by a predetermined amount.
  • the calculation unit 242 of the control device 232 on the power transmission side acquires transmission power information (step S171), and the transmission power is within the second predetermined range. Is determined (step S172). If the transmitted power is not within the second predetermined range, the transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range.
  • the power transmission adjustment signal is determined to be changed on the power receiving side, and control is performed by notifying the power transmission side.
  • high-speed control is realized by determining the change of the power transmission adjustment signal on the power transmission side and changing the transmission power.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Abstract

[Problem] To allow high-speed control operations in the context of wireless power transfer. [Solution] A control apparatus that serves as an embodiment of this invention is provided with an information acquisition unit and a control unit. The information acquisition unit executes an acquisition process that acquires transmitted-power information from a power-transmitting unit and/or an acquisition process that acquires received-power information from a power-receiving unit that receives power transferred from the power-transmitting unit. The aforementioned control unit is capable of executing a plurality of the following processes: a power-transmission adjustment process performed on the power-transmitting unit in accordance with the transmitted-power information, an impedance adjustment process performed on the power-receiving unit in accordance with the transmitted-power information, a power-transmission adjustment process performed on the power-transmitting unit in accordance with the received-power information, and an impedance adjustment process performed on the power-receiving unit in accordance with the received-power information. The control unit selects one of the aforementioned plurality of processes on the basis of a predetermined condition and executes the selected process.

Description

制御装置およびその方法、ならびに無線電力伝送装置Control device and method, and wireless power transmission device
 本発明の実施形態は、制御装置およびその方法、ならびに無線電力伝送装置に関する。 Embodiments described herein relate generally to a control apparatus and method, and a wireless power transmission apparatus.
 無線電力伝送において、伝送距離や負荷インピーダンスに依存して、電力や伝送効率が変動することが知られている。例えば、負荷の状態に合わせて電力を調整するために、2次電池からの通知に応じて、送電側で電力の制御を行う手法がある。 In wireless power transmission, it is known that power and transmission efficiency vary depending on transmission distance and load impedance. For example, in order to adjust the power according to the state of the load, there is a method of controlling the power on the power transmission side in response to a notification from the secondary battery.
 しかし、2次電池からの通知は無線通信を介して行われるため、通信遅延が発生する。この遅延により、2次電池からの通知を介した電力制御の速度が律速される。このため、高速な結合状態の変動、もしくは負荷変動が発生した場合には電力制御が適切に行われない問題がある。この際に充電電力が過小、もしくは過大となった場合には、送電の停止や装置の破壊につながる恐れがある。 However, since notification from the secondary battery is performed via wireless communication, a communication delay occurs. This delay limits the speed of power control through notification from the secondary battery. For this reason, there is a problem that power control is not properly performed when a high-speed coupling state variation or load variation occurs. At this time, if the charging power is too small or too large, there is a risk of stopping power transmission or destroying the device.
特開2012-210112号公報JP 2012-210112 A
 本発明の実施形態は、無線電力伝送において高速な制御動作を可能にすることを目的とする。 The embodiment of the present invention is intended to enable a high-speed control operation in wireless power transmission.
 本発明の実施形態としての制御装置は、情報取得部と、制御部とを備える。 The control device as an embodiment of the present invention includes an information acquisition unit and a control unit.
 前記情報取得部は、送電ユニットからの送電電力情報の取得処理と、前記送電ユニットから伝送される電力を受電する受電ユニットからの受電電力情報の取得処理の少なくとも一方を実行する。 The information acquisition unit executes at least one of an acquisition process of transmission power information from a power transmission unit and an acquisition process of received power information from a power reception unit that receives power transmitted from the power transmission unit.
 前記制御部は、前記送電電力情報に応じた前記送電ユニットの送電調整処理と、前記送電電力情報に応じた前記受電ユニットのインピーダンス調整処理と、前記受電電力情報に応じた前記送電ユニットの送電調整処理と、前記受電電力情報に応じた前記受電ユニットのインピーダンス調整処理のうち複数の処理を実行可能であり、予め定められた条件に基づいて前記複数の処理の1つを切り換えて選択し、選択した処理を実行する。 The control unit includes a power transmission adjustment process of the power transmission unit according to the transmission power information, an impedance adjustment process of the power reception unit according to the transmission power information, and a power transmission adjustment of the power transmission unit according to the power reception information. A plurality of processes can be executed among the process and the impedance adjustment process of the power receiving unit according to the received power information, and one of the plurality of processes is switched and selected based on a predetermined condition. Execute the process.
第1の実施の形態に係る無線電力電送装置の構成を示す図。1 is a diagram showing a configuration of a wireless power transmission device according to a first embodiment. FIG. コイルと容量の接続形態の例を示す図。The figure which shows the example of the connection form of a coil and a capacity | capacitance. 図1に示す制御装置の動作フローを示す図。FIG. 2 is a diagram showing an operation flow of the control device shown in FIG. 第2の実施の形態に係る無線電力電送装置の構成を示す図。The figure which shows the structure of the wireless power transmission apparatus which concerns on 2nd Embodiment. 図4に示す制御装置の動作フローを示す図。FIG. 5 is a diagram showing an operation flow of the control device shown in FIG. 負荷の例1を示す図。The figure which shows the example 1 of load. 負荷の例2を示す図。The figure which shows the example 2 of load. 第3の実施の形態に係る無線電力電送装置の構成を示す図。FIG. 10 is a diagram illustrating a configuration of a wireless power transmission device according to a third embodiment. 図8に示す制御装置の動作フローを示す図。FIG. 9 is a diagram showing an operation flow of the control device shown in FIG. 第4の実施の形態に係る無線電力電送装置の構成を示す図。The figure which shows the structure of the wireless power transmission apparatus which concerns on 4th Embodiment. 図10に示す制御装置の動作フローを示す図。FIG. 11 is a diagram showing an operation flow of the control device shown in FIG. 第5の実施の形態に係る無線電力電送装置の構成を示す図。FIG. 9 is a diagram illustrating a configuration of a wireless power transmission device according to a fifth embodiment. 図12に示す制御装置の動作フローを示す図。FIG. 13 is a diagram showing an operation flow of the control device shown in FIG. 第6の実施の形態に係る無線電力電送装置の構成を示す図。The figure which shows the structure of the wireless power transmission apparatus which concerns on 6th Embodiment. 図14に示す制御装置の動作フローを示す図。FIG. 15 is a diagram showing an operation flow of the control device shown in FIG. 第7の実施の形態に係る無線電力電送装置の構成を示す図。FIG. 10 is a diagram showing a configuration of a wireless power transmission apparatus according to a seventh embodiment. 第8の実施の形態に係る制御フローを示す図。The figure which shows the control flow which concerns on 8th Embodiment. 第9の実施の形態に係る構成図。The block diagram which concerns on 9th Embodiment. 図18に示す構成における制御フローを示す図。FIG. 19 is a diagram showing a control flow in the configuration shown in FIG. 第9の実施の形態に係る他の構成例を示す図。FIG. 20 is a diagram showing another configuration example according to the ninth embodiment. 図20の動作フローを示す図。The figure which shows the operation | movement flow of FIG.
 以下、図面を参照しながら、本発明の一実施形態について詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
第1の実施の形態First embodiment
 図1に、第1の実施の形態に係る制御装置を備えた無線電力電送装置を示す。 FIG. 1 shows a wireless power transmission apparatus including the control apparatus according to the first embodiment.
 この無線電力電送装置は、電力を無線伝送する送電ユニット21、電力を受電する受電ユニット31、および制御装置11を備える。制御装置11は、送電ユニット21または受電ユニット31内に組み込まれていてもよいし、送電ユニット21および受電ユニット31から分離して設けられてもよい。 The wireless power transmission device includes a power transmission unit 21 that wirelessly transmits power, a power reception unit 31 that receives power, and a control device 11. The control device 11 may be incorporated in the power transmission unit 21 or the power reception unit 31, or may be provided separately from the power transmission unit 21 and the power reception unit 31.
 送電ユニット21は、交流電力を生成する交流電源22と、交流電源22に接続された送電部を含む。送電部は、コイル1および容量1を含む。コイル1と容量1は直列に接続されている。交流電源22には、交流電源の出力を調整する送電調整信号が制御装置11から入力される。 The power transmission unit 21 includes an AC power source 22 that generates AC power and a power transmission unit connected to the AC power source 22. The power transmission unit includes a coil 1 and a capacitor 1. The coil 1 and the capacitor 1 are connected in series. A power transmission adjustment signal for adjusting the output of the AC power supply is input from the control device 11 to the AC power supply 22.
 受電ユニット31は、負荷32と、負荷32に接続された受電部を含む。受電部は、コイル2および容量2を含む。コイル2と容量2は直列に接続されている。負荷32は、電力を消費または蓄積する任意の装置でよい。また、受電ユニット31は、無線通信機33を含み、無線通信機33は制御装置11と無線通信を行う。 The power receiving unit 31 includes a load 32 and a power receiving unit connected to the load 32. The power receiving unit includes a coil 2 and a capacitor 2. The coil 2 and the capacitor 2 are connected in series. The load 32 may be any device that consumes or stores power. The power receiving unit 31 includes a wireless communication device 33, and the wireless communication device 33 performs wireless communication with the control device 11.
 送電側のコイル1および容量1と、受電側のコイル2および容量2とで、送受電部41が形成される。送受電部41において、コイル1、2間で磁気結合を介した電力伝送が行われる。すなわち、コイル1では、交流電源22からの電力信号に応じた磁界が発生させられ、この磁界がコイル2に結合されることで、電力信号が受電側に伝達される。伝達された電力は、負荷32に供給され、負荷32で消費または蓄積される。 The power transmission / reception unit 41 is formed by the coil 1 and the capacity 1 on the power transmission side and the coil 2 and the capacity 2 on the power reception side. In the power transmission / reception unit 41, power transmission is performed between the coils 1 and 2 via magnetic coupling. That is, in the coil 1, a magnetic field corresponding to the power signal from the AC power supply 22 is generated, and this magnetic field is coupled to the coil 2 so that the power signal is transmitted to the power receiving side. The transmitted electric power is supplied to the load 32 and consumed or stored in the load 32.
 図1の構成において、コイル1と容量1、コイル2と容量2による共振周波数がそれぞれ交流電源22から供給される電力の周波数と一致している場合、負荷に供給される電力は負荷のインピーダンスをRLとすると、次式のように表される。
Figure JPOXMLDOC01-appb-M000001
In the configuration shown in FIG. 1, when the resonance frequencies of the coil 1 and the capacitor 1, and the coil 2 and the capacitor 2 are the same as the frequency of the power supplied from the AC power source 22, If R L , then it is expressed as:
Figure JPOXMLDOC01-appb-M000001
 PLは負荷電力、V1は送電電圧振幅(rms)、Q1、Q2はコイル1、およびコイル2のQ値、L1、L2はコイル1、およびコイル2のインダクタンスkはコイル1とコイル2の結合係数である。式(1)から、送電電圧振幅V1を調整することにより、負荷電力を変更できる。なお、ここでは交流電源が電圧源である場合を示したが、電流源が接続された場合でも同様に電流振幅により電力を変更できる。 P L is load power, V 1 is transmission voltage amplitude (rms), Q 1 and Q 2 are Q values of coil 1 and coil 2, L 1 and L 2 are coil 1, and inductance k of coil 2 is coil 1 And the coupling coefficient of coil 2. From the equation (1), the load power can be changed by adjusting the transmission voltage amplitude V 1 . Although the case where the AC power source is a voltage source is shown here, even when a current source is connected, the power can be similarly changed by the current amplitude.
 交流電源の出力を調整する方法は、出力される電力を変更可能な手段ならば、任意の方法でよい。例えば、送電電圧振幅、または電流振幅を送電調整信号に応じた値に変更してもよい。または、送電電力が送電調整信号で指示される値で一定となるよう制御してもよい。または、交流波形が出力される時間の割合を送電調整信号に応じて変更してもよい。交流電源は例えば、DC電圧源とインバータの組み合わせで実現されてもよく、この場合、DC電圧源の出力電圧を調整することや、多相インバータにおける相間の位相差を変更することで等価的な交流出力の振幅を変化させてもよい。また、送電調整信号により、送電側のコイルの位置、フェライトの量、コイル形状などを調整することにより、送電インダクタンスまたは結合係数を変化させてもよい。これによっても、送電電力を変更できる。 The method for adjusting the output of the AC power supply may be any method as long as the output power can be changed. For example, the transmission voltage amplitude or current amplitude may be changed to a value corresponding to the transmission adjustment signal. Alternatively, the transmission power may be controlled to be constant at a value indicated by the power transmission adjustment signal. Or you may change the ratio of the time when an alternating current waveform is output according to a power transmission adjustment signal. The AC power supply may be realized by, for example, a combination of a DC voltage source and an inverter. In this case, the AC power source is equivalent by adjusting the output voltage of the DC voltage source or changing the phase difference between phases in the multiphase inverter. The amplitude of the AC output may be changed. Further, the power transmission inductance or the coupling coefficient may be changed by adjusting the position of the coil on the power transmission side, the amount of ferrite, the coil shape, and the like by the power transmission adjustment signal. Also by this, transmission power can be changed.
 送電ユニット21には、送電ユニットから送出される電力に関連する情報を送電電力情報として制御装置11に通知する機能が設けられている。送電電力情報は送電ユニット内の任意の個所の電力そのものを示す情報でもよいし、任意の箇所の電圧または電流の情報でもよい。 The power transmission unit 21 is provided with a function of notifying the control device 11 of information related to power transmitted from the power transmission unit as transmission power information. The transmitted power information may be information indicating the power itself at an arbitrary location in the power transmission unit, or may be information on voltage or current at an arbitrary location.
 受電ユニット31には、受電ユニットに供給される電力に関連する情報を検出し、受電電力情報として制御装置11に通知する機能が設けられている。受電電力情報は受電ユニット内の任意の個所における電力そのものを示す情報でもよいし、任意の箇所における電圧または電流の情報でもよい。 The power receiving unit 31 is provided with a function of detecting information related to power supplied to the power receiving unit and notifying the control device 11 as received power information. The received power information may be information indicating the power itself at an arbitrary location in the power receiving unit, or information on voltage or current at an arbitrary location.
 受電ユニット31のインピーダンスを調整する受電調整信号(インピーダンス調整信号)が制御装置11から入力されてもよい(後述する実施形態を参照)。受電調整信号により負荷のインピーダンスを調整する方法は、例えば負荷が消費、または蓄積する電力を変更する方法がある。また、負荷が、電力の消費または蓄積する装置以外にインピーダンスを可変な装置を含む場合、当該装置の値を調整することで、負荷のインピーダンスを変更してもよい。負荷32により消費または蓄積する電力の情報は、制御装置11に出力される。電力の情報とは、例えば電力そのものを示す情報でもよいし、電圧、または電流の情報でもよい。この負荷による消費または蓄積する電力の情報は、前述した受電電力情報の一例に相当する。 A power reception adjustment signal (impedance adjustment signal) for adjusting the impedance of the power reception unit 31 may be input from the control device 11 (see an embodiment described later). As a method of adjusting the load impedance by the power reception adjustment signal, for example, there is a method of changing the power consumed or accumulated by the load. In addition, when the load includes a device whose impedance is variable in addition to a device that consumes or stores electric power, the load impedance may be changed by adjusting the value of the device. Information on the power consumed or accumulated by the load 32 is output to the control device 11. The power information may be, for example, information indicating the power itself, or information on voltage or current. Information on the power consumed or accumulated by the load corresponds to an example of the received power information described above.
 制御装置11は、受電ユニット31における負荷への電力供給中(たとえば充電中)に負荷状態や、送電ユニットおよび受電ユニット間の結合状態が変動した場合においても、安定した制御動作を実現する。制御装置11は、制御装置11の全体動作を制御する演算部(制御部、情報取得部)12と、無線通信機(情報取得部)13とを備える。 The control device 11 realizes a stable control operation even when the load state or the coupling state between the power transmission unit and the power receiving unit changes during power supply to the load in the power receiving unit 31 (for example, during charging). The control device 11 includes a calculation unit (control unit, information acquisition unit) 12 that controls the overall operation of the control device 11, and a wireless communication device (information acquisition unit) 13.
 無線通信機13は、無線通信を介して受電ユニット31の無線通信機32から受電電力情報を取得する。無線通信機13は受電電力情報を取得する情報取得部を含む。無線通信機13、および受電ユニット31の無線通信機33は任意の通信装置でよい。例えば、無線LAN、Bluetoothなど一般的な無線通信規格でもよく、独自の無線通信規格でもよい。さらには、送受電部41におけるコイル1、2の磁気的結合を利用したコイル間通信を用いてもよい。 The wireless communication device 13 acquires received power information from the wireless communication device 32 of the power reception unit 31 via wireless communication. The wireless communication device 13 includes an information acquisition unit that acquires received power information. The wireless communication device 13 and the wireless communication device 33 of the power receiving unit 31 may be any communication device. For example, a general wireless communication standard such as a wireless LAN or Bluetooth may be used, or an original wireless communication standard may be used. Further, inter-coil communication using the magnetic coupling of the coils 1 and 2 in the power transmission / reception unit 41 may be used.
 制御装置11は、受電ユニット31との無線通信よりも遅延の小さい方法で通信が可能な形態で送電ユニット21と接続されている。制御装置11と送電ユニット21の通信は、有線通信でもよいし、受電ユニット31と同様に無線通信でもよい。制御装置11は、送電電力情報が入力される入力端子と、送電ユニットに送電調整信号を出力する出力端子を有する。入力端子および出力端子は、送電ユニット21に有線で接続されている。入力端子および出力端子は共通の1つの端子であってもよい。制御装置11は、入力端子を介して送電電力情報を取得する情報取得部を含む。 The control device 11 is connected to the power transmission unit 21 in a form in which communication is possible by a method with a smaller delay than wireless communication with the power reception unit 31. The communication between the control device 11 and the power transmission unit 21 may be wired communication or may be wireless communication like the power receiving unit 31. The control device 11 has an input terminal to which transmission power information is input, and an output terminal that outputs a power transmission adjustment signal to the power transmission unit. The input terminal and the output terminal are connected to the power transmission unit 21 by wire. The input terminal and the output terminal may be one common terminal. The control device 11 includes an information acquisition unit that acquires transmission power information via an input terminal.
 ここでは、送電調整信号と送電電力情報の通信は同じ有線通信であるとしたが、それぞれ異なる通信で送受信されてもよい。たとえば一方が無線で他方が有線でもよいし、両方とも有線であり方式のみが異なってもよい。両通信とも、受電電力情報の通信より遅延が小さいとする。 Here, although the communication of the power transmission adjustment signal and the transmitted power information is the same wired communication, they may be transmitted and received by different communications. For example, one may be wireless and the other may be wired, or both may be wired and only the method may be different. It is assumed that both communications have a smaller delay than that of received power information.
 なお、図1では容量1を交流電源22の出力側に接続し、コイル1をグラウンド端子側に接続しているが、図2(A)に示すように、この接続順を入れ替えた構成としてもよい。受電側も同様の構成としてもよい。 In FIG. 1, the capacitor 1 is connected to the output side of the AC power source 22 and the coil 1 is connected to the ground terminal side. However, as shown in FIG. Good. The power receiving side may have the same configuration.
 さらに、容量1、コイル1のいずれか一方、または両方を複数に分割して接続してもよい。たとえば、容量1を2つに分割する場合、図2(B)に示すように、コイル1の両側にそれぞれ容量1a,1bが接続される。 Furthermore, either one or both of the capacitor 1 and the coil 1 may be divided and connected. For example, when the capacitor 1 is divided into two, the capacitors 1a and 1b are connected to both sides of the coil 1 as shown in FIG.
 または、コイル1を2つに分割する場合、図2(C)に示すように、容量1の両側にそれぞれコイル1a,1bが接続される。この場合、当該2つのコイル1a,1bにより受電側へ電力を伝送する。なお分割数は2に限定されず、3以上でもよい。受電側も同様の構成としてもよい。 Or, when the coil 1 is divided into two, the coils 1a and 1b are respectively connected to both sides of the capacitor 1 as shown in FIG. In this case, electric power is transmitted to the power receiving side by the two coils 1a and 1b. The number of divisions is not limited to 2, and may be 3 or more. The power receiving side may have the same configuration.
 図3(a)および図3(b)に、制御装置11の動作のフローチャートを示す。制御装置11が、送電調整信号を変更する際には、図3(a)または図3(b)の制御フローのいずれか一方を用いる。この動作は制御装置11の演算部12で実行される。いずれの制御動作を選択するかの判定方法については後述する。 3 (a) and 3 (b) show a flowchart of the operation of the control device 11. When the control device 11 changes the power transmission adjustment signal, one of the control flows in FIG. 3 (a) or FIG. 3 (b) is used. This operation is executed by the calculation unit 12 of the control device 11. A method for determining which control operation to select will be described later.
 まず図3(a)の制御フローについて説明する。制御装置11はまず、無線通信を介して受電ユニット31内にて検出される受電電力情報を取得する(ステップS11)。次に、受電電力が第1の所定の範囲内か否かを判定する(ステップS12)。換言すれば、受電電力が第1の所定の範囲の上限(閾値)および下限(閾値)をそれぞれ越えているかを判定する。第1の所定の範囲は、例えば負荷が要求する電力から決定される値、もしくは送電ユニットが規定する値、など任意の値をとりうる。第1の所定の範囲は、コイル間の結合状態や、負荷の状態、送電ユニットの状態に応じて一定間隔で更新される値であってもよい。 First, the control flow in Fig. 3 (a) will be described. First, the control device 11 acquires received power information detected in the power receiving unit 31 via wireless communication (step S11). Next, it is determined whether the received power is within a first predetermined range (step S12). In other words, it is determined whether the received power exceeds the upper limit (threshold value) and the lower limit (threshold value) of the first predetermined range. The first predetermined range can take an arbitrary value such as a value determined from the power required by the load or a value defined by the power transmission unit. The first predetermined range may be a value updated at regular intervals according to the coupling state between the coils, the load state, and the power transmission unit state.
 受電電力が第1の所定の範囲内にある場合、制御装置11は送電調整信号を変更せずに終了する。 When the received power is within the first predetermined range, the control device 11 ends without changing the power transmission adjustment signal.
 受電電力が第1の所定の範囲外である場合、制御装置11は送電調整信号を、受電電力が第1の所定の範囲に近づく方向に補正されるように変更する(ステップS13)。例えば、受電電力が第1の所定の範囲の上限よりも大きい場合には、受電電力が低下するように、すなわち、受信電力が当該上限に近づく方向に補正されるように、送電調整信号を変更する。逆に、受電電力が所定の範囲の下限よりも小さい場合には、受電電力が増加するように、すなわち受信電力が当該下限に近づく方向に補正されるように、送電調整信号を変更すればよい。変更した送電調整信号を、有線通信を介して送電ユニット21に送信する。 When the received power is outside the first predetermined range, the control device 11 changes the power transmission adjustment signal so that the received power is corrected in a direction approaching the first predetermined range (step S13). For example, when the received power is larger than the upper limit of the first predetermined range, the power transmission adjustment signal is changed so that the received power decreases, that is, the received power is corrected in a direction approaching the upper limit. To do. Conversely, when the received power is smaller than the lower limit of the predetermined range, the power transmission adjustment signal may be changed so that the received power increases, that is, the received power is corrected in a direction approaching the lower limit. . The changed power transmission adjustment signal is transmitted to the power transmission unit 21 via wired communication.
 なお、第1の所定の範囲は、ある幅を持った範囲に限らず、所定値のように一点の値の場合も含むこととする。この場合、受電電力が所定の範囲外か否かの判定は、受電電力が所定値と一致するか否かを判定するのと同義となる。 It should be noted that the first predetermined range is not limited to a range having a certain width, but includes a case of a single value such as a predetermined value. In this case, determining whether the received power is outside the predetermined range is synonymous with determining whether the received power matches a predetermined value.
 次に、図3(b)の制御フローについて説明する。 Next, the control flow in FIG. 3 (b) will be described.
 制御装置11はまず、送電電力情報を有線通信を介して取得する(ステップS21)。次に、送電電力が第2の所定の範囲以内か否かを判定する(ステップS22)。換言すれば、送電電力が第2の所定の範囲の上限(閾値)および下限(閾値)をそれぞれ越えているかを判定する。 First, the control device 11 acquires transmission power information via wired communication (step S21). Next, it is determined whether or not the transmitted power is within a second predetermined range (step S22). In other words, it is determined whether the transmission power exceeds the upper limit (threshold value) and the lower limit (threshold value) of the second predetermined range.
 送電電力が第2の所定の範囲内にある場合、制御装置11は送電調整信号を変更せずに終了する(ステップS23)。 When the transmitted power is within the second predetermined range, the control device 11 ends without changing the power transmission adjustment signal (step S23).
 送電電力が第2の所定の範囲外である場合、制御装置11は送電調整信号を、送電電力が第2の所定の範囲に近づく方向に補正されるように変更する。例えば、送電電力が第2の所定の範囲の上限よりも大きい場合には、送電電力が低下するように、すなわち、送電電力が当該上限に近づく方向に補正されるように、送電調整信号を変更する。逆に、送電電力が第2の所定の範囲の下限よりも小さい場合には、送電電力が増加するように、すなわち送電電力が当該下限に近づく方向に補正されるように、送電調整信号を変更する。変更した送電調整信号を送電ユニット21に送信する。本フローを必要に応じて繰り返すことで、送電電力が第2の所定の範囲に調整される。 When the transmitted power is outside the second predetermined range, the control device 11 changes the power transmission adjustment signal so that the transmitted power is corrected in a direction approaching the second predetermined range. For example, when the transmission power is larger than the upper limit of the second predetermined range, the transmission adjustment signal is changed so that the transmission power decreases, that is, the transmission power is corrected in a direction approaching the upper limit. To do. Conversely, when the transmitted power is smaller than the lower limit of the second predetermined range, the transmission adjustment signal is changed so that the transmitted power increases, that is, the transmission power is corrected in a direction approaching the lower limit. To do. The changed power transmission adjustment signal is transmitted to the power transmission unit 21. By repeating this flow as necessary, the transmitted power is adjusted to the second predetermined range.
 図3(a)の制御フローにおいては、受電電力情報の収集が無線通信を介して行われる。このため、送電調整信号の更新の頻度は、無線通信機能の遅延により律速される。一方、図3(b)の制御フローにおいては情報の収集が、有線通信等、受電電力情報の収集より遅延の小さい方法で行われるため、送電調整信号の変更頻度は、図3(a)よりも高頻度にすることが可能である。例えば、電力回路の応答時間毎に、送電調整信号を更新するように構成できる。このため、図3(b)の制御フローの動作は高速な応答が要求される場合に好適である。 In the control flow of FIG. 3 (a), received power information is collected via wireless communication. For this reason, the frequency of updating the power transmission adjustment signal is limited by the delay of the wireless communication function. On the other hand, in the control flow of FIG. 3 (b), since the information collection is performed by a method with a smaller delay than the collection of received power information such as wired communication, the change frequency of the transmission adjustment signal is as shown in FIG. 3 (a). It is possible to increase the frequency. For example, the power transmission adjustment signal can be updated every response time of the power circuit. For this reason, the operation of the control flow in FIG. 3B is suitable when a high-speed response is required.
 制御装置11は、図3(a)および図3(b)の制御フローのいずれか一方を選択して実行する動作を一定間隔で連続的に行ってもよい。または、当該動作を、送電電力情報、または受電電力情報が、前回当該動作を行ったときの値から一定量以上変化する毎に行ってもよい。または、その他のタイミングで動作を行っても良い。 The control device 11 may continuously perform an operation of selecting and executing any one of the control flows of FIG. 3 (a) and FIG. 3 (b) at regular intervals. Alternatively, the operation may be performed every time transmission power information or received power information changes by a certain amount or more from a value when the operation was performed last time. Alternatively, the operation may be performed at other timing.
 ここで、図3(a)および図3(b)に示した制御フローの切り換えを判定する方法について説明する。 Here, a method for determining the switching of the control flow shown in FIGS. 3 (a) and 3 (b) will be described.
 通常、制御装置11は、図3(a)に示す制御フローを基本動作フローとして事前に選択しておき、この制御フローで動作する。これにより、受電電力、電圧、または電流などを常時、目標範囲に制御する。これは、負荷32が一定の電力を要求する際などに好適である。 Normally, the control device 11 selects the control flow shown in FIG. 3 (a) as a basic operation flow in advance, and operates according to this control flow. As a result, the received power, voltage, current, or the like is constantly controlled within the target range. This is suitable when the load 32 requires constant power.
 ただし、送受電電力に関わる要素が一定量以上、または一定速度以上で変化した場合、図3(a)の制御フローでは追従できない送電電力または受電電力の変動が生じる可能性がある。このとき、電力が過度に増大、または減少することにより、送電の停止や故障などが生じる可能性がある。このような場合に図3(b)に示した制御フローの動作に切り替えることで、高速な追従応答が可能となる。これにより、装置の停止や故障などが生じるのを避けることができる。 However, if the factors related to transmission / reception power change at a certain level or more, or at a certain speed or more, there may be fluctuations in the transmission power or the reception power that cannot be followed by the control flow in Fig. 3 (a). At this time, there is a possibility that power transmission will stop or fail due to excessive increase or decrease in power. In such a case, by switching to the operation of the control flow shown in FIG. 3 (b), a high-speed tracking response becomes possible. As a result, it is possible to avoid the stoppage or failure of the apparatus.
 図3(b)の制御フローに切り替える基準は、例えば受電電力が第1の所定の範囲の上限から一定量以上増大した場合としてもよい。これは、図3(a)の制御フローにより第1の所定の範囲に近づくよう受電電力を制御しているにもかかわらず、受電電力がその上限値から一定量以上増大していることから、図3(a)の制御フローでは追従できない程度の速度で何らかの要素の状態が変化していると判断できるためである。 The reference for switching to the control flow in FIG. 3 (b) may be, for example, a case where the received power increases by a certain amount or more from the upper limit of the first predetermined range. This is because even though the received power is controlled so as to approach the first predetermined range by the control flow of FIG. This is because it can be determined that the state of some element is changing at a speed that cannot be followed by the control flow of FIG.
 同様に、受電電力が第1の所定の範囲の下限から一定量以上下回った場合に切り替えてもよい。 Similarly, switching may be performed when the received power falls below a certain amount from the lower limit of the first predetermined range.
 また、受電電力の所定時間での変化量が、一定値以上になった場合に、図3(b)の制御フローに切り換えてもよい。 Also, when the amount of change in the received power over a predetermined time becomes a certain value or more, the control flow may be switched to the control flow in FIG.
 さらには、送電電力の大きさ、または変化幅が、一定値以上になった場合に、図3(b)の制御フローに切り換えてもよい。 Furthermore, when the magnitude or change width of the transmission power exceeds a certain value, the control flow may be switched to the control flow in FIG.
 さらには、無線通信が断絶した場合に、無線通信を使用しない図3(b)の制御フローに切り替える構成としてもよい。 Furthermore, when the wireless communication is interrupted, the control flow may be switched to the control flow in FIG. 3B that does not use the wireless communication.
 制御フローの切り替えを判定する機能を受電ユニット内、もしくは受電ユニットと接続される別の装置として設け、制御フローの切り替えの指令を、無線通信機を介して制御装置11に通知してもよい。 A function for determining switching of the control flow may be provided in the power receiving unit or as another device connected to the power receiving unit, and a control flow switching command may be notified to the control device 11 via a wireless communication device.
 図3(b)の制御フローを用いる状態から、図3(a)の制御フローを用いる状態に切り替える基準は、例えば図3(b)の制御フローを用いる状態に変更された後、一定時間が経過した場合としてもよい。または、受電電力、または送電電力の大きさを基準としてもよい。例えば、送電電力が第2の所定の範囲にある場合には、図3(a)の制御フローに切り替えてもよい。 The standard for switching from the state using the control flow in FIG. 3 (b) to the state using the control flow in FIG. 3 (a) is changed to a state using the control flow in FIG. It may be the case when it has passed. Alternatively, the received power or the magnitude of the transmitted power may be used as a reference. For example, when the transmitted power is in the second predetermined range, the control flow may be switched to the control flow in FIG.
 または、図3(b)の制御フローを用いる場合にも、受電電力を一定間隔で監視し、受電電力が第1の所定の範囲に収まった場合などに、図3(a)の制御フローに切り替えてもよい。このとき、例えば、受電ユニット31内に設けた別の装置により受電電力を一定間隔で監視し、受電電力が第1の所定の範囲に収まった際に制御フローの切り替えを指示する信号を、無線通信を介して制御装置に通知してもよい。 Alternatively, even when the control flow of FIG. 3 (b) is used, the received power is monitored at regular intervals, and when the received power is within the first predetermined range, the control flow of FIG. You may switch. At this time, for example, the received power is monitored at a predetermined interval by another device provided in the power receiving unit 31, and when the received power falls within the first predetermined range, a signal for instructing switching of the control flow is transmitted wirelessly. You may notify a control apparatus via communication.
 これらの制御フローの切り替えの基準は、以上に述べたものを複数組み合わせて用いてもよい。 These control flow switching criteria may be used in combination of a plurality of those described above.
 図3(b)の制御フローにおいて、送電電力の第2の所定の範囲は任意に設定できる。 In the control flow of FIG. 3 (b), the second predetermined range of transmission power can be set arbitrarily.
 例えば、受電電力が第1の所定の範囲の上限を超えないようにするために、第2の所定の範囲の上限は、第1の所定の範囲の上限において受電ユニット31に供給される最大電力以下の電力が送電側から供給されるよう定めてもよい。この場合、送電電力から伝送中の損失分だけ低い電力が受電側に供給されるため、第1の所定の範囲の上限を超えない電力を受電ユニットに供給できる。 For example, in order to prevent the received power from exceeding the upper limit of the first predetermined range, the upper limit of the second predetermined range is the maximum power supplied to the power receiving unit 31 at the upper limit of the first predetermined range. You may determine that the following electric power is supplied from the power transmission side. In this case, power that is lower than the transmitted power by the loss during transmission is supplied to the power receiving side, so that power that does not exceed the upper limit of the first predetermined range can be supplied to the power receiving unit.
 また、制御フローを切り替える前に、受電電力が第1の所定の範囲内であった際の送電電力情報を保持しておき、その値に応じて、第2の所定の範囲を設定してもよい。この場合、効率の変化が微小であれば、第1の所定の範囲に近い電力を受電ユニットに供給できる。 In addition, before switching the control flow, the transmission power information when the received power is within the first predetermined range is retained, and the second predetermined range may be set according to the value. Good. In this case, if the change in efficiency is small, power close to the first predetermined range can be supplied to the power receiving unit.
 さらには、安全のために第1の所定の範囲よりも十分低い電力が受電ユニットに供給されるよう第2の所定の範囲を定めてもよい。 Furthermore, for safety, the second predetermined range may be determined so that power sufficiently lower than the first predetermined range is supplied to the power receiving unit.
 もしくは、別途保護停止動作をONするための閾値を設けておき、その閾値よりも低い値となるよう、第2の所定の範囲の上限値を設定してもよい。 Alternatively, a threshold value for turning on the protection stop operation may be provided separately, and the upper limit value of the second predetermined range may be set so as to be a value lower than the threshold value.
 また、第2の所定の範囲の下限値は、送電が維持可能な範囲で十分低い値に設定してもよい。 Also, the lower limit value of the second predetermined range may be set to a sufficiently low value within a range where power transmission can be maintained.
第2の実施の形態Second embodiment
 本発明に関する第2の実施の形態について、図4を用いて説明する。図4に第2の実施の形態に係る制御装置を備えた無線電力電送装置を示す。 A second embodiment relating to the present invention will be described with reference to FIG. FIG. 4 shows a wireless power transmission apparatus provided with a control apparatus according to the second embodiment.
 第1の実施の形態では、受電ユニットと制御装置が無線で接続されていたが、第2の実施の形態では、図4に示すように、受電ユニットと制御装置は有線で接続され、送電ユニット22と制御装置41が無線で接続されている。送電ユニット22は、無線通信機22を備え、無線通信機22は、制御装置41の無線通信機43と無線通信する。 In the first embodiment, the power receiving unit and the control device are connected wirelessly, but in the second embodiment, as shown in FIG. 4, the power receiving unit and the control device are connected by wire, and the power transmission unit 22 and the control device 41 are connected wirelessly. The power transmission unit 22 includes a wireless communication device 22, and the wireless communication device 22 wirelessly communicates with the wireless communication device 43 of the control device 41.
 制御装置41は、演算部42と、無線通信機43とを備える。無線通信機43は、送電ユニット21の無線通信機22と通信する。演算部42は、負荷のインピーダンスを調整する信号である受電調整信号(インピーダンス調整信号)を生成して、受電ユニット31に出力する。前述した式(1)から分かる通り、負荷のインピーダンスを変更することにより、受電電力を変更できる。例えば受電電力を大きくする際には負荷抵抗が大きく、受電電力を小さくする際には負荷抵抗が小さくなるよう受電調整信号を変更すればよい。ただし、この関係は、コイルと容量の接続や結合の状態にも依存して逆にもなりうる。 The control device 41 includes a calculation unit 42 and a wireless communication device 43. The wireless communication device 43 communicates with the wireless communication device 22 of the power transmission unit 21. The calculation unit 42 generates a power reception adjustment signal (impedance adjustment signal) that is a signal for adjusting the impedance of the load, and outputs the power reception adjustment signal to the power reception unit 31. As can be seen from Equation (1), the received power can be changed by changing the load impedance. For example, the received power adjustment signal may be changed so that the load resistance is large when the received power is increased, and the load resistance is decreased when the received power is decreased. However, this relationship can be reversed depending on the connection and coupling state between the coil and the capacitor.
 第2の実施の形態における制御フローを図5に示す。図5(a)は第1の実施の形態における図3(a)、図5(b)は図3(b)に対応する。これらの制御フローの動作は、演算部42が実行する。 Fig. 5 shows the control flow in the second embodiment. FIG. 5 (a) corresponds to FIG. 3 (a) and FIG. 5 (b) corresponds to FIG. 3 (b) in the first embodiment. The operation of these control flows is executed by the calculation unit 42.
 図5(a)の制御フローにおいて、制御装置41は、まず受電電力情報を取得する(ステップS31)。受電電力が第1の所定の範囲内の場合には(ステップS32のYES)、何もせずに終了する。一方、受電電力が第1の所定の範囲外の場合には(ステップS32のNO)、受電電力が第1の所定の範囲に近づく方向に補正されるように、無線通信を介して送電調整信号を変更する。 In the control flow of FIG. 5 (a), the control device 41 first acquires received power information (step S31). If the received power is within the first predetermined range (YES in step S32), the process ends without doing anything. On the other hand, when the received power is outside the first predetermined range (NO in step S32), the power transmission adjustment signal is transmitted via wireless communication so that the received power is corrected in a direction approaching the first predetermined range. To change.
 一方、図5(b)の制御フローにおいては、制御装置41はまず受電電力情報(ステップS41)を取得する。受電電力が第2の所定の範囲内の場合には(ステップS42のYES)、何もせずに終了する。一方、受電電力が第2の所定の範囲外の場合には(ステップS42のNO)、受電電力が第2の所定の範囲に近づく方向に補正されるように受電調整信号を変更する(ステップS43)。図5(b)の動作においては無線通信を介さないため、高速な制御が可能となる。 On the other hand, in the control flow of FIG. 5 (b), the control device 41 first acquires received power information (step S41). If the received power is within the second predetermined range (YES in step S42), the process ends without doing anything. On the other hand, when the received power is outside the second predetermined range (NO in step S42), the received power adjustment signal is changed so that the received power is corrected in a direction approaching the second predetermined range (step S43). ). In the operation of FIG. 5 (b), high-speed control is possible because wireless communication is not performed.
 なお、図5のフローで示した第1の所定の範囲および第2の所定の範囲は、第1の実施の形態で用いた第1の所定の範囲および第2の所定の範囲と特に関連性があるものではなく、各実施の形態でそれぞれ独立して範囲の値は定められる。このことは以降の他の実施形態においても同様である。 Note that the first predetermined range and the second predetermined range shown in the flow of FIG. 5 are particularly related to the first predetermined range and the second predetermined range used in the first embodiment. In each embodiment, the range value is determined independently. The same applies to other embodiments described below.
 ここで、図6に、インピーダンスを変更可能な装置を含む負荷の例を示す。図6に示す構成は、電力を消費、または蓄積する装置102に加え、AC-DC変換器(整流器)104、およびDC-DC変換器103を備える。この場合、DC-DC変換器103の電圧変換比を受電調整信号により調整することで、インピーダンスの調整が可能である。 Here, FIG. 6 shows an example of a load including a device whose impedance can be changed. The configuration shown in FIG. 6 includes an AC-DC converter (rectifier) 104 and a DC-DC converter 103 in addition to a device 102 that consumes or stores electric power. In this case, the impedance can be adjusted by adjusting the voltage conversion ratio of the DC-DC converter 103 using the power reception adjustment signal.
 さらに、図7に示すように、AC-AC変換器106とAC-DC変換器(整流器)105を用い、AC-AC変換器106の電圧変換比を、受電調整信号に応じて変更してもよい。 Furthermore, as shown in FIG. 7, the AC-AC converter 106 and the AC-DC converter (rectifier) 105 are used, and the voltage conversion ratio of the AC-AC converter 106 can be changed according to the power reception adjustment signal. Good.
 そのほかにも、可変容量や可変インダクタンスを直列、または並列に接続し、それらの可変要素の値を、受電調整信号により調整してもよい。また、電力を消費、または蓄積する装置において受容する電力を変更することで、負荷のインピーダンスを変更してもよい。もしくは、コイル2の位置、フェライトの量などを変更することにより、コイル2のインダクタンス、結合係数などを変更することにより、送電側から見た等価的なインピーダンスを変化させてもよい。 In addition, a variable capacitor and a variable inductance may be connected in series or in parallel, and the values of these variable elements may be adjusted by a power reception adjustment signal. Further, the impedance of the load may be changed by changing the power received by the device that consumes or stores the power. Alternatively, the equivalent impedance viewed from the power transmission side may be changed by changing the inductance, coupling coefficient, etc. of the coil 2 by changing the position of the coil 2, the amount of ferrite, and the like.
第3の実施の形態Third embodiment
 第3の実施の形態について図8を用いて説明する。図8に第3の実施の形態に係る制御装置を備えた無線電力電送装置を示す。 The third embodiment will be described with reference to FIG. FIG. 8 shows a wireless power transmission device including a control device according to the third embodiment.
 第2の実施の形態では、通常制御時および高速制御時のいずれも受電電力を一定範囲に制御していたが、第3の実施の形態では、通常制御時は送電電力を一定範囲に制御し、高速制御時は受電電力を一定範囲に制御する。本実施形態では、無線通信を介して送電電力情報が制御装61に入力される。 In the second embodiment, the received power is controlled within a certain range both during normal control and during high-speed control.In the third embodiment, the transmitted power is controlled within a certain range during normal control. During high speed control, the received power is controlled within a certain range. In the present embodiment, transmission power information is input to the control device 61 via wireless communication.
 第3の実施の形態における制御フローを図9に示す。図5(a)は第1の実施の形態の場合の図3(a)、図5(b)は図3(b)に対応する。これらの制御フローは演算部42が実行する。 FIG. 9 shows a control flow in the third embodiment. FIG. 5 (a) corresponds to FIG. 3 (a) in the case of the first embodiment, and FIG. 5 (b) corresponds to FIG. 3 (b). These control flows are executed by the calculation unit 42.
 図9 (a)の制御フローにおいて、制御装置61は、まず送電電力情報を取得する(ステップS51)。送電電力が第1の所定の範囲内の場合には(ステップS52のYES)、何もせずに終了する。一方、送電電力が第1の所定の範囲外の場合には(ステップS52のNO)、送電電力が第1の所定の範囲に近づく方向に補正されるように、無線通信を介して送電調整信号を変更する。 In the control flow of FIG. 9 (a), the control device 61 first acquires transmission power information (step S51). If the transmitted power is within the first predetermined range (YES in step S52), the process ends without doing anything. On the other hand, when the transmitted power is outside the first predetermined range (NO in step S52), the power transmission adjustment signal is transmitted via wireless communication so that the transmitted power is corrected in a direction approaching the first predetermined range. To change.
 一方図9(b)の制御フローにおいては、制御装置61はまず受電電力情報(ステップS61)を取得する。受電電力が第2の所定の範囲内の場合には(ステップS62のYES)、何もせずに終了する。一方、受電電力が第2の所定の範囲外の場合には(ステップS62のNO)、受電電力が第2の所定の範囲に近づく方向に補正されるように受電調整信号を変更する(ステップS63)。図9(b)の動作においては無線通信を介さないため、高速な制御が可能となる。 On the other hand, in the control flow of FIG. 9 (b), the control device 61 first acquires received power information (step S61). If the received power is within the second predetermined range (YES in step S62), the process ends without doing anything. On the other hand, when the received power is outside the second predetermined range (NO in step S62), the received power adjustment signal is changed so that the received power is corrected in a direction approaching the second predetermined range (step S63). ). In the operation of FIG. 9 (b), high-speed control is possible because wireless communication is not performed.
第4の実施の形態Fourth embodiment
 第4の実施の形態について図10を用いて説明する。図10に第4の実施の形態に係る制御装置を備えた無線電力電送装置を示す。 The fourth embodiment will be described with reference to FIG. FIG. 10 shows a wireless power transmission device including a control device according to the fourth embodiment.
 第3の実施形態では、通常制御時、送電電力を送電調整信号により制御したが(図9(a)参照)、第4の実施の形態では、送電電力を受電調整信号により調整する。高速制御時には、受電調整信号を用いて受電電力を所定の範囲に制御する。 In the third embodiment, the transmission power is controlled by the transmission adjustment signal during normal control (see FIG. 9A), but in the fourth embodiment, the transmission power is adjusted by the power reception adjustment signal. During high speed control, the received power is controlled within a predetermined range using the received power adjustment signal.
 第3の実施の形態における制御フローを図11に示す。図11(a)は第1の実施の形態の場合の図3(a)、図11(b)は図3(b)に対応する。これらの制御フローは演算部42が実行する。 FIG. 11 shows a control flow in the third embodiment. FIG. 11 (a) corresponds to FIG. 3 (a) and FIG. 11 (b) corresponds to FIG. 3 (b) in the case of the first embodiment. These control flows are executed by the calculation unit 42.
 図11 (a)の制御フローにおいて、制御装置51は、まず無線通信を介して送電電力情報を取得する(ステップS71)。送電電力が第1の所定の範囲内の場合には(ステップS72のYES)、何もせずに終了する。一方、送電電力が第1の所定の範囲外の場合には(ステップS72のNO)、送電電力が第1の所定の範囲に近づく方向に補正されるように、受電調整信号を変更する。 In the control flow of FIG. 11 (a), the control device 51 first acquires transmission power information via wireless communication (step S71). If the transmitted power is within the first predetermined range (YES in step S72), the process ends without doing anything. On the other hand, when the transmitted power is outside the first predetermined range (NO in step S72), the power reception adjustment signal is changed so that the transmitted power is corrected in a direction approaching the first predetermined range.
 一方図11(b)の制御フローにおいては、制御装置51はまず受電電力情報(ステップS81)を取得する。受電電力が第2の所定の範囲内の場合には(ステップS82のYES)、何もせずに終了する。一方、受電電力が第2の所定の範囲外の場合には(ステップS82のNO)、受電電力が第2の所定の範囲に近づく方向に補正されるように受電調整信号を変更する(ステップS83)。図11(b)の動作においては無線通信を介さないため、高速な制御が可能となる。 On the other hand, in the control flow of FIG. 11 (b), the control device 51 first acquires received power information (step S81). If the received power is within the second predetermined range (YES in step S82), the process ends without doing anything. On the other hand, when the received power is outside the second predetermined range (NO in step S82), the received power adjustment signal is changed so that the received power is corrected in a direction approaching the second predetermined range (step S83). ). In the operation of FIG. 11 (b), since wireless communication is not performed, high-speed control is possible.
第5の実施の形態Fifth embodiment
 第5の実施の形態について図12を用いて説明する。図12に第5の実施の形態に係る制御装置を備えた無線電力電送装置を示す。 The fifth embodiment will be described with reference to FIG. FIG. 12 shows a wireless power transmission device including a control device according to the fifth embodiment.
 第5の実施の形態では、第1の実施の形態と同様、制御装置71が受電ユニット31と無線通信を介して接続され、送電ユニット21と有線により接続される。通常制御時は、受電電力を受電調整信号により所定の範囲に調整する。高速制御時は、送電調整信号を用いて送電電力を所定の範囲に制御する。 In the fifth embodiment, as in the first embodiment, the control device 71 is connected to the power receiving unit 31 via wireless communication, and is connected to the power transmission unit 21 by wire. During normal control, the received power is adjusted to a predetermined range by the received power adjustment signal. During high-speed control, the transmission power is controlled within a predetermined range using the transmission adjustment signal.
 第5の実施の形態における制御フローを図13に示す。図13(a)は第1の実施の形態の場合の図3(a)、図13(b)は図3(b)に対応する。これらの制御フローは演算部12が実行する。 FIG. 13 shows a control flow in the fifth embodiment. FIG. 13 (a) corresponds to FIG. 3 (a) and FIG. 13 (b) corresponds to FIG. 3 (b) in the case of the first embodiment. These control flows are executed by the calculation unit 12.
 図13(a)の制御フローにおいて、制御装置71は、まず無線通信を介して受電電力情報を取得する(ステップS91)。受電電力が第1の所定の範囲内の場合には(ステップS92のYES)、何もせずに終了する。一方、受電電力が第1の所定の範囲外の場合には(ステップS92のNO)、受電電力が第1の所定の範囲に近づく方向に補正されるように、無線通信を介して受電調整信号を変更する。 In the control flow of FIG. 13 (a), the control device 71 first acquires received power information via wireless communication (step S91). If the received power is within the first predetermined range (YES in step S92), the process ends without doing anything. On the other hand, if the received power is outside the first predetermined range (NO in step S92), the power reception adjustment signal is transmitted via wireless communication so that the received power is corrected in a direction approaching the first predetermined range. To change.
 一方図13(b)の制御フローにおいては、制御装置71はまず送電電力情報(ステップS101)を取得する。送電電力が第2の所定の範囲内の場合には(ステップS102のYES)、何もせずに終了する。一方、送電電力が第2の所定の範囲外の場合には(ステップS102のNO)、送電電力が第2の所定の範囲に近づく方向に補正されるように送電調整信号を変更する(ステップS103)。図13(b)の動作においては無線通信を介さないため、高速な制御が可能となる。 On the other hand, in the control flow of FIG. 13 (b), the control device 71 first acquires transmission power information (step S101). If the transmitted power is within the second predetermined range (YES in step S102), the process ends without doing anything. On the other hand, when the transmitted power is outside the second predetermined range (NO in step S102), the transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range (step S103). ). In the operation of FIG. 13 (b), high-speed control is possible because wireless communication is not performed.
第6の実施の形態Sixth embodiment
 第6の実施の形態について図14を用いて説明する。図14に第6の実施の形態に係る制御装置を備えた無線電力電送装置を示す。制御装置81は、送電ユニット21と有線により接続され、受電ユニット31と無線により接続される。 The sixth embodiment will be described with reference to FIG. FIG. 14 shows a wireless power transmission device including a control device according to the sixth embodiment. The control device 81 is connected to the power transmission unit 21 by wire and is connected to the power reception unit 31 wirelessly.
 第5の実施の形態では、通常制御時、受電電力を所定の範囲に受電調整信号により制御したが、本実施形態では、送電電力を所定の範囲に受電調整信号により制御する。高速制御時は、送電電力を所定の範囲に送電調整信号により制御する。 In the fifth embodiment, during normal control, the received power is controlled within a predetermined range by the power reception adjustment signal, but in this embodiment, the transmitted power is controlled within the predetermined range by the power reception adjustment signal. During high-speed control, transmission power is controlled within a predetermined range by a transmission adjustment signal.
 第5の実施の形態における制御フローを図15に示す。図15(a)は第1の実施の形態の場合の図3(a)、図15(b)は図3(b)に対応する。これらの制御フローは演算部12が実行する。 FIG. 15 shows a control flow in the fifth embodiment. FIG. 15 (a) corresponds to FIG. 3 (a) in the case of the first embodiment, and FIG. 15 (b) corresponds to FIG. 3 (b). These control flows are executed by the calculation unit 12.
 図15(a)の制御フローにおいて、制御装置81は、まず送電電力情報を取得する(ステップS111)。送電電力が第1の所定の範囲内の場合には(ステップS112のYES)、何もせずに終了する。一方、送電電力が第1の所定の範囲外の場合には(ステップS112のNO)、送電電力が第1の所定の範囲に近づく方向に補正されるように、無線通信を介して受電調整信号を変更する。 In the control flow of FIG. 15 (a), the control device 81 first acquires transmission power information (step S111). If the transmitted power is within the first predetermined range (YES in step S112), the process ends without doing anything. On the other hand, when the transmitted power is outside the first predetermined range (NO in step S112), the power reception adjustment signal is transmitted via wireless communication so that the transmitted power is corrected in a direction approaching the first predetermined range. To change.
 一方図15(b)の制御フローにおいては、制御装置71はまず送電電力情報(ステップS121)を取得する。送電電力が第2の所定の範囲内の場合には(ステップS122のYES)、何もせずに終了する。一方、送電電力が第2の所定の範囲外の場合には(ステップS122のNO)、送電電力が第2の所定の範囲に近づく方向に補正されるように送電調整信号を変更する(ステップS123)。図15(b)の動作においては無線通信を介さないため、高速な制御が可能となる。 On the other hand, in the control flow of FIG. 15 (b), the control device 71 first acquires transmission power information (step S121). If the transmitted power is within the second predetermined range (YES in step S122), the process ends without doing anything. On the other hand, when the transmitted power is outside the second predetermined range (NO in step S122), the transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range (step S123). ). In the operation of FIG. 15 (b), since wireless communication is not performed, high-speed control is possible.
第7の実施の形態Seventh embodiment
 第7の実施の形態について図16を用いて説明する。図16に第7の実施の形態に係る制御装置を備えた無線電力電送装置を示す。制御装置11は、送電ユニット21と有線により接続され、受電ユニット31と無線により接続される。 The seventh embodiment will be described with reference to FIG. FIG. 16 shows a wireless power transmission device including a control device according to the seventh embodiment. The control device 11 is connected to the power transmission unit 21 by wire and is connected to the power reception unit 31 by radio.
 第7の実施の形態は、第1の実施の形態に加え、コイル位置検出器17を備える。コイル位置検出器17は、送電ユニット21または受電ユニット31のいずれかに含まれてもよく、別の装置として備えてもよい。また、制御装置11とコイル位置検出器17の接続は任意の方法でよく、たとえば無線接続でもよいし、有線接続でもよい。 The seventh embodiment includes a coil position detector 17 in addition to the first embodiment. The coil position detector 17 may be included in either the power transmission unit 21 or the power reception unit 31, and may be provided as a separate device. Further, the control device 11 and the coil position detector 17 may be connected by any method, for example, wireless connection or wired connection.
 第7の実施の形態では、図3(a)と図3(b)の制御フローの切り替えを、コイル位置検出器17の出力に従って行う。 In the seventh embodiment, the switching of the control flow in FIG. 3 (a) and FIG. 3 (b) is performed according to the output of the coil position detector 17.
 例えば、コイル1、2の少なくとも一方のコイル位置が、所定の相対位置から一定量以上動いた場合、または一定速度以上での変位が生じた場合などに、制御フローを図3(a)から図3(b)に切り替える。逆に、当該コイル位置の変位が一定量以下になった場合、速度が一定以下になった場合などに、図3(b)から図3(a)の制御フローに切り替える。この実施の形態により、コイルの位置の変動により電力が大きく変動する可能性がある際に、高速な制御動作に切り替えることができる。 For example, when the coil position of at least one of the coils 1 and 2 moves from a predetermined relative position by a certain amount or when displacement occurs at a certain speed or more, the control flow is shown in FIG. 3 (a). Switch to 3 (b). On the other hand, when the displacement of the coil position becomes a certain amount or less, or when the speed becomes a certain value or less, the control flow is switched from FIG. 3 (b) to FIG. 3 (a). According to this embodiment, when there is a possibility that the electric power largely fluctuates due to fluctuations in the coil position, it is possible to switch to a high-speed control operation.
第8の実施の形態Eighth embodiment
 第8の実施の形態について説明する。第8の実施の形態では、第5の実施の形態における通常制御時の制御フロー動作に、伝送効率の調整動作が追加される。これにより、通常制御時の動作では、伝送効率と電力(送電電力、受電電力)の双方の調整が可能となる。一方、高速な制御動作が必要な場合には、送電電力のみを調整する制御フローとすることで高速な制御動作を実現する。 The eighth embodiment will be described. In the eighth embodiment, a transmission efficiency adjustment operation is added to the control flow operation during normal control in the fifth embodiment. Thereby, in the operation | movement at the time of normal control, adjustment of both transmission efficiency and electric power (transmitted power, received electric power) is attained. On the other hand, when a high-speed control operation is required, a high-speed control operation is realized by using a control flow that adjusts only the transmission power.
 第8の実施の形態に係る装置の構成の一例は図12と同様であるため省略する。第8の実施の形態に係るフローチャートの一例を図17に示す。高速制御時の図17(b)の制御フローは、図13(b)と同じであるため、説明を省略し、ここでは図17(a)の制御フローのみ説明する。 An example of the configuration of the apparatus according to the eighth embodiment is the same as that shown in FIG. FIG. 17 shows an example of a flowchart according to the eighth embodiment. Since the control flow in FIG. 17B during high-speed control is the same as that in FIG. 13B, the description thereof will be omitted, and only the control flow in FIG. 17A will be described here.
 通常制御時の制御フローを示す図17(a)において、送電電力情報を取得し(ステップS131)、受電電力情報を無線通信を介して取得し(ステップS132)、伝送効率を計算する(ステップS133)。 In FIG. 17A showing the control flow during normal control, transmission power information is acquired (step S131), received power information is acquired via wireless communication (step S132), and transmission efficiency is calculated (step S133). ).
 伝送効率が所定の値より大きいか否かを判定し(ステップS134)、伝送効率が所定の値以下の場合には、無線通信を介して伝送効率が向上するよう受電調整信号を変更する(ステップS137)。 It is determined whether or not the transmission efficiency is greater than a predetermined value (step S134). If the transmission efficiency is equal to or less than the predetermined value, the power reception adjustment signal is changed so that the transmission efficiency is improved via wireless communication (step S134). S137).
 伝送効率が所定の値よりも大きい場合には、受電電力が第1の所定の範囲か否かを判定する。受電電力が第1の所定の範囲でない場合には、受電電力が第1の所定の範囲に近づく方向に補正されるように受電調整信号を変更する。 When the transmission efficiency is larger than a predetermined value, it is determined whether the received power is in the first predetermined range. When the received power is not in the first predetermined range, the received power adjustment signal is changed so that the received power is corrected in a direction approaching the first predetermined range.
 なお、ここでは伝送効率そのものを指標として伝送効率を調整する手段について示したが、指標とするのは伝送効率そのものでなくてもよい。例えば損失を指標としてもよい。さらには、例えば伝送効率と相関のある送電側と受電側の任意の点の電圧の比、または差などを、伝送効率の推定値として求め、これを指標として用いてもよい。 In addition, although the means for adjusting the transmission efficiency is shown here using the transmission efficiency itself as an index, the index may not be the transmission efficiency itself. For example, loss may be used as an index. Furthermore, for example, a ratio or difference between voltages at arbitrary points on the power transmission side and the power reception side correlated with the transmission efficiency may be obtained as an estimated value of the transmission efficiency and used as an index.
 伝送効率を調整する際の調整信号の増減方法としては、伝送効率が向上するよう調整するための調整信号の増減方向が既知の場合には、それにしたがって増減させればよい。伝送効率が向上する調整信号の変化方向が未知の場合には、例えば一定範囲を掃引して変化させるべき方向を決定してもよい。さらには、掃引して伝送効率が最大となる点を探索してもよい。 As a method of increasing / decreasing the adjustment signal when adjusting the transmission efficiency, if the increase / decrease direction of the adjustment signal for adjusting the transmission efficiency is known, the adjustment signal may be increased / decreased accordingly. If the change direction of the adjustment signal that improves the transmission efficiency is unknown, for example, the direction to be changed may be determined by sweeping a certain range. Further, a point where the transmission efficiency is maximized by sweeping may be searched.
 図17(a)の制御フローで、伝送効率の判定を行った後に受電電力の判定を行っているが、この順序を逆にしてもよい。また、第1の所定の範囲か否かの判定を分割して行ってもよい。たとえば電力の上限の判定を行った後に伝送効率の判定を行い、その後で電力の下限の判定を行ってもよい。伝送効率の判定も、所定の値以下か否かでなく、所定の範囲内か否かで行ってもよい。 In the control flow of FIG. 17A, the received power is determined after determining the transmission efficiency, but this order may be reversed. Further, the determination of whether or not the first predetermined range may be performed may be divided. For example, the transmission efficiency may be determined after determining the upper limit of power, and then the lower limit of power may be determined. The determination of the transmission efficiency may also be made based on whether or not it is within a predetermined range, not whether or not it is less than a predetermined value.
第9の実施の形態Ninth embodiment
 図18に、第9の実施の形態に関わる無線電力電送装置の構成を示す。これまでの実施の形態では制御装置は1つであったが、第9の実施の形態では2つの制御装置を備える。当該2つの制御装置は、受電ユニット31に接続された制御装置201と、送電ユニット21に接続された制御装置202とを含む。図18は、図1の構成を、2つの制御装置の構成に変形した例を示す。 FIG. 18 shows the configuration of the wireless power transmission apparatus according to the ninth embodiment. In the previous embodiments, there was one control device, but in the ninth embodiment, two control devices are provided. The two control devices include a control device 201 connected to the power receiving unit 31 and a control device 202 connected to the power transmission unit 21. FIG. 18 shows an example in which the configuration of FIG. 1 is modified to the configuration of two control devices.
 受電側の制御装置201は、演算部211と無線通信機221とを含む。送電側の制御装置202は、演算部212と無線通信機222とを含む。送電側の制御装置201と受電側の制御装置202は、無線通信機221、222によって無線により接続されている。 The control device 201 on the power receiving side includes a calculation unit 211 and a wireless communication device 221. The power transmission side control device 202 includes a calculation unit 212 and a wireless communication device 222. The power transmission side control device 201 and the power reception side control device 202 are wirelessly connected by wireless communication devices 221 and 222.
 この実施の形態における動作のフローを図19に示す。図19(a)は受電側の制御装置201の動作を示し、図19(b)は送電側の制御装置202の動作を示す。 FIG. 19 shows an operation flow in this embodiment. FIG. 19 (a) shows the operation of the control device 201 on the power receiving side, and FIG. 19 (b) shows the operation of the control device 202 on the power transmission side.
 図19(a)に示すように、通常制御時、受電側の制御装置201の演算部211は、受電電力情報を取得し(ステップS141)、受電電力が第1の所定の範囲内かを判定する(ステップS142)。受電電力が第1の所定の範囲内でない場合は、受電電力が第1の所定の範囲に近づく方向に補正されるように、送電調整信号の変更指示を、無線通信を介して、送電側の制御装置202に通知する(ステップS143)。変更指示には、送電調整信号の調整量の指定を含めてもよい。送電側の制御装置202は、受電側から指定された調整量に従って、送電調整信号を変更し送信する。調整量の指定が含められない場合は、送電側は予め指定された量だけ変更してもよい。 As shown in FIG. 19 (a), during normal control, the calculation unit 211 of the control device 201 on the power receiving side acquires received power information (step S141), and determines whether the received power is within a first predetermined range. (Step S142). If the received power is not within the first predetermined range, an instruction to change the power transmission adjustment signal is sent via wireless communication so that the received power is corrected in a direction approaching the first predetermined range. The control device 202 is notified (step S143). The change instruction may include designation of the adjustment amount of the power transmission adjustment signal. The control device 202 on the power transmission side changes and transmits the power transmission adjustment signal according to the adjustment amount designated from the power reception side. If the adjustment amount specification is not included, the power transmission side may change the amount specified in advance.
 一方、図19(b)に示すように、高速制御時では、送電側の制御装置202の演算部212が、送電電力情報を取得し(ステップS151)、送電電力が第2の所定の範囲内かを判定する(ステップS152)。送電電力が第2の所定の範囲内でない場合は、送電電力が第2の所定の範囲に近づく方向に補正されるように送電調整信号を変更する(ステップS153)。 On the other hand, as shown in FIG. 19 (b), during high-speed control, the calculation unit 212 of the control device 202 on the power transmission side acquires transmission power information (step S151), and the transmission power is within the second predetermined range. Is determined (step S152). If the transmitted power is not within the second predetermined range, the power transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range (step S153).
 このように、通常制御時では送電調整信号の変更の決定を受電側で行い、送電側に通知することで制御を行う。一方、高速制御時では、送電側で送電調整信号の変更を決定し、送電電力を変更することで、高速な制御を実現する。 Thus, during normal control, the power transmission adjustment signal is determined to be changed on the power receiving side, and control is performed by notifying the power transmission side. On the other hand, at the time of high-speed control, high-speed control is realized by determining the change of the power transmission adjustment signal on the power transmission side and changing the transmission power.
 同様に、第2~第6の実施の形態の任意の構成においても、本実施の形態のように、2つの制御装置を用いる構成に変形することが可能である。 Similarly, any configuration of the second to sixth embodiments can be modified to a configuration using two control devices as in the present embodiment.
 たとえば、図8に示した第3の実施の形態において2つの制御装置を用いて変形した例を図20に示す。受電側および送電側にそれぞれ制御装置231、232が配置されている。受電側の制御装置231は、演算部241および無線通信機251を含み、送電側の制御装置232は、演算部242と無線通信機252を含む。 For example, FIG. 20 shows an example in which two control devices are used in the third embodiment shown in FIG. Control devices 231 and 232 are arranged on the power reception side and the power transmission side, respectively. The power receiving side control device 231 includes a calculation unit 241 and a wireless communication device 251, and the power transmission side control device 232 includes a calculation unit 242 and a wireless communication device 252.
 図20に示した構成において、さらに第8の実施の形態を組み合わせた場合の制御フローを図21に示す。図21(a)は受電側の制御装置231の動作を示し、図21(b)は送電側の制御装置232の動作を示す。 FIG. 21 shows a control flow when the eighth embodiment is further combined with the configuration shown in FIG. FIG. 21A shows the operation of the control device 231 on the power receiving side, and FIG. 21B shows the operation of the control device 232 on the power transmission side.
 図21(a)に示すように、通常制御時、受電側の制御装置231の演算部241は、送電電力情報を取得し(ステップS161)、また受電電力情報を取得し(ステップS162)、伝送効率を計算する(ステップS163)。伝送効率が所定の値以下かを判定し(ステップS164)、所定の値以下であれば、伝送効率が向上するように演算部241が受電調整信号を変更する(ステップS167)。一方、伝送効率が所定の値より大きければ、受電電力が第1の所定の範囲内かを判定し、第1の所定の範囲内でない場合は、受電電力が第1の所定の範囲に近づく方向に補正されるように、送電調整信号の変更指示を、送電側の制御装置232に通知する(ステップS166)。変更指示には、送電調整信号の調整量の指定が含められてもよい。送電側の制御装置232は、受電側から指定された調整量に従って、送電調整信号を変更する。調整量の指定を含めない場合は、予め指定された量だけ送電調整信号を変更してもよい。 As shown in FIG. 21 (a), during normal control, the calculation unit 241 of the control device 231 on the power receiving side acquires transmission power information (step S161), acquires received power information (step S162), and transmits. Efficiency is calculated (step S163). It is determined whether the transmission efficiency is equal to or lower than a predetermined value (step S164). If the transmission efficiency is equal to or lower than the predetermined value, the calculation unit 241 changes the power reception adjustment signal so that the transmission efficiency is improved (step S167). On the other hand, if the transmission efficiency is greater than a predetermined value, it is determined whether the received power is within the first predetermined range. If the transmission efficiency is not within the first predetermined range, the received power approaches the first predetermined range. The power transmission adjustment signal change instruction is notified to the power transmission-side control device 232 (step S166). The change instruction may include designation of the adjustment amount of the power transmission adjustment signal. The control device 232 on the power transmission side changes the power transmission adjustment signal according to the adjustment amount specified from the power reception side. If the adjustment amount designation is not included, the power transmission adjustment signal may be changed by a predetermined amount.
 一方、図21(b)に示すように、高速制御時では、送電側の制御装置232の演算部242が、送電電力情報を取得し(ステップS171)、送電電力が第2の所定の範囲内かを判定する(ステップS172)。送電電力が第2の所定の範囲内でない場合は、送電電力が第2の所定の範囲に近づく方向に補正されるように、送電調整信号を変更する。 On the other hand, as shown in FIG. 21 (b), during high-speed control, the calculation unit 242 of the control device 232 on the power transmission side acquires transmission power information (step S171), and the transmission power is within the second predetermined range. Is determined (step S172). If the transmitted power is not within the second predetermined range, the transmission adjustment signal is changed so that the transmitted power is corrected in a direction approaching the second predetermined range.
 このように、通常制御時では送電調整信号の変更の決定を受電側で行い、送電側に通知することで制御を行う。一方、高速制御時では、送電側で送電調整信号の変更を決定して、送電電力を変更することで、高速な制御を実現する。 Thus, during normal control, the power transmission adjustment signal is determined to be changed on the power receiving side, and control is performed by notifying the power transmission side. On the other hand, at the time of high-speed control, high-speed control is realized by determining the change of the power transmission adjustment signal on the power transmission side and changing the transmission power.
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Claims (15)

  1.  送電ユニットからの送電電力情報の取得処理と、前記送電ユニットから伝送される電力を受電する受電ユニットからの受電電力情報の取得処理の少なくとも一方を実行する情報取得部と、
     前記送電電力情報に応じた前記送電ユニットの送電調整処理と、前記送電電力情報に応じた前記受電ユニットのインピーダンス調整処理と、前記受電電力情報に応じた前記送電ユニットの送電調整処理と、前記受電電力情報に応じた前記受電ユニットのインピーダンス調整処理のうち複数の処理を実行可能であり、予め定められた条件に基づいて前記複数の処理の1つを切り換えて選択し、選択した処理を実行する制御部と、
     を備えた制御装置。
    An information acquisition unit that executes at least one of an acquisition process of transmission power information from a power transmission unit and an acquisition process of received power information from a power reception unit that receives power transmitted from the power transmission unit;
    The power transmission adjustment process of the power transmission unit according to the transmission power information, the impedance adjustment process of the power reception unit according to the transmission power information, the power transmission adjustment process of the power transmission unit according to the received power information, and the power reception A plurality of processes can be executed among the impedance adjustment processes of the power receiving unit according to power information, and one of the plurality of processes is switched and selected based on a predetermined condition, and the selected process is executed. A control unit;
    A control device comprising:
  2.  前記情報取得部は、前記送電電力情報を第1の通信を介して取得する動作と、前記受電電力情報を第2の通信を介して取得する動作、の少なくとも一方を実行可能であり、
     前記制御部は、第3の通信を介して前記送電ユニットの送電調整を行う動作と、第4の通信を介して前記受電ユニットのインピーダンス調整を行う動作、の少なくとも一方を実行可能であり、
     かつ、前記第1から第4の通信を介した動作のうち少なくとも3つの動作を実行可能であり、
     前記第1の通信を介した動作と前記第2の通信を介した動作の両方を実行可能な場合には、前記第1の通信は前記2の通信より遅延が小さく、かつ前記第3の通信を介した動作と前記第4の通信を介した動作の両方を実行可能な場合には、前記第3の通信は前記第4の通信より遅延が小さい、
     または、前記第1の通信を介した動作と前記第2の通信を介した動作の両方を実行可能な場合には、前記第2の通信は前記第1の通信より遅延が小さく、かつ前記第3の通信を介した動作と前記第4の通信を介した動作の両方を実行可能な場合には、前記第4の通信は前記第3の通信より遅延が小さい、
     請求項1に記載の制御装置。
    The information acquisition unit can execute at least one of an operation of acquiring the transmitted power information via first communication and an operation of acquiring the received power information via second communication,
    The control unit is capable of executing at least one of an operation of performing power transmission adjustment of the power transmission unit via third communication and an operation of adjusting impedance of the power receiving unit via fourth communication,
    And at least three operations among the operations through the first to fourth communications can be executed,
    When both the operation via the first communication and the operation via the second communication can be performed, the first communication has a smaller delay than the second communication and the third communication When the operation via the fourth communication and the operation via the fourth communication are both executable, the third communication has a smaller delay than the fourth communication.
    Alternatively, when both the operation via the first communication and the operation via the second communication can be executed, the second communication has a smaller delay than the first communication, and the first communication When the operation through the communication 3 and the operation through the fourth communication are both executable, the fourth communication has a smaller delay than the third communication.
    The control device according to claim 1.
  3.  前記第1の通信を介した動作と前記第2の通信を介した動作の両方を実行可能な場合に、前記第1の通信は有線通信、前記第2の通信は無線通信であり、前記第3の通信を介した動作と前記第4の通信を介した動作の両方を実行可能な場合に、前記第3の通信は有線通信、前記第4の通信は無線通信である、
     または、
     前記第1の通信を介した動作と前記第2の通信を介した動作の両方を実行可能な場合に、前記第1の通信は無線通信、前記第2の通信は有線通信であり、前記第3の通信を介した動作と前記第4の通信を介した動作の両方を実行可能な場合に、前記第3の通信は無線通信、前記第4の通信は有線通信である
     請求項2に記載の制御装置。
    When both the operation through the first communication and the operation through the second communication can be executed, the first communication is wired communication, the second communication is wireless communication, and the first communication 3, the third communication is wired communication, and the fourth communication is wireless communication, when both the operation through communication 3 and the operation through the fourth communication can be executed.
    Or
    When both the operation through the first communication and the operation through the second communication are executable, the first communication is wireless communication, the second communication is wired communication, and the first communication 3. The third communication is wireless communication and the fourth communication is wired communication when both of the operation through communication 3 and the operation through the fourth communication can be executed. Control device.
  4.  前記制御部は、前記実行可能な少なくとも3つの動作で用いる各通信の途絶の有無に応じて、前記複数の処理の1つを選択する
     請求項2に記載の制御装置。
    The control device according to claim 2, wherein the control unit selects one of the plurality of processes according to whether or not each communication used in the at least three executable operations is interrupted.
  5.  前記制御部は、前記送電電力情報および前記受電電力情報の少なくとも一方に応じて、前記複数の処理の1つを選択する
     請求項1に記載の制御装置。
    The control device according to claim 1, wherein the control unit selects one of the plurality of processes according to at least one of the transmitted power information and the received power information.
  6.  前記制御部は、前記送電電力情報および前記受電電力情報の少なくとも一方の単位時間当たりの変化量に応じて、前記複数の処理の1つを選択する
     請求項1に記載の制御装置。
    The control device according to claim 1, wherein the control unit selects one of the plurality of processes according to a change amount per unit time of at least one of the transmitted power information and the received power information.
  7.  前記送電電力情報および前記受電電力情報に応じて、前記送電ユニットから前記受電ユニットへの電力伝送効率を推定し、
     前記制御部は、推定した電力伝送効率を用いて、前記複数の処理の1つを選択する
     請求項1に記載の制御装置。
    According to the transmitted power information and the received power information, the power transmission efficiency from the power transmission unit to the power receiving unit is estimated,
    The control device according to claim 1, wherein the control unit selects one of the plurality of processes using the estimated power transmission efficiency.
  8.  前記制御部は、2つの前記インピーダンス調整処理のうちの1つを、2つの前記送電調整処理のうちの1つに切り換えた場合、切り替え前の送電電力以下の電力になるよう前記送電ユニットの送電電力を調整する
     請求項1に記載の制御装置。
    When the one of the two impedance adjustment processes is switched to one of the two power transmission adjustment processes, the control unit transmits power of the power transmission unit so that the power is equal to or lower than the transmission power before switching. The control device according to claim 1, wherein the power is adjusted.
  9.  前記制御部は、前記送電電力情報が第1閾値を上回る場合に、前記送電電力情報が第1閾値に近づく方向に補正されるように、前記選択した処理を実行する
     または、
     前記送電電力情報が第2閾値を下回る場合に、前記送電電力情報が第2閾値に近づく方向に補正されるように、前記選択した処理を実行する
     請求項1に記載の制御装置。
    The control unit executes the selected process so that the transmission power information is corrected in a direction approaching the first threshold when the transmission power information exceeds a first threshold.
    The control device according to claim 1, wherein the selected process is executed so that the transmitted power information is corrected in a direction approaching the second threshold when the transmitted power information is less than a second threshold.
  10.  前記制御部は、前記受電電力情報が第3閾値を上回る場合に、前記受電電力情報が第3閾値に近づく方向に補正されるように、前記選択した処理を実行する、
     または、
     前記受電電力情報が第4閾値を下回る場合に、前記受電電力情報が第4閾値に近づく方向に補正されるように、前記選択した処理を実行する
     請求項1に記載の制御装置。
    The control unit executes the selected process so that the received power information is corrected in a direction approaching the third threshold when the received power information exceeds a third threshold.
    Or
    The control device according to claim 1, wherein when the received power information is lower than a fourth threshold, the selected process is executed so that the received power information is corrected in a direction approaching the fourth threshold.
  11.  送電ユニットの制御装置からの前記送電ユニットの送電電力情報の取得処理と、前記送電ユニットから伝送される電力を受電する受電ユニットからの受電電力情報の取得処理のうちの少なくとも一方を実行する情報取得部と、
     前記送電電力情報に応じて前記送電ユニットの送電調整を前記送電ユニットの制御装置に指示する指示処理と、前記送電電力情報に応じた前記受電ユニットのインピーダンス調整処理と、前記受電電力情報に応じた前記送電ユニットの送電調整を前記送電ユニットの制御装置に指示する指示処理と、前記受電電力情報に応じた前記受電ユニットのインピーダンス調整処理のうち複数の処理を実行可能であり、予め定められた条件に基づいて前記複数の処理の1つを切り換えて選択し、選択した処理を実行する制御部と、
     を備えた制御装置。
    Information acquisition for executing at least one of acquisition processing of transmission power information of the power transmission unit from the control device of the power transmission unit and acquisition processing of received power information from the power reception unit that receives power transmitted from the power transmission unit And
    An instruction process for instructing the control device of the power transmission unit to perform power transmission adjustment according to the transmitted power information, an impedance adjustment process of the power receiving unit according to the transmitted power information, and a response according to the received power information It is possible to execute a plurality of processes among an instruction process for instructing a power transmission adjustment of the power transmission unit to a control device of the power transmission unit and an impedance adjustment process of the power reception unit according to the received power information, and a predetermined condition A control unit that switches and selects one of the plurality of processes based on the selected process, and executes the selected process;
    A control device comprising:
  12.  送電ユニットからの送電電力情報の取得処理と、前記送電ユニットから伝送される電力を受電する受電ユニットの制御装置からの前記受電ユニットの受電電力情報の取得処理のうちの一方を実行する情報取得部と、
     前記送電電力情報に応じた前記送電ユニットの送電調整処理と、前記送電電力情報に応じて前記受電ユニットのインピーダンス調整を前記受電ユニットの制御装置に指示する指示処理と、前記受電電力情報に応じた前記送電ユニットの送電調整処理と、前記受電電力情報に応じた前記受電ユニットのインピーダンス調整を前記受電ユニットの制御装置に指示する指示処理のうち複数の処理を実行可能であり、予め定められた条件に基づいて前記複数の処理の1つを切り換えて選択し、選択した処理を実行する制御部と
     を備えた制御装置。
    An information acquisition unit that executes one of an acquisition process of transmission power information from a power transmission unit and an acquisition process of received power information of the power reception unit from a control device of the power reception unit that receives power transmitted from the power transmission unit When,
    Power transmission adjustment processing of the power transmission unit according to the power transmission power information, instruction processing for instructing the control device of the power reception unit to adjust impedance of the power reception unit according to the power transmission power information, and according to the power reception power information A plurality of processes can be executed among a power transmission adjustment process of the power transmission unit and an instruction process for instructing a control device of the power reception unit to adjust the impedance of the power reception unit according to the received power information, and a predetermined condition A control unit that switches and selects one of the plurality of processes based on the control unit and executes the selected process.
  13.  受電ユニットに電力を無線伝送する送電ユニットと、
     請求項1に記載の制御装置と
     を備えた無線電力伝送装置。
    A power transmission unit that wirelessly transmits power to the power reception unit;
    A wireless power transmission device comprising: the control device according to claim 1.
  14.  送電ユニットから無線伝送された電力を受電する受電ユニットと、
     請求項1に記載の制御装置と
     を備えた無線電力伝送装置。
    A power receiving unit that receives power wirelessly transmitted from the power transmission unit;
    A wireless power transmission device comprising: the control device according to claim 1.
  15.  送電ユニットからの送電電力情報の取得処理と、受電ユニットからの受電電力情報の取得処理の少なくとも一方を実行する情報取得ステップと、
     前記送電電力情報に応じた前記送電ユニットの送電調整処理と、前記送電電力情報に応じた前記受電ユニットのインピーダンス調整処理と、前記受電電力情報に応じた前記送電ユニットの送電調整処理と、前記受電電力情報に応じた前記受電ユニットのインピーダンス調整処理のうち複数の処理を実行可能であり、予め定められた条件に基づいて前記複数の処理の1つを切り換えて選択し、選択した処理を実行する制御ステップと、
     を備えた制御方法。
    An information acquisition step of executing at least one of acquisition processing of transmission power information from the power transmission unit and acquisition processing of received power information from the power reception unit;
    The power transmission adjustment process of the power transmission unit according to the transmission power information, the impedance adjustment process of the power reception unit according to the transmission power information, the power transmission adjustment process of the power transmission unit according to the received power information, and the power reception A plurality of processes can be executed among the impedance adjustment processes of the power receiving unit according to power information, and one of the plurality of processes is switched and selected based on a predetermined condition, and the selected process is executed. Control steps;
    Control method with.
PCT/JP2013/068542 2013-07-05 2013-07-05 Control apparatus and method, and wireless power transfer apparatus WO2015001672A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/068542 WO2015001672A1 (en) 2013-07-05 2013-07-05 Control apparatus and method, and wireless power transfer apparatus
JP2015524998A JP6271548B2 (en) 2013-07-05 2013-07-05 Control device and method, and wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068542 WO2015001672A1 (en) 2013-07-05 2013-07-05 Control apparatus and method, and wireless power transfer apparatus

Publications (1)

Publication Number Publication Date
WO2015001672A1 true WO2015001672A1 (en) 2015-01-08

Family

ID=52143288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068542 WO2015001672A1 (en) 2013-07-05 2013-07-05 Control apparatus and method, and wireless power transfer apparatus

Country Status (2)

Country Link
JP (1) JP6271548B2 (en)
WO (1) WO2015001672A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103860A (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
JP2018057174A (en) * 2016-09-29 2018-04-05 ラピスセミコンダクタ株式会社 Wireless power transmission device, wireless power reception device, wireless power supply system and wireless power supply method
JP2018537938A (en) * 2015-11-13 2018-12-20 クアルコム,インコーポレイテッド Device and method for adjusting wireless receiver power demand

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090483A (en) * 2011-10-19 2013-05-13 Toshiba Tec Corp Power transmission device, power transmitter, power receiver, and power transmission method
WO2013098947A1 (en) * 2011-12-27 2013-07-04 中国電力株式会社 Contactless power supply system, power supply device, and method for controlling contactless power supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146488B2 (en) * 2010-05-26 2013-02-20 トヨタ自動車株式会社 Power feeding system and vehicle
JP4982598B2 (en) * 2010-09-07 2012-07-25 株式会社東芝 Wireless power transmission system, power transmission device and power reception device of the system
JP2012210056A (en) * 2011-03-29 2012-10-25 Kyocera Corp Non contact charge system, control method of the non contact charge system, portable electronic apparatus, and charger
JP2012210112A (en) * 2011-03-30 2012-10-25 Panasonic Corp Non-contact charger
JP5678852B2 (en) * 2011-09-27 2015-03-04 トヨタ自動車株式会社 Power transmission device, power transmission system, and method for controlling power transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090483A (en) * 2011-10-19 2013-05-13 Toshiba Tec Corp Power transmission device, power transmitter, power receiver, and power transmission method
WO2013098947A1 (en) * 2011-12-27 2013-07-04 中国電力株式会社 Contactless power supply system, power supply device, and method for controlling contactless power supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537938A (en) * 2015-11-13 2018-12-20 クアルコム,インコーポレイテッド Device and method for adjusting wireless receiver power demand
JP2017103860A (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
WO2017094387A1 (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
JP2018057174A (en) * 2016-09-29 2018-04-05 ラピスセミコンダクタ株式会社 Wireless power transmission device, wireless power reception device, wireless power supply system and wireless power supply method

Also Published As

Publication number Publication date
JP6271548B2 (en) 2018-01-31
JPWO2015001672A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US9640976B2 (en) Overvoltage protection system for wireless power transfer systems
JP6135471B2 (en) Power transmission device and wireless power transmission system using the same
US20140139035A1 (en) Wireless power transmission controller, power transmitting device, power receiving device and wireless power transmitting system
US20120169131A1 (en) Phase shift power transfer
JP6178107B2 (en) Power feeding system and resonant circuit
CN110582922B (en) Non-contact power supply device
WO2019230052A1 (en) Contactless power supply device
WO2013136409A1 (en) Power-receiving device and control method for power-receiving device, and computer program
JP6680243B2 (en) Non-contact power supply device
JP2014007864A (en) Contactless power transmission apparatus
JP2018102054A (en) Contactless power reception device and contactless power transmission system
JP6271548B2 (en) Control device and method, and wireless power transmission device
WO2016050633A2 (en) Inductive power transfer system
JP2016015808A (en) Power reception equipment and non-contact power transmission device
JP2016063725A (en) Power receiving apparatus and non-contact power transmission device
US10944293B2 (en) Noncontact power supply apparatus
JP2015080296A (en) Power reception apparatus and non-contact power transmission device
JP2015228739A (en) Power transmission apparatus
US11121587B2 (en) Non-contact power supply device capable of performing constant voltage output operation
CN110582923B (en) Non-contact power supply device
JP6172014B2 (en) Power transmission equipment and contactless power transmission device
WO2015083578A1 (en) Contactless power transmission device and electricity reception apparatus
JP2016092959A (en) Power transmission equipment and contactless power transmission device
WO2016006470A1 (en) Power transmission device and non-contact power transmission apparatus
JP2015203684A (en) Non-contact power transmission device, power transmission apparatus, and power reception apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888779

Country of ref document: EP

Kind code of ref document: A1