WO2015000133A1 - 除热装置、电磁风扇离合器及控制方法和无极调速系统 - Google Patents
除热装置、电磁风扇离合器及控制方法和无极调速系统 Download PDFInfo
- Publication number
- WO2015000133A1 WO2015000133A1 PCT/CN2013/078675 CN2013078675W WO2015000133A1 WO 2015000133 A1 WO2015000133 A1 WO 2015000133A1 CN 2013078675 W CN2013078675 W CN 2013078675W WO 2015000133 A1 WO2015000133 A1 WO 2015000133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- fan
- driven rotor
- driving
- electric
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 27
- 238000004804 winding Methods 0.000 claims abstract description 115
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 73
- 230000033228 biological regulation Effects 0.000 claims description 21
- 230000007246 mechanism Effects 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000004134 energy conservation Methods 0.000 abstract 1
- 230000002028 premature Effects 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 230000005674 electromagnetic induction Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D27/00—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
- F16D27/10—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
- F16D27/108—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
- F16D27/112—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/02—Controlling of coolant flow the coolant being cooling-air
- F01P7/08—Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps
- F01P7/081—Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps using clutches, e.g. electro-magnetic or induction clutches
Definitions
- the present invention relates to a heat removing device, and more particularly to a heat removing device for an electromagnetic fan clutch, an electromagnetic fan clutch and a control method using the same, and a stepless speed regulating system having the electromagnetic fan clutch.
- the fan blades of the electromagnetic fan clutch on the market are bolted to the fan fixing plate, and the fan fixing plate is rotatably connected to the transmission shaft through the bearing.
- the existing electromagnetic fan clutch (takes a three-speed electromagnetic fan clutch as an example) as shown in Fig. 1, including a main shaft (drive shaft), a drive disc 2', an electromagnet core 3', an outer coil 4a', an inner coil 4b', Fan fixing plate 9', magnet fixing plate 10', small spring piece 12', small suction plate 13', large spring piece 34', large suction plate 35' and safety plate 36', which are made of magnetically permeable material
- the drive disc 2' is fixedly mounted on the main shaft by a semi-circular key 19'.
- the side of the drive disc 2' is provided with a plurality of sets of magnetic isolation slots 23', and the inner cavity of the drive disc 2' is provided with an electromagnet core 3', an electromagnet core 3 ' is mounted on the main shaft through the bearing 5 ', and the inner and outer coils are respectively provided with the inner and outer coil inlay grooves.
- the direction of the magnetic opening of the inner and outer coil slots is the same as the axial direction of the main shaft and is directed to the drive plate 2
- the inner and outer coils 4b' and 4a' are respectively provided by the flat winding method
- the fan fixing plate 9' and the magnet fixing plate 10' are respectively mounted on the main shaft through the bearings 8', 11'
- the magnet fixing plate 10' is located in the fan fixed In the inner cavity of the disk 9'
- a plurality of fixing holes are evenly distributed on the one end surface of the magnet fixing plate 10' for inserting the soft magnet 15', and the soft magnet 15' is attracted with the permanent magnet 14'
- the fan fixing plate A soft magnet 16' is embedded on the corresponding end surface of the upper permanent magnet 14'
- a small suction plate 13' is supported by the small spring piece 12' on the annular end surface of the magnet fixing plate 10' opposite to the inner coil 4b'.
- the annular fixing end surface of the fan fixing plate 9' opposite to the outer coil 4a' is supported by a large spring plate 34' to be connected with a large suction plate 35', and the large and small suction plates 13', 35' are all close to the driving plate 2'
- the side surface has a gap with the corresponding end surface of the driving plate 2', and the outer side end surface of the fan fixing plate 9' is fixedly connected with the safety plate 36'.
- the safety plate 36' is provided with a locking hole, and the driving plate 2' A fitting hole is formed in a position corresponding to the lock hole on the outer side of the circumferential position.
- the fan fixing plate 9' Connected, driving the magnet fixing plate 10' to rotate, the fan fixing plate 9' relatively rotates in a magnetic field formed by the magnet on the magnet fixing plate 10', cutting the magnetic lines of force, the fan fixing plate 9' itself generates an eddy current, and the eddy current generates a new magnetic field Under the action of the magnetic field force, the fan fixing plate is driven to be differentially rotated with respect to the magnet fixing plate to form a differential rotation, so that the fan fixing plate drives the fan to rotate, and the water temperature of the automobile engine is advanced. Cooling down.
- the patent name is "four-speed electromagnetic fan clutch” invention patent
- the publication number is CN101672210
- the patent name is “three-speed electromagnetic fan clutch” and other patents, all of which are active rotors (magnet fixed discs or drive discs). Or the drive shaft)
- the eddy current is generated on the driven rotor (fan fixed disk) by electromagnetic induction to drive the driven rotor to rotate differentially with respect to the active rotor to realize the clutch shifting of the electromagnetic fan clutch.
- the technical problem to be solved by the present invention is to provide a heat removal device which is simple in structure and simple in operation, and can eliminate a large amount of heat generated by the driven rotor or the active rotor of the electromagnetic fan clutch due to eddy current.
- a heat removal device includes a driven rotor and an active rotor, and a coil winding that outputs an induced current is disposed on the driven rotor or the active rotor.
- a heat removal device wherein the driven rotor or the active rotor is provided with a magnetizer, and the coil winding is embedded in a cavity opened in the magnetic conductor.
- a heat removing device wherein the coil winding is connected with a speed regulating device for adjusting the rotational speed of the driven rotor.
- the speed regulating device By setting the speed regulating device, the magnitude of the output current of the coil winding is controlled, thereby controlling the magnitude of the driving torque received by the driven rotor, thereby adjusting the rotational speed of the driven rotor.
- a heat removal device wherein the speed control device is a power storage device or a power storage device.
- the speed regulating device is a power storage device or a power device, and the utilized current of the coil winding that is fully utilized improves the energy utilization efficiency.
- a heat removal device wherein the speed control device is a variable resistor or an electric fan.
- the speed regulating device is a variable resistor, which makes the electromagnetic fan clutch simple in structure and convenient in speed regulation.
- the speed governing device is an electric fan, and the electric fan further cools the automobile engine, thereby improving the ability of the electromagnetic fan clutch to cool the automobile engine.
- the heat removing device of the present invention can be applied to the electromagnetic fan clutch, and can eliminate heat generated by the eddy current when the driven rotor (fan fixed disk) or the active rotor (the magnet fixed disk or the drive shaft) rotates, and the energy is reduced. Loss, to avoid bearing failure due to heat.
- the induced current in the coil winding generates a new magnetic field, and the driven rotor makes a differential rotation with respect to the active rotor under the action of the magnetic field force, so that the driven rotor drives the fan blade to rotate, and the automobile engine is driven. Cooling down.
- the heat removing device of the present invention in the electromagnetic fan clutch, the original uncontrollable eddy current is replaced by a controllable induced current to realize the fan fixed disk (driven rotor) relative to the magnet fixed disk (active rotor) differential Rotation, avoiding the energy loss caused by the uncontrolled eddy current generated by a large amount of heat or bearing heat failure.
- the device is applied to the electromagnetic fan clutch, has a simple structure and low cost compared with the existing heat dissipation mode, and converts heat harmful to the electromagnetic fan clutch into electric energy for use by other devices.
- Another technical problem to be solved by the present invention is to provide an electromagnetic fan clutch which is simple in structure, low in cost, and simple in operation, and realizes differential rotation of the fan fixed disk by inductive current, thereby reducing energy loss.
- An electromagnetic fan clutch includes the foregoing heat removing device.
- the heat removing device includes a driven rotor and an active rotor, and a coil winding that outputs an induced current is disposed on the driven rotor or the active rotor.
- An electromagnetic fan clutch of the present invention wherein the active rotor is coupled to a drive device, the drive device being a gear, a chain wheel or a pulley.
- An electromagnetic fan clutch wherein the active rotor is coupled to a driving device via a shifting device, the driving device being a gear, a sprocket or a pulley, and the gear ratio of the shifting device is between 1 and 10.
- An electromagnetic fan clutch of the present invention wherein the shifting device is a gear train.
- An electromagnetic fan clutch wherein the active rotor is a drive shaft, the driven rotor is a fan fixed disk, and the shifting device is a planetary gear shifting mechanism.
- An electromagnetic fan clutch wherein the drive shaft is rotatably mounted on a seat body, the drive device is a pulley, and the drive device is mounted on a seat body or a drive shaft through a bearing, the planetary gear shifting mechanism including a sun gear, a planet The wheel, the carrier and the ring gear are fixedly mounted on the drive shaft, the carrier is fixedly connected to the seat, and the ring gear is fixedly connected to the pulley.
- the carrier is fixedly connected with the seat body, and the inner ring gear is fixedly connected with the pulley, so that the electromagnetic fan clutch has a compact structure, small volume, and stable and reliable energy transmission.
- An electromagnetic fan clutch wherein the sun gear is integrated with a drive shaft, the fan fixing plate has a cylindrical shape, and the fan fixed plate is fitted on the inner ring gear of the planetary gear shifting mechanism or the seat body through a bearing or On the drive shaft or on the pulley.
- An electromagnetic fan clutch wherein the driven rotor has a cylindrical shape, the active rotor is mounted in the driven rotor, and there is a gap between the active rotor and the driven rotor; or the active rotor has a cylindrical shape, a driven rotor Installed in the active rotor, there is a gap between the active rotor and the driven rotor; or the active rotor and the driven rotor are arranged side by side, the active rotor and the driven rotor are parallel to each other, and there is a gap between the two; The active rotor and the driven rotor are oppositely arranged, the axes of the active rotor and the driven rotor are coincident, and there is a gap between the two; or the active rotor and the driven rotor are both in a truncated cone shape, and the active rotor and the driven rotor are clamped.
- An electromagnetic fan clutch of the present invention is different from the prior art in that the present invention replaces the prior art active rotor or the slave by using an induction current generated by the coil winding by providing a coil winding on the active rotor or the driven rotor of the electromagnetic fan clutch.
- the eddy current generated by the moving rotor generates a magnetic field and drives the driven rotor to rotate at a differential speed.
- heat generation is reduced and energy loss is reduced. And it can output the induced current and reduce the energy consumption of the electromagnetic fan clutch.
- Another technical problem to be solved by the present invention is to provide a stepless speed regulation system capable of achieving stepless speed regulation of an electromagnetic fan clutch on the basis of reducing the amount of heat generated by the electromagnetic fan clutch.
- the invention relates to a stepless speed regulation system, comprising the aforementioned electromagnetic fan clutch provided with a coil winding, wherein the speed regulating device is an electric fan, the number of electric fans is at least one, the electric fan is controlled by a control device, and the control device regulates the coil winding Output current to the electric fan.
- the invention provides a stepless speed regulation system, wherein the control device is a temperature control switch or a logic control circuit.
- a stepless speed regulation system wherein a fan blade is directly or indirectly fixedly mounted on a driven rotor of the electromagnetic fan clutch, the fan blade faces a radiator of the engine, and a fan blade of the electric fan is also directed toward the engine Radiator.
- the invention provides a stepless speed regulation system, wherein the number of the electric fans is four.
- the stepless speed regulation system of the invention outputs the current generated by the coil winding to the electric fan through the control device, and controls the magnitude of the current through the control device, that is, controls the output current of the coil winding, thereby controlling the magnetic field strength generated by the coil winding.
- the size, thereby controlling the magnitude of the torque received by the fan fixed disk because the magnitude of the current can be continuously adjusted, and the magnitude of the torque received by the fan fixed disk can be continuously adjusted, so that the stepless adjustment of the rotational speed of the fixed disk of the fan can be achieved.
- Another technical problem to be solved by the present invention is to provide a control method for an electromagnetic fan clutch, which can reduce the water temperature of the engine while reducing the heat of the electromagnetic fan clutch, and ensure the normal operation of the engine.
- the control method of the electromagnetic fan clutch of the present invention comprises the following steps: a. When the water temperature of the engine is lower than the first set value, the coil winding of the output induced current provided on the driven rotor or the active rotor is disconnected from the load; b. When the water temperature of the engine reaches the second set value, the coil winding of the output induced current provided on the driven rotor or the active rotor is connected to the load.
- the control method of the electromagnetic fan clutch of the present invention wherein the driven rotor or the active rotor is provided with a magnetizer, and the coil winding is embedded in a cavity opened in the magnetizer.
- the control method of the electromagnetic fan clutch of the present invention wherein the load is a speed regulating device, the speed adjusting device changes an induced current outputted by the coil winding, thereby adjusting a rotational speed of the driven rotor.
- the control method of the electromagnetic fan clutch of the present invention wherein the speed regulating device is a variable resistor.
- the control method of the electromagnetic fan clutch of the present invention wherein the speed regulating device is an electric fan, the electric fan is controlled by a control device, and the control device is a logic control circuit.
- the control method of the electromagnetic fan clutch of the present invention when the water temperature of the engine is fluctuating, the control device controls the coil The windings intermittently output current to the electric fan, and when the temperature is lower than the optimal water temperature, the power is turned off, and when the temperature is higher than the optimal water temperature, the current is turned on.
- the control method of the electromagnetic fan clutch of the present invention wherein the number of the electric fan is at least two, the control device can independently control the on and off of each electric fan, and when the temperature is lower than the first set value, close all Electric fan, when the temperature reaches the second set value, turn on the electric fan one by one.
- the optimal temperature When the optimal temperature is reached, maintain the current state.
- the optimal temperature is exceeded, turn on all the electric fans.
- the temperature drops turn off the electric fan one by one.
- the fan speed on the electromagnetic clutch changes with the change of the total output current.
- the control method of the electromagnetic fan clutch of the present invention wherein the control device adjusts the rotational speed of the electric fan in a frequency conversion manner.
- the control method of the electromagnetic fan clutch of the present invention wherein the speed regulating device is an electric fan, the electric fan is more than two, the control device is a temperature control switch, and each electric fan is connected with a temperature control switch.
- the control method of the electromagnetic fan clutch of the present invention adjusts the output current of the coil winding by the control device to adjust the rotation speed of the fan.
- the coil winding is disconnected from the load, and the induced current is not output.
- the moving rotor does not rotate, and the fan blade mounted on the driven rotor does not rotate.
- the coil winding is connected to the load, the induced current is output, and the driven rotor rotates to drive the fan blade to rotate.
- Inductive current is used instead of eddy current to cool the engine water temperature to avoid excessive water temperature of the engine to ensure normal engine operation.
- Figure 1 is a front cross-sectional view of a prior art electromagnetic fan clutch
- FIG. 2 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic structural view showing a second mounting manner of an active rotor and a driven rotor of an electromagnetic fan clutch according to the present invention
- FIG. 4 is a schematic structural view showing a third mounting manner of an active rotor and a driven rotor of the electromagnetic fan clutch of the present invention
- 5 is a schematic structural view of a fourth mounting manner of an active rotor and a driven rotor of an electromagnetic fan clutch according to the present invention
- FIG. 6 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 2 of the present invention.
- FIG. 7 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 3 of the present invention.
- FIG. 8 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 4 of the present invention.
- FIG. 9 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 5 of the present invention.
- Figure 10 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 6 of the present invention.
- Figure 11 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 7 of the present invention.
- Figure 12 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 8 of the present invention.
- Figure 13 is a schematic structural view of an electromagnetic fan clutch according to Embodiment 9 of the present invention.
- Figure 16 is a graph showing changes in the output current of the coil winding of the present invention and the rotational speed of the fan fixed disc output as the rotational speed difference between the active rotor and the driven rotor increases;
- Figure 17 is a graph showing changes in the fan blade speed of the fan blade and the electric fan of the electromagnetic fan clutch according to the current output of the coil winding;
- Figure 18 is a graph showing the rotational speed graph of the first electric fan of the present invention and the water temperature of the engine;
- Figure 19 is a graph showing the rotational speed graph of the second electric fan of the present invention and the water temperature of the engine;
- Figure 20 shows the speed and power curves of a typical cooling fan for a heavy commercial vehicle cooling water tank.
- the invention relates to a heat removing device comprising a driven rotor and an active rotor, wherein a coil winding of an output induced current is arranged on the driven rotor or the active rotor, and a field winding or a permanent magnet is mounted on the corresponding active rotor or the driven rotor.
- the magnetic pole, the active rotor and the driven rotor are differentially rotated by electromagnetic induction.
- the field winding or permanent magnet pole mounted on the active rotor or the driven rotor generates a rotating magnetic field
- the coil winding on the driven rotor or the active rotor performs cutting magnetic line motion to generate an induced current, so that the coil winding also generates an induced magnetic field
- the active rotor The driven rotor is driven to rotate differentially by the interaction force between the magnetic fields.
- the invention can be implemented by the following examples.
- the flexible electromagnetic fan clutch of the present invention comprises a driving shaft 102 and a fan fixing plate 103.
- the fan fixing plate 103 has a cylindrical shape.
- a fan blade 105 is fixedly mounted on the right end surface of the fan fixing plate 103, and the driving shaft 102 is located.
- the fan is fixed in the tray.
- the fan fixed disk 103 is a driven rotor, the drive shaft 102 is an active rotor, a coil winding is mounted on the driven rotor, and a field winding or a permanent magnet pole is mounted on the active rotor, and the drive shaft 102 is connected to the driving device through the shifting device 104.
- the shifting device 104 is a planetary gear shifting mechanism
- the driving device is a pulley.
- the pulley transmits external torque, such as torque output from the internal combustion engine, to the drive shaft 102 through the shifting device 104.
- the drive shaft 102 rotates. Since the field winding or the permanent magnet pole is installed in the drive shaft, the rotating drive shaft generates a rotating magnetic field, and the coil winding is installed in the fan fixed disk. When the drive shaft rotates, the fan fixes the disk. The coil winding performs cutting magnetic field movement, and the driving shaft drives the fan fixing plate to rotate at a lower speed than the driving shaft.
- the coil winding on the fan fixing plate generates an induced current through the slip ring carbon brush or the commutator carbon brush.
- the speed control device can change the current output of the coil winding to adjust the speed of the driven rotor.
- the arrangement of the active rotor and the driven rotor can also be as follows:
- the active rotor is in the shape of a cylinder.
- the active rotor is fixedly mounted on the rotating shaft by a key.
- the driven rotor is rotatably mounted on the rotating shaft through a bearing.
- the driven rotor is installed in the active rotor, and there is a gap between the driven rotor and the active rotor.
- the shaft drives the main When the moving rotor rotates, the active rotor drives the driven rotor to rotate differentially with respect to the active rotor by electromagnetic induction, thereby generating an induced current in the coil winding of the driven rotor.
- the driven rotor 201 and the active rotor 202 are arranged side by side, and the driven rotor 201 and the active rotor 202 are parallel to each other with a gap therebetween, and the driven rotor 201 is rotatably mounted through the bearing.
- the driving rotor 202 is fixedly mounted on the second rotating shaft 204, and the second rotating shaft 204 is driven by external power to drive the active rotor 202 to rotate, generating a rotating magnetic field, and the driven rotor 201 rotates accordingly, and is driven.
- An induced current is generated in the coil winding on the rotor 201.
- the active rotor 302 in this embodiment may also be disposed opposite to the driven rotor 301, and the axes of the active rotor 302 and the driven rotor 301 coincide with each other with a gap therebetween.
- both the driven rotor 401 and the active rotor 402 have a truncated cone shape, and the driven rotor 401 and the active rotor 402 are disposed at an angle, and there is a gap therebetween.
- the included angle may be 90 degrees, that is, the driven rotor 401 and the active rotor 402 are vertically disposed. Of course, the angle between the two may be other angles.
- the field winding or the permanent magnet pole may be disposed in the driven rotor, and the coil winding may be disposed in the active rotor, so that the active rotor can drive the driven rotor to perform differential rotation by electromagnetic induction.
- the active rotor is connected to the driving device via a shifting device, and the speed ratio of the shifting device is between 1 and 10.
- the shifting device is a gear train, such as a shifting mechanism in which the large and small gears mesh with each other, or a pulley shifting mechanism or a planetary gear speed increasing mechanism or other transmission, and the speed of the active rotor can be effectively increased by the gear train to facilitate the engine It also produces an effective output current at low speeds.
- the driving device is a gear, a sprocket or a pulley.
- the driving device is a pulley
- the speed changing device is a planetary gear shifting mechanism.
- a driven magnet or a driving rotor may be provided with a magnetizer, and the coil winding is embedded in a cavity opened in the magnetizer.
- Example 2
- the embodiment is different from the first embodiment in that the drive shaft 702 is directly connected to the driving device 706 (pulley), the fan fixing plate 703 is a driven rotor, and the driving shaft 702 is an active rotor.
- a coil winding is mounted on the rotor, and a field winding or a permanent magnet pole is mounted on the driven rotor.
- the present embodiment is different from the second embodiment in that the drive shaft 802 is a hollow shaft, and the fan fixing plate 803 is located in the drive shaft 802. There is a gap between the fan fixed disk 803 and the drive shaft 802.
- the electromagnetic fan clutch includes a seat The body 901, the drive shaft 902, the fan fixed disk 903, the suction plate 904, and the pulley 905.
- the base 901 is fixedly mounted on the engine.
- the right end surface of the base 901 is provided with a stepped hole 906.
- the stepped hole 906 is a through hole.
- the left end of the drive shaft 902 is mounted in the large hole of the stepped hole 906 of the base 901 through the sliding bearing 907.
- the right end of the driving shaft 902 is mounted on the fan fixing plate 903 through a bearing, and the driving shaft 902 is also provided with a through hole.
- the through hole communicates with the step hole 906, and an output current line 908 is installed in the through hole and the step hole 906, and the output is output.
- Current line 908 is coupled to a slip ring carbon brush mounted on drive shaft 902.
- the slip ring carbon brush can also be replaced by a commutator carbon brush.
- the pulley 905 is rotatably mounted on the circumferential surface of the right end of the seat body 901. An annular groove is formed in the left end surface of the pulley 905, and the electromagnet core 909 is embedded in the annular groove.
- the pulley 905 is coupled to the drive shaft 902 by a shifting device.
- the shifting device is a planetary gear shifting mechanism.
- the planetary gear shifting mechanism includes a sun gear 910, a planetary gear 911, a carrier 912, and an internal ring gear 913.
- the sun gear 910 is fixedly mounted.
- the sun gear 910 and the drive shaft 902 are of a unitary structure in this embodiment.
- the carrier 912 is fixedly coupled to the base 901 via a first connecting bracket 914, and the ring gear 913 is fixedly coupled to the pulley 905 via a second connecting bracket 915.
- the fan fixing plate 903 has a cylindrical shape, and the fan fixing plate 903 is fitted on the outer circumferential surface of the ring gear 913 of the planetary gear shifting mechanism by a bearing, and the suction disk 904 is fixedly mounted on the left end surface of the fan fixing plate 903 by a spring piece. Fan blades are attached to the right end surface of the fan fixing plate 903.
- the fan fixing plate 903 is a driven rotor, a coil winding is mounted on the driven rotor, the drive shaft 902 is an active rotor, and a field winding or a permanent magnet pole is mounted on the active rotor.
- the rotating active rotor drives the driven rotor to perform differential rotation at a lower speed than the active rotor by electromagnetic induction.
- the transmission ratio of the planetary gear shifting mechanism is between 1 and 10.
- the working process of the electromagnetic fan clutch of the present invention is: when the engine temperature has not reached the lower set temperature value of the electromagnetic fan clutch (for example, 82 ° C), the electromagnet core 909 is not energized, and the right end surface of the pulley 905 does not suck the fan.
- the suction disk 904 on the fixed disk 903, the fan fixed disk 903 is free to rotate by the bearing, the pulley 905 drives the drive shaft 902 to rotate at a high speed by the planetary gear shifting mechanism, and the exciting winding or the permanent magnetic pole in the driving shaft 902 generates a rotating magnetic field.
- the coil windings on the fan fixing plate 903 are cut by magnetic lines of force to generate an induced electromotive force.
- the coil winding can be controlled to not output current, and the fan operates at a lower following speed.
- the coil winding outputs an induced current through an output current line 908 connected to the slip ring carbon brush. .
- the induced current output from the coil winding is increased, and the magnetic field generated by the coil winding is also increased. The greater the torque received by the coil winding, the faster the fan fixed disk 903 rotates.
- Example 5 When the engine temperature rises to a higher temperature set value (88 ° C), the electromagnet core 909 is energized to generate a suction force, and the right end surface of the pulley 905 attracts the suction disc 904 on the fan fixing plate 903 to make the fan The fixed disk 903 rotates at the same speed as the pulley 905, thereby functioning as a powerful cooling.
- a higher temperature set value 88 ° C
- the electromagnetic fan clutch of the present invention includes a seat body 1001, a drive shaft 1002, a fan fixed plate 1003, and a pulley 1005.
- the seat body 1001 is fixedly mounted on the chassis or the water tank or other fixing member of the vehicle through the bracket plate 1004.
- the seat body 1001 has a cylindrical shape, and the left end of the drive shaft 1002 is mounted in the seat body 1001 by bearings.
- the pulley 1005 is rotatably mounted on the circumferential surface of the left end of the drive shaft 1002. And the pulley 1005 is connected to the drive shaft 1002 through a shifting device.
- the shifting device is a planetary gear shifting mechanism
- the planetary gear shifting mechanism includes a sun gear 1010, a planetary gear 1011, a carrier 1012 and an inner ring gear 1013, and the sun gear 1010 is fixed.
- the carrier 1012 is fixedly coupled to the base 1001 via the first connecting frame 1014, and the outer circumferential surface of the ring gear 1013 is fixedly coupled to the pulley 1005.
- the fan fixing plate 1003 has a cylindrical shape, and the fan fixing plate 1003 is fitted on the driving shaft 1002 through a bearing, and the fan blade is mounted on the right end surface of the fan fixing plate 1003.
- the drive shaft 1002 is an active rotor, and a coil winding is mounted on the active rotor.
- the fan fixed disk 1003 is a driven rotor, and a field winding or a permanent magnet pole is mounted on the driven rotor.
- the rotating active rotor drives the driven rotor to perform differential rotation at a lower speed than the active rotor by electromagnetic induction.
- the coil windings on the active rotor are connected to the output current line 1008 via a slip ring carbon brush.
- the working process of the electromagnetic fan clutch of the present invention is: when the engine temperature has not reached the lower set temperature value of the electromagnetic fan clutch (for example, 82 ° C), the fan fixed disk 1003 is free to slide on the drive shaft 1002 through the bearing, and the pulley 1005
- the planetary shaft gear shifting mechanism drives the drive shaft 1002 to rotate at a high speed, and the field winding or the permanent magnet pole in the fan fixed disk 1003 generates a magnetic field, and the coil winding in the drive shaft 1002 cuts the magnetic line of force to generate an induced electromotive force, and the coil winding does not output current, and the fan Run at a lower speed.
- the coil winding When the engine temperature reaches a lower set temperature value (82 ° C) and is lower than a higher set temperature value (such as 88 ° C;), the coil winding outputs an induced current through an output current line 1008 connected to the slip ring carbon brush. .
- the induced current of the coil winding output is increased, and the magnetic field generated by the coil winding is also enhanced.
- a higher temperature set value 88 ° C
- the present embodiment is different from the embodiment 5 only in that the pulley 1105 is rotatably mounted on the outer circumferential surface of the seat body 1101 by bearings.
- the fan fixing plate 1103 is also rotatably mounted on the outer circumferential surface of the base body 1101.
- the fan retaining plate can also be mounted on other components, such as on the drive shaft or on the pulley, via bearings.
- the electromagnetic fan clutch of the present invention comprises a seat body 1201, a drive shaft 1202, a fan fixing plate 1203, Small pulley 1205 and large pulley 1206.
- the base 1201 is fixedly mounted on the chassis or the water tank or other fixing member of the vehicle through the bracket plate 1204.
- the base 1201 has a cylindrical shape, the driving shaft 1202 passes through the base 1201, and the driving shaft 1202 and the base 1201 are connected by bearings.
- the small pulley 1205 is fixedly mounted on the left end of the drive shaft 1202.
- the small pulley 1205 is connected to the large pulley 1206 by a belt.
- the fan fixing plate 1203 has a cylindrical shape, and the fan fixing plate 1203 is mounted on the outer circumferential surface of the base body through a bearing, and the fan end plate is fixedly fixed to the right end surface of the fan fixing plate 1203 by bolts.
- the drive shaft 1202 is an active rotor, and a coil winding is mounted on the active rotor.
- the fan fixed disk 1203 is a driven rotor, and a field winding or a permanent magnet pole is mounted on the driven rotor.
- the rotating active rotor drives the driven rotor to perform differential rotation at a lower speed than the active rotor by electromagnetic induction.
- the coil windings on the active rotor are coupled to the output current line 1208 by a slip ring carbon brush.
- the electromagnetic fan clutch of the present invention includes a seat body 1301, a drive shaft 1302, a fan fixing plate 1303, a small pulley 1305, and a large pulley 1306.
- the seat body 1301 is fixedly mounted on the engine by a support.
- the seat body 1301 has a cylindrical shape, the drive shaft 1302 passes through the seat body 1301, and the drive shaft 1302 and the seat body 1301 are connected by bearings.
- the small pulley 1305 is fixedly mounted in the middle of the drive shaft 1302 by a key.
- the small pulley 1305 is connected to the large pulley 1306 by a belt.
- the fan fixing plate 1303 has a cylindrical shape, and the fan fixing plate 1303 is mounted on the driving shaft 1302 through a bearing, and the fan blade is fixed to the right end surface of the fan fixing plate 1303 by bolts.
- the drive shaft 1302 is an active rotor, and a coil winding is mounted on the active rotor.
- the fan fixed disk 1303 is a driven rotor, and a field winding or a permanent magnet pole is mounted on the driven rotor.
- the rotating active rotor drives the driven rotor to perform differential rotation at a lower speed than the active rotor by electromagnetic induction.
- the coil windings on the active rotor are connected to the output current line 1308 by a slip ring carbon brush.
- the difference between the embodiment and the embodiment 6 is that the fan blade 1408 is indirectly mounted on the fan fixing plate 1403 through the transmission system.
- the transmission system in this embodiment is the angular transmission system 1409. .
- Figure 16 shows the variation of the coil winding output current and the speed of the fan fixed disk output as the difference between the speed of the active rotor and the driven rotor increases.
- the invention relates to a stepless speed regulation system, comprising: a control device, a speed regulating device and the electromagnetic fan clutch described in Embodiments 1 to 9, wherein the control device outputs current to the speed regulating device by adjusting the active rotor or the driven coil winding, To adjust the current in the coil winding, thereby adjusting the magnitude of the torque received by the fan fixed disc with the coil winding fixed, and achieving the stepless speed regulation of the electromagnetic fan clutch.
- the speed regulating device may be a power storage device or a power device, and the power storage device may be a battery or the like, and the power device may be a variable resistor or an electric fan.
- the electric device in this embodiment may be an electric fan, and the control device is a temperature control switch device, and the control device may also be composed of a temperature sensor and a logic control circuit.
- Figure 17 shows the variation of the fan blade and the fan blade rotation speed of the electromagnetic fan clutch as the current output from the coil winding changes.
- the fan blade of the electromagnetic fan clutch As the output current increases, the fan blade of the electromagnetic fan clutch The fan blade speed of the electric fan is increased, and the rotation speed of the electric fan is higher than the rotation speed of the fan blade of the electromagnetic fan clutch.
- the rotation speed of the electric fan can also be equal to or lower than the rotation speed of the fan blade of the electromagnetic fan clutch.
- a stepless speed regulation system of the present invention includes a load 602 and an electromagnetic fan clutch 604 described in Embodiments 1 to 9, wherein the load 602 is a variable resistor by adjusting the resistance of the variable resistor.
- the size, the size of the coil winding output current can be adjusted, and the current magnitude is continuously changed, thereby adjusting the magnitude of the torque received by the fan fixed disk on which the coil winding is fixed, so that the magnitude of the torque is also continuously changed, and the electromagnetic fan clutch 604 is steplessly realized.
- Speed regulation Example 12
- a stepless speed regulation system includes a temperature sensor 1501 for detecting a water temperature of an engine water tank, a control device 1502, a speed regulating device, and an electromagnetic fan clutch 1504 according to Embodiments 1 to 9, a speed governing device
- the number is four, and of course, it may be two or three or more.
- the number of electric fans is determined according to specific working conditions.
- a fan blade 1505 is fixedly mounted on the fan fixing plate of the electromagnetic fan clutch 1504.
- the fan blade 1505 faces the radiator 1506 of the engine.
- the fan blade of the electric fan 1503 also faces the radiator 1506 of the engine.
- the electromagnetic fan clutch 1504 is located at the left of the radiator 1506.
- the electric fan 1503 is located on the right side of the radiator 1506. After receiving the signal from the temperature sensor 1501, the control device 1502 regulates the coil winding to output a current to the electric fan 1503.
- the control device is a temperature-controlled switching device, and the control device may also be composed of a temperature sensor and a logic control circuit.
- the control method of the stepless speed regulation system of the present invention is performed according to the following steps: a.
- the temperature sensor 1501 transmits the detected water temperature of the engine to the control device 1502; b. when the water temperature is far below the optimal water temperature range for the engine operation
- the control device 1502 cuts off the coil winding and outputs a current to the electric fan 1503.
- the fan blade of the electric fan 1503 does not rotate, and the driven motor rotates.
- the fan and the fan blade 1505 follow the rotation;
- the control device 1502 controls the coil winding on the driven rotor to start outputting current to the electric fan 1503, and increases the output current.
- the control device 1502 reduces the driven rotor when the rising temperature does not reach the optimal water temperature range for the engine operation.
- the upper coil winding outputs a current to the electric fan 1503 to decelerate the fan blades 1505 and the fan blades of the electric fan 1503.
- the control device 1502 maintains the magnitude of the current output from the coil winding on the driven rotor to the electric fan 1503; e.
- the control device 1502 increases the coil winding on the driven rotor to the electric fan. 1503 output current, making fan blade 1505 and electric fan 15 on the electromagnetic fan clutch The blade of the 03 accelerates the rotation.
- the control device 1502 maintains the magnitude of the current output from the coil winding on the driven rotor to the electric fan 1503.
- the control method of the electromagnetic fan clutch described in Embodiment 1-9 of the present invention includes the following steps:
- the load is a speed control device, and the speed control device changes the induced current outputted by the coil winding to adjust the rotational speed of the driven rotor.
- the speed control device can be a variable resistor, the speed control device can also be an electric fan, and the electric fan is controlled by a control device.
- the control device can employ a temperature controlled switch or a logic control circuit.
- the first and second set values are determined according to the optimal water temperature of the engine, and the determination basis is two: one is the control device; the other is the optimal water temperature.
- the first set value When the control device is controlled by the temperature control switch, the first set value may be lower than the optimal water temperature by 4 to 6 degrees Celsius; when the logic control circuit is adopted, the first set value may be lower than the optimal water temperature by 1 degree Celsius or equal to the most Good water temperature.
- the optimum water temperature varies depending on the type of engine.
- the optimum water temperature can be 85 degrees Celsius, 90 degrees Celsius or 95 degrees Celsius.
- the second set value is higher than the first set value by 1 to 2 degrees Celsius.
- the control device When the control device is controlled by the frequency conversion mode, the first set value may be equal to the second set value.
- the control device adopts a temperature control switch.
- the optimum water temperature for the engine is 90 degrees Celsius.
- the four electric fans are connected to the coil windings through a temperature control switch.
- the set temperature of the four temperature control switches is 85 °C, 87 °C, 89 °C, 91 °C, respectively.
- the shutdown temperature is set to 84 °C, 86 °C, 88 °C, 90 °C. .
- Four temperature switches are associated with a temperature sensor that detects the water temperature in the engine tank Connected.
- each of the temperature control switches is set to an open value and a closed value, and the closed value is lower than
- the opening value, each opening value and closing value are determined according to the optimal water temperature of the engine, the output power of the electric fan, and the number of electric fans.
- control device uses a logic control circuit.
- the optimum water temperature for the engine is 90 degrees Celsius.
- Four electric fans are connected to the coil windings through a logic control circuit.
- the logic control circuit is coupled to a temperature sensor that detects the water temperature of the engine tank. When the water temperature of the engine is lower than the first set value (84 °C), turn off all the electric fans; when the temperature reaches the second set value (85 °C), turn on the electric fan one by one, and turn on the electric fan one by one.
- the interval is determined according to the trend of temperature rise. When the temperature rises faster, the time interval is short.
- the time interval is long; when the optimal temperature is reached, the current state is maintained; when the optimal temperature is exceeded, the whole is turned on. Electric fan; When the temperature drops, turn off the electric fan one by one to maintain the optimal temperature.
- the time interval for turning off the electric fan one by one is determined according to the trend of temperature drop. When the temperature drops faster, the time interval is short, when the temperature drops slowly, The time interval is long.
- the fan speed on the electromagnetic clutch changes with the change of the total output current, so that the fan blade on the electromagnetic fan clutch When the engine water temperature is high, the speed is fast, and when the engine water temperature is low, the speed is slow.
- the logic control circuit can also use the frequency conversion method to control the rotation speed of the electric fan.
- the electric fan speed is increased, and the fan blade speed on the electromagnetic fan clutch is also accelerated.
- the electric fan is The speed is reduced and the fan blade speed on the electromagnetic fan clutch is also reduced to maintain the optimum water temperature for the engine water temperature.
- the control device (logic control circuit) can adjust the rotational speed of the electric fan by frequency conversion to adjust the output current of the coil winding.
- the optimal temperature will appear as shown by the curve L1 in Figure 18.
- the controller control the speed of the electric fan such as the inverter to adjust the speed of the electric fan.
- the current output from the coil winding also changes, so the change of the rotation speed of the fan blade on the electromagnetic fan clutch is also shown by the curve L2 in Fig. 18. It is shown that the water temperature of the engine is close to or reaches the optimal temperature curve L1 by the fluctuation of the rotational speed of the fan blades on the electric fan and the electromagnetic fan clutch.
- the logic control circuit turns on the electric fan one by one according to the engine water temperature, and adjusts the rotation speed of each electric fan by the frequency conversion method, so that each electric fan is maintained at the optimal rotation speed, that is, the energy consumption can be reduced. It also reduces the noise generated by the electric fan.
- the speed control device is an electric fan
- the electric fan is controlled by the control device, and when the control device is a logic control circuit, if the water temperature of the engine is fluctuating, the control device controls the coil winding to intermittently output current to the electric fan, when the temperature is lower than the optimal water temperature. Power off, turn on when the temperature is higher than the optimal water temperature.
- the control such as the relay controls the winding of the coil winding to the electric fan.
- the output current at this time, the rotation speed of the electric fan fluctuates up and down in a nearly rectangular manner as shown by the curve L4 in Fig. 19, because the rotation speed of the electric fan changes, the current output from the coil winding also changes, when there is only one electric fan,
- the change of the rotational speed of the fan blade on the electromagnetic fan clutch is also shown by the curve L4 in Fig. 19.
- the overall change of the rotational speed of the fan blade on the electromagnetic fan clutch is also as shown in the figure. 19 is shown by curve L4, but the fluctuation range is smaller than a single electric fan.
- the water temperature of the engine is approached or reaches the optimal temperature curve L3 by the fluctuation of the rotational speed of the fan blades on the electric fan and the electromagnetic fan clutch.
- Figure 20 shows the speed and power curve of a typical cooling fan for a heavy commercial vehicle cooling water tank.
- the cooling fan consumes 11.3kw at 2000 rpm (normal rated speed) at 1000 rpm.
- the power consumption of the /time division is only 1.6kw, and the power consumed is only about 1/7 of the power consumed at the rated speed.
- the input speed is 2000 rpm
- the second speed is 1000 rpm.
- the fan power is 1.6 kW
- the power lost by eddy current heating is also 1.6 kW.
- the rotation speed of the fan blade on the electromagnetic fan clutch is set to 1000 rpm, and theoretically, 1.6 kW of the eddy current heat loss can be converted into electric energy, and the electric fan is given.
- the heat dissipation effect at 2500 rpm can be achieved, and the energy saving is more than 5 times, and the energy saving significance is very significant.
- the heat removing device of the present invention can be applied to the electromagnetic fan clutch, and can eliminate heat generated by the eddy current when the driven rotor (fan fixed disk) or the active rotor (the magnet fixed disk or the drive shaft) rotates, thereby reducing energy loss. Avoid bearing failure due to heat, so it has great market prospects and strong industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
电磁风扇离合器上使用的除热装置,包括从动转子(903)和主动转子(902),在所述从动转子或主动转子上设置有输出感应电流的线圈绕组。本发明的除热装置能够大幅度降低主动转子(如驱动轴)或从动转子(如风扇固定盘)在转动时产生的热量,减少能量的损耗,达到节能降耗的效果同时避免轴承因受热而过早失效。本发明还提供了使用该除热装置的电磁风扇离合器和控制方法和具有该电磁风扇离合器的无级调速系统。
Description
技术领域
本发明涉及一种除热装置, 特别是涉及一种用于电磁风扇离合器的除热装置以及使用该 除热装置的电磁风扇离合器和控制方法和具有该电磁风扇离合器的无极调速系统。 背景技术
市场上的电磁风扇离合器的风扇叶是用螺栓固定在风扇固定盘上的, 风扇固定盘通过轴 承与传动轴转动相连。
现有的电磁风扇离合器( 以三速电磁风扇离合器为例) 如图 1 所示, 包括主轴(驱动轴) 、 传动盘 2' 、 电磁铁芯 3 ' 、 外线圈 4a' 、 内线圈 4b' 、 风扇固定盘 9' 、 磁铁固定盘 10' 、 小弹簧片 12' 、 小吸合盘 13 ' 、 大弹簧片 34' 、 大吸合盘 35 ' 和安全板 36' , 其中 由导磁材料制成的传动盘 2' 通过半圆键 19' 固定安装在主轴 上,传动盘 2' 的侧面设有 若干组隔磁槽 23 ' , 传动盘 2' 的内腔设有电磁铁芯 3 ' , 电磁铁芯 3 ' 通过轴承 5 ' 安装在 主轴 上, 电磁铁芯 3 ' 内分别设有内、 外线圈镶嵌槽, 内、 外线圈镶槽的导磁开口方向均 与主轴 轴向方向相同且指向传动盘 2' 的侧面,内、外线圈镶嵌槽内分别以平绕法设有内、 外线圈 4b' 、 4a' , 风扇固定盘 9' 与磁铁固定盘 10' 分别通过轴承 8 ' 、 11 ' 安装在主轴 上, 其中磁铁固定盘 10' 位于风扇固定盘 9' 内腔, 在磁铁固定盘 10' 的一侧端面上沿 圆周均布有若干个固定孔用来镶嵌软磁铁 15 ' , 软磁铁 15 ' 上吸合有永磁铁 14' , 风扇固 定盘 9' 上与永磁铁 14' 的对应端面上镶嵌有软磁铁 16' ,磁铁固定盘 10' 上与内线圈 4b' 相对的环形端面上通过小弹簧片 12' 支撑连接有小吸合盘 13 ' , 风扇固定盘 9' 上与外线圈 4a' 相对的环形端面上通过大弹簧片 34' 支撑连接有大吸合盘 35 ' , 大、 小吸合盘 13 ' 、 35 ' 均靠近传动盘 2' 的侧面, 与传动盘 2' 的对应端面间有间隙, 风扇固定盘 9' 的周向位 置外侧端面上固定连接安全板 36' , 安全板 36' 上开设有锁止孔, 传动盘 2' 的周向位置外 侧上与锁止孔的对应位置开设有配合孔。
电磁风扇离合器在工作时,当汽车发动机水温达到设定值,电磁离合器的内、外线圈 4b' 、 4a' 得电, 通过吸合盘吸合, 将传动盘 2' 与磁铁固定盘 10' 相接, 带动磁铁固定盘 10' 转 动, 风扇固定盘 9' 在磁铁固定盘 10' 上的磁铁形成的磁场中相对旋转, 切割磁力线, 风扇 固定盘 9' 自身产生涡电流, 涡电流产生新的磁场, 在磁场力的作用下使风扇固定盘相对磁 铁固定盘作滞后运转形成差速转动, 以实现风扇固定盘带动风扇转动, 对汽车发动机水温进
行散热降温。 由于风扇固定盘 9' 的电阻很小, 所以产生的涡电流很大, 从而导致风扇固定 盘的发热量很大, 一方面造成了能量的损耗, 另一方面产生的热量也容易导致连接风扇固定 盘与传动轴的轴承失效。
并且如公开号为 CN102678258A, 专利名称为 "四速电磁风扇离合器" 的发明专利、 公 开号为 CN101672210, 专利名称为 "三速电磁风扇离合器"等专利, 均是主动转子 (磁体固 定盘或驱动盘或驱动轴) 通过电磁感应在从动转子 (风扇固定盘) 上产生涡电流, 来带动从 动转子相对于主动转子做差速转动, 来实现电磁风扇离合器的离合变速的。 根据具体情况, 也可以在从动转子上安装磁铁, 当主动转子旋转时, 主动转子也会在从动转子上的磁铁形成 的磁场中切割磁力线, 在主动转子上产生电涡流, 带动从动转子转动。 因此, 不可避免在现 有技术的电磁风扇离合器的从动转子或主动转子由于电涡流而产生大量热量。 发明内容
本发明要解决的技术问题是提供一种结构简单、 操作简便的除热装置, 能够消除电磁风 扇离合器的从动转子或主动转子由于电涡流而产生大量热量。
本发明一种除热装置, 包括从动转子和主动转子, 在所述从动转子或主动转子上设置有 输出感应电流的线圈绕组。
本发明一种除热装置, 其中所述从动转子或主动转子设有导磁体, 线圈绕组镶嵌在导磁 体上开设的腔体内。 通过在从动转子或主动转子上设置导磁体, 提高了线圈绕组输出感应电 流的效率。
本发明一种除热装置, 其中所述线圈绕组连接有调速装置, 用于调节从动转子的转速。 通过设置调速装置, 控制线圈绕组输出电流的大小, 从而控制从动转子受到的驱动力矩的大 小, 进而调节从动转子的转速。
本发明一种除热装置, 其中所述调速装置为储电装置或用电装置。 调速装置为储电装置 或用电装置, 充分利用的线圈绕组输出的感应电流, 提高了能量利用效率。
本发明一种除热装置, 其中所述调速装置为可变电阻或电动风扇。调速装置为可变电阻, 使电磁风扇离合器结构简单, 调速方便。 调速装置为电动风扇, 通过电动风扇进一步给汽车 发动机降温, 提高了电磁风扇离合器给汽车发动机降温的能力。
本发明一种除热装置能够应用在电磁风扇离合器中, 可消除从动转子 (风扇固定盘) 或 主动转子 (磁铁固定盘或驱动轴) 在转动时因涡电流而产生的热量, 减少能量的损耗, 避免 轴承因受热而失效。 线圈绕组中的感应电流产生新的磁场, 在磁场力的作用下使从动转子相 对于主动转子作滞后运转形成差速转动, 以使从动转子带动风扇叶转动, 对汽车发动机进行
散热降温。 通过将本发明的除热装置用在电磁风扇离合器中, 用可控的感应电流替换了原来 不可控的涡电流, 来实现扇固定盘 (从动转子) 相对磁铁固定盘 (主动转子) 差速转动, 避 免了不可控的涡电流产生的大量的热量而导致的能量损耗或轴承受热失效。 该装置应用到电 磁风扇离合器中, 相对于现有的散热方式, 结构简单, 成本低, 并且将对电磁风扇离合器有 害的热量转化为电能, 供其他设备使用。
本发明要解决的另一个技术问题是提供一种结构简单、 成本低、 操作简便的电磁风扇离 合器, 通过感应电流实现风扇固定盘的差速转动, 降低了能量损耗。
本发明一种电磁风扇离合器, 包括前述的除热装置, 除热装置包括从动转子和主动转子, 在从动转子或主动转子上设置有输出感应电流的线圈绕组。
本发明一种电磁风扇离合器, 其中所述主动转子与驱动装置连接, 驱动装置为齿轮、 链 轮或皮带轮。
本发明一种电磁风扇离合器, 其中所述主动转子通过变速装置与驱动装置连接, 所述驱 动装置为齿轮、 链轮或皮带轮, 所述变速装置的变速比为 1~10之间。
本发明一种电磁风扇离合器, 其中所述变速装置为轮系。
本发明一种电磁风扇离合器, 其中所述主动转子为驱动轴, 所述从动转子为风扇固定盘, 所述变速装置为行星齿轮变速机构。
本发明一种电磁风扇离合器, 其中所述驱动轴转动的安装在座体上, 所述驱动装置为皮 带轮, 驱动装置通过轴承安装在座体或驱动轴上, 所述行星齿轮变速机构包括太阳轮、 行星 轮、 行星架和内齿圈, 所述太阳轮固定安装在驱动轴上, 所述行星架与座体固定连接, 所述 内齿圈与皮带轮固定连接。 通过将行星齿轮变速机构的太阳轮固定在驱动轴上, 将行星架与 座体固定连接, 内齿圈与皮带轮固定连接, 使电磁风扇离合器的结构紧凑, 体积小, 能量传 输稳定可靠。
本发明一种电磁风扇离合器, 其中所述太阳轮与驱动轴为一体结构, 所述风扇固定盘呈 筒状, 风扇固定盘通过轴承套装在行星齿轮变速机构的内齿圈上或座体上或驱动轴上或皮带 轮上。
本发明一种电磁风扇离合器, 其中所述从动转子呈筒状, 主动转子安装在从动转子内, 主动转子和从动转子之间存在间隙; 或者所述主动转子呈筒状, 从动转子安装在主动转子内, 主动转子和从动转子之间存在间隙; 或者所述主动转子和从动转子并排设置, 主动转子和从 动转子之间相互平行, 且二者之间存在间隙; 或者所述主动转子和从动转子相对设置, 主动 转子和从动转子的轴线重合, 且二者之间存在间隙; 或者所述主动转子和从动转子均呈圆台 形, 主动转子和从动转子成夹角设置, 且二者之间存在间隙。
本发明一种电磁风扇离合器与现有技术不同之处在于本发明通过在电磁风扇离合器的主 动转子或从动转子上设置线圈绕组, 用线圈绕组产生的感应电流代替现有技术中主动转子或 从动转子产生的涡电流, 产生磁场, 驱动从动转子差速转动, 在保证现有的电磁风扇离合器 功能的基础上, 减少了发热, 降低了能量损耗。 并且能够输出感应电流, 降低电磁风扇离合 器的能耗。
本发明要解决的另一个技术问题是提供一种无级调速系统, 在降低电磁风扇离合器发热 量的基础上, 能够实现电磁风扇离合器的无级调速。
本发明一种无级调速系统, 包括前述的设有线圈绕组的电磁风扇离合器, 其中调速装置 为电动风扇, 电动风扇的数量为至少一个, 电动风扇通过控制装置控制, 控制装置调控线圈 绕组向电动风扇输出电流。
本发明一种无级调速系统, 其中所述控制装置为温控开关或者逻辑控制电路。
本发明一种无级调速系统, 其中所述电磁风扇离合器的从动转子上直接或间接固定安装 有风扇叶, 所述风扇叶朝向发动机的散热器, 所述电动风扇的扇叶也朝向发动机的散热器。
本发明一种无级调速系统, 其中所述电动风扇的数量为 4个。
本发明一种无级调速系统通过控制装置将线圈绕组产生的电流输出电动风扇, 通过控制 装置控制电流的大小, 也就是控制线圈绕组输出电流的大小, 就能够控制线圈绕组产生的磁 场强度的大小, 从而控制风扇固定盘受到的力矩的大小, 因为电流的大小能够连续调节, 风 扇固定盘受到的力矩的大小也能够连续调节, 因此, 能够实现风扇固定盘的转速的无级调整。
本发明要解决的另一个技术问题是提供一种电磁风扇离合器的控制方法, 能够在减少电 磁风扇离合器发热的同时避免发动机的水温过高, 保证发动机正常工作。
本发明一种电磁风扇离合器的控制方法, 包括下列步骤: a、 当发动机的水温低于第一设 定值时, 从动转子或主动转子上设置的输出感应电流的线圈绕组与负载断开; b、 当发动机的 水温达到第二设定值时,从动转子或主动转子上设置的输出感应电流的线圈绕组与负载接通。
本发明电磁风扇离合器的控制方法, 其中所述从动转子或主动转子设有导磁体, 所述线 圈绕组镶嵌在导磁体上开设的腔体内。
本发明电磁风扇离合器的控制方法, 其中所述负载为调速装置, 所述调速装置改变线圈 绕组输出的感应电流, 从而调节从动转子的转速。
本发明电磁风扇离合器的控制方法, 其中所述调速装置为可变电阻。
本发明电磁风扇离合器的控制方法, 其中所述调速装置为电动风扇, 电动风扇通过控制 装置控制, 控制装置为逻辑控制电路。
本发明电磁风扇离合器的控制方法, 当发动机工作的水温在波动时, 控制装置控制线圈
绕组向电动风扇间断输出电流, 当低于最佳水温时断电, 高于最佳水温时开启。 本发明电磁风扇离合器的控制方法, 其中所述电动风扇的个数为至少 2个, 所述控制装 置能够独立控制每个电动风扇的通断, 当温度低于第一设定值时, 关闭所有电动风扇, 当温 度达到第二设定值时, 逐个开启电动风扇, 当到达最佳温度时, 维持当前状态, 当超过最佳 温度时, 开启全部电动风扇, 当温度下降时, 逐个关闭电动风扇以维持最佳温度, 电磁离合 器上的风扇转速随者总输出电流强弱的变化而变化。
本发明电磁风扇离合器的控制方法,其中所述控制装置以变频方式调节电动风扇的转速。 本发明电磁风扇离合器的控制方法, 其中所述调速装置为电动风扇, 电动风扇为 2个以 上, 控制装置为温控开关, 每个电动风扇均与一个温控开关连接。
本发明电磁风扇离合器的控制方法, 通过控制装置调节线圈绕组的输出电流, 来调节风 扇的转速, 当发动机水温低于第一设定值时, 线圈绕组与负载断开, 不输出感应电流, 从动 转子不转动, 安装在从动转子上的风扇叶也不转动, 当发动机的水温达到第二设定值时, 线 圈绕组与负载接通, 输出感应电流, 从动转子转动, 带动风扇叶转动, 采用感应电流代替电 涡流, 为发动机水温降温避免发动机的水温过高, 保证发动机正常工作。
下面结合附图对本发明作进一步说明。 附图说明
图 1为现有技术的电磁风扇离合器的主视剖视图;
图 2为本发明的实施例 1电磁风扇离合器的结构示意图;
图 3为本发明电磁风扇离合器的主动转子和从动转子的第二种安装方式的结构示意图; 图 4为本发明电磁风扇离合器的主动转子和从动转子的第三种安装方式的结构示意图; 图 5为本发明电磁风扇离合器的主动转子和从动转子的第四种安装方式的结构示意图; 图 6为本发明实施例 2电磁风扇离合器的结构示意图;
图 7为本发明实施例 3电磁风扇离合器的结构示意图;
图 8为本发明实施例 4电磁风扇离合器的结构示意图;
图 9为本发明实施例 5电磁风扇离合器的结构示意图;
图 10为本发明实施例 6电磁风扇离合器的结构示意图;
图 11为本发明实施例 7电磁风扇离合器的结构示意图;
图 12为本发明实施例 8电磁风扇离合器的结构示意图;
图 13为本发明实施例 9电磁风扇离合器的结构示意图;
图 14为本发明实施例 11无极调速系统的结构示意图;
图 15为本发明实施例 12无极调速系统的结构示意图;
图 16 为本发明的线圈绕组输出电流和风扇固定盘输出的转速随主动转子与从动转子的 转速差的增大而产生的变化曲线图;
图 17 为本发明的电磁风扇离合器的风扇叶与电动风扇的扇叶转速随线圈绕组输出的电 流的变化的曲线图;
图 18为本发明第一种电动风扇的转速曲线图与发动机的水温的曲线图;
图 19为本发明第二种电动风扇的转速曲线图与发动机的水温的曲线图;
图 20所示的为一款典型的重型商用车冷却水箱的散热风扇的转速与功率的曲线。 具体实施方式
本发明一种除热装置, 包括从动转子和主动转子, 在从动转子或主动转子上设置有输出 感应电流的线圈绕组, 在对应的主动转子或从动转子上安装有励磁绕组或永磁磁极, 主动转 子和从动转子之间通过电磁感应做差速转动。 主动转子或从动转子上安装的励磁绕组或永磁 磁极产生旋转的磁场, 从动转子或主动转子上的线圈绕组做切割磁力线运动, 产生感应电流, 从而使线圈绕组也产生感应磁场, 主动转子通过磁场间的相互作用力, 驱动从动转子做差速 转动。 本发明可以通过以下实施例实现。
实施例 1
本实施例提供了一种电磁风扇离合器的实施例。 如图 2所示, 本发明柔性电磁风扇离合 器, 包括驱动轴 102和风扇固定盘 103, 风扇固定盘 103呈筒状, 风扇固定盘 103的右端面 上固定安装有风扇叶 105, 驱动轴 102位于风扇固定盘内。 风扇固定盘 103为从动转子, 驱 动轴 102为主动转子, 在从动转子上安装有线圈绕组, 在主动转子上安装有励磁绕组或永磁 磁极, 驱动轴 102通过变速装置 104与驱动装置连接, 本实施例中变速装置 104为行星齿轮 变速机构,驱动装置为皮带轮, 皮带轮将外部动力, 如内燃机输出的扭矩传通过变速装置 104 传递给驱动轴 102。 驱动轴 102转动, 由于在驱动轴内安装有励磁绕组或者永磁磁极, 所以 转动的驱动轴产生了转动的磁场, 风扇固定盘内安装有线圈绕组, 在驱动轴转动时, 风扇固 定盘内的线圈绕组做切割磁力线运动, 驱动轴驱动风扇固定盘以低于驱动轴的转速做差速转 动, 与此同时, 风扇固定盘上的线圈绕组产生感应电流通过滑环碳刷或者换向器碳刷输出给 调速装置, 调速装置能够改变线圈绕组输出的电流大小, 从而调节从动转子的转速。
本发明中主动转子和从动转子的布置方式还可以采用以下几种方式:
一、 主动转子呈筒状, 主动转子通过键固定安装在转轴上, 从动转子通过轴承转动地安 装在转轴上, 从动转子安装在主动转子内, 从动转子和主动转子之间存在间隙。 转轴带动主
动转子转动, 主动转子通过电磁感应驱动从动转子相对于主动转子做差速转动, 从而在从动 转子的线圈绕组内产生感应电流。
二、如图 3所示, 从动转子 201和主动转子 202并排设置, 从动转子 201和主动转子 202 之间相互平行, 且二者之间存在间隙, 从动转子 201通过轴承转动地安装在第一转轴 203上, 主动转子 202固定安装在第二转轴 204上, 第二转轴 204通过外部动力驱动, 带动主动转子 202转动, 产生转动的磁场, 从动转子 201随之转动, 并在从动转子 201上的线圈绕组中产 生感应电流。
三、 如图 4所示, 本实施例中的主动转子 302也可以和从动转子 301相对设置, 主动转 子 302和从动转子 301的轴线重合, 且二者之间存在间隙。
四、 如图 5所示, 从动转子 401和主动转子 402均呈圆台形, 从动转子 401和主动转子 402成夹角设置,且二者之间存在间隙。其夹角可以是 90度,即从动转子 401和主动转子 402 垂直设置, 当然, 二者的夹角也可以是其他角度。
本实施例中, 可以在从动转子内设置励磁绕组或者永磁磁极, 在主动转子内设置线圈绕 组, 同样能够达到主动转子通过电磁感应驱动从动转子做差速转动的目的。 本实施例中主动 转子通过变速装置与驱动装置连接,变速装置的变速比为 1~10之间。变速装置为轮系变速装 置, 如大小齿轮相互啮合的变速机构或者带轮变速机构或者行星齿轮增速机构或者其他的变 速器, 通过轮系变速装置, 能够有效增加主动转子的转速, 以便于在发动机低速运转时也能 产生有效的输出电流。 驱动装置为齿轮、 链轮或皮带轮, 本实施例中驱动装置为皮带轮, 变 速装置为行星齿轮变速机构。
本实施例中, 可以在从动转子或主动转子设有导磁体, 线圈绕组镶嵌在导磁体上开设的 腔体内。 实施例 2
如图 6所示, 本实施例与实施例 1的不同之处在于驱动轴 702直接与驱动装置 706 (皮 带轮) 固定连接, 风扇固定盘 703为从动转子, 驱动轴 702为主动转子, 在主动转子上安装 有线圈绕组, 在从动转子上安装有励磁绕组或永磁磁极。
实施例 3
如图 7所示,本实施例与实施例 2的不同之处在于驱动轴 802为空心轴,风扇固定盘 803 位于驱动轴 802内, 风扇固定盘 803与驱动轴 802之间存在间隙。
实施例 4
本实施例提供了一种电磁风扇离合器的实施例。 如图 8所示, 该电磁风扇离合器包括座
体 901、 驱动轴 902、 风扇固定盘 903、 吸合盘 904和皮带轮 905。 座体 901固定安装在发动 机上, 座体 901的右端面上开设有台阶孔 906, 台阶孔 906为通孔, 驱动轴 902的左端通过 滑动轴承 907安装在座体 901的台阶孔 906的大孔内, 驱动轴 902的右端通过轴承安装在风 扇固定盘 903, 驱动轴 902上也开设有通孔, 该通孔与台阶孔 906连通, 在通孔与台阶孔 906 内安装有输出电流线 908, 输出电流线 908与安装在驱动轴 902上的滑环碳刷连接。 滑环碳 刷也可以采用换向器碳刷代替。皮带轮 905通过轴承转动的安装在座体 901右端的圆周面上。 在皮带轮 905的左端面上开设有环形槽, 电磁铁芯 909镶嵌在环形槽内。 皮带轮 905通过变 速装置与驱动轴 902连接, 本实施例中变速装置为行星齿轮变速机构, 行星齿轮变速机构包 括太阳轮 910、行星轮 911、行星架 912和内齿圈 913, 太阳轮 910固定安装在驱动轴 902上, 本实施例中太阳轮 910与驱动轴 902为一体结构。行星架 912通过第一连接架 914与座体 901 固定连接, 内齿圈 913通过第二连接架 915与皮带轮 905固定连接。风扇固定盘 903呈筒状, 风扇固定盘 903通过轴承套装在行星齿轮变速机构的内齿圈 913的外圆周面上, 吸合盘 904 通过弹簧片固定安装在风扇固定盘 903的左端面上,风扇固定盘 903的右端面安装有风扇叶。 本实施例中风扇固定盘 903为从动转子, 在从动转子上安装有线圈绕组, 驱动轴 902为主动 转子, 在主动转子上安装有励磁绕组或永磁磁极。 与实施例 1的原理相同, 转动的主动转子 通过电磁感应驱动从动转子以低于主动转子的转速做差速转动。 本实施例中行星齿轮变速机 构的传动比为 1~10之间, 通过设置变速机构, 能够在外部输入的转速较低时, 为驱动轴 902 提供足够的转速。
本发明电磁风扇离合器的工作过程为: 当发动机温度尚未达到电磁风扇离合器的较低设 定温度值( 比如 82°C ) 时, 电磁铁芯 909不通电, 皮带轮 905的右端面不会吸合风扇固定盘 903上的吸合盘 904, 风扇固定盘 903通过轴承自由滑转, 皮带轮 905通过行星齿轮变速机构 带动驱动轴 902高速旋转, 驱动轴 902内的励磁绕组或永磁磁极产生旋转的磁场, 使风扇固 定盘 903上的线圈绕组切割磁力线, 产生感应电动势。 当发动机温度远低于最佳温度时, 比 如冷启动, 可以控制线圈绕组不输出电流, 此时风扇以较低的跟转速度运转。 当发动机温度 达到较低设定温度值 (82°C ) 且低于较高设定温度值( 比如 88°C ;)时,线圈绕组通过与滑环碳 刷连接的输出电流线 908输出感应电流。 使线圈绕组输出的感应电流增大, 线圈绕组产生的 磁场也会增强, 线圈绕组受到的力矩越大, 风扇固定盘 903的转速则越快。 当发动机温度升 高到较高温度设定值 (88°C ) 时, 电磁铁芯 909得电, 产生吸合力, 皮带轮 905 的右端面吸 合风扇固定盘 903上的吸合盘 904, 使风扇固定盘 903与皮带轮 905同速转动, 从而起到强 力降温的作用。
实施例 5
如图 9所示, 本发明电磁风扇离合器包括座体 1001、 驱动轴 1002、 风扇固定盘 1003和 皮带轮 1005。座体 1001通过支架板 1004固定安装在车辆的底盘或者水箱或者其他固定件上, 座体 1001呈筒状, 驱动轴 1002的左端通过轴承安装在座体 1001内。 皮带轮 1005通过轴承 转动的安装在驱动轴 1002左端的圆周面上。并且皮带轮 1005通过变速装置与驱动轴 1002连 接, 本实施例中变速装置为行星齿轮变速机构, 行星齿轮变速机构包括太阳轮 1010、 行星轮 1011、 行星架 1012和内齿圈 1013, 太阳轮 1010固定安装在驱动轴 1002上。 行星架 1012通 过第一连接架 1014与座体 1001固定连接,内齿圈 1013的外圆周面与皮带轮 1005固定连接。 风扇固定盘 1003呈筒状,风扇固定盘 1003通过轴承套装在驱动轴 1002上,风扇固定盘 1003 的右端面安装有风扇叶。本实施例中驱动轴 1002为主动转子,在主动转子上安装有线圈绕组, 风扇固定盘 1003为从动转子, 在从动转子上安装有励磁绕组或永磁磁极。与实施例 1的原理 相同, 转动的主动转子通过电磁感应驱动从动转子以低于主动转子的转速做差速转动。 主动 转子上的线圈绕组通过滑环碳刷与输出电流线 1008连接。
本发明电磁风扇离合器的工作过程为: 当发动机温度尚未达到电磁风扇离合器的较低设 定温度值( 比如 82°C ) 时, 风扇固定盘 1003通过轴承在驱动轴 1002上自由滑转, 皮带轮 1005通过行星齿轮变速机构带动驱动轴 1002高速旋转, 风扇固定盘 1003内的励磁绕组或永 磁磁极产生磁场, 驱动轴 1002内的线圈绕组切割磁力线, 产生感应电动势, 线圈绕组不输出 电流, 此时风扇以较低的跟转速度运转。 当发动机温度达到较低设定温度值 (82°C ) 且低于 较高设定温度值( 比如 88°C ;)时,线圈绕组通过与滑环碳刷连接的输出电流线 1008输出感应 电流。 使线圈绕组输出的感应电流增大, 线圈绕组产生的磁场也会增强, 风扇固定盘 1003内 的励磁绕组或永磁磁极受到的力矩越大, 风扇固定盘 1003的转速则越快。 当发动机温度升高 到较高温度设定值 (88°C ) 时, 继续增大线圈绕组输出的电流, 使风扇固定盘 1003的转速接 近或者超过皮带轮 1005的转速, 从而起到强力降温的作用。
实施例 6
作为实施例 5的一种变型, 如图 10所示, 本实施例与实施例 5的不同之处仅在于: 皮带 轮 1105通过轴承转动的安装在座体 1101的外圆周面上。风扇固定盘 1103也通过轴承转动的 安装在座体 1101的外圆周面上。 当然, 风扇固定盘也可以通过轴承安装在其他部件上, 如驱 动轴上或皮带轮上。 实施例 7
如图 11所示, 本发明电磁风扇离合器包括座体 1201、 驱动轴 1202、 风扇固定盘 1203、
小皮带轮 1205和大皮带轮 1206。 座体 1201通过支架板 1204固定安装在车辆的底盘或者水 箱或者其他固定件上, 座体 1201呈筒状, 驱动轴 1202穿过座体 1201, 驱动轴 1202与座体 1201之间通过轴承连接。 小皮带轮 1205固定安装在驱动轴 1202左端, 小皮带轮 1205与大 皮带轮 1206通过皮带连接, 由于大皮带轮 1206的直径大于小皮带轮 1205的直径, 因此可以 实现驱动轴增速的目的。 风扇固定盘 1203呈筒状, 风扇固定盘 1203通过轴承安装在座体的 外圆周面上,风扇固定盘 1203的右端面通过螺栓固定安装有风扇叶。本实施例中驱动轴 1202 为主动转子, 在主动转子上安装有线圈绕组, 风扇固定盘 1203为从动转子, 在从动转子上安 装有励磁绕组或永磁磁极。 与实施例 1的原理相同, 转动的主动转子通过电磁感应驱动从动 转子以低于主动转子的转速做差速转动。 主动转子上的线圈绕组通过滑环碳刷与输出电流线 1208连接。 实施例 8
如图 12所示, 本发明电磁风扇离合器包括座体 1301、 驱动轴 1302、 风扇固定盘 1303、 小皮带轮 1305和大皮带轮 1306。 座体 1301通过支座固定安装在发动机上, 座体 1301呈筒 状,驱动轴 1302穿过座体 1301,驱动轴 1302与座体 1301之间通过轴承连接。小皮带轮 1305 通过键固定安装在驱动轴 1302的中部, 小皮带轮 1305与大皮带轮 1306通过皮带连接, 由于 大皮带轮 1306的直径远大于小皮带轮 1305的直径, 因此可以实现驱动轴 1302增速的目的。 风扇固定盘 1303呈筒状,风扇固定盘 1303通过轴承安装在驱动轴 1302上,风扇固定盘 1303 的右端面通过螺栓固定安装有风扇叶。本实施例中驱动轴 1302为主动转子, 在主动转子上安 装有线圈绕组, 风扇固定盘 1303为从动转子, 在从动转子上安装有励磁绕组或永磁磁极。 与 实施例 1的原理相同, 转动的主动转子通过电磁感应驱动从动转子以低于主动转子的转速做 差速转动。 主动转子上的线圈绕组通过滑环碳刷与输出电流线 1308连接。 实施例 9
如图 13所示, 本实施例与实施例 6的不同之处仅在于: 风扇叶 1408是通过传动系统间 接的安装在风扇固定盘 1403上的, 本实施例中的传动系统为角传动系统 1409。
图 16 展示了线圈绕组输出电流和风扇固定盘输出的转速随主动转子与从动转子的转速 差的增大而产生的变化曲线。 当主动转子与从动转子的滑差转速小于临界转速点时, 风扇固 定盘以较低的转速跟转, 线圈绕组不输出电流; 当滑差转速大于临界转速点时, 线圈绕组输 出电流, 并且电流随着滑差转速的增大而增大, 风扇固定盘输出的转速也随着输出电流的增 大而增大。
实施例 10
本发明一种无级调速系统, 包括控制装置、 调速装置和实施例 1至 9所描述的电磁风扇 离合器, 控制装置通过调控主动转子或从动上的线圈绕组向调速装置输出电流, 来调节线圈 绕组内的电流大小, 从而调节固定安装有线圈绕组的风扇固定盘受到的力矩的大小, 实现电 磁风扇离合器的无级调速。 调速装置可以为储电装置或用电装置, 储电装置可以采用蓄电池 等, 用电装置可以采用变电阻或电动风扇等。 本实施例中的用电装置可以为电动风扇, 控制 装置为温控开关装置, 控制装置也可以是由温度传感器和逻辑控制电路组成。
图 17展示了随着线圈绕组输出的电流的变化,电磁风扇离合器的风扇叶与电动风扇的扇 叶转速的变化曲线, 由图 17可知, 随着输出电流的增大, 电磁风扇离合器的风扇叶与电动风 扇的扇叶转速均增大, 电动风扇的转速高于电磁风扇离合器的风扇叶的转速, 当然, 电动风 扇的转速也可以等于或低于电磁风扇离合器的风扇叶的转速。 实施例 11
如图 14所示, 本发明一种无级调速系统, 包括负载 602和实施例 1至 9所描述的电磁风 扇离合器 604, 其中负载 602为可变电阻, 通过调节可变电阻的阻值的大小, 能够调节线圈 绕组输出电流的大小, 使电流大小连续变化, 从而调节固定安装有线圈绕组的风扇固定盘受 到的力矩的大小, 使力矩的大小也连续变化, 实现电磁风扇离合器 604的无级调速。 实施例 12
如图 15所示, 一种无级调速系统, 包括用于检测发动机水箱水温的温度传感器 1501、 控制装置 1502、调速装置和实施例 1至 9所述的电磁风扇离合器 1504, 调速装置为电动风扇 1503, 其数量为 4个, 当然也可以为 2个或 3个或多个, 电动风扇的数量根据具体的工况确 定。 电磁风扇离合器 1504的风扇固定盘上固定安装有风扇叶 1505, 风扇叶 1505朝向发动机 的散热器 1506, 电动风扇 1503的扇叶也朝向发动机的散热器 1506, 电磁风扇离合器 1504位 于散热器 1506的左侧, 电动风扇 1503位于散热器 1506的右侧。 控制装置 1502收到温度传 感器 1501的信号后, 调控线圈绕组向电动风扇 1503输出电流。 控制装置为温控开关装置, 控制装置也可以是由温度传感器和逻辑控制电路组成。
本发明一种无极调速系统的控制方法, 按下列步骤进行: a、 温度传感器 1501将检测到 的发动机的水温传输给控制装置 1502; b、 当水温远低于发动机工作的最佳水温范围时, 控 制装置 1502切断线圈绕组向电动风扇 1503输出电流, 电动风扇 1503的扇叶不旋转, 从动转
子及风扇叶 1505随动旋转; C、 当水温上升, 接近发动机工作的最佳水温范围时, 控制装置 1502控制从动转子上的线圈绕组开始向电动风扇 1503输出电流, 并增大输出的电流, 使电 磁风扇离合器上的风扇叶 1505和电动风扇 1503的扇叶加速旋转; d、 当水温继续上升, 在未 达到发动机工作的最佳水温范围就停止上升时,控制装置 1502减小从动转子上的线圈绕组向 电动风扇 1503输出电流,使电磁风扇离合器上的风扇叶 1505和电动风扇 1503的扇叶减速旋 转, 当温度传感器 1501检测到的水温达到发动机工作的最佳水温范围时, 控制装置 1502保 持从动转子上的线圈绕组向电动风扇 1503输出电流的大小; e、 当水温继续上升, 超过发动 机工作的最佳水温范围时, 控制装置 1502增大从动转子上的线圈绕组向电动风扇 1503输出 电流, 使电磁风扇离合器上的风扇叶 1505和电动风扇 1503的扇叶加速旋转, 当温度传感器 1501检测到的水温达到发动机工作的最佳水温范围时, 控制装置 1502保持从动转子上的线 圈绕组向电动风扇 1503输出电流的大小。 本发明的实施例 1-9所描述的电磁风扇离合器的控制方法, 包括下列步骤:
a、 当发动机的水温低于第一设定值时, 从动转子或主动转子上设置的输出感应电流的线 圈绕组与负载断开;
b、 当发动机的水温达到第二设定值时, 从动转子或主动转子上设置的输出感应电流的线 圈绕组与负载接通。
其中负载为调速装置, 调速装置改变线圈绕组输出的感应电流, 从而调节从动转子的转 速。 调速装置可以为可变电阻, 调速装置也可以为电动风扇, 电动风扇通过控制装置控制。 控制装置可以采用温控开关或逻辑控制电路。
其中第一、 第二设定值根据发动机的最佳水温来确定, 其确定的依据有二: 一是控制装 置; 二是最佳水温。 当控制装置采用温控开关来控制时, 第一设定值可低于最佳水温 4~6摄 氏度; 当采用逻辑控制电路时, 第一设定值可低于最佳水温 1摄氏度或等于最佳水温。 根据 发动机的类型不同,其最佳水温也不同,最佳水温可以为 85摄氏度、 90摄氏度或 95摄氏度。 第二设定值高于第一设定值 1~2摄氏度, 当控制装置采用变频方式控制时, 第一设定值可以 与第二设定值相等。
当调速装置为电动风扇时, 可以采用以下两种控制方法:
一、 控制装置采用温控开关。 电动风扇为 2个以上, 现以 4个为例, 4个电动风扇均朝 向发动机的散热器。 发动机的最佳水温为 90摄氏度。 4个电动风扇分别通过 1个温控开关与 线圈绕组连接。 四个温控开关的打开的设定温度分别为 85 °C、 87°C、 89°C、 91 °C, 关闭温度 分别设定为 84°C、 86°C、 88°C、 90°C。 四个温度开关均与检测发动机水箱水温的温度传感器
连接。
当发动机水温达到 85 °C时, 1个电动风扇与线圈绕组接通, 1个电动风扇转动, 同时电 磁风扇离合器上的风扇叶也开始转动; 当发动机水温达到 87°C时, 2个电动风扇与线圈绕组 接通, 2 个电动风扇同时转动, 同时电磁风扇离合器上的风扇叶也以较高转速转动; 当发动 机水温达到 89°C时, 3个电动风扇与线圈绕组接通, 3个电动风扇同时转动, 同时电磁风扇 离合器上的风扇叶也以更高转速转动; 当发动机水温达到 91 °C时, 4个电动风扇与线圈绕组 接通, 4 个电动风扇同时转动, 同时电磁风扇离合器上的风扇叶也以最高转速转动; 当发动 机的水温低于 90°C时,四个温控开关中的一个断开,此时只有 3个电动风扇与线圈绕组接通, 3个电动风扇同时转动, 1个电动风扇不转, 电磁风扇离合器上的风扇叶转速降低; 当发动机 的水温低于 88°C时, 四个温控开关中的两个断开, 此时只有 2个电动风扇与线圈绕组接通, 2个电动风扇同时转动, 2个电动风扇不转, 电磁风扇离合器上的风扇叶转速继续降低; 当发 动机的水温低于 86°C时, 四个温控开关中的三个断开, 此时只有 1个电动风扇与线圈绕组接 通, 1个电动风扇转动, 3个电动风扇不转, 电磁风扇离合器上的风扇叶转速降到最低; 当发 动机的水温低于 84°C时, 四个温控开关均断开, 此时 4个电动风扇均不转, 电磁风扇离合器 上的风扇叶也不转。
上述只是发动机最佳水温为 90摄氏度时的设定, 根据不同的工况, 可以做不同的设定, 但均是对每个温控开关设定一个开启值和一个关闭值, 关闭值低于开启值, 每个开启值和关 闭值均根据发动机最佳水温、 电动风扇的输出功率及电动风扇的个数确定。
至于保证 4个电动风扇均开启后, 发动机水温不超过 91 °C的方法, 可以根据不同工况采 用不同功率的电动风扇, 并且控制电磁风扇离合器的驱动装置传递给驱动轴 (主动转子) 的 转速。
二、 控制装置采用逻辑控制电路。
电动风扇为 2个以上, 现以 4个为例, 4个电动风扇均朝向发动机的散热器。 发动机的 最佳水温为 90摄氏度。 4个电动风扇通过逻辑控制电路与线圈绕组连接。 逻辑控制电路与检 测发动机水箱水温的温度传感器连接。 当发动机的水温温度低于第一设定值 (84°C ) 时, 关 闭所有电动风扇; 当温度达到第二设定值 (85 °C ) 时, 逐个开启电动风扇, 逐个开启电动风 扇的时间间隔根据温度上升的趋势确定, 当温度上升较快时, 时间间隔短, 当温度上升较慢 时, 时间间隔长; 当到达最佳温度时, 维持当前状态; 当超过最佳温度时, 开启全部电动风 扇; 当温度下降时, 逐个关闭电动风扇以维持最佳温度, 逐个关闭电动风扇的时间间隔根据 温度下降的趋势确定, 当温度下降较快时, 时间间隔短, 当温度下降较慢时, 时间间隔长。 电磁离合器上的风扇转速随者总输出电流强弱的变化而变化, 使电磁风扇离合器上的风扇叶
的转速在发动机水温较高时, 转速快, 发动机水温较低时, 转速慢。
逻辑控制电路也可以采用变频方式来控制电动风扇的转速, 当发动机水温较高时, 电动 风扇转速加快, 同时电磁风扇离合器上的风扇叶的转速也加快, 当发动机水温较低时, 电动 风扇的转速减小, 同时电磁风扇离合器上的风扇叶的转速也减小, 以使发动机水温维持最佳 水温。
如图 18所示, 控制装置(逻辑控制电路)可以通过变频方式调节电动风扇的转速, 从而 调节线圈绕组的输出电流。 当发动机处在不同的工况时, 其最佳温度会出现如图 18 中曲线 L1所示的波动情况, 这时, 通过控制器, 控制如变频器调节电动风扇的转速, 使电动风扇的 转速如图 18中曲线 L2所示上下波动, 因为电动风扇的转速发生变化, 线圈绕组输出的电流 也会发生变化,所以电磁风扇离合器上的风扇叶的转速的变化情况也如图 18中曲线 L2所示, 通过电动风扇和电磁风扇离合器上的风扇叶的转速上下波动, 来使发动机的水温接近或达到 最佳温度曲线 Ll。
当电动风扇设置多个时, 逻辑控制电路根据发动机水温逐个开启电动风扇的同时, 通过 变频方式调节每个电动风扇的转速, 使每个电动风扇均维持在最佳转速, 即能够降低能耗, 又能够降低电动风扇产生的噪音。 当调速装置为电动风扇, 电动风扇通过控制装置控制, 控制装置为逻辑控制电路时, 如 果发动机工作的水温在波动, 控制装置控制线圈绕组向电动风扇间断输出电流, 当低于最佳 水温时断电, 高于最佳水温时开启。
如图 19所示, 当发动机处在不同的工况时,其最佳温度会出现如图 19中曲线 L3所示的 波动情况, 通过控制器, 控制如继电器来控制线圈绕组向电动风扇间断的输出电流, 此时, 电动风扇的转速如图 19中曲线 L4所示呈接近矩形方式上下波动, 因为电动风扇的转速发生 变化, 线圈绕组输出的电流也会发生变化, 当只有一个电动风扇时, 电磁风扇离合器上的风 扇叶的转速的变化情况也如图 19中曲线 L4所示,当存在多个电动风扇逐个进行开关动作时, 电磁风扇离合器上的风扇叶的转速的总体变化情况也如图 19中曲线 L4所示, 但波动范围小 于单个电动风扇。 通过电动风扇和电磁风扇离合器上的风扇叶的转速上下波动, 来使发动机 的水温接近或达到最佳温度曲线 L3。 图 20所示的为一款典型的重型商用车冷却水箱的散热风扇的转速与功率的曲线,散热风 扇在 2000转 /分 (通常的额定转速) 时的消耗功率达 11.3kw, 而在 1000转 /分时的消耗功率 仅为 1.6kw, 其消耗的功率仅为额定转速时消耗的功率的 1/7左右。按传统三速电磁风扇离合
器输入转速为 2000转 /分, 二速转速运行在 1000转 /分时, 此时的风扇功率为 1.6kw, 同时电 涡流发热损失的功率也为 1.6kw。
当使用本发明的风扇离合器时, 理论上电涡流发热损失的 1.6kw将转化为发电功率得到 输出利用, 节能 50%, 节能效果明显。
当电磁风扇离合器的调速装置使用电动风扇时, 将电磁风扇离合器上的风扇叶的转速设 定为 1000转每分, 理论上能够将电涡流发热损失的 1.6kw将转化为电能, 给电动风扇使用, 即做功功率 1.6kw+1.6kw=3.2kw, 可以轻易达到传统风扇额定转速时的散热效果, 即可以节 约 11.3-3.2=8.1kw。 节能约 2.5倍!
如果采用本发明的电磁风扇离合器的控制方法, 可以达到 2500转 /分时的散热效果, 节 能 5倍以上, 节能意义非常重大。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范围进行 限定, 在不脱离本发明设计精神的前提下, 本领域普通技术人员对本发明的技术方案作出的 各种变形和改进, 均应落入本发明权利要求书确定的保护范围内。 工业实用性
本发明除热装置能够应用在电磁风扇离合器中, 可消除从动转子 (风扇固定盘) 或主动 转子 (磁铁固定盘或驱动轴) 在转动时因涡电流而产生的热量, 减少能量的损耗, 避免轴承 因受热而失效, 因此具有很大的市场前景和很强的工业实用性。
Claims
1、 一种除热装置, 包括从动转子和主动转子, 其特征在于: 在所述从动转子或主动转子 上设置有输出感应电流的线圈绕组。
2、根据权利要求 1所述的除热装置,其特征在于:所述从动转子或主动转子设有导磁体, 所述线圈绕组镶嵌在导磁体上开设的腔体内。
3、 根据权利要求 1或 2所述的除热装置, 其特征在于: 所述线圈绕组连接有调速装置, 用于调节从动转子的转速。
4、根据权利要求 3所述的除热装置,其特征在于:所述调速装置为储电装置或用电装置。
5、 根据权利要求 3所述的除热装置, 其特征在于: 所述调速装置为可变电阻。
6、 根据权利要求 3所述的除热装置, 其特征在于: 所述调速装置为电动风扇。
7、 一种电磁风扇离合器, 其特征在于: 包括如权利要求 1-3任意一项所述的除热装置。
8、根据权利要求 7所述的电磁风扇离合器,其特征在于:所述主动转子与驱动装置连接, 所述驱动装置为齿轮、 链轮或皮带轮。
9、 根据权利要求 8所述的电磁风扇离合器, 其特征在于: 所述主动转子通过变速装置与 驱动装置连接, 所述驱动装置为齿轮、 链轮或皮带轮, 所述变速装置的变速比为 1~10之间。
10、 根据权利要求 9所述的电磁风扇离合器, 其特征在于: 所述变速装置为轮系。
11、 根据权利要求 9所述的电磁风扇离合器, 其特征在于: 所述主动转子为驱动轴, 所 述从动转子为风扇固定盘, 所述变速装置为行星齿轮变速机构。
12、 根据权利要求 9所述的电磁风扇离合器, 其特征在于: 所述驱动轴转动的安装在座 体上, 所述驱动装置为皮带轮, 驱动装置通过轴承安装在座体或驱动轴上, 所述行星齿轮变 速机构包括太阳轮、 行星轮、 行星架和内齿圈, 所述太阳轮固定安装在驱动轴上, 所述行星 架与座体固定连接, 所述内齿圈与皮带轮固定连接。
13、 根据权利要求 12所述的电磁风扇离合器, 其特征在于: 所述太阳轮与驱动轴为一体 结构, 所述风扇固定盘呈筒状, 风扇固定盘通过轴承套装在行星齿轮变速机构的内齿圈上或 座体上或驱动轴上或皮带轮上。
14、 根据权利要求 7所述的电磁风扇离合器, 其特征在于: 所述从动转子呈筒状, 主动 转子安装在从动转子内, 主动转子和从动转子之间存在间隙; 或者所述主动转子呈筒状, 从 动转子安装在主动转子内, 主动转子和从动转子之间存在间隙; 或者所述主动转子和从动转 子并排设置, 主动转子和从动转子之间相互平行, 且二者之间存在间隙; 或者所述主动转子 和从动转子相对设置, 主动转子和从动转子的轴线重合, 且二者之间存在间隙; 或者所述主
动转子和从动转子均呈圆台形, 主动转子和从动转子成夹角设置, 且二者之间存在间隙。
15、 一种无级调速系统, 其特征在于: 包括如权利要求 7~14任意一项所述的电磁风扇离 合器, 调速装置为电动风扇, 电动风扇的数量为至少一个, 所述电动风扇通过控制装置控制, 所述控制装置调控线圈绕组向电动风扇输出电流。
16、 根据权利要求 15所述的无级调速系统, 其特征在于: 所述控制装置为温控开关或者 逻辑控制电路。
17、 根据权利要求 15所述的无极调速系统, 其特征在于: 所述电磁风扇离合器的从动转 子上直接或间接固定安装有风扇叶, 所述风扇叶朝向发动机的散热器, 所述电动风扇的扇叶 也朝向发动机的散热器。
18、 根据权利要求 17所述的无极调速系统, 其特征在于: 所述电动风扇的数量为 4个。
19、 电磁风扇离合器的控制方法, 其特征在于, 包括下列步骤:
a、 当发动机的水温低于第一设定值时, 从动转子或主动转子上设置的输出感应电流的线 圈绕组与负载断开;
b、 当发动机的水温达到第二设定值时, 从动转子或主动转子上设置的输出感应电流的线 圈绕组与负载接通。
20、 根据权利要求 19所述的控制方法, 其特征在于: 所述从动转子或主动转子设有导磁 体, 所述线圈绕组镶嵌在导磁体上开设的腔体内。
21、 根据权利要求 20所述的控制方法, 其特征在于: 所述负载为调速装置, 所述调速装 置改变线圈绕组输出的感应电流, 从而调节从动转子的转速。
22、 根据权利要求 21所述的控制方法, 其特征在于: 所述调速装置为可变电阻。
23、 根据权利要求 21所述的控制方法, 其特征在于: 所述调速装置为电动风扇, 电动风 扇通过控制装置控制, 控制装置为逻辑控制电路。
24、 根据权利要求 23所述的控制方法, 其特征在于: 当发动机工作的水温在波动时, 控 制装置控制线圈绕组向电动风扇间断输出电流, 当低于最佳水温时断电, 高于最佳水温时开 启。
25、 根据权利要求 23所述的控制方法, 其特征在于, 所述电动风扇的个数为至少 2个, 所述控制装置能够独立控制每个电动风扇的通断,
当温度低于第一设定值时, 关闭所有电动风扇,
当温度达到第二设定值时, 逐个开启电动风扇,
当到达最佳温度时, 维持当前状态,
当超过最佳温度时, 开启全部电动风扇,
当温度下降时, 逐个关闭电动风扇以维持最佳温度,
电磁离合器上的风扇转速随者总输出电流强弱的变化而变化。
26、 根据权利要求 23或 25所述的控制方法, 其特征在于: 所述控制装置以变频方式调 节电动风扇的转速。
27、 根据权利要求 21所述的控制方法, 其特征在于: 所述调速装置为电动风扇, 电动风 扇为 2个以上, 控制装置为温控开关, 每个电动风扇均与一个温控开关连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/078675 WO2015000133A1 (zh) | 2013-07-02 | 2013-07-02 | 除热装置、电磁风扇离合器及控制方法和无极调速系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/078675 WO2015000133A1 (zh) | 2013-07-02 | 2013-07-02 | 除热装置、电磁风扇离合器及控制方法和无极调速系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015000133A1 true WO2015000133A1 (zh) | 2015-01-08 |
Family
ID=52143004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/078675 WO2015000133A1 (zh) | 2013-07-02 | 2013-07-02 | 除热装置、电磁风扇离合器及控制方法和无极调速系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015000133A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104863688A (zh) * | 2015-04-20 | 2015-08-26 | 龙口中宇汽车风扇离合器有限公司 | 无级调速控制策略及控制装置及电磁风扇离合器 |
WO2020150297A1 (en) * | 2019-01-15 | 2020-07-23 | Warner Electric Technology Llc | Rotational coupling device with armature release collar |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0889577A2 (de) * | 1997-07-01 | 1999-01-07 | Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 | Schlupfkupplung für ein antreibbares Aggregat, insbesondere Nebenaggregat einer Brennkraftmaschine |
US20070096853A1 (en) * | 2005-10-31 | 2007-05-03 | Sunonwealth Electric Machine Industry Co., Ltd. | Indirect power-linking device |
-
2013
- 2013-07-02 WO PCT/CN2013/078675 patent/WO2015000133A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0889577A2 (de) * | 1997-07-01 | 1999-01-07 | Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 | Schlupfkupplung für ein antreibbares Aggregat, insbesondere Nebenaggregat einer Brennkraftmaschine |
US20070096853A1 (en) * | 2005-10-31 | 2007-05-03 | Sunonwealth Electric Machine Industry Co., Ltd. | Indirect power-linking device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104863688A (zh) * | 2015-04-20 | 2015-08-26 | 龙口中宇汽车风扇离合器有限公司 | 无级调速控制策略及控制装置及电磁风扇离合器 |
WO2020150297A1 (en) * | 2019-01-15 | 2020-07-23 | Warner Electric Technology Llc | Rotational coupling device with armature release collar |
US10767718B2 (en) | 2019-01-15 | 2020-09-08 | Warner Electric Technology Llc | Rotational coupling device with armature release collar |
EP3911868A1 (en) * | 2019-01-15 | 2021-11-24 | Warner Electric Technology LLC | Rotational coupling device with armature release collar |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105484849B (zh) | 安全式四速电磁风扇离合器及其控制装置、控制方法 | |
US20070129198A1 (en) | Electric motor and method of driving the same | |
CN103352753B (zh) | 电磁风扇离合器及控制方法和无级调速系统 | |
CN100433533C (zh) | 永磁式电机转子 | |
CN105790543A (zh) | 一种线圈静止型电磁涡流调速器 | |
WO2015000133A1 (zh) | 除热装置、电磁风扇离合器及控制方法和无极调速系统 | |
CN203441585U (zh) | 除热装置、电磁风扇离合器及无级调速系统 | |
CN103532341A (zh) | 一种快速调磁的永磁涡流调速器 | |
CN102064657B (zh) | 转子为互补励磁的永磁变速轮毂电机 | |
CN103507615B (zh) | 一体化混合动力 | |
CN203368291U (zh) | 集成盘式永磁调速电动机 | |
CN104467359A (zh) | 一种永磁调速节能联轴器 | |
CN105790542A (zh) | 一种具有能量回收功能的电磁缓速器 | |
CN205178835U (zh) | 一种控角式盘形永磁耦合调速器 | |
JP5604214B2 (ja) | 摩擦クラッチが組込まれた電気モータパワーユニット | |
CN207117459U (zh) | 半侧自励式永磁调速器 | |
JP5326415B2 (ja) | モータの冷却装置 | |
CN211296515U (zh) | 一种新型永磁同步电机 | |
CN204652202U (zh) | 永磁节能调速一体化电机 | |
CN203398973U (zh) | 内辐射环式静态调速带轮型永磁联轴器 | |
CN208630354U (zh) | 一种轮毂电机驱动装置 | |
CN203296906U (zh) | 一种汽车三速电磁风扇离合器 | |
CN202261134U (zh) | 外转子开关磁阻曳引驱动装置 | |
CN201228583Y (zh) | 电磁风扇离合器 | |
CN203608065U (zh) | 一种永磁调速节能联轴器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13888828 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13888828 Country of ref document: EP Kind code of ref document: A1 |