WO2014208484A1 - Tetraphenylnaphthalocyanine compound, method for producing same, and use of same - Google Patents

Tetraphenylnaphthalocyanine compound, method for producing same, and use of same Download PDF

Info

Publication number
WO2014208484A1
WO2014208484A1 PCT/JP2014/066514 JP2014066514W WO2014208484A1 WO 2014208484 A1 WO2014208484 A1 WO 2014208484A1 JP 2014066514 W JP2014066514 W JP 2014066514W WO 2014208484 A1 WO2014208484 A1 WO 2014208484A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
tetraphenylnaphthalocyanine
general formula
formula
resin
Prior art date
Application number
PCT/JP2014/066514
Other languages
French (fr)
Japanese (ja)
Inventor
正之 江副
浩之 佐々木
熊谷 洋二郎
繁幸 八木
中澄 博行
Original Assignee
山本化成株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本化成株式会社, 公立大学法人大阪府立大学 filed Critical 山本化成株式会社
Priority to JP2015524032A priority Critical patent/JP6306003B2/en
Publication of WO2014208484A1 publication Critical patent/WO2014208484A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/52Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of six-membered aromatic rings being part of condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0671Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having halogen atoms linked directly to the Pc skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0673Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having alkyl radicals linked directly to the Pc skeleton; having carbocyclic groups linked directly to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/073Preparation from isoindolenines, e.g. pyrrolenines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a novel naphthalocyanine compound having excellent visible light transparency and high durability, and uses thereof. Specifically, it has strong absorption in the near-infrared region, very little absorption in the visible light region, little coloration, high durability against light and heat, soluble in organic solvents, near-infrared absorption filter, security
  • the present invention relates to a novel naphthalocyanine compound that can be widely used for near-infrared absorbing materials such as inks, heat-ray shielding films, interlayer films for laminated glass, and infrared thermosensitive recording materials, and uses thereof, particularly to heat-ray shielding materials.
  • near-infrared absorbing materials have been used in a wide range of fields such as optical recording media, near-infrared photosensitizers, photothermal conversion agents, near-infrared cut filters, near-infrared absorbing inks, and heat ray shielding materials.
  • optical recording media such as optical recording media, near-infrared photosensitizers, photothermal conversion agents, near-infrared cut filters, near-infrared absorbing inks, and heat ray shielding materials.
  • naphthalocyanine compounds have a high ability to absorb near-infrared light and have relatively good visible light transparency. Therefore, various studies have been conducted as near-infrared absorbing materials for the above purpose.
  • Patent Documents 1 and 2 the center metal is perpendicular to the plane of the naphthalocyanine skeleton.
  • the naphthalocyanine compound used here is described as absorbing near infrared rays and having little visible light absorption, but has a drawback of low durability.
  • Patent Document 3 discloses a near-infrared absorbing ink composition containing a near-infrared absorber, an ultraviolet absorber, and a polyester resin.
  • Patent Document 4 discloses a method in which a polyester having a specific polymerization catalyst and an infrared absorber is heated and crystallized in a short time with an infrared heater, and has eight butoxy groups at the ⁇ -position as the infrared absorber. Vanadyl naphthalocyanine is used. Since these naphthalocyanine compounds having an alkoxy group at the ⁇ -position have little absorption in the visible light region, they are characterized by little coloration and high transparency, but they have the disadvantage of low durability and visible light. Transparency is not sufficient.
  • Patent Document 5 discloses a heat-absorbing layer system that is used as a heat-blocking thermoplastic plastic that can be used in place of automobile window glass and the like and that contains naphthalocyanine or the like as an infrared absorber.
  • vanadyl-5,14,23,32-tetraphenyl-2,3-naphthalocyanine vanadyl naphthalocyanine having four phenyl groups at the ⁇ -position
  • the naphthalocyanine compound is excellent in near-infrared absorption ability and transparency (visible light transmission property), but has insufficient light fastness.
  • Patent Document 6 discloses a naphthalocyanine dye compound having four substituted phenyl groups at the ⁇ -position, specifically a vanadyl naphthalocyanine compound having a phenyl group having a nitro group or an acetamide group as a substituent at the ⁇ -position. Is disclosed. The naphthalocyanine compound is described as being excellent in light stability while maintaining invisibility, but according to the inventors' additional test, solvent solubility and resin compatibility are poor and processability is poor. There is also a problem that invisibility is insufficient.
  • the compound represented by the general structural formula described in the Markush method includes formally a halogen group as a substituent that the phenyl group may have.
  • Patent Document 7 discloses a tetraazaporphyrin compound obtained by adding one or two molecules of a naphthalene derivative to a naphthalocyanine compound having four substituted phenyl groups at the ⁇ -position, and has a characteristic absorption around 750 to 850 nm. However, it is soluble in a solvent and stable to heat and light. However, such a compound has a problem that the added naphthalene derivative is easily oxidized and easily deteriorated, so that the compound is easily discolored.
  • the problem of the present invention is that it has a strong absorption in the near-infrared region, very small absorption in the visible light region, high fastness such as light resistance and heat resistance, and good solubility in organic solvents and resins.
  • Naphthalocyanine compound, and its use such as heat ray shielding material.
  • the present invention (I) a tetraphenylnaphthalocyanine compound represented by the general formula (1), [In the formula (1), M represents two hydrogen atoms, a divalent metal or a trivalent or tetravalent metal derivative, and R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group.
  • A represents formula (B).
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • (Xi) a 1,3-diiminobenzoindoline compound represented by the general formula (3), [In Formula (3), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B).
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • a naphthalocyanine compound having strong absorption in the near-infrared region, very small absorption in the visible light region, high durability, and good solubility in organic solvents and resins, and such characteristics It has become possible to provide applications such as near infrared absorbing materials and heat ray shielding materials.
  • FIG. 1 is a H-NMR spectrum diagram of the compound (2) -11 produced in Example 1.
  • FIG. 4 is a H-NMR spectrum of the compound (2) -18 produced in Example 2.
  • FIG. 4 is a H-NMR spectrum of the compound (2) -31 produced in Example 4.
  • FIG. 6 is an absorption spectrum diagram of compound (1) -7 produced in Example 9.
  • FIG. 4 is an absorption spectrum diagram of compound (1) -8 produced in Example 10.
  • FIG. 2 is a H-NMR spectrum of the compound (1) -34 produced in Example 11.
  • FIG. 4 is an absorption spectrum diagram of compound (1) -34 produced in Example 11.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -36 produced in Example 12.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -26 produced in Example 13.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -27 produced in Example 14.
  • FIG. 6 is an absorption spectrum diagram of compound (1) -29 produced in Example 15.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -37 produced in Example 16.
  • FIG. 2 is a H-NMR spectrum of the compound (1) -37-a produced in Example 16.
  • FIG. 2 is a H-NMR spectrum of the compound (1) -37-b produced in Example 16.
  • FIG. 2 is an H-NMR spectrum of the compound (1) -37-c produced in Example 16.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -41 produced in Example 17.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -35 produced in Example 18.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -64 produced in Example 19.
  • FIG. 2 is an absorption spectrum diagram of compound (1) -65 produced in Example 20.
  • FIG. 2 is an absorption spectrum diagram of tetraphenyl-Pd-naphthalocyanine produced in Comparative Example 1.
  • FIG. 6 is a comparison diagram of transmission spectra of the tetraphenylnaphthalocyanine compound of the present invention produced in Example 15 and Example 20 and the compound of Comparative Example 2.
  • FIG. 1 is an absorption spectrum diagram of compound (1) -65 produced in Example 20.
  • FIG. 2 is an absorption spectrum diagram of tetraphenyl-Pd-naphthalocyanine produced in Comparative Example 1.
  • FIG. 6 is a comparison diagram of transmission spectra of the tetraphenylnaphthalocyanine compound of the present invention produced in Example 15 and Example 20 and the compound of Comparative Example 2.
  • [Tetraphenylnaphthalocyanine compound] 1st invention of this invention is the tetraphenyl naphthalocyanine compound represented by General formula (1).
  • M represents two hydrogen atoms, a divalent metal or a trivalent or tetravalent metal derivative, and R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group.
  • A represents formula (B).
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • the tetraphenylnaphthalocyanine compound of the general formula (1) is at least one selected from the following general formulas (1) -a to (1) -d. That is, it is a mixture of one or more of the isomers represented by the following general formulas (1) -a to (1) -d.
  • the isomers (1) -a to (1) -D, M, R 1 to R 4 , and A have the same meanings as those in formula (1).
  • the isomer represented by (1) -a is preferable because it has particularly high durability such as light resistance and heat resistance. .
  • M is preferably two hydrogen atoms, Pd, Cu, Zn, Pt, Ni, TiO, Co, Fe, Mn, Sn Al—Cl, VO or In—Cl. More preferably, M is two hydrogen atoms, Pd, Cu, Zn or VO. Most preferred M is Cu.
  • R 1 to R 4 are preferably a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms. R 1 to R 4 are more preferably a hydrogen atom, a fluorine atom, or a branched alkyl group having 3 to 8 carbon atoms.
  • R 1 to R 4 are a halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, a chlorine atom and a fluorine atom are preferable, and a fluorine atom is more preferable.
  • R 1 to R 4 being an alkyl group an alkyl group having 1 to 12 carbon atoms is preferable, and a branched alkyl group having 3 to 8 carbon atoms is more preferable.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl group, n-hexyl group, cyclohexyl group, 1-methylpentyl group, 4-methyl-2-pentyl group, 2-ethylbutyl group, n-heptyl group, 1-methylhexyl group, 4-methylcyclohexyl group, Examples thereof include linear or branched alkyl groups such as n-octyl group, tert-octyl group, 1-methylheptyl group and 2-ethylhexyl group.
  • A represents the following formula (B).
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • X 1 and X 2 are preferably a hydrogen atom, a fluorine atom or a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms substituted by a fluorine atom, and a hydrogen atom, a fluorine atom or a fluorine atom is A substituted linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is more preferred.
  • X 1 and X 2 are most preferably a trifluoromethyl group.
  • X 1 and X 2 are alkyl groups substituted with fluorine atoms
  • tetraphenylnaphthalocyanine compound represented by the general formula (1) a particularly preferable structure of the compound is represented by the general formula (1) -a, X 1 and X 2 are trifluoromethyl groups, R 1 , R 2 and R 4 are hydrogen atoms, R 3 is a branched alkyl group having 3 to 8 carbon atoms, and M is Cu.
  • a compound having the following structural formula is preferable in that it has a feature of extremely high durability such as light resistance and heat resistance.
  • Table 1 the specific example of the tetraphenyl naphthalocyanine compound represented by General formula (1) of this invention is shown in following Table 1, it is not limited to these.
  • the tetraphenylnaphthalocyanine compound of the general formula (1) is a mixture of one or more of the isomers represented by the general formulas (1) -a to (1) -d. It is. In the case of a mixture of isomers, the absorption in the near infrared region becomes broader than in the case of each isomer alone. Depending on the application, such as heat ray shielding resin, a mixture of isomers having broad absorption as described above is preferable. The specific examples shown in Table 1 below also include these isomers or a mixture of two or more thereof.
  • the second invention of the present invention is selected from a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and a 1,3-diiminobenzoindoline compound represented by the general formula (3).
  • R 1 to R 4 and A have the same meanings as those in the general formula (1).
  • the naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and the 1,3-diiminobenzoindoline compound represented by the general formula (3) will be individually described later.
  • metals or metal derivatives examples include Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ge, Ru, Rh, Pd, In, Sn, Pt, Pb, and their halides and carboxylates. , Sulfates, nitrates, carbonyl compounds, oxides, complexes and the like. In particular, metal halides or carboxylates are preferably used. Examples of these include copper chloride, copper bromide, copper iodide, nickel chloride, nickel bromide, nickel acetate, cobalt chloride, iron chloride, zinc chloride, odor.
  • Examples thereof include zinc iodide, zinc iodide, zinc acetate, vanadium chloride, vanadium oxychloride, palladium chloride, palladium acetate, aluminum chloride, manganese chloride, lead chloride, lead acetate, indium chloride, titanium chloride, tin chloride and the like.
  • the amount of metal or metal derivative used is 0. 1 mol per 1 mol of naphthalene-2,3-dicarbonitrile compound of general formula (6) or 1 mol of 1,3-diiminobenzoindoline compound of general formula (7). It is 1-fold mole to 0.6-fold mole, preferably 0.2-fold mole to 0.5-fold mole.
  • the reaction temperature is 60 to 300 ° C, preferably 100 to 220 ° C.
  • the reaction time is 30 minutes to 72 hours, preferably 1 hour to 48 hours.
  • the solvent used for the reaction is preferably an organic solvent having a boiling point of 60 ° C. or higher, preferably 80 ° C. or higher.
  • examples include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, n-amyl alcohol, n-hexanol, 1-heptanol, 1-octanol, 1-dodecanol, benzyl alcohol, ethylene glycol, propylene glycol, ethoxy Alcohol solvents such as ethanol, propoxyethanol, butoxyethanol, dimethylethanol, diethylethanol, dichlorobenzene, trichlorobenzene, chloronaphthalene, sulfolane, nitrobenzene, quinoline, DMI (1,3-dimethyl-2-imidazolidinone), urea, etc.
  • the amount of the solvent used is 0.5 to 50 times the volume of the naphthalene-2,3-dicarbonitrile compound of the general formula (2) or the 1,3-diiminobenzoindoline compound of the general formula (3), preferably 1 to 15 times the capacity.
  • the reaction is carried out in the presence or absence of a catalyst, but is preferably in the presence of a catalyst.
  • the catalyst include inorganic catalysts such as ammonium molybdate, DBU (1,8-diazabicyclo [5.4.0] -7-undecene), DBN (1,5-diazabicyclo [4.3.0] -5-nonene.
  • Basic organic catalysts such as) can be used.
  • the amount used is 0.01 to 10 times mol, preferably 1 to 2 times mol per mol of naphthalene-2,3-dicarbonitrile compound or 1 mol of 1,3-diiminoisondrine compound.
  • a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and a 1 represented by the general formula (3) After reacting at least one selected from 1,3-diiminobenzoindoline compounds with metallic sodium or metallic potassium under the above reaction conditions, the central metal sodium or potassium is eliminated with hydrochloric acid, sulfuric acid or the like. Can be manufactured.
  • the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the tetraphenylnaphthalocyanine compound to precipitate the target product, and the precipitate is filtered to filter the tetraphenylnaphthalocyanine of the general formula (1).
  • a compound can be obtained.
  • the tetraphenylnaphthalocyanine compound is obtained as a mixture of isomers represented by the general formulas (1) -a to (1) -d.
  • further purification by a known purification method such as recrystallization or column chromatography can yield a higher-purity target product.
  • the intended single product can be isolated from such a mixture of isomers represented by the general formulas (1) -a to (1) -d by such a purification method.
  • the structure of these isomers can be confirmed by a known analysis method such as X-ray crystal structure analysis.
  • the third invention of the present invention is a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2).
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B).
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • the naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) is used for the production of the tetraphenylnaphthalocyanine compounds of the general formula (1) and the general formulas (1) -a to (1) -d.
  • preferred ranges and specific examples of the substituents X 1 , X 2 and R 1 to R 4 in the general formula (2) are the general formula (1) and the general formulas (1) -a to (1)- The same as those indicated by d.
  • Specific examples of the naphthalene-2,3-dicarbonitrile compound represented by the general formula (6) are shown in Table 2 below, but are not limited thereto.
  • the naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) can be produced with reference to known methods relating to known compounds. For example, with reference to the Russian Journal of General Chemistry, Vol 75, No. 5, 2005, pp. 795-799, it can be produced from the 2-methylbenzophenone compound of the general formula (4) by the following route. [In the general formulas (4) to (7), A and R 1 to R 4 have the same meanings as those shown in the general formula (2). ]
  • the 2-methylbenzophenone compound of the general formula (4) is mixed with the 2-halogenomethylbenzophenone compound of the general formula (5) with a radical generator and a halogenating agent in the presence of an organic solvent, preferably under heating.
  • a condensation reaction is performed to obtain an isobenzofuran compound of the general formula (6), followed by a Diels-Alder reaction with fumaronitrile to produce a 1,4-dihydro-1,4-epoxynaphthalene compound of the general formula (7).
  • a condensation reaction is performed to obtain an isobenzofuran compound of the general formula (6), followed by a Diels-Alder reaction with fumaronitrile to produce a 1,4-dihydro-1,4-epoxynaphthalene compound of the general formula (7).
  • a naphthalene-2,3-dicarbonitrile compound of the general formula (2) By dehydrating the 1,4-dihydro-1,4-epoxynaphthalene compound with sulfuric acid, a naphthalene-2,3-dicarbonitrile compound of the general formula (2) can be obtained.
  • the naphthalene-2,3 of the general formula (2) is converted from the 2-methylbenzophenone compound of the general formula (4) without isolating the compounds of the general formulas (5), (6), (7).
  • -Dicarbonitrile compounds can be produced in a one-pot system, which is preferable from the viewpoint of reaction yield and operational simplicity.
  • the amount of radical generator used is 0.01 per mol of the 2-methylbenzophenone derivative.
  • the molar ratio is from 1 to 3 times, preferably from 0.05 to 2 times, more preferably from 0.05 to 1 times.
  • the amount of the halogenating agent used is 1 to 10 times mol, preferably 1 to 5 times mol, more preferably 1 to 10 times mol per mol of the 2-methylbenzophenone derivative of the general formula (4). 1 to 3 moles.
  • the halogenating agent bromine, chlorine, N-bromosuccinimide, N-chlorosuccinimide and the like can be used.
  • the reaction solvent is not particularly limited as long as it does not adversely affect the reaction, and aromatic hydrocarbons such as toluene, xylene, mesitylene, pseudocumene, chlorobenzene, dichlorobenzene, hexane, heptane, cyclohexane, carbon tetrachloride, chloroform, etc.
  • Organic acids such as aliphatic hydrocarbons, acetic acid and trifluoroacetic acid, and aprotic solvents such as DMF, DMAC and DMI can be used.
  • the solvent is used in an amount of 1 to 500 times, preferably 1 to 200 times, more preferably 5 to 100 times the volume of the 2-methylbenzophenone derivative of the general formula (4) used in the reaction.
  • the reaction temperature in the halogenation step is room temperature to 200 ° C., preferably 50 to 150 ° C., more preferably 50 to 100 ° C.
  • the reaction time of the halogenation step is 10 minutes to 48 hours, preferably 20 minutes to 24 hours, more preferably 30 minutes to 12 hours.
  • the 2-halogenomethylbenzophenone compound of the general formula (5) can be isolated by filtering the reaction solution to remove insoluble matters such as succinimide and then concentrating the solvent under reduced pressure using an evaporator. It is preferable that the reaction solution which is unstable and filtered without being isolated is used as it is and transferred to the next reaction step. Fumaronitrile is added to the obtained 2-halogenomethylbenzophenone compound of general formula (5) and the isobenzofuran compound of general formula (6) is formed when the temperature is raised. 1,4-dihydro-1,4-epoxynaphthalene compound is produced and dehydrated with sulfuric acid to obtain a naphthalene-2,3-dicarbonitrile compound of the general formula (2).
  • the reaction temperature of the series of reaction steps is room temperature to 250 ° C., preferably 50 to 200 ° C., more preferably 50 to 150 ° C.
  • the reaction time of the series of reaction steps is 30 minutes to 48 hours, preferably 1 hour to 24 hours, more preferably 1 hour to 12 hours.
  • the amount of fumaronitrile used is 1 to 5 moles, preferably 1 to 2 moles, more preferably 1 to 1.5 moles per mole of the 2-methylbenzophenone derivative of the general formula (4). Is a mole.
  • the amount of sulfuric acid used is 0.05 times to 5 times mol, preferably 0.1 times to 3 times mol, more preferably 0.2 times to 1 times mol per mol of the 2-methylbenzophenone derivative. is there.
  • naphthalene-2,3-dicarbonitrile compound of the general formula (2) is distilled off and dried to obtain a naphthalene-2,3-dicarbonitrile compound of the general formula (2). If necessary, a higher-purity product can be obtained by further adding known purification operations such as recrystallization and column chromatography to the product.
  • the fourth invention of the present invention is a 1,3-diiminobenzoindoline compound represented by the general formula (3).
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group
  • A represents Formula (B).
  • X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms.
  • the 1,3-diiminobenzoindoline compound represented by the general formula (3) is used for the production of the tetraphenylnaphthalocyanine compounds represented by the general formula (1) and the general formulas (1) -a to (1) -d.
  • preferred ranges and specific examples of the substituents X 1 , X 2 and R 1 to R 4 in the general formula (3) include the general formula (1) and the general formulas (1) -a to (1)- The same as those indicated by d.
  • Specific examples of the 1,3-diiminobenzoindoline compound represented by the general formula (3) are shown in Table 3 below, but are not limited thereto.
  • the 1,3-diiminobenzoindoline compound represented by the general formula (3) can be produced with reference to known methods relating to known compounds. For example, it is produced by reacting a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) with ammonia in the presence of a metal alkoxide.
  • the amount of ammonia used is 1 to 20 moles, preferably 3 to 10 moles per mole of the naphthalene-2,3-dicarbonitrile compound of the general formula (2).
  • Metal alkoxides include sodium or potassium methoxide, ethoxide, n-propoxide, n-butoxide, n-pentoxide, n-hexyloxyside, n-octyloxyside, 2-methoxyethoxide, 2-ethoxyethoxide 2-butoxyethoxide is used.
  • the metal alkoxide is used in an amount of 0.01 to 5 times, preferably 0.1 to 2.0 times the mol of the naphthalene-2,3-dicarbonitrile compound of the general formula (2). is there.
  • an organic solvent is preferably used in combination, and usually an alcohol solvent is used as the organic solvent.
  • alcohol solvents include methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol.
  • the amount of the alcohol solvent used is 200 mL to 15 L, preferably 500 mL to 5 L, per 1 mol of the naphthalene-2,3-dicarbonitrile compound of the general formula (2).
  • the reaction operation after adding metal sodium or metal potassium to an alcohol solvent as a reaction solvent to prepare an alcohol solution of metal alkoxide, ammonia and a naphthalene-2,3-dicarbonitrile compound of the general formula (2) Alternatively, the reaction may be carried out by charging ammonia, a naphthalene-2,3-dicarbonitrile compound of the general formula (2) and a separately prepared metal alkoxide into a reaction solvent. You may do it.
  • the amount of the metal used for adjusting the metal alkoxyside is 0.01 to 5.0 times mol, preferably 0.1 to mol of the naphthalene-2,3-dicarbonitrile compound of the general formula (2). ⁇ 2.0 times mol.
  • the reaction temperature is 0 ° C.
  • the reaction time is preferably 30 minutes to 72 hours.
  • the solvent is distilled off, extracted with an aromatic solvent such as toluene or a halogenated hydrocarbon solvent such as methylene chloride, the extract is washed with water, concentrated, and the precipitate is filtered.
  • the 1,3-diiminobenzoindoline compound (3) can be obtained.
  • the tetraphenylnaphthalocyanine compound of the present invention is a heat ray shielding material for shielding heat rays, an optical filter for plasma display or liquid crystal display, a flash fixing toner, a photothermal exchange agent for thermal transfer / thermal stencil, etc.
  • the near-infrared absorbing material of the present invention may be the tetraphenylnaphthalocyanine compound itself of the present invention represented by the general formula (1), or the general formula (1) together with other components such as a binder resin and additives.
  • the tetraphenyl naphthalocyanine compound may be used.
  • the modes and components of the near infrared absorbing material vary depending on the application and are various.
  • the tetraphenylnaphthalocyanine compound of the present invention is suitably used for heat ray shielding materials used for films and interlayers used in buildings, automobile windows, etc., greenhouses, sun visors, welding goggles and the like.
  • the heat ray shielding material of the present invention contains the tetraphenylnaphthalocyanine compound of the present invention represented by the general formula (1).
  • the tetraphenylnaphthalocyanine compound of the general formula (1) contained in the heat ray shielding material of the present invention may be used as a single compound or in the form of a mixture of two or more.
  • the isomer may also be any one of the isomers represented by the general formulas (1) -a to (1) -d, or a mixture of two or more isomers. It may be.
  • the heat-shielding material is represented by the general formula (1) -a. Those having a high content of isomers are preferred.
  • X 1 and X 2 are a hydrogen atom, a fluorine atom or a trifluoromethyl group
  • R 1 to R 4 are a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • the thing whose M is Cu is preferable.
  • Most preferred is a compound represented by the following formula.
  • the usage form of the heat ray shielding material of the present invention is not particularly limited, and may be any known form. Specific examples include the following examples. 1. 1. Form using molded body itself containing tetraphenylnaphthalocyanine compound of general formula (1) and resin as essential components A mode in which a coating film or a film containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin as essential components is applied on a base material 3. Between two or more base materials, the general formula (1) 3. Form of laminated body in which a film containing tetraphenylnaphthalocyanine compound and resin as essential components is provided as an intermediate layer.
  • the aspect which contains the tetraphenyl naphthalocyanine compound and resin of General formula (1) as an essential component is preferable for the heat ray shielding material of this invention.
  • the resin can be appropriately selected depending on the intended use of the heat ray shielding material, but is preferably a resin that is substantially transparent and does not significantly absorb and scatter.
  • polycarbonate resin such as methyl methacrylate
  • acrylic resin such as methyl methacrylate
  • polyvinyl resin such as polystyrene, polyvinyl chloride and polyvinylidene chloride
  • polyolefin resin such as polyethylene and polypropylene
  • polybutyral resin acetic acid
  • vinyl resins include vinyl resins; polyester resins; polyamide resins; polyvinyl acetal resins; polyvinyl alcohol resins; ethylene-vinyl acetate copolymer resins; ethylene-acrylic copolymer resins;
  • it is substantially transparent, not only the above-mentioned one kind of resin but also a blend of two or more kinds of resins can be used, and the above-mentioned resin can be sandwiched between transparent glasses.
  • polycarbonate resin (meth) acrylic resin, polyester resin, polyamide resin, polystyrene resin, polyvinyl chloride resin, polyvinyl acetal resin, and polyvinyl alcohol resin are preferable, and polycarbonate resin, methacrylic resin, polyethylene terephthalate (PET) are particularly preferable.
  • PET polyethylene terephthalate
  • Resin, polyvinyl chloride resin, and polyvinyl acetal resin are more preferable.
  • the polycarbonate resin is produced by reacting a dihydric phenol and a carbonate precursor by a solution method or a melting method.
  • dihydric phenol 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4 -Hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis ( 4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone and the like.
  • Preferred divalent phenols are bis (4-hydroxyphenyl) alkanes, particularly those containing bisphenol as the main component.
  • Examples of the (meth) acrylic resin include methyl methacrylate alone or a polymerizable unsaturated monomer mixture containing 50% or more of methyl methacrylate or a copolymer thereof.
  • Examples of the polymerizable unsaturated monomer copolymerizable with methyl methacrylate include the following.
  • polyester resins include homopolyesters such as poly C2-4 alkylene terephthalate and poly C2-4 alkylene naphthalate, C2-4 alkylene arylate units (C2-4 alkylene terephthalate and / or C2-4 alkylene naphthalate units).
  • polyarylate resins aliphatic polyesters using aliphatic dicarboxylic acids such as adipic acid, and lactone homo- or copolymers such as ⁇ -caprolactone are also included.
  • polyester resin polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and the like are preferable in terms of high transparency.
  • Amorphous copolyesters such as C2-4 alkylene arylate copolyesters are also preferred because of their excellent processability.
  • PET is preferable because it is produced in large quantities and is excellent in heat resistance and strength.
  • the polyamide resin is a resin having a dehydration polycondensate structure of a diamine compound containing an aromatic or aliphatic group and a dicarboxylic acid compound containing an aromatic or aliphatic group.
  • the aliphatic group also includes an alicyclic aliphatic group.
  • diamine compounds include hexamethylenediamine, m-xylylenediamine, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, trimethylhexamethylenediamine, bis (aminomethyl) norbornane, Examples thereof include bis (aminomethyl) tetrahydrodicyclopentadiene.
  • dicarboxylic acid compounds examples include adipic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, bis (hydroxycarbonylmethyl) norbornane, bis (hydroxycarbonylmethyl) tetrahydrodicyclopentadiene, and the like.
  • the polyamide resin an amorphous polyamide resin is particularly preferable from the viewpoint of transparency, and resins generally referred to as transparent nylon are preferable.
  • polyvinyl chloride resin not only a polymer of vinyl chloride monomer but also a copolymer mainly composed of vinyl chloride can be used.
  • monomers that can be copolymerized with vinyl chloride include vinylidene chloride, ethylene, propylene, acrylonitrile, vinyl acetate, maleic acid, itaconic acid, acrylic acid, and methacrylic acid.
  • polyvinyl acetal resin a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) and formaldehyde, a narrowly defined polyvinyl acetal resin obtained by reacting PVA and acetaldehyde, PVA and n-butyraldehyde are reacted.
  • Polyvinyl butyral resin (PVB) obtained by the above, and PVB is preferable.
  • the PVA used for the synthesis of the polyvinyl acetal resin preferably has an average degree of polymerization of 200 to 5000, more preferably 500 to 3000.
  • the acetalization degree is preferably 40 to 85 mol%, more preferably 50 to 75 mol%.
  • the polyvinyl alcohol resin can be obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol resin is generally in the range of 70 to 99.9 mol%, preferably in the range of 75 to 99.8 mol%, and in the range of 80 to 99.8 mol%. It is more preferable.
  • the average degree of polymerization of the polyvinyl alcohol resin is preferably 500 or more, more preferably 1000 or more and 5000 or less.
  • the content of the tetraphenylnaphthalocyanine compound of the present invention represented by the general formula (1) in the heat ray shielding material of the present invention varies depending on the thickness of the heat ray shielding material.
  • the amount is preferably 0.002 to 0.06 parts by weight, more preferably 0.003 to 0.04 parts by weight with respect to 100 parts by weight of the resin blended in the heat ray shielding material. 0.02 part by weight.
  • 0.0005 to 0.02 parts by weight is preferable with respect to 100 parts by weight of the resin, and more preferably 0.001 to 0.005 parts by weight. It is.
  • the amount is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the resin. If the content of the tetraphenylnaphthalocyanine compound of the general formula (1) is expressed regardless of the thickness of the heat ray shielding material, the weight in the projected area from above is considered to be 0.01 to 5.0 g / m.
  • the blending amount of 2 is preferable, and more preferably 0.05 to 1.0 g / m 2 .
  • the amount of the tetraphenylnaphthalocyanine compound of the general formula (1) is less than 0.01 g / m 2 , the heat ray shielding effect is reduced, and when it exceeds 5.0 g / m 2 , visible light is transmitted. May decrease.
  • the heat ray shielding material of the present invention may contain various additives that are used when producing ordinary transparent resin materials.
  • the additive include a colorant, a polymerization regulator, an antioxidant, an ultraviolet absorber, a heat ray shielding agent, a flame retardant, a plasticizer, a rubber for improving impact resistance, and a release agent. it can.
  • the heat ray shielding agent means particles capable of absorbing infrared rays having a wavelength of 780 nm or more, and includes aluminum-doped tin oxide, indium-doped tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and aluminum.
  • metal oxides such as doped zinc oxide (AZO), tungsten oxide, composite tungsten oxide, and the like can be given.
  • tin-doped indium oxide (ITO) is preferable.
  • the addition amount of the additive in the heat ray shielding agent is not particularly limited, but is usually 10% by weight or less in the heat ray shielding material.
  • an ultraviolet absorber it does not restrict
  • the heat ray shielding material of the present invention may contain other near infrared ray absorbing materials.
  • Other near-infrared absorbing materials are not particularly limited, and known near-infrared absorbing materials can be appropriately selected depending on the maximum absorption wavelength desired depending on the application.
  • the shape of the heat ray shielding material is not particularly limited, and includes various shapes such as a corrugated plate shape, a spherical shape, and a dome shape in addition to the most common flat plate shape and film shape.
  • the heat ray shielding material of the present invention is in the form of a flat plate or a film
  • the tetraphenylnaphthalocyanine compound of the general formula (1) is mixed with the resin and, if necessary, the additive and other near infrared absorbing materials and then molded.
  • a heat ray shielding material is obtained.
  • the molding method is not particularly limited, and a known molding method can be applied. Specific examples include extrusion molding, injection molding, cast polymerization, press molding, calender molding, or cast film forming method.
  • the use form of the heat ray shielding material of the present invention is a form in which a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is applied on a base material, It can be applied by sticking a film or sheet-like heat ray shielding material using an adhesive, an adhesive, an adhesive film, or the like.
  • a heat ray shielding material in the form of a film or a sheet can be applied to the substrate by hot pressing or hot lamination molding.
  • the usage form of the heat ray shielding material of the present invention is a form in which a coating film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is applied on a substrate, the general formula (1)
  • a coating film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is applied on a substrate, the general formula (1)
  • a paint liquid or pasty material
  • the use form of the heat ray shielding material of the present invention is a laminate in which a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is provided as an intermediate layer between two or more substrates
  • a film containing the tetraphenylnaphthalocyanine compound of the general formula (1) and the resin as essential components is sandwiched between the base materials, put into a rubber pack, heated under vacuum and vacuum bonded. Can be applied.
  • a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is sandwiched between the substrates, or on one substrate, the tetraphenylnaphthalocyanine of the general formula (1) Apply a compound and resin, and if necessary, a solvent that dissolves them and a paint containing other components, then place the other base material and apply these laminates by heat or other means. You can also.
  • an adhesive containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin or a composition containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin as an adhesive, It is also possible to apply by bonding.
  • the use of the heat ray shielding material of the present invention is not particularly limited, and examples thereof include films and interlayer films, sun visors, welding goggles and the like used for buildings, automobile windows, etc. for solar energy heat ray shielding.
  • the tetraphenyl naphthalocyanine compound represented by the general formula (1) of the present invention is excellent in solvent solubility and compatibility with a resin, and in various properties such as heat resistance, light resistance, and weather resistance. It is suitable as a film or an intermediate film used for a window of a building or an automobile.
  • Embodiment 2 which is a film containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin
  • Aspect 3 which is a mode having a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin, a pressure-sensitive adhesive layer, and a release sheet provided on the surface of the pressure-sensitive adhesive layer as necessary.
  • An aspect having an adhesive layer is preferable from the viewpoint of easiness of sticking to a window glass, and the like. Or 5.
  • the embodiment is preferred.
  • further layers such as a hard coat layer, an antifouling layer, an ultraviolet absorbing layer, and an antireflection layer may be provided depending on the purpose.
  • Examples of the resin contained together with the tetraphenylnaphthalocyanine compound of the general formula (1) include the same resins as those of the resin contained in the heat ray shielding material.
  • polycarbonate resin, (meth) acrylic resin, polyvinyl resin, polyolefin resin, polybutyral resin, polyester resin, polyamide resin, and polyurethane resin are preferable.
  • Examples of the base material include those similar to the examples of the base material described in the use form of the heat ray shielding material, but a resin sheet or plate is preferable.
  • Examples thereof include films of polyester, polyethylene, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polymethyl methacrylate, fluororesin, ethylene, vinyl alcohol resin, and the like.
  • a polyester film is preferable, and a polyethylene terephthalate (PET) film is more preferable.
  • the pressure-sensitive adhesive is not particularly limited as long as it can be adhered to a substrate and has transparency.
  • (meth) acrylic type; (meth) acrylic urethane type; (meth) acrylic silicone type; siloxane bond Thermoplastic or thermosetting such as fluororesin such as polyvinylidene fluoride, silicone based, polyvinyl chloride, melamine, urethane, styrene, alkyd, phenol, epoxy, polyester , Active energy ray-curable curable resin adhesive, natural rubber, butyl rubber, isopropylene rubber, ethylene propylene rubber, methyl rubber, chloroprene rubber, ethylene-propylene copolymer rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc.
  • the resin that is a pressure-sensitive adhesive examples include the above-mentioned thermoplastic, thermosetting, and active energy ray-curable curable resin pressure-sensitive adhesives, and (meth) acrylic resins are preferable, and the glass transition temperature is less than 0 ° C.
  • Poly (meth) acrylic acid ester resins are particularly preferred.
  • the poly (meth) acrylic acid ester-based resin those obtained by using 50% by weight or more of (meth) acrylic acid ester having an alkyl group having 1 to 14 carbon atoms as a monomer are preferable.
  • copolymerizable monomers examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate and the like ( (Meth) acrylates; styrene monomers represented by ⁇ -methylstyrene, vinyl toluene, styrene, etc .; vinyl ether monomers represented by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, etc .; fumaric acid, fumaric acid Monoalkyl ester, dialkyl ester of fumaric acid; maleic acid, monoalkyl ester of maleic acid, dialkyl ester of maleic acid, itaconic acid, monoalkyl ester of itaconic acid, dialkyl ester of itaconic acid,
  • Each layer of the heat ray shielding film may contain the same additives as those used in the production of the heat ray shielding material.
  • examples include colorants, polymerization regulators, antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, antistatic agents, plasticizers, and the like.
  • an embodiment containing an ultraviolet absorber is preferred, such as an antioxidant, a flame retardant, an adhesive strength modifier, a moisture-resistant agent, a fluorescent brightening agent, and an infrared absorber.
  • a material that can absorb heat rays such as carbon black, may be used in combination as long as the visible light transmittance is not significantly reduced.
  • the thickness of the heat ray shielding film varies depending on the configuration, the type of resin of the base material and the heat ray shielding layer, the use thereof, and the like, but usually about 10 ⁇ m to 500 ⁇ m is preferably used.
  • the thickness of the substrate is preferably about 20 ⁇ m to 300 ⁇ m.
  • the thickness of the layer containing the tetraphenylnaphthalocyanine compound of general formula (1) and the resin is preferably about 0.3 to 100 ⁇ m.
  • the content of the tetraphenylnaphthalocyanine compound of the general formula (1) relative to the resin depends on the thickness of the layer containing the tetraphenylnaphthalocyanine compound of the general formula (1) and the resin.
  • the tetraphenylnaphthalocyanine compound of the general formula (1) is preferably in the range of 0.001 to 30 parts by weight, and more preferably in the range of 0.01 to 10 parts by weight.
  • the heat ray shielding film of the present invention after mixing with the tetraphenylnaphthalocyanine compound of general formula (1) and a resin, and if necessary, the above additives, other near infrared absorbers, ultraviolet absorbers, etc. Mold.
  • the molding method is not particularly limited, and a known molding method can be applied as it is or appropriately modified. Specifically, extrusion molding, injection molding, cast polymerization, press molding, calender molding, cast film forming method, or the like can be suitably used.
  • a resin film containing the tetraphenylnaphthalocyanine compound of the general formula (1) can be produced, and the film can be produced by hot pressing or heat laminating the resin material. It can also be produced by printing or coating an acrylic resin ink or paint containing a tetraphenylnaphthalocyanine compound of general formula (1) on a resin material.
  • the interlayer film for laminated glass is a resin film used in a form sandwiched between two sheets of glass.
  • tetraphenyl of the general formula (1) is used.
  • a naphthalocyanine compound and a resin are contained as essential components.
  • the resin is not particularly limited as long as it has sufficient visibility when used for laminated glass, and preferably has a visible light transmittance of 70% or more when laminated glass is used.
  • polyvinyl acetal resins polyvinyl chloride resins, saturated polyester resins, polyurethane resins, ethylene-vinyl acetate copolymer resins, ethylene-ethyl acrylate copolymer resins, and the like have been used for intermediate films.
  • the thermoplastic resin which is mentioned.
  • a plasticized polyvinyl acetal resin is preferable.
  • the polyvinyl acetal resin include a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) and formaldehyde, a narrowly defined polyvinyl acetal resin obtained by reacting PVA and acetaldehyde, and a reaction between PVA and n-butyraldehyde.
  • the polyvinyl butyral resin (PVB) etc. which are obtained by making it include are mentioned, and especially a polyvinyl butyral resin (PVB) is preferable.
  • the PVA used for the synthesis of the polyvinyl acetal resin preferably has an average polymerization degree of 200 to 5000, more preferably 500 to 3000.
  • the polyvinyl acetal-based resin preferably has an acetalization degree of 40 to 85 mol%, more preferably 50 to 75 mol%. Further, those having a residual acetyl group content of 30 mol% or less are preferred, and those having a residual acetyl group content of 0.5 to 24 mol% are more preferred.
  • plasticizer used for plasticizing a thermoplastic resin preferably a polyvinyl acetal resin
  • examples of the plasticizer used for plasticizing a thermoplastic resin, preferably a polyvinyl acetal resin include, for example, organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, Examples thereof include phosphoric acid plasticizers such as organic phosphoric acid and organic phosphorous acid.
  • the thickness of the interlayer film for laminated glass varies depending on the type of resin, its use, etc., but is usually preferably in the range of 0.1 to 3 mm, and in the range of 0.3 to 1.5 mm. More preferably.
  • the content of the tetraphenylnaphthalocyanine compound of the general formula (1) with respect to the resin is not particularly limited. And is more preferably within the range of 0.005 to 0.5 parts by weight.
  • the interlayer film for laminated glass of the present invention may contain the same additives as those used in the production of the heat ray shielding material.
  • examples thereof include a heat ray shielding agent, an ultraviolet absorber, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, an adhesive force adjusting agent, a moisture-resistant agent, a fluorescent whitening agent, a colorant, and an infrared absorber.
  • an embodiment containing an ultraviolet absorber is preferable.
  • Examples of the method for producing the interlayer film for laminated glass of the present invention include the same methods as those for producing the heat ray shielding material and the heat ray shielding film.
  • the interlayer film for laminated glass according to the present invention has at least one of a primer function, an ultraviolet cut function, a flame retardant function, an antireflection function, an antiglare function, an antireflection antiglare function, and an antistatic function as necessary It is good also as a multilayer structure combined with the functional transparent layer which has a function.
  • the laminated glass using the interlayer film for laminated glass of the present invention has a configuration in which the interlayer film of the present invention is sandwiched and bonded and integrated between at least two transparent glass substrates.
  • a transparent glass base material For example, float plate glass, polished plate glass, flat glass, curved plate glass, parallel plate glass, type plate glass, wire mesh type plate glass, heat ray absorption plate glass, clear glass, colored glass plate, etc. And various inorganic glass plates, and organic glass plates such as polycarbonate plates and polymethylmethacrylate plates. These transparent glass substrates may be used alone or in combination of two or more kinds.
  • the interlayer film of the present invention is sandwiched between two transparent glass substrates and placed in a vacuum bag, and the pressure in the vacuum bag is reduced to about ⁇ 65 to ⁇ 100 kPa. After preliminarily adhering at a temperature of about 70 to 110 ° C. while sucking under reduced pressure so that the pressure is about 50 ° C. It can be obtained by performing the main bonding at a temperature of about 120 to 150 ° C.
  • Example 1 Production of 1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -11) 19 g of 3,5-difluoro-2'-methylbenzophenone and N- 16.6 g of bromosuccinimide and 0.5 g of radical generator V-70 (azonitrile compound manufactured by Wako Pure Chemical Industries, Ltd.) were stirred for 2 hours at an internal temperature of 70 ° C. in 60 mL of benzene.
  • V-70 radical generator
  • Example 2 Preparation of 6-t-butyl-1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -18) 3,5-difluoro-2'- Methyl-4′-t-butylbenzophenone (21.2 g), N-bromosuccinimide (14.4 g) and radical generator V-70 (0.5 g) were stirred in benzene (40 mL) at an internal temperature of 70 ° C. for 2 hours. After cooling, succinimide was removed by filtration, 6.25 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 90 ° C. for 16 hours.
  • the reaction solution was cooled to 0 ° C., 20 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off by an evaporator and dried. Next, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 13.4 g of a white solid (melting point: 167 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 3 Preparation of 4- (3,5-difluorophenyl) -7-t-butyl-1,3-diiminobenzoisoindoline (specific example (3) -18) 28% solution of sodium methoxide After 3 mL of ammonia was blown and saturated, 6 g of 6-t-butyl-1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile prepared in Example 2 and 50 mL of toluene were added. Stir at 0 ° C. for 3 hours. After distilling off the solvent and ammonia, 50 mL of water was added to the distillation residue, dispersed and filtered.
  • Example 4 Production of 1- (3,5-bis (trifluoromethyl) phenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -31) 3,5-bis (trifluoromethyl) 27.6 g of 2′-methylbenzophenone, 16.3 g of N-bromosuccinimide and 0.5 g of radical generator V-70 were stirred in 60 mL of benzene at an internal temperature of 70 ° C. for 2 hours. After cooling, succinimide was removed by filtration, 7.78 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 90 ° C. for 16 hours.
  • the reaction solution was cooled to 0 ° C., 20 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off by an evaporator and dried. Subsequently, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 14.6 g of a white solid (melting point: 245 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
  • the reaction solution was cooled to 0 ° C., 10 mL of concentrated sulfuric acid was added dropwise, and the mixture was stirred for 10 minutes.
  • the benzene solution was washed with water, and the solvent was distilled off with an evaporator and dried. Subsequently, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 4.57 g of a white solid (melting point: 248 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 6 Preparation of 4- (3,5-bis (trifluoromethyl) phenyl) -7-t-butyl-1,3-diiminobenzoisoindoline (specific example (3) -38) Ammonia was blown into 6.3 mL of a sodium methoxide 28% solution to saturate, and then 6 g of 1- (3,5-difluorophenyl) -6-fluoronaphthalene-2,3-dicarbonitrile prepared in Example 5 and Toluene 50mL was added and it stirred at 60 degreeC for 3 hours. After distilling off the solvent and ammonia, 50 mL of water was added to the distillation residue, dispersed and filtered.
  • Example 7 Production of 1- (3,5-bis (trifluoromethyl) phenyl) -6-fluoronaphthalene-2,3-dicarbonitrile (Specific Example (2) -33) Trifluoromethyl) -2′-methyl-6-fluorobenzophenone 35 g, N-chlorosuccinimide 32.68 g and radical generator V-65 1.2 g were stirred in chlorobenzene 80 mL at an internal temperature of 70 ° C. for 33 hours. After cooling, succinimide was removed by filtration, 7.8 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 130 ° C. for 11 hours.
  • the reaction solution was cooled to 0 ° C., 12 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off with an evaporator and dried. Subsequently, the obtained solid was purified by column chromatography (silica gel / heptane) to obtain 12.65 g of a white solid (melting point: 245 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 8 Preparation of 4- (3,5-bis (trifluoromethyl) phenyl) -7-fluoro-1,3-diiminobenzoisoindoline (specific example (3) -33) Sodium methoxide 28% Ammonia was blown into 6.3 mL of the solution to saturate, and then 6 g of 1- (3,5-trifluorophenyl) -6-fluoronaphthalene-2,3-dinitrile prepared in Example 7 and 50 mL of toluene were added. Stir at 0 ° C. for 3 hours. After distilling off the solvent and ammonia, 50 mL of water was added to the distillation residue, dispersed and filtered.
  • Example 9 Production of tetraphenylnaphthalocyanine compound (specific example (1) -7) 1.03 g of 1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile prepared in Example 1, 0.17 g of palladium chloride and 0.5 mL of DBU in 50 mL of 1-dodecanol had an internal temperature of 100 ° C. For 48 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (activated alumina / methylene chloride) gave 0.35 g of a dark green powder.
  • the obtained compound was confirmed to be the target compound from the following analysis results.
  • the present compound and the tetraphenylnaphthalocyanine compounds of the following examples obtained by the same production method are mixtures of isomers represented by the formulas (1) -a to (1) -d.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 768 nm, and the gram extinction coefficient was 2.10 ⁇ 10 5 g / mL ⁇ cm. This absorption spectrum chart is shown in FIG.
  • Example 10 Production of tetraphenylnaphthalocyanine compound (specific example (1) -8) The same procedure as in Example 9 except that 0.1 g of copper chloride was used instead of 0.17 g of palladium chloride in Example 9. 0.7 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 11 Production of tetraphenylnaphthalocyanine compound (specific example (1) -34) 1- (3,5-bis (trifluoromethyl) phenyl) naphthalene-2,3-dicarbohydrate produced in Example 4 1.02 g of nitrile, 0.12 g of palladium chloride and 0.5 mL of DBU were stirred in 50 mL of 1-dodecanol at an internal temperature of 100 ° C. for 48 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried.
  • Example 12 Production of tetraphenylnaphthalocyanine compound (specific example (1) -36) The same procedure as in Example 11 except that 0.07 g of copper chloride was used instead of 0.12 g of palladium chloride in Example 11. 0.5 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 13 Production of tetraphenylnaphthalocyanine compound (specific example (1) -26) 4- (3,5-difluorophenyl) -7-t-butyl-1,3-diimino produced in Example 3 1 g of benzoisoindoline, 0.16 g of palladium chloride and 1 mL of DBU were stirred in 40 mL of n-butanol at an internal temperature of 100 ° C. for 36 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried.
  • Example 14 Production of tetraphenylnaphthalocyanine compound (specific example (1) -27) The same procedure as in Example 13 except that 0.09 g of copper chloride was used instead of 0.16 g of palladium chloride in Example 13. 0.7 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 15 Production of tetraphenylnaphthalocyanine compound (specific example (1) -29) The same procedure as in Example 13 except that 0.14 g of vanadium chloride was used instead of 0.16 g of palladium chloride in Example 13. 0.8 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 16 Production of tetraphenylnaphthalocyanine compound (specific example (1) -37) 4- (3,5-bis (trifluoromethyl) phenyl) -7-t-butyl-1 produced in Example 6 , 3-Diiminobenzoisoindoline (1.12 g), palladium chloride (0.12 g) and DBU (1 mL) were stirred in 80 mL of n-butanol at an internal temperature of 100 ° C. for 36 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried.
  • This compound is a mixture of isomers represented by the general formulas (1) -a to (1) -d.
  • the mixture was further subjected to column chromatography as described below to separate each fraction, thereby separating each isomer.
  • 110 mg of this compound (mixture) was subjected to silica gel column chromatography (hexane / chloroform 8/1, v / v) to fractionate each fraction.
  • Each obtained fraction was concentrated with an evaporator, an appropriate amount of hexane was added, and the mixture was stirred and the precipitate was filtered and dried. Note that the fraction of the isomer corresponding to the general formula (1) -d was very small and could not be isolated.
  • the single crystal used for the X-ray crystal structure analysis was prepared by a diffusion method in a mixed solvent system using chloroform as a good solvent and methanol as a poor solvent.
  • a Rigaku Mercury single crystal X-ray structural analyzer with a CCD detector using Mo-K ⁇ rays ( ⁇ 0.71075 mm) monochromatized with graphite as the light source, 2 ⁇ is 20 ⁇ 1 ° C. Measurements were made in the range up to 62.5 °.
  • the Crystal Structure crystal structure analysis program package was used for calculations related to structural analysis. The structure was determined using reflection of I> 2.00 ⁇ (I), and an approximate structure was obtained by a direct method using an SIR92 analysis program and a Fourier diagram using a DIRDIF99 analysis program.
  • Example 17 Production of tetraphenylnaphthalocyanine compound (specific example (1) -41) The same procedure as in Example 16 except that 0.07 g of copper chloride was used instead of 0.12 g of palladium chloride in Example 16. 0.7 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 18 Production of tetraphenylnaphthalocyanine compound (specific example (1) -35) The same procedure as in Example 16 except that 0.11 g of vanadium chloride was used instead of 0.12 g of palladium chloride in Example 16. 0.8 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 19 Production of tetraphenylnaphthalocyanine compound (specific example (1) -64) 1- (3,5-bis (trifluoromethylphenyl) -6-fluoronaphthalene-2,3-dicarbonitrile prepared in Example 7 (4.0 g), copper chloride (0.339 g), DBU (1 mL) and n-octanol (25 mL) The mixture was stirred for 5 hours at an internal temperature of 180 ° C. After evaporating the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried, and purified by column chromatography (silica gel / toluene).
  • Example 20 Production of tetraphenylnaphthalocyanine compound (specific example (1) -65) Instead of 0.339 g of copper chloride in Example 19, 0.54 g of vanadium chloride and 1- (3,5-bis (trifluoromethylphenyl) -6-fluoronaphthalene-2,3-dicarbox prepared in Example 7 Except that 4.17 g of 4- (3,5-bis (trifluoromethyl) phenyl) -6-fluoro-1,3-diimino-benzoisoindoline synthesized in Example 8 was used instead of 4.0 g of nitrile. 2.1 g of dark green powder was obtained in the same manner as in Example 19.
  • Solubility (wt%) (W0-W1) / W0 W0: exact weight of tetraphenylnaphthalocyanine compound before treatment, W1: weight of filtrate after drying (dissolved residue of tetraphenylnaphthalocyanine compound). When no filter residue remained on the filter, the solubility was 1 wt% or more.
  • Comparative Example 1 Compound of Comparative Example 1
  • Comparative Example 2 Compound of Comparative Example 2
  • the compound of Comparative Example 1 is tetraphenyl-Pd-naphthalocyanine prepared in the above Comparative Example 1. Comparative Example 2 The compound was produced according to Example 1 described in JP-A-2009-29955.
  • FIG. 21 shows a comparison of transmission spectra of the tetraphenylnaphthalocyanine compound of the present invention produced in Example 15 and Example 20 and the compound of Comparative Example 2.
  • (Visible light transmittance measurement method) In a 100 mL volumetric flask, 1.000 mg of each naphthalocyanine compound and about 90 mL of chloroform were placed, irradiated with ultrasonic waves for 30 minutes, and allowed to stand at room temperature for 2 hours.
  • chloroform was added so that the meniscus of the solution coincided with the marked line of the volumetric flask to prepare a 10 mg / L naphthalocyanine solution.
  • the solution thus prepared was placed in a 1 cm square Pyrex (registered trademark) cell, and an absorption spectrum was measured using a spectrophotometer (manufactured by Hitachi, Ltd .: Spectrophotometer U-3500). From the absorption spectrum measured in this way, as shown in FIG. 21, a conversion spectrum was obtained by converting the absorbance at the absorption maximum wavelength in the near infrared region to 1.0, that is, the transmittance was 10%. .
  • the transmittance of this transmission spectrum at 460 nm and 610 nm is shown in Table 5 for compounds whose central metals are copper and palladium, and in Table 6 for compounds whose central metals are vanadium.
  • the compound of the present invention has substantially the same transmittance at 610 nm, but the transmittance at 460 nm is greatly improved.
  • This dye resin solution was applied on a glass substrate using a spin coater (manufactured by Kyoei Semiconductor Co., Ltd .: Spinner IH-III-A) to a dye concentration of 20 wt% and a dry film thickness of 2 ⁇ m, and at 100 ° C. for 3 minutes. Dried.
  • the absorption spectrum of the coating glass plate thus obtained was measured with a spectrophotometer (manufactured by Hitachi, Ltd .: Spectrophotometer U-3500), and this was used as the spectrum before the test.
  • the coated glass plate whose spectrum was measured before the test was irradiated with light of 550 W / h for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki Co., Ltd .: Suntest XLS +).
  • the absorption spectrum of the light-irradiated coated glass plate was measured with a spectrophotometer to obtain a spectrum after a light resistance test.
  • the coated glass plate whose spectrum was measured before the test was heat-treated at a temperature of 100 ° C. for 200 hours with a thermostat (manufactured by Yamato Kagaku Co .: IG400).
  • the absorption spectrum of the heat-treated coated glass plate was measured with a spectrophotometer to obtain a spectrum after the heat resistance test.
  • the absorbance values in the range of 400 to 900 nm were integrated, and the difference between the values before and after the light resistance / heat resistance test was calculated.
  • the absorbance difference ⁇ E before and after the light resistance / heat resistance test was expressed by the following formula.
  • ⁇ (%) ⁇ (400 to 900 nm of E1) ⁇ (400 to 900 nm of E2) ⁇ / ⁇ (400 to 900 nm of E1) ⁇ 100
  • E1 spectrum before test
  • E2 spectrum after test
  • integration of absorbance values.
  • Table 7 all of the compounds of the examples exhibited excellent light resistance and heat resistance as compared with the comparative examples.
  • the isomers of the general formula (1) -a are represented by the general formulas (1) -b and (1) -c.
  • compound (1) -41-a which is an isomer of general formula (1) -a of a tetraphenylnaphthalocyanine compound in which the central metal is copper, showed very high light resistance and heat resistance.
  • Example 21 Production of heat-shielding film 5 parts by weight of tetraphenylnaphthalocyanine compound (specific example (1) -7) produced in Example 9, acrylic resin LP-45M (product name, manufactured by Soken Chemical Co., Ltd.) 50 Part by weight, 20 parts by weight of methyl ethyl ketone, and 20 parts by weight of toluene were mixed and stirred to produce a resin composition.
  • the resin composition was coated on a polyethylene terephthalate film (PET film) having a thickness of 100 ⁇ m as a transparent substrate so as to have a thickness of 2.5 ⁇ m, and then dried at 100 ° C. for 3 minutes.
  • PET film polyethylene terephthalate film
  • Example 22 Production of heat ray shielding film Example 21 except that the compound of Example (1) -8 was used in place of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
  • Example 23 Production of heat ray shielding film Example 21 except that the compound of Example (1) -26 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
  • Example 24 Production of heat ray shielding film Example 21 except that the compound of Example (1) -27 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
  • Example 25 Production of heat ray shielding film In Example 21, Example 21 was used except that the compound of Example (1) -35 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, a heat ray shielding film was produced.
  • Example 26 Production of heat ray shielding film Example 21 except that the compound of Example (1) -37 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
  • Example 27 Production of heat ray shielding film
  • Example 21 was used except that the compound of Example (1) -41 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, a heat ray shielding film was produced.
  • Example 3 Production of heat ray shielding film
  • Example 21 the same operation as in Example 21 was conducted except that the compound of Comparative Example 1 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound.
  • a heat ray shielding film was manufactured.
  • Comparative Example 4 Production of heat ray shielding film In Example 21, the same operation as in Example 21 was performed except that the compound of Comparative Example 2 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. A heat ray shielding film was manufactured.
  • ⁇ (%) ⁇ (400 to 900 nm of E1) ⁇ (400 to 900 nm of E2) ⁇ / ⁇ (400 to 900 nm of E1) ⁇ 100
  • E1 spectrum before test
  • E2 spectrum after test
  • integration of absorbance values.
  • Table 8 all of the heat ray shielding films of the Examples exhibited superior characteristics in heat shielding ability, light resistance and heat resistance as compared with the Comparative Example. In particular, it was very excellent in light resistance and heat resistance.
  • Example 28 Production of interlayer film for laminated glass and laminated glass ⁇ Production of interlayer film for laminated glass>
  • organic ester plasticizer 0.013 part by weight of the tetraphenylnaphthalocyanine compound (specific example (1) -7) prepared in Example 9 was dissolved in 40 parts by weight of triethylene glycol-di-2-ethylhexanoate. This solution was added to 100 parts by weight of polyvinyl butyral resin (trade name: BH-3, manufactured by Sekisui Chemical Co., Ltd.), sufficiently melt-kneaded with a mixing roll, and then extruded using an extruder to obtain a thickness of 0. An intermediate film of .76 mm was obtained.
  • polyvinyl butyral resin trade name: BH-3, manufactured by Sekisui Chemical Co., Ltd.
  • the above interlayer film is cut into a size of 100 mm ⁇ 100 mm, sandwiched between heat ray absorbing plate glasses (length 100 mm ⁇ width 100 mm ⁇ thickness 2.0 mm) according to JIS R3208, put in a rubber bag, and a vacuum degree of 2.6 kPa After degassing for 20 minutes, it was transferred to an oven while being degassed, and further vacuum-pressed by holding at 90 ° C. for 30 minutes. Then, it pressure-bonded for 20 minutes on the conditions of the temperature of 130 degreeC, and the pressure of 1.3 MPa in the autoclave, and the sample of the laminated glass was obtained.
  • Example 29 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of the specific example (1) -8 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 30 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of specific example (1) -34 was used in place of the compound of specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • the compound of the specific example (1) -36 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 32 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of specific example (1) -26 was used in place of the compound of specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 33 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of the specific example (1) -27 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • the compound of the specific example (1) -29 was used in place of the compound of the specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 35 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of specific example (1) -37 was used as the tetraphenylnaphthalocyanine compound instead of the compound of specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • compound (1) -37-a was used as the tetraphenylnaphthalocyanine compound in place of the compound of specific example (1) -7. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
  • Example 37 Preparation of interlayer film for laminated glass and laminated glass
  • Compound (1) -37-b was used as the tetraphenylnaphthalocyanine compound instead of the compound of Specific Example (1) -7
  • Example 38 Preparation of interlayer film for laminated glass and laminated glass
  • Compound (1) -37-c was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound.
  • Example 39 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of specific example (1) -41 was used in place of the compound of specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 40 Preparation of interlayer film for laminated glass and laminated glass
  • Compound (1) -41-a was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
  • Example 41 Preparation of interlayer film for laminated glass and laminated glass In Example 28, Compound (1) -41-b was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
  • Example 42 Preparation of interlayer film for laminated glass and laminated glass
  • Compound (1) -41-c was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound.
  • Example 43 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of Specific Example (1) -35 was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • the compound of the specific example (1) -64 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 45 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of Specific Example (1) -65 was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • the compound of Comparative Example 1 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, an interlayer film for laminated glass and a laminated glass were produced.
  • Example 6 Preparation of interlayer film for laminated glass and laminated glass
  • the compound of Comparative Example 2 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound.
  • an interlayer film for laminated glass and a laminated glass were produced.
  • ⁇ (%) ⁇ (400 to 900 nm of E1) ⁇ (400 to 900 nm of E2) ⁇ / ⁇ (400 to 900 nm of E1) ⁇ 100
  • E1 spectrum before test
  • E2 spectrum after test
  • integration of absorbance values. The greater the value of ⁇ , the greater the spectral change before and after the light and heat resistance test.
  • the laminated glasses of Examples 28 to 45 using the tetraphenylnaphthalocyanine compound of the present invention compared to Comparative Examples 5 and 6 are all heat-shielding ability, visible light transmittance, and light resistance. In addition, it showed excellent characteristics in heat resistance. In particular, it was very excellent in light resistance and heat resistance. Further, as shown in Examples 35 to 42, the laminated glass using the isomer of the general formula (1) -a is an isomer of the general formula (1) -b or the general formula (1) -c, Or it showed especially high light resistance and heat resistance compared with the laminated glass using the mixture of each isomer.
  • a laminated glass using compound (1) -41-a which is an isomer of general formula (1) -a of a tetraphenylnaphthalocyanine compound whose central metal is copper, has very high light resistance and heat resistance. showed that.
  • the tetraphenylnaphthalocyanine compound of the present invention has strong absorption in the near infrared region, very small absorption in the visible light region, good solubility in organic solvents and resins, light resistance, heat resistance, etc. Very high durability. Therefore, it is used for applications such as near-infrared cut filters, transparent ink used for security, heat ray shielding films used for automobiles and building windows, interlayer films for laminated glass, infrared thermosensitive recording materials, plastic laser welding, etc. It is very useful as a near infrared absorbing dye.

Abstract

[Problem] To provide: a novel naphthalocyanine compound which has intense absorption in a near-infrared region and extremely small absorption of a visible light region, and has high durability and good solubility in organic solvents and resins; a method for producing the naphthalocyanine compound; an intermediate; and the use of the naphthalocyanine compound. [Solution] A tetraphenylnaphthalocyanine compound represented by general formula (1); a method for producing the tetraphenylnaphthalocyanine compound; and an intermediate. [In formula (1), M represents two hydrogen atoms, a bivalent metal, or a derivative of a trivalent or tetravalent metal; R1 to R4 independently represent a hydrogen atom, a halogen atom or an alkyl group; and A represents a group represented by formula (B).] [In formula (B), X1 and X2 independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted by a fluorine atom, wherein a case in which each of X1 and X2 represents a hydrogen atom is excluded.]

Description

テトラフェニルナフタロシアニン化合物、その製造方法および用途Tetraphenylnaphthalocyanine compound, production method and use thereof
 本発明は、可視光透明性に優れ、耐久性が高い新規なナフタロシアニン化合物、及びその用途に関する。
詳しくは、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さいため着色が少なく、光や熱に対する耐久性が高く、有機溶剤に可溶で、近赤外線吸収フィルター、セキュリティインク、熱線遮蔽フィルム、合わせガラス用中間膜、赤外線感熱記録材料等の近赤外線吸収材料に広く利用可能な新規なナフタロシアニン化合物、及びその用途、特に熱線遮蔽材に関する。
The present invention relates to a novel naphthalocyanine compound having excellent visible light transparency and high durability, and uses thereof.
Specifically, it has strong absorption in the near-infrared region, very little absorption in the visible light region, little coloration, high durability against light and heat, soluble in organic solvents, near-infrared absorption filter, security The present invention relates to a novel naphthalocyanine compound that can be widely used for near-infrared absorbing materials such as inks, heat-ray shielding films, interlayer films for laminated glass, and infrared thermosensitive recording materials, and uses thereof, particularly to heat-ray shielding materials.
  近年、近赤外線吸収材料は光記録媒体、近赤外線光増感剤、光熱変換剤、近赤外線カットフィルター、近赤外線吸収インク、熱線遮蔽材など、広い分野において使用されるようになってきている。
  特に、プラズマディスプレーなどに用いられる近赤外線カットフィルター、セキュリティ用に用いられる透明インク、あるいは自動車や建物の窓などに用いられる熱線遮蔽材、プラスチックのレーザー溶着などの用途に、近赤外線を吸収する能力が高くかつ可視光線の透過率の高い、すなわち着色が少なく透明度が高い、加えて光や熱に対する耐久性が高く、また有機溶剤や樹脂に溶解する近赤外線吸収材料の開発要求が高まっている。
  このような近赤外線吸収材料として種々の有機色素が検討され、アミニウム化合物、インモニウム化合物、フタロシアニン化合物、ナフタロシアニン化合物などは一部実用化にも至っている。
特にナフタロシアニン化合物は、近赤外線を吸収する能力が高く、可視光透明性も比較的良好であるため、上記した目的の近赤外線吸収材料として種々検討が行われてきた。
In recent years, near-infrared absorbing materials have been used in a wide range of fields such as optical recording media, near-infrared photosensitizers, photothermal conversion agents, near-infrared cut filters, near-infrared absorbing inks, and heat ray shielding materials.
The ability to absorb near-infrared rays in applications such as near-infrared cut filters used for plasma displays, transparent inks used for security, heat ray shielding materials used in automobiles and building windows, plastic laser welding, etc. There is a growing demand for the development of a near-infrared absorbing material that has a high visible light transmittance and high transparency, that is, little coloration and high transparency, high durability against light and heat, and that dissolves in organic solvents and resins.
Various organic dyes have been studied as such a near-infrared absorbing material, and some of aminium compounds, immonium compounds, phthalocyanine compounds, naphthalocyanine compounds have been put into practical use.
In particular, naphthalocyanine compounds have a high ability to absorb near-infrared light and have relatively good visible light transparency. Therefore, various studies have been conducted as near-infrared absorbing materials for the above purpose.
 特許文献 1、2には、中心金属にナフタロシアニン骨格の面の垂直方向
(axial位)に置換基が配位したナフタロシアニン化合物を用いた、近赤外線吸収インキ、プラスチック材料の接合方法などが開示されている。ここで用いられているナフタロシアニン化合物は、近赤外線を吸収しかつ可視光線吸収が少ないことが記載されているが、耐久性が低いという欠点がある。
 特許文献3には、近赤外線吸収剤、紫外線吸収剤、およびポリエステル樹脂を含有する近赤外線吸収性インキ組成物が開示され、ナフタロシアニン化合物系近赤外線吸収剤として、α位に8個のイソペンチルオキシ基を有するパラジウムナフタロシアニンが使用されている。
  また、特許文献4には、特定の重合触媒と赤外線吸収剤を有するポリエステルを、赤外線ヒーターにより短時間で加熱結晶化させる方法が開示され、赤外線吸収剤としてα位に8個のブトキシ基を有するバナジルナフタロシアニンが使用されている。これらα位にアルコキシ基を有するナフタロシアニン化合物は、可視光領域の吸収が少ないため、これを用いた物品の着色が少なく透明度が高い特徴があるが、耐久性が低いという欠点があり、可視光透明性も十分ではない。
In Patent Documents 1 and 2, the center metal is perpendicular to the plane of the naphthalocyanine skeleton.
Disclosed are a near-infrared absorbing ink and a plastic material joining method using a naphthalocyanine compound in which a substituent is coordinated at the (axial position). The naphthalocyanine compound used here is described as absorbing near infrared rays and having little visible light absorption, but has a drawback of low durability.
Patent Document 3 discloses a near-infrared absorbing ink composition containing a near-infrared absorber, an ultraviolet absorber, and a polyester resin. As a naphthalocyanine compound-based near-infrared absorber, eight isopentyls at the α-position are disclosed. Palladium naphthalocyanine having an oxy group is used.
Patent Document 4 discloses a method in which a polyester having a specific polymerization catalyst and an infrared absorber is heated and crystallized in a short time with an infrared heater, and has eight butoxy groups at the α-position as the infrared absorber. Vanadyl naphthalocyanine is used. Since these naphthalocyanine compounds having an alkoxy group at the α-position have little absorption in the visible light region, they are characterized by little coloration and high transparency, but they have the disadvantage of low durability and visible light. Transparency is not sufficient.
  特許文献5には、自動車の窓ガラス等の代わりになる熱遮断性の熱可塑性プラスチックなどとして用いられ、ナフタロシアニンなどを赤外線吸収剤として含有する熱吸収性層系が開示されている。ここで、ナフタロシアニン系赤外線吸収剤としてバナジル-5,14,23,32-テトラフェニル-2,3-ナフタロシアニン(α位に4個のフェニル基を有するバナジルナフタロシアニン)が使用されている。当該ナフタロシアニン化合物は、近赤外線吸収能力および透明性(可視光透過性)に優れるが、耐光堅牢性が十分でない。 
  特許文献6には、α位に4個の置換フェニル基を有するナフタロシアニン色素化合物が開示され、具体的には置換基としてニトロ基またはアセトアミド基を有するフェニル基をα位に有するバナジルナフタロシアニン化合物が開示されている。当該ナフタロシアニン化合物は、不可視性を維持しながらも光安定性に優れることが記載されているが、本発明者らの追試によれば、溶剤溶解性や樹脂相溶性が悪く加工性が悪い、また不可視性が不十分という問題を有している。なお特許文献6には、マーカッシュ方式で記載された一般構造式にて表される化合物に、形式的にはフェニル基が有しても良い置換基としてハロゲン基なども含まれているが、このような置換基の組み合わせを有する化合物の具体的な記載はない。
 特許文献7には、α位に4個の置換フェニル基を有するナフタロシアニン化合物にナフタレン誘導体が1または2分子付加した、テトラアザポルフィリン化合物が開示され、750~850nm付近に特徴的な吸収を有し、溶剤に可溶で、熱や光に安定なことが記載されている。しかしこのような化合物は、付加したナフタレン誘導体が酸化されやすく、劣化しやすいため、変色しやすいという問題点を有している。
Patent Document 5 discloses a heat-absorbing layer system that is used as a heat-blocking thermoplastic plastic that can be used in place of automobile window glass and the like and that contains naphthalocyanine or the like as an infrared absorber. Here, vanadyl-5,14,23,32-tetraphenyl-2,3-naphthalocyanine (vanadyl naphthalocyanine having four phenyl groups at the α-position) is used as a naphthalocyanine-based infrared absorber. The naphthalocyanine compound is excellent in near-infrared absorption ability and transparency (visible light transmission property), but has insufficient light fastness.
Patent Document 6 discloses a naphthalocyanine dye compound having four substituted phenyl groups at the α-position, specifically a vanadyl naphthalocyanine compound having a phenyl group having a nitro group or an acetamide group as a substituent at the α-position. Is disclosed. The naphthalocyanine compound is described as being excellent in light stability while maintaining invisibility, but according to the inventors' additional test, solvent solubility and resin compatibility are poor and processability is poor. There is also a problem that invisibility is insufficient. In Patent Document 6, the compound represented by the general structural formula described in the Markush method includes formally a halogen group as a substituent that the phenyl group may have. There is no specific description of a compound having such a combination of substituents.
Patent Document 7 discloses a tetraazaporphyrin compound obtained by adding one or two molecules of a naphthalene derivative to a naphthalocyanine compound having four substituted phenyl groups at the α-position, and has a characteristic absorption around 750 to 850 nm. However, it is soluble in a solvent and stable to heat and light. However, such a compound has a problem that the added naphthalene derivative is easily oxidized and easily deteriorated, so that the compound is easily discolored.
特開平3-079683号公報Japanese Patent Laid-Open No. 3-079683 特開2004-231832号公報JP 2004-231832 A 特開平7-216275号公報JP 7-216275 A 特開2005-105190号公報JP 2005-105190 A 特表2004-525802号公報JP-T-2004-525802 特開2009-29955号公報JP 2009-29955 A 特開平2-134386号公報Japanese Patent Laid-Open No. 2-134386
  本発明の課題は、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さく、耐光性、耐熱性などの堅牢性が高く、有機溶剤や樹脂に対する溶解性が良好な新規なナフタロシアニン化合物、及び熱線遮蔽材などのその用途を提供することである。 The problem of the present invention is that it has a strong absorption in the near-infrared region, very small absorption in the visible light region, high fastness such as light resistance and heat resistance, and good solubility in organic solvents and resins. Naphthalocyanine compound, and its use such as heat ray shielding material.
 本発明者等は、前記課題について鋭意検討した結果、特定構造のテトラフェニルナフタロシアニン化合物が上記した特性を満足することを見出し、本発明を完成するに至った。すなわち本発明は、
(i)一般式(1)で表されるテトラフェニルナフタロシアニン化合物、
Figure JPOXMLDOC01-appb-I000014
 
〔式(1)中、Mは2個の水素原子、2価の金属又は3価もしくは4価の金属の誘導体を表し、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
Figure JPOXMLDOC01-appb-I000015
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
As a result of intensive studies on the above problems, the present inventors have found that a tetraphenylnaphthalocyanine compound having a specific structure satisfies the above-described characteristics, and have completed the present invention. That is, the present invention
(I) a tetraphenylnaphthalocyanine compound represented by the general formula (1),
Figure JPOXMLDOC01-appb-I000014

[In the formula (1), M represents two hydrogen atoms, a divalent metal or a trivalent or tetravalent metal derivative, and R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group. A represents formula (B). ]
Figure JPOXMLDOC01-appb-I000015
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
(ii)一般式(1)-a~(1)-dから選ばれる少なくとも 1 種である、(i)のテトラフェニルナフタロシアニン化合物、
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
〔式(1)-a~(1)-d中、M、R1~R、Aは前記一般式(1)におけるものと同義である。〕
(Ii) a tetraphenylnaphthalocyanine compound of (i), which is at least one selected from general formulas (1) -a to (1) -d,
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
[In the formulas (1) -a to (1) -d, M, R 1 to R 4 , and A are as defined in the general formula (1). ]
(iii)一般式(1)-aで表される、(i)又は(ii)のテトラフェニルナフタロシアニン化合物、
Figure JPOXMLDOC01-appb-I000020
〔式(1)-a中、M、R1~R、Aは前記一般式(1)におけるものと同義である。〕
(iv)X1、Xが水素原子、フッ素原子又はトリフルオロメチル基である、(i)~(iii)のいずれかのテトラフェニルナフタロシアニン化合物、
(v)R~Rが水素原子、ハロゲン原子又は炭素数1~12のアルキル基である(i)~(iv)のいずれかのテトラフェニルナフタロシアニン化合物、
(vi)Mが2個の水素原子、Pd、Cu、Zn、Pt、Ni、TiO、Co、Fe、Mn、Sn、Al-Cl、VO又はIn-Clである(i)~(v)のいずれかのテトラフェニルナフタロシアニン化合物、
(Iii) a tetraphenylnaphthalocyanine compound of (i) or (ii) represented by general formula (1) -a;
Figure JPOXMLDOC01-appb-I000020
[In the formula (1) -a, M, R 1 to R 4 and A have the same meanings as in the general formula (1). ]
(Iv) the tetraphenylnaphthalocyanine compound according to any one of (i) to (iii), wherein X 1 and X 2 are a hydrogen atom, a fluorine atom or a trifluoromethyl group,
(V) the tetraphenylnaphthalocyanine compound of any one of (i) to (iv), wherein R 1 to R 4 are a hydrogen atom, a halogen atom, or an alkyl group having 1 to 12 carbon atoms;
(Vi) M is two hydrogen atoms, Pd, Cu, Zn, Pt, Ni, TiO, Co, Fe, Mn, Sn, Al—Cl, VO, or In—Cl (i) to (v) Any tetraphenylnaphthalocyanine compound,
(vii)一般式(1)-aで表され、X1、Xが水素原子、フッ素原子又はトリフルオロメチル基であり、R~Rが水素原子又は炭素数1~12のアルキル基であり、MがCuである、(i)~(vi)のいずれかのテトラフェニルナフタロシアニン化合物、
(viii)一般式(1)-aで表され、X1、Xがトリフルオロメチル基であり、R、R、Rが水素原子であり、Rが炭素数3~8の分岐アルキル基であり、MがCuである、(i)~(vii)のいずれかのテトラフェニルナフタロシアニン化合物、
(ix)一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物および一般式(3)で表される1,3-ジイミノベンゾインドリン化合物から選ばれる少なくとも1種と、金属又は金属誘導体を反応させる、(i)~(viii)のいずれかのテトラフェニルナフタロシアニン化合物の製造方法、
(x)一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物、
Figure JPOXMLDOC01-appb-I000021
〔式(2)中、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
Figure JPOXMLDOC01-appb-I000022
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
(xi)一般式(3)で表される1,3-ジイミノベンゾインドリン化合物、
Figure JPOXMLDOC01-appb-I000023
〔式(3)中、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
Figure JPOXMLDOC01-appb-I000024
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
(xii)(i)~(viii)のいずれかのテトラフェニルナフタロシアニン化合物を含有することを特徴とする近赤外線吸収材料、
(xiii)(i)~(viii)のいずれかのテトラフェニルナフタロシアニン化合物を含有することを特徴とする熱線遮蔽材、
(xiv)熱線遮蔽フィルムである(xiii)の熱線遮蔽材、
(xv)合わせガラス用中間膜である(xiii)の熱線遮蔽材、
に関する。
(Vii) represented by the general formula (1) -a, wherein X 1 and X 2 are a hydrogen atom, a fluorine atom or a trifluoromethyl group, and R 1 to R 4 are a hydrogen atom or an alkyl group having 1 to 12 carbon atoms And the tetraphenylnaphthalocyanine compound of any one of (i) to (vi), wherein M is Cu,
(Viii) represented by the general formula (1) -a, wherein X 1 and X 2 are trifluoromethyl groups, R 1 , R 2 and R 4 are hydrogen atoms, and R 3 has 3 to 8 carbon atoms A tetraphenylnaphthalocyanine compound of any one of (i) to (vii), which is a branched alkyl group and M is Cu;
(Ix) at least one selected from a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and a 1,3-diiminobenzoindoline compound represented by the general formula (3), and a metal Or a method for producing a tetraphenylnaphthalocyanine compound according to any one of (i) to (viii), wherein a metal derivative is reacted,
(X) a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2),
Figure JPOXMLDOC01-appb-I000021
[In Formula (2), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B). ]
Figure JPOXMLDOC01-appb-I000022
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
(Xi) a 1,3-diiminobenzoindoline compound represented by the general formula (3),
Figure JPOXMLDOC01-appb-I000023
[In Formula (3), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B). ]
Figure JPOXMLDOC01-appb-I000024
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
(Xii) a near-infrared absorbing material comprising the tetraphenylnaphthalocyanine compound of any one of (i) to (viii),
(Xiii) a heat ray shielding material comprising the tetraphenylnaphthalocyanine compound of any one of (i) to (viii),
(Xiv) a heat ray shielding material of (xiii) which is a heat ray shielding film,
(Xv) a heat ray shielding material of (xiii) which is an interlayer film for laminated glass,
About.
 本発明により、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さく耐久性が高く、有機溶剤や樹脂に対する溶解性が良好なナフタロシアニン化合物、及びこのような特性を有する近赤外線吸収材料、熱線遮蔽材などのその用途を提供することが可能になった。 According to the present invention, a naphthalocyanine compound having strong absorption in the near-infrared region, very small absorption in the visible light region, high durability, and good solubility in organic solvents and resins, and such characteristics It has become possible to provide applications such as near infrared absorbing materials and heat ray shielding materials.
実施例1で製造した化合物(2)-11のH-NMRスペクトル図である。1 is a H-NMR spectrum diagram of the compound (2) -11 produced in Example 1. FIG. 実施例2で製造した化合物(2)-18のH-NMRスペクトル図である。4 is a H-NMR spectrum of the compound (2) -18 produced in Example 2. FIG. 実施例4で製造した化合物(2)-31のH-NMRスペクトル図である。4 is a H-NMR spectrum of the compound (2) -31 produced in Example 4. FIG. 実施例9で製造した化合物(1)-7の吸収スペクトル図である。6 is an absorption spectrum diagram of compound (1) -7 produced in Example 9. FIG. 実施例10で製造した化合物(1)-8の吸収スペクトル図である。4 is an absorption spectrum diagram of compound (1) -8 produced in Example 10. FIG. 実施例11で製造した化合物(1)-34のH-NMRスペクトル図である。2 is a H-NMR spectrum of the compound (1) -34 produced in Example 11. FIG. 実施例11で製造した化合物(1)-34の吸収スペクトル図である。4 is an absorption spectrum diagram of compound (1) -34 produced in Example 11. FIG. 実施例12で製造した化合物(1)-36の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -36 produced in Example 12. FIG. 実施例13で製造した化合物(1)-26の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -26 produced in Example 13. FIG. 実施例14で製造した化合物(1)-27の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -27 produced in Example 14. FIG. 実施例15で製造した化合物(1)-29の吸収スペクトル図である。6 is an absorption spectrum diagram of compound (1) -29 produced in Example 15. FIG. 実施例16で製造した化合物(1)-37の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -37 produced in Example 16. FIG. 実施例16で製造した化合物(1)-37-aのH-NMRスペクトル図である。2 is a H-NMR spectrum of the compound (1) -37-a produced in Example 16. FIG. 実施例16で製造した化合物(1)-37-bのH-NMRスペクトル図である。2 is a H-NMR spectrum of the compound (1) -37-b produced in Example 16. FIG. 実施例16で製造した化合物(1)-37-cのH-NMRスペクトル図である。2 is an H-NMR spectrum of the compound (1) -37-c produced in Example 16. FIG. 実施例17で製造した化合物(1)-41の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -41 produced in Example 17. FIG. 実施例18で製造した化合物(1)-35の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -35 produced in Example 18. FIG. 実施例19で製造した化合物(1)-64の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -64 produced in Example 19. FIG. 実施例20で製造した化合物(1)-65の吸収スペクトル図である。2 is an absorption spectrum diagram of compound (1) -65 produced in Example 20. FIG. 比較例1で製造したテトラフェニル-Pd-ナフタロシアニンの吸収スペクトル図である。2 is an absorption spectrum diagram of tetraphenyl-Pd-naphthalocyanine produced in Comparative Example 1. FIG. 実施例15、実施例20で製造した本発明のテトラフェニルナフタロシアニン化合物と比較例2の化合物の透過スペクトルの比較図である。6 is a comparison diagram of transmission spectra of the tetraphenylnaphthalocyanine compound of the present invention produced in Example 15 and Example 20 and the compound of Comparative Example 2. FIG.
 以下、本発明に関し詳細に説明する。 
[テトラフェニルナフタロシアニン化合物] 
  本発明の第1の発明は、一般式(1)で表されるテトラフェニルナフタロシアニン化合物である。
Figure JPOXMLDOC01-appb-I000025
〔式(1)中、Mは2個の水素原子、2価の金属又は3価もしくは4価の金属の誘導体を表し、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
Figure JPOXMLDOC01-appb-I000026
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
上記一般式(1)のテトラフェニルナフタロシアニン化合物は、より具体的には、下記一般式(1)-a~(1)-dから選ばれる少なくとも 1 種である。即ち、下記一般式(1)-a~(1)-dで表される異性体の1種または2種以上のいずれかの混合物の混合物である。
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
〔式(1)-a~(1)-D中、M、R~R、Aは前記一般式(1)におけるものと同義である。〕
 上記異性体(1)-a~(1)-Dの中でも、(1)-aで表される異性体が、耐光性、耐熱性などの耐久性が特に高いという特徴を有する点で、好ましい。
Hereinafter, the present invention will be described in detail.
[Tetraphenylnaphthalocyanine compound]
1st invention of this invention is the tetraphenyl naphthalocyanine compound represented by General formula (1).
Figure JPOXMLDOC01-appb-I000025
[In the formula (1), M represents two hydrogen atoms, a divalent metal or a trivalent or tetravalent metal derivative, and R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group. A represents formula (B). ]
Figure JPOXMLDOC01-appb-I000026
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
More specifically, the tetraphenylnaphthalocyanine compound of the general formula (1) is at least one selected from the following general formulas (1) -a to (1) -d. That is, it is a mixture of one or more of the isomers represented by the following general formulas (1) -a to (1) -d.
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
[In formulas (1) -a to (1) -D, M, R 1 to R 4 , and A have the same meanings as those in formula (1). ]
Among the isomers (1) -a to (1) -D, the isomer represented by (1) -a is preferable because it has particularly high durability such as light resistance and heat resistance. .
 一般式(1)および式(1)-a~(1)-dにおいて、Mは好ましくは、2個の水素原子、Pd、Cu、Zn、Pt、Ni、TiO、Co、Fe、Mn、Sn、Al-Cl、VO又はIn-Clである。より好ましくは、Mは、2個の水素原子、Pd、Cu、Zn又はVOである。最も好ましいMは、Cuである。
一般式(1)および式(1)-a~(1)-dにおいて、R~Rは好ましくは、水素原子、ハロゲン原子又は炭素数 1~12のアルキル基である。
~Rはより好ましくは、水素原子、フッ素原子又は炭素数3~8の分岐アルキル基である。
~Rがハロゲン原子であるものとしては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられるが、塩素原子、フッ素原子が好ましく、フッ素原子がより好ましい。
~Rがアルキル基であるものとしては、炭素数1~12のアルキル基が好ましく、炭素数3~8の分岐アルキル基がより好ましい。
アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、シクロヘキシル基、1-メチルペンチル基、4-メチル-2-ペンチル基、2-エチルブチル基、n-ヘプチル基、1-メチルヘキシル基、4-メチルシクロヘキシル基、n-オクチル基、tert-オクチル基、1-メチルヘプチル基、2-エチルヘキシル基などの直鎖又は分岐のアルキル基が挙げられる。 
一般式(1)および一般式(1)-a~(1)-dにおいて、Aは下記式(B)を表す。
Figure JPOXMLDOC01-appb-I000031
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
式(B)中、X1、Xは水素原子、フッ素原子又はフッ素原子が置換した炭素数1~12の直鎖、分岐又は環状のアルキル基が好ましく、水素原子、フッ素原子又はフッ素原子が置換した直鎖、分岐又は環状の炭素数1~8のアルキル基がより好ましい。X1、Xは最も好ましくは、トリフルオロメチル基である。
In general formula (1) and formulas (1) -a to (1) -d, M is preferably two hydrogen atoms, Pd, Cu, Zn, Pt, Ni, TiO, Co, Fe, Mn, Sn Al—Cl, VO or In—Cl. More preferably, M is two hydrogen atoms, Pd, Cu, Zn or VO. Most preferred M is Cu.
In the general formula (1) and the formulas (1) -a to (1) -d, R 1 to R 4 are preferably a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms.
R 1 to R 4 are more preferably a hydrogen atom, a fluorine atom, or a branched alkyl group having 3 to 8 carbon atoms.
Examples of those in which R 1 to R 4 are a halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, a chlorine atom and a fluorine atom are preferable, and a fluorine atom is more preferable.
As R 1 to R 4 being an alkyl group, an alkyl group having 1 to 12 carbon atoms is preferable, and a branched alkyl group having 3 to 8 carbon atoms is more preferable.
Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl group, n-hexyl group, cyclohexyl group, 1-methylpentyl group, 4-methyl-2-pentyl group, 2-ethylbutyl group, n-heptyl group, 1-methylhexyl group, 4-methylcyclohexyl group, Examples thereof include linear or branched alkyl groups such as n-octyl group, tert-octyl group, 1-methylheptyl group and 2-ethylhexyl group.
In the general formula (1) and the general formulas (1) -a to (1) -d, A represents the following formula (B).
Figure JPOXMLDOC01-appb-I000031
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
In the formula (B), X 1 and X 2 are preferably a hydrogen atom, a fluorine atom or a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms substituted by a fluorine atom, and a hydrogen atom, a fluorine atom or a fluorine atom is A substituted linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is more preferred. X 1 and X 2 are most preferably a trifluoromethyl group.
 X1、Xがフッ素原子が置換したアルキル基である場合の例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ヘキサフルオロプロピル基、ヘキサフルオロイソプロピル基、4,4,4-トリフルオロブチル基、2,2,3,4,4,4-ヘキサフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、4,4,5,5,5-ペンタフルオロペンチル基、2,2,3,3,4,4,5,5,5-オクタフルオロペンチル基、2-(パーフルオロブチル)エチル基、3-(パ-フルオロブチル)エチル基、2-(パーフルオロヘキシル)エチル基、3-(パーフルオロヘキシル)ブチル基、2-(パーフルオロオクチル)エチル基、3-(パーフルオロオクチル)プロピル基、2-(パーフルオロデシル)エチル基、ドデカフルオロヘプチル基、ヘキサデカフルオロノニル基、4-フルオロシクロヘキシル基、4,4-ジフルオロシクロヘキシル基、2,3,4,5,6-ペンタフルオロシクロヘキシル基、3,4-ジフルオロシクロペンチル基等のパーフルオロアルキル基が挙げられる。
一般式(1)で表されるテトラフェニルナフタロシアニン化合物において、特に好ましい化合物の構造は、一般式(1)-aで表され、X1、Xがトリフルオロメチル基であり、R、R、Rが水素原子であり、Rが炭素数3~8の分岐アルキル基であり、MがCuである。とりわけ、下記構造式の化合物が、耐光性、耐熱性などの耐久性が非常に高いという特徴を有する点で好ましい。
Figure JPOXMLDOC01-appb-I000032
 
 本発明の一般式(1)で表されるテトラフェニルナフタロシアニン化合物の具体例を下記表1に示すが、これらに限定されるものではない。 
なお、前記したように一般式(1)のテトラフェニルナフタロシアニン化合物は、一般式(1)-a~(1)-dで表される異性体の1種または2種以上のいずれかの混合物である。異性体の混合物の場合は、各異性体単品の場合に比べ近赤外線領域の吸収がブロードとなる。熱線遮蔽樹脂などその用途によっては、このように吸収がブロードである異性体の混合物が好ましい。
下記表1に示した具体例は、これらの異性体またはこれらの2種以上の混合物も含む。
Examples of the case where X 1 and X 2 are alkyl groups substituted with fluorine atoms include fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 2,2,3 , 3-tetrafluoropropyl group, 2,2,3,3,3-hexafluoropropyl group, hexafluoroisopropyl group, 4,4,4-trifluorobutyl group, 2,2,3,4,4,4 -Hexafluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 4,4,5,5,5-pentafluoropentyl group, 2,2,3,3,4,4,5, 5,5-octafluoropentyl group, 2- (perfluorobutyl) ethyl group, 3- (perfluorobutyl) ethyl group, 2- (perfluorohexyl) ethyl group, 3- (perfluorohexyl) butyl group, 2- (Perfluorooctyl) ester Group, 3- (perfluorooctyl) propyl group, 2- (perfluorodecyl) ethyl group, dodecafluoroheptyl group, hexadecafluorononyl group, 4-fluorocyclohexyl group, 4,4-difluorocyclohexyl group, 2, Examples thereof include perfluoroalkyl groups such as 3,4,5,6-pentafluorocyclohexyl group and 3,4-difluorocyclopentyl group.
In the tetraphenylnaphthalocyanine compound represented by the general formula (1), a particularly preferable structure of the compound is represented by the general formula (1) -a, X 1 and X 2 are trifluoromethyl groups, R 1 , R 2 and R 4 are hydrogen atoms, R 3 is a branched alkyl group having 3 to 8 carbon atoms, and M is Cu. In particular, a compound having the following structural formula is preferable in that it has a feature of extremely high durability such as light resistance and heat resistance.
Figure JPOXMLDOC01-appb-I000032

Although the specific example of the tetraphenyl naphthalocyanine compound represented by General formula (1) of this invention is shown in following Table 1, it is not limited to these.
As described above, the tetraphenylnaphthalocyanine compound of the general formula (1) is a mixture of one or more of the isomers represented by the general formulas (1) -a to (1) -d. It is. In the case of a mixture of isomers, the absorption in the near infrared region becomes broader than in the case of each isomer alone. Depending on the application, such as heat ray shielding resin, a mixture of isomers having broad absorption as described above is preferable.
The specific examples shown in Table 1 below also include these isomers or a mixture of two or more thereof.
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000036
 [テトラフェニルナフタロシアニン化合物の製造方法]
本発明の第2の発明は、一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物および一般式(3)で表される1,3-ジイミノベンゾインドリン化合物から選ばれる少なくとも 1 種と、金属又は金属誘導体を反応させる、一般式(1)および一般式(1)-a~(1)-dのテトラフェニルナフタロシアニン化合物の製造方法である。
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
 
〔式(2)及び(3)中、R1~R、Aは前記一般式(1)におけるものと同義である。〕
一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物および一般式(3)で表される1,3-ジイミノベンゾインドリン化合物については、それぞれ個別に後述する。
[Method for producing tetraphenylnaphthalocyanine compound]
The second invention of the present invention is selected from a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and a 1,3-diiminobenzoindoline compound represented by the general formula (3). A method for producing a tetraphenylnaphthalocyanine compound of the general formula (1) and the general formulas (1) -a to (1) -d, wherein at least one kind is reacted with a metal or a metal derivative.
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038

[In the formulas (2) and (3), R 1 to R 4 and A have the same meanings as those in the general formula (1). ]
The naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and the 1,3-diiminobenzoindoline compound represented by the general formula (3) will be individually described later.
 金属又は金属誘導体としてはAl、Si、Ti,V、Mn、Fe、Co、Ni、Cu、Zn、Ge、Ru、Rh、Pd、In、Sn、Pt、Pb及びこれらのハロゲン化物、カルボン酸塩、硫酸塩、硝酸塩、カルボニル化合物、酸化物、錯体等が挙げられる。
  特に金属のハロゲン化物又はカルボン酸塩が好ましく用いられ、これらの例としては塩化銅、臭化銅、沃化銅、塩化ニッケル、臭化ニッケル、酢酸ニッケル、塩化コバルト、塩化鉄、塩化亜鉛、臭化亜鉛、沃化亜鉛、酢酸亜鉛、塩化バナジウム、オキシ塩化バナジウム、塩化パラジウム、酢酸パラジウム、塩化アルミニウム、塩化マンガン、塩化鉛、酢酸鉛、塩化インジウム、塩化チタン、塩化スズ等が挙げられる。
金属又は金属誘導体の使用量は、一般式(6)のナフタレン-2,3-ジカルボニトリル化合物1モル或いは一般式(7)の1,3-ジイミノベンゾインドリン化合物1モルに対し、0.1倍モル~0.6倍モル、好ましくは0.2倍モル~0.5倍モルである。
反応温度は60~300℃、好ましくは100~220℃である。 
反応時間は30分~72時間、好ましくは1時間~48時間である。
Examples of metals or metal derivatives include Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ge, Ru, Rh, Pd, In, Sn, Pt, Pb, and their halides and carboxylates. , Sulfates, nitrates, carbonyl compounds, oxides, complexes and the like.
In particular, metal halides or carboxylates are preferably used. Examples of these include copper chloride, copper bromide, copper iodide, nickel chloride, nickel bromide, nickel acetate, cobalt chloride, iron chloride, zinc chloride, odor. Examples thereof include zinc iodide, zinc iodide, zinc acetate, vanadium chloride, vanadium oxychloride, palladium chloride, palladium acetate, aluminum chloride, manganese chloride, lead chloride, lead acetate, indium chloride, titanium chloride, tin chloride and the like.
The amount of metal or metal derivative used is 0. 1 mol per 1 mol of naphthalene-2,3-dicarbonitrile compound of general formula (6) or 1 mol of 1,3-diiminobenzoindoline compound of general formula (7). It is 1-fold mole to 0.6-fold mole, preferably 0.2-fold mole to 0.5-fold mole.
The reaction temperature is 60 to 300 ° C, preferably 100 to 220 ° C.
The reaction time is 30 minutes to 72 hours, preferably 1 hour to 48 hours.
 反応においては、溶媒を使用することが好ましい。反応に使用される溶媒としては沸点60℃以上、好ましくは80℃以上の有機溶媒が好ましい。
  例としてメタノール、エタノール、n-プロピルアルコール、n-ブチルアルコール、イソブチルアルコール、n-アミルアルコール、n-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ドデカノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、ジメチルエタノール、ジエチルエタノール等のアルコール溶媒、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、スルフォラン、ニトロベンゼン、キノリン、DMI(1,3-ジメチル-2-イミダゾリジノン)、尿素等の高沸点溶媒が挙げられる。
  溶媒の使用量は一般式(2)のナフタレン-2,3-ジカルボニトリル化合物或いは一般式(3)の1,3-ジイミノベンゾインドリン化合物の0.5~50倍容量、好ましくは1~15倍容量である。
In the reaction, it is preferable to use a solvent. The solvent used for the reaction is preferably an organic solvent having a boiling point of 60 ° C. or higher, preferably 80 ° C. or higher.
Examples include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, n-amyl alcohol, n-hexanol, 1-heptanol, 1-octanol, 1-dodecanol, benzyl alcohol, ethylene glycol, propylene glycol, ethoxy Alcohol solvents such as ethanol, propoxyethanol, butoxyethanol, dimethylethanol, diethylethanol, dichlorobenzene, trichlorobenzene, chloronaphthalene, sulfolane, nitrobenzene, quinoline, DMI (1,3-dimethyl-2-imidazolidinone), urea, etc. Of high boiling point solvents.
The amount of the solvent used is 0.5 to 50 times the volume of the naphthalene-2,3-dicarbonitrile compound of the general formula (2) or the 1,3-diiminobenzoindoline compound of the general formula (3), preferably 1 to 15 times the capacity.
 反応は触媒の存在下或いは非存在下に行われるが、触媒存在下の方が好ましい。 触媒としてはモリブデン酸アンモニウム等の無機触媒、或いはDBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)、DBN(1,5-ジアザビシクロ[4.3.0]-5-ノネン)等の塩基性有機触媒が使用できる。使用量はナフタレン-2,3-ジカルボニトリル化合物1モル或いは1,3-ジイミノイソンドリン化合物1モルに対して0.01~10倍モル、好ましくは1~2倍モルである。
なお、Mが2個の水素原子であるテトラフェニルナフタロシアニン化合物の場合は、一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物および一般式(3)で表される1,3-ジイミノベンゾインドリン化合物から選ばれる少なくとも 1 種と金属ナトリウム或いは金属カリウムと上記反応条件にて反応させた後、中心金属であるナトリウム或いはカリウムを塩酸、硫酸等で脱離処理することにより製造できる。
反応終了後、溶媒を留去するか、又は反応液をテトラフェニルナフタロシアニン化合物に対する貧溶媒に排出して目的物を析出させ、析出物をろ過することにより一般式(1)のテトラフェニルナフタロシアニン化合物を得ることが出来る。 
通常、テトラフェニルナフタロシアニン化合物は前記一般式(1)-a~(1)-dで表される各異性体の混合物として得られる。
目的に応じて、更に再結晶或いはカラムクロマトグラフィー等公知の精製方法で精製することにより、より高純度の目的物を得ることができる。また、前記一般式(1)-a~(1)-dで表される各異性体の混合物から、目的とする単品を、このような精製方法で単離することもできる。
これらの異性体はX線結晶構造解析等の公知の分析方法により構造を確認することができる。
The reaction is carried out in the presence or absence of a catalyst, but is preferably in the presence of a catalyst. Examples of the catalyst include inorganic catalysts such as ammonium molybdate, DBU (1,8-diazabicyclo [5.4.0] -7-undecene), DBN (1,5-diazabicyclo [4.3.0] -5-nonene. Basic organic catalysts such as) can be used. The amount used is 0.01 to 10 times mol, preferably 1 to 2 times mol per mol of naphthalene-2,3-dicarbonitrile compound or 1 mol of 1,3-diiminoisondrine compound.
In the case of a tetraphenylnaphthalocyanine compound in which M is two hydrogen atoms, a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and a 1 represented by the general formula (3) After reacting at least one selected from 1,3-diiminobenzoindoline compounds with metallic sodium or metallic potassium under the above reaction conditions, the central metal sodium or potassium is eliminated with hydrochloric acid, sulfuric acid or the like. Can be manufactured.
After completion of the reaction, the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the tetraphenylnaphthalocyanine compound to precipitate the target product, and the precipitate is filtered to filter the tetraphenylnaphthalocyanine of the general formula (1). A compound can be obtained.
Usually, the tetraphenylnaphthalocyanine compound is obtained as a mixture of isomers represented by the general formulas (1) -a to (1) -d.
Depending on the purpose, further purification by a known purification method such as recrystallization or column chromatography can yield a higher-purity target product. In addition, the intended single product can be isolated from such a mixture of isomers represented by the general formulas (1) -a to (1) -d by such a purification method.
The structure of these isomers can be confirmed by a known analysis method such as X-ray crystal structure analysis.
[ナフタレン-2,3-ジカルボニトリル化合物] 
本発明の第3の発明は、一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物である。
Figure JPOXMLDOC01-appb-I000039
〔式(2)中、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
Figure JPOXMLDOC01-appb-I000040
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物は、前記一般式(1)および一般式(1)-a~(1)-dのテトラフェニルナフタロシアニン化合物の製造に用いられる中間体である。 
  一般式(2)において、Aの置換基であるX1、X及びR1~Rの好ましい範囲及び具体例は、一般式(1)及び一般式(1)-a~(1)-dで示したそれらと同様である。
  一般式(6)で表されるナフタレン-2,3-ジカルボニトリル化合物の具体例を下記表2に示すが、これらに限定されるものではない。
[Naphthalene-2,3-dicarbonitrile compound]
The third invention of the present invention is a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-I000039
[In Formula (2), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B). ]
Figure JPOXMLDOC01-appb-I000040
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
The naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) is used for the production of the tetraphenylnaphthalocyanine compounds of the general formula (1) and the general formulas (1) -a to (1) -d. The intermediate used.
In the general formula (2), preferred ranges and specific examples of the substituents X 1 , X 2 and R 1 to R 4 in the general formula (2) are the general formula (1) and the general formulas (1) -a to (1)- The same as those indicated by d.
Specific examples of the naphthalene-2,3-dicarbonitrile compound represented by the general formula (6) are shown in Table 2 below, but are not limited thereto.
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000047
一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物は、公知の化合物に関する公知の方法を参考にして製造することができる。
例えば、Russian  Journal of General Chemistry, Vol75,No.5,2005, pp.795-799を参考にして、一般式(4)の2-メチルベンゾフェノン化合物より下記のルートで製造することができる。
Figure JPOXMLDOC01-appb-I000048
 
〔一般式(4)~(7)において、A及びR1~Rは一般式(2)に示したそれらと同義である。〕
The naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) can be produced with reference to known methods relating to known compounds.
For example, with reference to the Russian Journal of General Chemistry, Vol 75, No. 5, 2005, pp. 795-799, it can be produced from the 2-methylbenzophenone compound of the general formula (4) by the following route.
Figure JPOXMLDOC01-appb-I000048

[In the general formulas (4) to (7), A and R 1 to R 4 have the same meanings as those shown in the general formula (2). ]
 具体的には、一般式(4)の2-メチルベンゾフェノン化合物を有機溶媒の存在下、好ましくは加熱下に、ラジカル発生剤とハロゲン化剤により一般式(5)の2-ハロゲノメチルベンゾフェノン化合物とする。次いで縮合反応をおこない、一般式(6)のイソベンゾフラン化合物とした後、フマロニトリルとディールス-アルダー反応をおこなって、一般式(7)の1,4-ジヒドロ‐1,4-エポキシナフタレン化合物を製造する。この1,4-ジヒドロ‐1,4-エポキシナフタレン化合物を硫酸により脱水反応することにより、一般式(2)のナフタレン-2,3-ジカルボニトリル化合物を得ることができる。
なお本製法において、一般式(5)、(6)、(7)の化合物を単離することなく、一般式(4)の2-メチルベンゾフェノン化合物から一般式(2)のナフタレン-2,3-ジカルボニトリル化合物までをワンポット方式で製造することができ、その方が反応収率や操作簡略化の点から好ましい。
一般式(4)の2-メチルベンゾフェノン化合物から一般式(5)の2-ハロゲノメチルベンゾフェノン化合物のハロゲン化工程において、ラジカル発生剤の使用量は、2-メチルベンゾフェノン誘導体 1 モルに対し0.01倍モル~3倍モル、好ましくは0.05倍モル~2倍モル、より好ましくは0.05倍モル~1倍モルである。
Specifically, the 2-methylbenzophenone compound of the general formula (4) is mixed with the 2-halogenomethylbenzophenone compound of the general formula (5) with a radical generator and a halogenating agent in the presence of an organic solvent, preferably under heating. To do. Next, a condensation reaction is performed to obtain an isobenzofuran compound of the general formula (6), followed by a Diels-Alder reaction with fumaronitrile to produce a 1,4-dihydro-1,4-epoxynaphthalene compound of the general formula (7). To do. By dehydrating the 1,4-dihydro-1,4-epoxynaphthalene compound with sulfuric acid, a naphthalene-2,3-dicarbonitrile compound of the general formula (2) can be obtained.
In this production method, the naphthalene-2,3 of the general formula (2) is converted from the 2-methylbenzophenone compound of the general formula (4) without isolating the compounds of the general formulas (5), (6), (7). -Dicarbonitrile compounds can be produced in a one-pot system, which is preferable from the viewpoint of reaction yield and operational simplicity.
In the halogenation step of the 2-halogenomethylbenzophenone compound of the general formula (5) from the 2-methylbenzophenone compound of the general formula (4), the amount of radical generator used is 0.01 per mol of the 2-methylbenzophenone derivative. The molar ratio is from 1 to 3 times, preferably from 0.05 to 2 times, more preferably from 0.05 to 1 times.
 ラジカル発生剤として過酸化物系のベンゾイルパーオキサイド、ジ-tert-ブチルパーオキシドや tert-ブチルヒドロパーオキシド、または、アゾ重合開始剤のV-70、V-65、AIBN、V-59、V-501、V-40、V-30、V-501、VA-044、VA-046B、VA-061、V-50、VA-057、VA-086、VF-096、VAm-110、V-601などが使用できる。
また、ハロゲン化剤の使用量は、一般式(4)の2-メチルベンゾフェノン誘導体1モルに対しハロゲン化剤を1倍モル~10倍モル、好ましくは 1 倍モル~5倍モル、より好ましくは1倍モル~3倍モルである。 
ハロゲン化剤としては臭素、塩素、N-ブロモスクシンイミド、N-クロロスクシンイミド等が使用できる。
Peroxide-based benzoyl peroxide, di-tert-butyl peroxide and tert-butyl hydroperoxide as radical generators, or azo polymerization initiators V-70, V-65, AIBN, V-59, V -501, V-40, V-30, V-501, VA-044, VA-046B, VA-061, V-50, VA-057, VA-086, VF-096, VAm-110, V-601 Etc. can be used.
The amount of the halogenating agent used is 1 to 10 times mol, preferably 1 to 5 times mol, more preferably 1 to 10 times mol per mol of the 2-methylbenzophenone derivative of the general formula (4). 1 to 3 moles.
As the halogenating agent, bromine, chlorine, N-bromosuccinimide, N-chlorosuccinimide and the like can be used.
 反応溶媒としては反応に悪影響を及ぼすものでなければ特に制限はなく、トルエン、キシレン、メシチレン、プソイドクメン、クロロベンゼン、ジクロロベンゼン等の芳香族系炭化水素、ヘキサン、ヘプタン、シクロヘキサン、四塩化炭素、クロロホルム等の脂肪族炭化水素、酢酸、トリフルオロ酢酸等の有機酸類、DMF、DMAC、DMI等の非プロトン性溶媒が使用できる。
溶媒の使用量は、反応に使用する一般式(4)の2-メチルベンゾフェノン誘導体に対して1~500倍容量、好ましくは 1~200倍容量、より好ましくは5~100倍容量である。 
ハロゲン化工程の反応温度は室温~200℃であり、好ましくは50~150℃、より好ましくは50~100℃である。 
ハロゲン化工程の反応時間は10分~48時間、好ましくは20分~24時間、より好ましくは30分~12時間である。
The reaction solvent is not particularly limited as long as it does not adversely affect the reaction, and aromatic hydrocarbons such as toluene, xylene, mesitylene, pseudocumene, chlorobenzene, dichlorobenzene, hexane, heptane, cyclohexane, carbon tetrachloride, chloroform, etc. Organic acids such as aliphatic hydrocarbons, acetic acid and trifluoroacetic acid, and aprotic solvents such as DMF, DMAC and DMI can be used.
The solvent is used in an amount of 1 to 500 times, preferably 1 to 200 times, more preferably 5 to 100 times the volume of the 2-methylbenzophenone derivative of the general formula (4) used in the reaction.
The reaction temperature in the halogenation step is room temperature to 200 ° C., preferably 50 to 150 ° C., more preferably 50 to 100 ° C.
The reaction time of the halogenation step is 10 minutes to 48 hours, preferably 20 minutes to 24 hours, more preferably 30 minutes to 12 hours.
 一般式(5)の2-ハロゲノメチルベンゾフェノン化合物は、反応液を濾過してスクシンイミドなどの不溶物を除いた後、溶媒をエバポレーターで減圧下濃縮することにより単離することも可能ではあるが、不安定であり、単離せずに濾過した反応液をそのまま用いて次の反応行程に移る方が好ましい。
  得られた一般式(5)の2-ハロゲノメチルベンゾフェノン化合物にフマロニトリルを添加、昇温すると一般式(6)のイソベンゾフラン化合物が生成しながら、フマロニトリルとディールス-アルダー反応して一般式(7)の1、4-ジヒドロ‐1、4-エポキシナフタレン化合物を生成し、硫酸にて脱水することにより一般式(2)のナフタレン-2,3-ジカルボニトリル化合物を得ることが出来る。
一連の反応工程の反応温度は室温~250℃であり、好ましくは50~200℃、より好ましくは50~150℃である。
  一連の反応工程の反応時間は30分~48時間、好ましくは1時間~24時間、より好ましくは 1 時間~12時間である。 
フマロニトリルの使用量は、一般式(4)の2-メチルベンゾフェノン誘導体1モルに対し1倍モル~5倍モル、好ましくは1倍モル~2倍モル、より好ましくは1倍モル~1.5倍モルである。
  硫酸の使用量は2-メチルベンゾフェノン誘導体 1 モルに対し、0.05倍モル~5倍モル、好ましくは0.1倍モル~3倍モル、より好ましくは0.2倍モル~1倍モルである。
 全ての反応が終了した、溶媒の大半を蒸留除去、乾燥して一般式(2)のナフタレン-2,3-ジカルボニトリル化合物を得ることが出来る。必要に応じて、この生成物にさらに再結晶、カラムクロマトグラフィーなどの公知の精製操作を加えることにより、より高純度品を得ることが出来る。
The 2-halogenomethylbenzophenone compound of the general formula (5) can be isolated by filtering the reaction solution to remove insoluble matters such as succinimide and then concentrating the solvent under reduced pressure using an evaporator. It is preferable that the reaction solution which is unstable and filtered without being isolated is used as it is and transferred to the next reaction step.
Fumaronitrile is added to the obtained 2-halogenomethylbenzophenone compound of general formula (5) and the isobenzofuran compound of general formula (6) is formed when the temperature is raised. 1,4-dihydro-1,4-epoxynaphthalene compound is produced and dehydrated with sulfuric acid to obtain a naphthalene-2,3-dicarbonitrile compound of the general formula (2).
The reaction temperature of the series of reaction steps is room temperature to 250 ° C., preferably 50 to 200 ° C., more preferably 50 to 150 ° C.
The reaction time of the series of reaction steps is 30 minutes to 48 hours, preferably 1 hour to 24 hours, more preferably 1 hour to 12 hours.
The amount of fumaronitrile used is 1 to 5 moles, preferably 1 to 2 moles, more preferably 1 to 1.5 moles per mole of the 2-methylbenzophenone derivative of the general formula (4). Is a mole.
The amount of sulfuric acid used is 0.05 times to 5 times mol, preferably 0.1 times to 3 times mol, more preferably 0.2 times to 1 times mol per mol of the 2-methylbenzophenone derivative. is there.
After all the reactions are completed, most of the solvent is distilled off and dried to obtain a naphthalene-2,3-dicarbonitrile compound of the general formula (2). If necessary, a higher-purity product can be obtained by further adding known purification operations such as recrystallization and column chromatography to the product.
[1,3-ジイミノベンゾインドリン化合物] 
本発明の第4の発明は、一般式(3)で表される1,3-ジイミノベンゾインドリン化合物である。
Figure JPOXMLDOC01-appb-I000049
〔式(3)中、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
Figure JPOXMLDOC01-appb-I000050
〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
一般式(3)で表される1,3-ジイミノベンゾインドリン化合物は、前記一般式(1)および一般式(1)-a~(1)-dのテトラフェニルナフタロシアニン化合物の製造に用いられる中間体である。 
  一般式(3)において、Aの置換基であるX1、X及びR1~Rの好ましい範囲及び具体例は、一般式(1)及び一般式(1)-a~(1)-dで示したそれらと同様である。 
  一般式(3)で表される1,3-ジイミノベンゾインドリン化合物の具体例を下記表3に示すが、これらに限定されるものではない。
[1,3-Diiminobenzoindoline compound]
The fourth invention of the present invention is a 1,3-diiminobenzoindoline compound represented by the general formula (3).
Figure JPOXMLDOC01-appb-I000049
[In Formula (3), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B). ]
Figure JPOXMLDOC01-appb-I000050
[In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
The 1,3-diiminobenzoindoline compound represented by the general formula (3) is used for the production of the tetraphenylnaphthalocyanine compounds represented by the general formula (1) and the general formulas (1) -a to (1) -d. Intermediate.
In the general formula (3), preferred ranges and specific examples of the substituents X 1 , X 2 and R 1 to R 4 in the general formula (3) include the general formula (1) and the general formulas (1) -a to (1)- The same as those indicated by d.
Specific examples of the 1,3-diiminobenzoindoline compound represented by the general formula (3) are shown in Table 3 below, but are not limited thereto.
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-I000057
 一般式(3)で表される1,3-ジイミノベンゾインドリン化合物は、公知の化合物に関する公知の方法を参考にして製造することができる。
例えば、前記一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物とアンモニアとを、金属アルコキサイドの存在下に反応させることにより製造される。
  アンモニアの使用量は一般式(2)のナフタレン-2,3-ジカルボニトリル化合物1モルに対し、1倍モル~20倍モルであり、好ましくは3倍モル~10倍モルである。
  金属アルコキサイドとしては、ナトリウム或いはカリウムのメトキサイド、エトキサイド、n-プロポキサイド、n-ブトキサイド、n-ペントキサイド、n-ヘキシルオキシサイド、n-オクチルオキシサイド、2-メトキシエトキサイド、2-エトキシエトキサイド、2-ブトキシエトキサイド等が用いられる。
金属アルコキサイドの使用量は、一般式(2)のナフタレン-2,3-ジカルボニトリル化合物に対し、0.01倍モル~5倍モル、好ましくは0.1倍モル~2.0倍モルである。
The 1,3-diiminobenzoindoline compound represented by the general formula (3) can be produced with reference to known methods relating to known compounds.
For example, it is produced by reacting a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) with ammonia in the presence of a metal alkoxide.
The amount of ammonia used is 1 to 20 moles, preferably 3 to 10 moles per mole of the naphthalene-2,3-dicarbonitrile compound of the general formula (2).
Metal alkoxides include sodium or potassium methoxide, ethoxide, n-propoxide, n-butoxide, n-pentoxide, n-hexyloxyside, n-octyloxyside, 2-methoxyethoxide, 2-ethoxyethoxide 2-butoxyethoxide is used.
The metal alkoxide is used in an amount of 0.01 to 5 times, preferably 0.1 to 2.0 times the mol of the naphthalene-2,3-dicarbonitrile compound of the general formula (2). is there.
  反応においては有機溶媒を併用することが好ましく、通常、有機溶媒としてアルコール系溶媒が用いられる。アルコール系溶媒としてはメタノール、エタノール、n-プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等が用いられる。
アルコール系溶媒の使用量は、一般式(2)のナフタレン-2,3-ジカルボニトリル化合物1モルに対し200mL~15Lであり、好ましくは500mL~5Lである。
反応操作においては、反応溶媒であるアルコール系溶媒に金属ナトリウム又は金属カリウムを添加して金属アルコキサイドのアルコール溶液を調整した後、アンモニア及び一般式(2)のナフタレン-2,3-ジカルボニトリル化合物を装入して反応しても良く、又他の方法として、アンモニア、一般式(2)のナフタレン-2,3-ジカルボニトリル化合物及び別途調整した金属アルコキサイドを反応溶媒に装入して反応しても良い。金属アルコキシサイドを調整するために使用する金属の量は、一般式(2)のナフタレン-2,3-ジカルボニトリル化合物に対し0.01倍モル~5.0倍モル、好ましくは0.1~2.0倍モルである。
  反応温度は0℃~溶媒の還流温度であり、好ましくは20℃~溶媒の還流温度である。反応時間は30分~72時間が好ましい。
  反応後、溶媒を留去し、トルエン等の芳香族系溶媒や塩化メチレン等のハロゲン化炭化水素系溶媒にて抽出し、抽出液を水洗、濃縮して析出物をろ過することにより、一般式(3)の1,3-ジイミノベンゾインドリン化合物を得ることができる。
In the reaction, an organic solvent is preferably used in combination, and usually an alcohol solvent is used as the organic solvent. Examples of alcohol solvents include methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol. Used.
The amount of the alcohol solvent used is 200 mL to 15 L, preferably 500 mL to 5 L, per 1 mol of the naphthalene-2,3-dicarbonitrile compound of the general formula (2).
In the reaction operation, after adding metal sodium or metal potassium to an alcohol solvent as a reaction solvent to prepare an alcohol solution of metal alkoxide, ammonia and a naphthalene-2,3-dicarbonitrile compound of the general formula (2) Alternatively, the reaction may be carried out by charging ammonia, a naphthalene-2,3-dicarbonitrile compound of the general formula (2) and a separately prepared metal alkoxide into a reaction solvent. You may do it. The amount of the metal used for adjusting the metal alkoxyside is 0.01 to 5.0 times mol, preferably 0.1 to mol of the naphthalene-2,3-dicarbonitrile compound of the general formula (2). ~ 2.0 times mol.
The reaction temperature is 0 ° C. to the reflux temperature of the solvent, preferably 20 ° C. to the reflux temperature of the solvent. The reaction time is preferably 30 minutes to 72 hours.
After the reaction, the solvent is distilled off, extracted with an aromatic solvent such as toluene or a halogenated hydrocarbon solvent such as methylene chloride, the extract is washed with water, concentrated, and the precipitate is filtered. The 1,3-diiminobenzoindoline compound (3) can be obtained.
[近赤外線吸収材料]
 以下に、本発明の近赤外線吸収材料について説明する。
本発明のテトラフェニルナフタロシアニン化合物は、熱線を遮蔽する目的の熱線遮蔽材、プラズマディスプレイや液晶ディスプレイ用の光学フィルター、フラッシュ定着トナー、感熱転写・感熱孔版等用の光熱交換剤、レーザー融着用の光熱変換剤、PETボトルの成形加工時のプレヒーティング助剤、半導体レーザーを使う光記録媒体、光学文字読取機等に用いられる近赤外線吸収色素、腫瘍治療用感光性色素、近赤外線吸収フィルターなど、広範囲の用途に用いられる近赤外線吸収材料として非常に有用である。
本発明の近赤外線吸収材料は、前記一般式(1)で表される本発明のテトラフェニルナフタロシアニン化合物自体であっても良いし、バインダー樹脂や添加剤など他の成分とともに一般式(1)のテトラフェニルナフタロシアニン化合物を含有するものであっても良い。
近赤外線吸収材料の態様や成分は、その用途に応じ異なり、多様である。
[Near-infrared absorbing material]
Below, the near-infrared absorption material of this invention is demonstrated.
The tetraphenylnaphthalocyanine compound of the present invention is a heat ray shielding material for shielding heat rays, an optical filter for plasma display or liquid crystal display, a flash fixing toner, a photothermal exchange agent for thermal transfer / thermal stencil, etc. Photothermal conversion agent, preheating aid during molding of PET bottles, optical recording media using semiconductor lasers, near infrared absorbing dyes used in optical character readers, photosensitive dyes for tumor treatment, near infrared absorbing filters, etc. It is very useful as a near-infrared absorbing material used in a wide range of applications.
The near-infrared absorbing material of the present invention may be the tetraphenylnaphthalocyanine compound itself of the present invention represented by the general formula (1), or the general formula (1) together with other components such as a binder resin and additives. The tetraphenyl naphthalocyanine compound may be used.
The modes and components of the near infrared absorbing material vary depending on the application and are various.
[熱線遮蔽材]
以下に、本発明の熱線遮蔽材について説明する。
本発明のテトラフェニルナフタロシアニン化合物は、建物や自動車の窓等に使用するフィルムや中間膜、ビニールハウス、サンバイザー、溶接用ゴーグルなどに使用される熱線遮蔽材に好適に用いられる。
本発明の熱線遮蔽材は、前記一般式(1)で表される本発明のテトラフェニルナフタロシアニン化合物を含有する。
本発明の熱線遮蔽材に含有される一般式(1)のテトラフェニルナフタロシアニン化合物は、単独の化合物で使用されても良いし、2種以上の混合物の形態であってもよい。異性体に関しても、前記一般式(1)-a~(1)-dで表される異性体のうち、いずれか1種の異性体であってもよいし、2種以上の異性体の混合物であってもよい。
特に、熱線遮蔽材の耐光性、耐熱性等の保存性の点から、一般式(1)-a~(1)-dで表される異性体のうち、一般式(1)-aで表される異性体の含有率が高いものが好ましい。
また、同様の理由で、X1、Xが水素原子、フッ素原子又はトリフルオロメチル基であり、R~Rが水素原子又は炭素数1~12のアルキル基であるものが好ましい。
さらに、MがCuであるものが好ましい。
最も好ましいのは、下記式で表される化合物である。
Figure JPOXMLDOC01-appb-I000058
 
[Heat ray shielding material]
Below, the heat ray shielding material of this invention is demonstrated.
The tetraphenylnaphthalocyanine compound of the present invention is suitably used for heat ray shielding materials used for films and interlayers used in buildings, automobile windows, etc., greenhouses, sun visors, welding goggles and the like.
The heat ray shielding material of the present invention contains the tetraphenylnaphthalocyanine compound of the present invention represented by the general formula (1).
The tetraphenylnaphthalocyanine compound of the general formula (1) contained in the heat ray shielding material of the present invention may be used as a single compound or in the form of a mixture of two or more. The isomer may also be any one of the isomers represented by the general formulas (1) -a to (1) -d, or a mixture of two or more isomers. It may be.
In particular, from the viewpoint of storage stability such as light resistance and heat resistance of the heat ray shielding material, among the isomers represented by the general formulas (1) -a to (1) -d, the heat-shielding material is represented by the general formula (1) -a. Those having a high content of isomers are preferred.
For the same reason, it is preferable that X 1 and X 2 are a hydrogen atom, a fluorine atom or a trifluoromethyl group, and R 1 to R 4 are a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
Furthermore, the thing whose M is Cu is preferable.
Most preferred is a compound represented by the following formula.
Figure JPOXMLDOC01-appb-I000058
 本発明の熱線遮蔽材の使用形態は、特に限定されず、公知のいずれの形態であっても良い。具体的には、例えば以下のような例が挙げられる。
1.一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有する成形体自体を使用する形態
2.基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有する塗膜やフィルム等を適用する形態
3.2枚以上の基材の間に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有するフィルム等を中間層として設けた積層体の形態
4.基材中に、一般式(1)のテトラフェニルナフタロシアニン化合物を含ませた形態
基材としては、特に制限されないが、ガラス板;ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリスルフォン、不飽和ポリエステル等の板材等のプラスチック板などが挙げられる。
上記の各形態のうち、特に、2.基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有する塗膜やフィルム等を適用する形態、および3.2枚以上の基材の間に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有するフィルム等を中間層として設けた積層体の形態、が好ましい。
The usage form of the heat ray shielding material of the present invention is not particularly limited, and may be any known form. Specific examples include the following examples.
1. 1. Form using molded body itself containing tetraphenylnaphthalocyanine compound of general formula (1) and resin as essential components A mode in which a coating film or a film containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin as essential components is applied on a base material 3. Between two or more base materials, the general formula (1) 3. Form of laminated body in which a film containing tetraphenylnaphthalocyanine compound and resin as essential components is provided as an intermediate layer. Although it does not restrict | limit especially as a form base material which contains the tetraphenyl naphthalocyanine compound of General formula (1) in a base material, Glass plate; Polycarbonate, Polymethylmethacrylate, Polystyrene, Polyethylene terephthalate, Polyvinyl chloride, Polyethylene Examples thereof include plastic plates such as plate materials such as sulfone and unsaturated polyester.
Among the above forms, in particular 2. A mode in which a coating film or a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is applied on a base material, and between two or more base materials, The form of the laminated body which provided the film etc. which contain the tetraphenyl naphthalocyanine compound of 1) and resin as an essential component as an intermediate | middle layer is preferable.
 このように、本発明の熱線遮蔽材は、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有する態様が好ましい。
樹脂としては、熱線遮蔽材の使用用途によって適宜選択することができるが、実質的に透明であって、吸収、散乱が大きくない樹脂が好ましい。
具体的には、ポリカーボネート樹脂;メチルメタクリレート等の(メタ)アクリル樹脂;ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン等のポリビニル樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリブチラール樹脂;ポリ酢酸ビニル等の酢酸ビニル系樹脂;ポリエステル樹脂;ポリアミド樹脂;ポリビニルアセタール樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体樹脂;エチレン-アクリル共重合体樹脂;ポリウレタン樹脂等を挙げることができる。また、実質的に透明であれば、上記1種類の樹脂に限らず、2種以上の樹脂をブレンドしたものも用いることができ、透明性のガラスに上記の樹脂をはさみこんで用いることもできる。
これらの樹脂のうち、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂が好ましく、特にポリカーボネート樹脂、メタクリル樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリ塩化ビニル樹脂、ポリビニルアセタール樹脂がより好ましい。
Thus, the aspect which contains the tetraphenyl naphthalocyanine compound and resin of General formula (1) as an essential component is preferable for the heat ray shielding material of this invention.
The resin can be appropriately selected depending on the intended use of the heat ray shielding material, but is preferably a resin that is substantially transparent and does not significantly absorb and scatter.
Specifically, polycarbonate resin; (meth) acrylic resin such as methyl methacrylate; polyvinyl resin such as polystyrene, polyvinyl chloride and polyvinylidene chloride; polyolefin resin such as polyethylene and polypropylene; polybutyral resin; acetic acid such as polyvinyl acetate Examples thereof include vinyl resins; polyester resins; polyamide resins; polyvinyl acetal resins; polyvinyl alcohol resins; ethylene-vinyl acetate copolymer resins; ethylene-acrylic copolymer resins; Moreover, as long as it is substantially transparent, not only the above-mentioned one kind of resin but also a blend of two or more kinds of resins can be used, and the above-mentioned resin can be sandwiched between transparent glasses. .
Among these resins, polycarbonate resin, (meth) acrylic resin, polyester resin, polyamide resin, polystyrene resin, polyvinyl chloride resin, polyvinyl acetal resin, and polyvinyl alcohol resin are preferable, and polycarbonate resin, methacrylic resin, polyethylene terephthalate (PET) are particularly preferable. ) Resin, polyvinyl chloride resin, and polyvinyl acetal resin are more preferable.
 ポリカーボネート樹脂は、2価フェノールとカーボネート前駆体とを溶液法または溶融法で反応させて製造されるものである。2価フェノールの代表的な例として以下のものが挙げられる。2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホンなどが挙げられる。好ましい2価のフェノールは、ビス(4-ヒドロキシフェニル)アルカン系であり、特にビスフェノールを主成分とするものである。 The polycarbonate resin is produced by reacting a dihydric phenol and a carbonate precursor by a solution method or a melting method. The following are mentioned as a typical example of dihydric phenol. 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4 -Hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis ( 4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone and the like. Preferred divalent phenols are bis (4-hydroxyphenyl) alkanes, particularly those containing bisphenol as the main component.
(メタ)アクリル樹脂としては、メタクリル酸メチル単独またはメタクリル酸メチルを50%以上含む重合性不飽和単量体混合物またはその共重合物が挙げられる。メタクリル酸メチルと共重合可能な重合性不飽和単量体としては、例えば、以下のものが挙げられる。アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸N,N-ジエチルアミノエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸テトラヒドロキシフルフリル、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。 Examples of the (meth) acrylic resin include methyl methacrylate alone or a polymerizable unsaturated monomer mixture containing 50% or more of methyl methacrylate or a copolymer thereof. Examples of the polymerizable unsaturated monomer copolymerizable with methyl methacrylate include the following. Methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, tribromophenyl (meth) acrylate, tetrahydroxyfurfuryl (meth) acrylate, ethylene glycol Di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolethane di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, pentaerythritol tetra (meth) acrylate.
 ポリエステル樹脂としては、代表的にはポリC2-4アルキレンテレフタレートやポリC2-4アルキレンナフタレートなどのホモポリエステル、C2-4アルキレンアリレート単位(C2-4アルキレンテレフタレート及び/又はC2-4アルキレンナフタレート単位)を主成分として含むコポリエステルなどが挙げられるが、ポリアリレート系樹脂、アジピン酸などの脂肪族ジカルボン酸を用いた脂肪族ポリエステル、ε-カプロラクトンなどのラクトンの単独又は共重合体も含まれる。ポリエステル樹脂の例としては、透明性が高い等の点で、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等が好ましい。また、C2-4アルキレンアリレート系コポリエステルなどのような非結晶性コポリエステルも加工性に優れ好ましい。特にPETが、大量に生産され、耐熱性、強度等に優れているので好ましい。
 ポリアミド樹脂は、芳香族又は脂肪族基を含むジアミン化合物類と、芳香族又は脂肪族基を含むジカルボン酸化合物類との脱水重縮合物の構造を有する樹脂である。ここで脂肪族基は脂環式脂肪族基も含まれる。ジアミン化合物類としては、ヘキサメチレンジアミン、m-キシリレンジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、トリメチルヘキサメチレンジアミン、ビス(アミノメチル)ノルボルナン、ビス(アミノメチル)テトラヒドロジシクロペンタジエンなどが挙げられる。ジカルボン酸化合物類としては、アジピン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、ビス(ヒドロキシカルボニルメチル)ノルボルナン、ビス(ヒドロキシカルボニルメチル)テトラヒドロジシクロペンタジエンなどが挙げられる。ポリアミド樹脂としては、特に透明性の観点から非結晶性のポリアミド樹脂が好ましく、一般的には透明ナイロンと称される樹脂類が好ましい。
Typical polyester resins include homopolyesters such as poly C2-4 alkylene terephthalate and poly C2-4 alkylene naphthalate, C2-4 alkylene arylate units (C2-4 alkylene terephthalate and / or C2-4 alkylene naphthalate units). ) As a main component, polyarylate resins, aliphatic polyesters using aliphatic dicarboxylic acids such as adipic acid, and lactone homo- or copolymers such as ε-caprolactone are also included. As an example of the polyester resin, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and the like are preferable in terms of high transparency. Amorphous copolyesters such as C2-4 alkylene arylate copolyesters are also preferred because of their excellent processability. In particular, PET is preferable because it is produced in large quantities and is excellent in heat resistance and strength.
The polyamide resin is a resin having a dehydration polycondensate structure of a diamine compound containing an aromatic or aliphatic group and a dicarboxylic acid compound containing an aromatic or aliphatic group. Here, the aliphatic group also includes an alicyclic aliphatic group. Examples of diamine compounds include hexamethylenediamine, m-xylylenediamine, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, trimethylhexamethylenediamine, bis (aminomethyl) norbornane, Examples thereof include bis (aminomethyl) tetrahydrodicyclopentadiene. Examples of the dicarboxylic acid compounds include adipic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, bis (hydroxycarbonylmethyl) norbornane, bis (hydroxycarbonylmethyl) tetrahydrodicyclopentadiene, and the like. As the polyamide resin, an amorphous polyamide resin is particularly preferable from the viewpoint of transparency, and resins generally referred to as transparent nylon are preferable.
 ポリ塩化ビニル樹脂としては、塩化ビニルの単量体のみの重合体ばかりでなく、塩化ビニルを主成分とする共重合体も使用できる。塩化ビニルと共重合させることのできる単量体としては、塩化ビニリデン、エチレン、プロピレン、アクリロニトリル、酢酸ビニル、マレイン酸、イタコン酸、アクリル酸、メタクリル酸等が挙げられる。
 ポリビニルアセタール樹脂としては、ポリビニルアルコール(PVA)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn-ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(PVB)等が挙げられ、なかでもPVBが好ましい。ポリビニルアセタール樹脂の合成に用いられるPVAは、平均重合度が200~5000のものが好ましく、より好ましくは500~3000のものである。また、アセタール化度が40~85モル%であるものが好ましく、より好ましくは50~75モル%のものである。
 ポリビニルアルコール樹脂は、例えば、ポリ酢酸ビニルをけん化することにより得られる。ポリビニルアルコール樹脂のけん化度は、一般に70~99.9モル%の範囲内であり、75~99.8モル%の範囲内であることが好ましく、80~99.8モル%の範囲内であることがより好ましい。ポリビニルアルコール樹脂の平均重合度は、好ましくは500以上、より好ましくは1000以上5000以下である。
As the polyvinyl chloride resin, not only a polymer of vinyl chloride monomer but also a copolymer mainly composed of vinyl chloride can be used. Examples of monomers that can be copolymerized with vinyl chloride include vinylidene chloride, ethylene, propylene, acrylonitrile, vinyl acetate, maleic acid, itaconic acid, acrylic acid, and methacrylic acid.
As the polyvinyl acetal resin, a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) and formaldehyde, a narrowly defined polyvinyl acetal resin obtained by reacting PVA and acetaldehyde, PVA and n-butyraldehyde are reacted. Polyvinyl butyral resin (PVB) obtained by the above, and PVB is preferable. The PVA used for the synthesis of the polyvinyl acetal resin preferably has an average degree of polymerization of 200 to 5000, more preferably 500 to 3000. The acetalization degree is preferably 40 to 85 mol%, more preferably 50 to 75 mol%.
The polyvinyl alcohol resin can be obtained, for example, by saponifying polyvinyl acetate. The degree of saponification of the polyvinyl alcohol resin is generally in the range of 70 to 99.9 mol%, preferably in the range of 75 to 99.8 mol%, and in the range of 80 to 99.8 mol%. It is more preferable. The average degree of polymerization of the polyvinyl alcohol resin is preferably 500 or more, more preferably 1000 or more and 5000 or less.
 本発明の熱線遮蔽材中の、前記一般式(1)で表される本発明のテトラフェニルナフタロシアニン化合物の含有量は、熱線遮蔽材の厚さにより異なる。例えば、厚さ3mmの熱線遮蔽板を作製する場合には、熱線遮蔽材に配合される樹脂100重量部に対して、0.002~0.06重量部が好ましく、より好ましくは0.003~0.02重量部である。また、例えば、厚さ10mmの熱線遮蔽板を作製する場合には、樹脂100重量部に対して、0.0005~0.02重量部が好ましく、より好ましくは0.001~0.005重量部である。厚さ10μmの熱線遮蔽フィルムを作製する場合には、樹脂100重量部に対して、0.1~20重量部が好ましく、より好ましくは0.5~10重量部である。熱線遮蔽材の厚さに関係なく一般式(1)のテトラフェニルナフタロシアニン化合物の含有量を表示するとすれば、上方からの投影面積中の重量と考えて、0.01~5.0g/mの配合量が好ましく、より好ましくは0.05~1.0g/mである。一般式(1)のテトラフェニルナフタロシアニン化合物の配合量が、0.01g/m未満の場合には、熱線遮蔽効果が少なくなり、5.0g/mを超える場合は、可視光線の透過が少なくなる場合がある。 The content of the tetraphenylnaphthalocyanine compound of the present invention represented by the general formula (1) in the heat ray shielding material of the present invention varies depending on the thickness of the heat ray shielding material. For example, when producing a heat ray shielding plate having a thickness of 3 mm, the amount is preferably 0.002 to 0.06 parts by weight, more preferably 0.003 to 0.04 parts by weight with respect to 100 parts by weight of the resin blended in the heat ray shielding material. 0.02 part by weight. For example, in the case of producing a heat ray shielding plate having a thickness of 10 mm, 0.0005 to 0.02 parts by weight is preferable with respect to 100 parts by weight of the resin, and more preferably 0.001 to 0.005 parts by weight. It is. When a heat ray shielding film having a thickness of 10 μm is produced, the amount is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the resin. If the content of the tetraphenylnaphthalocyanine compound of the general formula (1) is expressed regardless of the thickness of the heat ray shielding material, the weight in the projected area from above is considered to be 0.01 to 5.0 g / m. The blending amount of 2 is preferable, and more preferably 0.05 to 1.0 g / m 2 . When the amount of the tetraphenylnaphthalocyanine compound of the general formula (1) is less than 0.01 g / m 2 , the heat ray shielding effect is reduced, and when it exceeds 5.0 g / m 2 , visible light is transmitted. May decrease.
 本発明の熱線遮蔽材には、一般式(1)のテトラフェニルナフタロシアニン化合物以外に、通常の透明性樹脂材料を製造する際に用いられる各種の添加剤を含有していても良い。該添加剤としては、例えば、着色剤、重合調節剤、酸化防止剤、紫外線吸収剤、熱線遮蔽剤、難燃剤、可塑剤、耐衝撃性向上のためのゴム、あるいは剥離剤等を挙げることができる。熱線遮蔽剤とは、波長780nm以上の赤外線を吸収することができる粒子を意味し、アルミニウムドープ酸化錫、インジウムドープ酸化錫、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、及びアルミニウムドープ酸化亜鉛(AZO)などの金属酸化物の他、タングステン酸化物、及び複合タングステン酸化物等を挙げることができる。特に、錫ドープ酸化インジウム(ITO)が好ましい。 In addition to the tetraphenylnaphthalocyanine compound of the general formula (1), the heat ray shielding material of the present invention may contain various additives that are used when producing ordinary transparent resin materials. Examples of the additive include a colorant, a polymerization regulator, an antioxidant, an ultraviolet absorber, a heat ray shielding agent, a flame retardant, a plasticizer, a rubber for improving impact resistance, and a release agent. it can. The heat ray shielding agent means particles capable of absorbing infrared rays having a wavelength of 780 nm or more, and includes aluminum-doped tin oxide, indium-doped tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and aluminum. In addition to metal oxides such as doped zinc oxide (AZO), tungsten oxide, composite tungsten oxide, and the like can be given. In particular, tin-doped indium oxide (ITO) is preferable.
 添加剤の熱線遮蔽剤中の添加量は特に制限されるものではないが、通常熱線遮蔽材中10重量%以下である。
特に、本発明の熱線遮蔽材が太陽光に対して用いられるものである場合などには、紫外線吸収剤を含有することは好ましい態様である。紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤が使用できる。具体的には、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系の化合物が好適に使用される。
The addition amount of the additive in the heat ray shielding agent is not particularly limited, but is usually 10% by weight or less in the heat ray shielding material.
In particular, when the heat ray shielding material of the present invention is used for sunlight, it is a preferable aspect to contain an ultraviolet absorber. It does not restrict | limit especially as a ultraviolet absorber, A well-known ultraviolet absorber can be used. Specifically, salicylic acid, benzophenone, benzotriazole, and cyanoacrylate compounds are preferably used.
 また、本発明の熱線遮蔽材には、一般式(1)のテトラフェニルナフタロシアニン化合物以外に、他の近赤外線吸収材料を含有してもよい。他の近赤外線吸収材料としては、特に制限されず、用途によって所望される最大吸収波長によって公知の近赤外線吸収材料が適宜選択されうる。
なお、本発明において、熱線遮蔽材の形状に格別の制約はなく、最も一般的な平板状やフィルム状のほか波板状、球面状、ドーム状など、様々な形状のものが含まれる。
In addition to the tetraphenylnaphthalocyanine compound of the general formula (1), the heat ray shielding material of the present invention may contain other near infrared ray absorbing materials. Other near-infrared absorbing materials are not particularly limited, and known near-infrared absorbing materials can be appropriately selected depending on the maximum absorption wavelength desired depending on the application.
In the present invention, the shape of the heat ray shielding material is not particularly limited, and includes various shapes such as a corrugated plate shape, a spherical shape, and a dome shape in addition to the most common flat plate shape and film shape.
 本発明の熱線遮蔽材が平板状やフィルム状の場合、一般式(1)のテトラフェニルナフタロシアニン化合物を、樹脂および必要に応じて前記添加剤や他の近赤外線吸収材料と混合後、成形することによって、熱線遮蔽材が得られる。成形方法としては、特に制限されず、公知の成形方法が適用できる。具体的には、押出成形、射出成形、注型重合、プレス成形、カレンダー成形あるいは注型製膜法などが挙げられる。 When the heat ray shielding material of the present invention is in the form of a flat plate or a film, the tetraphenylnaphthalocyanine compound of the general formula (1) is mixed with the resin and, if necessary, the additive and other near infrared absorbing materials and then molded. Thus, a heat ray shielding material is obtained. The molding method is not particularly limited, and a known molding method can be applied. Specific examples include extrusion molding, injection molding, cast polymerization, press molding, calender molding, or cast film forming method.
 本発明の熱線遮蔽材の使用形態が、基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有するフィルム等を適用する形態である場合、基材に、接着剤、粘着剤、接着フィルム等を使用して、フィルムやシート状の熱線遮蔽材を貼付することで適用することができる。あるいは、フィルムやシート状の熱線遮蔽材を基材に熱プレスあるいは熱ラミネート成形することにより適用することもできる。
 本発明の熱線遮蔽材の使用形態が、基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有する塗膜を適用する形態である場合、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂と、必要に応じこれらを溶解する溶剤や、その他の成分を含有する塗料(液状ないしペースト状物)を作製し、この塗料を基材に上にコーティングすることにより適用することができる。
When the use form of the heat ray shielding material of the present invention is a form in which a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is applied on a base material, It can be applied by sticking a film or sheet-like heat ray shielding material using an adhesive, an adhesive, an adhesive film, or the like. Alternatively, a heat ray shielding material in the form of a film or a sheet can be applied to the substrate by hot pressing or hot lamination molding.
When the usage form of the heat ray shielding material of the present invention is a form in which a coating film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is applied on a substrate, the general formula (1) By preparing a paint (liquid or pasty material) containing a tetraphenylnaphthalocyanine compound and a resin, a solvent for dissolving them and other components as necessary, and coating the paint on a substrate Can be applied.
 本発明の熱線遮蔽材の使用形態が、2枚以上の基材の間に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有するフィルム等を中間層として設けた積層体の形態である場合、例えば、基材の間に一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有するフィルムを挟み、ゴムパックに入れ減圧吸引しながら、加熱して真空接着することにより適用することができる。または、基材の間に一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有するフィルムを挟んで、あるいは一方の基材の上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂と、必要に応じこれらを溶解する溶剤や、その他の成分を含有する塗料を塗布した後、他方の基材を載せて、これらの積層体を熱などによって接着することによって適用することもできる。さらに、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有する接着剤、あるいは一般式(1)のテトラフェニルナフタロシアニン化合物および粘着剤としての樹脂を含有する組成物を使用し、基剤を貼り合わせることによって適用することもできる。 The use form of the heat ray shielding material of the present invention is a laminate in which a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is provided as an intermediate layer between two or more substrates For example, a film containing the tetraphenylnaphthalocyanine compound of the general formula (1) and the resin as essential components is sandwiched between the base materials, put into a rubber pack, heated under vacuum and vacuum bonded. Can be applied. Alternatively, a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin as essential components is sandwiched between the substrates, or on one substrate, the tetraphenylnaphthalocyanine of the general formula (1) Apply a compound and resin, and if necessary, a solvent that dissolves them and a paint containing other components, then place the other base material and apply these laminates by heat or other means. You can also. Furthermore, an adhesive containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin, or a composition containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin as an adhesive, It is also possible to apply by bonding.
 本発明の熱線遮蔽材の用途としては、特に制限はないが、太陽エネルギーの熱線遮蔽用として建物や自動車の窓等に使用するフィルムや中間膜、サンバイザー、溶接用ゴーグルなどが挙げられる。特に、本発明の一般式(1)で表されるテトラフェニルナフタロシアニン化合物は、溶媒溶解性や樹脂との相溶性に優れ、また耐熱性、耐光性、耐候性等の諸特性に優れるため、建物や自動車の窓等に使用するフィルムや中間膜として好適である。 The use of the heat ray shielding material of the present invention is not particularly limited, and examples thereof include films and interlayer films, sun visors, welding goggles and the like used for buildings, automobile windows, etc. for solar energy heat ray shielding. In particular, the tetraphenyl naphthalocyanine compound represented by the general formula (1) of the present invention is excellent in solvent solubility and compatibility with a resin, and in various properties such as heat resistance, light resistance, and weather resistance. It is suitable as a film or an intermediate film used for a window of a building or an automobile.
[熱線遮蔽フィルム]
本発明の熱線遮蔽材が、建物の窓ガラス等に貼り付けて使用する熱線遮蔽フィルムである場合について以下に説明する。
熱線遮蔽フィルムの構成としては、特に制限はないが、例えば以下のような例が挙げられる。
1.一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有するフィルムである態様
2.一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有するフィルム、粘着剤層、及び必要に応じて粘着剤層の表面に設けられた剥離シートを有する態様である態様
3.基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有する層を設けてなる態様
4.基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および粘着剤である樹脂を含有する層、及び必要に応じて粘着剤層の表面に設けられた剥離シートを有する態様
5.基材、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有する層、粘着剤層、及び必要に応じて粘着剤層の表面に設けられた剥離シートを有する態様
上記各態様のうち、窓ガラスへの貼り付け易さ等の点から、粘着剤層を有する態様が好ましく、特に4.または5.の態様が好ましい。
また、これらの態様に加えて、目的に応じて、ハードコート層、防汚層、紫外線吸収層、反射防止層等、更なる層を設けても良い。
[Heat ray shielding film]
The case where the heat ray shielding material of the present invention is a heat ray shielding film used by being attached to a window glass or the like of a building will be described below.
Although there is no restriction | limiting in particular as a structure of a heat ray shielding film, For example, the following examples are mentioned.
1. Embodiment 2 which is a film containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin Aspect 3, which is a mode having a film containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin, a pressure-sensitive adhesive layer, and a release sheet provided on the surface of the pressure-sensitive adhesive layer as necessary. A mode in which a layer containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin is provided on a substrate. 4. A mode having a layer containing a tetraphenylnaphthalocyanine compound of general formula (1) and a resin as a pressure-sensitive adhesive on a substrate, and a release sheet provided on the surface of the pressure-sensitive adhesive layer as necessary. Aspects having a substrate, a layer containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin, a pressure-sensitive adhesive layer, and a release sheet provided on the surface of the pressure-sensitive adhesive layer as necessary. An aspect having an adhesive layer is preferable from the viewpoint of easiness of sticking to a window glass, and the like. Or 5. The embodiment is preferred.
In addition to these embodiments, further layers such as a hard coat layer, an antifouling layer, an ultraviolet absorbing layer, and an antireflection layer may be provided depending on the purpose.
 一般式(1)のテトラフェニルナフタロシアニン化合物とともに含有される樹脂としては、前記熱線遮蔽材が含有する樹脂の例と同様のものが挙げられる。特に、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリビニル樹脂、ポリオレフィン樹脂、ポリブチラール樹脂、ポリエステル樹脂、ポリアミド系樹脂、ポリウレタン樹脂が好ましい。 Examples of the resin contained together with the tetraphenylnaphthalocyanine compound of the general formula (1) include the same resins as those of the resin contained in the heat ray shielding material. In particular, polycarbonate resin, (meth) acrylic resin, polyvinyl resin, polyolefin resin, polybutyral resin, polyester resin, polyamide resin, and polyurethane resin are preferable.
 基材としては、前記熱線遮蔽材の使用形態において説明した基材の例と同様のものが挙げられるが、樹脂製のシートや板が好ましい。例えば、ポリエステル、ポリエチレン、ポリプロピレン、ナイロン、ポリ塩化ビニル、ポリカーボネート、ポリビニルアルコール、ポリメチルメタクリレート、フッ素樹脂、エチレン、ビニルアルコール樹脂等のフィルムが挙げられる。中でも、ポリエステルフィルムが好ましく、ポリエチレンテレフタレート(PET)フィルムがより好ましい。 Examples of the base material include those similar to the examples of the base material described in the use form of the heat ray shielding material, but a resin sheet or plate is preferable. Examples thereof include films of polyester, polyethylene, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polymethyl methacrylate, fluororesin, ethylene, vinyl alcohol resin, and the like. Among these, a polyester film is preferable, and a polyethylene terephthalate (PET) film is more preferable.
 粘着剤としては、基材に接着することができ、透明性を有するものであれば特に限定されないが、例えば(メタ)アクリル系;(メタ)アクリルウレタン系;(メタ)アクリルシリコーン系;シロキサン結合を主鎖にもつシリコーン系;ポリ塩化ビニル系;メラミン系;ウレタン系;スチレン系;アルキド系;フェノール系;エポキシ系;ポリエステル系;ポリフッ化ビニリデンなどのフッ素系樹脂などの熱可塑性または熱硬化性、活性エネルギー線硬化性の硬化性樹脂粘着剤、天然ゴム、ブチルゴム、イソプロピレンゴム、エチレンプロピレンゴム、メチルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴムなどのゴム系粘着剤等が挙げられる。
 粘着剤である樹脂としては、上記の熱可塑性または熱硬化性、活性エネルギー線硬化性の硬化性樹脂粘着剤が挙げられるが、(メタ)アクリル系樹脂が好ましく、ガラス転移温度が0℃未満のポリ(メタ)アクリル酸エステル系樹脂が特に好ましい。ポリ(メタ)アクリル酸エステル系樹脂としては、単量体として炭素数1~14のアルキル基を有する(メタ)アクリル酸エステルを50重量%以上使用してなるものが好ましい。
The pressure-sensitive adhesive is not particularly limited as long as it can be adhered to a substrate and has transparency. For example, (meth) acrylic type; (meth) acrylic urethane type; (meth) acrylic silicone type; siloxane bond Thermoplastic or thermosetting such as fluororesin such as polyvinylidene fluoride, silicone based, polyvinyl chloride, melamine, urethane, styrene, alkyd, phenol, epoxy, polyester , Active energy ray-curable curable resin adhesive, natural rubber, butyl rubber, isopropylene rubber, ethylene propylene rubber, methyl rubber, chloroprene rubber, ethylene-propylene copolymer rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc. System adhesives and the like.
Examples of the resin that is a pressure-sensitive adhesive include the above-mentioned thermoplastic, thermosetting, and active energy ray-curable curable resin pressure-sensitive adhesives, and (meth) acrylic resins are preferable, and the glass transition temperature is less than 0 ° C. Poly (meth) acrylic acid ester resins are particularly preferred. As the poly (meth) acrylic acid ester-based resin, those obtained by using 50% by weight or more of (meth) acrylic acid ester having an alkyl group having 1 to 14 carbon atoms as a monomer are preferable.
 共重合可能な単量体の例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート等の(メタ)アクリレート類;α-メチルスチレン、ビニルトルエン、スチレンなどに代表されるスチレン系単量体;メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテルなどに代表されるビニルエーテル系単量体;フマル酸、フマル酸のモノアルキルエステル、フマル酸のジアルキルエステル;マレイン酸、マレイン酸のモノアルキルエステル、マレイン酸のジアルキルエステル、イタコン酸、イタコン酸のモノアルキルエステル、イタコン酸のジアルキルエステル、(メタ)アクリロニトリル、塩化ビニル、塩化ビニリデン、酢酸ビニル、ビニルケトン、ビニルピリジン、ビニルカルバゾールなどを挙げることができる。
アクリル系粘着剤の硬化剤としては、イソシアネ-ト系硬化剤、エポキシ系硬化剤、金属キレ-ト硬化剤などが用いられる。
Examples of copolymerizable monomers include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate and the like ( (Meth) acrylates; styrene monomers represented by α-methylstyrene, vinyl toluene, styrene, etc .; vinyl ether monomers represented by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, etc .; fumaric acid, fumaric acid Monoalkyl ester, dialkyl ester of fumaric acid; maleic acid, monoalkyl ester of maleic acid, dialkyl ester of maleic acid, itaconic acid, monoalkyl ester of itaconic acid, dialkyl ester of itaconic acid, (meth) Acrylonitrile, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl ketones, vinyl pyridine, and vinyl carbazole.
As the curing agent for the acrylic adhesive, an isocyanate curing agent, an epoxy curing agent, a metal chelate curing agent, or the like is used.
 熱線遮蔽フィルムの各層には、前記熱線遮蔽材を製造する際に用いられる各種の添加剤と同様のものを含有しても良い。例えば、着色剤、重合調節剤、酸化防止剤、光安定剤、紫外線吸収剤、難燃剤、帯電防止剤、可塑剤等が挙げられる。酸化防止剤、難燃剤、接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等特に、紫外線吸収剤を含有する態様は好ましい。
また、可視光透過率を大きく低下させない範囲で、カーボンブラック等の熱線を吸収できる材料を併用しても良い。
熱線遮蔽フィルムの厚さは、その構成、基材や熱線遮蔽層の樹脂の種類、その用途などに応じて異なるが、通常、10μm~500μm程度のものが好ましく用いられる。
 例えば、熱線遮蔽フィルムが、基材上に、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有する層を設けてなる態様である場合、基材の厚さは20μm~300μm程度が好ましい。また、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有する層の厚さは、0.3~100μm程度が好ましい。
樹脂に対する一般式(1)のテトラフェニルナフタロシアニン化合物の含有量は、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を含有する層の厚さ次第であるが、通常、樹脂100重量部に対し一般式(1)のテトラフェニルナフタロシアニン化合物を0.001~30重量部の範囲内であることが好ましく、0.01~10重量部の範囲内であることがより好ましい。
Each layer of the heat ray shielding film may contain the same additives as those used in the production of the heat ray shielding material. Examples include colorants, polymerization regulators, antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, antistatic agents, plasticizers, and the like. In particular, an embodiment containing an ultraviolet absorber is preferred, such as an antioxidant, a flame retardant, an adhesive strength modifier, a moisture-resistant agent, a fluorescent brightening agent, and an infrared absorber.
In addition, a material that can absorb heat rays, such as carbon black, may be used in combination as long as the visible light transmittance is not significantly reduced.
The thickness of the heat ray shielding film varies depending on the configuration, the type of resin of the base material and the heat ray shielding layer, the use thereof, and the like, but usually about 10 μm to 500 μm is preferably used.
For example, when the heat ray shielding film is an embodiment in which a layer containing a tetraphenylnaphthalocyanine compound of the general formula (1) and a resin is provided on the substrate, the thickness of the substrate is preferably about 20 μm to 300 μm. . The thickness of the layer containing the tetraphenylnaphthalocyanine compound of general formula (1) and the resin is preferably about 0.3 to 100 μm.
The content of the tetraphenylnaphthalocyanine compound of the general formula (1) relative to the resin depends on the thickness of the layer containing the tetraphenylnaphthalocyanine compound of the general formula (1) and the resin. On the other hand, the tetraphenylnaphthalocyanine compound of the general formula (1) is preferably in the range of 0.001 to 30 parts by weight, and more preferably in the range of 0.01 to 10 parts by weight.
 本発明の熱線遮蔽フィルムを製造する方法としては、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂と、必要に応じ上記添加剤、他の近赤外線吸収剤や紫外線吸収剤等と混合後、成形する。成形方法としては、特に制限されず、公知の成形方法がそのままあるいは適宜修飾されて適用できる。具体的には、押出成形、射出成形、注型重合、プレス成形、カレンダー成形あるいは注型製膜法などが好適に使用できる。
さらに、一般式(1)のテトラフェニルナフタロシアニン化合物を含有する樹脂フィルムを作製し、そのフィルムを樹脂材に熱プレスあるいは熱ラミネート成形することにより製造することもできる。また、一般式(1)のテトラフェニルナフタロシアニン化合物を含有するアクリル樹脂インクまたは塗料等を樹脂材に印刷またはコーティングすることにより製造することもできる。
As a method for producing the heat ray shielding film of the present invention, after mixing with the tetraphenylnaphthalocyanine compound of general formula (1) and a resin, and if necessary, the above additives, other near infrared absorbers, ultraviolet absorbers, etc. Mold. The molding method is not particularly limited, and a known molding method can be applied as it is or appropriately modified. Specifically, extrusion molding, injection molding, cast polymerization, press molding, calender molding, cast film forming method, or the like can be suitably used.
Furthermore, a resin film containing the tetraphenylnaphthalocyanine compound of the general formula (1) can be produced, and the film can be produced by hot pressing or heat laminating the resin material. It can also be produced by printing or coating an acrylic resin ink or paint containing a tetraphenylnaphthalocyanine compound of general formula (1) on a resin material.
 [合わせガラス用中間膜]
 本発明の熱線遮蔽材が、自動車の窓ガラス等に使用される合わせガラス用中間膜である場合について以下に説明する。
合わせガラス用中間膜は、2枚のガラスの間に挟んだ形態で用いられる樹脂膜で、本発明の熱線遮蔽材が合わせガラス用中間膜である場合には、一般式(1)のテトラフェニルナフタロシアニン化合物および樹脂を必須成分として含有する。
 樹脂としては、合わせガラスに用いた際に視認性が十分に確保されるもの、好ましくは合わせガラスとした際の可視光透過率が70%以上のものであれば特に限定されない。例えば、ポリビニルアセタール系樹脂、ポリ塩化ビニル系樹脂、飽和ポリエステル系樹脂、ポリウレタン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、エチレン-エチルアクリレート共重合体系樹脂等の従来から中間膜用として用いられている熱可塑性樹脂が挙げられる。特に、可塑化されたポリビニルアセタール系樹脂が好ましい。
 ポリビニルアセタール系樹脂としては、ポリビニルアルコール(PVA)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn-ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(PVB)等が挙げられ、特に、ポリビニルブチラール樹脂(PVB)が好ましい。
 上記ポリビニルアセタール系樹脂の合成に用いられるPVAは、平均重合度が200~5000のものが好ましく、より好ましくは500~3000のものである。上記ポリビニルアセタール系樹脂は、アセタール化度が40~85モル%であるものが好ましく、より好ましくは50~75モル%のものである。また、残存アセチル基量が30モル% 以下であるものが好ましく、より好ましくは0.5~24モル%のものである。
[Interlayer film for laminated glass]
The case where the heat ray shielding material of the present invention is an interlayer film for laminated glass used for automobile window glass and the like will be described below.
The interlayer film for laminated glass is a resin film used in a form sandwiched between two sheets of glass. When the heat ray shielding material of the present invention is an interlayer film for laminated glass, tetraphenyl of the general formula (1) is used. A naphthalocyanine compound and a resin are contained as essential components.
The resin is not particularly limited as long as it has sufficient visibility when used for laminated glass, and preferably has a visible light transmittance of 70% or more when laminated glass is used. For example, polyvinyl acetal resins, polyvinyl chloride resins, saturated polyester resins, polyurethane resins, ethylene-vinyl acetate copolymer resins, ethylene-ethyl acrylate copolymer resins, and the like have been used for intermediate films. The thermoplastic resin which is mentioned. In particular, a plasticized polyvinyl acetal resin is preferable.
Examples of the polyvinyl acetal resin include a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) and formaldehyde, a narrowly defined polyvinyl acetal resin obtained by reacting PVA and acetaldehyde, and a reaction between PVA and n-butyraldehyde. The polyvinyl butyral resin (PVB) etc. which are obtained by making it include are mentioned, and especially a polyvinyl butyral resin (PVB) is preferable.
The PVA used for the synthesis of the polyvinyl acetal resin preferably has an average polymerization degree of 200 to 5000, more preferably 500 to 3000. The polyvinyl acetal-based resin preferably has an acetalization degree of 40 to 85 mol%, more preferably 50 to 75 mol%. Further, those having a residual acetyl group content of 30 mol% or less are preferred, and those having a residual acetyl group content of 0.5 to 24 mol% are more preferred.
 熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂を可塑化するために用いられる可塑剤としては、例えば、一塩基性有機酸エステル系、多塩基性有機酸エステル系などの有機酸エステル系可塑剤や、有機リン酸系、有機亜リン酸系などのリン酸系可塑剤等が挙げられる。
合わせガラス用中間膜の厚さは、樹脂の種類、その用途などに応じて異なるが、通常、0.1~3mmの範囲内であることが好ましく、0.3mm~1.5mmの範囲内であることがより好ましい。
樹脂に対する一般式(1)のテトラフェニルナフタロシアニン化合物の含有量は特に限定されないが、樹脂100重量部に対し一般式(1)のテトラフェニルナフタロシアニン化合物を0.001~2重量部の範囲内であることが好ましく、0.005~0.5重量部の範囲内であることがより好ましい。
本発明の合わせガラス用中間膜には、前記熱線遮蔽材を製造する際に用いられる各種の添加剤と同様のものを含有しても良い。例えば、熱線遮蔽剤、紫外線吸収剤、酸化防止剤、光安定剤、難燃剤、帯電防止剤、接着力調整剤、耐湿剤、蛍光増白剤、着色剤、赤外線吸収剤等が挙げられる。特に、紫外線吸収剤を含有する態様は好ましい。
Examples of the plasticizer used for plasticizing a thermoplastic resin, preferably a polyvinyl acetal resin, include, for example, organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, Examples thereof include phosphoric acid plasticizers such as organic phosphoric acid and organic phosphorous acid.
The thickness of the interlayer film for laminated glass varies depending on the type of resin, its use, etc., but is usually preferably in the range of 0.1 to 3 mm, and in the range of 0.3 to 1.5 mm. More preferably.
The content of the tetraphenylnaphthalocyanine compound of the general formula (1) with respect to the resin is not particularly limited. And is more preferably within the range of 0.005 to 0.5 parts by weight.
The interlayer film for laminated glass of the present invention may contain the same additives as those used in the production of the heat ray shielding material. Examples thereof include a heat ray shielding agent, an ultraviolet absorber, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, an adhesive force adjusting agent, a moisture-resistant agent, a fluorescent whitening agent, a colorant, and an infrared absorber. In particular, an embodiment containing an ultraviolet absorber is preferable.
 本発明の合わせガラス用中間膜を製造する方法としては、上記熱線遮蔽材、熱線遮蔽フィルムを製造する際と同様の方法が挙げられる。本発明の合わせガラス用中間膜は、必要に応じて、プライマー機能、紫外線カット機能、難燃機能、反射防止機能、防眩機能、反射防止防眩機能、帯電防止機能のいずれか一つ以上の機能を有する機能性透明層とあわせた複層構造としても良い。本発明の合わせガラス用中間膜を使用した合わせガラスは、少なくとも二枚の透明ガラス基材の間に本発明の中間膜が挟持され接着一体化された構成となる。
 透明ガラス基材としては、特に限定されないが、例えば、フロート板ガラス、磨き板ガラス、平板ガラス、曲板ガラス、並板ガラス、型板ガラス、金網入り型板ガラス、熱線吸収板ガラス、クリアガラス、着色されたガラス板などの各種無機ガラス板や、ポリカーボネート板、ポリメチルメタクリレート板などの有機ガラス板等が挙げられる。これら透明ガラス基材は、単独の種類で用いられても良いし、2種類以上の種類で併用されてもよい。
合わせガラスの作製方法としては、例えば、二枚の透明ガラス基材の間に本発明の中間膜を挟んで真空バッグの中に入れ、この真空バッグ内の圧力が約-65~-100kPaの減圧度となるように減圧吸引しながら温度約70~110℃で予備接着を行った後、さらに、オートクレーブ中で、オートクレーブ内の圧力が約0.98~1.47MPaとなるように減圧吸引しながら温度約120~150℃で本接着を行うことにより、得ることができる。
 
Examples of the method for producing the interlayer film for laminated glass of the present invention include the same methods as those for producing the heat ray shielding material and the heat ray shielding film. The interlayer film for laminated glass according to the present invention has at least one of a primer function, an ultraviolet cut function, a flame retardant function, an antireflection function, an antiglare function, an antireflection antiglare function, and an antistatic function as necessary It is good also as a multilayer structure combined with the functional transparent layer which has a function. The laminated glass using the interlayer film for laminated glass of the present invention has a configuration in which the interlayer film of the present invention is sandwiched and bonded and integrated between at least two transparent glass substrates.
Although it does not specifically limit as a transparent glass base material, For example, float plate glass, polished plate glass, flat glass, curved plate glass, parallel plate glass, type plate glass, wire mesh type plate glass, heat ray absorption plate glass, clear glass, colored glass plate, etc. And various inorganic glass plates, and organic glass plates such as polycarbonate plates and polymethylmethacrylate plates. These transparent glass substrates may be used alone or in combination of two or more kinds.
As a method for producing a laminated glass, for example, the interlayer film of the present invention is sandwiched between two transparent glass substrates and placed in a vacuum bag, and the pressure in the vacuum bag is reduced to about −65 to −100 kPa. After preliminarily adhering at a temperature of about 70 to 110 ° C. while sucking under reduced pressure so that the pressure is about 50 ° C. It can be obtained by performing the main bonding at a temperature of about 120 to 150 ° C.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定され
るものではない。 
[実施例 1]1-(3,5-ジフルオロフェニル)ナフタレン-2,3-ジカルボニトリル(具体例(2)-11)の製造
  3,5-ジフルオロ-2’-メチルベンゾフェノン19gとN-ブロモスクシンイミド16.6gとラジカル発生剤V-70(和光純薬工業株式会社製アゾニトリル系化合物)0.5gをベンゼン60mL中内温70℃にて2時間撹拌した。
  冷却後、スクシンイミドをろ過して除き、フマロニトリル7.93gを添加して内温90℃にて16時間撹拌した。
  反応液を0℃に冷却して濃硫酸20mLを滴下、10分間撹拌後、ベンゼン溶液を水洗してエバポレーターにて溶媒を留去して乾燥した。
  次いで得られた固体をカラムクロマトグラフィー(シリカゲル/クロロホルム)にて精製して白色固体(融点182℃)12.5gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  290(M+)   
・IR:νCN:2231cm -1      
・元素分析値:
実測値(C:74.52%、H:2.81%、N:9.60%);
理論値(C:74.48%、H:2.78%、N:9.65%) 
H NMR δ 6.96-7.02 (m, 2H), 7.06 (tt, J = 2.3 and 8.7 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.75 (dt, J = 1.4 and 7.7 Hz, 1H), 7.82 (dt, J = 1.4 and 7.7 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 8.42 (s, 1H)
H-NMRスペクトルを図1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
[Example 1] Production of 1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -11) 19 g of 3,5-difluoro-2'-methylbenzophenone and N- 16.6 g of bromosuccinimide and 0.5 g of radical generator V-70 (azonitrile compound manufactured by Wako Pure Chemical Industries, Ltd.) were stirred for 2 hours at an internal temperature of 70 ° C. in 60 mL of benzene.
After cooling, succinimide was removed by filtration, 7.93 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 90 ° C. for 16 hours.
The reaction solution was cooled to 0 ° C., 20 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off by an evaporator and dried.
Subsequently, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 12.5 g of a white solid (melting point: 182 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 290 (M +)
IR: νCN: 2231 cm -1
・ Elemental analysis values:
Measured value (C: 74.52%, H: 2.81%, N: 9.60%);
Theoretical value (C: 74.48%, H: 2.78%, N: 9.65%)
1 H NMR δ 6.96-7.02 (m, 2H), 7.06 (tt, J = 2.3 and 8.7 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.75 (dt, J = 1.4 and 7.7 Hz , 1H), 7.82 (dt, J = 1.4 and 7.7 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 8.42 (s, 1H)
The 1 H-NMR spectrum is shown in FIG.
[実施例2]6-t-ブチル-1-(3,5-ジフルオロフェニル)ナフタレン-2,3-ジカルボニトリル(具体例(2)-18)の製造
  3,5-ジフルオロ-2’-メチル-4’-t-ブチルベンゾフェノン21.2gとN-ブロモスクシンイミド14.4gとラジカル発生剤V-70 0.5gをベンゼン40mL中内温70℃にて2時間撹拌した。
  冷却後、スクシンイミドをろ過して除き、フマロニトリル6.25gを添加して内温90℃にて16時間撹拌した。
  反応液を0℃に冷却して濃硫酸20mLを滴下、10分間撹拌後、ベンゼン溶液を水洗してエバポレーターにて溶媒を留去して乾燥した。
  次いで得られた固体をカラムクロマトグラフィー(シリカゲル/クロロホルム)にて精製して白色固体(融点167℃)13.4gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  346(M+)   
・IR:νCN:2229cm -1      
・元素分析値:
実測値(C:76.32%、H:4.69%、N:8.03%);
理論値(C:76.29%、H:4.66%、N:8.09%)
H NMR δ 1.42 (s, 9H), 6.96 (m, 2H), 7.04 (tt, J = 2.4 and 8.8 Hz, 1H),7.62 (d, J = 9.2 Hz, 1H), 7.77 (dd, J = 2.4 and 8.8 Hz, 1H), 7.93 (d, J = 2.4 Hz, 1H), 8.36 (s, 1H) 
H-NMRスペクトルを図2に示す。
[Example 2] Preparation of 6-t-butyl-1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -18) 3,5-difluoro-2'- Methyl-4′-t-butylbenzophenone (21.2 g), N-bromosuccinimide (14.4 g) and radical generator V-70 (0.5 g) were stirred in benzene (40 mL) at an internal temperature of 70 ° C. for 2 hours.
After cooling, succinimide was removed by filtration, 6.25 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 90 ° C. for 16 hours.
The reaction solution was cooled to 0 ° C., 20 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off by an evaporator and dried.
Next, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 13.4 g of a white solid (melting point: 167 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 346 (M +)
IR: νCN: 2229cm -1
・ Elemental analysis values:
Measured value (C: 76.32%, H: 4.69%, N: 8.03%);
Theoretical value (C: 76.29%, H: 4.66%, N: 8.09%)
1 H NMR δ 1.42 (s, 9H), 6.96 (m, 2H), 7.04 (tt, J = 2.4 and 8.8 Hz, 1H), 7.62 (d, J = 9.2 Hz, 1H), 7.77 (dd, J = 2.4 and 8.8 Hz, 1H), 7.93 (d, J = 2.4 Hz, 1H), 8.36 (s, 1H)
The H-NMR spectrum is shown in FIG.
[実施例3]4-(3,5-ジフルオロフェニル)-7-t-ブチル-1,3-ジイミノベンゾイソインドリン(具体例(3)-18)の製造
ナトリウムメトキサイド28%溶液6.3mLにアンモニアを吹き込み、飽和させた後、実施例2で製造した6-t-ブチル-1-(3、5-ジフルオロフェニル)ナフタレン-2、3-ジカルボニトリル6g及びトルエン50mLを加え、60℃にて3時間撹拌した。
  溶媒及びアンモニアを留去後、蒸留残渣に水50mLを添加、分散、濾過した。濾過ペーストを水洗、乾燥して白色粉末(151℃分解)5.39gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  363(M+) 
・IR:νNH:1616、1668cm -1      
・元素分析値:
実測値(C:73.00%、H:5.52%、N:11.51%);
理論値(C:72.71%、H:5.27%、N:11.56%) 
H NMR δ 1.41 (s, 9H), 7.05 (m, 2H), 7.17 (tt, J = 2.4 and 8.8 Hz, 1H), 7.49 (d, J = 8.8 Hz , 1H), 7.68-7.73 (m, 2H), 8.05 (s, 1H), 8.36 (s, 1H)
[Example 3] Preparation of 4- (3,5-difluorophenyl) -7-t-butyl-1,3-diiminobenzoisoindoline (specific example (3) -18) 28% solution of sodium methoxide After 3 mL of ammonia was blown and saturated, 6 g of 6-t-butyl-1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile prepared in Example 2 and 50 mL of toluene were added. Stir at 0 ° C. for 3 hours.
After distilling off the solvent and ammonia, 50 mL of water was added to the distillation residue, dispersed and filtered. The filter paste was washed with water and dried to obtain 5.39 g of a white powder (151 ° C. decomposition). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 363 (M +)
IR: νNH: 1616, 1668 cm −1
・ Elemental analysis values:
Measured value (C: 73.00%, H: 5.52%, N: 11.51%);
Theoretical value (C: 72.71%, H: 5.27%, N: 11.56%)
1 H NMR δ 1.41 (s, 9H), 7.05 (m, 2H), 7.17 (tt, J = 2.4 and 8.8 Hz, 1H), 7.49 (d, J = 8.8 Hz, 1H), 7.68-7.73 (m , 2H), 8.05 (s, 1H), 8.36 (s, 1H)
[実施例4]1-(3,5-ビス(トリフルオロメチル)フェニル)ナフタレン-2,3-ジカルボニトリル(具体例(2)-31)の製造
  3,5-ビス(トリフルオロメチル)-2’-メチルベンゾフェノン27.6gとN-ブロモスクシンイミド16.3gとラジカル発生剤V-70 0.5gをベンゼン60mL中内温70℃にて2時間撹拌した。 
  冷却後、スクシンイミドをろ過して除き、フマロニトリル7.78gを添加して内温90℃にて16時間撹拌した。
  反応液を0℃に冷却して濃硫酸20mLを滴下、10分間撹拌後、ベンゼン溶液を水洗してエバポレーターにて溶媒を留去して乾燥した。
  次いで得られた固体をカラムクロマトグラフィー(シリカゲル/クロロホルム)にて精製して白色固体(融点245℃)14.6gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  390(M+)   
・IR:νCN:2231cm -1    
・元素分析値:
実測値(C:61.58%、H:2.11%、N:7.13%);
理論値(C:61.55%、H:2.07%、N:7.18%) 
H NMR δ 7.57 (d, J = 8.2 Hz, 1H), 7.79 (dt, J = 1.4 and 8.7 Hz, 1H), 7.86 (dt, J = 1.4 and 8.2 Hz, 1H), 7.94 (s, 2H), 8.12 (d, J = 1.8 Hz, 1H), 8.14 (s, 1H), 8.47 (s, 1H) 
H-NMRスペクトルを図3に示す。
[Example 4] Production of 1- (3,5-bis (trifluoromethyl) phenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -31) 3,5-bis (trifluoromethyl) 27.6 g of 2′-methylbenzophenone, 16.3 g of N-bromosuccinimide and 0.5 g of radical generator V-70 were stirred in 60 mL of benzene at an internal temperature of 70 ° C. for 2 hours.
After cooling, succinimide was removed by filtration, 7.78 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 90 ° C. for 16 hours.
The reaction solution was cooled to 0 ° C., 20 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off by an evaporator and dried.
Subsequently, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 14.6 g of a white solid (melting point: 245 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 390 (M +)
IR: νCN: 2231 cm -1
・ Elemental analysis values:
Measured value (C: 61.58%, H: 2.11%, N: 7.13%);
Theoretical value (C: 61.55%, H: 2.07%, N: 7.18%)
1 H NMR δ 7.57 (d, J = 8.2 Hz, 1H), 7.79 (dt, J = 1.4 and 8.7 Hz, 1H), 7.86 (dt, J = 1.4 and 8.2 Hz, 1H), 7.94 (s, 2H ), 8.12 (d, J = 1.8 Hz, 1H), 8.14 (s, 1H), 8.47 (s, 1H)
The H-NMR spectrum is shown in FIG.
[実施例5]6-t-ブチル-1-(3,5-ビス(トリフルオロメチル)フェニル)ナフタレン-2,3-ジカルボニトリル(具体例(2)-38)の製造
  3,5-ビス(トリフルオロメチル)-2’-メチル-4’-t-ブチルベンゾフェノン8.04gとN-ブロモスクシンイミド4.18gとラジカル発生剤V-70 0.2gをベンゼン15mL中内温70℃にて2時間撹拌した。
  冷却後、スクシンイミドをろ過して除き、フマロニトリル4.57gを添加して内温90℃にて16時間撹拌した。
  反応液を0℃に冷却して濃硫酸 10mLを滴下、10分間撹拌後、ベンゼン溶液を水洗してエバポレーターにて溶媒を留去して乾燥した。 
  次いで得られた固体をカラムクロマトグラフィー(シリカゲル/クロロホルム)にて精製して白色固体(融点248℃)4.57gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  446(M+)   
・IR:νCN:2233cm -1      
・元素分析値:
実測値(C:64.63%、H:3.65%、N:6.23%);
理論値(C:64.58%、H:3.61%、N:6.28%) 
H NMR δ 1.43 (s, 9H), 7.48 (d, J = 9.1 Hz, 1H), 7.84 (dd, J = 2.3 and 8.8 Hz, 1H), 7.91 (s, 2H),7.97 (d, J = 1.8 Hz, 1H), 8.11 (s, 1H), 8.41 (s, 1H)
[Example 5] Production of 6-t-butyl-1- (3,5-bis (trifluoromethyl) phenyl) naphthalene-2,3-dicarbonitrile (specific example (2) -38) Bis (trifluoromethyl) -2′-methyl-4′-t-butylbenzophenone (8.04 g), N-bromosuccinimide (4.18 g) and radical generator V-70 (0.2 g) in 15 mL of benzene at an internal temperature of 70 ° C. Stir for 2 hours.
After cooling, succinimide was removed by filtration, 4.57 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 90 ° C. for 16 hours.
The reaction solution was cooled to 0 ° C., 10 mL of concentrated sulfuric acid was added dropwise, and the mixture was stirred for 10 minutes. The benzene solution was washed with water, and the solvent was distilled off with an evaporator and dried.
Subsequently, the obtained solid was purified by column chromatography (silica gel / chloroform) to obtain 4.57 g of a white solid (melting point: 248 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 446 (M +)
IR: νCN: 2233cm -1
・ Elemental analysis values:
Measured value (C: 64.63%, H: 3.65%, N: 6.23%);
Theoretical value (C: 64.58%, H: 3.61%, N: 6.28%)
1 H NMR δ 1.43 (s, 9H), 7.48 (d, J = 9.1 Hz, 1H), 7.84 (dd, J = 2.3 and 8.8 Hz, 1H), 7.91 (s, 2H), 7.97 (d, J = 1.8 Hz, 1H), 8.11 (s, 1H), 8.41 (s, 1H)
[実施例6]4-(3,5-ビス(トリフルオロメチル)フェニル)-7-t-ブチル-1,3-ジイミノベンゾイソインドリン(具体例(3)-38)の製造 
  ナトリウムメトキサイド28%溶液6.3mLにアンモニアを吹き込み、飽和させた後、 実施例5で製造した1-(3,5-ジフルオロフェニル)-6-フルオロナフタレン-2,3-ジカルボニトリル6g及びトルエン50mLを加え、60℃にて3時間撹拌した。 
  溶媒及びアンモニアを留去後、蒸留残渣に水50mLを添加、分散、濾過した。濾過ペーストを水洗、乾燥して白色粉末(173℃分解)5.39gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  463(M+) 
・IR:νNH:1618、1666cm -1      
・元素分析値:
実測値(C:62.46%、H:4.26%、N:9.21%);
理論値(C:62.20%、H:4.13%、N:9.07%) 
H NMR δ 1.42 (s, 9H), 7.32 (d, J = 9.2 Hz, 1H), 7.66 (m, 2H), 7.92 (s, 1H), 7.99 (s, 1H), 8.10 (s, 1H), 8.33 (s, 1H)
[Example 6] Preparation of 4- (3,5-bis (trifluoromethyl) phenyl) -7-t-butyl-1,3-diiminobenzoisoindoline (specific example (3) -38)
Ammonia was blown into 6.3 mL of a sodium methoxide 28% solution to saturate, and then 6 g of 1- (3,5-difluorophenyl) -6-fluoronaphthalene-2,3-dicarbonitrile prepared in Example 5 and Toluene 50mL was added and it stirred at 60 degreeC for 3 hours.
After distilling off the solvent and ammonia, 50 mL of water was added to the distillation residue, dispersed and filtered. The filter paste was washed with water and dried to obtain 5.39 g of a white powder (decomposed at 173 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 463 (M +)
IR: νNH: 1618, 1666 cm −1
・ Elemental analysis values:
Measured value (C: 62.46%, H: 4.26%, N: 9.21%);
Theoretical value (C: 62.20%, H: 4.13%, N: 9.07%)
1 H NMR δ 1.42 (s, 9H), 7.32 (d, J = 9.2 Hz, 1H), 7.66 (m, 2H), 7.92 (s, 1H), 7.99 (s, 1H), 8.10 (s, 1H ), 8.33 (s, 1H)
[実施例7]1-(3,5-ビス(トリフルオロメチル)フェニル)-6-フルオロナフタレン-2,3-ジカルボニトリル(具体例(2)-33)の製造
  3,5-ビス(トリフルオロメチル)-2’-メチル-6-フルオロベンゾフェノン35gとN-クロロスクシンイミド32.68gとラジカル発生剤V-65 1.2gをクロロベンゼン80mL中内温70℃にて33時間撹拌した。
  冷却後、スクシンイミドをろ過して除き、フマロニトリル7.8gを添加して内温130℃にて11時間撹拌した。
  反応液を0℃に冷却して濃硫酸12mLを滴下、10分間撹拌後、ベンゼン溶液を水洗してエバポレーターにて溶媒を留去して乾燥した。
  次いで得られた固体をカラムクロマトグラフィー(シリカゲル/ヘプタン)にて精製して白色固体(融点245℃)12.65gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  408(M+)   
・IR:νCN:2235cm -1    
・元素分析値:
実測値(C:58.81%、H:1.70%、N:6.88%);
理論値(C:58.84%、H:1.73%、N:6.86%) 
H NMR δ 7.48 (d, J = 9.1 Hz, 1H), 7.55 (dd, J = 2.3 and 8.8 Hz, 1H), 7.59 (d, J =1.8 Hz,1H), 7.93 (s,2H), 8.11 (s,1H), 8.41(s,1H).
Example 7 Production of 1- (3,5-bis (trifluoromethyl) phenyl) -6-fluoronaphthalene-2,3-dicarbonitrile (Specific Example (2) -33) Trifluoromethyl) -2′-methyl-6-fluorobenzophenone 35 g, N-chlorosuccinimide 32.68 g and radical generator V-65 1.2 g were stirred in chlorobenzene 80 mL at an internal temperature of 70 ° C. for 33 hours.
After cooling, succinimide was removed by filtration, 7.8 g of fumaronitrile was added, and the mixture was stirred at an internal temperature of 130 ° C. for 11 hours.
The reaction solution was cooled to 0 ° C., 12 mL of concentrated sulfuric acid was added dropwise, stirred for 10 minutes, the benzene solution was washed with water, and the solvent was distilled off with an evaporator and dried.
Subsequently, the obtained solid was purified by column chromatography (silica gel / heptane) to obtain 12.65 g of a white solid (melting point: 245 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 408 (M +)
IR: νCN: 2235cm -1
・ Elemental analysis values:
Measured value (C: 58.81%, H: 1.70%, N: 6.88%);
Theoretical value (C: 58.84%, H: 1.73%, N: 6.86%)
1 H NMR δ 7.48 (d, J = 9.1 Hz, 1H), 7.55 (dd, J = 2.3 and 8.8 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.93 (s, 2H), 8.11 (s, 1H), 8.41 (s, 1H).
[実施例8]4-(3,5-ビス(トリフルオロメチル)フェニル)-7-フルオロ-1,3-ジイミノベンゾイソインドリン(具体例(3)-33)の製造
  ナトリウムメトキサイド28%溶液6.3mLにアンモニアを吹き込み、飽和させた後、 実施例7で製造した1-(3,5-トリフルオロフェニル)-6-フルオロナフタレン-2,3-ジニトリル6g及びトルエン50mLを加え、60℃にて3時間撹拌した。
  溶媒及びアンモニアを留去後、蒸留残渣に水50mLを添加、分散、濾過した。濾過ペーストを水洗、乾燥して白色粉末(162℃分解)5.39gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  426(M+)   
・IR:νNH:2230cm -1      
・元素分析値:
実測値(C:56.51%、H:2.40%、N:9.85%);
理論値(C:56.48%、H:2.37%、N:9.88%) 
H NMR δ 7.32 (d, J = 9.1 Hz, 1H), 7.39 (dd, J = 2.3 and 8.8 Hz, 1H), 7.56 (d, J = 1.8 Hz, 1H), 7.94 (s,2H), 8.09 (s,1H), 8.38 (s,1H).
[Example 8] Preparation of 4- (3,5-bis (trifluoromethyl) phenyl) -7-fluoro-1,3-diiminobenzoisoindoline (specific example (3) -33) Sodium methoxide 28% Ammonia was blown into 6.3 mL of the solution to saturate, and then 6 g of 1- (3,5-trifluorophenyl) -6-fluoronaphthalene-2,3-dinitrile prepared in Example 7 and 50 mL of toluene were added. Stir at 0 ° C. for 3 hours.
After distilling off the solvent and ammonia, 50 mL of water was added to the distillation residue, dispersed and filtered. The filter paste was washed with water and dried to obtain 5.39 g of a white powder (decomposed at 162 ° C.). The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 426 (M +)
IR: νNH: 2230 cm −1
・ Elemental analysis values:
Measured value (C: 56.51%, H: 2.40%, N: 9.85%);
Theoretical value (C: 56.48%, H: 2.37%, N: 9.88%)
1 H NMR δ 7.32 (d, J = 9.1 Hz, 1H), 7.39 (dd, J = 2.3 and 8.8 Hz, 1H), 7.56 (d, J = 1.8 Hz, 1H), 7.94 (s, 2H), 8.09 (s, 1H), 8.38 (s, 1H).
 [実施例9] テトラフェニルナフタロシアニン化合物(具体例(1)-7)の製造 
実施例 1 で製造した1-(3,5-ジフルオロフェニル)ナフタレン-2,3-ジカルボニトリル1.03g、塩化パラジウム0.17g、DBU  0.5mLを1-ドデカノール50mL中、内温100℃にて48時間撹拌した。エバポレーターにて溶媒を留去後、メタノール30mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(活性アルミナ/塩化メチレン)で精製して深緑色粉末0.35gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
なお、本化合物および同様の製法で得られる以下の実施例のテトラフェニルナフタロシアニン化合物は、式(1)-a~(1)-dで表される各異性体の混合物である。
 ・MS:(EI)m/z  1266(M+)   
・元素分析値:
実測値(C:68.18%、H:2.70%、N:8.59%);
理論値(C:68.23%、H:2.54%、N:8.84%) 
このようにして得られた化合物のトルエン溶液は768nmに極大吸収を示し、グラム吸光係数は2.10×10g/mL・cmであった。この吸収スペクトルチャートを図4に示す。
[Example 9] Production of tetraphenylnaphthalocyanine compound (specific example (1) -7)
1.03 g of 1- (3,5-difluorophenyl) naphthalene-2,3-dicarbonitrile prepared in Example 1, 0.17 g of palladium chloride and 0.5 mL of DBU in 50 mL of 1-dodecanol had an internal temperature of 100 ° C. For 48 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (activated alumina / methylene chloride) gave 0.35 g of a dark green powder. The obtained compound was confirmed to be the target compound from the following analysis results.
The present compound and the tetraphenylnaphthalocyanine compounds of the following examples obtained by the same production method are mixtures of isomers represented by the formulas (1) -a to (1) -d.
MS: (EI) m / z 1266 (M +)
・ Elemental analysis values:
Measured value (C: 68.18%, H: 2.70%, N: 8.59%);
Theoretical value (C: 68.23%, H: 2.54%, N: 8.84%)
The toluene solution of the compound thus obtained showed a maximum absorption at 768 nm, and the gram extinction coefficient was 2.10 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例10] テトラフェニルナフタロシアニン化合物(具体例(1)-8)の製造
実施例9における塩化パラジウム0.17gの代わりに塩化銅0.1gを使用した以外は実施例9と同様にして深緑色粉末0.7gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1223(M+)   
・元素分析値:
実測値(C:70.63%、H:2.59%、N:8.95%);
理論値(C:70.62%、H:2.63%、N:9.15%) 
このようにして得られた化合物のトルエン溶液は793nmに極大吸収を示し、グラム吸光係数は1.86×10g/mL・cmであった。この吸収スペクトルチャートを図5に示す。
[Example 10] Production of tetraphenylnaphthalocyanine compound (specific example (1) -8) The same procedure as in Example 9 except that 0.1 g of copper chloride was used instead of 0.17 g of palladium chloride in Example 9. 0.7 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1223 (M +)
・ Elemental analysis values:
Measured value (C: 70.63%, H: 2.59%, N: 8.95%);
Theoretical value (C: 70.62%, H: 2.63%, N: 9.15%)
The toluene solution of the compound thus obtained showed a maximum absorption at 793 nm, and the gram extinction coefficient was 1.86 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例11] テトラフェニルナフタロシアニン化合物(具体例(1)-34)の製造
実施例4で製造した1-(3,5-ビス(トリフルオロメチル)フェニル)ナフタレン-2,3-ジカルボニトリル1.02g、塩化パラジウム0.12g、DBU0.5mLを1-ドデカノール50mL中、内温100℃にて48時間撹拌した。
エバポレーターにて溶媒を留去後、メタノール30mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(活性アルミナ/塩化メチレン)で精製して深緑色粉末0.3gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1665(M+)   
・元素分析値:
実測値(C:57.65%、H:2.18%、N:6.52%);
理論値(C:57.62%、H:1.93%、N:6.72%)
重クロロホルム中のH NMRスペクトルを図6に示す。
このようにして得られた化合物のトルエン溶液は753nmに極大吸収を示し、グラム吸光係数は1.95×10g/mL・cmであった。この吸収スペクトルチャートを図7に示す。
[Example 11] Production of tetraphenylnaphthalocyanine compound (specific example (1) -34) 1- (3,5-bis (trifluoromethyl) phenyl) naphthalene-2,3-dicarbohydrate produced in Example 4 1.02 g of nitrile, 0.12 g of palladium chloride and 0.5 mL of DBU were stirred in 50 mL of 1-dodecanol at an internal temperature of 100 ° C. for 48 hours.
After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (activated alumina / methylene chloride) gave 0.3 g of a dark green powder. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1665 (M +)
・ Elemental analysis values:
Measured value (C: 57.65%, H: 2.18%, N: 6.52%);
Theoretical value (C: 57.62%, H: 1.93%, N: 6.72%)
The 1 H NMR spectrum in deuterated chloroform is shown in FIG.
The toluene solution of the compound thus obtained showed a maximum absorption at 753 nm, and the gram extinction coefficient was 1.95 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例12] テトラフェニルナフタロシアニン化合物(具体例(1)-36)の製造
実施例11における塩化パラジウム0.12gの代わりに塩化銅0.07gを使用した以外は実施例11と同様にして深緑色粉末0.5gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1623(M+)   
・元素分析値:
実測値(C:59.30%、H:1.79%、N:6.90%);
理論値(C:59.14%、H:1.99%、N:6.90%) 
このようにして得られた化合物のトルエン溶液は778nmに極大吸収を示し、グラム吸光係数は1.63×10g/mL・cmであった。この吸収スペクトルチャートを図8に示す。
[Example 12] Production of tetraphenylnaphthalocyanine compound (specific example (1) -36) The same procedure as in Example 11 except that 0.07 g of copper chloride was used instead of 0.12 g of palladium chloride in Example 11. 0.5 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1623 (M +)
・ Elemental analysis values:
Measured value (C: 59.30%, H: 1.79%, N: 6.90%);
Theoretical value (C: 59.14%, H: 1.99%, N: 6.90%)
The toluene solution of the compound thus obtained showed a maximum absorption at 778 nm, and the gram extinction coefficient was 1.63 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例13] テトラフェニルナフタロシアニン化合物(具体例(1)-26)の製造
実施例3で製造した4-(3,5-ジフルオロフェニル)-7-t-ブチル-1,3-ジイミノベンゾイソインドリン1g、塩化パラジウム0.16g、DBU  1mLをn-ブタノール40mL中、内温100℃にて36時間撹拌した。エバポレーターにて溶媒を留去後、メタノール30mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(活性アルミナ/塩化メチレン)で精製して深緑色粉末0.6gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1490(M+)   
・元素分析値:
実測値(C:70.95%、H:4.63%、N:7.17%);
理論値(C:70.84%、H:4.32%、N:7.51%) 
このようにして得られた化合物のトルエン溶液は767nmに極大吸収を示し、グラム吸光係数は1.95×10g/mL・cmであった。この吸収スペクトルチャートを図9に示す。
[Example 13] Production of tetraphenylnaphthalocyanine compound (specific example (1) -26) 4- (3,5-difluorophenyl) -7-t-butyl-1,3-diimino produced in Example 3 1 g of benzoisoindoline, 0.16 g of palladium chloride and 1 mL of DBU were stirred in 40 mL of n-butanol at an internal temperature of 100 ° C. for 36 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (activated alumina / methylene chloride) gave 0.6 g of a dark green powder. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1490 (M +)
・ Elemental analysis values:
Measured value (C: 70.95%, H: 4.63%, N: 7.17%);
Theoretical value (C: 70.84%, H: 4.32%, N: 7.51%)
The toluene solution of the compound thus obtained showed a maximum absorption at 767 nm, and the gram extinction coefficient was 1.95 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例14]  テトラフェニルナフタロシアニン化合物(具体例(1)-27)の製造
実施例13における塩化パラジウム0.16gの代わりに塩化銅0.09gを使用した以外は実施例13と同様にして深緑色粉末0.7gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1447(M+)   
・元素分析値:
実測値(C:73.01%、H:4.81%、N:7.89%);
理論値(C:72.94%、H:4.45%、N:7.73%) 
このようにして得られた化合物のトルエン溶液は793nmに極大吸収を示し、グラム吸光係数は1.57×10g/mL・cmであった。この吸収スペクトルチャートを図10に示す。
[Example 14] Production of tetraphenylnaphthalocyanine compound (specific example (1) -27) The same procedure as in Example 13 except that 0.09 g of copper chloride was used instead of 0.16 g of palladium chloride in Example 13. 0.7 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1447 (M +)
・ Elemental analysis values:
Measured value (C: 73.01%, H: 4.81%, N: 7.89%);
Theoretical value (C: 72.94%, H: 4.45%, N: 7.73%)
The toluene solution of the compound thus obtained showed a maximum absorption at 793 nm, and the gram extinction coefficient was 1.57 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例15] テトラフェニルナフタロシアニン化合物(具体例(1)-29)の製造
実施例13における塩化パラジウム0.16gの代わりに塩化バナジウム0.14gを使用した以外は実施例13と同様にして深緑色粉末0.8gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1451(M+) 
・元素分析値:
実測値(C:73.03%、H:4.81%、N:7.49%);
理論値(C:72.77%、H:4.44%、N:7.71%) 
このようにして得られた化合物のトルエン溶液は818nmに極大吸収を示し、グラム吸光係数は1.73×10g/mL・cmであった。この吸収スペクトルチャートを図11に示す。
[Example 15] Production of tetraphenylnaphthalocyanine compound (specific example (1) -29) The same procedure as in Example 13 except that 0.14 g of vanadium chloride was used instead of 0.16 g of palladium chloride in Example 13. 0.8 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1451 (M +)
・ Elemental analysis values:
Measured value (C: 73.03%, H: 4.81%, N: 7.49%);
Theoretical value (C: 72.77%, H: 4.44%, N: 7.71%)
The toluene solution of the compound thus obtained showed a maximum absorption at 818 nm, and the gram extinction coefficient was 1.73 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [実施例16] テトラフェニルナフタロシアニン化合物(具体例(1)-37)の製造
実施例6で製造した4-(3,5-ビス(トリフルオロメチル)フェニル)-7-t-ブチル-1,3-ジイミノベンゾイソインドリン1.12g、塩化パラジウム0.12g、DBU  1mLをn-ブタノール80mL中、内温100℃にて36時間撹拌した。エバポレーターにて溶媒を留去後、メタノール30mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(活性アルミナ/塩化メチレン)で精製して深緑色粉末0.6gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。 
・MS:(EI)m/z  1889(M+)   
・元素分析値:
実測値(C:61.26%、H:3.67%、N:5.79%);
理論値(C:60.94%、H:3.41%、N:5.92%)
このようにして得られた化合物のトルエン溶液は780nmに極大吸収を示し、グラム吸光係数は2.06×10g/mL・cmであった。この吸収スペクトルチャートを図12に示す。
なお、この化合物は、前記一般式(1)-a~(1)-dで表される各異性体の混合物である。この混合物に対し、下記のようにさらにカラムクロマトグラフィー処理を行って各フラクションを分離することにより、各異性体を分離した。
 この化合物(混合物)110mgをシリカゲルカラムクロマトグラフィー(ヘキサン/クロロホルム  8/1、v/v)による処理を行ってそれぞれのフラクションを分取した。得られた各フラクションをエバポレーターで濃縮し、ヘキサンを適量加え、撹拌、析出物を濾過、乾燥した。なお、前記一般式(1)-dに相当する異性体のフラクションは微量であり、単離することができなかった。
 Rf値0.74の(1)-37-aの異性体26mg、Rf値0.55の(1)-37-bの異性体14mg、Rf値0.37の(1)-37-cの異性体16mgをそれぞれ単離した。
[Example 16] Production of tetraphenylnaphthalocyanine compound (specific example (1) -37) 4- (3,5-bis (trifluoromethyl) phenyl) -7-t-butyl-1 produced in Example 6 , 3-Diiminobenzoisoindoline (1.12 g), palladium chloride (0.12 g) and DBU (1 mL) were stirred in 80 mL of n-butanol at an internal temperature of 100 ° C. for 36 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (activated alumina / methylene chloride) gave 0.6 g of a dark green powder. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1889 (M +)
・ Elemental analysis values:
Measured value (C: 61.26%, H: 3.67%, N: 5.79%);
Theoretical value (C: 60.94%, H: 3.41%, N: 5.92%)
The toluene solution of the compound thus obtained showed a maximum absorption at 780 nm, and the gram extinction coefficient was 2.06 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
This compound is a mixture of isomers represented by the general formulas (1) -a to (1) -d. The mixture was further subjected to column chromatography as described below to separate each fraction, thereby separating each isomer.
110 mg of this compound (mixture) was subjected to silica gel column chromatography (hexane / chloroform 8/1, v / v) to fractionate each fraction. Each obtained fraction was concentrated with an evaporator, an appropriate amount of hexane was added, and the mixture was stirred and the precipitate was filtered and dried. Note that the fraction of the isomer corresponding to the general formula (1) -d was very small and could not be isolated.
26 mg of the isomer of (1) -37-a with an Rf value of 0.74, 14 mg of the isomer of (1) -37-b with an Rf value of 0.55, and (1) -37-c of Rf value 0.37 16 mg of each isomer was isolated.
Figure JPOXMLDOC01-appb-I000059
 
・MS:(EI)m/z  1889(M+)   
・元素分析値:
実測値(C:61.21%、H:3.47%、N:5.81%);
理論値(C:60.94%、H:3.41%、N:5.92%)
1H-NMR δ 1.66 (s, 36H), 7.90-7.99 (m, 8H), 8.37 (s, 4H), 8.48 (s, 8H), 8.57 (s, 4H), 8.66 (s, 4H)
重クロロホルム中のH-NMRスペクトルを図13に示す。
・単結晶X線回折測定による構造解析(分析装置:Rigaku AFC―7 Mercury
CCD area detector)
Figure JPOXMLDOC01-appb-I000059

MS: (EI) m / z 1889 (M +)
・ Elemental analysis values:
Measured value (C: 61.21%, H: 3.47%, N: 5.81%);
Theoretical value (C: 60.94%, H: 3.41%, N: 5.92%)
1 H-NMR δ 1.66 (s, 36H), 7.90-7.99 (m, 8H), 8.37 (s, 4H), 8.48 (s, 8H), 8.57 (s, 4H), 8.66 (s, 4H)
The 1 H-NMR spectrum in deuterated chloroform is shown in FIG.
・ Structural analysis by single crystal X-ray diffraction measurement (analyzer: Rigaku AFC-7 Mercury
CCD area detector)
Figure JPOXMLDOC01-appb-I000060
 
Figure JPOXMLDOC01-appb-I000060
 
 なお、X線結晶構造解析に用いた単結晶は、クロロホルムを良溶媒、メタノールを貧溶媒とする混合溶媒系において、拡散法により作製した。
反射強度測定にはグラファイトで単色化されたMo-Kα線(λ=0.71075Å)を光源とするRigaku Mercury CCD検出器付単結晶X線構造解析装置を用い、20±1℃下、2θが62.5°までの範囲で測定した。
構造解析に関する計算には、Crystal Structure 結晶構造解析プログラムパッケージを用いた。構造決定にはI>2.00σ(I)の反射を用い、SIR92解析プログラムを用いた直接法ならびにDIRDIF99解析プログラムを用いたフーリエ図により近似構造を求めた。最終的な構造精密化はフルマトリックスの最小二乗法により行った。なお、水素以外の原子は異方性温度因子を用いて精密化し、水素原子の座標は計算により求めた。8つのトリフルオロメチル基のフッ素原子それぞれについてディスオーダーが見出されたので、各フッ素原子の占有率は50%として精密化した。
The single crystal used for the X-ray crystal structure analysis was prepared by a diffusion method in a mixed solvent system using chloroform as a good solvent and methanol as a poor solvent.
For reflection intensity measurement, a Rigaku Mercury single crystal X-ray structural analyzer with a CCD detector using Mo-Kα rays (λ = 0.71075 mm) monochromatized with graphite as the light source, 2θ is 20 ± 1 ° C. Measurements were made in the range up to 62.5 °.
The Crystal Structure crystal structure analysis program package was used for calculations related to structural analysis. The structure was determined using reflection of I> 2.00σ (I), and an approximate structure was obtained by a direct method using an SIR92 analysis program and a Fourier diagram using a DIRDIF99 analysis program. Final structural refinement was performed by the full matrix least squares method. In addition, atoms other than hydrogen were refined using an anisotropic temperature factor, and the coordinates of hydrogen atoms were obtained by calculation. Since disorder was found for each of the fluorine atoms of the eight trifluoromethyl groups, the occupation ratio of each fluorine atom was refined to 50%.
Figure JPOXMLDOC01-appb-I000061
 
・MS:(EI)m/z  1889(M+) 
・元素分析値:
実測値(C:61.32%、H:3.40%、N:5.80%);
理論値(C:60.94%、H:3.41%、N:5.92%) 
1H-NMR δ 1.58 (s, 9H), 1.59 (s, 9H), 1.64(s, 9H), 1.66(s, 9H), 7.67-8.05(m, 20H), 8.17-8.20 (m, 10H), 8.38-8.70 (m, 22H), 10.11 (s, 4H)
重クロロホルム中のH-NMRスペクトルを図14に示す。
Figure JPOXMLDOC01-appb-I000061

MS: (EI) m / z 1889 (M +)
・ Elemental analysis values:
Measured value (C: 61.32%, H: 3.40%, N: 5.80%);
Theoretical value (C: 60.94%, H: 3.41%, N: 5.92%)
1 H-NMR δ 1.58 (s, 9H), 1.59 (s, 9H), 1.64 (s, 9H), 1.66 (s, 9H), 7.67-8.05 (m, 20H), 8.17-8.20 (m, 10H ), 8.38-8.70 (m, 22H), 10.11 (s, 4H)
The 1 H-NMR spectrum in deuterated chloroform is shown in FIG.
Figure JPOXMLDOC01-appb-I000062
 
・MS:(EI)m/z  1889(M+)   
・元素分析値:
実測値(C:60.92%、H:3.37%、N:5.79%);
理論値(C:60.94%、H:3.41%、N:5.92%) 
1H-NMR δ 1.60 (s, 18H), 1.64 (s, 18H) , 7.67-8.02 (m, 20H), 8.12-8.20 (m, 12H), 8.41-8.68 (m, 20H), 10.12 (s, 4H); 
重クロロホルム中のH-NMRスペクトルを図15に示す。
Figure JPOXMLDOC01-appb-I000062

MS: (EI) m / z 1889 (M +)
・ Elemental analysis values:
Measured value (C: 60.92%, H: 3.37%, N: 5.79%);
Theoretical value (C: 60.94%, H: 3.41%, N: 5.92%)
1 H-NMR δ 1.60 (s, 18H), 1.64 (s, 18H), 7.67-8.02 (m, 20H), 8.12-8.20 (m, 12H), 8.41-8.68 (m, 20H), 10.12 (s , 4H);
The 1 H-NMR spectrum in deuterated chloroform is shown in FIG.
 [実施例17] テトラフェニルナフタロシアニン化合物(具体例(1)-41)の製造
実施例16における塩化パラジウム0.12gの代わりに塩化銅0.07gを使用した以外は実施例16と同様にして深緑色粉末0.7gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1848(M+)   
・元素分析値:
実測値(C:62.23%、H:3.71%、N:6.00%);
理論値(C:62.36%、H:3.49%、N:6.06%) 
このようにして得られた化合物のトルエン溶液は780nmに極大吸収を示し、グラム吸光係数は1.67×10g/mL・cmであった。この吸収スペクトルチャートを図16に示す。
なお、この化合物は、前記一般式(1)-a~(1)-dで表される各異性体の混合物である。この混合物に対し、下記のようにさらにカラムクロマトグラフィー処理を行って各異性体を分離した。
この化合物(混合物)110mgをシリカゲルカラムクロマトグラフィー(ヘキサン/クロロホルム  8/1、v/v)による処理を行って、それぞれのフラクションを分取した。得られた各フラクションをエバポレーターで濃縮し、ヘキサンを適量加え、撹拌、析出物を濾過、乾燥した。Rf値0.75の(1)-41-aの異性体 64mg、Rf値0.55の(1)-41-bの異性体12mg、Rf値0.37の(1)-41-cの異性体13mgをそれぞれ単離した。なお、前記一般式(1)-dに相当する異性体のフラクションは微量であり、単離することができなかった。
[Example 17] Production of tetraphenylnaphthalocyanine compound (specific example (1) -41) The same procedure as in Example 16 except that 0.07 g of copper chloride was used instead of 0.12 g of palladium chloride in Example 16. 0.7 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1848 (M +)
・ Elemental analysis values:
Measured value (C: 62.23%, H: 3.71%, N: 6.00%);
Theoretical value (C: 62.36%, H: 3.49%, N: 6.06%)
The toluene solution of the compound thus obtained showed a maximum absorption at 780 nm, and the gram extinction coefficient was 1.67 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
This compound is a mixture of isomers represented by the general formulas (1) -a to (1) -d. The mixture was further subjected to column chromatography as described below to separate each isomer.
110 mg of this compound (mixture) was subjected to silica gel column chromatography (hexane / chloroform 8/1, v / v), and each fraction was separated. Each obtained fraction was concentrated with an evaporator, an appropriate amount of hexane was added, and the mixture was stirred and the precipitate was filtered and dried. 64 mg of isomer of (1) -41-a with Rf value of 0.75, 12 mg of isomer of (1) -41-b with Rf value of 0.55, (1) -41-c of Rf value of 0.37 Each 13 mg of isomers was isolated. Note that the fraction of the isomer corresponding to the general formula (1) -d was very small and could not be isolated.
Figure JPOXMLDOC01-appb-I000063
 
・MS:(EI)m/z  1848(M+) 
・元素分析値:
実測値(C:62.24%、H:3.58%、N:6.03%);
理論値(C:62.36%、H:3.49%、N:6.06%) 
この化合物のトルエン溶液は780nmに極大吸収を示し、グラム吸光係数は1.75×10g/mL・cmであった。
Figure JPOXMLDOC01-appb-I000063

MS: (EI) m / z 1848 (M +)
・ Elemental analysis values:
Measured value (C: 62.24%, H: 3.58%, N: 6.03%);
Theoretical value (C: 62.36%, H: 3.49%, N: 6.06%)
The toluene solution of this compound showed a maximum absorption at 780 nm, and the gram extinction coefficient was 1.75 × 10 5 g / mL · cm.
Figure JPOXMLDOC01-appb-I000064
 
・MS:(EI)m/z    1848(M+)
・元素分析値:
実測値(C:62.28%、H:3.53%、N:6.04%);
理論値(C:62.36%、H:3.49%、N:6.06%)
Figure JPOXMLDOC01-appb-I000064

MS: (EI) m / z 1848 (M +)
・ Elemental analysis values:
Measured value (C: 62.28%, H: 3.53%, N: 6.04%);
Theoretical value (C: 62.36%, H: 3.49%, N: 6.06%)
Figure JPOXMLDOC01-appb-I000065
 
・MS:(EI)m/z    1848(M+)
・元素分析値:
実測値(C:62.39%、H:3.52%、N:6.05%);
理論値(C:62.36%、H:3.49%、N:6.06%) 
Figure JPOXMLDOC01-appb-I000065

MS: (EI) m / z 1848 (M +)
・ Elemental analysis values:
Measured value (C: 62.39%, H: 3.52%, N: 6.05%);
Theoretical value (C: 62.36%, H: 3.49%, N: 6.06%)
 [実施例18] テトラフェニルナフタロシアニン化合物(具体例(1)-35)の製造
実施例16における塩化パラジウム0.12gの代わりに塩化バナジウム0.11gを使用した以外は実施例16と同様にして深緑色粉末0.8gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1851(M+)
・元素分析値:
実測値(C:62.21%、H:3.66%、N:5.83%);
理論値(C:62.24%、H:3.48%、N:6.05%) 
このようにして得られた化合物のトルエン溶液は818nmに極大吸収を示し、グラム吸光係数は1.73×10g/mL・cmであった。この吸収スペクトルチャートを図17に示す。
[Example 18] Production of tetraphenylnaphthalocyanine compound (specific example (1) -35) The same procedure as in Example 16 except that 0.11 g of vanadium chloride was used instead of 0.12 g of palladium chloride in Example 16. 0.8 g of dark green powder was obtained. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1851 (M +)
・ Elemental analysis values:
Measured value (C: 62.21%, H: 3.66%, N: 5.83%);
Theoretical value (C: 62.24%, H: 3.48%, N: 6.05%)
The toluene solution of the compound thus obtained showed a maximum absorption at 818 nm, and the gram extinction coefficient was 1.73 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
[実施例19] テトラフェニルナフタロシアニン化合物(具体例(1)-64)の製造 
実施例7で製造した1-(3,5-ビス(トリフルオロメチルフェニル)-6-フルオロナフタレン-2,3-ジカルボニトリル4.0g、塩化銅0.339g、DBU  1mLをn-オクタノール25mL中、内温180℃にて5時間撹拌した。エバポレーターにて溶媒を留去後、メタノール30mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(シリカゲル/トルエン)で精製して深緑色粉末1.0gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。 
・MS:(EI)m/z  1695(M+)   
・元素分析値:
実測値(C:56.81%、H:1.66%、N:6.83%);
理論値(C:56.63%、H:1.66%、N:6.60%)
このようにして得られた化合物のトルエン溶液は771nmに極大吸収を示し、グラム吸光係数は1.38×10g/mL・cmであった。この吸収スペクトルチャートを図18に示す。
Example 19 Production of tetraphenylnaphthalocyanine compound (specific example (1) -64)
1- (3,5-bis (trifluoromethylphenyl) -6-fluoronaphthalene-2,3-dicarbonitrile prepared in Example 7 (4.0 g), copper chloride (0.339 g), DBU (1 mL) and n-octanol (25 mL) The mixture was stirred for 5 hours at an internal temperature of 180 ° C. After evaporating the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried, and purified by column chromatography (silica gel / toluene). 1.0 g of powder was obtained, and the obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1695 (M +)
・ Elemental analysis values:
Measured value (C: 56.81%, H: 1.66%, N: 6.83%);
Theoretical value (C: 56.63%, H: 1.66%, N: 6.60%)
The toluene solution of the compound thus obtained showed a maximum absorption at 771 nm, and the gram extinction coefficient was 1.38 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
[実施例20] テトラフェニルナフタロシアニン化合物(具体例(1)-65)の製造 
 実施例19における塩化銅0.339gの代わりに塩化バナジウム0.54g、実施例7で製造した1-(3,5-ビス(トリフルオロメチルフェニル)-6-フルオロナフタレン-2,3-ジカルボニトリル4.0gの代わりに実施例8で合成した4-(3,5-ビス(トリフルオロメチル)フェニル)-6-フルオロ-1,3-ジイミノ-ベンゾイソインドリン4.17gを使用した以外は実施例19と同様にして深緑色粉末2.1gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z  1699(M+)   
・元素分析値:
実測値(C:59.53%、H:1.93%、N:3.27%);
理論値(C:56.52%、H:1.66%、N:6.59%) 
このようにして得られた化合物のトルエン溶液は808nmに極大吸収を示し、グラム吸光係数は2.09×10g/mL・cmであった。この吸収スペクトルチャートを図19に示す。
[Example 20] Production of tetraphenylnaphthalocyanine compound (specific example (1) -65)
Instead of 0.339 g of copper chloride in Example 19, 0.54 g of vanadium chloride and 1- (3,5-bis (trifluoromethylphenyl) -6-fluoronaphthalene-2,3-dicarbox prepared in Example 7 Except that 4.17 g of 4- (3,5-bis (trifluoromethyl) phenyl) -6-fluoro-1,3-diimino-benzoisoindoline synthesized in Example 8 was used instead of 4.0 g of nitrile. 2.1 g of dark green powder was obtained in the same manner as in Example 19. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1699 (M +)
・ Elemental analysis values:
Measured value (C: 59.53%, H: 1.93%, N: 3.27%);
Theoretical value (C: 56.52%, H: 1.66%, N: 6.59%)
The toluene solution of the compound thus obtained showed a maximum absorption at 808 nm, and the gram extinction coefficient was 2.09 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
 [比較例 1]テトラフェニル-Pd-ナフタロシアニン化合物の製造
  4-フェニル-1,3-ジイミノベンゾイソインドリン5g、塩化パラジウム0.82g、DBU  1mLをn-オクタノール30mL中、内温200℃にて3時間撹拌した。エバポレーターにて溶媒を留去後、メタノール30mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(活性アルミナ/塩化メチレン)で精製して深緑色粉末2.1gを得た。得られた化合物は、下記の分析結果より目的の化合物であることを確認した。 
・MS:(EI)m/z  1121M+)   
・元素分析値:
実測値(C:77.01%、H:3.62%、N:9.95%);
理論値(C:76.97%、H:3.59%、N:9.97%) 
このようにして得られた化合物のトルエン溶液は770nmに極大吸収を示し、グラム吸光係数は2.07×10g/mL・cmであった。この吸収スペクトルチャートを図20に示す。
[Comparative Example 1] Production of tetraphenyl-Pd-naphthalocyanine compound 5 g of 4-phenyl-1,3-diiminobenzoisoindoline, 0.82 g of palladium chloride and 1 mL of DBU in 30 mL of n-octanol at an internal temperature of 200 ° C And stirred for 3 hours. After distilling off the solvent with an evaporator, 30 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (activated alumina / methylene chloride) gave 2.1 g of a dark green powder. The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1121M +)
・ Elemental analysis values:
Measured value (C: 77.01%, H: 3.62%, N: 9.95%);
Theoretical value (C: 76.97%, H: 3.59%, N: 9.97%)
The toluene solution of the compound thus obtained showed a maximum absorption at 770 nm, and the gram extinction coefficient was 2.07 × 10 5 g / mL · cm. This absorption spectrum chart is shown in FIG.
[溶解度] 
上記実施例で製造した本発明のテトラフェニルナフタロシアニン化合物及び比較例化合物について、有機溶剤に対する溶解度を下記測定法により測定した。結果を表4に示す。
[solubility]
About the tetraphenyl naphthalocyanine compound of this invention and the comparative example compound which were manufactured in the said Example, the solubility with respect to the organic solvent was measured with the following measuring method. The results are shown in Table 4.
 (溶解度測定法)
 テトラフェニルナフタロシアニン化合物約0.1gに、総重量が約10gになるようにトルエンまたはクロロホルムを加え、超音波を約30分照射し、その後室温で二時間撹拌して、約1wt%の分散を調製した。
この分散液をメンブランフィルター(0.2μm)で濾過し、得られた濾物を60℃の乾燥器で1時間乾燥後、濾物の重量を測定した。
 テトラフェニルナフタロシアニン化合物の溶剤に対する溶解度を、以下の式で表した。
溶解度(wt%)=(W0-W1)/W0 
なお、W0:処理前のテトラフェニルナフタロシアニン化合物の正確な重量、W1:乾燥後の濾物(テトラフェニルナフタロシアニン化合物の溶解残分)の重量である。フィルターに濾物が残余しなかった場合は、溶解度は 1wt%以上とした。 
(Solubility measurement method)
Toluene or chloroform was added to about 0.1 g of the tetraphenylnaphthalocyanine compound so that the total weight was about 10 g, and the mixture was irradiated with ultrasonic waves for about 30 minutes. Prepared.
The dispersion was filtered through a membrane filter (0.2 μm), and the obtained filtrate was dried in a dryer at 60 ° C. for 1 hour, and the weight of the filtrate was measured.
The solubility of the tetraphenylnaphthalocyanine compound in the solvent was expressed by the following formula.
Solubility (wt%) = (W0-W1) / W0
W0: exact weight of tetraphenylnaphthalocyanine compound before treatment, W1: weight of filtrate after drying (dissolved residue of tetraphenylnaphthalocyanine compound). When no filter residue remained on the filter, the solubility was 1 wt% or more.
 実施例の化合物はいずれも比較例の化合物と比較してトルエンおよびクロロホルムに対する溶解性が高い。
比較例1の化合物(以下「比較例1化合物」と略称)
Figure JPOXMLDOC01-appb-I000066
比較例2の化合物(以下「比較例2化合物」と略称)
Figure JPOXMLDOC01-appb-I000067
 
 上記比較例1化合物は、先の比較例 1 にて製造したテトラフェニル-Pd-ナフタロシアニンである。比較例2化合物は特開2009-29955に記載の実施例1に従い製造した。
All of the compounds of Examples have higher solubility in toluene and chloroform than the compounds of Comparative Examples.
Compound of Comparative Example 1 (hereinafter abbreviated as “Comparative Example 1 Compound”)
Figure JPOXMLDOC01-appb-I000066
Compound of Comparative Example 2 (hereinafter abbreviated as “Comparative Example 2 Compound”)
Figure JPOXMLDOC01-appb-I000067

The compound of Comparative Example 1 is tetraphenyl-Pd-naphthalocyanine prepared in the above Comparative Example 1. Comparative Example 2 The compound was produced according to Example 1 described in JP-A-2009-29955.
Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-I000068
[可視光透過率] 
本発明のテトラフェニルナフタロシアニン化合物及び比較例化合物の可視光透過率を、下記測定法により測定した。結果を表5、表6に示す。
  また、実施例15、実施例20で製造した本発明のテトラフェニルナフタロシアニン化合物および比較例2の化合物の透過スペクトルの比較を図21に示す。
(可視光透過率測定法) 
  100mLメスフラスコに、各ナフタロシアニン化合物1.000mgと約90mLのクロロホルムを入れ、超音波を30分間照射した後、室温で2時間静置した。その後、溶液のメニスカスがメスフラスコの標線と一致するようにクロロホルムを添加して10mg/Lのナフタロシアニン溶液を調製した。このように調製した溶液を 1cm角のパイレックス(登録商標)製セルに入れ、分光光度計(日立製作所社製:Spectrophotometer U-3500)を用いて吸収スペクトルを測定した。
 このようにして測定した吸収スペクトルより、図21に示すように、近赤外領域の吸収極大波長における吸光度が1.0、すなわち透過率が10%となるように換算をおこない透過スペクトルを得た。この透過スペクトルの460nmおよび610nmにおける透過率を、中心金属が銅及びパラジウムの化合物については表5に、中心金属がバナジウムの化合物については表6に示す。
 比較例1化合物および比較例2化合物と比較して本発明の化合物は610nmにおける透過率はほぼ同等であるが、460nmにおける透過率は大きく向上した。
[Visible light transmittance]
The visible light transmittances of the tetraphenylnaphthalocyanine compound and the comparative example compound of the present invention were measured by the following measuring method. The results are shown in Tables 5 and 6.
FIG. 21 shows a comparison of transmission spectra of the tetraphenylnaphthalocyanine compound of the present invention produced in Example 15 and Example 20 and the compound of Comparative Example 2.
(Visible light transmittance measurement method)
In a 100 mL volumetric flask, 1.000 mg of each naphthalocyanine compound and about 90 mL of chloroform were placed, irradiated with ultrasonic waves for 30 minutes, and allowed to stand at room temperature for 2 hours. Thereafter, chloroform was added so that the meniscus of the solution coincided with the marked line of the volumetric flask to prepare a 10 mg / L naphthalocyanine solution. The solution thus prepared was placed in a 1 cm square Pyrex (registered trademark) cell, and an absorption spectrum was measured using a spectrophotometer (manufactured by Hitachi, Ltd .: Spectrophotometer U-3500).
From the absorption spectrum measured in this way, as shown in FIG. 21, a conversion spectrum was obtained by converting the absorbance at the absorption maximum wavelength in the near infrared region to 1.0, that is, the transmittance was 10%. . The transmittance of this transmission spectrum at 460 nm and 610 nm is shown in Table 5 for compounds whose central metals are copper and palladium, and in Table 6 for compounds whose central metals are vanadium.
Compared with the compounds of Comparative Example 1 and Comparative Example 2, the compound of the present invention has substantially the same transmittance at 610 nm, but the transmittance at 460 nm is greatly improved.
Figure JPOXMLDOC01-appb-I000069
Figure JPOXMLDOC01-appb-I000069
Figure JPOXMLDOC01-appb-I000070
Figure JPOXMLDOC01-appb-I000070
[耐光・耐熱性] 
本発明のテトラフェニルナフタロシアニン化合物及び比較例化合物の耐光・耐熱性を、下記測定法により測定した。結果を表7に示す。 
(耐光・耐熱性試験測定法) 
トルエン95.0gに、上記実施例で製造した本発明のテトラフェニルナフタロシアニン化合物または比較例化合物0.1gと、旭化成ケミカルズ(株)社製メタクリル樹脂デルペット(登録商標)5.0gを加え、混合、溶解して色素樹脂溶液を調製した。この色素樹脂溶液を、スピンコーター(共栄セミコンダクター社製:スピナーIH-III-A)を用いて、ガラス基板上に色素濃度20wt%、乾燥膜厚2μmとなるように塗布し、100℃で3分間乾燥した。
  このように得られたコーティングガラス板の吸収スペクトルを分光光度計(日立製作所(株)社製:Spectrophotometer U-3500)で測定し、これを試験前スペクトルとした。次に、試験前スペクトルを測定した塗膜ガラス板をキセノン耐光性試験機(東洋精機社製:サンテストXLS+)を用い550W/hの光を200時間照射した。この光照射した塗膜ガラス板の吸収スペクトルを分光光度計にて測定し、耐光性試験後スペクトルとした。
[Light and heat resistance]
The light resistance and heat resistance of the tetraphenylnaphthalocyanine compound of the present invention and the comparative compound were measured by the following measuring methods. The results are shown in Table 7.
(Light / heat resistance test measurement method)
To 95.0 g of toluene, 0.1 g of the tetraphenylnaphthalocyanine compound or comparative compound of the present invention produced in the above example and 5.0 g of methacrylic resin Delpet (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd. are added. A dye resin solution was prepared by mixing and dissolving. This dye resin solution was applied on a glass substrate using a spin coater (manufactured by Kyoei Semiconductor Co., Ltd .: Spinner IH-III-A) to a dye concentration of 20 wt% and a dry film thickness of 2 μm, and at 100 ° C. for 3 minutes. Dried.
The absorption spectrum of the coating glass plate thus obtained was measured with a spectrophotometer (manufactured by Hitachi, Ltd .: Spectrophotometer U-3500), and this was used as the spectrum before the test. Next, the coated glass plate whose spectrum was measured before the test was irradiated with light of 550 W / h for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki Co., Ltd .: Suntest XLS +). The absorption spectrum of the light-irradiated coated glass plate was measured with a spectrophotometer to obtain a spectrum after a light resistance test.
  耐熱性試験は試験前スペクトルを測定した塗膜ガラス板を恒温器(ヤマト科学社製:IG400)で温度100℃にて200時間加熱処理した。この加熱処理した塗膜ガラス板の吸収スペクトルを分光光度計にて測定し、耐熱性試験後のスペクトルとした。このようにして測定した耐熱性・耐光性試験前後の各スペクトルにおいて、400~900nmの範囲の吸光度値を積分し、耐光・耐熱試験前後でその値の差を算出した。
  耐光・耐熱試験前後での吸光度の差ΔEを、下記の式で表した。
ΔΕ(%)={Σ(E1の400~900nm)-Σ(E2の400~900nm)}/Σ(E1の400~900nm)×100
なお、E1:試験前スペクトル、E2:試験後スペクトル、Σ:吸光度値の積分である。ΔΕの値が大きいほど、耐光・耐熱試験前後でのスペクトル変化が大きい。
 表7に示されるように、比較例に比べて実施例の化合物はいずれも耐光性ならびに耐熱性に優れた特性を示した。
 また、実施例16および17で単離した各異性体の評価結果の比較より、前記一般式(1)-aの異性体が、一般式(1)-bや一般式(1)-cの異性体、あるいは各異性体の混合物に比較して特に高い耐光性、耐熱性を示した。
 特に、中心金属が銅であるテトラフェニルナフタロシアニン化合物の一般式(1)-aの異性体である、化合物(1)-41-aが、非常に高い耐光性、耐熱性を示した。
 
In the heat resistance test, the coated glass plate whose spectrum was measured before the test was heat-treated at a temperature of 100 ° C. for 200 hours with a thermostat (manufactured by Yamato Kagaku Co .: IG400). The absorption spectrum of the heat-treated coated glass plate was measured with a spectrophotometer to obtain a spectrum after the heat resistance test. In each spectrum before and after the heat resistance / light resistance test thus measured, the absorbance values in the range of 400 to 900 nm were integrated, and the difference between the values before and after the light resistance / heat resistance test was calculated.
The absorbance difference ΔE before and after the light resistance / heat resistance test was expressed by the following formula.
ΔΕ (%) = {Σ (400 to 900 nm of E1) −Σ (400 to 900 nm of E2)} / Σ (400 to 900 nm of E1) × 100
Note that E1: spectrum before test, E2: spectrum after test, and Σ: integration of absorbance values. The greater the value of ΔΕ, the greater the spectral change before and after the light and heat resistance test.
As shown in Table 7, all of the compounds of the examples exhibited excellent light resistance and heat resistance as compared with the comparative examples.
Further, from the comparison of the evaluation results of the isomers isolated in Examples 16 and 17, the isomers of the general formula (1) -a are represented by the general formulas (1) -b and (1) -c. Compared to isomers or a mixture of isomers, it showed particularly high light resistance and heat resistance.
In particular, compound (1) -41-a, which is an isomer of general formula (1) -a of a tetraphenylnaphthalocyanine compound in which the central metal is copper, showed very high light resistance and heat resistance.
Figure JPOXMLDOC01-appb-I000071
Figure JPOXMLDOC01-appb-I000071
[実施例21] 熱線遮蔽フィルムの製造
実施例9で製造したテトラフェニルナフタロシアニン化合物(具体例(1)-7)5重量部、アクリル樹脂LP-45M(製品名、綜研化学株式会社製)50重量部、メチルエチルケトン20重量部、トルエン20重量部を混合撹拌して、樹脂組成物を製造した。
透明基材としての厚さ100μmのポリエチレンテレフタレートフィルム(PETフィルム)に、上記樹脂組成物を厚さ2.5μmとなるようにバー塗布し、その後100℃で3分間乾燥した。
さらに、PETフィルムの他方の面(樹脂組成物を塗布していない面)に、透明なアクリル共重合系の粘着剤を厚さが20μmとなるようバー塗布し、100℃で3分間乾燥硬化させた後、粘着剤面に剥離フィルムを貼着し、熱線遮蔽フィルムを製造した。
[実施例22] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-8の化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 21] Production of heat-shielding film 5 parts by weight of tetraphenylnaphthalocyanine compound (specific example (1) -7) produced in Example 9, acrylic resin LP-45M (product name, manufactured by Soken Chemical Co., Ltd.) 50 Part by weight, 20 parts by weight of methyl ethyl ketone, and 20 parts by weight of toluene were mixed and stirred to produce a resin composition.
The resin composition was coated on a polyethylene terephthalate film (PET film) having a thickness of 100 μm as a transparent substrate so as to have a thickness of 2.5 μm, and then dried at 100 ° C. for 3 minutes.
Furthermore, a transparent acrylic copolymer adhesive was applied to the other side of the PET film (the side not coated with the resin composition) with a bar thickness of 20 μm and dried and cured at 100 ° C. for 3 minutes. After that, a release film was stuck on the pressure-sensitive adhesive surface to produce a heat ray shielding film.
[Example 22] Production of heat ray shielding film Example 21 except that the compound of Example (1) -8 was used in place of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
[実施例23] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-26の化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例24] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-27の化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 23] Production of heat ray shielding film Example 21 except that the compound of Example (1) -26 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
[Example 24] Production of heat ray shielding film Example 21 except that the compound of Example (1) -27 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
[実施例25] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-35の化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例26] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-37の化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例27] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-41の化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 25] Production of heat ray shielding film In Example 21, Example 21 was used except that the compound of Example (1) -35 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, a heat ray shielding film was produced.
[Example 26] Production of heat ray shielding film Example 21 except that the compound of Example (1) -37 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound in Example 21. In the same manner as described above, a heat ray shielding film was produced.
[Example 27] Production of heat ray shielding film In Example 21, Example 21 was used except that the compound of Example (1) -41 was used instead of the compound of Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, a heat ray shielding film was produced.
[比較例3] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに比較例1化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[比較例4] 熱線遮蔽フィルムの製造
実施例21において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに比較例2化合物を使用した以外は実施例21と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Comparative Example 3] Production of heat ray shielding film In Example 21, the same operation as in Example 21 was conducted except that the compound of Comparative Example 1 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. A heat ray shielding film was manufactured.
[Comparative Example 4] Production of heat ray shielding film In Example 21, the same operation as in Example 21 was performed except that the compound of Comparative Example 2 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. A heat ray shielding film was manufactured.
 上記実施例21~27及び比較例3、4で製造した熱線遮蔽フィルムについて、以下の項目を評価した。結果を下記の表8に示す。
なお、評価試験においては、製造した熱線遮蔽フィルムの剥離フィルムを剥がし、5cm×5cm×3mm厚のガラス板に圧着させて試験片を作成し、これを用いた。
[Tts]
測定機器として(株)日立製作所製、U-3500型自記分光光度計を使用し、JIS R3106「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」に準じ、合わせガラスサンプルのTtsを測定した。
なお、Tts(Total solar energy transmitted through a glazing)は、全日射透過率を表し、値が小さいほど熱遮蔽能力が高いことを示す。
The following items were evaluated for the heat ray shielding films produced in Examples 21 to 27 and Comparative Examples 3 and 4. The results are shown in Table 8 below.
In addition, in the evaluation test, the peeling film of the manufactured heat ray shielding film was peeled off, and it was made to press-bond to a glass plate of 5 cm x 5 cm x 3 mm thickness, and the test piece was used.
[Tts]
A U-3500 self-recording spectrophotometer manufactured by Hitachi, Ltd. is used as a measuring instrument, and laminated glass according to JIS R3106 “Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass” The Tts of the sample was measured.
Tts (Total solar energy transmitted through a glazing) represents the total solar transmittance, and the smaller the value, the higher the heat shielding ability.
[耐光・耐熱性] 
耐光性試験は、試験片の吸収スペクトルを分光光度計(日立製作所(株)社製:Spectrophotometer U-3500で測定し、これを耐光性試験前スペクトルとした。次に、試験前スペクトルを測定した試験片をキセノン耐光性試験機(東洋精機社製:サンテストXLS+)を用い550W/hの光を200時間照射した。光照射した試験片の吸収スペクトルを分光光度計にて測定し、耐光性試験後スペクトルとした。
  耐熱性試験は、上記と同様にして試験前スペクトルを測定した試験片を、恒温器(ヤマト科学社製:IG400)で温度100℃にて200時間加熱処理した。この加熱処理した試験片の吸収スペクトルを分光光度計にて測定し、耐熱性試験後のスペクトルとした。
このようにして測定した耐光・耐熱性試験前後の各スペクトルにおいて、400~900nmの範囲の吸光度値を積分し、耐光・耐熱試験前後でその値の差を算出した。
  耐光・耐熱試験前後での吸光度の差ΔEを、下記の式で表した。
ΔΕ(%)={Σ(E1の400~900nm)-Σ(E2の400~900nm)}/Σ(E1の400~900nm)×100
なお、E1:試験前スペクトル、E2:試験後スペクトル、Σ:吸光度値の積分である。
ΔΕの値が大きいほど、耐光・耐熱試験前後でのスペクトル変化が大きい。
表8に示されるように、比較例に比べて実施例の熱線遮蔽フィルムはいずれも熱遮蔽能力、耐光性ならびに耐熱性において優れた特性を示した。特に、耐光性、耐熱性において非常に優れていた。
[Light and heat resistance]
In the light resistance test, the absorption spectrum of the test piece was measured with a spectrophotometer (manufactured by Hitachi, Ltd .: Spectrophotometer U-3500, which was used as the spectrum before the light resistance test. Next, the spectrum before the test was measured. The test piece was irradiated with light of 550 W / h for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki Co., Ltd .: Suntest XLS +), and the absorption spectrum of the light irradiated test piece was measured with a spectrophotometer. The spectrum was taken after the test.
In the heat resistance test, a test piece for which the spectrum before the test was measured in the same manner as described above was heat-treated at a temperature of 100 ° C. for 200 hours with a thermostat (manufactured by Yamato Scientific Co., Ltd .: IG400). The absorption spectrum of the heat-treated test piece was measured with a spectrophotometer to obtain a spectrum after the heat resistance test.
In each spectrum before and after the light and heat resistance test thus measured, the absorbance values in the range of 400 to 900 nm were integrated, and the difference between the values before and after the light and heat resistance test was calculated.
The absorbance difference ΔE before and after the light resistance / heat resistance test was expressed by the following formula.
ΔΕ (%) = {Σ (400 to 900 nm of E1) −Σ (400 to 900 nm of E2)} / Σ (400 to 900 nm of E1) × 100
Note that E1: spectrum before test, E2: spectrum after test, and Σ: integration of absorbance values.
The greater the value of ΔΕ, the greater the spectral change before and after the light and heat resistance test.
As shown in Table 8, all of the heat ray shielding films of the Examples exhibited superior characteristics in heat shielding ability, light resistance and heat resistance as compared with the Comparative Example. In particular, it was very excellent in light resistance and heat resistance.
Figure JPOXMLDOC01-appb-I000072
Figure JPOXMLDOC01-appb-I000072
[実施例28]合わせガラス用中間膜及び合わせガラスの作製
<合わせガラス用中間膜の作製>
 有機エステル可塑剤として、トリエチレングリコール-ジ-2-エチルヘキサノエート40重量部に、実施例9で製造したテトラフェニルナフタロシアニン化合物(具体例(1)-7)0.013重量部を溶解させ、この溶液を、ポリビニルブチラール樹脂(商品名:BH-3、積水化学工業社製)100重量部に添加し、ミキシングロールで充分に溶融混練した後、押出機を用いて押出して、厚み0.76mmの中間膜を得た。
<合わせガラスの作製>
 上記中間膜を、100mm×100mmのサイズに切断し、JIS R3208 に準拠した熱線吸収板ガラス(縦100mm×横100mm×厚さ2.0mm)で挟み込み、ゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスした。その後、オートクレーブにて温度130℃、圧力1.3MPaの条件で20分間圧着し、合わせガラスのサンプルを得た。
[実施例29]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-8の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 28] Production of interlayer film for laminated glass and laminated glass <Production of interlayer film for laminated glass>
As an organic ester plasticizer, 0.013 part by weight of the tetraphenylnaphthalocyanine compound (specific example (1) -7) prepared in Example 9 was dissolved in 40 parts by weight of triethylene glycol-di-2-ethylhexanoate. This solution was added to 100 parts by weight of polyvinyl butyral resin (trade name: BH-3, manufactured by Sekisui Chemical Co., Ltd.), sufficiently melt-kneaded with a mixing roll, and then extruded using an extruder to obtain a thickness of 0. An intermediate film of .76 mm was obtained.
<Production of laminated glass>
The above interlayer film is cut into a size of 100 mm × 100 mm, sandwiched between heat ray absorbing plate glasses (length 100 mm × width 100 mm × thickness 2.0 mm) according to JIS R3208, put in a rubber bag, and a vacuum degree of 2.6 kPa After degassing for 20 minutes, it was transferred to an oven while being degassed, and further vacuum-pressed by holding at 90 ° C. for 30 minutes. Then, it pressure-bonded for 20 minutes on the conditions of the temperature of 130 degreeC, and the pressure of 1.3 MPa in the autoclave, and the sample of the laminated glass was obtained.
[Example 29] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of the specific example (1) -8 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[実施例30]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-34の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例31]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-36の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例32]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-26の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 30] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of specific example (1) -34 was used in place of the compound of specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[Example 31] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of the specific example (1) -36 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[Example 32] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of specific example (1) -26 was used in place of the compound of specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[実施例33]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-27の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例34]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-29の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 33] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of the specific example (1) -27 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[Example 34] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of the specific example (1) -29 was used in place of the compound of the specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[実施例35]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-37の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例36]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに化合物(1)-37-aを使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例37]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに化合物(1)-37-bを使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 35] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of specific example (1) -37 was used as the tetraphenylnaphthalocyanine compound instead of the compound of specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[Example 36] Preparation of interlayer film for laminated glass and laminated glass In Example 28, compound (1) -37-a was used as the tetraphenylnaphthalocyanine compound in place of the compound of specific example (1) -7. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
[Example 37] Preparation of interlayer film for laminated glass and laminated glass In Example 28, Compound (1) -37-b was used as the tetraphenylnaphthalocyanine compound instead of the compound of Specific Example (1) -7 Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
[実施例38]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに化合物(1)-37-cを使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例39]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-41の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 38] Preparation of interlayer film for laminated glass and laminated glass In Example 28, Compound (1) -37-c was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
[Example 39] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of specific example (1) -41 was used in place of the compound of specific example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[実施例40]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに化合物(1)-41-aを使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例41]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに化合物(1)-41-bを使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例42]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに化合物(1)-41-cを使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 40] Preparation of interlayer film for laminated glass and laminated glass In Example 28, Compound (1) -41-a was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
[Example 41] Preparation of interlayer film for laminated glass and laminated glass In Example 28, Compound (1) -41-b was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
[Example 42] Preparation of interlayer film for laminated glass and laminated glass In Example 28, Compound (1) -41-c was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Were operated in the same manner as in Example 28 to produce an interlayer film for laminated glass and laminated glass.
[実施例43]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-35の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[実施例44]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-64の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 43] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of Specific Example (1) -35 was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[Example 44] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of the specific example (1) -64 was used as the tetraphenylnaphthalocyanine compound instead of the compound of the specific example (1) -7. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[実施例45]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに具体例(1)-65の化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[比較例5]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに比較例1化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[比較例6]合わせガラス用中間膜及び合わせガラスの作製
実施例28において、テトラフェニルナフタロシアニン化合物として具体例(1)-7の化合物の代わりに比較例2化合物を使用した以外は実施例28と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Example 45] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of Specific Example (1) -65 was used in place of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. Except for the above, the same operation as in Example 28 was performed to produce an interlayer film for laminated glass and a laminated glass.
[Comparative Example 5] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of Comparative Example 1 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, an interlayer film for laminated glass and a laminated glass were produced.
[Comparative Example 6] Preparation of interlayer film for laminated glass and laminated glass In Example 28, the compound of Comparative Example 2 was used instead of the compound of Specific Example (1) -7 as the tetraphenylnaphthalocyanine compound. In the same manner as described above, an interlayer film for laminated glass and a laminated glass were produced.
 上記実施例28~45及び比較例5,6で作製した合わせガラスのサンプルについて、以下の項目を評価した。結果を下記の表9に示す。
[Tts]
 測定機器として(株)日立製作所製、U-3500型自記分光光度計を使用し、JIS R3106「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」に準じ、合わせガラスサンプルのTtsを測定した。
[可視光線透過率]
測定機器として(株)日立製作所製、U-3500型自記分光光度計を使用し、JIS R 3212「自動車用安全ガラス試験方法」に準じ、合わせガラスサンプルの波長380~780nmにおける可視光線透過率を測定した。
The following items were evaluated for the laminated glass samples prepared in Examples 28 to 45 and Comparative Examples 5 and 6. The results are shown in Table 9 below.
[Tts]
A U-3500 self-recording spectrophotometer manufactured by Hitachi, Ltd. is used as a measuring instrument, and laminated glass according to JIS R3106 “Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass” The Tts of the sample was measured.
[Visible light transmittance]
Using a U-3500 self-recording spectrophotometer manufactured by Hitachi, Ltd. as the measuring instrument, the visible light transmittance at a wavelength of 380 to 780 nm of the laminated glass sample is measured according to JIS R 3212 “Testing method for safety glass for automobiles”. It was measured.
[耐光・耐熱性] 
耐光性試験は、合わせガラスの吸収スペクトルを分光光度計(日立製作所(株)社製:Spectrophotometer U-3500で測定し、これを耐光性試験前スペクトルとした。次に、試験前スペクトルを測定した合わせガラスをキセノン耐光性試験機(東洋精機社製:サンテストXLS+)を用い550W/hの光を200時間照射した。この光照射した後の合わせガラスの吸収スペクトルを分光光度計にて測定し、耐光性試験後スペクトルとした。
  耐熱性試験は、上記と同様にして試験前スペクトルを測定した合わせガラスを、恒温器(ヤマト科学社製:IG400)で温度100℃にて200時間加熱処理した。この加熱処理した合わせガラスの吸収スペクトルを分光光度計にて測定し、耐熱性試験後のスペクトルとした。
このようにして測定した耐光・耐熱性試験前後の各スペクトルにおいて、400~900nmの範囲の吸光度値を積分し、耐光・耐熱性試験前後でその値の差を算出した。
  耐光・耐熱性試験前後での吸光度の差ΔEを、下記の式で表した。
ΔΕ(%)={Σ(E1の400~900nm)-Σ(E2の400~900nm)}/Σ(E1の400~900nm)×100
なお、E1:試験前スペクトル、E2:試験後スペクトル、Σ:吸光度値の積分である。ΔΕの値が大きいほど、耐光・耐熱試験前後でのスペクトル変化が大きい。
[Light and heat resistance]
In the light resistance test, the absorption spectrum of the laminated glass was measured with a spectrophotometer (manufactured by Hitachi, Ltd .: Spectrophotometer U-3500, which was used as the spectrum before the light resistance test. Next, the spectrum before the test was measured. The laminated glass was irradiated with light of 550 W / h for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki Co., Ltd .: Suntest XLS +). The spectrum after the light resistance test was taken.
In the heat resistance test, the laminated glass whose spectrum before the test was measured in the same manner as described above was heat-treated at a temperature of 100 ° C. for 200 hours with a thermostat (manufactured by Yamato Scientific Co., Ltd .: IG400). The absorption spectrum of this heat-treated laminated glass was measured with a spectrophotometer to obtain a spectrum after the heat resistance test.
In each spectrum before and after the light resistance / heat resistance test thus measured, the absorbance values in the range of 400 to 900 nm were integrated, and the difference between the values before and after the light resistance / heat resistance test was calculated.
The difference ΔE in absorbance before and after the light resistance / heat resistance test was expressed by the following equation.
ΔΕ (%) = {Σ (400 to 900 nm of E1) −Σ (400 to 900 nm of E2)} / Σ (400 to 900 nm of E1) × 100
Note that E1: spectrum before test, E2: spectrum after test, and Σ: integration of absorbance values. The greater the value of ΔΕ, the greater the spectral change before and after the light and heat resistance test.
 表9に示されるように、比較例5、6に比べて本願発明のテトラフェニルナフタロシアニン化合物を用いた実施例28~45の合わせガラスは、いずれも熱遮蔽能力、可視光線透過率、耐光性ならびに耐熱性において優れた特性を示した。特に、耐光性、耐熱性において非常に優れていた。
また、実施例35~42に示されるように、前記一般式(1)-aの異性体を用いた合わせガラスは、一般式(1)-bや一般式(1)-cの異性体、あるいは各異性体の混合物を用いた合わせガラスに比較して特に高い耐光性、耐熱性を示した。
特に、中心金属が銅であるテトラフェニルナフタロシアニン化合物の一般式(1)-aの異性体である、化合物(1)-41-aを用いた合わせガラスが、非常に高い耐光性、耐熱性を示した。
As shown in Table 9, the laminated glasses of Examples 28 to 45 using the tetraphenylnaphthalocyanine compound of the present invention compared to Comparative Examples 5 and 6 are all heat-shielding ability, visible light transmittance, and light resistance. In addition, it showed excellent characteristics in heat resistance. In particular, it was very excellent in light resistance and heat resistance.
Further, as shown in Examples 35 to 42, the laminated glass using the isomer of the general formula (1) -a is an isomer of the general formula (1) -b or the general formula (1) -c, Or it showed especially high light resistance and heat resistance compared with the laminated glass using the mixture of each isomer.
In particular, a laminated glass using compound (1) -41-a, which is an isomer of general formula (1) -a of a tetraphenylnaphthalocyanine compound whose central metal is copper, has very high light resistance and heat resistance. showed that.
Figure JPOXMLDOC01-appb-I000073
Figure JPOXMLDOC01-appb-I000073
 本発明のテトラフェニルナフタロシアニン化合物は、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さく、有機溶剤や樹脂に対する溶解性が良好であり、また耐光性、耐熱性などにおいて非常に高い耐久性を有する。
  そのため、近赤外線カットフィルター、セキュリティ用に用いられる透明インク、自動車や建物の窓などに用いられる熱線遮蔽フィルム、合わせガラス用中間膜、赤外線感熱記録材料、プラスチックのレーザー熔着などの用途に用いられる近赤外線吸収色素として非常に有用である。
The tetraphenylnaphthalocyanine compound of the present invention has strong absorption in the near infrared region, very small absorption in the visible light region, good solubility in organic solvents and resins, light resistance, heat resistance, etc. Very high durability.
Therefore, it is used for applications such as near-infrared cut filters, transparent ink used for security, heat ray shielding films used for automobiles and building windows, interlayer films for laminated glass, infrared thermosensitive recording materials, plastic laser welding, etc. It is very useful as a near infrared absorbing dye.

Claims (15)

  1.   一般式(1)で表されるテトラフェニルナフタロシアニン化合物。
    Figure JPOXMLDOC01-appb-I000001
    〔式(1)中、Mは2個の水素原子、2価の金属、又は3価もしくは4価の金属の誘導体を表し、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
    Figure JPOXMLDOC01-appb-I000002
    〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
    A tetraphenylnaphthalocyanine compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-I000001
    [In the formula (1), M represents two hydrogen atoms, a divalent metal, or a trivalent or tetravalent metal derivative, and R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group. A represents formula (B). ]
    Figure JPOXMLDOC01-appb-I000002
    [In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
  2.  一般式(1)-a~(1)-dから選ばれる少なくとも1種である、請求項1のテトラフェニルナフタロシアニン化合物。
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
    Figure JPOXMLDOC01-appb-I000005
    Figure JPOXMLDOC01-appb-I000006
    〔式(1)-a~(1)-d中、M、R1~R、Aは前記一般式(1)におけるものと同義である。〕
    2. The tetraphenylnaphthalocyanine compound according to claim 1, which is at least one selected from general formulas (1) -a to (1) -d.
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
    Figure JPOXMLDOC01-appb-I000005
    Figure JPOXMLDOC01-appb-I000006
    [In the formulas (1) -a to (1) -d, M, R 1 to R 4 , and A are as defined in the general formula (1). ]
  3. 一般式(1)-aで表される、請求項1又は2のテトラフェニルナフタロシアニン化合物。
    Figure JPOXMLDOC01-appb-I000007
    〔式(1)-a中、M、R1~R、Aは前記一般式(1)におけるものと同義である。〕
    The tetraphenylnaphthalocyanine compound according to claim 1 or 2 represented by the general formula (1) -a.
    Figure JPOXMLDOC01-appb-I000007
    [In the formula (1) -a, M, R 1 to R 4 and A have the same meanings as in the general formula (1). ]
  4. 1、Xが水素原子、フッ素原子又はトリフルオロメチル基である、請求項1~3のいずれかに記載のテトラフェニルナフタロシアニン化合物。 The tetraphenylnaphthalocyanine compound according to any one of claims 1 to 3, wherein X 1 and X 2 are a hydrogen atom, a fluorine atom or a trifluoromethyl group.
  5.  R~Rが水素原子、ハロゲン原子又は炭素数1~12のアルキル基である、請求項1~4のいずれかに記載のテトラフェニルナフタロシアニン化合物。 The tetraphenylnaphthalocyanine compound according to any one of claims 1 to 4, wherein R 1 to R 4 are a hydrogen atom, a halogen atom, or an alkyl group having 1 to 12 carbon atoms.
  6.  Mが2個の水素原子、Pd、Cu、Zn、Pt、Ni、TiO、Co、Fe、Mn、Sn、Al-Cl、VO又はIn-Clである、請求項1~5のいずれかに記載のテトラフェニルナフタロシアニン化合物。 6. The method according to claim 1, wherein M is two hydrogen atoms, Pd, Cu, Zn, Pt, Ni, TiO, Co, Fe, Mn, Sn, Al—Cl, VO, or In—Cl. Tetraphenylnaphthalocyanine compounds.
  7. 一般式(1)-aで表され、X1、Xが水素原子、フッ素原子又はトリフルオロメチル基であり、R~Rが水素原子又は炭素数1~12のアルキル基であり、MがCuである、請求項2又は3に記載のテトラフェニルナフタロシアニン化合物。 Represented by the general formula (1) -a, wherein X 1 and X 2 are a hydrogen atom, a fluorine atom or a trifluoromethyl group, R 1 to R 4 are a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, The tetraphenylnaphthalocyanine compound according to claim 2 or 3, wherein M is Cu.
  8. 一般式(1)-aで表され、X1、Xがトリフルオロメチル基であり、R、R、Rが水素原子であり、Rが炭素数3~8の分岐アルキル基であり、MがCuである、請求項2、3又は7に記載のテトラフェニルナフタロシアニン化合物。 Represented by the general formula (1) -a, wherein X 1 and X 2 are trifluoromethyl groups, R 1 , R 2 and R 4 are hydrogen atoms, and R 3 is a branched alkyl group having 3 to 8 carbon atoms. The tetraphenylnaphthalocyanine compound according to claim 2, 3 or 7, wherein M is Cu.
  9. 一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物および一般式(3)で表される1,3-ジイミノベンゾインドリン化合物から選ばれる少なくとも1種と、金属又は金属誘導体を反応させる、請求項1~8のいずれかに記載のテトラフェニルナフタロシアニン化合物の製造方法。
    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-I000009
    〔式(2)及び(3)中、R1~R、Aは前記一般式(1)におけるものと同義である。〕
    At least one selected from a naphthalene-2,3-dicarbonitrile compound represented by the general formula (2) and a 1,3-diiminobenzoindoline compound represented by the general formula (3), and a metal or a metal derivative The method for producing a tetraphenylnaphthalocyanine compound according to any one of claims 1 to 8, wherein:
    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-I000009
    [In the formulas (2) and (3), R 1 to R 4 and A have the same meanings as those in the general formula (1). ]
  10. 一般式(2)で表されるナフタレン-2,3-ジカルボニトリル化合物。
    Figure JPOXMLDOC01-appb-I000010
    〔式(2)中、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
    Figure JPOXMLDOC01-appb-I000011
    〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
    A naphthalene-2,3-dicarbonitrile compound represented by the general formula (2).
    Figure JPOXMLDOC01-appb-I000010
    [In Formula (2), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B). ]
    Figure JPOXMLDOC01-appb-I000011
    [In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
  11. 一般式(3)で表される1,3-ジイミノベンゾインドリン化合物。
    Figure JPOXMLDOC01-appb-I000012
    〔式(3)中、R1~Rはそれぞれ独立に水素原子、ハロゲン原子又はアルキル基を表し、Aは式(B)を表す。〕
    Figure JPOXMLDOC01-appb-I000013
    〔式(B)中、X1、Xはそれぞれ独立に水素原子、フッ素原子又はフッ素原子が置換したアルキル基を表し、X及びXが同時に水素原子であることは無い。〕
    1,3-diiminobenzoindoline compound represented by the general formula (3).
    Figure JPOXMLDOC01-appb-I000012
    [In Formula (3), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group, and A represents Formula (B). ]
    Figure JPOXMLDOC01-appb-I000013
    [In Formula (B), X 1 and X 2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group substituted with a fluorine atom, and X 1 and X 2 are not simultaneously hydrogen atoms. ]
  12. 請求項1~8のいずれかに記載のテトラフェニルナフタロシアニン化合物を含有することを特徴とする、近赤外線吸収材料。 A near-infrared absorbing material comprising the tetraphenylnaphthalocyanine compound according to any one of claims 1 to 8.
  13. 請求項1~8のいずれかに記載のテトラフェニルナフタロシアニン化合物を含有することを特徴とする、熱線遮蔽材。 A heat ray shielding material comprising the tetraphenylnaphthalocyanine compound according to any one of claims 1 to 8.
  14. 熱線遮蔽フィルムである、請求項13の熱線遮蔽材。 The heat ray shielding material according to claim 13, which is a heat ray shielding film.
  15. 合わせガラス用中間膜である、請求項13の熱線遮蔽材。 The heat ray shielding material according to claim 13, which is an interlayer film for laminated glass.
PCT/JP2014/066514 2013-06-27 2014-06-23 Tetraphenylnaphthalocyanine compound, method for producing same, and use of same WO2014208484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015524032A JP6306003B2 (en) 2013-06-27 2014-06-23 Tetraphenylnaphthalocyanine compound, production method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135415 2013-06-27
JP2013135415 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208484A1 true WO2014208484A1 (en) 2014-12-31

Family

ID=52141820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066514 WO2014208484A1 (en) 2013-06-27 2014-06-23 Tetraphenylnaphthalocyanine compound, method for producing same, and use of same

Country Status (2)

Country Link
JP (1) JP6306003B2 (en)
WO (1) WO2014208484A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186490A1 (en) * 2017-04-07 2018-10-11 山本化成株式会社 Naphthalocyanine compound, method for producing same, and use thereof
CN110741287A (en) * 2017-06-19 2020-01-31 住友金属矿山株式会社 Photothermal conversion layer, method for producing same, and donor sheet using photothermal conversion layer
KR20210143831A (en) 2019-04-26 2021-11-29 미쓰이 가가쿠 가부시키가이샤 Optical materials, polymerizable compositions for optical materials, plastic lenses, eyewear, infrared sensors and infrared cameras
KR20210144775A (en) 2019-04-26 2021-11-30 미쓰이 가가쿠 가부시키가이샤 Optical materials, polymerizable compositions for optical materials, plastic lenses, eyewear, infrared sensors and infrared cameras

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160248A (en) * 1988-12-14 1990-06-20 Toyobo Co Ltd Electrophotographic sensitive body
JPH02160583A (en) * 1988-12-14 1990-06-20 Toyobo Co Ltd Optical recording medium
JP2004525802A (en) * 2001-04-10 2004-08-26 バイエル アクチェンゲゼルシャフト Heat absorbing layer system
JP2009029955A (en) * 2007-07-27 2009-02-12 Fuji Xerox Co Ltd Naphthalocyanine coloring matter compound, production method thereof and near infrared absorbing material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083984B2 (en) * 1993-09-24 2006-08-01 Biosite, Inc. Hybrid phthalocyanine derivatives and their uses
ATE203045T1 (en) * 1995-03-23 2001-07-15 Biosite Diagnostics Inc HYBRID PHTALOCYANINE DERIVATIVES AND USES THEREOF
JPH11133868A (en) * 1997-10-29 1999-05-21 Mitsubishi Chemical Corp Filter for plasma display panel
WO2012039361A1 (en) * 2010-09-24 2012-03-29 株式会社日本触媒 Azo compound and coloring matter for color filters that contains same
JP5996901B2 (en) * 2011-09-02 2016-09-21 株式会社日本触媒 Light selective transmission filter, resin sheet, and solid-state image sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160248A (en) * 1988-12-14 1990-06-20 Toyobo Co Ltd Electrophotographic sensitive body
JPH02160583A (en) * 1988-12-14 1990-06-20 Toyobo Co Ltd Optical recording medium
JP2004525802A (en) * 2001-04-10 2004-08-26 バイエル アクチェンゲゼルシャフト Heat absorbing layer system
JP2009029955A (en) * 2007-07-27 2009-02-12 Fuji Xerox Co Ltd Naphthalocyanine coloring matter compound, production method thereof and near infrared absorbing material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186490A1 (en) * 2017-04-07 2018-10-11 山本化成株式会社 Naphthalocyanine compound, method for producing same, and use thereof
JPWO2018186490A1 (en) * 2017-04-07 2020-04-23 山本化成株式会社 Naphthalocyanine compound, production method and use thereof
US11174274B2 (en) 2017-04-07 2021-11-16 Yamamoto Chemicals, Inc. Naphthalocyanine compound, method for producing same, and use thereof
JP7128804B2 (en) 2017-04-07 2022-08-31 山本化成株式会社 Naphthalocyanine compound, production method and use thereof
CN110741287A (en) * 2017-06-19 2020-01-31 住友金属矿山株式会社 Photothermal conversion layer, method for producing same, and donor sheet using photothermal conversion layer
KR20210143831A (en) 2019-04-26 2021-11-29 미쓰이 가가쿠 가부시키가이샤 Optical materials, polymerizable compositions for optical materials, plastic lenses, eyewear, infrared sensors and infrared cameras
KR20210144775A (en) 2019-04-26 2021-11-30 미쓰이 가가쿠 가부시키가이샤 Optical materials, polymerizable compositions for optical materials, plastic lenses, eyewear, infrared sensors and infrared cameras

Also Published As

Publication number Publication date
JP6306003B2 (en) 2018-04-04
JPWO2014208484A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP7128803B2 (en) Phthalocyanine compound and use thereof
JP4635007B2 (en) Filter and cyanine compound
JP6306003B2 (en) Tetraphenylnaphthalocyanine compound, production method and use thereof
JP5063345B2 (en) Near-infrared absorbing dye-containing adhesive
JP6081771B2 (en) Phthalocyanine compound and heat ray absorbing material using the same
WO2006028006A1 (en) Diimmonium compound and use thereof
WO2011074619A1 (en) Near-infrared absorptive coloring matter and near-infrared absorptive composition
TWI535794B (en) Phthalocyanine compounds, near infrared absorption pigments and near infrared absorbers
JP7431744B2 (en) Phthalocyanine compounds and their uses
JP2011094127A (en) Heat-absorbing material
JP5484841B2 (en) Phthalocyanine compounds
WO2001005894A1 (en) Organic metal complex, infrared-absorbing dye and infrared absorption filter containing the same, and filter for plasma display panel
JP7288812B2 (en) Phthalocyanine-based compound, heat-absorbing material containing the same, and method for producing phthalocyanine-based compound
JP5289813B2 (en) Phthalocyanine compounds
JP7128804B2 (en) Naphthalocyanine compound, production method and use thereof
JP3940786B2 (en) Infrared absorption filter and filter for plasma display panel
JP3932761B2 (en) Organometallic complex, infrared absorption filter using the same and filter for plasma display panel
JP6004566B2 (en) Manufacturing method of near-infrared absorbent dispersion and near-infrared absorbing laminate
KR20200103735A (en) Optical laminate and display device
JP7291620B2 (en) Tetraazaporphyrin compound, ink composition, film, optical material, optical film, display surface film, and display device
JP2014025016A (en) Near-infrared absorbing resin composition and near-infrared absorbing film
JP2014024763A (en) Phthalocyanine dimer, and heat ray absorption material using the same
JP2021091882A (en) Phthalocyanine compound and heat ray absorbing material comprising the same
JP2005165265A (en) Optical filter
WO2013162017A1 (en) Phthalocyanine compound, mixture of phthalocyanine compounds, and heat-ray absorbing material using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818763

Country of ref document: EP

Kind code of ref document: A1