WO2014208630A1 - Capsule medical system, position detection device and capsule medical device - Google Patents

Capsule medical system, position detection device and capsule medical device Download PDF

Info

Publication number
WO2014208630A1
WO2014208630A1 PCT/JP2014/066908 JP2014066908W WO2014208630A1 WO 2014208630 A1 WO2014208630 A1 WO 2014208630A1 JP 2014066908 W JP2014066908 W JP 2014066908W WO 2014208630 A1 WO2014208630 A1 WO 2014208630A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
unit
detection
processing
capsule medical
Prior art date
Application number
PCT/JP2014/066908
Other languages
French (fr)
Japanese (ja)
Inventor
千葉 淳
拓人 井開
瀧澤 寛伸
木村 敦志
隆広 飯田
佐藤 良次
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2014561216A priority Critical patent/JP5792403B2/en
Publication of WO2014208630A1 publication Critical patent/WO2014208630A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00032Operational features of endoscopes characterised by power management characterised by power supply internally powered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management

Definitions

  • the present invention relates to a capsule medical system using a capsule medical device that is introduced into a subject and acquires information in the subject, a position detection device that detects the position of the capsule medical device, and a capsule medical device About.
  • capsule endoscopes that have an imaging function and a wireless communication function inside a capsule-shaped casing have been put into practical use.
  • the capsule endoscope After being swallowed by a subject, the capsule endoscope captures the inside of the subject while moving in the digestive tract, generates image data, and wirelessly transmits the image data to a receiving device provided outside the subject (for example, Patent Document 1).
  • the image data received by the receiving device is then taken into an image processing device such as a workstation and subjected to predetermined image processing.
  • an image in the subject hereinafter also referred to as an in-vivo image
  • Patent Document 2 discloses a technique for detecting the position of a capsule by providing a coil in a capsule and detecting a magnetic field generated by supplying electric power to the coil from a battery outside the subject. Yes.
  • the capsule medical device is operated by a battery built in the housing.
  • the power supplied from the battery is consumed for main operations such as illumination and imaging, and wireless transmission of generated image data, in addition to generating a magnetic field in the above-described coil.
  • main operations such as illumination and imaging, and wireless transmission of generated image data, in addition to generating a magnetic field in the above-described coil.
  • the main operation such as illumination causes the power supply voltage to drop temporarily, the magnetic field for position detection becomes unstable, and the position detection accuracy of the capsule medical device is affected.
  • the capsule medical device having the function of generating a magnetic field for position detection has a problem that the power consumption is increased and the operation time is shortened as compared with a capsule medical device not having the function.
  • the strength of the generated magnetic field becomes weak, and there is a possibility that the position detection accuracy of the capsule medical device is lowered.
  • the present invention has been made in view of the above, and is capable of stably and accurately detecting the position of a capsule medical device while suppressing power consumption of a battery built in the capsule medical device.
  • An object is to provide a medical system, a position detection device, and a capsule medical device.
  • a capsule medical device is used by being introduced into a subject and generates a magnetic field for position detection, and the magnetic field.
  • a capsule medical device used in a capsule medical system including a position detection device that detects a position of the capsule medical device based on the battery, and generates a magnetic field by receiving power from the battery and the battery A magnetic field generation means; a control means for controlling power supply from the battery to the magnetic field generation means; and an information acquisition means for receiving information about the inside of the subject by receiving power supply from the battery, The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means in synchronization with the operation of the information acquisition means.
  • the capsule medical device further includes voltage detection means for detecting a voltage value of the battery, and the control means is based on a detection result by the voltage detection means, during the period in which the voltage value is less than a predetermined threshold. The power supply from the battery to the magnetic field generating means is stopped.
  • control unit stops power supply from the battery to the magnetic field generation unit during an operation period of the information acquisition unit.
  • the control unit stops power supply from the battery to the magnetic field generation unit during an operation period of the information acquisition unit and at least one predetermined time before and after the operation period. It is characterized by making it.
  • the control unit detects an operation start timing of the information acquisition unit, and stops power supply from the battery to the magnetic field generation unit for a predetermined period from the operation start timing. To do.
  • a capsule-type medical system is a capsule-type medical device that is introduced into a subject and used, and includes a battery, a magnetic field generating unit that generates a magnetic field by receiving power supplied from the battery, A capsule medical device having control means for controlling power supply from a battery to the magnetic field generating means, and a position detecting device for detecting a position of the capsule medical device, wherein the magnetic field generated by the magnetic field generating means And a processing means for executing a process for calculating the position of the capsule medical device based on the detection signal output from the magnetic field detection means. And the control means controls the power supply to be intermittently supplied from the battery to the magnetic field generation means.
  • the processing unit performs the processing using a detection signal having an intensity equal to or higher than a predetermined value among detection signals output from the magnetic field detection unit.
  • the control unit when the control unit starts power supply from the battery to the magnetic field generation unit, the control unit executes power supply in a specific pattern indicating the start, and the processing unit performs the magnetic field generation.
  • the processing is started when the detecting means detects a magnetic field that changes in the pattern.
  • the processing unit detects at least one of a rising timing and a falling timing of the detection signal and starts the processing.
  • the processing unit performs the process using the detection signal output from the magnetic field detection unit within a predetermined period after detecting the rising timing of the detection signal.
  • the position detection device further includes a storage unit that stores a detection signal output from the magnetic field detection unit, and the processing unit detects a falling timing of the detection signal, A detection signal in a period preceding the falling timing by a predetermined period is acquired retrospectively from the storage unit, and the processing is executed using the acquired detection signal.
  • the processing unit performs the processing by replacing a signal value of a detection signal whose intensity is smaller than a predetermined value among detection signals output from the magnetic field detection unit with zero.
  • the processing unit performs the processing for a predetermined period at a predetermined cycle, and the length of one period in which power is supplied from the battery to the magnetic field generation unit is the processing unit. Is longer than the period in which the process is executed twice.
  • the processing includes fast Fourier transform processing on the detection signal, the processing means performs the processing for a predetermined period at a predetermined cycle, and power is supplied from the battery to the magnetic field generating means.
  • the length of one supplied period is equal to or longer than a period in which the processing means executes the fast Fourier transform process twice.
  • the capsule medical device includes a casing having a cylindrical body and at least one dome provided at an end of the body, and at least the inside from the casing.
  • Imaging means for imaging the outside of the housing through one dome, and the magnetic field generating means includes a coil that generates a magnetic field when a current flows, and a driving means that drives the coil.
  • the coil is wound around a position that is centered on an axis inclined with respect to the central axis of the housing, has a diameter larger than the diameter of the body portion, and does not interfere with the field of view of the imaging unit.
  • the magnetic field is intermittently generated from the capsule medical device in synchronism with the operation of the information acquisition means, the position of the capsule medical device can be detected stably and accurately.
  • the magnetic field is generated intermittently by intermittently supplying power from the battery to the magnetic field generating means in the capsule medical device, the position detection accuracy of the capsule medical device is lowered. In addition, the power consumption of the battery built in the capsule medical device can be suppressed.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule medical system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the capsule endoscope shown in FIG.
  • FIG. 3 is a circuit diagram showing a configuration of the magnetic field generator shown in FIG.
  • FIG. 4 is a flowchart showing the operation of the capsule medical system shown in FIG.
  • FIG. 5 is a diagram showing a current level corresponding to the driving cycle of the transmission coil shown in FIG.
  • FIG. 6 is a diagram showing a current level when the transmission coil is always driven.
  • FIG. 7 is a diagram for explaining the timing of capturing the detection signal output from the magnetic field detection unit shown in FIG. 1 into the signal processing unit.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule medical system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the capsule endoscope shown in FIG.
  • FIG. 3 is a circuit diagram showing
  • FIG. 8 is a diagram for explaining the timing of capturing the detection signal output from the magnetic field detection unit shown in FIG. 1 into the signal processing unit.
  • FIG. 9 is a diagram for explaining the timing of capturing the detection signal output from the magnetic field detection unit shown in FIG. 1 into the signal processing unit.
  • FIG. 10 is a diagram for explaining the FFT window filter processing.
  • FIG. 11A is a graph showing the characteristics of the Hamming window, and
  • FIG. 11B is a graph showing the frequency spectrum extracted by the FFT process.
  • FIG. 12 is a diagram illustrating the relationship between the drive timing of the transmission coil and the imaging and transmission timing.
  • FIG. 13 is a diagram illustrating the delay time when the generation period of the alternating magnetic field is different from the magnetic field detection period.
  • FIG. 14 is a block diagram illustrating a configuration of a signal processing unit included in the position detection device according to the second embodiment.
  • FIG. 15 is a diagram for explaining the operation of the intermittent timing detection unit shown in FIG. 14 (when synchronized with the rising of the alternating magnetic field).
  • FIG. 16 is a diagram for explaining the operation of the intermittent timing detector shown in FIG. 14 (when synchronized with the fall of the alternating magnetic field).
  • FIG. 17 is a diagram for explaining a modification 2-1 of the operation of the intermittent timing detection unit shown in FIG.
  • FIG. 18 is a diagram for explaining a modification 2-1 of the operation of the intermittent timing detection unit shown in FIG. FIG.
  • FIG. 19 is a schematic diagram showing a configuration of a capsule endoscope used in Control Example 1 of power supply to a magnetic field generation unit according to Embodiment 3 of the present invention.
  • FIG. 20 is a diagram for explaining a control example 1 of power supply to the magnetic field generation unit according to the third embodiment of the present invention.
  • FIG. 21 is a diagram for explaining a control example 2 of power supply to the magnetic field generation unit in the third embodiment of the present invention.
  • FIG. 22 is a diagram for explaining a third control example of power supply to the magnetic field generation unit according to the third embodiment of the present invention.
  • FIG. 23 is a diagram for explaining a control example 4 of power supply to the magnetic field generation unit according to the third embodiment of the present invention.
  • FIG. 24 is a diagram for explaining a control example 5 of power supply to the magnetic field generation unit according to the third embodiment of the present invention.
  • FIG. 25 is a side view showing a first arrangement example of transmission coils.
  • FIG. 26 is a side view showing a second arrangement example of the transmission coils.
  • FIG. 27 is a side view showing a third arrangement example of the transmission coils.
  • FIG. 28 is a side view showing a fourth arrangement example of the transmission coils.
  • FIG. 29 is a diagram illustrating a fifth arrangement example of the transmission coils.
  • FIG. 30 is a diagram illustrating a sixth arrangement example of the transmission coils.
  • a capsule endoscope that is orally introduced into a subject and images the inside of the subject (intraluminal) is illustrated as an embodiment of the capsule medical device.
  • the present invention is not limited by the form. That is, the present invention measures, for example, a capsule endoscope that moves in the lumen from the esophagus to the anus of the subject, a capsule medical device that delivers a drug or the like into the subject, and a PH in the subject.
  • the present invention can be applied to various medical devices having a capsule shape, such as a capsule medical device including a PH sensor.
  • each drawing merely schematically shows the shape, size, and positional relationship to the extent that the contents of the present invention can be understood. Therefore, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing. In the description of the drawings, the same portions are denoted by the same reference numerals.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule medical system according to Embodiment 1 of the present invention.
  • the capsule medical system 1 according to the first embodiment wirelessly transmits an imaging signal acquired by imaging the subject as a capsule medical device introduced into the lumen of the subject 2.
  • a capsule endoscope 10 for transmission and a position detection device 20 for detecting the position of the capsule endoscope 10 in the subject 2 are provided.
  • FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope 10 shown in FIG.
  • the capsule endoscope 10 includes a capsule-shaped casing 101 formed in a size that can be easily introduced into the lumen of the subject 2, and is housed in the casing 101.
  • the imaging unit 110 that captures an image of the inside of the subject 2 to acquire an imaging signal and the operation of each part of the capsule endoscope 10 including the imaging unit 110 are controlled, and the imaging signal acquired by the imaging unit 110 is controlled.
  • a control unit 120 that performs predetermined signal processing, a transmission unit 130 that wirelessly transmits an imaging signal subjected to signal processing, a power supply unit 140 that supplies power to each unit of the capsule endoscope 10, and a capsule endoscope And a magnetic field generator 150 that generates an alternating magnetic field for detecting the position of the mirror 10.
  • a cross section of the housing 101 is shown.
  • the housing 101 is composed of an exterior case having a cylindrical body portion 102 and dome portions 103 and 104 provided at both ends of the body portion 102, respectively.
  • drum 102 is formed of the colored member substantially opaque with respect to visible light.
  • At least one of the dome parts 103 and 104 (the dome part 103 on the imaging unit 110 side in FIG. 2) is formed of an optical member that is transparent to light of a predetermined wavelength band such as visible light.
  • a predetermined wavelength band such as visible light.
  • the other dome 104 is also a transparent optical member. Formed by.
  • Such a casing 101 includes the imaging unit 110, the control unit 120, the transmission unit 130, the power supply unit 140, and the magnetic field generation unit 150 in a liquid-tight manner.
  • the imaging unit 110 is information acquisition means for acquiring an imaging signal as information relating to the subject 2, and includes an illumination unit 111 including a light emitting element such as an LED and a drive circuit (not shown) for driving the light emitting element, An optical system 112 such as a lens, and an image pickup unit 113 including an image pickup device such as a CMOS image sensor or a CCD and a drive circuit (not shown) for driving the image pickup device.
  • the illumination unit 111 irradiates the imaging field of the imaging unit 113 with illumination light such as white light, and illuminates the subject 2 in the imaging field v through the dome unit 103.
  • the optical system 112 is arranged so that the optical axis La coincides with the long axis of the housing 101, collects the reflected light from the subject 2 in the imaging field of view v, and forms an image on the imaging surface of the imaging unit 113.
  • the imaging unit 113 generates an imaging signal by performing photoelectric conversion processing on an optical signal representing the image of the subject 2 formed on the imaging surface.
  • the imaging units 110 are arranged at the dome at both ends of the casing 101 so that both optical axes of the two optical systems are aligned with the long axis of the casing 101. It arrange
  • the control unit 120 operates the imaging unit 113 at a predetermined cycle (imaging frame rate) and causes the illumination unit 111 to emit light in synchronization with the imaging frame rate. Further, the control unit 120 generates image data by performing A / D conversion and other predetermined signal processing on the imaging signal generated by the imaging unit 110. Further, the control unit 120 intermittently generates an alternating magnetic field from the magnetic field generation unit 150 by intermittently supplying power from the power supply unit 140 to the magnetic field generation unit 150. The generation pattern of the alternating magnetic field will be described later.
  • the transmission unit 130 includes a transmission antenna (not shown), acquires image data and related information subjected to signal processing by the control unit 120, performs modulation processing, and sequentially wirelessly transmits to the outside via the transmission antenna.
  • the power supply unit 140 is realized by, for example, a button-type battery and a switch unit such as a magnetic switch.
  • the power supply unit 140 switches its on / off state when the magnetic switch is switched by a magnetic field applied from the outside, and supplies power to each unit of the capsule endoscope 10 during the on state.
  • the power supply unit 140 stops supplying power to each unit of the capsule endoscope 10 during the off state.
  • the magnetic field generation unit 150 includes a transmission coil 15a that generates a magnetic field when a current flows, and a capacitor 15b that forms a resonance circuit 151 together with the transmission coil 15a, and generates an alternating magnetic field having a predetermined frequency.
  • the arrangement of the transmission coil 15a is not particularly limited as long as the field of view of the imaging unit 113 is not hindered.
  • the central axis of the transmission coil 15 a is arranged in parallel with the long axis of the housing 101, and the transmission coil 15 a is wound along the inner periphery of the body portion 102.
  • the transmission coil 15a it is preferable that the effective area of the transmission coil 15a be as large as possible. In order to prevent the drive efficiency of the transmission coil 15a from being lowered, it is preferable not to arrange the power supply unit (battery) 140 and the transmission unit (transmission antenna) 130 in the internal space of the transmission coil 15a. For example, when two image pickup units 110 are provided at both ends of the long axis of the housing 101, the transmission coil 15 a may be disposed between these image pickup units 110.
  • FIG. 3 is a diagram showing the configuration of the magnetic field generator 150 in more detail.
  • the magnetic field generation unit 150 includes a signal generation unit 152 and a drive unit 153 in addition to the resonance circuit 151 including the transmission coil 15 a and the capacitor 15 b.
  • the resonance frequency of the resonance circuit 151 (that is, the frequency of the alternating magnetic field) is F 0 .
  • the signal generator 152 is an oscillator including a vibrator that oscillates at a frequency corresponding to an applied voltage. A voltage that oscillates at a frequency substantially equal to an integral multiple of the resonance frequency F 0 is applied to the vibrator.
  • the driving unit 153 generates an alternating magnetic field from the coil 15a by driving the coil 15a by applying a voltage to the coil 15a based on the signal generated from the signal generating unit 152.
  • the position detection device 20 includes a magnetic field detection unit 21 that detects an alternating magnetic field generated from the capsule endoscope 10, and the subject 2 based on the alternating magnetic field detected by the magnetic field detection unit 21. And a position detection device main body 22 for detecting the position of the capsule endoscope 10 inside.
  • the magnetic field detector 21 has a plurality of receiving coils 21a each receiving an alternating magnetic field and outputting a detection signal. These receiving coils 21a are arranged in a predetermined arrangement in the vicinity of the subject 2 under examination. In FIG. 1, the receiving coil 21a is disposed below the mounting table 30 on which the subject 2 lies.
  • the position detection device main body 22 includes an input unit 23 used to input various information and commands to the position detection device main body 22, and an output unit 24 that displays various information processed by the position detection device main body 22.
  • the receiving unit 25 that receives the imaging signal wirelessly transmitted from the capsule endoscope 10 via the antenna 25a and the detection signal output from each receiving coil 21a are subjected to various signal processing to obtain magnetic field information. Controls the operation of each part of the signal processing unit 26, the storage unit 27, and the position detection device main body 22 to be generated, and controls the imaging signal input from the reception unit 25 and the magnetic field information input from the signal processing unit 26.
  • a control unit 28 for executing predetermined arithmetic processing.
  • the input unit 23 is realized by input devices such as various buttons, switches, and keyboards, pointing devices such as a mouse and a touch panel, and inputs various information to the control unit 28 in accordance with an input operation by the user.
  • the output unit 24 includes various displays such as liquid crystal and organic EL, and various information input from the input unit 23, in-vivo images of the subject 2, and position information of the capsule endoscope 10 at the time of capturing the in-vivo images. Etc. are displayed on the screen.
  • a plurality of antennas 25 a for receiving imaging signals wirelessly transmitted from the capsule endoscope 10 are attached to the body surface of the subject 2.
  • the receiving unit 25 selects the antenna 25a having the highest reception intensity with respect to the imaging signal among these antennas 25a, and performs demodulation processing or the like on the imaging signal received via the selected antenna 25a.
  • Image data corresponding to the in-vivo image of the subject 2 is acquired.
  • the signal processing unit 26 includes a filter unit 261 that shapes the waveform of the detection signal output from the magnetic field detection unit 21, an amplifier 262, and A / D conversion that generates detection data by performing A / D conversion processing on the detection signal. Part 263.
  • the storage unit 27 is realized by using a storage medium and a reading device that store information in a rewritable manner such as a flash memory or a hard disk.
  • the storage unit 27 includes various programs and various parameters for the control unit 28 to control each unit of the position detection device main body 22, in-vivo image data of the subject 2 captured by the capsule endoscope 10, and the subject 2.
  • the position information of the capsule endoscope 10 in the inside is stored.
  • the control unit 28 is configured using, for example, a CPU (Central Processing Unit) or the like, reads a program from the storage unit 27, performs instructions to each unit constituting the position detection device main body 22, transfers data, and the like, and performs the position detection device main body. The operation of 22 is comprehensively controlled.
  • the control unit 28 includes an image processing unit 281 that performs predetermined image processing such as white balance processing, demosaicing, gamma conversion, smoothing (noise removal, etc.) on the image data input from the receiving unit 25.
  • a position information generating unit 282 that acquires information (position information) indicating the position of the capsule endoscope 10.
  • the position information generation unit 282 performs fast Fourier transform processing (hereinafter referred to as FFT processing) on the detection data output from the A / D conversion unit 263 to extract magnetic field information such as the amplitude and phase of the alternating magnetic field.
  • FFT processing fast Fourier transform processing
  • the processing unit 282a and a position calculation unit 282b that calculates the position of the capsule endoscope 10 based on the magnetic field information extracted by the FFT processing unit 282a.
  • a processing unit that executes processing for calculating the position of the capsule endoscope 10 based on the detection signal output from the magnetic field detection unit 21 by the signal processing unit 26 and the position information generation unit 282.
  • FIG. 4 is a flowchart showing the operation of the capsule medical system 1.
  • step S1 the power supply unit 140 of the capsule endoscope 10 is turned on and introduced into the subject 2.
  • FIG. 5 is a diagram illustrating a current level according to the driving cycle of the transmission coil 15a.
  • the period T 0 is defined as a driving period of the transmission coil 15a, that is, an alternating magnetic field generation period.
  • the period ⁇ 1 is an alternating magnetic field generation period (transmission coil 15a drive period)
  • the period ⁇ 2 is an alternating magnetic field off period (transmission coil 15a drive stop period).
  • the position detection accuracy of the capsule endoscope 10 depends on the accuracy with which the magnetic field detection unit 21 detects the alternating magnetic field generated from the capsule endoscope 10, that is, the S / N ratio of the detection signal. For example, when the S / N ratio of the detection signal is improved by 6 dB, the position detection accuracy of the capsule endoscope 10 is improved twice.
  • the S / N ratio of the detection signal is determined based on the noise of the alternating magnetic field generated by the transmission coil 15a of the capsule endoscope 10 and the detection circuit (the magnetic field detection unit 21 and the detection circuit on the position detection device 20 side that detects the alternating magnetic field). It depends on the larger of the noise in the signal processor 26).
  • the strength of the alternating magnetic field generated by the transmission coil 15a is proportional to the current flowing through the transmission coil 15a according to the Bio-Savart law.
  • the power consumption in the magnetic field generation unit 150 is generally proportional to the current flowing through the transmission coil 15a, it is also proportional to the strength of the alternating magnetic field generated by the magnetic field generation unit 150. Therefore, if the strength of the alternating magnetic field generated by the magnetic field generation unit 150 is suppressed, the noise strength of the alternating magnetic field is expected to be reduced accordingly. In this case, the influence of noise on the position detection device 20 side is greater than the noise of the alternating magnetic field itself with respect to the S / N ratio of the detection signal.
  • the power supplied from the power supply unit 140 to the magnetic field generation unit 150 is intermittently supplied to the magnetic field generation unit 150 instead of weakening the intensity of the current flowing through the transmission coil 15a ( By providing the drive off period), power consumption in the magnetic field generator 150 is suppressed.
  • the position detection device 20 does not use the detection signal corresponding to the drive-off period for the position calculation of the capsule endoscope 10.
  • power supply from the power supply unit 140 to the magnetic field generation unit 150 may be repeatedly turned on / off at a fixed period and a fixed duty ratio.
  • the current value that flows through the transmission coil 15a may be increased by the duty ratio.
  • the driving cycle T 0 and the duty ratio may not be constant.
  • the drive cycle T 0 of the transmission coil 15a is detected, and the position detection device 20 detects the magnetic field for one position detection. It may be shorter than a period (hereinafter referred to as a detection period) T 1 .
  • FIG. 6 is a diagram showing a current level when the transmission coil 15a is always driven, and is shown for comparison.
  • the position detection accuracy of the capsule endoscope 10 depends on the S / N ratio of the detection signal. Therefore, the S / N ratio in the magnetic field detector 21 is calculated as follows when the alternating magnetic field is generated in each pattern of FIGS. 5 and 6.
  • the transmission coil 15a when the transmission coil 15a is driven intermittently, the power consumption is reduced by the duty ratio D, but the S / N ratio is reduced only by the square root of the duty ratio D.
  • the duty ratio when the duty ratio is set to 50%, the decrease in the S / N ratio is limited to 20 ⁇ log ⁇ D ⁇ 3 dB ( ⁇ 71%). That is, in this case, compared with the case where the transmission coil 15a is continuously driven, the position detection accuracy per power consumption is increased, and the driving efficiency can be improved.
  • the noise level N C2 is N C0 ⁇ ⁇ D in order to switch on / off the current flowing through the transmission coil 15a. Therefore, the S / N ratio in this case is given by the following equation (6). In equation (6), 0 ⁇ D ⁇ 1, so ⁇ log ⁇ D> 0. That is, when the transmission coil 15a is intermittently driven and the current flowing through the transmission coil 15a is increased by the duty ratio D, the power consumption is maintained while the transmission coil 15a is continuously driven. / N ratio can be improved.
  • step S3 the alternating magnetic field generated from the capsule endoscope 10 is detected by each reception coil 21a of the magnetic field detection unit 21, and the detection signal output from each reception coil 21a is intermittently taken into the signal processing unit 26. .
  • FIG. 7 to 9 are diagrams for explaining the capture timing of capturing the detection signal output from the magnetic field detection unit 21 into the signal processing unit 26.
  • FIG. Here, when the signal processing unit 26 asynchronously captures the detection signal with respect to the detection signal output from the magnetic field detection unit 21 according to the alternating magnetic field generated from the capsule endoscope 10, the A / D conversion unit 263 or The FFT processing unit 282a cannot detect the section of the detection signal to be processed.
  • the signal processing unit 26 and executes the signal acquisition operation a predetermined period T 1 with a predetermined period T 1 + T 2, the generation period of the alternating magnetic field as at least two capture period T 1 is included in the tau 1, sets the generation period tau 1 alternating magnetic field, the uptake period T 1, and the sampling intervals of T 2. That is, ⁇ 1 ⁇ 2 ⁇ T 1 + T 2 is satisfied.
  • the signal processing unit 26 starts capturing signals before the alternating magnetic field is generated (before the detection signal is output from the magnetic field detection unit 21) (for example, timing t 1 ).
  • the next capturing timing (for example, timing t 2 ) is always included in the alternating magnetic field generation period ⁇ 1 , so that reliable signal capturing can be performed.
  • the signal processing unit 26 may start capturing the detection signal with the start of generation of an alternating magnetic field as a trigger. That is, after the state in which the magnetic field detection intensity in the magnetic field detection unit 21 is below a predetermined value continues for a certain period, the signal processing unit 26 starts to take in a detection signal when the value exceeds a predetermined value. Thereafter, when the detected intensity falls below a predetermined value or the period when the detected intensity falls below the predetermined value becomes equal to or longer than the predetermined period, the signal processing unit 26 stops capturing the detection signal. Alternatively, the capture may be stopped after a predetermined period has elapsed since the capture of the detection signal was started. The predetermined period in this case may be a period shorter than the preset alternating magnetic field generation period ⁇ 0 .
  • a time lag T lag occurs from the start of the generation of the alternating magnetic field to the start of the detection signal capture by the signal processing unit 26. Therefore, a separate memory for temporarily storing all the detection signals output from the magnetic field detection unit 21 is provided, and after the signal processing unit 26 starts to capture the detection signal, the detection signal corresponding to the time lag T lag is read from the memory. You may make it acquire retroactively.
  • an alternating magnetic field that changes in a specific pattern may be generated as a trigger signal prior to the alternating magnetic field for position detection.
  • the signal processing unit 26 starts capturing the detection signal.
  • the pattern of the trigger signal may be a short-term pattern having the same frequency as the alternating magnetic field for position detection, or may be a pattern that continues for a predetermined period at a frequency different from the alternating magnetic field for position detection.
  • the amplitude of the trigger signal may be smaller than the amplitude of the signal in the period T 1 .
  • the signal processing unit 26 stops capturing the detection signal.
  • the capture may be stopped after a predetermined period has elapsed since the capture of the detection signal was started. Even in this case, the predetermined period may be shorter than the preset generation period of the alternating magnetic field.
  • the signal processing unit 26 may also capture a detection signal in a period other than the generation period of the alternating magnetic field (that is, a period in which the detection intensity is lower than a predetermined value), and replace the signal value of the detection signal in the period with zero. Also by this method, the signal processing unit 26 and the subsequent position information generation unit 282 can execute processing based only on the detection signal in the generation period of the alternating magnetic field.
  • the signal processing unit 26 performs predetermined signal processing on the detection signal acquired from the magnetic field detection unit 21, that is, waveform shaping by the filter unit 261, amplification by the amplifier 262, and A / D conversion unit 263. By performing A / D conversion, detection data subjected to digital conversion is generated.
  • the position information generation unit 282 generates position information of the capsule endoscope 10 using the detection data output from the signal processing unit 26. More specifically, first, the FFT processing unit 282a performs FFT processing on the detection data, thereby generating magnetic field information representing the strength and phase of the alternating magnetic field. Subsequently, the position calculation unit 282b estimates the distances from the plurality of reception coils 21a to the capsule endoscope 10 based on the magnetic field information, and calculates the position of the capsule endoscope 10 from these distances. . Note that the magnetic field information extracted by the FFT processing unit 282a may be further subjected to processing such as noise cut, and then input to the position calculation unit 282b.
  • FIG. 10 is a diagram for explaining FFT window filter processing performed prior to the FFT processing in the FFT processing unit 282a.
  • the frequency distribution in the detection data is widened as compared with the case where the alternating magnetic field is continuous. Therefore, in order to correctly detect the alternating magnetic field, it is necessary to increase the reception bandwidth accordingly, but it also leads to an increase in noise.
  • a filter is used that passes ⁇ (+ 1 / ⁇ 1 ), ie 2 / ⁇ 1 as the minimum required band. Since there is no filter that can completely cut the band, a roll-off filter is actually used.
  • a filter that passes the band narrower than the bandwidth 2 / ⁇ 1 around the frequency F 0 is used as the FFT window filter.
  • FIG. 11A is a graph showing the characteristics of a window function (Hamming window), which is an example of an FFT window filter
  • the sampling frequency is set for the frequency F 0 .
  • the sampling frequency is 2F 0
  • the bandwidth at an amplitude of ⁇ 3 dB is 1.3 / ⁇ 1 .
  • the FFT window is originally used to prevent erroneous detection called spectral leak due to waveform discontinuity caused by performing FFT analysis by forcibly cutting off aperiodic signals.
  • the FFT window is also a time waveform in which the beginning and end of the input signal are set to zero and the gap between them is gently detected, in addition to the Hamming window shown in FIG. Any data that can intentionally delete the frequency information of the rising and falling rectangular portions in the data can be used.
  • the filter processing for band limitation in this way is not limited to the preceding stage of the FFT processing, and may be performed by the signal processing unit 26. Or you may perform by the synthetic
  • the drive period ⁇ 1 is shorter than the drive stop period ⁇ 2 has been described.
  • the drive stop period ⁇ 2 may be shorter.
  • ⁇ 1 and ⁇ 2 may be replaced.
  • control unit 28 causes the storage unit 27 to store the position information of the capsule endoscope 10 generated by the position information generation unit 282. Thereafter, the operation of the capsule medical system 1 ends.
  • the alternating magnetic field is intermittently generated from the transmission coil 15a, so that the position detection of the capsule endoscope 10 in the position detection device 20 is performed.
  • the power consumption of the power supply unit (battery) 140 can be suppressed without reducing the accuracy. Therefore, the operation time of the capsule endoscope 10 can be extended.
  • it is not necessary to apply a magnetic field for driving the transmission coil 15a from the outside it is possible to prevent the capsule medical system 1 from being enlarged.
  • the position detection device 20 includes only detection signals in a period corresponding to the generation time of the alternating magnetic field among detection signals based on the alternating magnetic field generated intermittently from the capsule endoscope 10. Since the position of the capsule endoscope 10 is calculated based on the above, it is possible to reduce the total amount of processing in the signal processing unit 26 and the position information generation unit 282, improve processing efficiency, and suppress power consumption. It becomes possible.
  • the driving cycle T 0 of the transmission coil 15 a may be synchronized with the operations of the imaging unit 113 and the transmission unit 130. More specifically, as shown in FIG. 12, while the driving cycle T 0 is set equal to the imaging cycle by the imaging unit 113 and the transmission cycle of the image data by the transmission unit 130 and imaging and transmission of the image data are performed, The transmission coil 15a is not driven. In this case, the maximum power consumption in the capsule endoscope 10 can be suppressed, and even if the power is supplied by a device that has a limit on the instantaneous maximum current consumption, such as a general battery, Electric power can be efficiently supplied to each part of the endoscope 10.
  • a device that has a limit on the instantaneous maximum current consumption such as a general battery
  • an alternating magnetic field is intermittently generated from the capsule endoscope 10
  • the position detection device 20 uses a detection signal in the period in which the alternating magnetic field is on among the detection signals of the alternating magnetic field.
  • the position calculation process of the capsule endoscope 10 was performed.
  • the capsule endoscope 10 and the position detection device 20 are separate from each other and cannot be controlled with a common clock. For this reason, the delay time between the drive timing of the transmission coil 15a (the generation timing of the alternating magnetic field) and the completion timing of the position calculation process may change from time to time. For example, as shown in FIG.
  • the delay time T DL changes.
  • the generation of the alternating magnetic field is turned on after the start of one detection period TDTC of the alternating magnetic field (if it has already occurred, from the start of the detection period TDTC ). ), The position calculation is performed based on the magnetic field information at the intermediate time t MID of the period ⁇ T until it is turned off, and the difference between the intermediate time t MID and the time when the position calculation process started thereafter is ended is the delay time. TDL .
  • the delay time TDL is constant and shorter. preferable. Further, in the capsule endoscope 10, there is also a delay in the generation time of the alternating magnetic field with respect to the imaging time, so that the delay time T DL on the position detection device 20 side also varies or the delay time T DL is If it becomes longer, it becomes impossible to accurately grasp the position of the capsule endoscope 10 at the time of capturing an in-vivo image.
  • the delay time T DL is constant by capturing the detection signal in synchronization with the generation timing of the alternating magnetic field based on the signal value of the detection signal output from the magnetic field detection unit 21. And shortening.
  • FIG. 14 is a block diagram illustrating a configuration of a signal processing unit included in the position detection device according to the second embodiment.
  • the position detection device according to the second embodiment includes a signal processing unit 26-2 shown in FIG. 14 instead of the signal processing unit 26 of the position detection device main body 22 shown in FIG.
  • the configuration of the entire capsule medical system according to the second embodiment and the configuration of the capsule endoscope 10 are the same as those of the first embodiment.
  • the signal processing unit 26-2 includes a memory 264 that temporarily stores the digitally converted detection data, and an intermittent alternating magnetic field based on the detection data.
  • An intermittent timing detection unit 265 that detects timing is provided.
  • the FFT processing unit 282a extracts magnetic field information such as the amplitude and phase of the alternating magnetic field from the detection data in synchronization with the generation timing of the alternating magnetic field based on the detection result of the intermittent timing detection unit 265.
  • the position information generation unit 282 calculates the position of the capsule endoscope 10 based on the data (magnetic field information) output from the signal processing unit 26-2.
  • the intermittent timing detection unit 265 has a signal value of a detection signal output from one or more reception coils 21a of the magnetic field detection unit 21 as a predetermined threshold value. When this is the case, the generation of an alternating magnetic field is detected.
  • the intermittent timing detection unit 265 causes the memory 264 to store the detection data acquired during a predetermined detection period TDTC in synchronization with the rising timing of the detection signal of the alternating magnetic field.
  • FFT processing section 282a after the lapse of the detection period T DTC, during which extracts magnetic-field information of the alternating magnetic field by performing FFT processing on the detection data stored in the memory 264, the position calculating unit 282b is extracted The position of the capsule endoscope 10 is calculated based on the magnetic field information.
  • the delay time TDL is also stabilized. Note that the length of the delay time TDL itself depends on the length of the detection period TDTC .
  • the intermittent timing detection unit 265 detects the alternating magnetic field when the signal values of the detection signals output from all the reception coils 21a of the magnetic field detection unit 21 are less than a predetermined threshold (or substantially zero) for a predetermined period. Detection of occurrence stop.
  • the period serving as a judgment criterion at this time is set in advance so as to be 1/4 or more of the generation period of the alternating magnetic field. This avoids erroneous detection when the phase in the alternating magnetic field becomes zero.
  • the intermittent timing detection unit 265 reads detection data for a predetermined detection period TDTC retrospectively from the memory 264 in synchronization with the fall timing of the detection signal of the alternating magnetic field.
  • the FFT processing unit 282a extracts the magnetic field information of the alternating magnetic field by performing FFT processing on the detection data read from the memory 264 during this period, and the position calculation unit 282b performs the capsule based on the extracted magnetic field information. The position of the mold endoscope 10 is calculated.
  • the delay time TDL is also stable. Further, since the position calculation can be started simultaneously with the fall of the detection signal of the alternating magnetic field, the delay time TDL becomes the shortest.
  • the threshold for determining the rise and fall of the detection signal of the alternating magnetic field may be determined from the noise level in the output signal of the magnetic field detection unit 21. Or it determines from the maximum value of the output signal from the magnetic field detection part 21 when the capsule endoscope 10 which is a position detection object is not arrange
  • the position calculation is performed in synchronization with the rising or falling edge of the detection signal of the alternating magnetic field. Therefore, the delay time TDL from the generation of the magnetic field to the end of the position calculation process is constant. Can be. Further, when processing is performed in synchronization with the fall of the detection signal, the delay time TDL can be minimized.
  • the capsule endoscope 10 when changing the duty ratio when the transmission coil 15a is intermittently driven, that is, as shown in FIG. 17, the generation periods T a , T b , T c of the alternating magnetic field are A case where they are different from each other will be described.
  • the intermittent timing detector 265 in synchronization with the falling edge of the detection signal, reads out the detection data of a predetermined detection period T DTC from the memory 264.
  • the FFT processing unit 282a extracts the magnetic field information by performing FFT processing on the detection data read from the memory 264 during this period, and the position calculation unit 282b extracts the capsule-type endoscope based on the extracted magnetic field information.
  • the position of the mirror 10 is calculated.
  • the delay time TDL changes according to the change of the duty ratio. Therefore, as shown in FIG. 18, the intermittent timing detection unit 265 detects both rising and falling of the detection signal of the alternating magnetic field, calculates the duty ratio, and outputs the position calculation result according to each duty ratio.
  • the delay time TDL is made constant by delaying the timing. Specifically, the output timing of the magnetic field information from the FFT processing unit 282a to the position calculation unit 282b may be delayed, or the output timing of the position calculation result from the position calculation unit 282b may be delayed.
  • the intermittent drive timing of the transmission coil 15a may be synchronized with the imaging timing of the imaging unit 113. That is, imaging within the subject 2 and generation of an alternating magnetic field for position detection are performed simultaneously. In this case, the delay time between the generation timing of the image data by the imaging unit 113 and the calculation timing of the position information based on the alternating magnetic field generated from the transmission coil 15a can be shortened.
  • the power supply voltage temporarily decreases, and the output of the alternating magnetic field generated from the transmission coil 15a decreases. May end up.
  • the position detection device 20 since the signal strength of the alternating magnetic field detected within a predetermined period is averaged and used, if averaging is performed between the normal output and the temporarily reduced output, the capsule type The position detection accuracy of the endoscope 10 may be reduced. Therefore, in the third embodiment, the power supply unit 140 prevents the capsule endoscope 10 from affecting the position detection accuracy even when the power supply voltage is lowered in the capsule endoscope 10.
  • the control unit 120 controls the input of the voltage to the magnetic field generation unit 150.
  • FIG. 19 is a schematic diagram illustrating a configuration of a capsule endoscope used in the first control example.
  • a capsule endoscope 10A illustrated in FIG. 19 further includes a voltage detection unit 160 that detects the voltage value of the power supply unit 140 with respect to the capsule endoscope 10 illustrated in FIG.
  • the voltage value (hereinafter also referred to as power supply voltage) of the power supply unit 140 detected by the voltage detection unit 160 is input to the control unit 120.
  • the control unit 120 supplies power to the magnetic field generation unit 150. Turn off the supply. Further, when the power supply voltage recovers to the threshold value or more, the control unit 120 turns on the power supply to the magnetic field generation unit 150.
  • the position of the capsule endoscope 10A can be calculated based only on a stable detection signal within the generation period of the alternating magnetic field. Accordingly, it is possible to accurately detect the position of the capsule endoscope 10A.
  • Control example 2 As shown in FIG. 21, the control unit 120 switches on / off the power supply to the magnetic field generation unit 150 in synchronization with the light emission timing of the LED. That is, the power supply to the magnetic field generation unit 150 is turned off at the timing when the power supply voltage starts to decrease due to the light emission of the LED, and the power supply to the magnetic field generation unit 150 is started at the time when the power supply voltage is restored after the light emission of the LED is finished. Turn on.
  • the position detection device 20 can calculate the position of the capsule endoscope 10A based only on the stable detection signal within the generation period of the alternating magnetic field, and the position of the capsule endoscope 10A can be calculated. It becomes possible to detect accurately.
  • the control unit 120 synchronizes on / off switching of the power supply to the magnetic field generation unit 150 with the light emission timing of the LED, and sets the power supply off period longer than the light emission period of the LED.
  • the power supply off period may be a predetermined period after the start of light emission of the LED, or may include the light emission period of the LED and a predetermined period before and after the light emission period.
  • the position detection device 20 can execute the position calculation process based only on the more stable detection signal.
  • Control example 4 As shown in FIG. 23, the control unit 120 detects the rise of the light emission of the LED, and turns off the power supply to the magnetic field generation unit 150 in accordance with the rise timing. Thereafter, power supply to the magnetic field generation unit 150 is turned on after a predetermined time longer than the light emission time of the LED has elapsed.
  • the position detection device 20 efficiently executes the position calculation process based on only the more stable detection signal by turning off the output of the alternating magnetic field in all the periods during which the LEDs actually emit light. Can do.
  • the FFT processing unit 282a optimizes the FFT processing result by using a window function. That is, the position calculation is not performed using all the detection signals of the alternating magnetic field generated by the magnetic field generator 150. Therefore, as shown in FIG. 24, in the capsule endoscope 10A, the LED may be caused to emit light at a timing at which the alternating magnetic field detection signal is not used for position calculation. In other words, the alternating magnetic field is not detected for a predetermined time before and after the LED light emission timing.
  • the signal level of the alternating magnetic field is directly detected by the capsule endoscope 10A, and when the signal level falls below a predetermined level, or the time when the signal level falls below the predetermined level is a predetermined length.
  • the LED may emit light.
  • a synchronization signal may be separately transmitted from the outside to the capsule endoscope 10A, and the LED may emit light in synchronization with the synchronization signal.
  • the position detection device 20 can perform position calculation using only the detection signal within a period during which the magnetic field output is stable, so that accurate position information can be acquired.
  • the power supply to the magnetic field generation unit 150 is synchronized with the light emission timing of the LED, but is synchronized with the imaging timing of the imaging unit 113 and the transmission timing of the wireless signal from the transmission unit 130. You may let them. In this case, it is possible to reduce the influence of the decrease in the magnetic field output due to the decrease in the power supply voltage caused by the driving of the image sensor and the transmission of the wireless signal on the position calculation process.
  • FIG. 25 is a side view showing a first arrangement example of the transmission coil 15a.
  • the direction of the central axis of the transmission coil 15 a may be aligned with the long axis of the housing 101, and the transmission coil 15 a may be wound along the outer periphery of the trunk portion 102.
  • the effective area S of the transmission coil 15a indicated by the alternate long and short dash line can be made larger than when the transmission coil 15a is wound around the inner periphery of the body portion 102, and the efficiency of the coil can be increased.
  • FIG. 26 is a side view showing a second arrangement example of the transmission coil 15a.
  • the transmission coil 15 a may be wound around the outer periphery of the body portion 102 so that the central axis of the transmission coil 15 a is inclined with respect to the long axis of the housing 101. In this case, the effective area S of the transmission coil 15a can be further increased.
  • FIG. 27 is a side view showing a third arrangement example of the transmission coil 15a.
  • FIG. 28 is a side view showing a fourth arrangement example of the transmission coil 15a.
  • the transmission coil 15 a When the transmission coil 15 a is wound so that the central axis of the transmission coil 15 a is inclined with respect to the long axis of the housing 101, the transmission coil 15 a may be applied to the dome parts 103 and 104 at both ends of the body part 102. .
  • the imaging units 113 are provided at both ends of the capsule endoscopes 10 and 10A, respectively, as shown in FIG. 27, the dome unit 103, The transmission coil 15a may be wound around the vicinity of the central portion 104.
  • the imaging unit 113 is provided only at one end (for example, the dome 103 side) of the capsule endoscope, as shown in FIG. 28, the dome unit 104 side where the imaging unit is not arranged is provided.
  • the center portion of the dome 104 may be covered with the transmission coil 15a.
  • FIG. 29 (a) is a side view showing a fifth arrangement example of the transmission coil 15a
  • FIG. 29 (b) is a perspective view thereof.
  • the transmission coil 15a is not necessarily wound on the same plane.
  • the transmitting coil 15a is wound only half a circumference along the outer periphery at one end of the trunk portion 102, and is extended to the other end along the central axis direction of the trunk portion 102.
  • a winding method is also possible in which the winding is performed only half a circumference along the outer circumference of the portion 102 different from the one end side, and then extended to one end of the trunk portion 102 along the central axis direction of the trunk portion 102. In this case, the effective area S of the transmission coil 15a can be further increased.
  • FIG. 30 (a) is a side view showing a sixth arrangement example of the transmission coil 15a
  • FIG. 30 (b) is a perspective view thereof.
  • the transmission coil 15a is wound around the same side by a half circumference. Also in this case, the effective area S of the transmission coil 15a can be widened.
  • a capsule medical system including a capsule medical device that is introduced into a subject and generates a magnetic field for position detection, and a position detection device that detects the position of the capsule medical device based on the magnetic field.
  • a capsule-type medical device used Battery, Magnetic field generating means for generating a magnetic field by receiving power from the battery; Control means for controlling power supply from the battery to the magnetic field generating means; Information that includes illumination means for illuminating the inside of the subject and imaging means for imaging the inside of the subject illuminated by the illumination means, and receives information about the inside of the subject by receiving power from the battery Acquisition means; With The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means according to the operation of the illumination means.
  • a capsule medical system including a capsule medical device that is introduced into a subject and generates a magnetic field for position detection, and a position detection device that detects the position of the capsule medical device based on the magnetic field.
  • a capsule-type medical device used Battery, Magnetic field generating means for generating a magnetic field by receiving power from the battery; Control means for controlling power supply from the battery to the magnetic field generating means; An image acquisition unit that captures an image of the inside of the subject to generate image data; and an information acquisition unit that receives information about the inside of the subject by receiving power from the battery; Transmitting means for wirelessly transmitting the image data generated by the imaging means; With The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means according to at least one operation of the imaging means and the transmission means.
  • a capsule medical device that is introduced into a subject and used to generate a magnetic field for position detection, Battery, Magnetic field generating means for generating a magnetic field by receiving power from the battery; Control means for controlling power supply from the battery to the magnetic field generating means; Information acquisition means for receiving information about the inside of the subject by receiving power from the battery;
  • a capsule medical device comprising: A position detection device that detects the position of the capsule medical device based on the magnetic field, Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal; Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means; A position detecting device having With The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means in synchronization with the operation of the information acquisition means.
  • Appendix 4 The capsule medical system according to appendix 3, wherein the processing means executes the processing when a magnetic field having a strength equal to or greater than a predetermined value is detected by the magnetic field detection means.
  • a capsule medical device that is introduced into a subject and used.
  • Battery Magnetic field generating means for generating a magnetic field by receiving power from the battery;
  • Control means for controlling power supply from the battery to the magnetic field generating means;
  • a capsule-type medical device having A position detection device for detecting a position of the capsule medical device, Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal;
  • Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
  • a position detecting device having With The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means,
  • the processing means starts the processing when the magnetic field detection means detects a magnetic field exceeding a predetermined intensity, and detects a detection signal whose intensity is a predetermined value or more among detection signals output from the magnetic field detection means.
  • a capsule medical device that is introduced into a subject and used.
  • the capsule medical device is: Battery, Magnetic field generating means for generating a magnetic field by receiving power from the battery; Control means for controlling power supply from the battery to the magnetic field generating means; Information acquisition means for acquiring information relating to the inside of the subject;
  • a capsule-type medical device having A position detection device for detecting a position of the capsule medical device, Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal; Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
  • a position detecting device having With The control means intermittently supplies power from the battery to the magnetic field generation means while the information acquisition means is not operating.
  • a capsule medical device that is introduced into a subject and used.
  • the capsule medical device is: Battery, Magnetic field generating means for generating a magnetic field by receiving power from the battery; Control means for controlling power supply from the battery to the magnetic field generating means; Information acquisition means for acquiring information relating to the inside of the subject;
  • a capsule-type medical device having A position detection device for detecting a position of the capsule medical device, Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal; Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
  • a position detecting device having With The control means intermittently supplies power from the battery to the magnetic field generation means while the information acquisition means is operating.
  • the information acquisition means includes imaging means for imaging the inside of the subject and generating image data
  • a capsule medical device that is introduced into a subject and used.
  • the capsule medical device is: Battery, Magnetic field generating means for receiving an electric power supply from the battery to generate an alternating magnetic field; Control means for controlling power supply from the battery to the magnetic field generating means;
  • a capsule-type medical device having A position detection device for detecting a position of the capsule medical device, Magnetic field detection means for detecting an alternating magnetic field generated by the magnetic field generation means and outputting a detection signal;
  • Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
  • a position detecting device having With The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means,
  • the processing means includes filter means for allowing a signal in a frequency band having a predetermined bandwidth including a center frequency of the alternating magnetic field to pass through the detection signal.
  • the processing means includes FFT processing means for performing a fast Fourier transform process on the detection signal,
  • the filter means is a window function filter provided in the previous stage of the FFT processing means,
  • a position detection device that detects the position of a capsule medical device that is introduced into a subject and used to generate a magnetic field by receiving power from a built-in battery, The capsule medical device intermittently generates the magnetic field, Magnetic field detection means for detecting a magnetic field generated from the capsule medical device and outputting a detection signal; Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means; With The processing means detects at least one of a rising timing and a falling timing of the detection signal according to the magnetic field generated intermittently, and starts the processing.
  • a position detecting device characterized by that.
  • Appendix 12 The position according to appendix 11, wherein the processing means executes the processing using a detection signal output from the magnetic field detection means within a predetermined period following detection of a rising timing of the detection signal. Detection device.
  • the processing means after detecting the falling timing of the detection signal, acquires the detection signal of a period before the falling timing by a predetermined period from the storage means, and uses the acquired detection signal Execute the process, Item 7.
  • the position detection device according to appendix 6, wherein

Abstract

Provided are a capsule medical system, etc. which are capable of reducing power consumption of a battery built in a capsule medical device and of stably and accurately detecting a position of the capsule medical device. A capsule endoscope (10) comprises a power supply unit (140) which includes a battery, a magnetic field generating unit (150) which is powered by the power supply unit (140) to generate a magnetic field, a control unit (120) which controls the power supply from the power supply unit (140) to the magnetic field generating unit (150), and an imaging unit (110) which is powered by the power supply unit (140) to obtain information relating to the subject, wherein the control unit (120) performs control such that power is supplied intermittently from the power supply unit (140) to the magnetic field generating unit (150) in synchronization with operation of the imaging unit (110).

Description

カプセル型医療システム、位置検出装置、及びカプセル型医療装置Capsule type medical system, position detection device, and capsule type medical device
 本発明は、被検体内に導入されて被検体内の情報取得等を行うカプセル型医療装置を用いたカプセル型医療システム、カプセル型医療装置の位置を検出する位置検出装置、及びカプセル型医療装置に関する。 The present invention relates to a capsule medical system using a capsule medical device that is introduced into a subject and acquires information in the subject, a position detection device that detects the position of the capsule medical device, and a capsule medical device About.
 近年、患者等の被検体の消化管内に導入可能な大きさに形成されたカプセル型医療装置の開発が進められている。内視鏡の分野においては、カプセル型をなす筐体の内部に撮像機能及び無線通信機能を備えたカプセル型内視鏡が実用化されている。カプセル型内視鏡は、被検体に嚥下された後、消化管内を移動しながら被検体内を撮像して画像データを生成し、被検体の外部に設けられた受信装置に無線送信する(例えば特許文献1参照)。受信装置に受信された画像データは、その後、ワークステーション等の画像処理装置に取り込まれ、所定の画像処理が施される。それにより、画像処理装置において、被検体内の画像(以下、体内画像ともいう)を静止画又は動画により再生表示することができる。 In recent years, development of capsule-type medical devices that are sized to be introduced into the digestive tract of a subject such as a patient has been underway. In the field of endoscopes, capsule endoscopes that have an imaging function and a wireless communication function inside a capsule-shaped casing have been put into practical use. After being swallowed by a subject, the capsule endoscope captures the inside of the subject while moving in the digestive tract, generates image data, and wirelessly transmits the image data to a receiving device provided outside the subject (for example, Patent Document 1). The image data received by the receiving device is then taken into an image processing device such as a workstation and subjected to predetermined image processing. Thereby, in the image processing apparatus, an image in the subject (hereinafter also referred to as an in-vivo image) can be reproduced and displayed as a still image or a moving image.
 カプセル型医療装置は、通常、被検体の蠕動運動により消化管内を移動するため、被検体内における位置を制御することができない。このため、体内画像に写った部分の位置を特定するため、被検体内におけるカプセル型医療装置の位置や姿勢を検出するシステムが開発されている。例えば特許文献2には、カプセル内にコイルを設け、このコイルにバッテリから電力を供給することにより発生させた磁界を被検体外で検出することにより、カプセルの位置を検知する技術が開示されている。 Since the capsule medical device normally moves in the digestive tract by the peristaltic movement of the subject, the position in the subject cannot be controlled. For this reason, in order to specify the position of the part shown in the in-vivo image, a system for detecting the position and posture of the capsule medical device in the subject has been developed. For example, Patent Document 2 discloses a technique for detecting the position of a capsule by providing a coil in a capsule and detecting a magnetic field generated by supplying electric power to the coil from a battery outside the subject. Yes.
特開2006-75536号公報JP 2006-75536 A 特表2005-535376号公報JP 2005-535376 Gazette
 ところで、カプセル型医療装置は、筐体内に内蔵された電池によって動作する。この電池から供給される電力は、上述したコイルに磁界を発生させる他、照明及び撮像、生成した画像データの無線送信等の主要な動作のために消費される。そのため、照明等の主要な動作を行うことにより電源電圧が一時的に低下して、位置検出用の磁界が不安定となり、カプセル型医療装置の位置検出精度に影響を及ぼすという問題があった。 By the way, the capsule medical device is operated by a battery built in the housing. The power supplied from the battery is consumed for main operations such as illumination and imaging, and wireless transmission of generated image data, in addition to generating a magnetic field in the above-described coil. For this reason, the main operation such as illumination causes the power supply voltage to drop temporarily, the magnetic field for position detection becomes unstable, and the position detection accuracy of the capsule medical device is affected.
 また、位置検出用の磁界発生機能を備えたカプセル型医療装置は、当該機能を備えないカプセル型医療装置と比較して電力の消費量が多くなり、動作時間が短くなるという問題もあった。カプセル型医療装置の動作時間を延ばすためには、例えばコイルに供給する電流の大きさを抑えることが考えられる。しかしながら、この場合には、発生する磁界の強度が弱くなり、やはり、カプセル型医療装置の位置検出精度が低下するおそれがある。 Also, the capsule medical device having the function of generating a magnetic field for position detection has a problem that the power consumption is increased and the operation time is shortened as compared with a capsule medical device not having the function. In order to extend the operation time of the capsule medical device, for example, it is conceivable to suppress the magnitude of the current supplied to the coil. However, in this case, the strength of the generated magnetic field becomes weak, and there is a possibility that the position detection accuracy of the capsule medical device is lowered.
 本発明は、上記に鑑みてなされたものであって、カプセル型医療装置が内蔵する電池の消費電力を抑制しつつ、カプセル型医療装置の位置を安定的に精度良く検出することができるカプセル型医療システム、位置検出装置、及びカプセル型医療装置を提供することを目的とする。 The present invention has been made in view of the above, and is capable of stably and accurately detecting the position of a capsule medical device while suppressing power consumption of a battery built in the capsule medical device. An object is to provide a medical system, a position detection device, and a capsule medical device.
 上述した課題を解決し、目的を達成するために、本発明に係るカプセル型医療装置は、被検体内に導入されて使用され、位置検出用の磁界を発生するカプセル型医療装置と、前記磁界に基づいて前記カプセル型医療装置の位置を検出する位置検出装置とを備えるカプセル型医療システムにおいて用いられるカプセル型医療装置であって、電池と、前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、前記電池から前記磁界発生手段への電力供給を制御する制御手段と、前記電池から電力の供給を受けて前記被検体内に関する情報を取得する情報取得手段と、を備え、前記制御手段は、前記情報取得手段の動作と同期して、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, a capsule medical device according to the present invention is used by being introduced into a subject and generates a magnetic field for position detection, and the magnetic field. A capsule medical device used in a capsule medical system including a position detection device that detects a position of the capsule medical device based on the battery, and generates a magnetic field by receiving power from the battery and the battery A magnetic field generation means; a control means for controlling power supply from the battery to the magnetic field generation means; and an information acquisition means for receiving information about the inside of the subject by receiving power supply from the battery, The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means in synchronization with the operation of the information acquisition means.
 上記カプセル型医療装置は、前記電池の電圧値を検出する電圧検出手段をさらに備え、前記制御手段は、前記電圧検出手段による検出結果に基づき、前記電圧値が所定の閾値未満の期間中、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする。 The capsule medical device further includes voltage detection means for detecting a voltage value of the battery, and the control means is based on a detection result by the voltage detection means, during the period in which the voltage value is less than a predetermined threshold. The power supply from the battery to the magnetic field generating means is stopped.
 上記カプセル型医療装置において、前記制御手段は、前記情報取得手段の動作期間中、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする。 In the capsule medical device, the control unit stops power supply from the battery to the magnetic field generation unit during an operation period of the information acquisition unit.
 上記カプセル型医療装置において、前記制御手段は、前記情報取得手段の動作期間中、及び該動作期間の前と後との少なくとも一方の所定時間、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする。 In the capsule medical device, the control unit stops power supply from the battery to the magnetic field generation unit during an operation period of the information acquisition unit and at least one predetermined time before and after the operation period. It is characterized by making it.
 上記カプセル型医療装置において、前記制御手段は、前記情報取得手段の動作開始タイミングを検出し、該動作開始タイミングから所定期間、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする。 In the capsule medical device, the control unit detects an operation start timing of the information acquisition unit, and stops power supply from the battery to the magnetic field generation unit for a predetermined period from the operation start timing. To do.
 本発明に係るカプセル型医療システムは、被検体内に導入されて使用されるカプセル型医療装置であって、電池と、前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、前記電池から前記磁界発生手段への電力供給を制御する制御手段と、を有するカプセル型医療装置と、前記カプセル型医療装置の位置を検出する位置検出装置であって、前記磁界発生手段が発生した磁界を検出して、検出信号を出力する磁界検出手段と、前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、を有する位置検出装置と、を備え、前記制御手段は、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行うことを特徴とする。 A capsule-type medical system according to the present invention is a capsule-type medical device that is introduced into a subject and used, and includes a battery, a magnetic field generating unit that generates a magnetic field by receiving power supplied from the battery, A capsule medical device having control means for controlling power supply from a battery to the magnetic field generating means, and a position detecting device for detecting a position of the capsule medical device, wherein the magnetic field generated by the magnetic field generating means And a processing means for executing a process for calculating the position of the capsule medical device based on the detection signal output from the magnetic field detection means. And the control means controls the power supply to be intermittently supplied from the battery to the magnetic field generation means.
 上記カプセル型医療システムにおいて、前記処理手段は、前記磁界検出手段が出力した検出信号のうち、強度が所定値以上である検出信号を用いて前記処理を実行することを特徴とする。 In the capsule medical system, the processing unit performs the processing using a detection signal having an intensity equal to or higher than a predetermined value among detection signals output from the magnetic field detection unit.
 上記カプセル型医療システムにおいて、前記制御手段は、前記電池から前記磁界発生手段への電力供給を開始する際に、該開始を示す特定のパターンで電力供給を実行させ、前記処理手段は、前記磁界検出手段が前記パターンで変化する磁界を検出した際に、前記処理を開始することを特徴とする。 In the capsule medical system, when the control unit starts power supply from the battery to the magnetic field generation unit, the control unit executes power supply in a specific pattern indicating the start, and the processing unit performs the magnetic field generation. The processing is started when the detecting means detects a magnetic field that changes in the pattern.
 上記カプセル型医療システムにおいて、前記処理手段は、前記検出信号の立ち上がりタイミングと立ち下がりタイミングとの少なくとも一方を検出して、前記処理を開始することを特徴とする。 In the capsule medical system, the processing unit detects at least one of a rising timing and a falling timing of the detection signal and starts the processing.
 上記カプセル型医療システムにおいて、前記処理手段は、前記検出信号の立ち上がりタイミングを検出した後に続く所定期間内に前記磁界検出手段から出力された検出信号を用いて前記処理を実行することを特徴とする。 In the capsule medical system, the processing unit performs the process using the detection signal output from the magnetic field detection unit within a predetermined period after detecting the rising timing of the detection signal. .
 上記カプセル型医療システムにおいて、前記位置検出装置は、前記磁界検出手段から出力された検出信号を記憶する記憶手段をさらに有し、前記処理手段は、前記検出信号の立ち下がりタイミングを検出した後、該立ち下がりタイミングから所定期間分だけ前の期間の検出信号を前記記憶手段から遡って取得し、取得した検出信号を用いて前記処理を実行することを特徴とする。 In the capsule medical system, the position detection device further includes a storage unit that stores a detection signal output from the magnetic field detection unit, and the processing unit detects a falling timing of the detection signal, A detection signal in a period preceding the falling timing by a predetermined period is acquired retrospectively from the storage unit, and the processing is executed using the acquired detection signal.
 上記カプセル型医療システムにおいて、前記処理手段は、前記磁界検出手段が出力した検出信号のうち、強度が所定値よりも小さい検出信号の信号値をゼロに置換して、前記処理を実行することを特徴とする。 In the capsule medical system, the processing unit performs the processing by replacing a signal value of a detection signal whose intensity is smaller than a predetermined value among detection signals output from the magnetic field detection unit with zero. Features.
 上記カプセル型医療システムにおいて、前記処理手段は、所定の周期で所定期間の前記処理を実行し、前記電池から前記磁界発生手段に電力が供給される1回の期間の長さは、前記処理手段が前記処理を2回実行する期間以上であることを特徴とする。 In the capsule medical system, the processing unit performs the processing for a predetermined period at a predetermined cycle, and the length of one period in which power is supplied from the battery to the magnetic field generation unit is the processing unit. Is longer than the period in which the process is executed twice.
 上記カプセル型医療システムにおいて、前記処理は、前記検出信号に対する高速フーリエ変換処理を含み、前記処理手段は、所定の周期で所定期間の前記処理を実行し、前記電池から前記磁界発生手段に電力が供給される1回の期間の長さは、前記処理手段が前記高速フーリエ変換処理を2回実行する期間以上であることを特徴とする。 In the capsule medical system, the processing includes fast Fourier transform processing on the detection signal, the processing means performs the processing for a predetermined period at a predetermined cycle, and power is supplied from the battery to the magnetic field generating means. The length of one supplied period is equal to or longer than a period in which the processing means executes the fast Fourier transform process twice.
 上記カプセル型医療システムにおいて、前記カプセル型医療装置は、円筒状をなす胴部と、該胴部の端部に設けられた少なくとも1つのドーム部とを有する筐体と、前記筐体内から前記少なくとも1つのドーム部を介して前記筐体外を撮像する撮像手段と、をさらに有し、前記磁界発生手段は、電流が流れることにより磁界を発生するコイルと、前記コイルを駆動する駆動手段と、を有し、前記コイルは、前記筐体の中心軸に対して傾いた軸を中心とし、径が前記胴部の直径よりも大きく、且つ、前記撮像手段の視野を妨げない位置に巻回されている、又は、前記筐体の外周に巻回され、前記胴部の中心軸と平行な部分と、前記胴部の円周方向に沿った部分とを含む、ことを特徴とする。 In the capsule medical system, the capsule medical device includes a casing having a cylindrical body and at least one dome provided at an end of the body, and at least the inside from the casing. Imaging means for imaging the outside of the housing through one dome, and the magnetic field generating means includes a coil that generates a magnetic field when a current flows, and a driving means that drives the coil. And the coil is wound around a position that is centered on an axis inclined with respect to the central axis of the housing, has a diameter larger than the diameter of the body portion, and does not interfere with the field of view of the imaging unit. Or a portion that is wound around the outer periphery of the housing and is parallel to the central axis of the body portion, and a portion that extends along the circumferential direction of the body portion.
 本発明によれば、情報取得手段の動作と同期してカプセル型医療装置から間欠的に磁界を発生するので、カプセル型医療装置の位置を安定的に精度良く検出することが可能となる。また、本発明によれば、カプセル型医療装置において電池から磁界発生手段に間欠的に電力供給を行うことにより、間欠的に磁界を発生するので、カプセル型医療装置の位置検出精度を低下させることなく、カプセル型医療装置が内蔵する電池の消費電力を抑制することが可能となる。 According to the present invention, since the magnetic field is intermittently generated from the capsule medical device in synchronism with the operation of the information acquisition means, the position of the capsule medical device can be detected stably and accurately. According to the present invention, since the magnetic field is generated intermittently by intermittently supplying power from the battery to the magnetic field generating means in the capsule medical device, the position detection accuracy of the capsule medical device is lowered. In addition, the power consumption of the battery built in the capsule medical device can be suppressed.
図1は、本発明の実施の形態1に係るカプセル型医療システムの一構成例を示す模式図である。FIG. 1 is a schematic diagram showing a configuration example of a capsule medical system according to Embodiment 1 of the present invention. 図2は、図1に示すカプセル型内視鏡の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the capsule endoscope shown in FIG. 図3は、図2に示す磁界発生部の構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of the magnetic field generator shown in FIG. 図4は、図1に示すカプセル型医療システムの動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the capsule medical system shown in FIG. 図5は、図2に示す送信コイルの駆動周期に応じた電流レベルを示す図である。FIG. 5 is a diagram showing a current level corresponding to the driving cycle of the transmission coil shown in FIG. 図6は、送信コイルを常時駆動する場合における電流レベルを示す図である。FIG. 6 is a diagram showing a current level when the transmission coil is always driven. 図7は、図1に示す磁界検出部から出力された検出信号の信号処理部への取り込みタイミングを説明する図である。FIG. 7 is a diagram for explaining the timing of capturing the detection signal output from the magnetic field detection unit shown in FIG. 1 into the signal processing unit. 図8は、図1に示す磁界検出部から出力された検出信号の信号処理部への取り込みタイミングを説明する図である。FIG. 8 is a diagram for explaining the timing of capturing the detection signal output from the magnetic field detection unit shown in FIG. 1 into the signal processing unit. 図9は、図1に示す磁界検出部から出力された検出信号の信号処理部への取り込みタイミングを説明する図である。FIG. 9 is a diagram for explaining the timing of capturing the detection signal output from the magnetic field detection unit shown in FIG. 1 into the signal processing unit. 図10は、FFT窓フィルタ処理を説明するための図である。FIG. 10 is a diagram for explaining the FFT window filter processing. 図11(a)は、ハミングウィンドウの特性を示すグラフであり、図11(b)は、FFT処理により抽出された周波数スペクトルを示すグラフである。FIG. 11A is a graph showing the characteristics of the Hamming window, and FIG. 11B is a graph showing the frequency spectrum extracted by the FFT process. 図12は、送信コイルの駆動タイミングと撮像及び送信タイミングとの関係を示す図である。FIG. 12 is a diagram illustrating the relationship between the drive timing of the transmission coil and the imaging and transmission timing. 図13は、交番磁界の発生周期と磁界検出周期とが異なる場合における遅延時間を説明する図である。FIG. 13 is a diagram illustrating the delay time when the generation period of the alternating magnetic field is different from the magnetic field detection period. 図14は、実施の形態2に係る位置検出装置が備える信号処理部の構成を示すブロック図である。FIG. 14 is a block diagram illustrating a configuration of a signal processing unit included in the position detection device according to the second embodiment. 図15は、図14に示す間欠タイミング検出部の動作(交番磁界の立ち上がりと同期する場合)を説明する図である。FIG. 15 is a diagram for explaining the operation of the intermittent timing detection unit shown in FIG. 14 (when synchronized with the rising of the alternating magnetic field). 図16は、図14に示す間欠タイミング検出部の動作(交番磁界の立ち下がりと同期する場合)を説明する図である。FIG. 16 is a diagram for explaining the operation of the intermittent timing detector shown in FIG. 14 (when synchronized with the fall of the alternating magnetic field). 図17は、図14に示す間欠タイミング検出部の動作の変形例2-1を説明する図である。FIG. 17 is a diagram for explaining a modification 2-1 of the operation of the intermittent timing detection unit shown in FIG. 図18は、図14に示す間欠タイミング検出部の動作の変形例2-1を説明する図である。FIG. 18 is a diagram for explaining a modification 2-1 of the operation of the intermittent timing detection unit shown in FIG. 図19は、本発明の実施の形態3における磁界発生部への電力供給の制御例1において用いられるカプセル型内視鏡の構成を示す模式図である。FIG. 19 is a schematic diagram showing a configuration of a capsule endoscope used in Control Example 1 of power supply to a magnetic field generation unit according to Embodiment 3 of the present invention. 図20は、本発明の実施の形態3における磁界発生部への電力供給の制御例1を説明する図である。FIG. 20 is a diagram for explaining a control example 1 of power supply to the magnetic field generation unit according to the third embodiment of the present invention. 図21は、本発明の実施の形態3における磁界発生部への電力供給の制御例2を説明する図である。FIG. 21 is a diagram for explaining a control example 2 of power supply to the magnetic field generation unit in the third embodiment of the present invention. 図22は、本発明の実施の形態3における磁界発生部への電力供給の制御例3を説明する図である。FIG. 22 is a diagram for explaining a third control example of power supply to the magnetic field generation unit according to the third embodiment of the present invention. 図23は、本発明の実施の形態3における磁界発生部への電力供給の制御例4を説明する図である。FIG. 23 is a diagram for explaining a control example 4 of power supply to the magnetic field generation unit according to the third embodiment of the present invention. 図24は、本発明の実施の形態3における磁界発生部への電力供給の制御例5を説明する図である。FIG. 24 is a diagram for explaining a control example 5 of power supply to the magnetic field generation unit according to the third embodiment of the present invention. 図25は、送信コイルの第1の配置例を示す側面図である。FIG. 25 is a side view showing a first arrangement example of transmission coils. 図26は、送信コイルの第2の配置例を示す側面図である。FIG. 26 is a side view showing a second arrangement example of the transmission coils. 図27は、送信コイルの第3の配置例を示す側面図である。FIG. 27 is a side view showing a third arrangement example of the transmission coils. 図28は、送信コイルの第4の配置例を示す側面図である。FIG. 28 is a side view showing a fourth arrangement example of the transmission coils. 図29は、送信コイルの第5の配置例を示す図である。FIG. 29 is a diagram illustrating a fifth arrangement example of the transmission coils. 図30は、送信コイルの第6の配置例を示す図である。FIG. 30 is a diagram illustrating a sixth arrangement example of the transmission coils.
 以下に、本発明の実施の形態に係るカプセル型医療装置、位置検出装置、及びカプセル型医療システムについて、図面を参照しながら説明する。なお、以下の説明においては、カプセル型医療装置の一形態として、被検体内に経口にて導入されて被検体内(管腔内)を撮像するカプセル型内視鏡を例示するが、この実施の形態によって本発明が限定されるものではない。即ち、本発明は、例えば被検体の食道から肛門にかけて管腔内を移動するカプセル型内視鏡や、被検体内に薬剤等を配送するカプセル型医療装置や、被検体内のPHを測定するPHセンサを備えるカプセル型医療装置など、カプセル型をなす種々の医療装置に適用することが可能である。 Hereinafter, a capsule medical device, a position detection device, and a capsule medical system according to an embodiment of the present invention will be described with reference to the drawings. In the following description, a capsule endoscope that is orally introduced into a subject and images the inside of the subject (intraluminal) is illustrated as an embodiment of the capsule medical device. The present invention is not limited by the form. That is, the present invention measures, for example, a capsule endoscope that moves in the lumen from the esophagus to the anus of the subject, a capsule medical device that delivers a drug or the like into the subject, and a PH in the subject. The present invention can be applied to various medical devices having a capsule shape, such as a capsule medical device including a PH sensor.
 また、以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。従って、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。なお、図面の記載において、同一部分には同一の符号を付している。 In the following description, each drawing merely schematically shows the shape, size, and positional relationship to the extent that the contents of the present invention can be understood. Therefore, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing. In the description of the drawings, the same portions are denoted by the same reference numerals.
(実施の形態1)
 図1は、本発明の実施の形態1に係るカプセル型医療システムの一構成例を示す模式図である。図1に示すように、実施の形態1におけるカプセル型医療システム1は、被検体2の管腔内に導入されるカプセル型医療装置として、被検体内を撮像することにより取得した撮像信号を無線送信するカプセル型内視鏡10と、該カプセル型内視鏡10の被検体2内における位置を検出する位置検出装置20とを備える。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration example of a capsule medical system according to Embodiment 1 of the present invention. As shown in FIG. 1, the capsule medical system 1 according to the first embodiment wirelessly transmits an imaging signal acquired by imaging the subject as a capsule medical device introduced into the lumen of the subject 2. A capsule endoscope 10 for transmission and a position detection device 20 for detecting the position of the capsule endoscope 10 in the subject 2 are provided.
 図2は、図1に示すカプセル型内視鏡10の内部構造の一例を示す模式図である。図2に示すように、カプセル型内視鏡10は、被検体2の管腔内に導入し易い大きさに形成されたカプセル型をなす筐体101と、該筐体101内に収納され、被検体2内を撮像して撮像信号を取得する撮像ユニット110と、撮像ユニット110を含むカプセル型内視鏡10の各部の動作を制御すると共に、撮像ユニット110により取得された撮像信号に対して所定の信号処理を施す制御部120と、信号処理が施された撮像信号を無線送信する送信部130と、カプセル型内視鏡10の各部に電力を供給する電源部140と、カプセル型内視鏡10の位置検出用の交番磁界を発生する磁界発生部150とを備える。なお、図2においては、筐体101の断面を示している。 FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope 10 shown in FIG. As shown in FIG. 2, the capsule endoscope 10 includes a capsule-shaped casing 101 formed in a size that can be easily introduced into the lumen of the subject 2, and is housed in the casing 101. The imaging unit 110 that captures an image of the inside of the subject 2 to acquire an imaging signal and the operation of each part of the capsule endoscope 10 including the imaging unit 110 are controlled, and the imaging signal acquired by the imaging unit 110 is controlled. A control unit 120 that performs predetermined signal processing, a transmission unit 130 that wirelessly transmits an imaging signal subjected to signal processing, a power supply unit 140 that supplies power to each unit of the capsule endoscope 10, and a capsule endoscope And a magnetic field generator 150 that generates an alternating magnetic field for detecting the position of the mirror 10. In FIG. 2, a cross section of the housing 101 is shown.
 筐体101は、円筒状をなす胴部102と、該胴部102の両端にそれぞれ設けられたドーム部103、104とを有する外装ケースからなる。胴部102は、可視光に対して略不透明な有色の部材によって形成されている。また、ドーム部103、104の少なくとも一方(図2においては撮像ユニット110側であるドーム部103)は、可視光等の所定の波長帯域の光に対して透明な光学部材によって形成されている。なお、図2においては、カプセル型内視鏡10に撮像ユニット110を1つのみ設けているが、撮像ユニット110を2つ設けても良く、この場合、他方のドーム部104も透明な光学部材によって形成される。このような筐体101は、撮像ユニット110、制御部120、送信部130、電源部140、及び磁界発生部150を液密に内包する。 The housing 101 is composed of an exterior case having a cylindrical body portion 102 and dome portions 103 and 104 provided at both ends of the body portion 102, respectively. The trunk | drum 102 is formed of the colored member substantially opaque with respect to visible light. At least one of the dome parts 103 and 104 (the dome part 103 on the imaging unit 110 side in FIG. 2) is formed of an optical member that is transparent to light of a predetermined wavelength band such as visible light. In FIG. 2, only one imaging unit 110 is provided in the capsule endoscope 10, but two imaging units 110 may be provided. In this case, the other dome 104 is also a transparent optical member. Formed by. Such a casing 101 includes the imaging unit 110, the control unit 120, the transmission unit 130, the power supply unit 140, and the magnetic field generation unit 150 in a liquid-tight manner.
 撮像ユニット110は、被検体2に関する情報として撮像信号を取得する情報取得手段であり、LED等の発光素子及び該発光素子を駆動する駆動回路(図示せず)を含む照明部111と、集光レンズ等の光学系112と、CMOSイメージセンサ又はCCD等の撮像素子及び該撮像素子を駆動する駆動回路(図示せず)を含む撮像部113とを有する。照明部111は、撮像部113の撮像視野に白色光等の照明光を照射し、ドーム部103を介して撮像視野v内の被検体2を照明する。光学系112は、光軸Laが筐体101の長軸と一致するように配置され、撮像視野v内の被検体2からの反射光を集光し、撮像部113の撮像面に結像する。撮像部113は、撮像面に結像された被検体2の像を表す光信号を光電変換処理することにより、撮像信号を生成する。 The imaging unit 110 is information acquisition means for acquiring an imaging signal as information relating to the subject 2, and includes an illumination unit 111 including a light emitting element such as an LED and a drive circuit (not shown) for driving the light emitting element, An optical system 112 such as a lens, and an image pickup unit 113 including an image pickup device such as a CMOS image sensor or a CCD and a drive circuit (not shown) for driving the image pickup device. The illumination unit 111 irradiates the imaging field of the imaging unit 113 with illumination light such as white light, and illuminates the subject 2 in the imaging field v through the dome unit 103. The optical system 112 is arranged so that the optical axis La coincides with the long axis of the housing 101, collects the reflected light from the subject 2 in the imaging field of view v, and forms an image on the imaging surface of the imaging unit 113. . The imaging unit 113 generates an imaging signal by performing photoelectric conversion processing on an optical signal representing the image of the subject 2 formed on the imaging surface.
 なお、撮像ユニット110を2つ設ける場合には、2つ配置される光学系の両方の光軸が共に筐体101の長軸と一致するように、撮像ユニット110を筐体101の両端のドーム部103側及びドーム部104側にそれぞれ配置する。また、撮像ユニット110を1つのみ設ける場合、撮像ユニット110が配置されない側の筐体101の端部は、必ずしもドーム状にしなくても良い。この場合、ドーム部104の代わりに、例えば円盤状の部材で胴部102の端部を封止しても良い。 When two imaging units 110 are provided, the imaging units 110 are arranged at the dome at both ends of the casing 101 so that both optical axes of the two optical systems are aligned with the long axis of the casing 101. It arrange | positions at the part 103 side and the dome part 104 side, respectively. Further, when only one image pickup unit 110 is provided, the end of the housing 101 on the side where the image pickup unit 110 is not necessarily required to have a dome shape. In this case, instead of the dome 104, the end of the body 102 may be sealed with a disk-shaped member, for example.
 制御部120は、所定の周期(撮像フレームレート)で撮像部113を動作させると共に、この撮像フレームレートと同期して、照明部111を発光させる。また、制御部120は、撮像ユニット110が生成した撮像信号に対し、A/D変換や、その他所定の信号処理を施して画像データを生成する。さらに、制御部120は、電源部140から磁界発生部150に電力を間欠的に供給させることにより、磁界発生部150から交番磁界を間欠的に発生させる。交番磁界の発生パターンについては後述する。 The control unit 120 operates the imaging unit 113 at a predetermined cycle (imaging frame rate) and causes the illumination unit 111 to emit light in synchronization with the imaging frame rate. Further, the control unit 120 generates image data by performing A / D conversion and other predetermined signal processing on the imaging signal generated by the imaging unit 110. Further, the control unit 120 intermittently generates an alternating magnetic field from the magnetic field generation unit 150 by intermittently supplying power from the power supply unit 140 to the magnetic field generation unit 150. The generation pattern of the alternating magnetic field will be described later.
 送信部130は、図示しない送信アンテナを備え、制御部120によって信号処理が施された画像データ及び関連情報を取得して変調処理を施し、送信アンテナを介して外部に順次無線送信する。 The transmission unit 130 includes a transmission antenna (not shown), acquires image data and related information subjected to signal processing by the control unit 120, performs modulation processing, and sequentially wirelessly transmits to the outside via the transmission antenna.
 電源部140は、例えばボタン型をなす電池と磁気スイッチ等のスイッチ部とによって実現される。電源部140は、外部から印加された磁界によって磁気スイッチが切り替わることにより自身のオンオフ状態を切り替え、オン状態の間、カプセル型内視鏡10の各部に電源を供給する。また、電源部140は、オフ状態の間、カプセル型内視鏡10の各部への電力供給を停止する。 The power supply unit 140 is realized by, for example, a button-type battery and a switch unit such as a magnetic switch. The power supply unit 140 switches its on / off state when the magnetic switch is switched by a magnetic field applied from the outside, and supplies power to each unit of the capsule endoscope 10 during the on state. In addition, the power supply unit 140 stops supplying power to each unit of the capsule endoscope 10 during the off state.
 磁界発生部150は、電流が流れることにより磁界を発生する送信コイル15aと、該送信コイル15aと共に共振回路151を形成するコンデンサ15bとを含み、所定の周波数の交番磁界を発生する。送信コイル15aの配置は、撮像部113の視界を妨げることがなければ、特に限定されない。実施の形態1においては、送信コイル15aの中心軸を筐体101の長軸と平行に配置し、胴部102の内周に沿って送信コイル15aを巻回している。 The magnetic field generation unit 150 includes a transmission coil 15a that generates a magnetic field when a current flows, and a capacitor 15b that forms a resonance circuit 151 together with the transmission coil 15a, and generates an alternating magnetic field having a predetermined frequency. The arrangement of the transmission coil 15a is not particularly limited as long as the field of view of the imaging unit 113 is not hindered. In the first embodiment, the central axis of the transmission coil 15 a is arranged in parallel with the long axis of the housing 101, and the transmission coil 15 a is wound along the inner periphery of the body portion 102.
 送信コイル15aの形態として、好ましくは、送信コイル15aの有効面積をできるだけ大きく取ると良い。また、送信コイル15aの駆動効率の低下を防ぐため、送信コイル15aの内部空間には電源部(電池)140や送信部(送信アンテナ)130を配置しないことが好ましい。例えば、2つの撮像ユニット110を筐体101の長軸の両端にそれぞれ設ける場合には、これらの撮像ユニット110の中間に送信コイル15aを配置すると良い。 As a form of the transmission coil 15a, it is preferable that the effective area of the transmission coil 15a be as large as possible. In order to prevent the drive efficiency of the transmission coil 15a from being lowered, it is preferable not to arrange the power supply unit (battery) 140 and the transmission unit (transmission antenna) 130 in the internal space of the transmission coil 15a. For example, when two image pickup units 110 are provided at both ends of the long axis of the housing 101, the transmission coil 15 a may be disposed between these image pickup units 110.
 図3は、磁界発生部150の構成をより詳細に示す図である。図3に示すように、磁界発生部150は、送信コイル15a及びコンデンサ15bからなる共振回路151に加え、信号発生部152及び駆動部153を備える。以下において、共振回路151の共振周波数(即ち、交番磁界の周波数)をF0とする。 FIG. 3 is a diagram showing the configuration of the magnetic field generator 150 in more detail. As shown in FIG. 3, the magnetic field generation unit 150 includes a signal generation unit 152 and a drive unit 153 in addition to the resonance circuit 151 including the transmission coil 15 a and the capacitor 15 b. Hereinafter, the resonance frequency of the resonance circuit 151 (that is, the frequency of the alternating magnetic field) is F 0 .
 信号発生部152は、印加された電圧に応じた周波数で発振する振動子を含む発振器である。なお、該振動子には、共振周波数F0の整数倍と略等しい周波数で発振させる電圧が印加される。 The signal generator 152 is an oscillator including a vibrator that oscillates at a frequency corresponding to an applied voltage. A voltage that oscillates at a frequency substantially equal to an integral multiple of the resonance frequency F 0 is applied to the vibrator.
 駆動部153は、信号発生部152から発生した信号に基づいてコイル15aに電圧を印加して駆動することにより、コイル15aから交番磁界を発生させる。 The driving unit 153 generates an alternating magnetic field from the coil 15a by driving the coil 15a by applying a voltage to the coil 15a based on the signal generated from the signal generating unit 152.
 再び図1を参照すると、位置検出装置20は、カプセル型内視鏡10から発生した交番磁界を検出する磁界検出部21と、該磁界検出部21が検出した交番磁界に基づいて、被検体2内におけるカプセル型内視鏡10の位置を検出する位置検出装置本体22とを備える。 Referring again to FIG. 1, the position detection device 20 includes a magnetic field detection unit 21 that detects an alternating magnetic field generated from the capsule endoscope 10, and the subject 2 based on the alternating magnetic field detected by the magnetic field detection unit 21. And a position detection device main body 22 for detecting the position of the capsule endoscope 10 inside.
 磁界検出部21は、各々が交番磁界を受信して検出信号を出力する複数の受信コイル21aを有する。これらの受信コイル21aは検査中の被検体2の近傍に、所定の配置で並べられる。図1において、受信コイル21aは、被検体2が横たわる載置台30の下方に配置されている。 The magnetic field detector 21 has a plurality of receiving coils 21a each receiving an alternating magnetic field and outputting a detection signal. These receiving coils 21a are arranged in a predetermined arrangement in the vicinity of the subject 2 under examination. In FIG. 1, the receiving coil 21a is disposed below the mounting table 30 on which the subject 2 lies.
 位置検出装置本体22は、当該位置検出装置本体22に対する種々の情報や命令の入力に用いられる入力部23と、当該位置検出装置本体22によって処理された種々の情報等を表示する出力部24と、カプセル型内視鏡10から無線送信された撮像信号をアンテナ25aを介して受信する受信部25と、各受信コイル21aから出力された検出信号に対して種々の信号処理を施して磁界情報を生成する信号処理部26と、記憶部27と、位置検出装置本体22の各部の動作を制御すると共に、受信部25から入力された撮像信号や、信号処理部26から入力された磁界情報に対して所定の演算処理を実行する制御部28とを備える。 The position detection device main body 22 includes an input unit 23 used to input various information and commands to the position detection device main body 22, and an output unit 24 that displays various information processed by the position detection device main body 22. The receiving unit 25 that receives the imaging signal wirelessly transmitted from the capsule endoscope 10 via the antenna 25a and the detection signal output from each receiving coil 21a are subjected to various signal processing to obtain magnetic field information. Controls the operation of each part of the signal processing unit 26, the storage unit 27, and the position detection device main body 22 to be generated, and controls the imaging signal input from the reception unit 25 and the magnetic field information input from the signal processing unit 26. And a control unit 28 for executing predetermined arithmetic processing.
 入力部23は、各種ボタン、スイッチ、キーボード等の入力デバイスや、マウス、タッチパネル等のポインティングデバイス等によって実現され、ユーザによる入力操作に応じて、各種情報を制御部28に入力する。 The input unit 23 is realized by input devices such as various buttons, switches, and keyboards, pointing devices such as a mouse and a touch panel, and inputs various information to the control unit 28 in accordance with an input operation by the user.
 出力部24は、液晶や有機EL等の各種ディスプレイを含み、入力部23から入力された各種情報や、被検体2の体内画像や、体内画像の撮像時におけるカプセル型内視鏡10の位置情報等を画面表示する。 The output unit 24 includes various displays such as liquid crystal and organic EL, and various information input from the input unit 23, in-vivo images of the subject 2, and position information of the capsule endoscope 10 at the time of capturing the in-vivo images. Etc. are displayed on the screen.
 被検体2の体表には、カプセル型内視鏡10から無線送信された撮像信号を受信する複数のアンテナ25aが貼り付けられている。受信部25は、これらのアンテナ25aのうち、撮像信号に対して最も受信強度の高いアンテナ25aを選択し、選択したアンテナ25aを介して受信した撮像信号に対して復調処理等を行うことにより、被検体2の体内画像に対応する画像データを取得する。 A plurality of antennas 25 a for receiving imaging signals wirelessly transmitted from the capsule endoscope 10 are attached to the body surface of the subject 2. The receiving unit 25 selects the antenna 25a having the highest reception intensity with respect to the imaging signal among these antennas 25a, and performs demodulation processing or the like on the imaging signal received via the selected antenna 25a. Image data corresponding to the in-vivo image of the subject 2 is acquired.
 信号処理部26は、磁界検出部21から出力された検出信号の波形を整形するフィルタ部261と、増幅器262と、検出信号にA/D変換処理を施して検出データを生成するA/D変換部263とを有する。 The signal processing unit 26 includes a filter unit 261 that shapes the waveform of the detection signal output from the magnetic field detection unit 21, an amplifier 262, and A / D conversion that generates detection data by performing A / D conversion processing on the detection signal. Part 263.
 記憶部27は、フラッシュメモリ又はハードディスク等の書き換え可能に情報を保存する記憶媒体及び読取装置を用いて実現される。記憶部27は、制御部28が位置検出装置本体22の各部を制御するための各種プログラムや各種パラメータ、カプセル型内視鏡10によって撮像された被検体2の体内画像の画像データ、被検体2内におけるカプセル型内視鏡10の位置情報等を記憶する。 The storage unit 27 is realized by using a storage medium and a reading device that store information in a rewritable manner such as a flash memory or a hard disk. The storage unit 27 includes various programs and various parameters for the control unit 28 to control each unit of the position detection device main body 22, in-vivo image data of the subject 2 captured by the capsule endoscope 10, and the subject 2. The position information of the capsule endoscope 10 in the inside is stored.
 制御部28は、例えばCPU(Central Processing Unit)等を用いて構成され、記憶部27からプログラムを読み出し、位置検出装置本体22を構成する各部に対する指示やデータの転送等を行って位置検出装置本体22の動作を統括的に制御する。また、制御部28は、受信部25から入力された画像データに対してホワイトバランス処理、デモザイキング、ガンマ変換等、平滑化(ノイズ除去等)等の所定の画像処理を施す画像処理部281と、カプセル型内視鏡10の位置を表す情報(位置情報)を取得する位置情報生成部282とを有する。 The control unit 28 is configured using, for example, a CPU (Central Processing Unit) or the like, reads a program from the storage unit 27, performs instructions to each unit constituting the position detection device main body 22, transfers data, and the like, and performs the position detection device main body. The operation of 22 is comprehensively controlled. In addition, the control unit 28 includes an image processing unit 281 that performs predetermined image processing such as white balance processing, demosaicing, gamma conversion, smoothing (noise removal, etc.) on the image data input from the receiving unit 25. A position information generating unit 282 that acquires information (position information) indicating the position of the capsule endoscope 10.
 位置情報生成部282は、A/D変換部263から出力された検出データに高速フーリエ変換処理(以下、FFT処理という)を施すことにより、交番磁界の振幅及び位相等の磁界情報を抽出するFFT処理部282aと、FFT処理部282aによって抽出された磁界情報に基づいてカプセル型内視鏡10の位置を算出する位置算出部282bとを有する。 The position information generation unit 282 performs fast Fourier transform processing (hereinafter referred to as FFT processing) on the detection data output from the A / D conversion unit 263 to extract magnetic field information such as the amplitude and phase of the alternating magnetic field. The processing unit 282a and a position calculation unit 282b that calculates the position of the capsule endoscope 10 based on the magnetic field information extracted by the FFT processing unit 282a.
 これらの各部のうち、信号処理部26及び位置情報生成部282が、磁界検出部21が出力した検出信号に基づいてカプセル型内視鏡10の位置を算出するための処理を実行する処理手段を構成する。 Among these units, a processing unit that executes processing for calculating the position of the capsule endoscope 10 based on the detection signal output from the magnetic field detection unit 21 by the signal processing unit 26 and the position information generation unit 282. Constitute.
 次に、カプセル型医療システム1の動作について説明する。図4は、カプセル型医療システム1の動作を示すフローチャートである。
 まず、ステップS1において、カプセル型内視鏡10の電源部140をオンして被検体2内に導入する。
Next, the operation of the capsule medical system 1 will be described. FIG. 4 is a flowchart showing the operation of the capsule medical system 1.
First, in step S1, the power supply unit 140 of the capsule endoscope 10 is turned on and introduced into the subject 2.
 続くステップS2において、カプセル型内視鏡10は、電源部140から磁界発生部150に電力を間欠的に供給し、磁界発生部150から交番磁界を間欠的に発生させる。図5は、送信コイル15aの駆動周期に応じた電流レベルを示す図である。図5に示すように、実施の形態1においては、送信コイル15aに対し、電流値ICの電流を周期T0(=τ1+τ2)且つ所定のデューティ比(τ1/T0)で流す。以下、周期T0を送信コイル15aの駆動周期、即ち、交番磁界の発生周期とする。また、期間τ1は、交番磁界の発生期間(送信コイル15aの駆動期間)であり、期間τ2は、交番磁界のオフ期間(送信コイル15aの駆動停止期間)である。 In subsequent step S <b> 2, the capsule endoscope 10 intermittently supplies power from the power supply unit 140 to the magnetic field generation unit 150 and intermittently generates an alternating magnetic field from the magnetic field generation unit 150. FIG. 5 is a diagram illustrating a current level according to the driving cycle of the transmission coil 15a. As shown in FIG. 5, in the first embodiment, the current of the current value I C is transmitted to the transmission coil 15a with a period T 0 (= τ 1 + τ 2 ) and a predetermined duty ratio (τ 1 / T 0 ). Shed. Hereinafter, the period T 0 is defined as a driving period of the transmission coil 15a, that is, an alternating magnetic field generation period. The period τ 1 is an alternating magnetic field generation period (transmission coil 15a drive period), and the period τ 2 is an alternating magnetic field off period (transmission coil 15a drive stop period).
 ここで、カプセル型内視鏡10の位置検出精度は、カプセル型内視鏡10から発生する交番磁界を磁界検出部21が検出する精度、即ち、検出信号のS/N比に依存する。例えば、検出信号のS/N比が6dB向上すると、カプセル型内視鏡10の位置検出精度が2倍に向上する。そして、検出信号のS/N比は、カプセル型内視鏡10の送信コイル15aが発生する交番磁界のノイズと、この交番磁界を検出した位置検出装置20側の検出回路(磁界検出部21及び信号処理部26)におけるノイズとのうち、大きい方のノイズに依存する。 Here, the position detection accuracy of the capsule endoscope 10 depends on the accuracy with which the magnetic field detection unit 21 detects the alternating magnetic field generated from the capsule endoscope 10, that is, the S / N ratio of the detection signal. For example, when the S / N ratio of the detection signal is improved by 6 dB, the position detection accuracy of the capsule endoscope 10 is improved twice. The S / N ratio of the detection signal is determined based on the noise of the alternating magnetic field generated by the transmission coil 15a of the capsule endoscope 10 and the detection circuit (the magnetic field detection unit 21 and the detection circuit on the position detection device 20 side that detects the alternating magnetic field). It depends on the larger of the noise in the signal processor 26).
 また、送信コイル15aが発生する交番磁界の強度は、ビオ=サバールの法則により、送信コイル15aに流れる電流に比例する。一方、磁界発生部150における消費電力は、一般に、送信コイル15aに流す電流に比例するため、磁界発生部150が発生する交番磁界の強度とも比例関係にある。従って、磁界発生部150が発生する交番磁界の強度を抑制すると、それに伴って、交番磁界のノイズ強度も小さくなることが予想される。この場合、検出信号のS/N比に対し、交番磁界そのもののノイズよりも、位置検出装置20側におけるノイズの影響の方が大きくなる。 Also, the strength of the alternating magnetic field generated by the transmission coil 15a is proportional to the current flowing through the transmission coil 15a according to the Bio-Savart law. On the other hand, since the power consumption in the magnetic field generation unit 150 is generally proportional to the current flowing through the transmission coil 15a, it is also proportional to the strength of the alternating magnetic field generated by the magnetic field generation unit 150. Therefore, if the strength of the alternating magnetic field generated by the magnetic field generation unit 150 is suppressed, the noise strength of the alternating magnetic field is expected to be reduced accordingly. In this case, the influence of noise on the position detection device 20 side is greater than the noise of the alternating magnetic field itself with respect to the S / N ratio of the detection signal.
 そこで、実施の形態1においては、送信コイル15aに流す電流の強度を弱くするのではなく、電源部140から磁界発生部150に対して電力を間欠的に供給し、電流がゼロになる期間(駆動オフの期間)を設けることにより、磁界発生部150における消費電力を抑制している。一方、後述するように、位置検出装置20においては、駆動オフの期間に対応する検出信号を、カプセル型内視鏡10の位置算出に用いないこととする。 Therefore, in the first embodiment, the power supplied from the power supply unit 140 to the magnetic field generation unit 150 is intermittently supplied to the magnetic field generation unit 150 instead of weakening the intensity of the current flowing through the transmission coil 15a ( By providing the drive off period), power consumption in the magnetic field generator 150 is suppressed. On the other hand, as described later, the position detection device 20 does not use the detection signal corresponding to the drive-off period for the position calculation of the capsule endoscope 10.
 送信コイル15aの駆動をオフにする期間を設けるためには、例えば、電源部140から磁界発生部150への電力供給を、固定周期且つ固定デューティ比でオン/オフを繰り返せば良い。この場合、駆動オンの期間においては、デューティ比の分だけ送信コイル15aに流す電流値を大きくしても良い。また、駆動周期T0及びデューティ比は、一定でなくても良い。なお、磁界検出部21において送信コイル15aの駆動オフの期間を検出できるようにするため、送信コイル15aの駆動周期T0を、位置検出装置20が1回の位置検出のために磁界を検出する期間(以下、検出期間という)T1よりも短くすると良い。 In order to provide a period during which the driving of the transmission coil 15a is turned off, for example, power supply from the power supply unit 140 to the magnetic field generation unit 150 may be repeatedly turned on / off at a fixed period and a fixed duty ratio. In this case, during the drive-on period, the current value that flows through the transmission coil 15a may be increased by the duty ratio. Further, the driving cycle T 0 and the duty ratio may not be constant. In order to enable the magnetic field detection unit 21 to detect the drive-off period of the transmission coil 15a, the drive cycle T 0 of the transmission coil 15a is detected, and the position detection device 20 detects the magnetic field for one position detection. It may be shorter than a period (hereinafter referred to as a detection period) T 1 .
 このように送信コイル15aに流す電流を制御した場合、磁界検出部21が出力する検出信号のS/N比は次のとおりとなる。図6は、送信コイル15aを常時駆動する場合における電流レベルを示す図であり、比較のために示す。 When the current flowing through the transmission coil 15a is controlled in this way, the S / N ratio of the detection signal output from the magnetic field detection unit 21 is as follows. FIG. 6 is a diagram showing a current level when the transmission coil 15a is always driven, and is shown for comparison.
 送信コイル15aの両端における電圧をVCとすると、図6に示すように送信コイル15aに電流を流し続けた場合、磁界発生部150における消費電力WC0は、次式(1)によって与えられる。
  WC0=VC×IC …(1)
Assuming that the voltage at both ends of the transmission coil 15a is V C , the power consumption W C0 in the magnetic field generator 150 is given by the following equation (1) when a current is continuously passed through the transmission coil 15a as shown in FIG.
W C0 = V C × I C (1)
 一方、デューティ比をD(0<D<1)とすると、図5に示すように送信コイル15aに流す電流のオン/オフ(電流値I0/0)を繰り返した場合、磁界発生部150における消費電力WC1は、次式(2)によって与えられる。
  WC1=VC×IC×D …(2)
即ち、消費電力は、デューティ比Dの分だけ抑制される。
On the other hand, when the duty ratio is D (0 <D <1) , the case of repeating current on / off flow to the transmitter coil 15a as shown in FIG. 5 (current value I 0/0), the magnetic field generator 150 The power consumption W C1 is given by the following equation (2).
W C1 = V C × I C × D (2)
That is, the power consumption is suppressed by the duty ratio D.
 上述したように、カプセル型内視鏡10の位置検出精度は、検出信号のS/N比に依存する。そこで、図5及び図6の各パターンで交番磁界を発生させた場合について、磁界検出部21におけるS/N比を以下のように算出する。 As described above, the position detection accuracy of the capsule endoscope 10 depends on the S / N ratio of the detection signal. Therefore, the S / N ratio in the magnetic field detector 21 is calculated as follows when the alternating magnetic field is generated in each pattern of FIGS. 5 and 6.
 まず、送信コイル15aに電流を常時流す場合、信号レベルをSC0、ノイズレベルをNC0とすると、S/N比は20×log(SC0/NC0)となる(logは常用対数)。 First, when a current is constantly passed through the transmission coil 15a, if the signal level is S C0 and the noise level is N C0 , the S / N ratio is 20 × log (S C0 / N C0 ) (log is a common logarithm).
 一方、送信コイル15aに流す電流のオン/オフを切り替える場合、信号レベルをSC1、ノイズレベルをNC1とすると、電流がオフの期間における信号は位置算出に使用しないこととするため、信号レベルSC1は、上記信号レベルSC0に対してデューティ比Dの分だけ小さくなる。即ち、SC1=SC0×Dとなる。また、ノイズレベルNC1の支配要因は、位置検出装置20側の検出回路にあるので、時間当たりのノイズレベルNC1は上記ノイズレベルNC0と変わらないが、帯域がデューティ比Dの分だけ狭まるのと同じ効果となるため、NC2=NC0×√Dとなる。従って、この場合、S/N比は、次式(3)によって与えられる。
Figure JPOXMLDOC01-appb-M000001
On the other hand, when switching on / off the current flowing through the transmission coil 15a, if the signal level is S C1 and the noise level is N C1 , the signal during the current off period is not used for position calculation. S C1 becomes smaller than the signal level S C0 by the duty ratio D. That is, S C1 = S C0 × D. Also, dominant factor in the noise level N C1 is because the detection circuit of the position detecting device 20 side, the noise level N C1 per hour is not the same as the noise level N C0, narrow band by the amount of the duty ratio D Therefore, N C2 = N C0 × √D. Therefore, in this case, the S / N ratio is given by the following equation (3).
Figure JPOXMLDOC01-appb-M000001
 即ち、送信コイル15aを間欠的に駆動する場合、消費電力はデューティ比Dの分だけ小さくなるが、S/N比は、デューティ比Dの平方根の分しか小さくならない。例えば、デューティ比を50%にすると、S/N比の低下は、20×log√D≒-3dB(≒71%)に留められる。即ち、この場合、送信コイル15aを駆動し続ける場合と比較して、消費電力当たりの位置検出精度が高くなり、駆動効率を向上させることができる。 That is, when the transmission coil 15a is driven intermittently, the power consumption is reduced by the duty ratio D, but the S / N ratio is reduced only by the square root of the duty ratio D. For example, when the duty ratio is set to 50%, the decrease in the S / N ratio is limited to 20 × log√D≈−3 dB (≈71%). That is, in this case, compared with the case where the transmission coil 15a is continuously driven, the position detection accuracy per power consumption is increased, and the driving efficiency can be improved.
 また、送信コイル15aの駆動オンの期間にデューティ比Dの分だけ送信コイル15aに流す電流を増加させる場合、消費電力WC2は次式(4)によって与えられる。
  WC2=VC×(IC/D)×D=VC×IC…(4)
Further, when the current flowing through the transmission coil 15a is increased by the duty ratio D during the drive-on period of the transmission coil 15a, the power consumption W C2 is given by the following equation (4).
W C2 = V C × (I C / D) × D = V C × I C (4)
 この場合、電流値がゼロとなる期間における信号は位置算出に使用しないため、次式(5)に示すように、信号レベルSC2は、送信コイル15aを駆動し続ける場合に対してデューティ比Dの分だけ低下する。
  SC2=(SC0/D)×D=SC0 …(5)
In this case, since the signal during the period in which the current value is zero is not used for position calculation, the signal level S C2 has a duty ratio D as compared with the case where the transmission coil 15a is continuously driven as shown in the following equation (5). Decreases by the amount of.
S C2 = (S C0 / D) × D = S C0 (5)
 一方、送信コイル15aに流す電流のオン/オフを切り替えるため、ノイズレベルNC2は、NC0×√Dとなる。
 従って、この場合のS/N比は、次式(6)によって与えられる。
Figure JPOXMLDOC01-appb-M000002
式(6)において、0<D<1であるため、-log√D>0となる。即ち、送信コイル15aを間欠的に駆動し、且つ、デューティ比Dの分だけ送信コイル15aに流す電流を増加させる場合、送信コイル15aを駆動し続ける場合に対して消費電力は維持したまま、S/N比を向上させることができる。
On the other hand, the noise level N C2 is N C0 × √D in order to switch on / off the current flowing through the transmission coil 15a.
Therefore, the S / N ratio in this case is given by the following equation (6).
Figure JPOXMLDOC01-appb-M000002
In equation (6), 0 <D <1, so −log√D> 0. That is, when the transmission coil 15a is intermittently driven and the current flowing through the transmission coil 15a is increased by the duty ratio D, the power consumption is maintained while the transmission coil 15a is continuously driven. / N ratio can be improved.
 続くステップS3において、カプセル型内視鏡10から発生した交番磁界を磁界検出部21の各受信コイル21aにおいて検出し、各受信コイル21aから出力された検出信号を間欠的に信号処理部26に取り込む。 In subsequent step S3, the alternating magnetic field generated from the capsule endoscope 10 is detected by each reception coil 21a of the magnetic field detection unit 21, and the detection signal output from each reception coil 21a is intermittently taken into the signal processing unit 26. .
 図7~図9は、磁界検出部21から出力された検出信号を信号処理部26に取り込む取り込みタイミングを説明するための図である。ここで、カプセル型内視鏡10から発生する交番磁界に応じて磁界検出部21から出力される検出信号に対し、信号処理部26が非同期に検出信号を取り込むと、A/D変換部263やFFT処理部282aは、各々が処理対象とする検出信号の区間を検知することができなくなってしまう。 7 to 9 are diagrams for explaining the capture timing of capturing the detection signal output from the magnetic field detection unit 21 into the signal processing unit 26. FIG. Here, when the signal processing unit 26 asynchronously captures the detection signal with respect to the detection signal output from the magnetic field detection unit 21 according to the alternating magnetic field generated from the capsule endoscope 10, the A / D conversion unit 263 or The FFT processing unit 282a cannot detect the section of the detection signal to be processed.
 そこで、実施の形態1においては、例えば図7に示すように、信号処理部26において、所定の周期T1+T2で所定期間T1の信号取り込み動作を実行することとし、交番磁界の発生期間τ1内に少なくとも2回の取り込み期間T1が含まれるように、交番磁界の発生期間τ1、取り込み期間T1、及び取り込み間隔T2を設定する。即ち、τ1≧2×T1+T2となるようにする。このように設定することにより、交番磁界が発生する前(磁界検出部21から検出信号が出力される前)に、信号処理部26が信号の取り込みを開始したとしても(例えば、タイミングt1)、その次の取り込みタイミング(例えば、タイミングt2)は必ず交番磁界の発生期間τ1に含まれることになるので、確実な信号取り込みを行うことができる。 Therefore, in the first embodiment, for example, as shown in FIG. 7, the signal processing unit 26, and executes the signal acquisition operation a predetermined period T 1 with a predetermined period T 1 + T 2, the generation period of the alternating magnetic field as at least two capture period T 1 is included in the tau 1, sets the generation period tau 1 alternating magnetic field, the uptake period T 1, and the sampling intervals of T 2. That is, τ 1 ≧ 2 × T 1 + T 2 is satisfied. By setting in this way, even if the signal processing unit 26 starts capturing signals before the alternating magnetic field is generated (before the detection signal is output from the magnetic field detection unit 21) (for example, timing t 1 ). The next capturing timing (for example, timing t 2 ) is always included in the alternating magnetic field generation period τ 1 , so that reliable signal capturing can be performed.
 或いは、図8に示すように、交番磁界の発生開始をトリガとして、信号処理部26が検出信号の取り込みを開始しても良い。即ち、磁界検出部21における磁界の検出強度が一定期間、所定値以下である状態が続いた後、所定値を超えた際に、信号処理部26は検出信号の取り込みを開始する。その後、検出強度が所定値を下回るか、又は所定値を下回った期間が所定期間以上となった場合に、信号処理部26は、検出信号の取り込みを停止する。或いは、検出信号の取り込みを開始してから予め設定された所定期間の経過後に取り込みを停止しても良い。この場合の所定期間は、予め設定された交番磁界の発生期間τ0よりも短い期間とすれば良い。 Alternatively, as shown in FIG. 8, the signal processing unit 26 may start capturing the detection signal with the start of generation of an alternating magnetic field as a trigger. That is, after the state in which the magnetic field detection intensity in the magnetic field detection unit 21 is below a predetermined value continues for a certain period, the signal processing unit 26 starts to take in a detection signal when the value exceeds a predetermined value. Thereafter, when the detected intensity falls below a predetermined value or the period when the detected intensity falls below the predetermined value becomes equal to or longer than the predetermined period, the signal processing unit 26 stops capturing the detection signal. Alternatively, the capture may be stopped after a predetermined period has elapsed since the capture of the detection signal was started. The predetermined period in this case may be a period shorter than the preset alternating magnetic field generation period τ 0 .
 なお、この場合、交番磁界の発生開始から信号処理部26による検出信号の取り込み開始までに、タイムラグTlagが生じる。そこで、磁界検出部21から出力される検出信号の全てを一時的に記憶するメモリを別途設け、信号処理部26が検出信号の取り込みを開始した後、タイムラグTlagに対応する検出信号をメモリから遡って取得するようにしても良い。 In this case, a time lag T lag occurs from the start of the generation of the alternating magnetic field to the start of the detection signal capture by the signal processing unit 26. Therefore, a separate memory for temporarily storing all the detection signals output from the magnetic field detection unit 21 is provided, and after the signal processing unit 26 starts to capture the detection signal, the detection signal corresponding to the time lag T lag is read from the memory. You may make it acquire retroactively.
 また、カプセル型内視鏡10側において、位置検出用の交番磁界に先立ち、特定のパターンで変化する交番磁界をトリガ信号として発生させても良い。例えば、図9に示すように、2つのピークを有するトリガ信号を発生させる場合、磁界検出部21が当該2つのピークを検出した際に、信号処理部26は検出信号の取り込みを開始する。なお、トリガ信号のパターンは、位置検出用の交番磁界と同じ周波数の短期間のパターンであっても良いし、位置検出用の交番磁界とは異なる周波数で所定期間続くパターンであっても良い。また、トリガとなる信号の振幅を期間T1での信号の振幅よりも小さくしてもよい。その後、検出強度が所定値を下回るか、又は所定値を下回った期間が所定期間以上となった場合に、信号処理部26は、検出信号の取り込みを停止する。或いは、検出信号の取り込みを開始してから予め設定された所定期間の経過後に取り込みを停止しても良い。この場合においても、所定期間は予め設定された交番磁界の発生期間よりも短い期間とすれば良い。 Further, on the capsule endoscope 10 side, an alternating magnetic field that changes in a specific pattern may be generated as a trigger signal prior to the alternating magnetic field for position detection. For example, as shown in FIG. 9, when generating a trigger signal having two peaks, when the magnetic field detection unit 21 detects the two peaks, the signal processing unit 26 starts capturing the detection signal. The pattern of the trigger signal may be a short-term pattern having the same frequency as the alternating magnetic field for position detection, or may be a pattern that continues for a predetermined period at a frequency different from the alternating magnetic field for position detection. Further, the amplitude of the trigger signal may be smaller than the amplitude of the signal in the period T 1 . Thereafter, when the detected intensity falls below a predetermined value or the period when the detected intensity falls below the predetermined value becomes equal to or longer than the predetermined period, the signal processing unit 26 stops capturing the detection signal. Alternatively, the capture may be stopped after a predetermined period has elapsed since the capture of the detection signal was started. Even in this case, the predetermined period may be shorter than the preset generation period of the alternating magnetic field.
 なお、信号処理部26は、交番磁界の発生期間以外の期間(即ち、検出強度が所定値を下回る期間)における検出信号も取り込み、当該期間における検出信号の信号値をゼロに置換しても良い。この方法によっても、信号処理部26及び後段の位置情報生成部282において、交番磁界の発生期間における検出信号のみに基づく処理を実行することができる。 Note that the signal processing unit 26 may also capture a detection signal in a period other than the generation period of the alternating magnetic field (that is, a period in which the detection intensity is lower than a predetermined value), and replace the signal value of the detection signal in the period with zero. . Also by this method, the signal processing unit 26 and the subsequent position information generation unit 282 can execute processing based only on the detection signal in the generation period of the alternating magnetic field.
 続くステップS4において、信号処理部26は、磁界検出部21から取り込んだ検出信号に対して所定の信号処理、即ち、フィルタ部261による波形整形、増幅器262による増幅、及びA/D変換部263によるA/D変換を施すことにより、ディジタル変換された検出データを生成する。 In subsequent step S4, the signal processing unit 26 performs predetermined signal processing on the detection signal acquired from the magnetic field detection unit 21, that is, waveform shaping by the filter unit 261, amplification by the amplifier 262, and A / D conversion unit 263. By performing A / D conversion, detection data subjected to digital conversion is generated.
 続くステップS5において、位置情報生成部282は、信号処理部26から出力された検出データを用いて、カプセル型内視鏡10の位置情報を生成する。より詳細には、まず、FFT処理部282aが検出データに対してFFT処理を施すことにより、交番磁界の強度及び位相を表す磁界情報を生成する。続いて、位置算出部282bは、該磁界情報に基づき、複数の受信コイル21aからカプセル型内視鏡10までの距離をそれぞれ推定し、これらの距離からカプセル型内視鏡10の位置を算出する。なお、FFT処理部282aが抽出した磁界情報に対し、さらにノイズカット等の処理を施した上で、該磁界情報を位置算出部282bに入力しても良い。 In subsequent step S <b> 5, the position information generation unit 282 generates position information of the capsule endoscope 10 using the detection data output from the signal processing unit 26. More specifically, first, the FFT processing unit 282a performs FFT processing on the detection data, thereby generating magnetic field information representing the strength and phase of the alternating magnetic field. Subsequently, the position calculation unit 282b estimates the distances from the plurality of reception coils 21a to the capsule endoscope 10 based on the magnetic field information, and calculates the position of the capsule endoscope 10 from these distances. . Note that the magnetic field information extracted by the FFT processing unit 282a may be further subjected to processing such as noise cut, and then input to the position calculation unit 282b.
 ここで、図10は、FFT処理部282aにおいて、FFT処理に先立って行われるFFT窓フィルタ処理を説明するための図である。実施の形態1においては、カプセル型内視鏡10から交番磁界を間欠的に発生させるため、交番磁界が連続的である場合と比較して、検出データにおける周波数分布が広がってしまう。従って、交番磁界を正しく検出するためには、受信帯域幅も相応に広げる必要があるが、逆にノイズの増加にもつながってしまう。 Here, FIG. 10 is a diagram for explaining FFT window filter processing performed prior to the FFT processing in the FFT processing unit 282a. In the first embodiment, since the alternating magnetic field is intermittently generated from the capsule endoscope 10, the frequency distribution in the detection data is widened as compared with the case where the alternating magnetic field is continuous. Therefore, in order to correctly detect the alternating magnetic field, it is necessary to increase the reception bandwidth accordingly, but it also leads to an increase in noise.
 このような場合、一般的には、包絡線を復元するため、交番磁界の発生周期T0のうち、周波数F0の交番磁界が発生する期間τ1に対応する帯域(-1/τ1)~(+1/τ1)、即ち、2/τ1を最小限の必要帯域として通過させるフィルタが使用される。なお、帯域を完全にカットできるフィルタは存在しないので、実際には、ロールオフフィルタが使用される。 In such a case, in general, in order to restore the envelope, in the alternating magnetic field generation period T 0 , a band (−1 / τ 1 ) corresponding to the period τ 1 in which the alternating magnetic field having the frequency F 0 is generated. A filter is used that passes ~ (+ 1 / τ 1 ), ie 2 / τ 1 as the minimum required band. Since there is no filter that can completely cut the band, a roll-off filter is actually used.
 しかしながら、カプセル型内視鏡10の位置検出のためには、包絡線の情報ではなく、搬送波成分の振幅を正確に検出することが要求されるため、むしろ、包絡線成分を排除した方が信号処理の効率を上げることができる。そこで、実施の形態1においては、FFT窓フィルタとして、周波数F0を中心とし、帯域幅2/τ1よりも狭い帯域を通過させるフィルタを用いる。 However, in order to detect the position of the capsule endoscope 10, it is required to accurately detect the amplitude of the carrier wave component rather than the envelope information. The processing efficiency can be increased. Therefore, in the first embodiment, a filter that passes the band narrower than the bandwidth 2 / τ 1 around the frequency F 0 is used as the FFT window filter.
 図11(a)は、FFT窓フィルタの一例である窓関数(ハミングウィンドウ)の特性を示すグラフであり、図11(b)は、FFT窓フィルタ処理後の信号に対するFFT処理により抽出された周波数スペクトルを示すグラフである。なお、図11(b)の横軸においては、中心周波数F0の座標を基準(=0)としている。 FIG. 11A is a graph showing the characteristics of a window function (Hamming window), which is an example of an FFT window filter, and FIG. 11B shows the frequency extracted by the FFT process on the signal after the FFT window filter process. It is a graph which shows a spectrum. In the horizontal axis of FIG. 11B, the coordinates of the center frequency F 0 are set as a reference (= 0).
 搬送波成分の振幅を検出する際には、基本的に、交番磁界の周波数F0の信号を取得すれば良いので、サンプリング周波数を周波数F0に対して設定する。具体例として、サンプリング定理に倣って、サンプリング周波数を2F0とすると、サンプル長はN/2F0(Nは整数)となる。そして、検出データの取り込み開始の後、N=1.0の時点で取り込みをやめるようにすれば、周波数F0の成分を効率よく取得することができる。即ち、サンプル長N/2F0を駆動期間τ1相当に設定すれば良い。なお、図11(a)に示すハミングウィンドウを用いた場合、図11(b)に示す周波数スペクトルでは、振幅-3dBにおける帯域幅は1.3/τ1となる。 When detecting the amplitude of the carrier wave component, basically, it is only necessary to acquire a signal of the frequency F 0 of the alternating magnetic field, so the sampling frequency is set for the frequency F 0 . As a specific example, following the sampling theorem, if the sampling frequency is 2F 0 , the sample length is N / 2F 0 (N is an integer). If the capturing is stopped at the time of N = 1.0 after the start of capturing the detection data, the component of the frequency F 0 can be acquired efficiently. That is, the sample length N / 2F 0 may be set to be equivalent to the driving period τ 1 . When the Hamming window shown in FIG. 11A is used, in the frequency spectrum shown in FIG. 11B, the bandwidth at an amplitude of −3 dB is 1.3 / τ 1 .
 なお、FFT窓は、本来は、非周期信号を無理やり切り取ったFFT解析を行うことによって生じる波形の不連続性に起因するスペクトルリークと呼ばれる誤検出を防ぐために用いられる。しかしながら、FFT窓は、入力信号の始まりと終わりをゼロにし、その間をなだらかにつなぐ時間波形にもなるため、図11(a)に示すハミングウィンドウの他にも、間欠的な波形のうち、検出データにおける立ち上がり及び立ち下りの矩形部分の周波数情報を意図的に削除できるものであれば使用可能である。 Note that the FFT window is originally used to prevent erroneous detection called spectral leak due to waveform discontinuity caused by performing FFT analysis by forcibly cutting off aperiodic signals. However, since the FFT window is also a time waveform in which the beginning and end of the input signal are set to zero and the gap between them is gently detected, in addition to the Hamming window shown in FIG. Any data that can intentionally delete the frequency information of the rising and falling rectangular portions in the data can be used.
 このようなFFT窓フィルタ処理を行うことにより、FFT処理によって必要な信号のみを無駄なく取り出すことができる。なお、このように帯域制限を行うフィルタ処理は、FFT処理の前段に限らず、信号処理部26において行っても良い。或いは、複数のブロックにおける合成処理によって行っても良い。また、図10においては、駆動期間τ1が駆動停止期間τ2よりも短い場合について説明したが、反対に、駆動停止期間τ2の方を短くしても良い。この場合、上記説明において、τ1とτ2とを読み替えれば良い。 By performing such FFT window filter processing, only necessary signals can be extracted without waste by the FFT processing. Note that the filter processing for band limitation in this way is not limited to the preceding stage of the FFT processing, and may be performed by the signal processing unit 26. Or you may perform by the synthetic | combination process in a some block. In FIG. 10, the case where the drive period τ 1 is shorter than the drive stop period τ 2 has been described. Conversely, the drive stop period τ 2 may be shorter. In this case, in the above description, τ 1 and τ 2 may be replaced.
 続くステップS6において、制御部28は、位置情報生成部282により生成されたカプセル型内視鏡10の位置情報を記憶部27に記憶させる。その後、カプセル型医療システム1の動作は終了する。 In subsequent step S6, the control unit 28 causes the storage unit 27 to store the position information of the capsule endoscope 10 generated by the position information generation unit 282. Thereafter, the operation of the capsule medical system 1 ends.
 以上説明したように、実施の形態1によれば、カプセル型内視鏡10において、送信コイル15aから交番磁界を間欠的に発生させるので、位置検出装置20におけるカプセル型内視鏡10の位置検出精度を低下させることなく、電源部(電池)140の電力消費を抑えることができる。従って、カプセル型内視鏡10の動作時間を延ばすことが可能となる。また、送信コイル15aを駆動させるための磁界を外部から印加する必要もなくなるので、カプセル型医療システム1の大型化を防ぐことができる。 As described above, according to the first embodiment, in the capsule endoscope 10, the alternating magnetic field is intermittently generated from the transmission coil 15a, so that the position detection of the capsule endoscope 10 in the position detection device 20 is performed. The power consumption of the power supply unit (battery) 140 can be suppressed without reducing the accuracy. Therefore, the operation time of the capsule endoscope 10 can be extended. In addition, since it is not necessary to apply a magnetic field for driving the transmission coil 15a from the outside, it is possible to prevent the capsule medical system 1 from being enlarged.
 また、実施の形態1によれば、位置検出装置20は、カプセル型内視鏡10から間欠的に発生する交番磁界に基づく検出信号のうち、交番磁界の発生時期に対応する期間の検出信号のみに基づいてカプセル型内視鏡10の位置算出を行うので、信号処理部26及び位置情報生成部282における処理量をトータルで低減し、処理の効率を向上させると共に、消費電力を抑制することが可能となる。 Further, according to the first embodiment, the position detection device 20 includes only detection signals in a period corresponding to the generation time of the alternating magnetic field among detection signals based on the alternating magnetic field generated intermittently from the capsule endoscope 10. Since the position of the capsule endoscope 10 is calculated based on the above, it is possible to reduce the total amount of processing in the signal processing unit 26 and the position information generation unit 282, improve processing efficiency, and suppress power consumption. It becomes possible.
(変形例1)
 次に、実施の形態1の変形例1について説明する。
 カプセル型内視鏡10において、送信コイル15aの駆動周期T0を撮像部113及び送信部130の動作と同期させても良い。より詳細には、図12に示すように、駆動周期T0を撮像部113による撮像周期及び送信部130による画像データの送信周期と等しくし、撮像及び画像データの送信を行っている間は、送信コイル15aを駆動させないこととする。この場合、カプセル型内視鏡10における最大消費電力を抑制することができ、一般的な電池のように瞬間最大消費電流に制限があるデバイスにより電力を供給する場合であっても、カプセル型内視鏡10の各部に効率的に電力を供給することが可能となる。
(Modification 1)
Next, Modification 1 of Embodiment 1 will be described.
In the capsule endoscope 10, the driving cycle T 0 of the transmission coil 15 a may be synchronized with the operations of the imaging unit 113 and the transmission unit 130. More specifically, as shown in FIG. 12, while the driving cycle T 0 is set equal to the imaging cycle by the imaging unit 113 and the transmission cycle of the image data by the transmission unit 130 and imaging and transmission of the image data are performed, The transmission coil 15a is not driven. In this case, the maximum power consumption in the capsule endoscope 10 can be suppressed, and even if the power is supplied by a device that has a limit on the instantaneous maximum current consumption, such as a general battery, Electric power can be efficiently supplied to each part of the endoscope 10.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 上記実施の形態1においては、カプセル型内視鏡10から交番磁界を間欠的に発生し、位置検出装置20において、交番磁界の検出信号のうち、交番磁界がオンの期間における検出信号を用いてカプセル型内視鏡10の位置算出処理を行った。ところが、カプセル型内視鏡10と位置検出装置20とは互いに別体であり、共通のクロックで制御することができない。このため、送信コイル15aの駆動タイミング(交番磁界の発生タイミング)と位置算出処理の完了タイミングとの遅延時間が、そのときどきで変化してしまう場合がある。例えば、図13に示すように、交番磁界の発生周期T0と交番磁界の検出周期TDTCとが異なる場合、位置算出の開始タイミングと磁界発生期間の終点との差が累積し、遅延時間TDLが変化してしまう。なお、実施の形態2においては、交番磁界の1回の検出周期TDTCの開始後、交番磁界の発生がオンとなってから(既に発生している場合には検出周期TDTCの開始時から)、オフとなるまでの期間ΔTの中間時刻tMIDにおける磁界情報に基づいて位置算出を行うこととし、中間時刻tMIDとその後で開始された位置算出処理が終了する時刻との差を遅延時間TDLとしている。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
In the first embodiment, an alternating magnetic field is intermittently generated from the capsule endoscope 10, and the position detection device 20 uses a detection signal in the period in which the alternating magnetic field is on among the detection signals of the alternating magnetic field. The position calculation process of the capsule endoscope 10 was performed. However, the capsule endoscope 10 and the position detection device 20 are separate from each other and cannot be controlled with a common clock. For this reason, the delay time between the drive timing of the transmission coil 15a (the generation timing of the alternating magnetic field) and the completion timing of the position calculation process may change from time to time. For example, as shown in FIG. 13, when the alternating magnetic field generation period T 0 and the alternating magnetic field detection period TDTC are different, the difference between the position calculation start timing and the end point of the magnetic field generation period accumulates, and the delay time T DL changes. In the second embodiment, the generation of the alternating magnetic field is turned on after the start of one detection period TDTC of the alternating magnetic field (if it has already occurred, from the start of the detection period TDTC ). ), The position calculation is performed based on the magnetic field information at the intermediate time t MID of the period ΔT until it is turned off, and the difference between the intermediate time t MID and the time when the position calculation process started thereafter is ended is the delay time. TDL .
 しかしながら、位置検出装置20において算出したカプセル型内視鏡10の位置情報をフィードバックしてカプセル型内視鏡10の位置制御に用いる場合、このような遅延時間TDLは一定で、且つ短い方が好ましい。また、カプセル型内視鏡10においては、撮像時刻に対する交番磁界の発生時刻の遅延も生じているため、やはり、位置検出装置20側における遅延時間TDLにばらつきが生じたり、遅延時間TDLが長くなったりすると、体内画像の撮像時におけるカプセル型内視鏡10の位置を正確に把握することができなくなってしまう。 However, when the position information of the capsule endoscope 10 calculated in the position detection device 20 is fed back and used for position control of the capsule endoscope 10, the delay time TDL is constant and shorter. preferable. Further, in the capsule endoscope 10, there is also a delay in the generation time of the alternating magnetic field with respect to the imaging time, so that the delay time T DL on the position detection device 20 side also varies or the delay time T DL is If it becomes longer, it becomes impossible to accurately grasp the position of the capsule endoscope 10 at the time of capturing an in-vivo image.
 そこで、実施の形態2においては、磁界検出部21が出力した検出信号の信号値をもとに、交番磁界の発生タイミングと同期して検出信号の取り込みを行うことにより、遅延時間TDLの一定化及び短縮化を図っている。 Therefore, in the second embodiment, the delay time T DL is constant by capturing the detection signal in synchronization with the generation timing of the alternating magnetic field based on the signal value of the detection signal output from the magnetic field detection unit 21. And shortening.
 図14は、実施の形態2に係る位置検出装置が備える信号処理部の構成を示すブロック図である。実施の形態2に係る位置検出装置は、図1に示す位置検出装置本体22の信号処理部26の代わりに、図14に示す信号処理部26-2を備える。なお、実施の形態2に係るカプセル型医療システム全体の構成、及びカプセル型内視鏡10の構成は、実施の形態1と同様である。 FIG. 14 is a block diagram illustrating a configuration of a signal processing unit included in the position detection device according to the second embodiment. The position detection device according to the second embodiment includes a signal processing unit 26-2 shown in FIG. 14 instead of the signal processing unit 26 of the position detection device main body 22 shown in FIG. The configuration of the entire capsule medical system according to the second embodiment and the configuration of the capsule endoscope 10 are the same as those of the first embodiment.
 信号処理部26-2は、フィルタ部261、増幅器262、及びA/D変換部263に加え、ディジタル変換された検出データを一時的に記憶するメモリ264、及び検出データに基づいて交番磁界の間欠タイミングを検出する間欠タイミング検出部265を備える。実施の形態2において、FFT処理部282aは、間欠タイミング検出部265の検出結果に基づき、交番磁界の発生タイミングと同期して、検出データから交番磁界の振幅及び位相等の磁界情報を抽出する。また、位置情報生成部282(図1参照)は、信号処理部26-2から出力されたデータ(磁界情報)に基づき、カプセル型内視鏡10の位置を算出する。 In addition to the filter unit 261, the amplifier 262, and the A / D conversion unit 263, the signal processing unit 26-2 includes a memory 264 that temporarily stores the digitally converted detection data, and an intermittent alternating magnetic field based on the detection data. An intermittent timing detection unit 265 that detects timing is provided. In the second embodiment, the FFT processing unit 282a extracts magnetic field information such as the amplitude and phase of the alternating magnetic field from the detection data in synchronization with the generation timing of the alternating magnetic field based on the detection result of the intermittent timing detection unit 265. The position information generation unit 282 (see FIG. 1) calculates the position of the capsule endoscope 10 based on the data (magnetic field information) output from the signal processing unit 26-2.
 次に、間欠タイミング検出部265の動作について詳しく説明する。
(1)交番磁界の立ち上がりと同期して信号処理を行う場合
 間欠タイミング検出部265は、磁界検出部21のうちの1つ以上の受信コイル21aから出力される検出信号の信号値が所定の閾値以上となった場合に、交番磁界の発生を検知する。
Next, the operation of the intermittent timing detection unit 265 will be described in detail.
(1) When signal processing is performed in synchronization with the rising of an alternating magnetic field The intermittent timing detection unit 265 has a signal value of a detection signal output from one or more reception coils 21a of the magnetic field detection unit 21 as a predetermined threshold value. When this is the case, the generation of an alternating magnetic field is detected.
 続いて、間欠タイミング検出部265は、図15に示すように、交番磁界の検出信号の立ち上がりタイミングと同期して、所定の検出期間TDTCの間に取得された検出データをメモリ264に記憶させる。FFT処理部282aは、検出期間TDTCの経過後、この間にメモリ264に蓄積された検出データに対してFFT処理を施すことにより交番磁界の磁界情報を抽出し、位置算出部282bは、抽出された磁界情報に基づいてカプセル型内視鏡10の位置を算出する。 Subsequently, as shown in FIG. 15, the intermittent timing detection unit 265 causes the memory 264 to store the detection data acquired during a predetermined detection period TDTC in synchronization with the rising timing of the detection signal of the alternating magnetic field. . FFT processing section 282a after the lapse of the detection period T DTC, during which extracts magnetic-field information of the alternating magnetic field by performing FFT processing on the detection data stored in the memory 264, the position calculating unit 282b is extracted The position of the capsule endoscope 10 is calculated based on the magnetic field information.
 この場合、FFT処理を含む位置算出開始タイミングと交番磁界の発生期間の終点との差が一定になるため、遅延時間TDLも安定する。なお、遅延時間TDLの長さそのものは、検出期間TDTCの長さに依存する。 In this case, since the difference between the position calculation start timing including the FFT processing and the end point of the alternating magnetic field generation period is constant, the delay time TDL is also stabilized. Note that the length of the delay time TDL itself depends on the length of the detection period TDTC .
(2)交番磁界の立ち下がりと同期して信号処理を行う場合
 この場合、A/D変換部263からの出力データは、メモリ264に順次記憶される。
 間欠タイミング検出部265は、磁界検出部21の全ての受信コイル21aから出力される検出信号の信号値が、所定期間、所定の閾値未満(又は、略ゼロ)となった場合に、交番磁界の発生停止を検知する。この際の判断基準となる期間は、交番磁界の発生周期の1/4以上となるように予め設定しておく。それにより、交番磁界における位相がゼロとなった際の誤検出を回避する。
(2) When signal processing is performed in synchronization with the fall of the alternating magnetic field In this case, output data from the A / D converter 263 is sequentially stored in the memory 264.
The intermittent timing detection unit 265 detects the alternating magnetic field when the signal values of the detection signals output from all the reception coils 21a of the magnetic field detection unit 21 are less than a predetermined threshold (or substantially zero) for a predetermined period. Detection of occurrence stop. The period serving as a judgment criterion at this time is set in advance so as to be 1/4 or more of the generation period of the alternating magnetic field. This avoids erroneous detection when the phase in the alternating magnetic field becomes zero.
 続いて、間欠タイミング検出部265は、図16に示すように、交番磁界の検出信号の立ち下がりタイミングと同期して、所定の検出期間TDTC分の検出データをメモリ264から遡って読み出す。FFT処理部282aは、この間にメモリ264から読み出された検出データに対してFFT処理を施すことにより交番磁界の磁界情報を抽出し、位置算出部282bは、抽出された磁界情報に基づいてカプセル型内視鏡10の位置を算出する。 Subsequently, as shown in FIG. 16, the intermittent timing detection unit 265 reads detection data for a predetermined detection period TDTC retrospectively from the memory 264 in synchronization with the fall timing of the detection signal of the alternating magnetic field. The FFT processing unit 282a extracts the magnetic field information of the alternating magnetic field by performing FFT processing on the detection data read from the memory 264 during this period, and the position calculation unit 282b performs the capsule based on the extracted magnetic field information. The position of the mold endoscope 10 is calculated.
 この場合、FFT処理を含む位置算出開始タイミングと交番磁界の発生期間の終点との差が一定(同時)になるため、遅延時間TDLも安定する。また、交番磁界の検出信号の立ち下がりと同時に位置算出を開始することができるので、遅延時間TDLは最短となる。 In this case, since the difference between the position calculation start timing including the FFT processing and the end point of the alternating magnetic field generation period is constant (simultaneous), the delay time TDL is also stable. Further, since the position calculation can be started simultaneously with the fall of the detection signal of the alternating magnetic field, the delay time TDL becomes the shortest.
 なお、上記(1)及び(2)の場合において、交番磁界の検出信号の立ち上がり及び立ち下がりを判断する際の閾値は、磁界検出部21の出力信号におけるノイズレベルから決定すると良い。或いは、位置検出対象であるカプセル型内視鏡10が検出空間(磁界検出部21により磁界を検出可能な領域)に配置されていないときの磁界検出部21からの出力信号の最大値から決定しても良い。 In the above cases (1) and (2), the threshold for determining the rise and fall of the detection signal of the alternating magnetic field may be determined from the noise level in the output signal of the magnetic field detection unit 21. Or it determines from the maximum value of the output signal from the magnetic field detection part 21 when the capsule endoscope 10 which is a position detection object is not arrange | positioned in detection space (area | region which can detect a magnetic field by the magnetic field detection part 21). May be.
 以上説明したように、実施の形態2によれば、交番磁界の検出信号の立ち上がり又は立ち下がりと同期して位置算出を行うので、磁界発生から位置算出処理の終了までの遅延時間TDLを一定にすることができる。また、検出信号の立ち下がりと同期して処理を行う場合には、遅延時間TDLを最短にすることができる。 As described above, according to the second embodiment, the position calculation is performed in synchronization with the rising or falling edge of the detection signal of the alternating magnetic field. Therefore, the delay time TDL from the generation of the magnetic field to the end of the position calculation process is constant. Can be. Further, when processing is performed in synchronization with the fall of the detection signal, the delay time TDL can be minimized.
(変形例2-1)
 次に、カプセル型内視鏡10において、送信コイル15aを間欠駆動する際のデューティ比を変化させる場合、即ち、図17に示すように、交番磁界の発生期間Ta、Tb、Tcが互いに異なる場合について説明する。この場合、間欠タイミング検出部265は、検出信号の立ち下がりタイミングと同期して、所定の検出期間TDTC分の検出データをメモリ264から読み出す。FFT処理部282aは、この間にメモリ264から読み出された検出データに対してFFT処理を施すことにより磁界情報を抽出し、位置算出部282bは、抽出された磁界情報に基づいてカプセル型内視鏡10の位置を算出する。
(Modification 2-1)
Next, in the capsule endoscope 10, when changing the duty ratio when the transmission coil 15a is intermittently driven, that is, as shown in FIG. 17, the generation periods T a , T b , T c of the alternating magnetic field are A case where they are different from each other will be described. In this case, the intermittent timing detector 265, in synchronization with the falling edge of the detection signal, reads out the detection data of a predetermined detection period T DTC from the memory 264. The FFT processing unit 282a extracts the magnetic field information by performing FFT processing on the detection data read from the memory 264 during this period, and the position calculation unit 282b extracts the capsule-type endoscope based on the extracted magnetic field information. The position of the mirror 10 is calculated.
 ただし、この場合、デューティ比の変化に応じて、遅延時間TDLが変化してしまう。そこで、図18に示すように、間欠タイミング検出部265は、交番磁界の検出信号の立ち上がり及び立ち下がりの両方を検出して、デューティ比を算出し、各デューティ比に応じて位置算出結果の出力タイミングを遅延させることにより、遅延時間TDLを一定にする。具体的には、FFT処理部282aから位置算出部282bへの磁界情報の出力タイミングを遅延させても良いし、位置算出部282bからの位置算出結果の出力タイミングを遅延させても良い。 However, in this case, the delay time TDL changes according to the change of the duty ratio. Therefore, as shown in FIG. 18, the intermittent timing detection unit 265 detects both rising and falling of the detection signal of the alternating magnetic field, calculates the duty ratio, and outputs the position calculation result according to each duty ratio. The delay time TDL is made constant by delaying the timing. Specifically, the output timing of the magnetic field information from the FFT processing unit 282a to the position calculation unit 282b may be delayed, or the output timing of the position calculation result from the position calculation unit 282b may be delayed.
(変形例2-2)
 カプセル型内視鏡10においては、送信コイル15aの間欠駆動タイミングを、撮像部113の撮像タイミングと同期させても良い。即ち、被検体2内の撮像と位置検出用の交番磁界の発生とを同時に行う。この場合、撮像部113による画像データの生成タイミングと、送信コイル15aから発生した交番磁界に基づく位置情報の算出タイミングとの遅延時間を短縮することができる。
(Modification 2-2)
In the capsule endoscope 10, the intermittent drive timing of the transmission coil 15a may be synchronized with the imaging timing of the imaging unit 113. That is, imaging within the subject 2 and generation of an alternating magnetic field for position detection are performed simultaneously. In this case, the delay time between the generation timing of the image data by the imaging unit 113 and the calculation timing of the position information based on the alternating magnetic field generated from the transmission coil 15a can be shortened.
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 カプセル型内視鏡10(図2参照)においては、照明部111の発光素子(LED)を駆動すると、電源電圧が一時的に低下し、送信コイル15aから発生する交番磁界の出力が低下してしまう場合がある。ところが、位置検出装置20においては、所定期間内に検出された交番磁界の信号強度を平均化して用いるため、通常の出力と一時的に減少した出力との間において平均化を行うと、カプセル型内視鏡10の位置検出精度が低下するおそれがある。そこで、実施の形態3においては、カプセル型内視鏡10において電源電圧の低下が生じても、当該カプセル型内視鏡10の位置検出精度に影響を与えることがないように、電源部140から磁界発生部150への電圧の入力を制御部120が制御する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described.
In the capsule endoscope 10 (see FIG. 2), when the light emitting element (LED) of the illuminating unit 111 is driven, the power supply voltage temporarily decreases, and the output of the alternating magnetic field generated from the transmission coil 15a decreases. May end up. However, in the position detection device 20, since the signal strength of the alternating magnetic field detected within a predetermined period is averaged and used, if averaging is performed between the normal output and the temporarily reduced output, the capsule type The position detection accuracy of the endoscope 10 may be reduced. Therefore, in the third embodiment, the power supply unit 140 prevents the capsule endoscope 10 from affecting the position detection accuracy even when the power supply voltage is lowered in the capsule endoscope 10. The control unit 120 controls the input of the voltage to the magnetic field generation unit 150.
(制御例1)
 図19は、本制御例1において用いられるカプセル型内視鏡の構成を示す模式図である。図19に示すカプセル型内視鏡10Aは、図2に示すカプセル型内視鏡10に対し、電源部140の電圧値を検出する電圧検出部160をさらに備える。電圧検出部160が検出した電源部140の電圧値(以下、電源電圧ともいう)は、制御部120に入力される。
(Control example 1)
FIG. 19 is a schematic diagram illustrating a configuration of a capsule endoscope used in the first control example. A capsule endoscope 10A illustrated in FIG. 19 further includes a voltage detection unit 160 that detects the voltage value of the power supply unit 140 with respect to the capsule endoscope 10 illustrated in FIG. The voltage value (hereinafter also referred to as power supply voltage) of the power supply unit 140 detected by the voltage detection unit 160 is input to the control unit 120.
 図20に示すように、LEDの発光(ON)により電源電圧(VCC)が低下し、この電源電圧が所定の閾値Th未満になった際に、制御部120は、磁界発生部150への電力供給をオフ(OFF)にする。また、電源電圧が閾値以上に回復した際に、制御部120は、磁界発生部150への電力供給をオン(ON)にする。 As shown in FIG. 20, when the power supply voltage (VCC) decreases due to light emission (ON) of the LED and the power supply voltage becomes less than a predetermined threshold Th, the control unit 120 supplies power to the magnetic field generation unit 150. Turn off the supply. Further, when the power supply voltage recovers to the threshold value or more, the control unit 120 turns on the power supply to the magnetic field generation unit 150.
 それにより、位置検出装置20においては、交番磁界の発生期間内の安定した検出信号のみに基づいてカプセル型内視鏡10Aの位置算出を行うことができる。従って、カプセル型内視鏡10Aの位置を正確に検出することが可能となる。 Thereby, in the position detection device 20, the position of the capsule endoscope 10A can be calculated based only on a stable detection signal within the generation period of the alternating magnetic field. Accordingly, it is possible to accurately detect the position of the capsule endoscope 10A.
(制御例2)
 制御部120は、図21に示すように、LEDの発光タイミングと同期させて、磁界発生部150への電力供給のオン/オフを切り替える。即ち、LEDの発光により電源電圧が低下し始めるタイミングで、磁界発生部150への電力供給をオフにし、LEDの発光が終了して電源電圧が回復したタイミングで、磁界発生部150への電力供給をオンにする。
(Control example 2)
As shown in FIG. 21, the control unit 120 switches on / off the power supply to the magnetic field generation unit 150 in synchronization with the light emission timing of the LED. That is, the power supply to the magnetic field generation unit 150 is turned off at the timing when the power supply voltage starts to decrease due to the light emission of the LED, and the power supply to the magnetic field generation unit 150 is started at the time when the power supply voltage is restored after the light emission of the LED is finished. Turn on.
 この場合も、位置検出装置20においては、交番磁界の発生期間内の安定した検出信号のみに基づいてカプセル型内視鏡10Aの位置算出を行うことができ、カプセル型内視鏡10Aの位置を正確に検出することが可能となる。 Also in this case, the position detection device 20 can calculate the position of the capsule endoscope 10A based only on the stable detection signal within the generation period of the alternating magnetic field, and the position of the capsule endoscope 10A can be calculated. It becomes possible to detect accurately.
(制御例3)
 図22に示すように、LEDの発光タイミングと電源電圧が低下するタイミングとは、互いに一致しているとは限らない。そこで、制御部120は、磁界発生部150への電力供給のオン/オフの切り替えを、LEDの発光タイミングと同期させると共に、電力供給オフの期間を、LEDの発光期間よりも長めに設定する。電力供給オフの期間は、LEDの発光開始後の所定期間としても良いし、LEDの発光期間及びその前後の所定期間を含めても良い。
(Control example 3)
As shown in FIG. 22, the light emission timing of the LED and the timing at which the power supply voltage decreases are not necessarily the same. Therefore, the control unit 120 synchronizes on / off switching of the power supply to the magnetic field generation unit 150 with the light emission timing of the LED, and sets the power supply off period longer than the light emission period of the LED. The power supply off period may be a predetermined period after the start of light emission of the LED, or may include the light emission period of the LED and a predetermined period before and after the light emission period.
 このように、交番磁界の出力オフの期間をLEDの発光期間よりも長めに取ることにより、位置検出装置20においては、より安定した検出信号のみに基づいて位置算出処理を実行することができる。 As described above, by taking the output off period of the alternating magnetic field longer than the light emission period of the LED, the position detection device 20 can execute the position calculation process based only on the more stable detection signal.
(制御例4)
 制御部120は、図23に示すように、LEDの発光の立ち上がりを検出し、この立ち上がりタイミングに合わせて、磁界発生部150への電力供給をオフにする。その後、LEDの発光時間よりも長い所定時間が経過してから磁界発生部150への電力供給をオンにする。
(Control example 4)
As shown in FIG. 23, the control unit 120 detects the rise of the light emission of the LED, and turns off the power supply to the magnetic field generation unit 150 in accordance with the rise timing. Thereafter, power supply to the magnetic field generation unit 150 is turned on after a predetermined time longer than the light emission time of the LED has elapsed.
 このように、LEDが実際に発光した期間はすべて、交番磁界の出力をオフにすることにより、位置検出装置20においては、より安定した検出信号のみに基づき、効率よく位置算出処理を実行することができる。 As described above, the position detection device 20 efficiently executes the position calculation process based on only the more stable detection signal by turning off the output of the alternating magnetic field in all the periods during which the LEDs actually emit light. Can do.
(制御例5)
 位置検出装置20側において、FFT処理部282aは窓関数を使用することによりFFT処理結果を最適化している。即ち、磁界発生部150が発生した交番磁界の検出信号の全てを用いて位置算出を行っているわけではない。そこで、図24に示すように、カプセル型内視鏡10Aにおいて、交番磁界の検出信号を位置算出に使用しないタイミングでLEDを発光させても良い。言い換えると、LEDの発光タイミングの前後の所定時間では、交番磁界の検出を行わないことにする。
(Control example 5)
On the position detection device 20 side, the FFT processing unit 282a optimizes the FFT processing result by using a window function. That is, the position calculation is not performed using all the detection signals of the alternating magnetic field generated by the magnetic field generator 150. Therefore, as shown in FIG. 24, in the capsule endoscope 10A, the LED may be caused to emit light at a timing at which the alternating magnetic field detection signal is not used for position calculation. In other words, the alternating magnetic field is not detected for a predetermined time before and after the LED light emission timing.
 そのためには、例えば、交番磁界の信号レベルをカプセル型内視鏡10Aにおいて直接検知し、該信号レベルが所定レベル以下になったとき、又は信号レベルが所定レベル以下になった時間が所定の長さ続いたときにLEDを発光させても良い。或いは、カプセル型内視鏡10Aに外部から同期信号を別途送信し、該同期信号と同期してLEDを発光させても良い。これらの場合、位置検出装置20においては、磁界出力が安定している期間内の検出信号のみを用いて位置算出を行うことができるので、正確な位置情報を取得することが可能となる。 For this purpose, for example, the signal level of the alternating magnetic field is directly detected by the capsule endoscope 10A, and when the signal level falls below a predetermined level, or the time when the signal level falls below the predetermined level is a predetermined length. When it continues, the LED may emit light. Alternatively, a synchronization signal may be separately transmitted from the outside to the capsule endoscope 10A, and the LED may emit light in synchronization with the synchronization signal. In these cases, the position detection device 20 can perform position calculation using only the detection signal within a period during which the magnetic field output is stable, so that accurate position information can be acquired.
 なお、上記制御例1~5においては、磁界発生部150への電力供給をLEDの発光タイミングと同期させたが、撮像部113における撮像タイミングや、送信部130からの無線信号の送信タイミングと同期させても良い。この場合、撮像素子の駆動や無線信号の送信に起因する電源電圧の低下による磁界出力の減少が位置算出処理に及ぼす影響を低減することができる。 In the control examples 1 to 5, the power supply to the magnetic field generation unit 150 is synchronized with the light emission timing of the LED, but is synchronized with the imaging timing of the imaging unit 113 and the transmission timing of the wireless signal from the transmission unit 130. You may let them. In this case, it is possible to reduce the influence of the decrease in the magnetic field output due to the decrease in the power supply voltage caused by the driving of the image sensor and the transmission of the wireless signal on the position calculation process.
(変形例3)
 実施の形態1~3において説明したカプセル型内視鏡10、10Aにおける送信コイル15aの配置は、撮像部113の視界を妨げることなく、且つ送信コイル15aの有効面積を大きく取ることができれば、特に限定されない。図25は、送信コイル15aの第1の配置例を示す側面図である。図25に示すように、送信コイル15aの中心軸の方向を筐体101の長軸に合わせ、胴部102の外周に沿って送信コイル15aを巻回しても良い。この場合、一点鎖線で示す送信コイル15aの有効面積Sを、送信コイル15aを胴部102の内周に巻回する場合よりも大きくすることができ、コイルの効率を高くすることができる。
(Modification 3)
The arrangement of the transmission coil 15a in the capsule endoscopes 10 and 10A described in the first to third embodiments is not particularly limited as long as the effective area of the transmission coil 15a can be increased without obstructing the field of view of the imaging unit 113. It is not limited. FIG. 25 is a side view showing a first arrangement example of the transmission coil 15a. As shown in FIG. 25, the direction of the central axis of the transmission coil 15 a may be aligned with the long axis of the housing 101, and the transmission coil 15 a may be wound along the outer periphery of the trunk portion 102. In this case, the effective area S of the transmission coil 15a indicated by the alternate long and short dash line can be made larger than when the transmission coil 15a is wound around the inner periphery of the body portion 102, and the efficiency of the coil can be increased.
 図26は、送信コイル15aの第2の配置例を示す側面図である。図26に示すように、送信コイル15aの中心軸が筐体101の長軸に対して斜めになるように、胴部102の外周に送信コイル15aを巻回させても良い。この場合、送信コイル15aの有効面積Sをさらに大きくすることができる。 FIG. 26 is a side view showing a second arrangement example of the transmission coil 15a. As shown in FIG. 26, the transmission coil 15 a may be wound around the outer periphery of the body portion 102 so that the central axis of the transmission coil 15 a is inclined with respect to the long axis of the housing 101. In this case, the effective area S of the transmission coil 15a can be further increased.
 図27は、送信コイル15aの第3の配置例を示す側面図である。図28は、送信コイル15aの第4の配置例を示す側面図である。送信コイル15aの中心軸が筐体101の長軸に対して斜めになるように送信コイル15aを巻回する場合、送信コイル15aが胴部102の両端のドーム部103、104にかかっても良い。この際、当該カプセル型内視鏡10、10Aの両端に撮像部113がそれぞれ設けられている場合、図27に示すように、撮像部113の撮像視野vを妨げないように、ドーム部103、104の中心部近傍を避けて送信コイル15aを巻回すると良い。一方、カプセル型内視鏡の一方の端部(例えばドーム部103側)のみに撮像部113が設けられている場合、図28に示すように、撮像部が配置されていないドーム部104側においては、ドーム部104の中心部を送信コイル15aで覆ってもかまわない。 FIG. 27 is a side view showing a third arrangement example of the transmission coil 15a. FIG. 28 is a side view showing a fourth arrangement example of the transmission coil 15a. When the transmission coil 15 a is wound so that the central axis of the transmission coil 15 a is inclined with respect to the long axis of the housing 101, the transmission coil 15 a may be applied to the dome parts 103 and 104 at both ends of the body part 102. . At this time, when the imaging units 113 are provided at both ends of the capsule endoscopes 10 and 10A, respectively, as shown in FIG. 27, the dome unit 103, The transmission coil 15a may be wound around the vicinity of the central portion 104. On the other hand, when the imaging unit 113 is provided only at one end (for example, the dome 103 side) of the capsule endoscope, as shown in FIG. 28, the dome unit 104 side where the imaging unit is not arranged is provided. The center portion of the dome 104 may be covered with the transmission coil 15a.
 図29(a)は、送信コイル15aの第5の配置例を示す側面図であり、図29(b)は、同斜視図である。ここで、送信コイル15aは、必ずしも同一平面上において巻回する必要はない。例えば、図29に示すように、送信コイル15aを、胴部102の一端において外周に沿って半周だけ巻回させ、胴部102の中心軸方向に沿って他端まで延ばし、該他端において胴部102の上記一端側とは異なる側の外周に沿って半周だけ巻回させた後、胴部102の中心軸方向に沿って胴部102の一端まで延ばすといった巻回方法も可能である。この場合、送信コイル15aの有効面積Sをさらに大きくすることができる。 FIG. 29 (a) is a side view showing a fifth arrangement example of the transmission coil 15a, and FIG. 29 (b) is a perspective view thereof. Here, the transmission coil 15a is not necessarily wound on the same plane. For example, as shown in FIG. 29, the transmitting coil 15a is wound only half a circumference along the outer periphery at one end of the trunk portion 102, and is extended to the other end along the central axis direction of the trunk portion 102. A winding method is also possible in which the winding is performed only half a circumference along the outer circumference of the portion 102 different from the one end side, and then extended to one end of the trunk portion 102 along the central axis direction of the trunk portion 102. In this case, the effective area S of the transmission coil 15a can be further increased.
 図30(a)は、送信コイル15aの第6の配置例を示す側面図であり、図30(b)は、同斜視図である。この配置例においては、第5の配置例と異なり、胴部102の両端において、送信コイル15aを同じ側に半周だけ巻回させている。この場合も、送信コイル15aの有効面積Sを広く取ることが可能となる。 30 (a) is a side view showing a sixth arrangement example of the transmission coil 15a, and FIG. 30 (b) is a perspective view thereof. In this arrangement example, unlike the fifth arrangement example, at both ends of the body portion 102, the transmission coil 15a is wound around the same side by a half circumference. Also in this case, the effective area S of the transmission coil 15a can be widened.
 以上説明した実施の形態及び変形例は、本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。また、本発明は、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を生成することができる。本発明は、仕様等に応じて種々変形することが可能であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは、上記記載から自明である。 The embodiments and modifications described above are merely examples for carrying out the present invention, and the present invention is not limited to these. Moreover, the present invention can generate various inventions by appropriately combining a plurality of constituent elements disclosed in the respective embodiments and modifications. It is obvious from the above description that the present invention can be variously modified according to specifications and the like, and that various other embodiments are possible within the scope of the present invention.
(付記1)
 被検体内に導入されて使用され、位置検出用の磁界を発生するカプセル型医療装置と、前記磁界に基づいて前記カプセル型医療装置の位置を検出する位置検出装置とを備えるカプセル型医療システムにおいて用いられるカプセル型医療装置であって、
 電池と、
 前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
 前記被検体内を照明する照明手段及び該照明手段により照明された前記被検体内を撮像する撮像手段とを有し、前記電池から電力の供給を受けて前記被検体内に関する情報を取得する情報取得手段と、
を備え、
 前記制御手段は、前記照明手段の動作に応じて、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行う、
ことを特徴とするカプセル型医療装置。
(Appendix 1)
In a capsule medical system including a capsule medical device that is introduced into a subject and generates a magnetic field for position detection, and a position detection device that detects the position of the capsule medical device based on the magnetic field. A capsule-type medical device used,
Battery,
Magnetic field generating means for generating a magnetic field by receiving power from the battery;
Control means for controlling power supply from the battery to the magnetic field generating means;
Information that includes illumination means for illuminating the inside of the subject and imaging means for imaging the inside of the subject illuminated by the illumination means, and receives information about the inside of the subject by receiving power from the battery Acquisition means;
With
The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means according to the operation of the illumination means.
A capsule-type medical device.
(付記2)
 被検体内に導入されて使用され、位置検出用の磁界を発生するカプセル型医療装置と、前記磁界に基づいて前記カプセル型医療装置の位置を検出する位置検出装置とを備えるカプセル型医療システムにおいて用いられるカプセル型医療装置であって、
 電池と、
 前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
 前記被検体内を撮像して画像データを生成する撮像手段を有し、前記電池から電力の供給を受けて前記被検体内に関する情報を取得する情報取得手段と、
 前記撮像手段によって生成された画像データを無線送信する送信手段と、
を備え、
 前記制御手段は、前記撮像手段と前記送信手段との少なくとも一方の動作に応じて、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行う、
ことを特徴とするカプセル型医療装置。
(Appendix 2)
In a capsule medical system including a capsule medical device that is introduced into a subject and generates a magnetic field for position detection, and a position detection device that detects the position of the capsule medical device based on the magnetic field. A capsule-type medical device used,
Battery,
Magnetic field generating means for generating a magnetic field by receiving power from the battery;
Control means for controlling power supply from the battery to the magnetic field generating means;
An image acquisition unit that captures an image of the inside of the subject to generate image data; and an information acquisition unit that receives information about the inside of the subject by receiving power from the battery;
Transmitting means for wirelessly transmitting the image data generated by the imaging means;
With
The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means according to at least one operation of the imaging means and the transmission means.
A capsule-type medical device.
(付記3)
 被検体内に導入されて使用され、位置検出用の磁界を発生するカプセル型医療装置であって、
 電池と、
 前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
 前記電池から電力の供給を受けて前記被検体内に関する情報を取得する情報取得手段と、
を備えるカプセル型医療装置と、
 前記磁界に基づいて前記カプセル型医療装置の位置を検出する位置検出装置であって、
 前記磁界発生手段が発生した磁界を検出して、検出信号を出力する磁界検出手段と、
 前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
を有する位置検出装置と、
を備え、
 前記制御手段は、前記情報取得手段の動作と同期して、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行う、
ことを特徴とするカプセル型医療システム。
(Appendix 3)
A capsule medical device that is introduced into a subject and used to generate a magnetic field for position detection,
Battery,
Magnetic field generating means for generating a magnetic field by receiving power from the battery;
Control means for controlling power supply from the battery to the magnetic field generating means;
Information acquisition means for receiving information about the inside of the subject by receiving power from the battery;
A capsule medical device comprising:
A position detection device that detects the position of the capsule medical device based on the magnetic field,
Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal;
Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
A position detecting device having
With
The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means in synchronization with the operation of the information acquisition means.
Capsule type medical system characterized by that.
(付記4)
 前記処理手段は、前記磁界検出手段により所定値以上の強度の磁界が検出された場合に、前記処理を実行する、ことを特徴とする付記3に記載のカプセル型医療システム。
(Appendix 4)
The capsule medical system according to appendix 3, wherein the processing means executes the processing when a magnetic field having a strength equal to or greater than a predetermined value is detected by the magnetic field detection means.
(付記5)
 被検体内に導入されて使用されるカプセル型医療装置であって、
 電池と、
 前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
を有するカプセル型医療装置と、
 前記カプセル型医療装置の位置を検出する位置検出装置であって、
 前記磁界発生手段が発生した磁界を検出して、検出信号を出力する磁界検出手段と、
 前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
を有する位置検出装置と、
を備え、
 前記制御手段は、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行い、
 前記処理手段は、前記磁界検出手段が所定の強度を超える磁界を検出した際に、前記処理を開始し、前記磁界検出手段が出力した検出信号のうち、強度が所定値以上である検出信号を用いて前記処理を実行する、
ことを特徴とするカプセル型医療システム。
(Appendix 5)
A capsule medical device that is introduced into a subject and used.
Battery,
Magnetic field generating means for generating a magnetic field by receiving power from the battery;
Control means for controlling power supply from the battery to the magnetic field generating means;
A capsule-type medical device having
A position detection device for detecting a position of the capsule medical device,
Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal;
Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
A position detecting device having
With
The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means,
The processing means starts the processing when the magnetic field detection means detects a magnetic field exceeding a predetermined intensity, and detects a detection signal whose intensity is a predetermined value or more among detection signals output from the magnetic field detection means. To perform the process using
Capsule type medical system characterized by that.
(付記6)
 被検体内に導入されて使用されるカプセル型医療装置であって、
 前記カプセル型医療装置は、
 電池と、
 前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
 前記被検体内に関する情報を取得する情報取得手段と、
を有するカプセル型医療装置と、
 前記カプセル型医療装置の位置を検出する位置検出装置であって、
 前記磁界発生手段が発生した磁界を検出して、検出信号を出力する磁界検出手段と、
 前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
を有する位置検出装置と、
を備え、
 前記制御手段は、前記情報取得手段が動作していない間に、前記電池から前記磁界発生手段に電力を間欠的に供給させる、
ことを特徴とするカプセル型医療システム。
(Appendix 6)
A capsule medical device that is introduced into a subject and used.
The capsule medical device is:
Battery,
Magnetic field generating means for generating a magnetic field by receiving power from the battery;
Control means for controlling power supply from the battery to the magnetic field generating means;
Information acquisition means for acquiring information relating to the inside of the subject;
A capsule-type medical device having
A position detection device for detecting a position of the capsule medical device,
Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal;
Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
A position detecting device having
With
The control means intermittently supplies power from the battery to the magnetic field generation means while the information acquisition means is not operating.
Capsule type medical system characterized by that.
(付記7)
 被検体内に導入されて使用されるカプセル型医療装置であって、
 前記カプセル型医療装置は、
 電池と、
 前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
 前記被検体内に関する情報を取得する情報取得手段と、
を有するカプセル型医療装置と、
 前記カプセル型医療装置の位置を検出する位置検出装置であって、
 前記磁界発生手段が発生した磁界を検出して、検出信号を出力する磁界検出手段と、
 前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
を有する位置検出装置と、
を備え、
 前記制御手段は、前記情報取得手段が動作している間に、前記電池から前記磁界発生手段に電力を間欠的に供給させる、
ことを特徴とするカプセル型医療システム。
(Appendix 7)
A capsule medical device that is introduced into a subject and used.
The capsule medical device is:
Battery,
Magnetic field generating means for generating a magnetic field by receiving power from the battery;
Control means for controlling power supply from the battery to the magnetic field generating means;
Information acquisition means for acquiring information relating to the inside of the subject;
A capsule-type medical device having
A position detection device for detecting a position of the capsule medical device,
Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal;
Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
A position detecting device having
With
The control means intermittently supplies power from the battery to the magnetic field generation means while the information acquisition means is operating.
Capsule type medical system characterized by that.
(付記8)
 前記情報取得手段は、前記被検体内を撮像して画像データを生成する撮像手段を含み、
 前記カプセル型医療装置は、前記撮像手段が生成した画像データを無線送信する送信手段をさらに有することを特徴とする付記6又は7に記載のカプセル型医療システム。
(Appendix 8)
The information acquisition means includes imaging means for imaging the inside of the subject and generating image data,
The capsule medical system according to appendix 6 or 7, wherein the capsule medical device further includes a transmission unit that wirelessly transmits the image data generated by the imaging unit.
(付記9)
 被検体内に導入されて使用されるカプセル型医療装置であって、
 前記カプセル型医療装置は、
 電池と、
 前記電池から電力の供給を受けて交番磁界を発生する磁界発生手段と、
 前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
を有するカプセル型医療装置と、
 前記カプセル型医療装置の位置を検出する位置検出装置であって、
 前記磁界発生手段が発生した交番磁界を検出して、検出信号を出力する磁界検出手段と、
 前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
を有する位置検出装置と、
を備え、
 前記制御手段は、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行い、
 前記処理手段は、前記検出信号に対し、前記交番磁界の中心周波数を含む所定の帯域幅を有する周波数帯域の信号を通過させるフィルタ手段を含む、
ことを特徴とするカプセル型医療システム。
(Appendix 9)
A capsule medical device that is introduced into a subject and used.
The capsule medical device is:
Battery,
Magnetic field generating means for receiving an electric power supply from the battery to generate an alternating magnetic field;
Control means for controlling power supply from the battery to the magnetic field generating means;
A capsule-type medical device having
A position detection device for detecting a position of the capsule medical device,
Magnetic field detection means for detecting an alternating magnetic field generated by the magnetic field generation means and outputting a detection signal;
Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
A position detecting device having
With
The control means performs control so that power is intermittently supplied from the battery to the magnetic field generation means,
The processing means includes filter means for allowing a signal in a frequency band having a predetermined bandwidth including a center frequency of the alternating magnetic field to pass through the detection signal.
Capsule type medical system characterized by that.
(付記10)
 前記処理手段は、前記検出信号に対して高速フーリエ変換処理を施すFFT処理手段を含み、
 前記フィルタ手段は前記FFT処理手段の前段に設けられた窓関数フィルタであり、
 前記交番磁界の1周期あたりの発生期間をτ1とするとき、前記窓関数フィルタにおける窓関数の周波数帯域は2/τ1よりも狭いことを特徴とする付記9に記載のカプセル型医療システム。
(Appendix 10)
The processing means includes FFT processing means for performing a fast Fourier transform process on the detection signal,
The filter means is a window function filter provided in the previous stage of the FFT processing means,
The capsule medical system according to appendix 9, wherein the frequency band of the window function in the window function filter is narrower than 2 / τ 1 when the generation period of the alternating magnetic field per cycle is τ 1 .
(付記11)
 被検体内に導入されて使用され、内蔵する電池から電力供給を受けて磁界を発生するカプセル型医療装置の位置を検出する位置検出装置であって、
 前記カプセル型医療装置は前記磁界を間欠的に発生し、
 前記カプセル型医療装置から発生した磁界を検出して、検出信号を出力する磁界検出手段と、
 前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
を備え、
 前記処理手段は、間欠的に発生する前記磁界に応じた前記検出信号の立ち上がりタイミングと立ち下がりタイミングとの少なくとも一方を検出して、前記処理を開始する、
ことを特徴とする位置検出装置。
(Appendix 11)
A position detection device that detects the position of a capsule medical device that is introduced into a subject and used to generate a magnetic field by receiving power from a built-in battery,
The capsule medical device intermittently generates the magnetic field,
Magnetic field detection means for detecting a magnetic field generated from the capsule medical device and outputting a detection signal;
Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
With
The processing means detects at least one of a rising timing and a falling timing of the detection signal according to the magnetic field generated intermittently, and starts the processing.
A position detecting device characterized by that.
(付記12)
 前記処理手段は、前記検出信号の立ち上がりタイミングを検出した後に続く所定期間内に前記磁界検出手段から出力された検出信号を用いて前記処理を実行する、ことを特徴とする付記11に記載の位置検出装置。
(Appendix 12)
The position according to appendix 11, wherein the processing means executes the processing using a detection signal output from the magnetic field detection means within a predetermined period following detection of a rising timing of the detection signal. Detection device.
(付記13)
 前記磁界検出手段から出力された検出信号を記憶する記憶手段をさらに備え、
 前記処理手段は、前記検出信号の立ち下がりタイミングを検出した後、該立ち下がりタイミングから所定期間分だけ前の期間の検出信号を前記記憶手段から遡って取得し、取得した検出信号を用いて前記処理を実行する、
ことを特徴とする付記6に記載の位置検出装置。
(Appendix 13)
A storage means for storing the detection signal output from the magnetic field detection means;
The processing means, after detecting the falling timing of the detection signal, acquires the detection signal of a period before the falling timing by a predetermined period from the storage means, and uses the acquired detection signal Execute the process,
Item 7. The position detection device according to appendix 6, wherein
 1 カプセル型医療システム
 2 被検体
 10、10A カプセル型内視鏡
 101 筐体
 102 胴部
 103、104 ドーム部
 110 撮像ユニット
 111 照明部
 112 光学系
 113 撮像部
 120 制御部
 130 送信部
 140 電源部
 150 磁界発生部
 15a 送信コイル
 15b コンデンサ
 151 共振回路
 152 信号発生部
 153 駆動部
 160 電圧検出部
 20 位置検出装置
 21 磁界検出部
 21a 受信コイル
 22 位置検出装置本体
 23 入力部
 24 出力部
 25 受信部
 25a アンテナ
 26、26-2 信号処理部
 261 フィルタ部
 262 増幅器
 263 A/D変換部
 264 メモリ
 265 間欠タイミング検出部
 27 記憶部
 28 制御部
 281 画像処理部
 282 位置情報生成部
 282a FFT処理部
 282b 位置算出部
 30 載置台
 
 
DESCRIPTION OF SYMBOLS 1 Capsule type medical system 2 Subject 10, 10A Capsule type endoscope 101 Case 102 Body part 103, 104 Dome part 110 Imaging unit 111 Illumination part 112 Optical system 113 Imaging part 120 Control part 130 Transmission part 140 Power supply part 150 Magnetic field Generating unit 15a Transmitting coil 15b Capacitor 151 Resonant circuit 152 Signal generating unit 153 Driving unit 160 Voltage detecting unit 20 Position detecting device 21 Magnetic field detecting unit 21a Receiving coil 22 Position detecting device main body 23 Input unit 24 Output unit 25 Receiving unit 25a Antenna 26, 26-2 Signal processing unit 261 Filter unit 262 Amplifier 263 A / D conversion unit 264 Memory 265 Intermittent timing detection unit 27 Storage unit 28 Control unit 281 Image processing unit 282 Position information generation unit 282a FFT processing unit 282b Position calculation unit 3 Mounting table

Claims (15)

  1.  被検体内に導入されて使用され、位置検出用の磁界を発生するカプセル型医療装置と、前記磁界に基づいて前記カプセル型医療装置の位置を検出する位置検出装置とを備えるカプセル型医療システムにおいて用いられるカプセル型医療装置であって、
     電池と、
     前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
     前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
     前記電池から電力の供給を受けて前記被検体内に関する情報を取得する情報取得手段と、
    を備え、
     前記制御手段は、前記情報取得手段の動作と同期して、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行うことを特徴とするカプセル型医療装置。
    In a capsule medical system including a capsule medical device that is introduced into a subject and generates a magnetic field for position detection, and a position detection device that detects the position of the capsule medical device based on the magnetic field. A capsule-type medical device used,
    Battery,
    Magnetic field generating means for generating a magnetic field by receiving power from the battery;
    Control means for controlling power supply from the battery to the magnetic field generating means;
    Information acquisition means for receiving information about the inside of the subject by receiving power from the battery;
    With
    The capsule medical device, wherein the control unit performs control so that power is intermittently supplied from the battery to the magnetic field generation unit in synchronization with the operation of the information acquisition unit.
  2.  前記電池の電圧値を検出する電圧検出手段をさらに備え、
     前記制御手段は、前記電圧検出手段による検出結果に基づき、前記電圧値が所定の閾値未満の期間中、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする請求項1に記載のカプセル型医療装置。
    Voltage detection means for detecting the voltage value of the battery,
    2. The control unit according to claim 1, wherein the control unit stops power supply from the battery to the magnetic field generation unit during a period in which the voltage value is less than a predetermined threshold based on a detection result by the voltage detection unit. The capsule medical device described.
  3.  前記制御手段は、前記情報取得手段の動作期間中、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする請求項1に記載のカプセル型医療装置。 The capsule medical device according to claim 1, wherein the control unit stops power supply from the battery to the magnetic field generation unit during an operation period of the information acquisition unit.
  4.  前記制御手段は、前記情報取得手段の動作期間中、及び該動作期間の前と後との少なくとも一方の所定期間、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする請求項1に記載のカプセル型医療装置。 The control unit stops power supply from the battery to the magnetic field generation unit during an operation period of the information acquisition unit and at least one predetermined period before and after the operation period. Item 2. A capsule medical device according to Item 1.
  5.  前記制御手段は、前記情報取得手段の動作開始タイミングを検出し、該動作開始タイミングから所定期間、前記電池から前記磁界発生手段への電力供給を停止させることを特徴とする請求項1に記載のカプセル型医療装置。 2. The control unit according to claim 1, wherein the control unit detects an operation start timing of the information acquisition unit, and stops power supply from the battery to the magnetic field generation unit for a predetermined period from the operation start timing. Capsule type medical device.
  6.  被検体内に導入されて使用されるカプセル型医療装置であって、
     電池と、
     前記電池から電力の供給を受けて磁界を発生する磁界発生手段と、
     前記電池から前記磁界発生手段への電力供給を制御する制御手段と、
    を有するカプセル型医療装置と、
     前記カプセル型医療装置の位置を検出する位置検出装置であって、
     前記磁界発生手段が発生した磁界を検出して、検出信号を出力する磁界検出手段と、
     前記磁界検出手段が出力した前記検出信号に基づいて、前記カプセル型医療装置の位置を算出するための処理を実行する処理手段と、
    を有する位置検出装置と、
    を備え、
     前記制御手段は、前記電池から前記磁界発生手段に間欠的に電力供給がなされるように制御を行うことを特徴とするカプセル型医療システム。
    A capsule medical device that is introduced into a subject and used.
    Battery,
    Magnetic field generating means for generating a magnetic field by receiving power from the battery;
    Control means for controlling power supply from the battery to the magnetic field generating means;
    A capsule-type medical device having
    A position detection device for detecting a position of the capsule medical device,
    Magnetic field detection means for detecting a magnetic field generated by the magnetic field generation means and outputting a detection signal;
    Processing means for executing processing for calculating the position of the capsule medical device based on the detection signal output by the magnetic field detection means;
    A position detecting device having
    With
    The capsule medical system according to claim 1, wherein the control means performs control such that power is intermittently supplied from the battery to the magnetic field generating means.
  7.  前記処理手段は、前記磁界検出手段が出力した検出信号のうち、強度が所定値以上である検出信号を用いて前記処理を実行することを特徴とする請求項6に記載のカプセル型医療システム。 The capsule medical system according to claim 6, wherein the processing means executes the processing using a detection signal having an intensity equal to or higher than a predetermined value among detection signals output from the magnetic field detection means.
  8.  前記制御手段は、前記電池から前記磁界発生手段への電力供給を開始する際に、該開始を示す特定のパターンで電力供給を実行させ、
     前記処理手段は、前記磁界検出手段が前記パターンで変化する磁界を検出した際に、前記処理を開始することを特徴とする請求項7に記載のカプセル型医療システム。
    When the control means starts power supply from the battery to the magnetic field generation means, the control means executes power supply in a specific pattern indicating the start,
    The capsule medical system according to claim 7, wherein the processing unit starts the processing when the magnetic field detection unit detects a magnetic field that changes in the pattern.
  9.  前記処理手段は、前記検出信号の立ち上がりタイミングと立ち下がりタイミングとの少なくとも一方を検出して、前記処理を開始することを特徴とする請求項7に記載のカプセル型医療システム。 The capsule medical system according to claim 7, wherein the processing means detects at least one of a rising timing and a falling timing of the detection signal and starts the processing.
  10.  前記処理手段は、前記検出信号の立ち上がりタイミングを検出した後に続く所定期間内に前記磁界検出手段から出力された検出信号を用いて前記処理を実行することを特徴とする請求項9に記載のカプセル型医療システム。 10. The capsule according to claim 9, wherein the processing unit executes the processing by using the detection signal output from the magnetic field detection unit within a predetermined period following detection of the rising timing of the detection signal. Type medical system.
  11.  前記位置検出装置は、前記磁界検出手段から出力された検出信号を記憶する記憶手段をさらに有し、
     前記処理手段は、前記検出信号の立ち下がりタイミングを検出した後、該立ち下がりタイミングから所定期間分だけ前の期間の検出信号を前記記憶手段から遡って取得し、取得した検出信号を用いて前記処理を実行することを特徴とする請求項9に記載のカプセル型医療システム。
    The position detection device further includes storage means for storing the detection signal output from the magnetic field detection means,
    The processing means, after detecting the falling timing of the detection signal, acquires the detection signal of a period before the falling timing by a predetermined period from the storage means, and uses the acquired detection signal The capsule medical system according to claim 9, wherein the process is executed.
  12.  前記処理手段は、前記磁界検出手段が出力した検出信号のうち、強度が所定値よりも小さい検出信号の信号値をゼロに置換して、前記処理を実行することを特徴とする請求項6に記載のカプセル型医療システム。 7. The processing unit according to claim 6, wherein the processing unit executes the processing by replacing a signal value of a detection signal whose intensity is smaller than a predetermined value among detection signals output from the magnetic field detection unit with zero. The capsule medical system as described.
  13.  前記処理手段は、所定の周期で所定期間の前記処理を実行し、
     前記電池から前記磁界発生手段に電力が供給される1回の期間の長さは、前記処理手段が前記処理を2回実行する期間以上であることを特徴とする請求項6に記載のカプセル型医療システム。
    The processing means executes the processing for a predetermined period at a predetermined cycle,
    The capsule type according to claim 6, wherein the length of one period during which electric power is supplied from the battery to the magnetic field generating means is equal to or longer than a period in which the processing means executes the processing twice. Medical system.
  14.  前記処理は、前記検出信号に対する高速フーリエ変換処理を含み、
     前記処理手段は、所定の周期で所定期間の前記処理を実行し、
     前記電池から前記磁界発生手段に電力が供給される1回の期間の長さは、前記処理手段が前記高速フーリエ変換処理を2回実行する期間以上であることを特徴とする請求項6に記載のカプセル型医療システム。
    The processing includes fast Fourier transform processing for the detection signal,
    The processing means executes the processing for a predetermined period at a predetermined cycle,
    The length of one period during which power is supplied from the battery to the magnetic field generation unit is equal to or longer than a period in which the processing unit executes the fast Fourier transform process twice. Capsule medical system.
  15.  前記カプセル型医療装置は、
     円筒状をなす胴部と、該胴部の端部に設けられた少なくとも1つのドーム部とを有する筐体と、
     前記筐体内から前記少なくとも1つのドーム部を介して前記筐体外を撮像する撮像手段と、
    をさらに有し、
     前記磁界発生手段は、電流が流れることにより磁界を発生するコイルと、前記コイルを駆動する駆動手段と、
    を有し、
     前記コイルは、前記筐体の中心軸に対して傾いた軸を中心とし、径が前記胴部の直径よりも大きく、且つ、前記撮像手段の視野を妨げない位置に巻回されている、又は、前記筐体の外周に巻回され、前記胴部の中心軸と平行な部分と、前記胴部の円周方向に沿った部分とを含む、
    ことを特徴とする請求項6~14のいずれか1項に記載のカプセル型医療システム。
     
    The capsule medical device is:
    A casing having a cylindrical barrel portion and at least one dome portion provided at an end portion of the barrel portion;
    Imaging means for imaging the outside of the housing from the inside of the housing via the at least one dome portion;
    Further comprising
    The magnetic field generating means includes a coil that generates a magnetic field when a current flows, and a driving means that drives the coil;
    Have
    The coil is wound around the axis inclined with respect to the central axis of the housing and having a diameter larger than the diameter of the body part and does not interfere with the field of view of the imaging unit, or A portion wound around the outer periphery of the housing and parallel to the central axis of the body portion, and a portion along the circumferential direction of the body portion,
    The capsule medical system according to any one of claims 6 to 14, wherein:
PCT/JP2014/066908 2013-06-27 2014-06-25 Capsule medical system, position detection device and capsule medical device WO2014208630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014561216A JP5792403B2 (en) 2013-06-27 2014-06-25 Capsule medical system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013135547 2013-06-27
JP2013-135546 2013-06-27
JP2013-135547 2013-06-27
JP2013135546 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208630A1 true WO2014208630A1 (en) 2014-12-31

Family

ID=52141957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066908 WO2014208630A1 (en) 2013-06-27 2014-06-25 Capsule medical system, position detection device and capsule medical device

Country Status (2)

Country Link
JP (1) JP5792403B2 (en)
WO (1) WO2014208630A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208427A1 (en) * 2016-06-02 2017-12-07 オリンパス株式会社 Capsule endoscope position detection method and capsule endoscope position detection device
WO2017217162A1 (en) * 2016-06-16 2017-12-21 富士フイルム株式会社 Navigation device, navigation method, and endoscope system
CN110151107A (en) * 2019-04-26 2019-08-23 群曜医电股份有限公司 A kind of wired alimentary canal capsule for treating gastropathy introscope and magnetic control means
CN112472008A (en) * 2020-11-02 2021-03-12 重庆金山医疗器械有限公司 PH capsule positioning device, method and equipment and readable storage medium
WO2022132391A1 (en) * 2020-12-20 2022-06-23 CapsoVision, Inc. Method and apparatus for extending battery life of capsule endoscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535376A (en) * 2002-08-08 2005-11-24 ユニバーシティ オブ ローザンヌ System and method for monitoring and stimulating GI tract movement
JP2006026391A (en) * 2004-06-14 2006-02-02 Olympus Corp Position detecting system and guidance system for medical device
JP2006280940A (en) * 2005-03-31 2006-10-19 Given Imaging Ltd In vivo image pickup device, autonomous in vivo image pickup device and method of manufacturing the in vivo device
JP2008011913A (en) * 2006-07-03 2008-01-24 Olympus Medical Systems Corp Capsule medical care device and capsule medical care device system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535376A (en) * 2002-08-08 2005-11-24 ユニバーシティ オブ ローザンヌ System and method for monitoring and stimulating GI tract movement
JP2006026391A (en) * 2004-06-14 2006-02-02 Olympus Corp Position detecting system and guidance system for medical device
JP2006280940A (en) * 2005-03-31 2006-10-19 Given Imaging Ltd In vivo image pickup device, autonomous in vivo image pickup device and method of manufacturing the in vivo device
JP2008011913A (en) * 2006-07-03 2008-01-24 Olympus Medical Systems Corp Capsule medical care device and capsule medical care device system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208427A1 (en) * 2016-06-02 2017-12-07 オリンパス株式会社 Capsule endoscope position detection method and capsule endoscope position detection device
WO2017217162A1 (en) * 2016-06-16 2017-12-21 富士フイルム株式会社 Navigation device, navigation method, and endoscope system
CN109195499A (en) * 2016-06-16 2019-01-11 富士胶片株式会社 Navigation device and air navigation aid and endoscopic system
CN109195499B (en) * 2016-06-16 2021-01-26 富士胶片株式会社 Navigation device and endoscope system
US11419480B2 (en) 2016-06-16 2022-08-23 Fujifilm Corporation Navigation device, navigation method, and endoscope system
CN110151107A (en) * 2019-04-26 2019-08-23 群曜医电股份有限公司 A kind of wired alimentary canal capsule for treating gastropathy introscope and magnetic control means
CN110151107B (en) * 2019-04-26 2021-09-10 群曜医电股份有限公司 Wired gastrointestinal capsule endoscope and magnetic control device
CN112472008A (en) * 2020-11-02 2021-03-12 重庆金山医疗器械有限公司 PH capsule positioning device, method and equipment and readable storage medium
WO2022132391A1 (en) * 2020-12-20 2022-06-23 CapsoVision, Inc. Method and apparatus for extending battery life of capsule endoscope

Also Published As

Publication number Publication date
JP5792403B2 (en) 2015-10-14
JPWO2014208630A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5792403B2 (en) Capsule medical system
US8159214B2 (en) Position detecting system
US9526080B2 (en) Systems and methods for synchronizing between an in-vivo device and a localization system
JP5974209B1 (en) Position detection system
JP6420117B2 (en) Biological information acquisition apparatus, wristwatch terminal, and biological information acquisition method
JP6091118B2 (en) Medical system
JP2010240000A (en) Image processing apparatus, image processing method, and system
KR20150135140A (en) Method and device for wireless transmission of acoustic cardiac signals
US20170196442A1 (en) Capsule endoscope system
JP5802861B2 (en) Capsule endoscope system
JP2008011913A (en) Capsule medical care device and capsule medical care device system
US20100261960A1 (en) Living-body observation system and driving method of the living-body observation system
JP2011251007A (en) Bio-pulse wave sensor and bio-pulse wave measuring device
JP5522924B2 (en) Living body observation system and operating method of living body observation system
JP5797362B1 (en) Position detection system
US20200251808A1 (en) Receiving unit and processing system
JP6075955B2 (en) Biological information acquisition apparatus, biological information acquisition system, and driving method of biological information acquisition apparatus
JP6945072B2 (en) Wireless communication device, capsule endoscopy system and judgment method
JPWO2016084500A1 (en) Capsule endoscope, capsule endoscope activation system, and inspection system
WO2019111470A1 (en) Communication module, capsule endoscope and reception unit
CN110856648A (en) Display control device, endoscope system, display control method, and program therefor
JP2011188882A (en) Biological information acquiring system
WO2013099384A1 (en) Biological information acquisition system
JP2019516277A (en) Portable communication system starter system and method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014561216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817652

Country of ref document: EP

Kind code of ref document: A1