WO2015000341A1 - 导电混凝土块、导电混凝土块的制备方法及成型模具 - Google Patents

导电混凝土块、导电混凝土块的制备方法及成型模具 Download PDF

Info

Publication number
WO2015000341A1
WO2015000341A1 PCT/CN2014/078462 CN2014078462W WO2015000341A1 WO 2015000341 A1 WO2015000341 A1 WO 2015000341A1 CN 2014078462 W CN2014078462 W CN 2014078462W WO 2015000341 A1 WO2015000341 A1 WO 2015000341A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom mold
conductive concrete
concrete block
pole core
molding die
Prior art date
Application number
PCT/CN2014/078462
Other languages
English (en)
French (fr)
Inventor
蔡庆宗
Original Assignee
Tsai Ching-Tsung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsai Ching-Tsung filed Critical Tsai Ching-Tsung
Priority to KR1020167000990A priority Critical patent/KR20160026993A/ko
Priority to JP2016522206A priority patent/JP2016529189A/ja
Publication of WO2015000341A1 publication Critical patent/WO2015000341A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0056Means for inserting the elements into the mould or supporting them in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/008Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/0215Feeding the moulding material in measured quantities from a container or silo
    • B28B13/0225Feeding specific quantities of material at specific locations in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/0215Feeding the moulding material in measured quantities from a container or silo
    • B28B13/023Feeding the moulding material in measured quantities from a container or silo by using a feed box transferring the moulding material from a hopper to the moulding cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/005Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects with anchoring or fastening elements for the shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0064Moulds characterised by special surfaces for producing a desired surface of a moulded article, e.g. profiled or polished moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • B28B7/368Absorbent linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/46Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for humidifying or dehumidifying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of concrete products and preparation methods thereof, in particular to a conductive concrete block doped with graphite and a preparation method thereof.
  • the preparation method is to provide a wet high pressure extrusion molding process, the main raw materials are ordinary Portland cement, water, sand fine aggregate, gravel or pebble coarse aggregate, and then the mixture is evenly stirred and added. After molding the mold and embedding it in the pole core, high-pressure extrusion is performed, and the water is squeezed out, and then demolded and cured.
  • the above preparation method can produce conductive concrete with high strength and good electrical conductivity, it will directly short-circuit and discharge in the metal core barrel due to energization, and the impedance will increase and the junction of the metal core tube and the conductive concrete will be lowered and burned. , affecting its service life.
  • the original preparation method is to embed the pole core tube separately, and then perform high pressure extrusion and the like.
  • the pole core tube has no supporting force and is easily skewed during the extrusion process, which is disadvantageous for electrode installation. Summary of the invention
  • the main object of the present invention is to provide a conductive concrete block which can reduce the temperature of the core barrel and prolong the service life, and a preparation method thereof and a molding die.
  • the main technical means of the present invention is to provide a conductive concrete block
  • the main raw materials include ordinary Portland cement, water, sand fine aggregate, gravel or pebble coarse aggregate, powdered graphite or carbon powder, etc.
  • the conductive material block comprises a body material, two pole core materials on both sides of the body material and having an ohmic value lower than the body material, and a pole core barrel respectively disposed on the two pole core materials.
  • the invention further provides a preparation method of the conductive concrete block, the raw material and the ratio thereof are similar to the existing graphite-conducting conductive concrete, and the main raw material comprises ordinary Portland cement, water, sand fine aggregate, gravel or pebble coarse bone.
  • a conductive material such as powder, powdered graphite or carbon powder, the preparation method of which firstly has at least two polar cores
  • the cylinder is positioned on a bottom mold of a molding die, and a partitioning device which is divided into at least three regions is placed in the forming mold, and the batch materials containing different ohmic ratios are evenly mixed, and then filled into the partitioning device respectively.
  • high-pressure extrusion is performed, and the water is filtered out from the bottom mold of the molding die until no drainage water is discharged, and then the high pressure is removed to perform demoulding and curing.
  • the invention further provides a molding die for preparing a conductive concrete block, comprising a bottom mold, a mold frame and a top plate, wherein the bottom mold is distributed with a plurality of water-permeable holes, and the bottom mold is provided with at least two upwardly protruding fixings.
  • a partitioning device detachably disposed on the bottom mold is provided, and the partitioning device is divided into at least three regions, including a central material region in the middle, and a polar core region on both sides, the fixing ⁇ is located in the polar core area.
  • the present invention has different ohmic values of the bulk material and the polar core material, after the power is turned on, the two materials are discharged at the junction to ensure that the pole core is not heated too high and damaged, and the prior art core tube is improved.
  • the disadvantage of the degree of joint with the conductive concrete falling due to the short-circuit discharge, the present invention and the prior art finished product are tested for electric power, and the temperature difference and power of the pole core tube and the surrounding conductive concrete are compared.
  • the detection result shows that, due to the impedance relationship, after the energization and heating In the prior art, the core barrel temperature without the pole core material is about io ° C higher than the temperature of the pole core material.
  • Figure 1 is a perspective view of a conductive concrete block of the present invention
  • Figure 2 is a plan sectional view of the conductive concrete block of the present invention: 1
  • Figure 3 is a perspective view of the partitioning device of the present invention.
  • Figure 4 is a perspective view of another partitioning device of the present invention.
  • Figure 5 is a plan sectional view showing the manufacturing process of the present invention: 1 Figure 6 is a plan exploded view of the bottom mold of the present invention;
  • Figure 7 is a conductive concrete block manufactured by the apparatus of Figure 5 in the present invention.
  • Figure 8 is a schematic view showing the molding of the molding die of the present invention on a mechanical die holder. detailed description
  • the conductive concrete block 10 mainly comprises conductive materials such as ordinary Portland cement, water, sand fine aggregate, gravel or pebble coarse aggregate, powdered graphite or carbon powder.
  • the conductive concrete block 10 includes a body material 11 and two low-ohmic core materials 12 on both sides of the body material 11.
  • a pole core 13 is embedded on the two-pole core material 12 for electrode insertion.
  • the outer periphery of the pole core 13 is non-glossy in shape to be tightly coupled to the pole core 12, which is preferably threaded or serrated.
  • the ohmic value of the polar core material 12 is lower than that of the bulk material 11 to achieve the effect of low ohmic high conductivity, which is to control the ohmic value by using the content of graphite, for example, controlling the ohmic value of the bulk material 11 to be 20 to 50 ohms, and
  • the core material 12 has an ohmic value of 1 to 10 ohms. Since the ohmic values of the body material 11 and the pole core material 12 are different, when the power is applied, the current flows from the pole core 13 to the pole core material 12, and then discharges at the junction of the body material 11 and the pole core material 12 to ensure the pole.
  • the core tube 13 is not directly short-circuited and the discharge temperature is too high and damaged, thereby achieving the purpose of prolonging the service life.
  • the conductive concrete block of the present invention comprising the two different ohmic values of the body material 11 and the pole core material 12 is electrically tested with the prior art conductive concrete block to compare the temperature difference and power between the pole core tube and the surrounding conductive concrete, respectively 1 hour, 12 hours, 24 hours, 48 hours test, the test results show:
  • the core temperature of the core material without the core material is about 10 °C higher than the temperature of the pole core material. The longer the time, the junction of the pole core and the conductive concrete. Constantly damaged, the resistance continues to increase, and the power continues to drop until it is unusable.
  • the resistance in the power-on test of the core material (in this case), most of the initial stage will increase the density due to the increase of the overall temperature, the resistance will decrease to some extent, the power will increase to a certain extent, and then it will be in a stable state. It can be seen from the test that the invention can achieve the purpose of reducing the temperature of the pole core, reducing the impedance and prolonging the service life.
  • the present invention further provides a receiving slot 110 on the body material 11 for placing a temperature controller.
  • the temperature controller is a temperature control device.
  • the temperature controller will Automatic power off, then when the temperature drops to the reset temperature of the thermostat, the thermostat will resume power supply and reheat, which can achieve the purpose of controlling temperature, and the design of the receiving slot 110 can make most of the temperature controller It is embedded in conductive concrete blocks to help fix the temperature controller and reduce the overall volume, which is conducive to packaging and use.
  • the above-mentioned conductive concrete block provided by the present invention has many methods for producing the concrete block, and it is within the scope of the present invention to manufacture the conductive concrete block of the present invention regardless of the preparation method.
  • the following is the first method for preparing the blanking in one of the modules:
  • a partitioning device 20 is arranged in the forming mold at least divided into three regions as shown in FIG. 3, and the main raw materials are ordinary Portland cement, water, sand fine aggregate, gravel or pebble coarse aggregate, powder graphite.
  • the concrete raw material is uniformly mixed with the batch materials containing different ohmic ratios, and then filled into different regions of the partitioning device 20, and the high ohmic body material is filled in the middle region, and the low ohmic core is filled. Filling the materials on both sides of the body material;
  • the conductive concrete blocks containing the bulk materials and the polar core materials having different ohmic values can be obtained. Moreover, since the pole core is previously fixed to the bottom mold, the pole core can still be positioned without skewing during the high pressure extrusion, and the electrode mounting is facilitated.
  • the main raw materials are ordinary Portland cement, water, sand fine aggregate, gravel or pebble coarse aggregate, powdered graphite concrete raw materials, and the materials containing different ohmic ratios are evenly mixed, and then filled separately.
  • a high ohmic body material is filled in the intermediate region, and a low ohmic core material is filled on both sides of the body material;
  • the filled bottom mold is placed in a mold frame of the molding die; the high pressure extrusion is performed, and the moisture therein is filtered out from the bottom mold of the molding die until no drainage water is discharged;
  • the molding die 30 includes a bottom mold 31, a mold frame 32 covering the bottom mold 31, a top plate 33 matched to the mold frame 32, and a top plate 33 as shown in FIG. Separator 20.
  • the partitioning device 20 is a vertically penetrating frame, which is divided into at least three regions, including a central body region 21 in the middle, and a core material region 22 on both sides of the body material region 21, the top of the partitioning device 20 There is also a grip portion 23 for easy gripping.
  • the top of the bottom mold 31 is provided with at least two protruding fixing jaws 314 for positioning the pole core tube 13 , and a protruding protrusion 315 is disposed between the two fixing jaws 314 .
  • the 315 and the fixed crucible 314 are correspondingly located in the range of the body material region 21 and the polar core material region 22 of the partitioning device 20. Further, a plurality of water-permeable holes 316 are arranged on the bottom mold 31 for filtering the moisture out when pressed under high pressure.
  • the body material and the pole core material having different ohmic values are respectively filled in the body material region 21 and the core material region 22 of the partitioning device 20, and then the partitioning device 20 is taken out, so that the top plate 33 can be covered on the top surface of the raw material, and downward. Pressure is applied to discharge moisture from each of the water permeable holes 316.
  • the pole core 13 After being demolded, the pole core 13 is pre-buried and fixed on the conductive concrete block, and at the same time, the accommodating groove 110 shown in FIG. 1 is formed by the bump 315, and the conductive concrete block is finished for a certain period of time.
  • the finished product can be assembled into an electrical product with electrodes and other components. According to the needs of the heat-generating product, different sizes of conductive concrete blocks are manufactured.
  • the partitioning device 20 shown in FIG. 3 can manufacture one or two conductive concrete blocks. When it is expected to manufacture a finished product, two pole core tubes can be fixed in advance; When it is expected to manufacture two finished products, the four pole cores are fixed in advance, and are cut into two after the completion of the curing.
  • the bottom mold 31 is further optimized. As shown in FIG. 6, the bottom mold 31 is double-layered.
  • the design includes a bottom mold 310 and an upper mold 311.
  • the fixing jaws 314 and the protrusions 315 are fixed on the top of the lower bottom mold 310, and the upper bottom mold 311 is matched with the fixing jaws 314 and the protrusions 315.
  • the upper and lower bottom molds 311, 310 are combined, the fixed jaws 314 and the protrusions 315 protrude from the top surface, and the lower bottom mold 310 and the upper bottom mold 311 are provided with lower and upper opposite water-permeable holes.
  • the bottom mold 310 is first pulled out by the upper mold 311, so that the bump 315 and the fixed ⁇ 314 are separated from the finished product, and the finished product has a little Loosen to facilitate separation from the upper bottom mold 311.
  • the water-permeable hole on the bottom mold has a diameter of 2 to 10 mm.
  • a water filter net 312 can be placed above the upper bottom mold 311, and the mesh is 100-300 mesh. The material can be blocked during the extrusion process. Out.
  • FIG. 4 it is another partitioning device 20A, which comprises five blanking spaces, starting from one side thereof, which are a core material region 22A, a body material region 21A, a polar core material region 220A, and a body material region.
  • 21A, the core material region 22A, wherein the width of the intermediate core material region 220A is larger than the width of the outer core material region 22A, preferably 2 times the width, and four branches are respectively fixed in the outer two-pole core material region 22A.
  • the pole core tube is located in the middle core material area 220A, and the eight pole core barrel is fixed.
  • the conductive concrete block 10A made by the partitioning device 20A is formed as shown in Fig. 7, and then divided into eight small pieces of conductive concrete blocks to improve Production efficiency.
  • the molding die is disposed on a flat die holder 40.
  • the top plate 33 When pressed from above, the top plate 33 will press the concrete material downward; as shown in FIG. 8, the molding die is disposed in a machine.
  • the top plate 33 presses against the top edge of the mold frame 32. When pressed against the top plate 33 from above, it is displaced downward together with the mold frame 32 and the internal material to press out moisture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Civil Engineering (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种导电混凝土块、导电混凝土块的制备方法及导电混凝土块的成型模具。所述导电混凝土块包括一本体料、两块分别位于本体料两侧的低欧姆值极芯料;在两极芯料上分别设有一极芯筒。由于本体料与极芯料的欧姆值不同,因此,当通电以后,会在本体料与极芯料相接处放电,确保极芯筒不直接短路放电的状态,以延长使用寿命。所述导电混凝土块的制备方法是设计分隔装置,其区隔成本体料区及极芯料区,以供不同欧姆值的原料填入,取出该分隔装置,再对原料高压挤压,即可制成所述的导电混凝土块。

Description

导电混凝土块、 导电混凝土块的制备方法及成型模具 技术领域
本发明属于混凝土制品及其制备方法领域, 尤指一种掺有石墨的导电混凝 土块及制备方法。
背景技术
为了制造一种具有优良的导电性,并且可提高强度的掺石墨的导电混凝土, 本案申请人曾经申请并核准 "一种掺石墨的导电混凝土的制备方法" (专利申请号
200510064446.1 ) , 该制备方法是提供一种湿法高压挤压成型制作工艺, 主要原 料为普通硅酸盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料, 再将配合料搅拌均 匀加入成型模具, 并埋入极芯筒之后, 进行高压挤压, 将其中的水挤压滤出, 再进行脱模、 养护。
虽然上述制备方法可以制造高强度且导电性佳的导电混凝土, 但是由于通 电使用时会在金属极芯筒直接短路放电, 产生阻抗而升温, 导致金属极芯筒与 导电混凝土的接合程度下降而烧毁, 影响其使用寿命。 此外, 原来的制备方法 是将极芯筒单独埋入之后, 再进行高压挤压等作业, 极芯筒无任何支撑力, 在 挤压过程中容易歪斜, 不利于电极的安装。 发明内容
为了改善上述制备方法的缺点, 本发明的主要目的在于提供一种在使用时 可降低极芯筒温度, 延长使用寿命的导电混凝土块, 及其制备方法、 成型模具。
为了达到上述目的, 本发明的主要技术手段在于提供一种导电混凝土块, 主要原料包含普通硅酸盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料、 粉末状石 墨或碳粉等导电材料, 该导电混凝土块包括一本体料、 两块位于本体料两侧并 且欧姆值低于本体料的极芯料, 另外在两极芯料上分别设置一极芯筒。
本发明另外提供一种导电混凝土块的制备方法, 原料及其配比类似于现有 掺石墨的导电混凝土, 主要原料包含普通硅酸盐水泥、 水、 砂细骨料、 碎石或 卵石粗骨料、 粉末状石墨或碳粉等导电材料, 其制备方法首先将至少两个极芯 筒定位在一成型模具的一底模上, 在成型模具内放置一个至少分隔成三个区域 的区隔装置, 将含有不同欧姆值配比的配合料搅拌均匀后, 分别填入区隔装置 的不同区域内, 取出区隔装置之后, 再进行高压挤压, 将其中的水分由成型模 具的底模滤出, 直至无滤水排出为止, 再撤除高压, 进行脱模、 养护。
本发明又提供一种制备导电混凝土块的成型模具, 包括一底模、 一模框、 一顶板, 该底模上分布有多个透水孔, 该底模上至少设有两个向上突出的固定 椿, 另设一可拆卸地设置在底模上的分隔装置, 所述的分隔装置至少区分成三 个区域, 包括位于中间的本体料区, 以及两侧的极芯料区, 所述的固定椿相应 位于极芯料区内。
实施上述技术手段之后, 本发明可获得的效益为:
1. 由于本发明具有不同欧姆值的本体料及极芯料, 通电之后, 会在两材料 相接处放电, 以确保极芯筒处不会升温太高而损坏, 改善现有技术的极芯筒与 导电混凝土接合程度因为短路放电而下降的缺点, 将本发明与先前技术成品作 通电测试, 比较极芯筒与周围导电混凝土的温度差及功率, 检测结果显示, 因 为阻抗的关系, 通电发热后先前技术没有极芯料的极芯筒温度会比有极芯料的 温度高出大约 io°c, 时间越长, 极芯筒与导电混凝土的接合不断受到破坏, 电 阻不断增大, 功率不断的下降, 直到无法使用。 但有极芯料的通电测试, 初期 大部分会因为总体温度升高, 密度增大, 电阻下降, 功率会有一定程度的增加, 然后处于稳定状态, 根据通电试验结果, 没有极芯料的极芯损坏率非常高, 而 有极芯料的基本没有极芯损坏的情形发生, 因此, 本发明具有延长使用寿命的 效果。
2. 由于极芯筒是预先定位在成型模具的底模固定椿上, 因此不会因受到高 压挤压而歪斜, 可供电极顺利接合。 附图说明
图 1为本发明的导电混凝土块立体示意图;
图 2为本发明的导电混凝土块的平面剖面示 :1
图 3为本发明分隔装置的立体示意图;
图 4为本发明另一种分隔装置的立体示意图;
图 5为本发明制造过程中的平面组合剖面示 :1 图 6为本发明底模的平面分解示意图;
图 7为本发明以图 5分隔装置制造出的导电混凝土块;
图 8为本发明成型模具设置在机械模座上的成型示意图。 具体实施方式
以下配合附图及本发明的优选实施例, 进一步阐述本发明为达成预定发明 目的所采取的技术手段。
如图 1、 2所示, 本发明所提供的导电混凝土块 10, 主要原料包含普通硅酸 盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料、 粉末状石墨或碳粉等导电材料, 该导电混凝土块 10包括一本体料 11、 两块位于本体料 11两侧的低欧姆值极芯 料 12, 在两极芯料 12上分别埋设一极芯筒 13, 以供电极插接, 该极芯筒 13外 周围为非光面圆形, 以与极芯料 12紧密结合, 其优选为螺纹状、 锯齿状。 该极 芯料 12的欧姆值低于本体料 11, 以达到低欧姆高导电率的效果, 其是利用石墨 的含量控制欧姆值, 例如控制本体料 11的欧姆值为 20〜50欧姆, 而极芯料 12 的欧姆值为 1〜10欧姆。 由于本体料 11与极芯料 12的欧姆值不同, 因此, 当 通电以后, 电流由极芯筒 13流向极芯料 12, 然后在本体料 11与极芯料 12相接 处放电, 以确保极芯筒 13处不会直接短路放电升温太高而损坏, 达到延长使用 寿命的目的。
将上述包括本体料 11及极芯料 12两种不同欧姆值的本发明导电混凝土块, 与先前技术导电混凝土块通电测试, 以比较极芯筒与周围导电混凝土的温度差 及功率, 分别作通电 1小时、 12小时、 24小时、 48小时检测, 检测结果显示:
Figure imgf000005_0001
因为阻抗的关系, 通电发热后先前技术 (对比例) 没有极芯料的极芯筒温 度会比有极芯料的温度高出大约 10°C, 时间越长, 极芯筒与导电混凝土的接合 不断受到破坏, 电阻不断增大, 功率不断的下降, 直到无法使用。 但有极芯料 (本例) 的通电测试, 大部分初期会因为总体温度升高, 密度增大, 电阻会有 一定程度的下降, 功率会有一定程度的增加, 然后处于稳定状态。 由测试可知, 本发明确实可达到降低极芯筒温度, 减少阻抗, 延长使用寿命的目的。
优选的, 本发明进一步在本体料 11上设有一容置槽 110, 以放置一温度控 制器, 该温度控制器为温度控制装置, 当温度达到温控器的设定温度时, 温控 器会自动断电, 然后当温度下降到温控器的复位温度时, 温控器会恢复供电再 加热, 可以达到控制温度的目的, 而该容置槽 110 的设计, 可以使温度控制器 大部份埋设于导电混凝土块当中, 以利于固定温度控制器并减少整体体积, 利 于包装及使用。
上述为本发明所提供的导电混凝土块, 制造该混凝土块有很多方法, 不论 以何种制备方法, 只要制造出本发明的导电混凝土块, 均属本发明的范围。 以 下首先举其中一模框内下料的制备方法:
取一成型模具;
将至少两极芯筒固定在成型模具的底模上, 极芯筒的数量根据预计制造的 导电混凝土块数量而定;
在成型模具内放置一个如图 3所示至少分隔成三个区域的区隔装置 20, 将 主要原料为普通硅酸盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料、 粉末石墨的 混凝土原料, 和含有不同欧姆值配比的配合料搅拌均匀后, 分别填入区隔装置 20 的不同区域内, 将高欧姆值的本体料填置于中间区域, 而低欧姆值的极芯料 填置于本体料的两侧;
取出区隔装置 20之后, 再进行高压挤压, 将其中的水分由成型模具的底模 滤出, 直至无滤水排出为止;
撤除高压, 之后再进行脱模、 养护。
由于通过区隔装置 20可以将含有不同欧姆值配比的原料填置在预设的区域 内, 因此, 成型之后, 即可得含有不同欧姆值的本体料及极芯料的导电混凝土 块。 并且, 由于极芯筒预先固定在底模上, 因此, 在高压挤压的过程中, 极芯 筒仍可以定位而不歪斜, 而方便电极的安装。
除了上述模框内下料的制备方法, 此外, 尚有模框外下料的方法: 取一成型模具; 将至少两极芯筒固定在成型模具的底模上, 极芯筒的数量根据预计制造的 导电混凝土块数量而定;
在底模上放置一个如图 3所示至少分隔成三个区域的区隔装置 20;
将主要原料为普通硅酸盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料、 粉末 石墨的混凝土原料, 和含有不同欧姆值配比的配合料搅拌均匀后, 分别填入区 隔装置 20的不同区域内, 将高欧姆值的本体料填置在中间区域, 而低欧姆值的 极芯料填置在本体料的两侧;
取出区隔装置 20之后, 将填好料的底模放入成型模具的一模框内; 进行高压挤压, 将其中的水分由成型模具的底模滤出, 直至无滤水排出为 止;
撤除高压, 进行脱模、 养护。
上述制备方法及所使用的成型模具进一步说明如后:
如图 5所示, 所述的成型模具 30包括一底模 31、 一可覆盖于底模 31周围 的模框 32、 一匹配设置在模框 32上方的顶板 33、 以及一如图 3所述的分隔装 置 20。 其中, 该分隔装置 20为一上下穿透的框架, 至少区分成三个区域, 包括 位于中间的本体料区 21, 以及位于本体料区 21两侧的极芯料区 22, 分隔装置 20的顶部另设有一握持部 23, 以方便握持拿取。 而所述的底模 31顶部至少设 有两个突出的固定椿 314, 以供所述的极芯筒 13套置定位, 在两固定椿 314之 间设有一突出的凸块 315, 该凸块 315及固定椿 314相应位于分隔装置 20的本 体料区 21、 极芯料区 22范围内, 另外在底模 31上布设有多个透水孔 316, 以 供高压挤压时, 将水分滤出。 将具有不同欧姆值的本体料及极芯料分别填置在 分隔装置 20的本体料区 21及极芯料区 22, 而后取出分隔装置 20, 即可将顶板 33覆盖于原料顶面, 并向下施压, 将水分由各透水孔 316排出。 而待脱模之后, 极芯筒 13即预埋固定在导电混凝土块上, 并且同时通过凸块 315形成图 1所示 的容置槽 110, 待养护一段时间即为导电混凝土块成品。该成品可以与电极以及 其他组件组装成发热产品。 而根据发热产品需要, 制造不同大小的导电混凝土 块, 如图 3所示的分隔装置 20可以制造一个或者两个导电混凝土块, 当预计制 造一个成品时, 预先固定两支极芯筒即可; 当预计制造两个成品时, 预先固定 四支极芯筒, 待养护完成之后裁切成两个。
为了方便脱模, 进一步将底模 31优化设计, 如图 6所示, 底模 31为双层 设计, 包括一下底模 310、 一上底模 311, 所述的固定椿 314及凸块 315固定在 下底模 310顶部, 而上底模 311匹配设有供固定椿 314、 凸块 315穿置的穿孔 317、 318, 上、 下底模 311、 310组合之后, 固定椿 314及凸块 315即突出于顶 面, 而下底模 310及上底模 311上设有下、 上对合的透水孔 316, 通过上、 下底 模 311、 310的设计, 脱模时, 先通过上底模 311的阻挡, 将下底模 310往外抽 出, 使凸块 315及固定椿 314脱离成品, 成品即有一点松动, 以方便与上底模 311脱离。
该底模上的透水孔直径为 2〜10mm, 另外在上底模 311上方可放置一滤水 网 312, 其网目为 100〜300目, 在挤压过程中可阻挡料, 仅供水分滤出。
如图 4所示, 为另一种分隔装置 20A, 其包括五个下料空间, 自其中一侧 开始依序为极芯料区 22A、 本体料区 21A、 极芯料区 220A、 本体料区 21A、 极 芯料区 22A, 其中, 位于中间极芯料区 220A 的宽度大于位于外侧的极芯料区 22A的宽度, 优选为 2倍宽度, 在外侧的两极芯料区 22A内分别固定四支极芯 筒, 而位于中间芯料区 220A则固定八支极芯筒, 以此分隔装置 20A制成的导 电混凝土块 10A如图 7所示, 成型之后再分割成八小片导电混凝土块, 以提高 制作效率。
又如前述图 5所示, 成型模具设置在一平面模座 40上, 由上方施压时, 顶 板 33会往下挤压混凝土原料; 如图 8所示, 则是将成型模具设置在一机械模座 50上, 而顶板 33抵压模框 32的顶缘, 当由上方施压于顶板 33时, 连同模框 32以及内部的原料一起向下位移而将水分压出。
以上所述仅是本发明的优选实施例而已, 并非对本发明做任何形式上的限 制, 虽然本发明已以优选实施例披露如上, 然而并非用以限定本发明, 任何本 领域的技术人员, 在不脱离本发明技术方案的范围内, 应当可以利用上述揭示 的技术内容作出些许改变或修饰为等同变化的等效实施例, 但凡是未脱离本发 明技术方案的内容, 依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。

Claims

权 利 要 求 书
1. 一种导电混凝土块, 主要原料包含普通硅酸盐水泥、 水、 砂细骨料、 碎 石或卵石粗骨料、 粉末状石墨或碳粉等导电材料, 其特征在于: 该导电混凝土 块包括一本体料、 两块位于本体料两侧并且欧姆值低于本体料的极芯料, 另外 在两极芯料上分别设置一极芯筒。
2.如权利要求 1所述的导电混凝土块,其特征在于:本体料上设有一凹槽。
3. 如权利要求 1或 2所述的导电混凝土块, 其特征在于: 本体料为矩形, 所述的二极芯料分别设置在本体料的两相对侧。
4. 一种导电混凝土块的制备方法, 原料及其配比类似于现有掺石墨的导电 混凝土, 主要原料包含普通硅酸盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料、 粉末状石墨或碳粉等导电材料, 其特征在于: 首先将至少两个极芯筒定位在一 成型模具的一底模上, 在成型模具内放置一个至少分隔成三个区域的区隔装置, 将含有不同欧姆值配比的配合料搅拌均匀后, 分别填入区隔装置的不同区域内, 取出区隔装置之后, 再进行高压挤压, 将其中的水分由成型模具的底模滤出, 直至无滤水排出为止, 再撤除高压, 进行脱模、 养护。
5. —种导电混凝土块的制备方法, 原料及其配比类同现有掺石墨的导电混 凝土, 主要原料包含普通硅酸盐水泥、 水、 砂细骨料、 碎石或卵石粗骨料、 粉 末状石墨或碳粉等导电材料, 其特征在于: 首先将至少两个极芯筒定位在一成 型模具的一底模上, 在底模上放置一个至少分隔成三个区域的区隔装置, 将含 有不同欧姆值配比的配合料搅拌均匀后, 分别填入区隔装置的不同区域内, 取 出区隔装置之后, 将填好料的底模放入成型模具内, 再进行高压挤压, 将其中 的水分由成型模具的底模滤出, 直至无滤水排出为止, 再撤除高压, 进行脱模、 养护。
6. —种制备导电混凝土块的成型模具, 包括一底模、 一模框、 一顶板, 该 底模上分布有多个透水孔, 其特征在于: 该底模上至少设有两个向上突出的固 定椿, 另设一可拆卸地设置在底模上的分隔装置, 所述的分隔装置至少区分成 三个区域, 包括位于中间的本体料区, 以及两侧的极芯料区, 所述的固定椿相 应位于极芯料区内。
7. 根据权利要求 6所述的制备导电混凝土块的成型模具, 其特征在于: 所 述的底模包括可拆卸的一上底模以及一下底模, 上底模及下底模均设有透水孔, 而所述的固定椿设在下底模上, 并穿出于上底模的顶面。
8. 根据权利要求 7所述的制备导电混凝土块的成型模具, 其特征在于: 该 下底模上设一相应位于本体料区范围内的凸块, 该凸块并且穿出于上底模的顶 面。
9. 根据权利要求 6〜8其中任一项所述的制备导电混凝土块的成型模具, 其特征在于: 该底模上的透水孔直径为 2〜10mm, 在底模的上方铺设一 100〜 300目的滤水网。
10. 根据权利要求 9所述的制备导电混凝土块的成型模具, 其特征在于: 所述的区隔装置区隔成五个区域, 由其中一侧开始依序为极芯料区、 本体料区、 极芯料区、 本体料区、 极芯料区, 该位于中间的极芯料区的宽度大于两侧极芯 料区的宽度。
PCT/CN2014/078462 2013-07-04 2014-05-26 导电混凝土块、导电混凝土块的制备方法及成型模具 WO2015000341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167000990A KR20160026993A (ko) 2013-07-04 2014-05-26 도전성 콘크리트 블록, 도전성 콘크리트 블록의 제조방법 및 성형 몰드
JP2016522206A JP2016529189A (ja) 2013-07-04 2014-05-26 導電性コンクリートブリック、導電性コンクリートブリックの製造法、および導電性コンクリートブリックの成形モールド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310279618.1A CN103382093B (zh) 2013-07-04 2013-07-04 导电混凝土块、导电混凝土块的制备方法及成型模具
CN201310279618.1 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015000341A1 true WO2015000341A1 (zh) 2015-01-08

Family

ID=49490052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078462 WO2015000341A1 (zh) 2013-07-04 2014-05-26 导电混凝土块、导电混凝土块的制备方法及成型模具

Country Status (5)

Country Link
JP (1) JP2016529189A (zh)
KR (1) KR20160026993A (zh)
CN (1) CN103382093B (zh)
TW (1) TWI532702B (zh)
WO (1) WO2015000341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136731A (zh) * 2021-11-29 2022-03-04 天津大学 测试件的成型装置、测试件的制备方法及测试件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382093B (zh) * 2013-07-04 2016-04-06 蔡庆宗 导电混凝土块、导电混凝土块的制备方法及成型模具
KR102007424B1 (ko) * 2018-11-30 2019-08-05 메이저위드(주) 섬유질을 포함하는 콘크리트 블록 및 이의 제조방법
KR102273633B1 (ko) * 2019-03-27 2021-07-06 주식회사 비엔케이 내지진성 외장패널 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282713A (zh) * 2000-05-08 2001-02-07 王钢 石墨导电混凝土
CN1673167A (zh) * 2005-04-18 2005-09-28 蔡庆宗 一种掺石墨的导电混凝土的制备方法
TWM297125U (en) * 2006-03-31 2006-09-01 Ching-Tsung Tsai Low-temperature heater for electric conductive concrete
CN1844025A (zh) * 2006-04-20 2006-10-11 武汉理工大学 纳米炭黑导电混凝土
CN103382093A (zh) * 2013-07-04 2013-11-06 蔡庆宗 导电混凝土块、导电混凝土块的制备方法及成型模具
CN203393040U (zh) * 2013-07-04 2014-01-15 蔡庆宗 导电混凝土块及导电混凝土块成型模具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1016977B (zh) * 1988-06-06 1992-06-10 水利电力部交通部南京水利科学研究院 用于阴极保护钢筋混凝土结构的导电层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282713A (zh) * 2000-05-08 2001-02-07 王钢 石墨导电混凝土
CN1673167A (zh) * 2005-04-18 2005-09-28 蔡庆宗 一种掺石墨的导电混凝土的制备方法
TWM297125U (en) * 2006-03-31 2006-09-01 Ching-Tsung Tsai Low-temperature heater for electric conductive concrete
CN1844025A (zh) * 2006-04-20 2006-10-11 武汉理工大学 纳米炭黑导电混凝土
CN103382093A (zh) * 2013-07-04 2013-11-06 蔡庆宗 导电混凝土块、导电混凝土块的制备方法及成型模具
CN203393040U (zh) * 2013-07-04 2014-01-15 蔡庆宗 导电混凝土块及导电混凝土块成型模具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANGHAITAO: "THE EFFECT OF CARBON FIBER GRADIEN DISTRIBUTIONS IN CEMENT-BASED MATERIALS ON THERMAL STRESSDISTRIBUTION", CHINESE DOCTORAL DISSERTATLONS&MASTER' S THESES, 15 November 2006 (2006-11-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136731A (zh) * 2021-11-29 2022-03-04 天津大学 测试件的成型装置、测试件的制备方法及测试件

Also Published As

Publication number Publication date
KR20160026993A (ko) 2016-03-09
CN103382093B (zh) 2016-04-06
TW201502106A (zh) 2015-01-16
TWI532702B (zh) 2016-05-11
JP2016529189A (ja) 2016-09-23
CN103382093A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2015000341A1 (zh) 导电混凝土块、导电混凝土块的制备方法及成型模具
JP5028019B2 (ja) 石墨を含む電導コンクリート板を形成する方法
CN103086737B (zh) 大面积陶瓷多孔承烧板及其制备方法
CN209504451U (zh) 一种环保透水砖生产用自动脱模成型模具
TWM492345U (zh) 導電混凝土塊及製備所述導電混凝土塊的成型模具
CN106311991B (zh) 砂芯转运固定装置
WO2011076151A1 (zh) 压力式空心砖机的抽芯成型装置
CN211290832U (zh) 一种电池材料的干燥设备
CN106026560B (zh) 转子磁瓦安装装置
CN204058637U (zh) 一种小批量pcb板的微型电镀设备
CN207522947U (zh) 一种易于脱模的胶鞋成型模具
CN103137276B (zh) 一种贴片类ptc电阻生产工艺
CN204749322U (zh) 一种压滤机
CN203467567U (zh) 一种豆腐干成型装置
CN211047268U (zh) 一种用于烘烤MLCC Bar块的发热设备
CN206579182U (zh) 一种卧式制香装置
CN205466779U (zh) 一种推板窑中烧钵物料的打孔装置
CN215381208U (zh) 一个可以提升茶叶产能的设备
CN213355519U (zh) 一种防止净水剂凝结成块的储存装置
CN208120899U (zh) 一种高效的过滤装置
CN211303190U (zh) 一种混凝土生产用粉碎装置
CN104605037A (zh) 一种茯砖茶成型压模装置
CN109470536A (zh) 一种岩土试验圆柱试件制备装置
CN204712237U (zh) 一种陶瓷胚体成型的装置及系统
CN220571525U (zh) 一种豆腐脱水成型装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167000990

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14818846

Country of ref document: EP

Kind code of ref document: A1