WO2015000221A1 - 一种驱动电路及发光装置 - Google Patents

一种驱动电路及发光装置 Download PDF

Info

Publication number
WO2015000221A1
WO2015000221A1 PCT/CN2013/083399 CN2013083399W WO2015000221A1 WO 2015000221 A1 WO2015000221 A1 WO 2015000221A1 CN 2013083399 W CN2013083399 W CN 2013083399W WO 2015000221 A1 WO2015000221 A1 WO 2015000221A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resistor
node
voltage
thyristor
Prior art date
Application number
PCT/CN2013/083399
Other languages
English (en)
French (fr)
Inventor
焦卫军
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/429,949 priority Critical patent/US9247596B2/en
Publication of WO2015000221A1 publication Critical patent/WO2015000221A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to the driving of LED circuits, in particular to a driving circuit and a lighting device. Background technique
  • LED Light Emitting Diode
  • LED Light Emitting Diode
  • Figure 1 shows a common LED lighting device.
  • the LED lighting device comprises a lighting circuit, a controllable switch Q1, a resistor Rsen, a thyristor Ul and a first current limiting resistor R1, which:
  • the lighting circuit includes a plurality of LEDs D1 Dn connected in series ; wherein n is an integer greater than one.
  • the thyristor U1 is connected to the ground, and the other end is connected to the driving terminal Vdrive for supplying the driving voltage through the first current limiting resistor R1;
  • the source of the controllable switch Q1 is connected to the lighting circuit, the drain is grounded via a resistor Rsen, and the control terminal (gate) is connected to a first node X between the thyristor U1 and the first current limiting resistor R1.
  • the drive voltage Vdrive provides a turn-on voltage to turn Q1 on, so that current flows through D1 ⁇ Dn, and Rsen, which produces a voltage drop when current flows through Rsen, when the voltage on Rsen is above a threshold ( For example, when 2.5V), the thyristor U1 is turned on, and the gate voltage of Q1 is pulled low, so that Q1 is turned off, that is, the current flowing through the LED is turned off. After Q1 is turned off, the voltage drop on Rsen is 0, and the thyristor U1 is re-disconnected, causing the drive voltage Vdrive to turn back on Q1.
  • the above process loops back and forth, so that the voltage of Rsen can be maintained at 2.5V.
  • the voltage drop of Q1 under normal operation is: Vcc-nV-2.5.
  • m is a positive integer less than or equal to n
  • the voltage drop of Q1 will change to: Vcc-(nm)V-2.5, which increases the voltage drop when there is no LED short circuit. Therefore, the power consumption of Ql is increased or the withstand voltage is insufficient to damage Ql, which affects the life of the entire circuit.
  • an embodiment of the present invention provides a driving circuit for driving a light emitting circuit including a plurality of light emitting elements connected in series, wherein the driving circuit includes a first thyristor, a first current limiting resistor, and a first a resistor, a controllable switch and a control circuit, wherein:
  • the first thyristor is grounded at one end, and the other end is connected to a driving terminal that provides a driving voltage through the first current limiting resistor;
  • One end of the controllable switch is connected to the light emitting circuit, the other end is grounded through the first resistor, and the control end is connected to a first node between the thyristor and the first current limiting resistor;
  • the control circuit is operative to perform a control operation to reduce a current flowing through the lighting circuit when a voltage at a second node between the controllable switch and the lighting circuit exceeds a predetermined voltage threshold.
  • the light emitting element is an LED.
  • control circuit includes: a resistance variable circuit controlled by the second node, a second resistor, a second current limiting resistor, and a second thyristor, wherein:
  • One end of the resistance variable circuit is connected to the driving terminal through the second current limiting resistor, and the other end is connected to the fifth node through the second resistor, wherein the resistance may be increased as the voltage of the second node becomes larger
  • the resistance of the variable circuit becomes small;
  • the fifth node is a node between the first resistor and the controllable switch;
  • one end of the second thyristor is connected to the driving terminal through the second current limiting resistor, and One end is connected to the fifth node, and the control end of the second thyristor is connected to a third node between the second current limiting resistor and the resistance variable circuit;
  • the control terminal of the first thyristor is connected to a fourth node between the resistance variable circuit and the second resistor.
  • the resistance variable circuit includes a third resistor, a fourth resistor, and a triode, wherein the fourth resistor and the triode are connected in series and the third resistor is connected in parallel to form the resistance variable circuit.
  • a gate of the transistor is coupled to the second node.
  • the resistance variable circuit includes a third resistor, a fourth resistor, a third transistor and a fifth resistor and a sixth resistor, wherein the fourth resistor and the transistor are connected in series, and the third resistor is connected in parallel to form a parallel circuit, and the gate of the transistor is connected to the second node through the fifth resistor And grounded through the sixth resistor at the same time.
  • an embodiment of the present invention further provides a light emitting device, wherein a light emitting circuit including a plurality of LEDs connected in series is provided, and the light emitting device further includes any of the above driving circuits.
  • the voltage drop of the controllable switch may increase in the prior art.
  • an increase in voltage drop causes an increase in the power consumption of the controllable switch, and even a controllable switch may be damaged when the withstand voltage of the controllable switch is insufficient.
  • the control circuit when detecting that the voltage of the second node Y exceeds the preset voltage threshold, the control circuit performs a control operation to reduce the current flowing through the light-emitting circuit, at least the power consumption of the controllable switch Q1 is not reduced. Too much improvement and protection of the drive circuit.
  • 1 is a circuit diagram showing a conventional LED lighting device
  • FIG. 2 is a circuit diagram showing a driving circuit of an embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing an implementation of a control circuit according to an embodiment of the present invention
  • FIG. 4 is a circuit diagram showing an LED lighting circuit using the control circuit shown in FIG. 3.
  • Fig. 7 is a circuit diagram showing an LED lighting circuit to which the resistance variable circuit shown in Fig. 6 is applied.
  • Figure 8 is a diagram showing the control circuit of the embodiment of the present invention applied to a parallel lighting circuit. Concrete implementation
  • a control operation is performed by the control circuit to reduce a current flowing through the light-emitting circuit to protect the driving circuit.
  • the thyristor short for thyristor rectifier, is a semiconductor device with three PN junctions, also known as a thyristor. It has the characteristics of small size, relatively simple structure and strong function, and is one of the more commonly used semiconductor devices.
  • thyristors have one more control electrode.
  • the thyristor used in the embodiments of the present invention has the following characteristics: When the voltage applied to the gate of the thyristor is greater than a threshold (ie, the reference voltage of the silicon controllable), the thyristor is turned on, and is controllable. When the voltage applied by the gate of silicon is less than the threshold, the thyristor is turned off.
  • a threshold ie, the reference voltage of the silicon controllable
  • a driving circuit for driving a plurality of light-emitting elements connected in series (LED D1 Dn in FIG. 2, but may also be other types of light-emitting elements), wherein the driving circuit includes a thyristor U1, a first current limiting resistor Rl, a resistor Rsen (current detecting resistor), a controllable switch Q1 and a control circuit, wherein:
  • the first thyristor U1 - terminal is grounded, and the other end is connected to the driving terminal Vdrive for providing a driving voltage through the first current limiting resistor R1;
  • the controllable switch Q1 is connected to the light-emitting circuit, the other end is grounded through the resistor Rsen, and the control terminal is connected to the first node X between the first thyristor U1 and the first current-limiting resistor R1;
  • the control circuit is operative to perform a control operation to reduce the current flowing through the lighting circuit when the voltage of the second node Y between the controllable switch Q1 and the lighting circuit exceeds a predetermined voltage threshold.
  • the control circuit when detecting that the voltage of the second node Y exceeds the preset voltage threshold, the control circuit performs a control operation to reduce the current flowing through the light-emitting circuit, at least the power consumption of the controllable switch Q1 is not reduced. Too much improvement and protection of the drive circuit.
  • control circuit includes: a resistance variable circuit controlled by the second node Y, a second resistor Rx, a second current limiting resistor R2, and a second thyristor as shown in FIG. U2, where:
  • One end of the resistance variable circuit is connected to the driving terminal through the second current limiting resistor R2, and the other end is connected to the fifth node Z through the second resistor Rx, wherein the voltage of the second node Y changes Large, the resistance of the variable resistance circuit becomes smaller;
  • the fifth node Z is a node between the resistor Rsen and the controllable switch Q1;
  • One end of the second thyristor U2 is connected to the driving terminal Vdrive through the second current limiting resistor R2, and the other end is connected to the fifth node Z, and the control end of the second thyristor is connected to the location
  • the control terminal of the first thyristor U1 is connected to a fourth node between the resistance variable circuit and the second resistor Rx? .
  • Rx and Rsen are connected in series and grounded. Due to the action of the first thyristor U1, the voltage at the P node is fixed. Therefore, when the voltage division on Rx becomes larger, the voltage on Rsen decreases.
  • the decrease in voltage on Rsen causes the current on the series circuit of D1, ..., Dn, Ql, and Rsen to decrease, that is, the current flowing through Q1 decreases, thus offsetting the increase in loss due to the increase in Q1 partial pressure.
  • the resistance variable circuit can be implemented in various manners, such as directly using a variable resistor whose resistance becomes smaller as the voltage becomes larger, but other implementation manners can also be used. One possible implementation is illustrated below.
  • a resistance variable circuit of an embodiment of the present invention includes:
  • a third resistor R3, a fourth resistor R4, and a transistor Q2 wherein the fourth resistor R4 and the transistor Q2 are connected in series, and the resistor varistor circuit is formed in parallel with the third resistor R3, the transistor The gate is connected to the second node Y.
  • Q2 When the voltage of the Y node is greater than the turn-on voltage of Q2, Q2 is turned on and operates in an amplified state. Before Q2 reaches saturation state, Q2 is similar to a linear resistor. The larger the voltage at the Y node, the smaller the equivalent resistance between the collector and emitter of Q2, so the collector and emitter of Q2 will appear. The equivalent resistance between the two becomes smaller as the voltage at the Y node increases.
  • the equivalent resistance between the collector and the emitter of Q2 becomes smaller as the voltage of the Y node increases, which causes the resistance of the series circuit of Q2 and R4 to become smaller, which in turn causes the series circuit of Q2 and R4 to be formed in parallel with R3.
  • the resistance of the parallel circuit becomes small.
  • Q2 when the voltage of the Y node is large, Q2 may work in the saturation region, and the equivalent resistance between the collector and the emitter no longer changes with the change of the voltage of the Y node, so in order to ensure For normal operation of the control circuit, the voltage at the Y node can be divided to ensure that the voltage applied to Q2 is not greater than the voltage that causes it to operate in the saturation region.
  • variable resistance circuit in this manner is as shown in FIG. 6, and includes: a third resistor R3, a fourth resistor R4, a transistor Q2, a fifth resistor R5, and a sixth resistor R6, wherein the fourth resistor R4 and the transistor Q2 are connected in series Then, a parallel circuit is formed in parallel with the third resistor R3.
  • the gate of the transistor Q2 is connected to the second node Y through the fifth resistor R5, and is grounded through the sixth resistor R6.
  • FIG. 7 is a schematic structural diagram of a specific circuit according to an embodiment of the present invention.
  • Rx and Rsen are connected in series and grounded. Due to the action of the first thyristor U1, the voltage at the P node is fixed. Therefore, when the voltage division on Rx becomes larger, the voltage on Rsen decreases.
  • the decrease in voltage on Rsen causes the current on the series circuit of D1, ..., Dn, Ql, and Rsen to decrease, that is, the current flowing through Q1 is reduced, thus at least offsetting the loss due to the increase in Q1 voltage division. increase.
  • R1 and R2 are current limiting resistors, and the values can be the same, but they can be different.
  • sub-circuit A (dashed line A) is formed in parallel with R3, and sub-circuit A and resistor Rx are connected in series to form sub-circuit B (dashed line B), and sub-circuit B is connected in parallel with U2.
  • U2 reference voltage be V ref , criz lj:
  • V R3 , V Rsen and V Rx are voltages on R3, Rsen and Rx, respectively;
  • V Y (the voltage of node Y) is low enough to turn Q2 on.
  • V Rx V ref *Rx/(R3+Rx)
  • the current of the LED depends on the size of V R3 .
  • V Y the voltage of node Y
  • Q2 and R4 are connected in series and then connected in parallel with R3. If the parallel resistance is Ry, then Ry is necessarily smaller than R3, that is, VR3 falls.
  • V R3 /Rsen a decrease in V R3 will cause the I led to drop.
  • P Q1 is a quadratic function about I led . According to the characteristics of the quadratic function, when I led falls in a certain interval, ? ( 21 will also drop.
  • V ref the ground voltage of the P node
  • Q2 can start when the base voltage of Q2 needs to be greater than the sum of V ref and V be (the voltage between the collector and the emitter). Turn on. That is, when V Y is greater than V re V be , Q2 starts to work, and the Q2 working state can be adjusted by R5 and R6.
  • an illumination circuit is taken as an example, but it should be understood that the existing illumination circuit may be formed by connecting a plurality of circuits in parallel, and in this case, each circuit may be set.
  • the control circuit as shown in the figure, as shown in Fig. 8, since each control circuit works exactly the same, it will not be further described here.
  • Embodiments of the present invention also provide a light emitting device in which a light emitting circuit including a plurality of LEDs connected in series is provided, and the light emitting device further includes any of the above driving circuits.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

一种驱动电路及发光装置,该驱动电路用于驱动包括多个串联的发光元件的发光电路,所述驱动电路包括第一可控硅、第一限流电阻、第一电阻、可控开关及控制电路,其中:所述第一可控硅一端接地,另一端通过所述第一限流电阻连接到提供驱动电压的驱动端子;所述可控开关一端与所述发光电路连接,另一端通过所述第一电阻接地,控制端连接到位于第一可控硅和第一限流电阻之间的第一节点;控制电路用于在位于所述可控开关的与发光电路之间的第二节点的电压超过预设电压门限时,执行控制操作,以减小流过发光电路的电流。本发明实现了对驱动电路的保护。

Description

一种驱动电路及发光装置 技术领域
本发明涉及 LED电路的驱动, 特别是一种驱动电路及发光装置。 背景技术
LED (Light Emitting Diode, 发光二极管) 由于其体积小、 效能高等特点 已经被广泛应用于工业和日常生活的各个方面。
图 1所示为一种常见的 LED发光装置。 如图 1所示, 该 LED发光装置 包括发光电路、 可控开关 Ql, 电阻 Rsen、 可控硅 Ul以及第一限流电阻 R1, 射:
发光电路包括多个串联的 LED Dl Dn; 其中 n为大于 1的整数。 可控硅 U1—端接地, 另一端通过第一限流电阻 R1连接到提供驱动电压 的驱动端子 Vdrive;
可控开关 Ql的源极与所述发光电路连接, 漏极通过电阻 Rsen接地, 而 控制端(栅极)连接到位于可控硅 U1和第一限流电阻 R1之间的第一节点 X。
然而上述的 LED发光装置在出现 LED短路时, 存在对驱动电路保护不 够的缺点, 下面结合其工作过程说明如下。
如图 1所示, 驱动电压 Vdrive提供一个开启电压使 Q1导通, 从而有电 流流过 Dl〜Dn, 以及 Rsen, 当电流流过 Rsen时会产生电压降, 当 Rsen上电 压高于一个门限 (如 2.5V) 时可控硅 U1导通, 将 Q1 的栅极电压拉低, 使 Q1关断, 即关断流经 LED的电流。 而 Q1关断后, Rsen上电压降为 0, 贝 lj可 控硅 U1重新断开,使得驱动电压 Vdrive重新导通 Ql。上述过程中循环往复, 使得 Rsen的电压能够维持在 2.5V。
假定 LED正常工作时压降为 V,则正常工作下 Q1的压降为: Vcc-nV-2.5。 然而当 Dl〜Dn中的 m个 LED短路时 (m为小于或等于 n的正整数), Q1 的压降会改变为: Vcc-(n-m)V-2.5, 比没有 LED短路时压降增加 mV, 从而导致 Ql的功耗升高或者耐压不够而损坏 Ql, 影响整个电路的寿命。
以上是以 LED发光电路为例进行的说明, 但应当理解的是, 其他发光元 件组成的类似电路也存在同样的问题, 在此不再一一描述。 发明内容
本发明实施例的目的在于提供一种驱动电路及发光装置, 实现对驱动电 路的保护。
为了实现上述目的, 本发明实施例提供了一种驱动电路, 用于驱动包括 多个串联的发光元件的发光电路, 其中, 所述驱动电路包括第一可控硅、 第 一限流电阻、 第一电阻、 可控开关及控制电路, 其中:
所述第一可控硅一端接地, 另一端通过所述第一限流电阻连接到提供驱 动电压的驱动端子;
所述可控开关一端与所述发光电路连接,另一端通过所述第一电阻接地, 控制端连接到位于可控硅和第一限流电阻之间的第一节点;
控制电路用于在位于所述可控开关与发光电路之间的第二节点的电压超 过预设电压门限时, 执行控制操作, 以减小流过发光电路的电流。
上述的驱动电路, 其中, 所述发光元件为 LED。
上述的驱动电路, 其中, 所述控制电路包括: 受所述第二节点控制的电 阻可变电路、 第二电阻、 第二限流电阻和第二可控硅, 其中:
所述电阻可变电路的一端通过所述第二限流电阻连接到所述驱动端子, 另一端通过所述第二电阻连接到第五节点, 其中随着第二节点的电压变大, 电阻可变电路的电阻变小;第五节点为所述第一电阻和可控开关之间的节点; 所述第二可控硅的一端通过所述第二限流电阻连接到所述驱动端子, 另 一端连接到第五节点, 所述第二可控硅的控制端连接到位于所述第二限流电 阻和所述电阻可变电路之间的第三节点;
所述第一可控硅的控制端连接位于所述电阻可变电路和第二电阻之间的 第四节点。
上述的驱动电路, 其中, 所述电阻可变电路包括第三电阻、 第四电阻和 三极管, 其中, 第四电阻和所述三极管串联后与所述第三电阻并联形成所述 电阻可变电路, 所述三极管的栅极与所述第二节点连接。
上述的驱动电路, 其中, 所述电阻可变电路包括第三电阻、 第四电阻、 三极管和第五电阻和第六电阻, 其中, 第四电阻和三极管串联后与所述第三 电阻并联形成一并联电路, 所述三极管的栅极通过所述第五电阻与所述第二 节点连接, 同时通过所述第六电阻接地。
为了更好的实现上述目的, 本发明实施例还提供了一种发光装置, 其中 设置有包括多个串联的 LED的发光电路,所述发光装置还包括上述任意的驱 动电路。
本发明实施例至少具有如下有益效果:
本发明实施例中, 当位于所述可控开关 Q1 的与发光电路之间的节点的 电压超过预设电压门限时, 在现有技术中可控开关的压降会升高。 而在电流 不变的情况下, 压降升高会导致可控开关的功耗升高, 而当可控开关的耐压 性能不够时甚至会损坏可控开关。 而本发明实施例在检测到第二节点 Y的电 压超过预设电压门限时, 控制电路会执行控制操作, 以减小流过发光电路的 电流, 至少能够使得可控开关 Q1 的功耗不至于提升过多, 实现了对驱动电 路的保护。 附图说明
图 1表示现有的 LED发光装置的电路示意图;
图 2表示本发明实施例的驱动电路的电路示意图;
图 3表示本发明实施例的控制电路的一种实现方式的电路示意图; 图 4表示应用图 3所示的控制电路的 LED发光电路的电路示意图; 图 5和图 6表示电阻可变电路的两种实现方式的电路示意图;
图 7表示应用图 6所示的电阻可变电路的 LED发光电路的电路示意图。 图 8表示本发明实施例的控制电路应用于具有并联发光电路的示意图。 具体实舫式
本发明实施例的一种驱动电路及发光装置中, 在发现存在 LED短路时, 通过控制电路来执行控制操作, 减小流过发光电路的电流, 实现对驱动电路 的保护。
为更好的理解本发明实施例, 在此先对本发明实施例中涉及到的可控硅 简要介绍如下。
可控硅, 是可控硅整流元件的简称, 是一种具有三个 PN 结的半导体器 件, 亦称为晶闸管。 具有体积小、 结构相对简单、 功能强等特点, 是比较常 用的半导体器件之一。
可控硅的 3个 PN结分别引出 3个电极: 阳极、 控制极和阴极 K。 相比 于二极管, 可控硅多了一个控制极。
本发明实施例所使用的可控硅具有如下的特性: 当给可控硅的控制极施 加的电压大于一个门限 (即可控硅的参考电压) 时, 可控硅导通, 而给可控 硅的控制极施加的电压小于该门限时, 可控硅关断。
本发明实施例的一种驱动电路, 用于驱动包括多个串联的发光元件 (其 中图 2中为 LED Dl Dn, 但也可以是其他类型的发光元件) 的发光电 路, 所述驱动电路包括第一可控硅 Ul、 第一限流电阻 Rl、 电阻 Rsen (电流 检测电阻)、 可控开关 Q1及控制电路, 其中:
所述第一可控硅 U1—端接地, 另一端通过所述第一限流电阻 R1连接到 提供驱动电压的驱动端子 Vdrive;
所述可控开关 Q1—端与所述发光电路连接, 另一端通过所述电阻 Rsen 接地,控制端连接到位于第一可控硅 U1和第一限流电阻 R1之间的第一节点 X;
控制电路用于在位于所述可控开关 Q1与发光电路之间的第二节点 Y的 电压超过预设电压门限时, 执行控制操作, 以减小流过发光电路的电流。
当位于所述可控开关 Q1的与发光电路之间的第二节点 Y的电压超过预 设电压门限(此时表明发光电路中有部分 LED短路,或者 Vcc电压升高)时, 在现有技术中可控开关的压降会升高。 而在电流不变的情况下, 压降升高会 导致可控开关的功耗升高, 而当可控开关的耐压性能不够时甚至会损坏可控 开关。 而本发明实施例在检测到第二节点 Y的电压超过预设电压门限时, 控 制电路会执行控制操作, 以减小流过发光电路的电流, 至少能够使得可控开 关 Q1的功耗不至于提升过多, 实现了对驱动电路的保护。
在本发明的具体实施例中,上述的控制电路可以通过过多种方式来实现, 下面对其中的一种方式说明如下。 在本发明的具体实施例中, 该控制电路如图 3所示包括: 受所述第二节 点 Y控制的电阻可变电路、 第二电阻 Rx、 第二限流电阻 R2和第二可控硅 U2, 其中:
所述电阻可变电路的一端通过所述第二限流电阻 R2 连接到所述驱动端 子, 另一端通过所述第二电阻 Rx连接到第五节点 Z, 其中随着第二节点 Y 的电压变大, 电阻可变电路的电阻变小; 第五节点 Z为所述电阻 Rsen和可控 开关 Q1之间的节点;
所述第二可控硅 U2的一端通过所述第二限流电阻 R2连接到所述驱动端 子 Vdrive, 另一端连接到第五节点 Z, 所述第二可控硅的控制端连接到位于 所述第二限流电阻 R2和所述电阻可变电路之间的第三节点 W;
所述第一可控硅 U1的控制端连接位于所述电阻可变电路和第二电阻 Rx 之间的第四节点?。
利用上述控制电路的整体电路结构如图 4所示。
以下,对图 4所示的电路能够降低在 LED短路时减小流过发光电路的电 流的原理进行说明。
首先, 如图 4所示, 当电路中存在 LED短路时, 则 Y节点的电压升高。 而 Y节点的电压升高则会导致电阻可变电路的电阻变小, 由于电阻可变电路 和 Rx的串联电路的电压恒定, 则 Rx上的分压变大。
而 Rx和 Rsen串联后接地, 由于第一可控硅 U1的作用, P节点的电压固 定, 因此当 Rx上的分压变大时, Rsen上的电压会减小。
而 Rsen上的电压减小会导致 Dl、 …、 Dn、 Ql、 Rsen这个串联电路上的 电流减小, 即流过 Q1的电流会减小, 因此抵消了 Q1分压增大带来的损耗增 在本发明的具体实施例中, 该电阻可变电路可以通过各种方式实现, 如 直接采用电阻随电压变大而变小的可变电阻,但也可以采用其他的实现方式, 对此对其中一种可能的实现方式说明如下。
如图 5所示, 本发明实施例的一种电阻可变电路包括:
第三电阻 R3、 第四电阻 R4和三极管 Q2, 其中, 第四电阻 R4和所述三 极管 Q2串联后与所述第三电阻 R3并联形成所述电阻可变电路,所述三极管 的栅极与所述第二节点 Y连接。
结合图 5对其中的第四电阻 R4的作用说明如下。
第三电阻 R3、 第四电阻 R4和三极管 Q2, 其中, 第四电阻 R4和所述三 极管 Q2 串联后与所述第三电阻 R3 并联形成所述电阻可变电路, 如果没有 R4, 只有 Q2的话, 则当 Y节点的电压较大时, Q2导通, 会使得 R3两端近 似短路, 导致电路无法正常工作, 因此, 需要一个 R4来避免这种情况。
下面结合图 5对电路工作过程说明如下。
当 Y节点的电压大于 Q2的开启电压时, Q2导通, 工作于放大状态。 而 在 Q2达到饱和状态之前, Q2类似于一个线性电阻, Y节点的电压越大, 则 Q2的集电极和发射极之间的等效电阻越小, 因此会出现 Q2的集电极和发射 极之间的等效电阻随着 Y节点的电压升高而变小的情况。
而 Q2的集电极和发射极之间的等效电阻随着 Y节点的电压升高而变小 会导致 Q2与 R4的串联电路的电阻变小, 进而导致 Q2与 R4的串联电路与 R3并联形成的并联电路的电阻变小。
上述的实施例中, 当 Y节点的电压较大时, 可能会导致 Q2工作于饱和 区, 集电极和发射极之间的等效电阻不再跟随 Y节点的电压的变化而变化, 因此为了保证控制电路的正常工作, 可以对 Y节点的电压进行分压处理, 保 证施加到 Q2的电压不会大于使得其工作于饱和区的电压。
这种方式下的电阻可变电路如图 6所示, 包括: 第三电阻 R3、 第四电阻 R4、三极管 Q2和第五电阻 R5和第六电阻 R6, 其中, 第四电阻 R4和三极管 Q2串联后与所述第三电阻 R3并联形成一并联电路, 所述三极管 Q2的栅极 通过所述第五电阻 R5与所述第二节点 Y连接,同时通过所述第六电阻 R6接 地。
图 7所示为本发明实施例的具体电路结构示意图。
结合图 7说明上述电路的工作过程如下。
Dl Dn正常的情况下, Y节点的电压经过 R5和 R6的分压不足以 导通 Q2, 因此控制电路处于不工作的状态。
而当 Dl Dn中的部分 LED短路时, 导致 Y节点的电压增大, 此时 当短路的 LED增加时,由于 Rsen上的电压固定,则 Q 1上的电压会增大。 同时 Q2的集电极和发射极之间的等效电阻变小, 则 R3、 R4和 Q2组成的电 阻可变电路的电阻变小。 而由于 U2的作用, 电阻可变电路和 Rx上的电压固 定,则电阻可变电路电阻变小的情况下, 电阻可变电路和 Rx的串联电路的电 流增大, 会导致 Rx上的分压加大。
而 Rx和 Rsen串联后接地, 由于第一可控硅 U1的作用, P节点的电压固 定, 因此当 Rx上的分压变大时, Rsen上的电压会减小。
而 Rsen上的电压减小会导致 Dl、 …、 Dn、 Ql、 Rsen这个串联电路上的 电流减小, 即流过 Q1的电流会减小, 因此至少抵消了 Q1分压增大带来的损 耗增加。
下面结合上述电路从定量的关系来说明整个电路的性能。
结合图 7所示意, R1和 R2均为限流电阻, 其值的大小可以相同, 但也 可以不同。
如图 7所示, R4和 Q2串联之后与 R3并联形成子电路 A (虚线框 A), 而子电路 A与电阻 Rx串联后形成子电路 B (虚线框 B), 子电路 B与 U2并 联, 设 U2, U1参考电压为 Vref, 贝 lj:
VR3+VRx=Vref
同理:
Figure imgf000009_0001
其中, VR3、 VRsen和 VRx分别为 R3、 Rsen和 Rx上的电压;
由此可知 VRsen = V R3
假设 VY (节点 Y的电压)足够低, 无法使 Q2导通, 贝 lj:
VRx=Vref*Rx/(R3+Rx)
VRsen= VR3=Vref*R3/( R3+Rx)
VRsen
Figure imgf000009_0002
其中 lied为流过 LED的电流。
由上可知:
lied: VR3/Rsen
也就是说 LED的电流取决于 VR3的大小。 假设 VY (节点 Y的电压)超过预设值, 导致 Q2导通时, Q2和 R4串联后 与 R3并联, 设并联电阻为 Ry, 则 Ry必然小于 R3, 即 VR3下降。
又由于 Iled= VR3/Rsen, 所以 VR3下降会导致 Iled下降。
对 Q1的损耗分析如下:
设 Q1损耗为 PQ1, 则:
Figure imgf000010_0001
可以发现, PQ1是关于 Iled的二次函数, 根据二次函数的特性, 当 Iled在某 一区间下降时, ?(21也会随之下降。
而考虑到 Q2的导通问题, 由于 P节点的对地电压为 Vref, 所以 Q2基极 电压需大于 Vref和 Vbe (集电极和发射极之间的电压) 的和时, Q2才能开始 导通。 即当 VY大于 Vre Vbe时, Q2开始工作, Q2工作状态可通过 R5和 R6 来调整。
在本发明的具体实施例中, 是以一个发光电路为例进行的说明, 但应当 理解的是, 现有的发光电路可能是多个电路并联形成, 则这种情况下可以针 对每一个电路设置如图所示的控制电路, 如图 8所示, 由于每一个控制电路 的工作原理完全相同, 在此不作进一步描述。
本发明实施例还提供了一种发光装置, 其中设置有包括多个串联的 LED 的发光电路, 所述发光装置还包括上述任意的驱动电路。
由于对应于每种电路的工作过程已经在之前进行了详细描述, 在此不再 进一步详细说明。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润 饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1 . 一种驱动电路, 用于驱动包括多个串联的发光元件的发光电路, 其特 征在于, 所述驱动电路包括第一可控硅、 第一限流电阻、 第一电阻、 可控开 关及控制电路, 其中:
所述第一可控硅一端接地, 另一端通过所述第一限流电阻连接到提供驱 动电压的驱动端子;
所述可控开关一端与所述发光电路连接,另一端通过所述第一电阻接地, 控制端连接到位于所述第一可控硅和所述第一限流电阻之间的第一节点; 控制电路用于在位于所述可控开关与发光电路之间的第二节点的电压超 过预设电压门限时, 执行控制操作, 以减小流过发光电路的电流。
2. 根据权利要求 1所述的驱动电路, 其特征在于, 所述发光元件为发光 二极管。
3. 根据权利要求 1或 2所述的驱动电路, 其特征在于, 所述控制电路包 括: 受所述第二节点控制的电阻可变电路、 第二电阻、 第二限流电阻和第二 可控硅, 其中:
所述电阻可变电路的一端通过所述第二限流电阻连接到所述驱动端子, 另一端通过所述第二电阻连接到第五节点, 其中随着第二节点的电压变大, 电阻可变电路的电阻变小;第五节点为所述第一电阻和可控开关之间的节点; 所述第二可控硅的一端通过所述第二限流电阻连接到所述驱动端子, 另 一端连接到第五节点, 所述第二可控硅的控制端连接到位于所述第二限流电 阻和所述电阻可变电路之间的第三节点;
所述第一可控硅的控制端连接位于所述电阻可变电路和第二电阻之间的 第四节点。
4. 根据权利要求 1至 3中任一项所述的驱动电路, 其特征在于, 所述电 阻可变电路包括第三电阻、 第四电阻和三极管, 其中, 所述第四电阻和所述 三极管串联后与所述第三电阻并联形成所述电阻可变电路, 所述三极管的栅 极与所述第二节点连接。
5. 根据权利要求 1至 3 中任一项所述的驱动电路, 其特征在于, 所述 电阻可变电路包括第三电阻、 第四电阻、 三极管和第五电阻和第六电阻, 其 中,所述第四电阻和所述三极管串联后与所述第三电阻并联形成一并联电路, 所述三极管的栅极通过所述第五电阻与所述第二节点连接, 同时通过所述第 六电阻接地。
6. 一种发光装置, 其中设置有包括多个串联的发光元件的发光电路, 其 特征在于, 所述发光装置还包括权利要求 1-5中任意一项所述的驱动电路。
PCT/CN2013/083399 2013-07-04 2013-09-12 一种驱动电路及发光装置 WO2015000221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,949 US9247596B2 (en) 2013-07-04 2013-09-12 Driving circuit for driving light-emitting circuit, and light-emitting device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310279706.1 2013-07-04
CN201310279706.1A CN103327698B (zh) 2013-07-04 2013-07-04 一种驱动电路及发光装置

Publications (1)

Publication Number Publication Date
WO2015000221A1 true WO2015000221A1 (zh) 2015-01-08

Family

ID=49196140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083399 WO2015000221A1 (zh) 2013-07-04 2013-09-12 一种驱动电路及发光装置

Country Status (3)

Country Link
US (1) US9247596B2 (zh)
CN (1) CN103327698B (zh)
WO (1) WO2015000221A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110058299A1 (en) * 2009-09-04 2011-03-10 Osram Sylvania Inc. Transient voltage protection circuit and system incorporating the same
CN201995169U (zh) * 2011-01-12 2011-09-28 巢湖凯达照明技术有限公司 大功率led路灯驱动电源
CN202005046U (zh) * 2011-04-27 2011-10-05 海洋王照明科技股份有限公司 一种led灯具及其电源驱动电路
CN101646290B (zh) * 2008-08-06 2012-10-31 夏普株式会社 Led驱动电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694597B (zh) * 2005-05-20 2010-05-26 马士科技有限公司 一种分级调光的荧光灯镇流器
CN101702850B (zh) * 2009-10-27 2013-06-05 嘉力时灯光设备(东莞)有限公司 可控硅关断负载的电路及方法
CN201577223U (zh) * 2010-01-12 2010-09-08 青岛海信电器股份有限公司 Led驱动电路及具有该电路的显示装置
CN101778513B (zh) * 2010-02-05 2013-06-12 海洋王照明科技股份有限公司 一种led均流控制电路及led驱动模块和助航灯
TWI458390B (zh) * 2011-12-09 2014-10-21 Gio Optoelectronics Corp 發光裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646290B (zh) * 2008-08-06 2012-10-31 夏普株式会社 Led驱动电路
US20110058299A1 (en) * 2009-09-04 2011-03-10 Osram Sylvania Inc. Transient voltage protection circuit and system incorporating the same
CN201995169U (zh) * 2011-01-12 2011-09-28 巢湖凯达照明技术有限公司 大功率led路灯驱动电源
CN202005046U (zh) * 2011-04-27 2011-10-05 海洋王照明科技股份有限公司 一种led灯具及其电源驱动电路

Also Published As

Publication number Publication date
US20150230299A1 (en) 2015-08-13
US9247596B2 (en) 2016-01-26
CN103327698A (zh) 2013-09-25
CN103327698B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
TWI449287B (zh) 過電壓保護電路及驅動電路
JP4227124B2 (ja) ファンモジュールのホットスワップ回路システム
TWI467876B (zh) 發光二極體驅動電路
US20140285100A1 (en) Power Supply Circuit and Illumination Apparatus
US9084327B2 (en) Driver circuit for improving utilization rate of LED device and related constant current regulator
JP6461950B2 (ja) オープン出力保護を備えるドライバ
US7902770B2 (en) Light emitting device
EP3030052B1 (en) Dynamic configuration for subsection led driving device and led illumination device
EP2474988A1 (en) Light-emitting diode drive control circuit
JP5635209B1 (ja) ランプ駆動電源、および、ランプ駆動電源の制御方法
JP2008300209A (ja) 照明装置
JP6391860B2 (ja) 電力コンバータ、及び電力コンバータを有するled照明回路
CN103313462A (zh) 照明用电源以及照明装置
US8072162B2 (en) Bi-direction constant current device
WO2015000221A1 (zh) 一种驱动电路及发光装置
KR20130056085A (ko) 발광소자부 쇼트 보호 회로
JP5528240B2 (ja) 定電流発生回路
KR101231762B1 (ko) Led 부하의 단락에 의한 내장 부품 및 부하의 파손 방지 기능을 제공하는 led 조명용 전원공급장치
WO2015000235A1 (zh) 一种驱动电路及发光装置
KR20110104819A (ko) 발광 다이오드 어레이 회로
KR102132666B1 (ko) 발광 다이오드 구동장치
CN104822193A (zh) 基于稳压二极管的防浪涌led驱动电路
JP7163486B2 (ja) 負荷駆動装置
JP6516615B2 (ja) Led駆動回路
TWI592781B (zh) 電壓控制電路及其適用之定電流驅動裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.08.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13888854

Country of ref document: EP

Kind code of ref document: A1