WO2014208794A1 - Apparatus for generating electrolyzed water, used in semiconductor process - Google Patents

Apparatus for generating electrolyzed water, used in semiconductor process Download PDF

Info

Publication number
WO2014208794A1
WO2014208794A1 PCT/KR2013/005736 KR2013005736W WO2014208794A1 WO 2014208794 A1 WO2014208794 A1 WO 2014208794A1 KR 2013005736 W KR2013005736 W KR 2013005736W WO 2014208794 A1 WO2014208794 A1 WO 2014208794A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
anode
cathode
electrolytic
semiconductor process
Prior art date
Application number
PCT/KR2013/005736
Other languages
French (fr)
Korean (ko)
Inventor
안종호
Original Assignee
솔브레인나노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인나노텍 주식회사 filed Critical 솔브레인나노텍 주식회사
Priority to PCT/KR2013/005736 priority Critical patent/WO2014208794A1/en
Publication of WO2014208794A1 publication Critical patent/WO2014208794A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning

Definitions

  • the present invention relates to an electrolyzed water generating device used in semiconductor processes such as semiconductor substrate cleaning. As the water pressure of the electrolyzer is improved, the electrolyzed water has the desired dissolved hydrogen, dissolved oxygen, and OPR to improve cleaning power and The present invention relates to an electrolytic water generating device capable of preventing a decrease in electrolytic efficiency due to improvement in water pressure by allowing a constant current to flow based on the structure.
  • Decontamination is generally performed by cleaning the substrate surface with a cleaning liquid.
  • Electrolytic water such as alkaline water is frequently used to remove particle contamination.
  • the electrolyzed water electrolyzes pure water to generate alkaline or acidic water. Pure water is composed of ions of H + and OH-, and when electrolyzed, alkaline ions are generated at the negative electrode (-) and acidic ions at the positive electrode (+). .
  • ORP Oxidation Reduction Potential
  • the ORP may be referred to as a reference value for determining whether water is oxidized water or reduced water.
  • ORP value is a positive value, it is an oxidized water. If the ORP value is a negative value, it is a reduced water.
  • the cathode and anode chambers in which the electrolytic cell is divided into ion permeable diaphragms are charged, and the cathode and anode electrodes are charged and current is flowed between the two electrodes with pure water in the electrolyte chamber.
  • the diaphragm is interposed and electrolyzed, and the pH value of the water in the cathode chamber is increased to alkaline water and the pH value of water in the anode chamber is lowered to form acidic water.
  • the anode and the cathode are each made of one sheet.
  • the portion of the high water pressure flows less, and the portion of the low water pressure flows much current.
  • the current in the electrolytic cell is inversely related to the water pressure. Therefore, the lower end of the electrolytic cell has a low electrolytic efficiency, and the upper end has a high electrolytic efficiency, but may be overelectrolyzed. In other words, even in the electrolyzed water generated due to the difference in electrolytic efficiency, constant pH and OPR cannot be expected. Thus, there is a problem that non-uniform cleaning occurs in the cleaning of the substrate.
  • FIG. 1 shows a conventional electrolytic cell 1 (Korean Patent Registration No. 0229584), the structure of which is the same as the above-mentioned electrolytic cell, except that ions are selectively flowed to efficiently flow alkaline or acidic water.
  • An example in which the ion exchange membrane 2 is formed on both surfaces of the partition wall 3 is shown as a configuration for producing.
  • this technique is a type in which the ion exchange membrane 2 is bonded to the partition 3 and the contact resistance (Rc) due to the generation of the interface between the ion exchange membrane and the barrier and the contact resistance (Rc) due to the generation of the interface between the ion exchange membrane and the barrier rib.
  • the resistance will increase. This increase in resistance eventually has a problem of lowering the conduction efficiency.
  • the present invention is to solve the above-described problems, it is possible to generate an electrolytic water that can ensure the uniformity of the semiconductor cleaning process by the electrolytic water having a constant pH, OPR so that a constant current is induced regardless of the water pressure To provide a device.
  • Electrolytic water generating device used in the semiconductor process according to the problem to be solved by the present invention is a plurality of anode electrodes formed in series with a multi-stage electrode in a form separated from each other in a vertical direction from the bottom of the electrolytic cell, a plurality of multi-step electrode formed in series
  • a plurality of cathode electrodes are formed in series at a predetermined interval in a vertical direction from the lower part of the electrolytic cell, and a plurality of anode electrodes are formed in series at a predetermined interval so as to face the plurality of cathode electrodes. It is formed to apply a DC voltage to the anode electrode at one end of the two anode electrodes and the cathode electrode at the other end of the plurality of cathode electrodes, so that a constant current flows at all times without being affected by the water pressure due to the height difference in the electrolytic cell. As a result, the electrolytic efficiency is improved, and a constant pH and redox potential (OPR) are obtained.
  • OCR pH and redox potential
  • the semiconductor process is a cleaning process in the semiconductor or LED process, including deposition (CVD), diffusion (Diffusion), exposure (Expose), development (Develop), etching (Etch), polishing (CMP)
  • CVD deposition
  • Diffusion diffusion
  • Expose exposure
  • Espose development
  • Etch etching
  • CMP polishing
  • the process includes MEGASONIC, Brushing, and Jet.
  • the semiconductor process refers to a process including FPD Cleaning, LCD Cleaning, Photo Mask Cleaning.
  • the electrolyzer is configured with an inlet line at the bottom thereof is connected to the filter unit, the discharge line is connected to the top by the flow control valve to control the water pressure in the electrolyzer by adjusting the flow rate of the electrolyzed water discharged from the electrolyzer (higher) Therefore, the present invention is characterized by improving the dissolved hydrogen concentration (DH) and OPR of the electrolyzed water to improve the cleaning power of the electrolyzed water. Accordingly, the decrease in the electrolytic efficiency due to the high pressure of the electrolytic cell is constant even if a high dissolved hydrogen concentration (DH) and OPR are obtained by improving the water pressure by allowing a constant current to flow up and down by the structure of the above-mentioned electrolyzer. The current flows to prevent the reduction of the overall electrolytic efficiency.
  • DH dissolved hydrogen concentration
  • OPR dissolved hydrogen concentration
  • the electrolyzed water generating device used in the semiconductor process according to the present invention improves the dissolved hydrogen concentration and OPR value by improving the pressure of the electrolyzer, thereby improving the cleaning power and allowing a constant current to flow through each electrode. By doing so, there is an advantage to improve the electrolytic efficiency.
  • the electrolyzed water generating device used in the semiconductor process according to the present invention has an advantage of reducing power loss due to the reduction in interfacial resistance, since it does not constitute a separate ion exchange membrane.
  • FIG. 1 is a schematic view showing an electrolytic water generating device according to the prior art
  • Figure 2 is a schematic view showing an electrolytic cell which is one configuration of the electrolytic water generating device used in the semiconductor process according to the present invention
  • Figure 3 is a state diagram of the use of the present invention
  • 4A and 4B are schematic views showing an embodiment of an electrolytic cell which is one configuration of the present invention.
  • the electrolytic water generating apparatus used in the semiconductor process of the present invention corresponds to a plurality of anode electrodes formed of multi-stage electrodes in series, separated from each other in a vertical direction from the bottom of the electrolyzer, and a plurality of anode electrodes formed of multi-stage electrodes in series, respectively.
  • a plurality of cathode electrodes formed of multi-stage electrodes in series so as to be separated from each other in a vertical direction from a lower part of the electrolytic cell, an anode electrode at one end of the plurality of anode electrodes, and a cathode electrode at another end of the plurality of cathode electrodes It is formed and includes an external power source for applying a voltage to, characterized in that the anode electrode and the cathode electrode which is not connected to the external power source is connected to each other by a wire.
  • a plurality of cathode electrodes are formed in series at a predetermined interval in a vertical direction from the lower part of the electrolytic cell, and a plurality of anode electrodes are formed in series at a predetermined interval so as to face the plurality of cathode electrodes. It is formed to apply a DC voltage to the anode electrode at one end of the two anode electrodes and the cathode electrode at the other end of the plurality of cathode electrodes, so that a constant current flows at all times without being affected by the water pressure due to the height difference in the electrolytic cell. As a result, the electrolytic efficiency is improved, and a constant pH and redox potential (OPR) are obtained.
  • OCR pH and redox potential
  • FIG 2 is a schematic diagram showing an electrolytic cell which is one configuration of the electrolytic water generating apparatus used in the semiconductor process according to the present invention
  • Figure 3 is a state diagram of the present invention
  • Figures 4a and 4b is an implementation of the electrolytic cell of one configuration of the present invention
  • the present invention is characterized by maintaining a constant pH, OPR in the electrolyzed water discharged from the electrolytic cell by improving the electrolytic efficiency by using a multi-stage electrode electrically connected in series in the electrolytic cell.
  • the present invention improves cleaning power by discharging electrolyzed water having a high dissolved hydrogen concentration and OPR as the water pressure of the electrolyzer is increased, and the conductivity reduction by the high water pressure of the electrolyzer is multi-stage electrically connected in the above-mentioned electrolyzer.
  • the use of the electrode is characterized by improving the electrolytic efficiency.
  • the electrolytic water generating device used in the semiconductor process of the present invention includes an electrolytic cell 110 as shown in FIG.
  • the alkali water generating chamber 120, the acidic water generating chamber 130, the respective alkaline water generating chambers 120, and the acidic water generating chamber 130 are partitioned into the partition wall 160 by the ion exchange resin inside the electrolytic cell 110.
  • a cathode electrode configured in a plurality of partition walls 124 for partitioning up and down into a plurality of chambers (C1, C2, etc., A1, A2, etc.) and the chambers (C1, C2, etc., A1, A2, etc.) 140), the anode pole 150 is characterized by.
  • the inlet water pressure of the pure water in the electrolyzer 110 is appropriately 0.1 to 0.5 MPa, and the electrolyzed water discharge water pressure in the electrolyzer 110 is appropriately adjusted to 0.2 MPa or less.
  • a voltage is applied to the lowermost cathode electrode 140 and the uppermost anode electrode 150, and the chamber is different between the anode electrode 150 and the cathode electrode 140.
  • the electrodes in each chamber are to be electrically connected in series.
  • the cathode electrode 140 and the anode electrode 150 are configured such that a platinum group metal such as platinum or iridium, a platinum group metal of platinum or iridium, or a mixture thereof is plated on a titanium or stainless steel material.
  • a platinum group metal such as platinum or iridium, a platinum group metal of platinum or iridium, or a mixture thereof is plated on a titanium or stainless steel material.
  • a material that is difficult to be oxidized such as titanium is selected in order to facilitate electron transfer and easily oxidize between both electrodes by electrolysis. It is preferable to plate platinum, iridium, or the like.
  • the polarity of a power supply may be changed, it is preferable to apply the same plating to all the said positive electrodes.
  • the alkaline water generating chamber 120 and the acidic water generating chamber 130 are respectively divided into four chambers (C1, C2, C3, C4, A1, A2, A3, A4), respectively.
  • An example in which four cathode electrodes 140 and four anode electrodes 150 are provided in a chamber of the present invention is shown.
  • the number of such chambers and electrodes can be configured selectively.
  • the cathode electrode 140 and the anode electrode 150 are disposed in the respective chambers, and the anode electrode 150 of the lowermost chamber A1 and the chamber C2 thereon are disposed.
  • the cathode electrode 140 of the structure is electrically connected to the anode electrode 150 of the lower chamber and the cathode electrode 140 of the upper chamber electrically connected, and the lowermost chamber (C1) and the uppermost chamber (A4) finally Apply a DC voltage.
  • the lower chambers C1 and A1 have high water pressure but the current is constant, and the upper chambers C4 and A4 have low water pressure, but the current is constant so that the overall electrolytic efficiency is high and constant. That is, a potential difference occurs in each electrode due to a resistance difference due to water pressure.
  • a voltage of 100 V is formed in an electrode part located in the lowermost chambers C1 and A1 of the electrolytic cell 110, the upper end is about 20
  • the voltage difference is generated in such a way that a voltage of 80V, which is reduced by%, and a voltage of 60V, which is reduced by 20%, is generated at the upper end thereof, so that a constant current flow is always generated in each electrode.
  • the partition wall 160 is formed of an ion exchange resin, and prevents the mixing of the alkali water and the acid water generated in the alkaline water generating chamber 120, the acidic water generating chamber 130, and increases the efficiency of the current
  • the material is a well-known material, and the description is abbreviate
  • the ion exchange membrane 170 is formed on both surfaces of the partition wall 160, that is, the surfaces exposed to the alkali water generating chamber 120 and the acidic water generating chamber 130, respectively.
  • the ion exchange membrane 170 may selectively constitute an anion exchange membrane 171 or a cation exchange membrane 172.
  • the anion coating layer 181 having an anion exchange group on both surfaces of the partition wall 160 that is, the surface exposed to the alkali water generating chamber 120 and the acidic water generating chamber 130, respectively.
  • the anion coating layer 181 is characterized by having an anion exchange group
  • the cation coating layer 182 is characterized by having a cation exchange group.
  • the anion coating layer 181 and the cation coating layer 182 is formed by dissolving a resin having an anion exchange group and a cation exchange group, respectively, in an organic solvent and applying this solution to both sides of the partition wall 160.
  • the anion exchange group may be a primary amine group, a secondary amine group, a tertiary amine group, a quaternary ammonium group, a polyethyleneimine group or a phosphonium group
  • the cation exchange group may be a sulfonic acid group, a phosphoric acid group or a carboxylic acid group.
  • the ion exchange unit 180 is formed on both sides of the partition wall 160 to induce only the selected ions to the alkaline water generating chamber 120 and the acidic water generating chamber 130, and the ion exchange membrane itself according to the configuration of a separate ion exchange membrane. It is possible to prevent a decrease in conduction efficiency due to an increase in the resistance of the entire system due to the ion transfer resistance and the contact resistance (Rc) due to the generation of the interface between the ion exchange membrane and the partition wall.
  • the anion coating layer 181 and the cation coating layer 182 are poorly soluble in the organic solvent, the polymer binder and the organic solvent, respectively.
  • the example which consists of ion selective resin powder is shown.
  • the ion-selective resin powder is poorly soluble in the organic solvent and is present in the anion coating layer 181 and the cation coating layer 182 by the mixture of the polymer binder and the organic solvent, but is not exposed in the form of particles. will be. That is, since the ion-selective resin powder is present in the form of particles, the reaction area with the ions can be increased, thereby increasing the reaction efficiency with the ions.
  • the ion-selective resin powder is characterized in that it is poorly soluble in the organic solvent, the ion-selective resin powder is to be poorly soluble in the organic solvent by using a crosslinked.
  • poor solubility is defined as solubility of 6 wt% or less.
  • the ion-selective resin powder it is appropriate to use a polymer resin powder having a cation exchange group or a polymer resin powder having an anion exchange group.
  • the cation exchange group and the anion exchange group are as described above.
  • the polymer resin is not limited, but is cross-linked and insoluble in an organic solvent, such as poly (styrene-divinylbenzene), polystyrene, polyisulfone, polyamide, polyester, polyimide, poly Any one or a mixture of two or more selected from ether, polyethylene and polytetrafluoroethylene can be used.
  • organic solvent such as poly (styrene-divinylbenzene), polystyrene, polyisulfone, polyamide, polyester, polyimide, poly Any one or a mixture of two or more selected from ether, polyethylene and polytetrafluoroethylene can be used.
  • the polymer binder may use one or two or more of a nonionic polymer, a polymer having a cation exchange group, and a polymer having an anion exchange group.
  • a nonionic polymer although not limited thereto, one or two or more mixtures selected from the group consisting of polyisulfone, polysulfone, polyvinylidenedifluoride, polyacrylonitrile, and cellulose acetate may be used. .
  • the organic solvent is determined by the type of the polymer binder, and all the organic solvents in which the selected polymer binder is dissolved are possible. It is reasonable to use one or more mixtures selected from the group consisting of carbonates.
  • anion coating layer 181 and the cation coating layer 182 having the above-described configuration are blended with 20 to 200 parts by weight of the polymeric binder and 50 to 600 parts by weight of the organic solvent based on 100 parts by weight of the ion-selective resin powder.
  • Electrolytic water generating device 100 of the present invention is connected to the electrolytic cell 110, the front end of the electrolytic cell 110 by the filter unit 10 and the inlet line 20, the discharge water discharged from the electrolytic cell 110 flow rate
  • the discharge valve 60 is configured with a control valve 61 is configured, the discharge line 60 is characterized in that the storage line 30 and the discharge line 40 is connected by a three-way valve (50).
  • inflow water is introduced into the filter unit 10, and pure water is discharged into the inflow line 20, and pure water flows into the electrolytic cell 110.
  • the inlet line 20 communicates with the pure water inlets 121 and 131 formed at the lower end of the electrolytic cell 110 and the electrolyte solution inlet 161 so that pure water through the filter unit 10 flows into the electrolytic cell 110.
  • the line connected to the electrolyte solution inlet 161 of the inlet line 20 is connected through the electrolyte solution reservoir 60 and the opening / closing valve 61 as shown in FIG. 3.
  • the electrolyte solution is mixed from the electrolyte solution reservoir 60 to the pure water flowing into the inlet line 20 so that the electrolyte solution flows into the partition wall 160 through the electrolyte solution inlet 161.
  • the pure water introduced in this way allows the alkali water generation chamber 120 to generate alkali water in the electrolytic cell 110 and the acid water generation in the acid water generation chamber 130, and the alkali water formed at the top of the electrolytic cell 110.
  • the electrolytic water is discharged through the outlet 122, the electrolyte solution outlet 162, and the acidic water outlet 132, and the alkaline water outlet 122, the electrolyte solution outlet 162, and the acidic water outlet 132 are discharge lines 60. Is connected to.
  • the flow rate control valve 61 in the discharge line 60 it is appropriate to configure the flow rate control valve 61 in the discharge line 60 to control the water pressure of the electrolytic cell 10.
  • the flow control valve 61 By operating the flow control valve 61 to adjust the water pressure in the alkaline water generating chamber 120 and the acidic water generating chamber 130, an appropriate dissolved oxygen, dissolved hydrogen, OPR can be obtained to the discharged alkaline or acidic water. To make it possible.
  • the discharge line 60 is connected to the storage line 30 and the discharge line 40 by a three-way valve (50). That is, the alkaline or acidic water may be flowed to the storage line 30 or the discharge line 40 through the control of the three-way valve 50 according to the use. For example, when the alkaline water is stored in the storage tank 31 and used in the semiconductor process, only the alkaline water flows into the storage tank 31 by turning on the three-way valve 50-1 of the storage line 30 communicating with the alkaline water outlet 122. The remaining three-way valves 50-2 and 3 are turned off so that the treated water from the electrolyte solution outlet 162 mixed with the acid water, the dregs, the wastes, etc. is allowed to flow to the discharge line 40, as shown in the drawing. There is no bar but can be circulated to the filter unit 10 or discarded.
  • the alkali or acidic water selectively stored in the storage tank 31 is used in the semiconductor process, especially in the manufacture of semiconductor devices or in the manufacture of liquid crystals.
  • pure water is guided through the filter unit 10, and electrolytic water obtained by electrolyzing such pure water through the electrolytic cell 110 is used to clean a semiconductor substrate such as silicon or to coat the surface of the semiconductor substrate. Will be polished.
  • Pure water is water of high purity having a resistivity of about 5 to 18, in which most impurities such as ions, fine particles, microorganisms, and organic substances are removed. By electrolyzing these waters, acidic water having strong oxidative properties and alkaline water having strong reducing properties are produced.
  • the electrolyte solution supplied to the partition wall 160 is to electrolyze an electrolyte solution such as HCl, HNO 3 , NH 4 Cl, NH 4 F, NH 4 OH, and the like to generate electrolytic water having an arbitrary pH.
  • the present invention provides an embodiment for discharging strong acidic water or strong alkaline water by selectively configuring the ion exchange unit 180 as shown in FIGS. 4A and 4B.
  • the example shown in FIG. 4A is an example of discharging strong acidic water, applying an anion coating layer 181 on both sides of the partition wall 160, and introducing an electrolyte solution into the electrolyte solution inlet 161 communicating with the partition wall 160.
  • Pure water is introduced into the pure water inlets 121 and 131 of the alkaline water generating chamber 120 and the acidic water generating chamber 130.
  • the electrolyte solution is shown as an example using a solution in which NH 4 OH dissolved in pure water.
  • hydroxide ions OH ⁇ flow into the acidic water generation chamber 130 by electric force, and the hydroxide ions OH ⁇ in the alkali water generation chamber 120 also generate acidic water. Move to chamber 130.
  • water (H 2 O) as illustrated is Figure electrolysis hydroxide ions (OH -) shifts to the acidic water generating chamber 130. Therefore, the acid number generation chamber 130 hydroxyl ion (OH -) is be a lot to generate a gangsanseongsu.
  • the partition wall 160 is an anion of hydroxide ion (OH -) to the function of this so as to easily flow to the acid to create the chamber 130.
  • a cation coating layer 182 is applied to both surfaces of the partition wall 160, an electrolyte solution is introduced into the electrolyte solution inlet 161 communicating with the partition wall 160, and the alkaline water generating chamber 120 and acidic water are provided. Pure water is introduced into the pure water inlets 121 and 131 of the production chamber 130. Ammonium ions (NH 4 +) in the electrolyte solution introduced into the partition wall 160 flows to the alkaline water generating chamber 120 by electric force, and the ammonium ions (NH 4 +) of the acidic water generating chamber 130 are also alkali water generating chambers ( Go to 130).
  • water (H 2 O) is also electrolyzed to move the hydrogen ions (H +) to the alkaline water generating chamber (120). Therefore, in the alkali water generating chamber 120, hydrogen ions (H +) are increased to generate strong alkaline water.
  • the partition wall 160 serves to easily flow hydrogen ions (H +), which are cations, into the alkaline water generating chamber 120.
  • the present invention by the configuration and operation as described above is to generate the electrolytic water required in the semiconductor process, that is, the process for cleaning the semiconductor substrate.
  • a roll-shaped brush for cleaning a semiconductor substrate and the electrolytic cell 110 are connected by the storage line 30 to supply electrolytic water, that is, acidic water and alkaline water to the brush.
  • Experimental Example 2 adjusted the input pressure of the electrolyzer to 0.1 MPa and the output pressure to 0.05 MPa, and diluted NH 4 OH 50 ppm and 100 ppm in pure water and pure water with the electrolyte solution inlet 161 communicating with the partition wall 160, respectively. OPR and dissolved hydrogen concentration were measured and the results are shown in Table 2 below.
  • Experimental Example 3 adjusted the input pressure of the electrolyzer to 0.1 MPa and the output pressure to 0.01 MPa, and diluted NH 4 OH 50 ppm and 100 ppm in pure water and pure water with the electrolyte solution inlet 161 communicating with the partition wall 160, respectively. OPR and dissolved hydrogen concentration were measured and the results are shown in Table 3 below.
  • electrolytic water having high OPR and dissolved hydrogen concentrations was generated in an electrolyte solution diluted to 100 ppm of NH 4 OH than 50 ppm of NH 4 OH than pure water.
  • electrolyzed water with OPR and dissolved hydrogen concentration higher than 0.1 MPa, output pressure 0.05 MPa, and 0.01 MPa was found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The present invention relates to an apparatus for generating electrolyzed water, used in a semiconductor process such as semiconductor substrate cleaning and the like, wherein cleaning power is improved by having desired dissolved hydrogen, dissolved oxygen and OPR in electrolyzed water according to an increase in the hydraulic pressure of electrolyzed water, and the deterioration of electrolysis efficiency due to the increase in hydraulic pressure can be simultaneously prevented by allowing constant current to flow through the structure of an electrolytic bath.

Description

반도체 공정에 사용되는 전해수 생성장치Electrolyzed Water Generator for Semiconductor Process
본 발명은 반도체 기판세정 등 반도체 공정에 사용되는 전해수 생성장치에 관한 것으로, 전해조의 수압을 향상시킴에 따라 전해수에 있어 원하는 용존수소, 용존산소, OPR을 가지도록 하여 세정력을 향상시킴과 동시에 전해조의 구조에 기해 일정한 전류가 흐르도록 함으로써 수압의 향상에 기한 전해효율이 저하되는 것을 방지할 수 있는 전해수 생성장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyzed water generating device used in semiconductor processes such as semiconductor substrate cleaning. As the water pressure of the electrolyzer is improved, the electrolyzed water has the desired dissolved hydrogen, dissolved oxygen, and OPR to improve cleaning power and The present invention relates to an electrolytic water generating device capable of preventing a decrease in electrolytic efficiency due to improvement in water pressure by allowing a constant current to flow based on the structure.
일반적으로 반도체 디바이스나 디스플레이 디바이스 등을 제조하는 공정에 있어서, 기판표면의 세정이 필요한 바, 이는 기판 상의 오염물인 파티클 (미립자) 을 제거하고, 기판표면을 고도로 청정화 하기 위함이다. 마이크로 프로세서, 메모리, CCD 등의 반도체 디바이스나, TFT 액정 등의 플랫 패널 디스플레이 디바이스의 제조공정에서, 실리콘 (Si) 이나 산화실리콘 (SiO2), 유리 등의 기판표면에 서브미크론의 치수로 회로 패턴 형성이나 박막 형성을 실시하고 있고, 제조의 각 공정에서 이 기판표면의 미량의 오염을 저감시키는 것이 매우 중요한 과제로 되고 있다. 오염 중에서도 특히 실리카입자, 알루미나 입자나 유기물 입자와 같은 미소입자 (파티클) 에 의한 오염은 디바이스의 수율을 저하시키기 때문에, 다음 공정에 들어가기 전에 최대한 저감시킬 필요가 있다. 오염 제거에는 기판표면을 세정액으로 세정하는 것이 일반적으로 실시되고 있다. 파티클 오염의 제거에는 알카리수 등 전해수가 많이 사용된다. 이러한 전해수는 순수를 전기분해하여 알카리수 또는 산성수가 생성되도록 하는데, 순수는 H+와 OH-로 이온으로 구성되며 이를 전기분해하면 음극(-)에는 알칼리성 이온이, 양극(+)에는 산성 이온이 생성된다. 물이 전기분해가 되면 산화, 환원을 하는데 이때 전위수치를 ORP(Oxidation Reduction Potential; 산화환원 전위)로 표시한다. 상기 ORP는 물이 산화수인지, 환원수인지 알아보는 기준치라 할 수 있다. 상기 ORP 수치가 +값이면 산화수이고, ORP 수치가 - 값이면 환원수가 된다. 종래에는 도면에 도시된 바는 없으나, 전해수를 생성하기 위해 전해조 내를 이온 투과성 격막으로 분할한 음극실과 양극실에 음극전극과 양극전극을 충전시켰으며 순수를 전해실내에 넣은 상태로 양전극간에 전류를 넣으면 격막을 사이에 놓고 전기 분해되며 음극실내의 물의 pH 수치가 높아져서 알카리수가 되고 양극실내의 물의 pH 수치가 낮아져 산성수가 형성된다. 이러한 종래 장치는 양극과 음극이 각각 한 장으로 제작되어 있다. 이와 같이 형성할 경우, 전해조의 상,하단에 발생하는 수압의 차이로 말미암아 전해조의 상,하단에서 전류량이 다르기 때문에 수압이 높은 부분은 전류가 적게 흐르고, 수압이 낮은 부분은 전류가 많이 흐른다. 즉, 전해조의 전류는 수압과 반비례 관계인 것이다. 따라서, 전해조 하단부는 전해효율이 낮고, 상단부는 전해효율이 높으나 과전기분해 될 수도 있다. 즉 이러한 전해효율이 차이로 인해 생성되는 전해수에 있어서도 일정한 pH, OPR을 기대할 수 없으므로 그 만큼 기판 등의 세정에 있어 비균일한 세정이 발생되는 문제가 있었다. Generally, in the process of manufacturing a semiconductor device, a display device, or the like, cleaning of the surface of the substrate is required, in order to remove particles (particulates), which are contaminants on the substrate, and to highly clean the surface of the substrate. In the manufacturing process of semiconductor devices such as microprocessors, memories, CCDs, and flat panel display devices such as TFT liquid crystals, circuit patterns with submicron dimensions on substrate surfaces such as silicon (Si), silicon oxide (SiO 2 ), and glass Formation and thin film formation are performed, and it is a very important subject to reduce the trace amount of contamination of this substrate surface in each process of manufacture. In particular, contamination by microparticles (particles), such as silica particles, alumina particles, and organic particles, lowers the yield of the device. Therefore, it is necessary to minimize the contamination before entering the next step. Decontamination is generally performed by cleaning the substrate surface with a cleaning liquid. Electrolytic water such as alkaline water is frequently used to remove particle contamination. The electrolyzed water electrolyzes pure water to generate alkaline or acidic water. Pure water is composed of ions of H + and OH-, and when electrolyzed, alkaline ions are generated at the negative electrode (-) and acidic ions at the positive electrode (+). . When water is electrolyzed, it is oxidized and reduced. At this time, the potential value is expressed as ORP (Oxidation Reduction Potential). The ORP may be referred to as a reference value for determining whether water is oxidized water or reduced water. If the ORP value is a positive value, it is an oxidized water. If the ORP value is a negative value, it is a reduced water. Conventionally, although not shown in the drawings, to produce electrolytic water, the cathode and anode chambers in which the electrolytic cell is divided into ion permeable diaphragms are charged, and the cathode and anode electrodes are charged and current is flowed between the two electrodes with pure water in the electrolyte chamber. When it is inserted, the diaphragm is interposed and electrolyzed, and the pH value of the water in the cathode chamber is increased to alkaline water and the pH value of water in the anode chamber is lowered to form acidic water. In this conventional device, the anode and the cathode are each made of one sheet. In this case, since the amount of current is different at the upper and lower ends of the electrolyzer due to the difference in the pressure generated at the upper and lower ends of the electrolyzer, the portion of the high water pressure flows less, and the portion of the low water pressure flows much current. In other words, the current in the electrolytic cell is inversely related to the water pressure. Therefore, the lower end of the electrolytic cell has a low electrolytic efficiency, and the upper end has a high electrolytic efficiency, but may be overelectrolyzed. In other words, even in the electrolyzed water generated due to the difference in electrolytic efficiency, constant pH and OPR cannot be expected. Thus, there is a problem that non-uniform cleaning occurs in the cleaning of the substrate.
한편 도 1에서는 종래의 전해조(1)(한국 특허등록 제0229584호)를 도시하고 있는 바, 그 구조도 상기에서 언급한 전해조와 동일하며, 다만 이온을 선택적으로 유동시켜 알카리수 또는 산성수를 효율적으로 생성하기 위한 구성으로 격벽(3)의 양면에 이온교환막(2)을 구성한 예를 제시하고 있다. 그러나 이러한 기술은 격벽(3)에 이온교환막(2)이 결합한 형태로 이온교환막 자체의 이온 이동저항과 이온교환막과 격벽 사이의 계면의 발생으로 인한 접촉저항(contact resistance, Rc) 등으로 전체 시스템의 저항이 증가하게 된다. 이러한 저항의 증가는 결국 전도효율을 저하시키는 문제가 있다. 1 shows a conventional electrolytic cell 1 (Korean Patent Registration No. 0229584), the structure of which is the same as the above-mentioned electrolytic cell, except that ions are selectively flowed to efficiently flow alkaline or acidic water. An example in which the ion exchange membrane 2 is formed on both surfaces of the partition wall 3 is shown as a configuration for producing. However, this technique is a type in which the ion exchange membrane 2 is bonded to the partition 3 and the contact resistance (Rc) due to the generation of the interface between the ion exchange membrane and the barrier and the contact resistance (Rc) due to the generation of the interface between the ion exchange membrane and the barrier rib. The resistance will increase. This increase in resistance eventually has a problem of lowering the conduction efficiency.
따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로, 수압에 상관없이 일정한 전류가 유도되도록 하여 일정한 pH, OPR을 가진 전해수에 의해 반도체 세정공정의 균일성을 확보할 수 있는 전해수를 생성할 수 있는 장치를 제공하고자 함이다.Accordingly, the present invention is to solve the above-described problems, it is possible to generate an electrolytic water that can ensure the uniformity of the semiconductor cleaning process by the electrolytic water having a constant pH, OPR so that a constant current is induced regardless of the water pressure To provide a device.
본 발명의 해결하고자 하는 과제에 의한 반도체 공정에 사용되는 전해수 생성장치는 전해조 하부에서부터 수직한 방향으로 서로 분리되는 형태로 직렬로 다단계 전극으로 형성된 복수개의 애노드 전극과, 상기 직렬로 다단계 전극으로 형성된 복수개의 애노드 전극과 각각 대응되는 위치에 전해조 하부에서부터 수직한 방향으로 서로 분리되는 형태로 직렬로 다단계 전극으로 형성된 복수개의 캐소드 전극과, 상기 복수개의 애노드 전극 중 끝단의 애노드 전극과, 상기 복수개의 캐소드 전극 중 다른 끝단의 캐소드 전극에 전압을 인가하는 외부전원을 포함하며 형성되며, 상기 외부전원과 연결되지 않은 애노드 전극과 캐소드 전극은 전선에 의해 서로 연결된 것을 특징으로 한다. 즉 전해조 하부에서부터 수직한 방향으로 복수의 캐소드 전극을 소정 간격을 두고 직렬로 형성하고, 이와 대향하도록 복수의 애노드 전극을 소정 간격을 두고 직렬로 형성하도록 하는 것이며, 이렇게 구성되는 다단계의 전극에 상기 복수개의 애노드 전극 중 끝단의 애노드 전극과, 상기 복수개의 캐소드 전극 중 다른 끝단의 캐소드 전극에 직류 전압을 가하도록 형성됨으로써 전해조 내의 높이차에 의한 수압의 영향을 받지 않고, 항상 일정한 전류가 흐르도록 하는 것에 의해 전해효율의 향상 및 일정한 pH, 산화환원전위(OPR)를 갖게되는데 그 특징이 있다. Electrolytic water generating device used in the semiconductor process according to the problem to be solved by the present invention is a plurality of anode electrodes formed in series with a multi-stage electrode in a form separated from each other in a vertical direction from the bottom of the electrolytic cell, a plurality of multi-step electrode formed in series A plurality of cathode electrodes formed as multi-stage electrodes in series so as to be separated from each other in a vertical direction from a lower part of an electrolytic cell at positions corresponding to the two anode electrodes, an anode electrode at an end of the plurality of anode electrodes, and the plurality of cathode electrodes It is formed and includes an external power source for applying a voltage to the cathode electrode of the other end, the anode electrode and the cathode electrode which is not connected to the external power source is characterized in that connected to each other by a wire. That is, a plurality of cathode electrodes are formed in series at a predetermined interval in a vertical direction from the lower part of the electrolytic cell, and a plurality of anode electrodes are formed in series at a predetermined interval so as to face the plurality of cathode electrodes. It is formed to apply a DC voltage to the anode electrode at one end of the two anode electrodes and the cathode electrode at the other end of the plurality of cathode electrodes, so that a constant current flows at all times without being affected by the water pressure due to the height difference in the electrolytic cell. As a result, the electrolytic efficiency is improved, and a constant pH and redox potential (OPR) are obtained.
상기 반도체공정이라함은 반도체 또는 LED공정에 있어 클리닝(cleaning)공정으로 증착(CVD),확산(Diffusion), 노광(Expose), 현상(Develop), 식각(Etch),연마(CMP)를 포함하는 공정이며, 스크러빙(scrubbing)공정에 있어서는 MEGASONIC, Brushing, Jet을 포함하는 공정을 말한다. 또한 상기 반도체공정은 FPD Cleaning, LCD Cleaning, Photo Mask Cleaning을 포함하는 공정을 말한다. The semiconductor process is a cleaning process in the semiconductor or LED process, including deposition (CVD), diffusion (Diffusion), exposure (Expose), development (Develop), etching (Etch), polishing (CMP) In the scrubbing process, the process includes MEGASONIC, Brushing, and Jet. In addition, the semiconductor process refers to a process including FPD Cleaning, LCD Cleaning, Photo Mask Cleaning.
또한, 상기 전해조는 그 하단에 유입라인이 구성되어 필터부와 연결되고, 그 상단에 유량조절밸브에 의해 배출라인이 연결됨으로써 전해조로부터 배출되는 전해수의 유량을 조절함으로써 전해조 내의 수압을 조절(높임)하여 전해수의 용존수소농도(DH), OPR을 높여 전해수의 세정력을 향상시킴에 특징이 있다. 이에 따라 전해조의 높은 수압에 의한 전해효율의 저하는 상기에서 언급한 전해조의 구조에 의해 상,하로 일정 전류가 흐르도록 함으로써 수압의 향상에 의한 높은 용존수소농도(DH), OPR을 수득하여도 일정 전류가 흐르도록 함으로써 전체 전해효율의 저하를 방지하도록 하는 것이다. In addition, the electrolyzer is configured with an inlet line at the bottom thereof is connected to the filter unit, the discharge line is connected to the top by the flow control valve to control the water pressure in the electrolyzer by adjusting the flow rate of the electrolyzed water discharged from the electrolyzer (higher) Therefore, the present invention is characterized by improving the dissolved hydrogen concentration (DH) and OPR of the electrolyzed water to improve the cleaning power of the electrolyzed water. Accordingly, the decrease in the electrolytic efficiency due to the high pressure of the electrolytic cell is constant even if a high dissolved hydrogen concentration (DH) and OPR are obtained by improving the water pressure by allowing a constant current to flow up and down by the structure of the above-mentioned electrolyzer. The current flows to prevent the reduction of the overall electrolytic efficiency.
이상 설명한 바와 같이 본 발명에 따른 반도체 공정에 사용되는 전해수 생성장치는 전해조의 수압을 향상시킴에 따라 용존수소농도, OPR값을 향상시켜 세정력을 향상시킴과 동시에 각각의 전극에 전류를 일정하게 흐르도록 함으로써 전해효율을 향상시킬 수 있는 장점이 있다.As described above, the electrolyzed water generating device used in the semiconductor process according to the present invention improves the dissolved hydrogen concentration and OPR value by improving the pressure of the electrolyzer, thereby improving the cleaning power and allowing a constant current to flow through each electrode. By doing so, there is an advantage to improve the electrolytic efficiency.
또한, 본 발명에 따른 반도체 공정에 사용되는 전해수 생성장치는 별도의 이온교환막을 구성하지 않음에 따라 계면저항감소 등에 의해 전력손실을 줄일 수 있는 장점이 있다. In addition, the electrolyzed water generating device used in the semiconductor process according to the present invention has an advantage of reducing power loss due to the reduction in interfacial resistance, since it does not constitute a separate ion exchange membrane.
도 1은 종래 기술에 따른 전해수 생성장치를 나타내는 개략도이고, 도 2는 본 발명에 따른 반도체 공정에 사용되는 전해수 생성장치의 일 구성인 전해조를 나타내는 개략도이며, 도 3은 본 발명의 사용상태도이고, 도 4a 및 도 4b는 본 발명의 일 구성인 전해조의 실시 예를 나타내는 개략도이다.1 is a schematic view showing an electrolytic water generating device according to the prior art, Figure 2 is a schematic view showing an electrolytic cell which is one configuration of the electrolytic water generating device used in the semiconductor process according to the present invention, Figure 3 is a state diagram of the use of the present invention, 4A and 4B are schematic views showing an embodiment of an electrolytic cell which is one configuration of the present invention.
본 발명의 반도체 공정에 사용되는 전해수 생성장치는 전해조 하부에서부터 수직한 방향으로 서로 분리되는 형태로 직렬로 다단계 전극으로 형성된 복수개의 애노드 전극과, 상기 직렬로 다단계 전극으로 형성된 복수개의 애노드 전극과 각각 대응되는 위치에 전해조 하부에서부터 수직한 방향으로 서로 분리되는 형태로 직렬로 다단계 전극으로 형성된 복수개의 캐소드 전극과, 상기 복수개의 애노드 전극 중 끝단의 애노드 전극과, 상기 복수개의 캐소드 전극 중 다른 끝단의 캐소드 전극에 전압을 인가하는 외부전원을 포함하며 형성되며, 상기 외부전원과 연결되지 않은 애노드 전극과 캐소드 전극은 전선에 의해 서로 연결된 것을 특징으로 한다. 즉 전해조 하부에서부터 수직한 방향으로 복수의 캐소드 전극을 소정 간격을 두고 직렬로 형성하고, 이와 대향하도록 복수의 애노드 전극을 소정 간격을 두고 직렬로 형성하도록 하는 것이며, 이렇게 구성되는 다단계의 전극에 상기 복수개의 애노드 전극 중 끝단의 애노드 전극과, 상기 복수개의 캐소드 전극 중 다른 끝단의 캐소드 전극에 직류 전압을 가하도록 형성됨으로써 전해조 내의 높이차에 의한 수압의 영향을 받지 않고, 항상 일정한 전류가 흐르도록 하는 것에 의해 전해효율의 향상 및 일정한 pH, 산화환원전위(OPR)를 갖게 되는 것이다.The electrolytic water generating apparatus used in the semiconductor process of the present invention corresponds to a plurality of anode electrodes formed of multi-stage electrodes in series, separated from each other in a vertical direction from the bottom of the electrolyzer, and a plurality of anode electrodes formed of multi-stage electrodes in series, respectively. A plurality of cathode electrodes formed of multi-stage electrodes in series so as to be separated from each other in a vertical direction from a lower part of the electrolytic cell, an anode electrode at one end of the plurality of anode electrodes, and a cathode electrode at another end of the plurality of cathode electrodes It is formed and includes an external power source for applying a voltage to, characterized in that the anode electrode and the cathode electrode which is not connected to the external power source is connected to each other by a wire. That is, a plurality of cathode electrodes are formed in series at a predetermined interval in a vertical direction from the lower part of the electrolytic cell, and a plurality of anode electrodes are formed in series at a predetermined interval so as to face the plurality of cathode electrodes. It is formed to apply a DC voltage to the anode electrode at one end of the two anode electrodes and the cathode electrode at the other end of the plurality of cathode electrodes, so that a constant current flows at all times without being affected by the water pressure due to the height difference in the electrolytic cell. As a result, the electrolytic efficiency is improved, and a constant pH and redox potential (OPR) are obtained.
이하 본 발명의 실시 예을 첨부되는 도면을 통해 보다 상세히 설명하도록 한다.Hereinafter will be described in more detail with reference to the accompanying drawings an embodiment of the present invention.
도 2는 본 발명에 따른 반도체 공정에 사용되는 전해수 생성장치의 일 구성인 전해조를 나타내는 개략도이며, 도 3은 본 발명의 사용상태도이고, 도 4a 및 도 4b는 본 발명의 일 구성인 전해조의 실시 예를 나타내는 개략도이다.Figure 2 is a schematic diagram showing an electrolytic cell which is one configuration of the electrolytic water generating apparatus used in the semiconductor process according to the present invention, Figure 3 is a state diagram of the present invention, Figures 4a and 4b is an implementation of the electrolytic cell of one configuration of the present invention A schematic diagram showing an example.
본 발명은 전해조에서 전기적으로 직렬연결이 된 다단계 전극을 사용함으로써 전해효율을 향상시켜 전해조에서 배출되는 전해수에 일정한 pH, OPR이 유지되도록 하는 것에 특징이 있다. 특히 본 발명은 전해조의 수압을 높임에 따라 높은 용존수소농도, OPR을 가진 전해수를 배출함으로써 세정력을 향상시키고, 전해조의 높은 수압에 의한 전도도 감소는 상기에서 언급한 전해조에서 전기적으로 직렬연결이 된 다단계 전극을 사용함으로써 전해효율을 향상시키도록 함에 특징이 있다. The present invention is characterized by maintaining a constant pH, OPR in the electrolyzed water discharged from the electrolytic cell by improving the electrolytic efficiency by using a multi-stage electrode electrically connected in series in the electrolytic cell. In particular, the present invention improves cleaning power by discharging electrolyzed water having a high dissolved hydrogen concentration and OPR as the water pressure of the electrolyzer is increased, and the conductivity reduction by the high water pressure of the electrolyzer is multi-stage electrically connected in the above-mentioned electrolyzer. The use of the electrode is characterized by improving the electrolytic efficiency.
본 발명의 반도체 공정에 사용되는 전해수 생성장치는 도 2에서 보는 바와 같은 전해조(110)를 포함한다. 상기 전해조(110)의 내부에 이온교환수지에 의한 격벽(160)으로 구획되는 알카리수생성챔버(120), 산성수생성챔버(130)와 각각의 알카리수생성챔버(120), 산성수생성챔버(130)를 상,하로 복수의 챔버(C1, C2 등, A1, A2 등)로 구획하는 복수의 구획벽(124)과 상기 챔버(C1, C2 등, A1, A2 등)에 각각 구성되는 캐소드극(140), 애노드극(150)으로 구성됨에 특징이 있다. 여기서 상기 전해조(110)에 있어 순수가 유동하는 알카리수생성챔버(120), 산성수생성챔버(130)의 경우는 그 챔버 간격을 좁게 하여 수압을 높이는 것이 타당하다. 이렇게 수압을 높게 하는 것이 전해수의 용존수소농도(DH), OPR 등을 높게 하여 세정력을 향상시킬 수 있게 되는 것이다. 바람직하게는 전해조(110)에 순수의 유입수압은 0.1 내지 0.5MPa이 타당하고, 전해조(110)에서 전해수 배출수압은 0.2MPa이하로 조절하는 것이 타당하다. 이렇게 수압을 높이는 전해조(110)를 구성하는 경우 높은 수압에 따라 전류의 전도도가 저하되는 문제가 있다. 이를 위해 본 발명에서는 도 2에서 보는 바와 같이 최하단의 캐소드극(140)과 최상단의 애노드극(150)에 전압을 인가하도록 하며, 애노드극(150)과 캐소드극(140) 간에는 챔버를 달리하며 전기적으로 연결이 되도록 함에 따라 각각의 챔버에서 전극은 직렬에 의한 전기적 연결이 되도록 한다. 이렇게 함으로써 전해조의 상,하 수압에 따라 전류가 다르게 형성되어 전해효율이 낮아지거나, 일정하지 않은 점을 개선하게 되는 것이다. The electrolytic water generating device used in the semiconductor process of the present invention includes an electrolytic cell 110 as shown in FIG. The alkali water generating chamber 120, the acidic water generating chamber 130, the respective alkaline water generating chambers 120, and the acidic water generating chamber 130 are partitioned into the partition wall 160 by the ion exchange resin inside the electrolytic cell 110. ) And a cathode electrode configured in a plurality of partition walls 124 for partitioning up and down into a plurality of chambers (C1, C2, etc., A1, A2, etc.) and the chambers (C1, C2, etc., A1, A2, etc.) 140), the anode pole 150 is characterized by. Here, in the case of the alkaline water generating chamber 120 and the acidic water generating chamber 130 in which pure water flows in the electrolytic cell 110, it is appropriate to increase the water pressure by narrowing the chamber interval. Increasing the water pressure in this way increases the dissolved hydrogen concentration (DH), OPR, and the like of the electrolyzed water, thereby improving the washing power. Preferably, the inlet water pressure of the pure water in the electrolyzer 110 is appropriately 0.1 to 0.5 MPa, and the electrolyzed water discharge water pressure in the electrolyzer 110 is appropriately adjusted to 0.2 MPa or less. When configuring the electrolytic cell 110 to increase the water pressure there is a problem that the conductivity of the current is lowered according to the high water pressure. To this end, in the present invention, as shown in FIG. 2, a voltage is applied to the lowermost cathode electrode 140 and the uppermost anode electrode 150, and the chamber is different between the anode electrode 150 and the cathode electrode 140. As it is connected to each other, the electrodes in each chamber are to be electrically connected in series. By doing so, the current is formed differently according to the up and down water pressure of the electrolytic cell, so that the electrolytic efficiency is lowered or the non-uniformity is improved.
상기 캐소드극(140), 애노드극(150)은 백금 또는 이리듐 등의 백금족 금속, 티타늄이나 스테인리스 재질에 백금이나 이리듐의 백금족 금속 혹은 그 혼합물이 도금되도록 구성된다. 이러한 캐소드전극(140) 및 애노드전극(150)의 전극재료로는 전해에 의해 양 전극 사이에서 전자이동이 활발하게 행해지고 산화가 쉽게 이루어지도록 하기 위하여 티탄 등의 산화되기 어려운 소재를 선택하고 그 표면에 백금이나 이리듐 등을 도금하는 것이 바람직하다. 또한, 전원의 극성을 전환하는 경우가 있기 때문에, 상기 양극 모두에 동일한 도금을 실시하는 것이 바람직하다.The cathode electrode 140 and the anode electrode 150 are configured such that a platinum group metal such as platinum or iridium, a platinum group metal of platinum or iridium, or a mixture thereof is plated on a titanium or stainless steel material. As the electrode material of the cathode electrode 140 and the anode electrode 150, a material that is difficult to be oxidized such as titanium is selected in order to facilitate electron transfer and easily oxidize between both electrodes by electrolysis. It is preferable to plate platinum, iridium, or the like. Moreover, since the polarity of a power supply may be changed, it is preferable to apply the same plating to all the said positive electrodes.
본 발명에서는 도 2에서 보는 바와 같이 알카리수생성챔버(120), 산성수생성챔버(130)를 각각 4개의 챔버(C1, C2, C3, C4, A1, A2, A3, A4)로 구획하며, 각각의 챔버에 캐소드극(140), 애노드극(150)이 각각 4개씩 구성되는 예가 제시된다. 물론 이러한 챔버 및 전극의 수는 선택적으로 구성할 수 있음은 당연하다. In the present invention, as shown in Figure 2, the alkaline water generating chamber 120 and the acidic water generating chamber 130 are respectively divided into four chambers (C1, C2, C3, C4, A1, A2, A3, A4), respectively. An example in which four cathode electrodes 140 and four anode electrodes 150 are provided in a chamber of the present invention is shown. Of course, the number of such chambers and electrodes can be configured selectively.
즉 도 2에서 도시되는 실시 예는 각각의 캐소드극(140), 애노드극(150)을 각각의 챔버에 배치하고, 최하단의 챔버(A1)의 애노드 전극(150)과 그 상단의 챔버(C2)의 캐소드 전극(140)을 전기적으로 연결하는 구조로 하단 챔버의 애노드전극(150)과 상단 챔버의 캐소드전극(140)을 전기적으로 연결하고, 최하단 챔버(C1)와 최상단 챔버(A4)에는 최종적으로 직류 전압을 가한다. 상기와 같이 다단계의 전극을 형성할 경우, 전극 면적이 증대되는 효과를 얻을 수 있다. 상기와 같이 전극의 면적이 증대되면 격벽(160) 내에 물의 해리 반응이 제어되는 효과를 얻을 수 있고 전해효율이 높아지는 특징이 있다. 특히 최하단 챔버(C1, A1)의 경우 수압이 높지만 전류가 일정하게 되고, 최상단 챔버(C4, A4)의 경우 수압은 낮지만 전류가 일정하게 되어 전체적으로 전해효율이 높아지고, 일정성을 띠게 되는 것이다. 즉 수압에 따른 저항차에 의해 각각의 전극에는 전위차가 발생하게 되는 바, 예를 들어 전해조(110) 최하단 챔버(C1, A1)에 위치한 전극부분에 100V의 전압이 형성되면, 그 윗단에는 약 20%정도 감소한 80V의 전압이 생성되고, 또 그 윗단에도 20%정도 감소한 60V의 전압이 발생하게 되는 방식으로 전위차가 발생하며, 이로 인하여, 각각의 전극에는 항상 일정한 전류 흐름이 발생하게 된다. 결국 전해조(110) 내의 높이차에 의한 수압의 영향을 받지 않고, 항상 일정한 전류가 흐르도록 하는 것이며, 이에 의해 전해효율의 향상 및 전해수의 pH, OPR의 일정성을 유지하도록 하여 반도체 공정에 있어 용도에 맞는 전해수의 수득이 용이하게 되는 것이다. That is, in the embodiment shown in FIG. 2, the cathode electrode 140 and the anode electrode 150 are disposed in the respective chambers, and the anode electrode 150 of the lowermost chamber A1 and the chamber C2 thereon are disposed. The cathode electrode 140 of the structure is electrically connected to the anode electrode 150 of the lower chamber and the cathode electrode 140 of the upper chamber electrically connected, and the lowermost chamber (C1) and the uppermost chamber (A4) finally Apply a DC voltage. When forming the electrode of the multi-step as described above, it is possible to obtain the effect of increasing the electrode area. As described above, when the area of the electrode is increased, an effect of controlling the dissociation reaction of water in the partition wall 160 may be obtained and the electrolytic efficiency may be increased. In particular, the lower chambers C1 and A1 have high water pressure but the current is constant, and the upper chambers C4 and A4 have low water pressure, but the current is constant so that the overall electrolytic efficiency is high and constant. That is, a potential difference occurs in each electrode due to a resistance difference due to water pressure. For example, when a voltage of 100 V is formed in an electrode part located in the lowermost chambers C1 and A1 of the electrolytic cell 110, the upper end is about 20 The voltage difference is generated in such a way that a voltage of 80V, which is reduced by%, and a voltage of 60V, which is reduced by 20%, is generated at the upper end thereof, so that a constant current flow is always generated in each electrode. As a result, a constant current flows at all times without being affected by the pressure difference due to the height difference in the electrolytic cell 110, thereby improving the electrolytic efficiency and maintaining the pH of the electrolyzed water and the constant of OPR. It is easy to obtain the electrolyzed water.
상기 격벽(160)은 이온교환수지로 구성되며, 상기 알카리수생성챔버(120), 산성수생성챔버(130)에서 생성되는 알카리수 및 산성수의 혼합을 방지하며, 전류의 효율을 증가시키는 구성으로 그 재질은 공지의 재질로 그 설명은 생략한다.The partition wall 160 is formed of an ion exchange resin, and prevents the mixing of the alkali water and the acid water generated in the alkaline water generating chamber 120, the acidic water generating chamber 130, and increases the efficiency of the current The material is a well-known material, and the description is abbreviate | omitted.
본 발명에서는 상기 격벽(160)의 양면 즉 상기 알카리수생성챔버(120), 산성수생성챔버(130)에 각각 노출되는 면에 이온교환막(170)이 구성된다. 상기 이온교환막(170)은 음이온교환막(171) 또는 양이온교환막(172)을 선택적으로 구성할 수 있다. In the present invention, the ion exchange membrane 170 is formed on both surfaces of the partition wall 160, that is, the surfaces exposed to the alkali water generating chamber 120 and the acidic water generating chamber 130, respectively. The ion exchange membrane 170 may selectively constitute an anion exchange membrane 171 or a cation exchange membrane 172.
특히 본 발명에서는 도 4a 및 도 4b에서 보는 바와 같이 상기 격벽(160)의 양면 즉 상기 알카리수생성챔버(120), 산성수생성챔버(130)에 각각 노출되는 면에 음이온교환기를 갖는 음이온코팅층(181) 또는 양이온 교환기를 갖는 양이온코팅층(182)으로 구성되는 이온교환부(180)가 구성될 수 있다. In particular, in the present invention, as shown in FIGS. 4A and 4B, the anion coating layer 181 having an anion exchange group on both surfaces of the partition wall 160, that is, the surface exposed to the alkali water generating chamber 120 and the acidic water generating chamber 130, respectively. Or an ion exchange unit 180 composed of a cation coating layer 182 having a cation exchange group.
여기서 음이온코팅층(181)은 음이온교환기를 갖는 것에 특징이 있으며, 양이온코팅층(182)은 양이온교환기를 갖는 것에 특징이 있다. 상기 음이온코팅층(181) 및 양이온코팅층(182)은 각각 음이온교환기 및 양이온교환기를 갖는 수지를 유기용매에 용해하여 이러한 용액을 상기 격벽(160)의 양면에 도포함으로써 형성된다. 상기 음이온교환기는 1급 아민기, 2급 아민기, 3급 아민기, 4급 암모늄기, 폴리에틸렌이민기 또는 포스포늄기 등이 될 수 있으며, 상기 양이온교환기는 술폰산기, 인산기 또는 카르복실산기 등이 될 수 있다. 이렇게 격벽(160)의 양면에 이온교환부(180)가 구성됨으로써 선택된 이온만을 상기 알카리수생성챔버(120), 산성수생성챔버(130)로 유도하며, 별도의 이온교환막의 구성에 따른 이온교환막 자체의 이온 이동저항과 이온교환막과 격벽 사이의 계면의 발생으로 인한 접촉저항(contact resistance, Rc) 등으로 전체 시스템의 저항이 증가에 따른 전도효율 저하를 방지할 수 있게 되는 것이다. Here, the anion coating layer 181 is characterized by having an anion exchange group, the cation coating layer 182 is characterized by having a cation exchange group. The anion coating layer 181 and the cation coating layer 182 is formed by dissolving a resin having an anion exchange group and a cation exchange group, respectively, in an organic solvent and applying this solution to both sides of the partition wall 160. The anion exchange group may be a primary amine group, a secondary amine group, a tertiary amine group, a quaternary ammonium group, a polyethyleneimine group or a phosphonium group, and the cation exchange group may be a sulfonic acid group, a phosphoric acid group or a carboxylic acid group. Can be. Thus, the ion exchange unit 180 is formed on both sides of the partition wall 160 to induce only the selected ions to the alkaline water generating chamber 120 and the acidic water generating chamber 130, and the ion exchange membrane itself according to the configuration of a separate ion exchange membrane. It is possible to prevent a decrease in conduction efficiency due to an increase in the resistance of the entire system due to the ion transfer resistance and the contact resistance (Rc) due to the generation of the interface between the ion exchange membrane and the partition wall.
한편 본 발명에서는 음이온코팅층(181)과 양이온코팅층(182)의 실시 예를 제시하고 있는 바, 음이온코팅층(181)과 양이온코팅층(182)은 각각 유기용매, 고분자바인더 및 상기 유기용매에 난용성의 이온선택성 수지분말로 구성되는 예를 제시한다. 여기서 이온선택성 수지분말은 유기용매에 난용성으로 구성되어 고분자바인더와 유기용매의 혼합물에 의해 음이온코팅층(181)과 양이온코팅층(182)에서 도면에 도시된 바는 없으나 입자형태로 노출되도록 존재하게 되는 것이다. 즉 이온선택성 수지분말이 입자형태로 존재함에 따라 이온과 반응면적을 크게 할 수 있으므로 이온과 반응효율을 증대시킬 수 있게 되는 것이다. Meanwhile, in the present invention, an embodiment of the anion coating layer 181 and the cation coating layer 182 is presented, and the anion coating layer 181 and the cation coating layer 182 are poorly soluble in the organic solvent, the polymer binder and the organic solvent, respectively. The example which consists of ion selective resin powder is shown. Here, the ion-selective resin powder is poorly soluble in the organic solvent and is present in the anion coating layer 181 and the cation coating layer 182 by the mixture of the polymer binder and the organic solvent, but is not exposed in the form of particles. will be. That is, since the ion-selective resin powder is present in the form of particles, the reaction area with the ions can be increased, thereby increasing the reaction efficiency with the ions.
특히 상기 이온선택성 수지분말은 상기 유기용매에 난용성인 것을 특징으로 하는 바, 상기 이온선택성 수지분말은 가교된 것을 사용함으로써 유기용매에 난용성으로 작용토록 하는 것이다. 여기서 난용성이라는 것은 6wt%이하의 용해도인 것으로 정의한다. In particular, the ion-selective resin powder is characterized in that it is poorly soluble in the organic solvent, the ion-selective resin powder is to be poorly soluble in the organic solvent by using a crosslinked. Here, poor solubility is defined as solubility of 6 wt% or less.
상기 이온선택성 수지분말로는 양이온교환기를 가지는 고분자 수지분말 또는 음이온 교환기를 가지는 고분자수지분말이 사용됨이 타당하다. 상기 양이온교환기 및 상기 음이온교환기는 기 설명한 바와 같다. As the ion-selective resin powder, it is appropriate to use a polymer resin powder having a cation exchange group or a polymer resin powder having an anion exchange group. The cation exchange group and the anion exchange group are as described above.
상기 이온선택성 수지분말에 있어 고분자 수지는 그 종류를 한정하지 않으나, 가교되어 유기용매에 녹지 않는 것으로 폴리(스티렌-다이비닐벤젠), 폴리스티렌, 폴리이서술폰, 폴리아미드, 폴리에스테르, 폴리이미드, 폴리에테르, 폴리에틸렌 및 폴리테트라플루오로에틸렌에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. In the ion-selective resin powder, the polymer resin is not limited, but is cross-linked and insoluble in an organic solvent, such as poly (styrene-divinylbenzene), polystyrene, polyisulfone, polyamide, polyester, polyimide, poly Any one or a mixture of two or more selected from ether, polyethylene and polytetrafluoroethylene can be used.
또한, 상기 고분자 바인더는 비이온성 고분자, 양이온교환기를 가지는 고분자 및 음이온교환기를 가지는 고분자 중에서 하나 또는 둘 이상을 사용할 수 있다. 비이온성 고분자로서 그 종류를 한정하지 않으나, 폴리이서설폰, 폴리설폰, 폴리비닐리덴디플로라이드, 폴리아크릴로니트릴 및 모듈룰로오스아세테이트로 구성된 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있다. In addition, the polymer binder may use one or two or more of a nonionic polymer, a polymer having a cation exchange group, and a polymer having an anion exchange group. As the nonionic polymer, although not limited thereto, one or two or more mixtures selected from the group consisting of polyisulfone, polysulfone, polyvinylidenedifluoride, polyacrylonitrile, and cellulose acetate may be used. .
또한, 상기 유기용매는 상기 고분자 바인더의 종류에 의해 결정되며 선택된 고분자 바인더가 용해되는 유기용매는 모두 가능하나, 상술한 고분자 바인더의 유기용매로는 디메틸아세트아마이드, 디메틸포름아마이드, 디메틸카보네이트 및 디에틸카보네이트로 구성된 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용됨이 타당하다. In addition, the organic solvent is determined by the type of the polymer binder, and all the organic solvents in which the selected polymer binder is dissolved are possible. It is reasonable to use one or more mixtures selected from the group consisting of carbonates.
상기와 같은 구성의 음이온코팅층(181)과 양이온코팅층(182)은 이온선택성 수지 분말 100 중량부에 대하여 고분자 바인더 20 내지 200중량부, 유기용매 50 내지 600중량부로 배합됨이 타당하다. It is reasonable that the anion coating layer 181 and the cation coating layer 182 having the above-described configuration are blended with 20 to 200 parts by weight of the polymeric binder and 50 to 600 parts by weight of the organic solvent based on 100 parts by weight of the ion-selective resin powder.
한편 도 3은 본원발명의 전해수 생성장치(100)의 사용상태를 나타내는 개략도이다. 본 발명의 전해수 생성장치(100)는 상기 전해조(110)와, 상기 전해조(110) 전단에 필터부(10)와 유입라인(20)에 의해 연결되고, 전해조(110)로부터 배출되는 배출수에는 유량조절밸브(61)가 구성된 배출라인(60)구성되며, 상기 배출라인(60)에는 저장라인(30) 및 배출라인(40)이 삼방밸브(50)에 의해 연결됨에 특징이 있다. 3 is a schematic view showing a state of use of the electrolytic water generating device 100 of the present invention. Electrolytic water generating device 100 of the present invention is connected to the electrolytic cell 110, the front end of the electrolytic cell 110 by the filter unit 10 and the inlet line 20, the discharge water discharged from the electrolytic cell 110 flow rate The discharge valve 60 is configured with a control valve 61 is configured, the discharge line 60 is characterized in that the storage line 30 and the discharge line 40 is connected by a three-way valve (50).
우선 상기 필터부(10)에는 유입수가 유입되어 상기 유입라인(20)으로 순수가 배출되어 상기 전해조(110)로 순수가 유입된다. 상기 유입라인(20)은 상기 전해조(110)의 하단부에 형성되는 순수유입구(121, 131) 및 전해질용액 유입구(161)와 연통하여 필터부(10)를 통한 순수가 상기 전해조(110)로 유입되도록 하는 것이다. 여기서 상기 유입라인(20) 중 상기 전해질용액 유입구(161)와 연결되는 라인에는 도 3에서 보는 바와 같이 전해질 용액 저장조(60)와 개폐밸브(61)를 통해 연결된다. 즉 유입라인(20)으로 유동하는 순수에 상기 전해질 용액 저장조(60)로부터 전해질 용액이 혼합되어 상기 전해질 용액 유입구(161)를 통해 전해질 용액이 격벽(160)으로 유입되도록 하는 것이다. 이렇게 유입된 순수는 상기 전해조(110)에서 알카리수생성챔버(120)에서는 알카리수가 생성되도록 하며, 산성수생성챔버(130)에서는 산성수가 생성되도록 하는 바, 상기 전해조(110)의 상단에 구성되는 알카리수 배출구(122), 전해질 용액 배출구(162), 산성수 배출구(132)를 통해 전해수가 배출되며, 알카리수 배출구(122), 전해질 용액 배출구(162), 산성수 배출구(132)는 배출라인(60)에 연결된다. 특히 본 발명에서는 상기 배출라인(60)에 유량조절밸브(61)를 구성하여 전해조(10)의 수압을 조절하도록 함이 타당하다. 상기 유량조절밸브(61)를 조작함에 따라 알카리수생성챔버(120) 및 산성수생성챔버(130)에서 수압을 조절하도록 함으로써 배출되는 알카리수 또는 산성수에 적정의 용존산소, 용존수소, OPR이 수득될 수 있도록 하는 것이다. First, inflow water is introduced into the filter unit 10, and pure water is discharged into the inflow line 20, and pure water flows into the electrolytic cell 110. The inlet line 20 communicates with the pure water inlets 121 and 131 formed at the lower end of the electrolytic cell 110 and the electrolyte solution inlet 161 so that pure water through the filter unit 10 flows into the electrolytic cell 110. To make it possible. Here, the line connected to the electrolyte solution inlet 161 of the inlet line 20 is connected through the electrolyte solution reservoir 60 and the opening / closing valve 61 as shown in FIG. 3. That is, the electrolyte solution is mixed from the electrolyte solution reservoir 60 to the pure water flowing into the inlet line 20 so that the electrolyte solution flows into the partition wall 160 through the electrolyte solution inlet 161. The pure water introduced in this way allows the alkali water generation chamber 120 to generate alkali water in the electrolytic cell 110 and the acid water generation in the acid water generation chamber 130, and the alkali water formed at the top of the electrolytic cell 110. The electrolytic water is discharged through the outlet 122, the electrolyte solution outlet 162, and the acidic water outlet 132, and the alkaline water outlet 122, the electrolyte solution outlet 162, and the acidic water outlet 132 are discharge lines 60. Is connected to. In particular, in the present invention, it is appropriate to configure the flow rate control valve 61 in the discharge line 60 to control the water pressure of the electrolytic cell 10. By operating the flow control valve 61 to adjust the water pressure in the alkaline water generating chamber 120 and the acidic water generating chamber 130, an appropriate dissolved oxygen, dissolved hydrogen, OPR can be obtained to the discharged alkaline or acidic water. To make it possible.
상기 배출라인(60)에는 저장라인(30) 및 토출라인(40)이 삼방밸브(50)에 의해 연결된다. 즉 용도에 따라 알카리수 또는 산성수를 삼방밸브(50)의 제어를 통해 저장라인(30) 또는 토출라인(40)으로 유동하게 할 수 있다. 일 예로 알카리수를 저장조(31)에 저장하면서 반도체 공정에 사용하는 경우에는 알카리수 배출구(122)와 연통하는 저장라인(30)의 삼방밸브(50-1)를 on시켜 알카리수만을 저장조(31)로 유동토록 하며, 나머지 삼방밸브(50-2, 3)는 off시켜 산성수 및 찌꺼기,노폐물 등이 혼합된 전해질 용액 배출구(162)로부터의 처리수는 토출라인(40)으로 유동토록 하여 도면에 도시된 바는 없으나 필터부(10)로 순환시키거나 폐기시킬 수 있다. The discharge line 60 is connected to the storage line 30 and the discharge line 40 by a three-way valve (50). That is, the alkaline or acidic water may be flowed to the storage line 30 or the discharge line 40 through the control of the three-way valve 50 according to the use. For example, when the alkaline water is stored in the storage tank 31 and used in the semiconductor process, only the alkaline water flows into the storage tank 31 by turning on the three-way valve 50-1 of the storage line 30 communicating with the alkaline water outlet 122. The remaining three-way valves 50-2 and 3 are turned off so that the treated water from the electrolyte solution outlet 162 mixed with the acid water, the dregs, the wastes, etc. is allowed to flow to the discharge line 40, as shown in the drawing. There is no bar but can be circulated to the filter unit 10 or discarded.
이와 같이 상기 저장조(31)에 선택적으로 저장되는 알카리수 또는 산성수는 반도체 공정 특히 반도체 장치의 제조나 액정 제조 등에 이용된다. 반도체 장치의 제조에 있어서는 상기 필터부(10)를 통해 순수를 유도하며, 이러한 순수를 상기 전해조(110)를 통해 전기 분해해서 얻은 전해수를 사용하여 실리콘 등의 반도체 기판을 세정하거나 반도체 기판 표면의 피막을 폴리싱 하게 되는 것이다. 순수는 이온, 미립자, 미생물, 유기물 등의 불순물을 대부분 제거한 저항율이 5 내지 18 정도인 고순도의 물이다. 이들 물을 전기 분해함으로써 산화성이 강한 산성수나 환원성이 강한 알카리수가 생성되는 것이다. 예를 들어 반도체 장치의 제조에 이용되는 폴리싱 장치를 사용하는 경우, 알칼리수를 이용하여 폴리싱을 행하기 위해서는 알카리수생성챔버(120)와 연동하는 저장라인(30)만을 오픈시켜 알칼리수를 폴리싱 장치의 연마포에 공급하는 것이다. 이 경우, 산성수생성챔버(130)에서 생성되는 산성수는 불필요하므로 상기 배출라인(40)을 통해 폐기된다. 또, 산성수를 이용하여 폴리싱을 행하려면 산성수생성챔버(130)와 연동하는 저장라인(30)만을 오픈시켜 산성수를 연마 패드에 공급한다. 이 경우 격벽(160)에 공급되는 전해질용액은 HCl, HNO3 , NH4Cl, NH4F, NH4OH 등의 전해질 용액을 전해함으로써 임의의 pH의 전해수가 생성되도록 하는 것이다. In this way, the alkali or acidic water selectively stored in the storage tank 31 is used in the semiconductor process, especially in the manufacture of semiconductor devices or in the manufacture of liquid crystals. In the manufacture of a semiconductor device, pure water is guided through the filter unit 10, and electrolytic water obtained by electrolyzing such pure water through the electrolytic cell 110 is used to clean a semiconductor substrate such as silicon or to coat the surface of the semiconductor substrate. Will be polished. Pure water is water of high purity having a resistivity of about 5 to 18, in which most impurities such as ions, fine particles, microorganisms, and organic substances are removed. By electrolyzing these waters, acidic water having strong oxidative properties and alkaline water having strong reducing properties are produced. For example, in the case of using a polishing apparatus used for manufacturing a semiconductor device, in order to perform polishing using alkaline water, only the storage line 30 which interworks with the alkaline water generating chamber 120 is opened, and the alkaline water is polished to the polishing apparatus of the polishing apparatus. To supply. In this case, the acidic water generated in the acidic water generating chamber 130 is unnecessary and disposed of through the discharge line 40. In addition, in order to polish using acidic water, only the storage line 30 interlocked with the acidic water generating chamber 130 is opened to supply acidic water to the polishing pad. In this case, the electrolyte solution supplied to the partition wall 160 is to electrolyze an electrolyte solution such as HCl, HNO 3 , NH 4 Cl, NH 4 F, NH 4 OH, and the like to generate electrolytic water having an arbitrary pH.
한편 본 발명은 도 4a 및 도 4b에서 보는 바와 같이 이온교환부(180)를 선택적으로 구성함으로써 강산성수 또는 강알카리수를 배출하도록 하는 실시 예가 제공된다. Meanwhile, the present invention provides an embodiment for discharging strong acidic water or strong alkaline water by selectively configuring the ion exchange unit 180 as shown in FIGS. 4A and 4B.
우선 도 4a에 도시된 예는 강산성수를 배출하는 예로서 격벽(160)의 양면에 음이온코팅층(181)을 도포하고, 격벽(160)과 연통하는 전해질 용액 유입구(161)에는 전해질 용액을 유입시키며, 상기 알카리수생성챔버(120), 산성수생성챔버(130)의 순수유입구(121, 131)에는 순수를 유입시키도록 한다. 여기서 전해질 용액은 일 예로 순수에 NH4OH가 용존된 용액을 사용한 예가 제시된다. 상기 격벽(160)에 유입된 전해수 중에서 수산화이온(OH-)은 전기적인 힘에 의해 산성수생성챔버(130)로 유동하고, 알카리수생성챔버(120)의 수산화이온(OH-)도 산성수생성챔버(130)로 이동한다. 또한 도시된 바와 같이 물(H2O)도 전기분해 되어 수산화이온(OH-)은 산성수생성챔버(130)로 이동한다. 따라서 산성수생성챔버(130)에는 수산화이온(OH-)이 많아지게 되어 강산성수를 생성한다. 이때 격벽(160)은 음이온인 수산화이온(OH-)이 산성수생성챔버(130)로 용이하게 유동하도록 하는 기능을 하는 것이다. First, the example shown in FIG. 4A is an example of discharging strong acidic water, applying an anion coating layer 181 on both sides of the partition wall 160, and introducing an electrolyte solution into the electrolyte solution inlet 161 communicating with the partition wall 160. Pure water is introduced into the pure water inlets 121 and 131 of the alkaline water generating chamber 120 and the acidic water generating chamber 130. Here, the electrolyte solution is shown as an example using a solution in which NH 4 OH dissolved in pure water. Among the electrolyzed water introduced into the partition wall 160, hydroxide ions OH flow into the acidic water generation chamber 130 by electric force, and the hydroxide ions OH − in the alkali water generation chamber 120 also generate acidic water. Move to chamber 130. In addition, water (H 2 O), as illustrated is Figure electrolysis hydroxide ions (OH -) shifts to the acidic water generating chamber 130. Therefore, the acid number generation chamber 130 hydroxyl ion (OH -) is be a lot to generate a gangsanseongsu. The partition wall 160 is an anion of hydroxide ion (OH -) to the function of this so as to easily flow to the acid to create the chamber 130.
한편 도 4b에서는 격벽(160)의 양면에 양이온코팅층(182)을 도포하고, 격벽(160)과 연통하는 전해질 용액 유입구(161)에는 전해질 용액을 유입시키고, 상기 알카리수생성챔버(120), 산성수생성챔버(130)의 순수유입구(121, 131)에는 순수를 유입시키도록 한다. 상기 격벽(160)에 유입된 전해질 용액 중에서 암모늄이온(NH4+)은 전기적인 힘에 의해 알카리수생성챔버(120)로 유동하고, 산성수생성챔버(130)의 암모늄이온(NH4+)도 알카리수생성챔버(130)로 이동한다. 또한 도시된 바와 같이 물(H2O)도 전기분해 되어 수소이온(H+)은 알카리수생성챔버(120)로 이동한다. 따라서 알카리수생성챔버(120)에는 수소이온(H+)이 많아지게 되어 강알카리수가 생성된다. 이때 격벽(160)은 양이온인 수소이온(H+)이 알카리수생성챔버(120)로 용이하게 유동하도록 하는 기능을 하는 것이다. Meanwhile, in FIG. 4B, a cation coating layer 182 is applied to both surfaces of the partition wall 160, an electrolyte solution is introduced into the electrolyte solution inlet 161 communicating with the partition wall 160, and the alkaline water generating chamber 120 and acidic water are provided. Pure water is introduced into the pure water inlets 121 and 131 of the production chamber 130. Ammonium ions (NH 4 +) in the electrolyte solution introduced into the partition wall 160 flows to the alkaline water generating chamber 120 by electric force, and the ammonium ions (NH 4 +) of the acidic water generating chamber 130 are also alkali water generating chambers ( Go to 130). In addition, as shown, water (H 2 O) is also electrolyzed to move the hydrogen ions (H +) to the alkaline water generating chamber (120). Therefore, in the alkali water generating chamber 120, hydrogen ions (H +) are increased to generate strong alkaline water. In this case, the partition wall 160 serves to easily flow hydrogen ions (H +), which are cations, into the alkaline water generating chamber 120.
상기와 같은 구성 및 작용에 의한 본 발명은 반도체 공정 즉 반도체 기판 등을 세정하는 공정에서 소요되는 전해수를 생성하게 되는 것이다. 일 예로 반도체 기판을 세정하기 위한 롤 형상 브러시와 상기 전해조(110)가 상기 저장라인(30)에 의해 연결됨으로써 전해수 즉 산성수, 알카리수가 브러시에 공급하도록 하는 것이다.The present invention by the configuration and operation as described above is to generate the electrolytic water required in the semiconductor process, that is, the process for cleaning the semiconductor substrate. For example, a roll-shaped brush for cleaning a semiconductor substrate and the electrolytic cell 110 are connected by the storage line 30 to supply electrolytic water, that is, acidic water and alkaline water to the brush.
이하 실험예에 근거하여 본 발명을 설명한다.The present invention will be described based on the following experimental examples.
- 실험 예 1Experimental Example 1
실험 예 1은 전해조의 입력압력을 0.2MPa, 출력압력을 0.05MPa로 조정하고, 각각 격벽(160)과 연통하는 전해질 용액 유입구(161)로 순수, 순수에 NH4OH 50ppm, 100ppm을 희석시켰을 경우에 있어 OPR, 용존수소농도를 측정한 것이며, 그 결과는 아래 표 1에서 제시되고 있다. In Experimental Example 1, when the input pressure of the electrolyzer was adjusted to 0.2 MPa and the output pressure to 0.05 MPa, and when NH 4 OH 50 ppm and 100 ppm were diluted in pure water and pure water by the electrolyte solution inlet 161 communicating with the partition wall 160, respectively. OPR and dissolved hydrogen concentration were measured, and the results are shown in Table 1 below.
표 1
전류 전해조입력압력 전해조출력압력 pH ORP 용존수소
초순수 10[A] 0.2 Mpa 0.05 Mpa 7.5 -500 mV 700 ppb
초순수 + NH4OH(50ppm) 10[A] 0.2 Mpa 0.05 Mpa 9.5 -650 mV 850 ppb
초순수 + NH4OH(100ppm) 10[A] 0.2 Mpa 0.05 Mpa 10.5 -780 mV 1500 ppb
Table 1
electric current Electrolyzer Input Pressure Electrolyzer Output Pressure pH ORP Dissolved hydrogen
Ultrapure water 10 [A] 0.2 Mpa 0.05 Mpa 7.5 -500 mV 700 ppb
Ultrapure Water + NH 4 OH (50 ppm) 10 [A] 0.2 Mpa 0.05 Mpa 9.5 -650 mV 850 ppb
Ultrapure Water + NH 4 OH (100 ppm) 10 [A] 0.2 Mpa 0.05 Mpa 10.5 -780 mV 1500 ppb
상기 표 1에서 보는 바와 같이 격벽(160)과 연통하는 전해질 용액 유입구(161)로 순수에 NH4OH를 희석한 전해질 용액을 유입시키는 경우가 OPR, 용존수소농도가 높은 전해수(기능수)가 생성되는 것을 알 수 있다. 또한, 순수에 NH4OH 50ppm를 희석시킨 경우보다 100ppm을 희석시킨 경우가 OPR, 용존수소농도가 높은 전해수(기능수)가 생성되는 것을 알 수 있다.As shown in Table 1, when the electrolyte solution in which the NH 4 OH is diluted into the pure water is introduced into the electrolyte solution inlet 161 communicating with the partition wall 160, the electrolytic water (functional water) having high dissolved hydrogen concentration is generated. It can be seen that. Also, it can be seen that OPR and electrolytic water (functional water) having a high dissolved hydrogen concentration are produced when 100 ppm is diluted than when 50 ppm of NH 4 OH is diluted with pure water.
-. 실험 예 2-. Experimental Example 2
실험 예 2는 전해조의 입력압력을 0.1MPa, 출력압력을 0.05MPa로 조정하고, 각각 격벽(160)과 연통하는 전해질 용액 유입구(161)로 순수, 순수에 NH4OH 50ppm, 100ppm을 희석시켰을 경우에 있어 OPR, 용존수소농도를 측정한 것이며, 그 결과는 아래 표 2에서 제시되고 있다. Experimental Example 2 adjusted the input pressure of the electrolyzer to 0.1 MPa and the output pressure to 0.05 MPa, and diluted NH 4 OH 50 ppm and 100 ppm in pure water and pure water with the electrolyte solution inlet 161 communicating with the partition wall 160, respectively. OPR and dissolved hydrogen concentration were measured and the results are shown in Table 2 below.
표 2
전류 전해조입력압력 전해조출력압력 pH ORP 용존수소
초순수 10[A] 0.1 Mpa 0.05 Mpa 7.5 -350 mV 400 ppb
초순수 + NH4OH(50 ppm) 10[A] 0.1 Mpa 0.05 Mpa 9.5 -550 mV 600 ppb
초순수 + NH4OH(100 ppm) 10[A] 0.1 Mpa 0.05 Mpa 10.5 -670 mV 1100 ppb
TABLE 2
electric current Electrolyzer Input Pressure Electrolyzer Output Pressure pH ORP Dissolved hydrogen
Ultrapure water 10 [A] 0.1 Mpa 0.05 Mpa 7.5 -350 mV 400 ppb
Ultrapure Water + NH 4 OH (50 ppm) 10 [A] 0.1 Mpa 0.05 Mpa 9.5 -550 mV 600 ppb
Ultrapure Water + NH 4 OH (100 ppm) 10 [A] 0.1 Mpa 0.05 Mpa 10.5 -670 mV 1100 ppb
상기 표 2에서 보는 바와 같이 격벽(160)과 연통하는 전해질 용액 유입구(161)로 순수에 NH4OH를 희석한 전해질 용액을 유입시키는 경우가 OPR, 용존수소농도가 높은 전해수(기능수)가 생성되는 것을 알 수 있다. 특히 본 실험 예에서는 상기 실험 예 1보다 입력압력을 각각 0.1MPa씩 낮춘 결과 각각의 예에서 OPR, 용존수소농도가 낮은 전해수(기능수)가 생성되는 것을 알 수 있다.As shown in Table 2, when the electrolyte solution in which the NH 4 OH is diluted into pure water is introduced into the electrolyte solution inlet 161 communicating with the partition 160, OPR and electrolytic water (functional water) having a high dissolved hydrogen concentration are generated. It can be seen that. In particular, in the present experimental example, as a result of lowering the input pressure by 0.1 MPa than the experimental example 1, it can be seen that electrolytic water (functional water) having low OPR and dissolved hydrogen concentration in each example was produced.
-. 실험 예 3-. Experimental Example 3
실험 예 3은 전해조의 입력압력을 0.1MPa, 출력압력을 0.01MPa로 조정하고, 각각 격벽(160)과 연통하는 전해질 용액 유입구(161)로 순수, 순수에 NH4OH 50ppm, 100ppm을 희석시켰을 경우에 있어 OPR, 용존수소농도를 측정한 것이며, 그 결과는 아래 표 3에서 제시되고 있다. Experimental Example 3 adjusted the input pressure of the electrolyzer to 0.1 MPa and the output pressure to 0.01 MPa, and diluted NH 4 OH 50 ppm and 100 ppm in pure water and pure water with the electrolyte solution inlet 161 communicating with the partition wall 160, respectively. OPR and dissolved hydrogen concentration were measured and the results are shown in Table 3 below.
표 3
전류 전해조입력압력 전해조출력압력 pH ORP 용존수소
초순수 10[A] 0.1 Mpa 0.01 Mpa 7.5 -230 mV 250 ppb
초순수 + NH4OH(50ppm) 10[A] 0.1 Mpa 0.01 Mpa 9.5 -420 mV 410 ppb
초순수 + NH4OH(100ppm) 10[A] 0.1 Mpa 0.01 Mpa 10.5 -550 mV 550 ppb
TABLE 3
electric current Electrolyzer Input Pressure Electrolyzer Output Pressure pH ORP Dissolved hydrogen
Ultrapure water 10 [A] 0.1 Mpa 0.01 Mpa 7.5 -230 mV 250 ppb
Ultrapure Water + NH 4 OH (50 ppm) 10 [A] 0.1 Mpa 0.01 Mpa 9.5 -420 mV 410 ppb
Ultrapure Water + NH 4 OH (100 ppm) 10 [A] 0.1 Mpa 0.01 Mpa 10.5 -550 mV 550 ppb
상기 표 3에서 보는 바와 같이 격벽(160)과 연통하는 전해질 용액 유입구(161)로 순수에 NH4OH를 희석한 전해질 용액을 유입시키는 경우가 OPR, 용존수소농도가 높은 전해수(기능수)가 생성되는 것을 알 수 있다. 특히 본 실험 예에서는 상기 실험 예 2보다 출력압력을 각각 0.04MPa씩 낮춘 결과 각각의 예에서 OPR, 용존수소농도가 낮은 전해수(기능수)가 생성되는 것을 알 수 있다.As shown in Table 3, when the electrolyte solution in which the NH 4 OH is diluted into the pure water is introduced into the electrolyte solution inlet 161 communicating with the partition wall 160, the electrolytic water (functional water) having a high dissolved hydrogen concentration is generated. It can be seen that. In particular, in the present experimental example, as a result of lowering the output pressure by 0.04 MPa than Experimental Example 2, it can be seen that electrolytic water (functional water) having low OPR and dissolved hydrogen concentration in each example was produced.
상기 실험 예들에서 보는 바와 같이 순수보다 전해질용액, NH4OH 50ppm보다 NH4OH 100ppm을 희석시킨 전해질 용액에서 OPR, 용존수소농도가 높은 전해수가 생성되었으며, 입력압력 및 출력압력의 경우도 입력압력이 0.2MPa의 경우가 0.1MPa보다 유, 출력압력이 0.05MPa이 0.01MPa보다 OPR, 용존수소농도가 높은 전해수가 생성되는 것을 알 수 있었다. As shown in the above experimental examples, electrolytic water having high OPR and dissolved hydrogen concentrations was generated in an electrolyte solution diluted to 100 ppm of NH 4 OH than 50 ppm of NH 4 OH than pure water. In the case of 0.2 MPa, electrolyzed water with OPR and dissolved hydrogen concentration higher than 0.1 MPa, output pressure 0.05 MPa, and 0.01 MPa was found.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification but should be defined by the claims.

Claims (8)

  1. 전해조를 포함하되, 상기 전해조는 애노드극과, 캐소드극이 구성되어 산성수 또는 알칼리수를 배출함을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치.An electrolyzer including an electrolyzer, wherein the electrolyzer comprises an anode and a cathode to discharge acidic or alkaline water.
  2. 제 1항에 있어서,The method of claim 1,
    상기 전해조는 하부에서부터 수직한 방향으로 서로 분리되는 형태로 직렬로 다단계 전극으로 형성된 복수개의 애노드극과, 상기 직렬로 다단계 전극으로 형성된 복수개의 애노드극과 각각 대응되는 위치에 하부에서부터 수직한 방향으로 서로 분리되는 형태로 직렬로 다단계 전극으로 형성된 복수개의 캐소드극과, 상기 복수개의 애노드극 중 끝단의 애노드극과, 상기 복수개의 캐소드극 중 다른 끝단의 캐소드극에 전압을 인가하는 외부전원을 포함하여 형성되며, 상기 외부전원과 연결되지 않은 애노드 극과 캐소드극은 전기적으로 연결되는 전선에 의해 서로 연결된 것을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치.The electrolyzers are separated from each other in a vertical direction from the bottom with a plurality of anode poles formed in multi-step electrodes in series, and a plurality of anode poles formed in series with the multi-step electrodes, respectively, at positions corresponding to each other in a vertical direction from the bottom. And a plurality of cathode poles formed of a multi-level electrode in series in a separated form, an anode pole at one end of the plurality of anode poles, and an external power source for applying a voltage to the cathode pole at the other end of the plurality of cathode poles. And an anode pole and a cathode pole not connected to the external power source are connected to each other by an electrically connected wire.
  3. 제 2항에 있어서,The method of claim 2,
    상기 전해조에 있어 그 내부에는 복수의 애노드극과 캐소드극 사이를 구획하도록 이온교환수지에 의한 격벽이 구성됨을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치.In the electrolytic cell, the electrolyzed water generating device used in the semiconductor process, characterized in that the partition wall formed by the ion exchange resin is configured to partition between the plurality of anode and cathode electrodes.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 격벽의 양면에는 이온교환막이 형성되며, 상기 이온교환막은 음이온교환막 또는 양이온교환막으로 구성됨을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치. Ion exchange membrane is formed on both sides of the partition wall, the ion exchange membrane is used in the semiconductor process, characterized in that consisting of an anion exchange membrane or a cation exchange membrane.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 격벽의 양면에는 이온교환부가 도포되되, 상기 이온교환부는 음이온교환기를 갖는 음이온코팅층 또는 양이온교환기를 갖는 양이온코팅층으로 구성됨을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치. An ion exchange part is coated on both sides of the partition wall, wherein the ion exchange part comprises an anion coating layer having an anion exchange group or a cation coating layer having a cation exchange group.
  6. 제 5항에 있어서,The method of claim 5,
    상기 음이온코팅층 또는 상기 양이온코팅층은,The anion coating layer or the cation coating layer,
    유기용매, 고분자바인더 및 상기 유기용매에 난용성의 이온선택성 수지분말로 이루어짐을 특징으로 하되, 상기 이온선택성 수지분말은 가교된 것으로, 양이온교환기를 가지는 고분자 수지 또는 음이온 교환기를 가지는 고분자 수지인 것을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치. The organic solvent, the polymer binder and the organic solvent, characterized in that it consists of poorly soluble ion-selective resin powder, wherein the ion-selective resin powder is cross-linked, it is a polymer resin having a cation exchange group or a polymer resin having an anion exchange group Electrolyzed water generating device used in the semiconductor process.
  7. 제 2항에 있어서,The method of claim 2,
    상기 전해조는 그 하단에 유입라인이 구성되어 필터부와 연결되고, 그 상단에는 배출라인이 형성되되 배출라인에는 유량조절밸브가 구성됨을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치.The electrolyzer is an electrolytic water generating device used in a semiconductor process, characterized in that the inlet line is formed at the lower end is connected to the filter unit, the discharge line is formed at the upper end, the flow control valve is configured in the discharge line.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 배출라인에는 저장라인 및 토출라인이 삼방밸브에 의해 연결됨을 특징으로 하는 반도체 공정에 사용되는 전해수 생성장치. The discharge line is an electrolytic water generating device used in a semiconductor process, characterized in that the storage line and the discharge line is connected by a three-way valve.
PCT/KR2013/005736 2013-06-27 2013-06-27 Apparatus for generating electrolyzed water, used in semiconductor process WO2014208794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005736 WO2014208794A1 (en) 2013-06-27 2013-06-27 Apparatus for generating electrolyzed water, used in semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005736 WO2014208794A1 (en) 2013-06-27 2013-06-27 Apparatus for generating electrolyzed water, used in semiconductor process

Publications (1)

Publication Number Publication Date
WO2014208794A1 true WO2014208794A1 (en) 2014-12-31

Family

ID=52142111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005736 WO2014208794A1 (en) 2013-06-27 2013-06-27 Apparatus for generating electrolyzed water, used in semiconductor process

Country Status (1)

Country Link
WO (1) WO2014208794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113399004A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Ion exchange system for liquid stream treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127887A (en) * 1994-10-28 1996-05-21 Nec Corp Electrolytic water producing device
JPH10286571A (en) * 1997-04-16 1998-10-27 Permelec Electrode Ltd Electrolytic cell for acidic water and alkaline water preparation
JPH1177049A (en) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The Method and apparatus for producing electrolytic ionic water and cleaning of the apparatus
JPH1177050A (en) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The Method and apparatus for producing electrolytic ionic water and cleaning of the apparatus
EP1293481A2 (en) * 2001-09-14 2003-03-19 Coherent Technology Co., Ltd. Electrolytic cell for producing charged anode water suitable for surface cleaning or treatment, and method for producing the same and use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127887A (en) * 1994-10-28 1996-05-21 Nec Corp Electrolytic water producing device
JPH10286571A (en) * 1997-04-16 1998-10-27 Permelec Electrode Ltd Electrolytic cell for acidic water and alkaline water preparation
JPH1177049A (en) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The Method and apparatus for producing electrolytic ionic water and cleaning of the apparatus
JPH1177050A (en) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The Method and apparatus for producing electrolytic ionic water and cleaning of the apparatus
EP1293481A2 (en) * 2001-09-14 2003-03-19 Coherent Technology Co., Ltd. Electrolytic cell for producing charged anode water suitable for surface cleaning or treatment, and method for producing the same and use of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113399004A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Ion exchange system for liquid stream treatment

Similar Documents

Publication Publication Date Title
TW386068B (en) Electrolytic ionized water producing apparatus
US5593554A (en) Electrolytic ionized water producing apparatus
US5635053A (en) Method and apparatus for cleaning electronic parts
US7442288B2 (en) Electrolytic cell for producing charged anode water suitable for surface cleaning or treatment, and method for producing the same and use of the same
US6878258B2 (en) Apparatus and method for removing contaminants from semiconductor copper electroplating baths
KR20150145674A (en) Electrolytic bath for manufacturing acid water and the using method of the water
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
US7427345B2 (en) Method and device for regenerating ion exchanger, and electrolytic processing apparatus
KR100660609B1 (en) electrolyzer which produces alkali reducing water
WO2014208794A1 (en) Apparatus for generating electrolyzed water, used in semiconductor process
KR20030079726A (en) Functional water, the process and the apparatus for preparing the same, and the process and the apparatus for cleansing the electronic part using the functional water
JPH1099861A (en) Water electrolyzing method
KR101380392B1 (en) Apparatus for producing electrolytic used in watersemiconductor processing
US20080217164A1 (en) Electrolytic Processing Apparatus
US7108772B2 (en) Device and process for electrodialysis of ultrafiltration premeate of electrocoat paint
CN207726783U (en) Electroreduction sewage disposal device
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH101794A (en) Electrolytic cell and electrolyzing method
WO2022265241A1 (en) Freshwater treatment apparatus recycling concentrated seawater into resource
JP4053805B2 (en) Functional water, production method and production apparatus thereof
WO2014014143A1 (en) Apparatus for generating electrolyzed functional water containing high concentration of dissolved hydrogen
WO1991018837A1 (en) Electrolytic cell for waste water treatment
KR101568173B1 (en) Electrolytic type wastewater treatment apparatus and Ship ballaster water purification system comprising electrolytic type wastewater treatment apparatus
CN108675515A (en) Except silicon electrochemical reaction appts
JP2000008083A (en) Gas-dissolved water production equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888295

Country of ref document: EP

Kind code of ref document: A1