WO2014207790A1 - Laser-processed component manufacturing method and laser processing method - Google Patents

Laser-processed component manufacturing method and laser processing method Download PDF

Info

Publication number
WO2014207790A1
WO2014207790A1 PCT/JP2013/067170 JP2013067170W WO2014207790A1 WO 2014207790 A1 WO2014207790 A1 WO 2014207790A1 JP 2013067170 W JP2013067170 W JP 2013067170W WO 2014207790 A1 WO2014207790 A1 WO 2014207790A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
oxide glass
oxide
processing
component
Prior art date
Application number
PCT/JP2013/067170
Other languages
French (fr)
Japanese (ja)
Inventor
雅徳 宮城
拓也 青柳
内藤 孝
利則 川村
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/067170 priority Critical patent/WO2014207790A1/en
Priority to CN201380076295.4A priority patent/CN105189019B/en
Priority to JP2015523671A priority patent/JP6038313B2/en
Priority to TW103116713A priority patent/TWI556896B/en
Publication of WO2014207790A1 publication Critical patent/WO2014207790A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a method for manufacturing a laser processed component and a laser processing method.
  • Patent Document 1 discloses a method of removing a masking agent after applying a masking agent composed of a paste of metal powder and silica on a metal surface and performing hole processing with a laser. In this method, the surface is protected with a masking agent to obtain a clean surface of the processed part.
  • Patent Document 2 discloses a method of performing processing while removing a decomposition product generated during laser processing in the vicinity of an irradiated portion. In this method, a clean surface of a processed part is obtained by sucking before decomposition products such as spatter and dross adhere to the surface.
  • the masking agent is a ceramic coating, so that a treatment such as blasting is required for removal.
  • an object of the present invention is to obtain a clean processed surface by simple laser processing.
  • the present invention provides a laser-machined component comprising a protection step of forming a protective layer on the surface of the component, and a processing step of processing the component by irradiating the protective layer with a laser.
  • the method is characterized in that the protective layer is an oxide glass containing P, and includes a removing step of dissolving the protective layer with a liquid after the processing step.
  • the protective layer contains oxide glass containing P And a removal step of dissolving the protective layer with a liquid after the processing step.
  • a clean processed part surface can be obtained by simple laser processing.
  • a protective layer of oxide glass containing P is provided on the surface of the component, and laser processing is performed thereon. After the laser processing, the protective layer is removed by liquid cleaning.
  • the liquid is water or an aqueous solution containing water as a main solvent.
  • oxides that are soluble in water include P (phosphorus) and include P 2 O 5 and P 2 O 4 . These oxides are substantially free of Pb (lead) and Bi (bismuth). According to the RoHS directive (effective July 1, 2006), these substances are designated as prohibited substances. The fact that they do not contain substantially means that prohibited substances in the RoHS directive are not contained within the specified range.
  • V, Fe, Li, Na, K, Ba, Ca, B By adding V, Fe, Li, Na, K, Ba, Ca, B to the oxide containing P, water solubility and glass transition temperature can be adjusted.
  • alkali metals Li, K, Na, etc.
  • alkaline earth metals Ba, Ca, etc.
  • alkali metals Li, K, Na, etc.
  • alkaline earth metals Ba, Ca, etc.
  • oxides containing V are excellent in laser absorptivity, when processing Cu (copper) or Al (aluminum) with low laser absorptance, the laser absorptance is increased by applying to the surface, and processing Efficiency can be improved.
  • these oxides are easily dissolved in water, they can be washed away together with the spatter and dross generated during processing after laser processing. Even an oxide that does not contain V can absorb a laser having a wavelength of about 10 ⁇ m. Therefore, by appropriately selecting the wavelength of the laser, good processing quality can be obtained.
  • the effective composition range (as oxide) of the oxide is preferably 40 to 70 mol% for P 2 O 5 and 25 to 50 mol% for Na 2 O when P is the main component.
  • B 2 O 3 is contained in an amount of 5 to 10 mol%, the glass transition point is lowered, and a protective layer can be easily formed.
  • V contains V as the main component
  • P 2 O 5 is 5 to 50 mol%
  • V 2 O 5 is 50 to 95 mol%
  • P 2 O 5 + V 2 O 5 ⁇ 68 mol% Preferably there is.
  • P 2 O 5 + V 2 O 5 ⁇ 90 mol% the water solubility is further improved.
  • the heat resistance of the oxide can be improved by mixing metal or ceramic particles with the oxide described above. Since the powder particles are removed together with the oxide after processing, either metal or ceramic may be used, but considering the possibility of adhering and remaining, it is preferable to have the same composition as the processing object.
  • heat resistance can be imparted to the oxide by mixing metal particles having the same composition with the above oxide.
  • heat resistance can be imparted to the oxide by mixing Cu particles with the oxide.
  • the oxide described above can be used as a paste using a solvent and a binder.
  • An oxide glass layer adhered to the sample surface can be formed by applying the paste to the sample surface and drying. It is also possible to form an oxide glass layer on the surface by thermal spraying, cold spraying or the like. Regardless of the method used to form the oxide glass layer, water solubility and laser absorption are not affected.
  • oxide glasses having the compositions shown in Table 1 were prepared, and water solubility (cleanability) and glass transition temperature were evaluated.
  • Preparation of the above oxides uses reagents of V 2 O 5 , P 2 O 5 , Na 2 O, Fe 2 O 3 , Li 2 O, K 2 O, BaO, CaO, B 2 O 3 for a total of 200 g
  • the mixture was mixed in a predetermined amount so as to be, put into a platinum crucible, heated to 900 to 950 ° C. at a heating rate of 5 to 10 ° C./min in an electric furnace, and melted. In order to make it uniform at this temperature, it was kept for 1 to 2 hours with stirring.
  • the crucible was taken out and poured onto a stainless steel plate heated to about 150 ° C. in advance.
  • the oxide poured on the stainless steel plate was pulverized until the average particle size (D 50 ) was less than 20 ⁇ m.
  • This oxide is subjected to differential thermal analysis (DTA) up to 550 ° C at a heating rate of 5 ° C / min, so that the transition point (T g ), yield point (M g ), softening point (T s ), and crystallization temperature ( Tcry ) was measured.
  • DTA differential thermal analysis
  • T g transition point
  • M g yield point
  • T s softening point
  • Tcry crystallization temperature
  • FIG. 1 shows a typical DTA curve of an oxide glass.
  • T g is the first endothermic peak start temperature
  • Mg is the peak temperature
  • T s is the second endothermic peak temperature
  • T cry is the start temperature of the marked exothermic peak due to crystallization.
  • T g of the oxide glass of the present example was 277 ° C..
  • the detergency of the oxide glass was evaluated by immersing in water for 2 hours.
  • the evaluation sample is a paste for printing by pulverizing the oxide with a jet mill until the average particle size (D 50 ) is 2 ⁇ m or less, and adding and mixing a solvent containing 4% resin binder into the oxide powder.
  • D 50 average particle size
  • ethyl cellulose was used as the resin binder
  • butyl carbitol acetate was used as the solvent.
  • This paste was applied to a Ni-based alloy with a thermal barrier coating layer formed of ceramic, dried at 150 ° C., held at about 500 ° C. to 700 ° C. for 10 minutes and fired.
  • oxide Nos. 1 to 38 were excellent in water solubility and could be easily removed from the test piece.
  • FIG. 2 shows a process diagram of laser drilling.
  • Reference numeral 1 denotes a Ni-based alloy
  • 2 denotes an underlayer
  • 3 denotes a thermal barrier coating (ceramic layer)
  • 4 denotes an oxide glass layer
  • 5 denotes a laser
  • 6 denotes a processing residue (sputtering)
  • 7 denotes a hole processing portion.
  • the spatter that is presumed to be a Ni-based alloy metal component was adhered to the surface after processing.
  • the processed test piece was immersed in water, and the spatter was removed together with the oxide glass.
  • the oxide glass could not be confirmed with the naked eye and was almost removed.
  • there was no oxide glass layer there was no spatter or dross adhesion in appearance, and a hole processed part excellent in surface cleaning was obtained.
  • V was detected as a result of analyzing the vicinity of the laser machined part using a high frequency inductively coupled plasma optical emission spectrometer. Since the V component is not contained in the ceramic layer and the Ni-based alloy, it is considered to be a residue of oxide glass. Since the ceramic layer is attached to the Ni-based alloy by thermal spraying, there are fine irregularities on the surface, and it is considered that the oxide glass has penetrated into the irregularities. It was also confirmed that the thermal insulation performance did not change even if a slight V component remained on the surface of the ceramic thermal barrier coating.
  • a fiber laser is used as the laser, but the present invention is not limited to this as long as the hole can be drilled.
  • the gas type and gas pressure can be changed as appropriate, and the same applies to the following examples.
  • the oxide glass composition was 40 mol% for V 2 O 5 , 40 mol% for TeO 2 , and 20 mol% for Ag 2 O (No. 4 in the comparative example). Sputters and dross adhered to the surface after processing. The test piece was immersed in water for 2 hours, but the oxide glass did not dissolve in water, and the sputter, dross, and oxide glass remained attached to the thermal barrier coating.
  • Example 2 the oxide glass layer was formed using the oxide glass paste, but in this example, the oxide glass layer was formed by spraying the oxide glass powder onto the thermal barrier coating by cold spraying. .
  • the particle size of the powder used is 10-30 ⁇ m.
  • Other experimental conditions are the same as in Example 2.
  • the spatter that is presumed to be a Ni-based alloy metal component was adhered to the surface after processing.
  • the processed test piece was immersed in water, and the spatter was removed together with the oxide glass.
  • the oxide glass could not be confirmed with the naked eye and was almost removed.
  • there was no oxide glass layer there was no spatter or dross adhesion in appearance, and a hole processed part excellent in surface cleaning was obtained.
  • V was detected as a result of analyzing the vicinity of the laser machined part using a high frequency inductively coupled plasma optical emission spectrometer. Since the V component is not contained in the ceramic layer and the Ni-based alloy, it is considered to be a residue of oxide glass.
  • the oxide glass layer can be efficiently formed even in a large apparatus such as a power plant, so that the processing time can be shortened.
  • Ni alloy powder was added to the oxide glass paste produced in Example 1 to drill a Ni-based alloy with a ceramic thermal barrier coating.
  • the particle size of the Ni-based alloy powder was 30-60 ⁇ m, and the content in the paste was 30% by volume.
  • Other experimental conditions are the same as in Example 2.
  • the spatter that is presumed to be a Ni-based alloy metal component was adhered to the surface after processing.
  • the processed test piece was immersed in water, and the spatter was removed together with the oxide glass.
  • the oxide glass could not be confirmed with the naked eye and was almost removed.
  • there was no oxide glass layer there was no spatter or dross adhesion in appearance, and a hole processed part excellent in surface cleaning was obtained.
  • V was detected as a result of analyzing the vicinity of the laser machined part using a high frequency inductively coupled plasma optical emission spectrometer. Since the V component is not contained in the ceramic layer and the Ni-based alloy, it is considered to be a residue of oxide glass.
  • the thickness of the copper foil is 18 ⁇ m.
  • the oxide glass composition was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 .
  • the oxide glass paste was applied to a copper-clad plate by screen printing and dried on a hot plate heated to 150 ° C. for 10 minutes. After drying, the laser was drilled.
  • the laser used was a CO 2 laser. Hole processing was performed by irradiating a CO 2 laser on the oxide glass layer. The hole diameter was ⁇ 0.1 mm and the hole angle was 90 °. Since the oxide glass layer absorbs the CO 2 laser well, it was possible to drill holes in the copper foil. The processing residue presumed to be Cu adhered to the surface after processing.
  • the processed test piece was immersed in water, and the processing residue was removed together with the oxide glass.
  • the oxide glass could not be confirmed with the naked eye and was almost removed.
  • V was not detected. Since the surface of the copper foil is very smooth, it is considered that the oxide glass was completely removed by washing with water.
  • the oxide glass is applied by screen printing, but the same effect can be obtained by applying only to the hole processed portion by the dispenser method.
  • the oxide glass composition was 40 mol% for V 2 O 5 , 40 mol% for TeO 2 , and 20 mol% for Ag 2 O (No. 4 in the comparative example). Sputters and dross adhered to the surface after processing. Although this test piece was immersed in water for 2 hours, the oxide glass did not dissolve in water, and the sputter, dross, and oxide glass remained attached to the copper foil, and there was no effect.
  • 316 stainless steel was cut as shown in FIG. 10 is 316 stainless steel, 11 is a cutting part.
  • the oxide glass composition was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 .
  • the oxide glass paste was applied to 316 stainless steel and dried for 10 minutes on a hot plate heated to 150 ° C. After drying, 316 stainless steel was cut with a laser.
  • the laser used is a fiber laser.
  • the plate thickness was 6 mm, and Ar gas was used as the cutting gas.
  • the gas was 0.5 MPa. Spatter adhered to the surface after processing.
  • the processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was removed. Compared with the case without the oxide glass layer, there was no spatter or dross adhesion on the appearance, and a cut processed part excellent in surface cleaning was obtained.
  • the oxide glass paste was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 .
  • the oxide glass paste was applied to 316 stainless steel and dried for 10 minutes on a hot plate heated to 150 ° C. After drying, 316 stainless steel was butted and laser welding was performed.
  • the laser used is a fiber laser.
  • the plate thickness was 6 mm, and Ar gas was used as the shielding gas.
  • the gas flow rate was 30 L / min. Spatter adhered to the surface after processing.
  • the processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was removed. Compared to the case without the oxide glass layer, there was no spatter or dross adhesion in appearance, and a welded part excellent in surface cleaning was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser-processed component manufacturing method is provided with: a protecting step for forming a protection layer on a surface of a component; and a processing step for processing the component by irradiating the protection layer with a laser beam. The protection layer is formed of an oxide glass containing P, and the method is also provided with a removing step wherein the protection layer is melted using a liquid after the processing step.

Description

レーザ加工部品の製造方法及びレーザ加工方法Manufacturing method of laser processed component and laser processing method
 本発明は、レーザ加工部品の製造方法及びレーザ加工方法に関する。 The present invention relates to a method for manufacturing a laser processed component and a laser processing method.
 近年、製造工程の高効率化や製造部品の高品質化、高精度化の要請の高まりから、レーザ加工の利用が進んできている。例えば、発電用タービン部品やプリント配線基板の層間接続用の孔加工等に利用されている。しかしながら、レーザで加工を行う場合には、加工時に生じるスパッタやドロス等が、表面に付着するといった課題があった。 In recent years, the use of laser processing has been advanced due to the increasing demand for higher efficiency of manufacturing processes, higher quality of manufactured parts, and higher accuracy. For example, it is used for drilling holes for interlayer connection of power generation turbine parts and printed wiring boards. However, when processing with a laser, there is a problem that spatter, dross, etc. generated during processing adhere to the surface.
 そこで近年、発電用タービン部品の孔加工時の表面への付着を抑制する目的で、対象物の表面にマスキング剤を塗布してレーザ孔加工を行う方法が開示されている。 Therefore, in recent years, a method of applying a masking agent to the surface of an object and performing laser drilling has been disclosed for the purpose of suppressing adhesion of the turbine part for power generation to the surface during drilling.
 例えば、特許文献1では、金属粉末とシリカのペーストから成るマスキング剤を金属表面に塗布して、レーザにより孔加工を行った後、マスキング剤を除去する方法が開示されている。本手法はマスキング剤で表面を保護して、清浄な加工部の表面を得るものである。 For example, Patent Document 1 discloses a method of removing a masking agent after applying a masking agent composed of a paste of metal powder and silica on a metal surface and performing hole processing with a laser. In this method, the surface is protected with a masking agent to obtain a clean surface of the processed part.
 また特許文献2では、レーザ加工中に生成した分解物を、照射部分の近傍で吸引除去しながら、加工を行う方法が開示されている。本手法は、スパッタ、ドロスといった分解物が表面に付着する前に、吸引することで、清浄な加工部の表面を得るものである。 Further, Patent Document 2 discloses a method of performing processing while removing a decomposition product generated during laser processing in the vicinity of an irradiated portion. In this method, a clean surface of a processed part is obtained by sucking before decomposition products such as spatter and dross adhere to the surface.
特許第4913297号公報Japanese Patent No. 4913297 特開2012-121073号公報JP 2012-121073 A
 上記の従来の方法、例えば、特許文献1の方法ではマスキング剤がセラミックコーティングであるため、除去するのにブラスト等の処理が必要となる。 In the above-described conventional method, for example, the method of Patent Document 1, the masking agent is a ceramic coating, so that a treatment such as blasting is required for removal.
 また特許文献2の方法では、装置が大掛かりになったり、その装置との干渉が問題になる可能性がある。またレーザ孔加工時にはレーザと同軸でガスを吹き付けることがあるが、その場合には、吸引効果が弱まり、清浄な加工部表面が得られない可能性がある。 Further, in the method of Patent Document 2, there is a possibility that the apparatus becomes large or interference with the apparatus becomes a problem. Further, gas may be blown coaxially with the laser during laser hole machining, but in that case, the suction effect may be weakened and a clean processed part surface may not be obtained.
 そこで本発明は、簡単なレーザ加工により、清浄な加工部表面を得ることを目的とする。 Therefore, an object of the present invention is to obtain a clean processed surface by simple laser processing.
 上記目的を達成するために、本発明は、部品の表面に保護層を形成する保護工程と、前記保護層にレーザを照射して前記部品を加工する加工工程とを備えたレーザ加工部品の製造方法において、前記保護層がPを含む酸化物ガラスであり、前記加工工程後に前記保護層を液体で溶かす除去工程を備えることを特徴とする。 In order to achieve the above object, the present invention provides a laser-machined component comprising a protection step of forming a protective layer on the surface of the component, and a processing step of processing the component by irradiating the protective layer with a laser. The method is characterized in that the protective layer is an oxide glass containing P, and includes a removing step of dissolving the protective layer with a liquid after the processing step.
 また、部品の表面に保護層を形成する保護工程と、前記保護層にレーザを照射して前記部品を加工する加工工程とを備えたレーザ加工方法において、前記保護層がPを含む酸化物ガラスであり、前記加工工程後に前記保護層を液体で溶かす除去工程を備えることを特徴とする。 Further, in the laser processing method comprising a protection step of forming a protective layer on the surface of the component, and a processing step of processing the component by irradiating the protective layer with a laser, the protective layer contains oxide glass containing P And a removal step of dissolving the protective layer with a liquid after the processing step.
 本発明によれば、簡単なレーザ加工により、清浄な加工部表面を得ることができる。 According to the present invention, a clean processed part surface can be obtained by simple laser processing.
酸化物ガラスの示差熱分析で得られるDTA曲線の1例である。It is an example of the DTA curve obtained by the differential thermal analysis of oxide glass. 遮熱コーティング付きNi基合金の孔加工の工程図Process diagram of drilling of Ni-base alloy with thermal barrier coating プリント配線基板の孔加工の工程図Process drawing of printed wiring board hole processing ステンレス鋼の切断加工の工程図Stainless steel cutting process diagram ステンレス鋼の溶接加工の工程図Stainless steel welding process diagram
 本発明では、レーザを用いて部品の表面加工をする際、部品の表面にPを含む酸化物ガラスの保護層を設け、その上からレーザ加工する。レーザ加工後、液体洗浄することで保護層を除去するものである。液体は水や、水を主溶媒とする水溶液である。 In the present invention, when surface processing of a component is performed using a laser, a protective layer of oxide glass containing P is provided on the surface of the component, and laser processing is performed thereon. After the laser processing, the protective layer is removed by liquid cleaning. The liquid is water or an aqueous solution containing water as a main solvent.
 水に溶けることを特徴とする酸化物は、P(リン)を含みP2O5やP2O4が挙げられる。これらの酸化物にはPb(鉛)とBi(ビスマス)を実質的に含まない。RoHS指令(2006年7月1日施行)ではこれらの物質は禁止物質に指定されており、実質的に含まないとは、RoHS指令における禁止物質を指定値以上の範囲で含有しないことをいう。Pを含む酸化物にV、Fe、Li、Na、K、Ba、Ca、Bを入れることで、水溶性、ガラス転移温度を調整することができる。 Examples of oxides that are soluble in water include P (phosphorus) and include P 2 O 5 and P 2 O 4 . These oxides are substantially free of Pb (lead) and Bi (bismuth). According to the RoHS directive (effective July 1, 2006), these substances are designated as prohibited substances. The fact that they do not contain substantially means that prohibited substances in the RoHS directive are not contained within the specified range. By adding V, Fe, Li, Na, K, Ba, Ca, B to the oxide containing P, water solubility and glass transition temperature can be adjusted.
 酸化物の水溶性を向上させるために、Vやアルカリ金属(Li、K、Na等)、アルカリ土類金属(Ba、Ca等)を入れるとよい。ただし、酸化物にVが含まれている場合、アルカリ金属、アルカリ土類金属を過度に添加すると、逆に耐水性を向上しすぎるため、アルカリ金属は10mol%以下、アルカリ土類金属は5mol%以下であるとよい。 In order to improve the water solubility of the oxide, V, alkali metals (Li, K, Na, etc.) and alkaline earth metals (Ba, Ca, etc.) may be added. However, when V is included in the oxide, excessive addition of alkali metal or alkaline earth metal will improve water resistance, so alkali metal is 10 mol% or less, alkaline earth metal is 5 mol%. It may be the following.
 一方、耐水性が向上すると吸湿しにくくなるため、作業性が向上する。Fe、Bは耐水性を向上させる効果を有するので、作業性の観点から適宜加えるとよい。またFeを加えることで、レーザ吸収性が向上する。レーザ吸収率が低い対象物を加工する場合には、加工効率が向上するため有効である。 On the other hand, when water resistance is improved, it becomes difficult to absorb moisture, so workability is improved. Since Fe and B have an effect of improving water resistance, they are preferably added from the viewpoint of workability. Moreover, the laser absorptivity improves by adding Fe. When processing an object having a low laser absorption rate, it is effective because processing efficiency is improved.
 またVを含む酸化物はレーザ吸収性に優れるため、レーザの吸収率が低いCu(銅)やAl(アルミニウム)等を加工する場合に、表面に塗布することでレーザ吸収率を増加させ、加工効率を改善することができる。またこれらの酸化物は容易に水に溶けるため、レーザ加工後、加工時に生成したスパッタやドロス等とともに洗い流すことができる。Vを含まない酸化物であっても、10μm程度の波長のレーザを吸収することができるため、レーザの波長を適宜選択することで、良好な加工品質を得ることができる。 In addition, since oxides containing V are excellent in laser absorptivity, when processing Cu (copper) or Al (aluminum) with low laser absorptance, the laser absorptance is increased by applying to the surface, and processing Efficiency can be improved. In addition, since these oxides are easily dissolved in water, they can be washed away together with the spatter and dross generated during processing after laser processing. Even an oxide that does not contain V can absorb a laser having a wavelength of about 10 μm. Therefore, by appropriately selecting the wavelength of the laser, good processing quality can be obtained.
 酸化物の有効な組成範囲(酸化物換算)は、Pを主成分とする場合はP2O5が40~70mol%、Na2Oが25~50mol%であることが好ましい。B2O3が5~10mol%含まれるとガラス転移点が低くなり、保護層を形成し易くなり更に好ましい。PだけでなくVを含み、Vを主成分とする場合はP2O5が5~50mol%、V2O5が50~95mol%であり、P2O5+V2O5≧68mol%であることが好ましい。P2O5+V2O5≧90mol%であると水溶性が更に良くなる。 The effective composition range (as oxide) of the oxide is preferably 40 to 70 mol% for P 2 O 5 and 25 to 50 mol% for Na 2 O when P is the main component. When B 2 O 3 is contained in an amount of 5 to 10 mol%, the glass transition point is lowered, and a protective layer can be easily formed. When not only P but also V contains V as the main component, P 2 O 5 is 5 to 50 mol%, V 2 O 5 is 50 to 95 mol%, and P 2 O 5 + V 2 O 5 ≧ 68 mol% Preferably there is. When P 2 O 5 + V 2 O 5 ≧ 90 mol%, the water solubility is further improved.
 また上述した酸化物に対し、金属やセラミック粒子を混合することで、酸化物の耐熱性向上させることができる。粉末粒子は加工後に前記酸化物とともに除去されるため金属でもセラミックスでも構わないが、付着し残存する可能性を考慮すると、加工対象物と同組成である方が好ましい。例えば、Ni基超合金を加工する場合には、上記の酸化物に同組成の金属粒子を混ぜることで、酸化物に耐熱性を付与することができる。またCuの加工場合には上記酸化物にCu粒子を混合することで、酸化物に耐熱性を付与することができる。 In addition, the heat resistance of the oxide can be improved by mixing metal or ceramic particles with the oxide described above. Since the powder particles are removed together with the oxide after processing, either metal or ceramic may be used, but considering the possibility of adhering and remaining, it is preferable to have the same composition as the processing object. For example, when processing a Ni-base superalloy, heat resistance can be imparted to the oxide by mixing metal particles having the same composition with the above oxide. In the case of processing Cu, heat resistance can be imparted to the oxide by mixing Cu particles with the oxide.
 上述した酸化物は溶媒及びバインダを用いて、ペースト化して用いることが可能である。ペーストを試料表面に塗り、乾燥させることで、試料表面に接着した酸化物ガラス層を形成することが可能である。また溶射やコールドスプレー等によっても、表面に酸化物ガラス層を形成することが可能である。どの方法で酸化物ガラス層を形成しても、水溶性やレーザ吸収性には影響しない。 The oxide described above can be used as a paste using a solvent and a binder. An oxide glass layer adhered to the sample surface can be formed by applying the paste to the sample surface and drying. It is also possible to form an oxide glass layer on the surface by thermal spraying, cold spraying or the like. Regardless of the method used to form the oxide glass layer, water solubility and laser absorption are not affected.
 本実施例では、表1に示す組成の酸化物ガラスを作製し、水溶性(洗浄性)とガラス転移温度を評価した。上記酸化物の作製は、V2O5、P2O5、Na2O、Fe2O3、Li2O、K2O、BaO、CaO、B2O3の試薬を使用し、合計200gになるように、所定量に配合、混合し白金ルツボに入れ、電気炉にて5~10℃/分の昇温速度で900~950℃まで加熱し、溶融した。この温度で均一にするために撹拌しながら1~2時間保持した。その後、ルツボを取り出し、予め150℃程度に加熱しておいたステンレス板上に流し込んだ。ステンレス板上に流し込んだ酸化物は、平均粒子径(D50)が20μm未満になるまで粉砕した。この酸化物を5℃/分の昇温速度で550℃まで示差熱分析(DTA)することによって、転移点(Tg)、屈伏点(Mg)、軟化点(Ts)及び結晶化温度(Tcry)を測定した。なお、標準サンプルとしてアルミナ(Al2O3)粉末を用いた。 In this example, oxide glasses having the compositions shown in Table 1 were prepared, and water solubility (cleanability) and glass transition temperature were evaluated. Preparation of the above oxides uses reagents of V 2 O 5 , P 2 O 5 , Na 2 O, Fe 2 O 3 , Li 2 O, K 2 O, BaO, CaO, B 2 O 3 for a total of 200 g The mixture was mixed in a predetermined amount so as to be, put into a platinum crucible, heated to 900 to 950 ° C. at a heating rate of 5 to 10 ° C./min in an electric furnace, and melted. In order to make it uniform at this temperature, it was kept for 1 to 2 hours with stirring. Thereafter, the crucible was taken out and poured onto a stainless steel plate heated to about 150 ° C. in advance. The oxide poured on the stainless steel plate was pulverized until the average particle size (D 50 ) was less than 20 μm. This oxide is subjected to differential thermal analysis (DTA) up to 550 ° C at a heating rate of 5 ° C / min, so that the transition point (T g ), yield point (M g ), softening point (T s ), and crystallization temperature ( Tcry ) was measured. Note that alumina (Al 2 O 3 ) powder was used as a standard sample.
 図1に酸化物ガラスの代表的なDTA曲線を示す。図1に示すように、Tgは第一吸熱ピークの開始温度、Mgはそのピーク温度、Tsは第二吸熱ピーク温度、Tcryは結晶化による顕著な発熱ピークの開始温度とした。本実施例の酸化物ガラスのTgは277℃であった。 FIG. 1 shows a typical DTA curve of an oxide glass. As shown in FIG. 1, T g is the first endothermic peak start temperature, Mg is the peak temperature, T s is the second endothermic peak temperature, and T cry is the start temperature of the marked exothermic peak due to crystallization. T g of the oxide glass of the present example was 277 ° C..
 水に2h浸漬することによって、酸化物ガラスの洗浄性を評価した。評価サンプルは、酸化物をジェットミルで平均粒径(D50)が2μm以下になるまで粉砕し、その酸化物粉末に樹脂バインダ4%を溶解した溶剤を入れ、混合することによって、印刷用ペーストを作製した。ここで、樹脂バインダにはエチルセルロース、溶剤にはブチルカルビトールアセテートを用いた。このペーストをセラミックで形成された遮熱コーティング層付きのNi基合金に塗布し、150℃で乾燥させ、500℃-700℃程度10分間保持して焼成した。 The detergency of the oxide glass was evaluated by immersing in water for 2 hours. The evaluation sample is a paste for printing by pulverizing the oxide with a jet mill until the average particle size (D 50 ) is 2 μm or less, and adding and mixing a solvent containing 4% resin binder into the oxide powder. Was made. Here, ethyl cellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. This paste was applied to a Ni-based alloy with a thermal barrier coating layer formed of ceramic, dried at 150 ° C., held at about 500 ° C. to 700 ° C. for 10 minutes and fired.
 酸化物ガラスをよく溶かし除去ができた場合には「◎」、溶かすことができた場合には「○」、あまり溶けなかった場合には「△」、溶かすことができなかった場合には「×」と評価した。酸化物No.1~38の実施例では、水溶性に優れ、容易に試験片から除去することができた。 If the oxide glass was well melted and removed, “◎”, if it could be melted, “○”, if it did not melt much, “△”, if it could not be melted, “ “×”. Examples of oxide Nos. 1 to 38 were excellent in water solubility and could be easily removed from the test piece.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1で作製した酸化物ガラスペーストを使用してセラミックス遮熱コーティング付きのNi基合金の孔加工を実施した。酸化物ガラス組成はV2O5が70mol%、P2O5が30mol%(実施例のNo.4)とした。酸化物ガラスペーストをセラミックス遮熱コーティングに塗布し、150℃に加熱したホットプレート上で10分間乾燥させた。乾燥後、レーザで孔加工を実施した。使用したレーザはファイバレーザである。孔径はφ0.8mmとφ1.4mmとし、孔角度は90°と45°とした。ガスにはArガスを用い、ガス圧は0.5MPaとした。図2にレーザ孔加工の工程図を示す。1はNi基合金、2は下地層、3は遮熱コーティング(セラミック層)、4は酸化物ガラス層、5はレーザ、6は加工残渣(スパッタ)、7は孔加工部を示す。 Using the oxide glass paste prepared in Example 1, drilling of a Ni-based alloy with a ceramic thermal barrier coating was performed. The oxide glass composition was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 (No. 4 in Examples). The oxide glass paste was applied to the ceramic thermal barrier coating and dried on a hot plate heated to 150 ° C. for 10 minutes. After drying, drilling was performed with a laser. The laser used is a fiber laser. The hole diameters were φ0.8 mm and φ1.4 mm, and the hole angles were 90 ° and 45 °. Ar gas was used as the gas, and the gas pressure was 0.5 MPa. FIG. 2 shows a process diagram of laser drilling. Reference numeral 1 denotes a Ni-based alloy, 2 denotes an underlayer, 3 denotes a thermal barrier coating (ceramic layer), 4 denotes an oxide glass layer, 5 denotes a laser, 6 denotes a processing residue (sputtering), and 7 denotes a hole processing portion.
 加工後の表面にはNi基合金金属成分と推測されるスパッタが付着していた。加工後の試験片を水に浸漬して、酸化物ガラスとともに、スパッタを除去した。水洗浄後の試験片には酸化物ガラスは肉眼では確認できず、ほぼ除去された。酸化物ガラス層が無い場合と比較すると、外観上、スパッタやドロスの付着はなく、表面清浄に優れた孔加工部品が得られた。 The spatter that is presumed to be a Ni-based alloy metal component was adhered to the surface after processing. The processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was almost removed. Compared with the case where there was no oxide glass layer, there was no spatter or dross adhesion in appearance, and a hole processed part excellent in surface cleaning was obtained.
 高周波誘導結合プラズマ発光分光分析装置を用いて、レーザ加工部近傍を分析した結果、Vが検出された。V成分はセラミック層、Ni基合金中に含まれていないため、酸化物ガラスの残渣と考えられる。セラミック層は溶射により、Ni基合金につけているため、表面に細かな凹凸があり、その凹凸に酸化物ガラスが侵入したと考えられる。またセラミックス遮熱コーティングの表面にわずかにV成分が残っても遮熱性能には変化しないことを確認した。 V was detected as a result of analyzing the vicinity of the laser machined part using a high frequency inductively coupled plasma optical emission spectrometer. Since the V component is not contained in the ceramic layer and the Ni-based alloy, it is considered to be a residue of oxide glass. Since the ceramic layer is attached to the Ni-based alloy by thermal spraying, there are fine irregularities on the surface, and it is considered that the oxide glass has penetrated into the irregularities. It was also confirmed that the thermal insulation performance did not change even if a slight V component remained on the surface of the ceramic thermal barrier coating.
 本実施例ではレーザにファイバレーザを用いたが孔加工できればこれに限定しない。ガス種、ガス圧に関しても適宜変更可能であり、以下の実施例でも同様である。 In this embodiment, a fiber laser is used as the laser, but the present invention is not limited to this as long as the hole can be drilled. The gas type and gas pressure can be changed as appropriate, and the same applies to the following examples.
 上記と同様の試験を比較例でも実施した。酸化物ガラス組成はV2O5が40mol%、TeO2が40mol%、Ag2Oが20mol%(比較例のNo.4)とした。加工後の表面にはスパッタやドロスが付着していた。この試験片を水に2h浸漬させたが、酸化物ガラスは水溶せず、スパッタ、ドロス、酸化物ガラスは遮熱コーティングに付着したままであった。 A test similar to the above was also performed in the comparative example. The oxide glass composition was 40 mol% for V 2 O 5 , 40 mol% for TeO 2 , and 20 mol% for Ag 2 O (No. 4 in the comparative example). Sputters and dross adhered to the surface after processing. The test piece was immersed in water for 2 hours, but the oxide glass did not dissolve in water, and the sputter, dross, and oxide glass remained attached to the thermal barrier coating.
 実施例2では酸化物ガラスペーストを用いて酸化物ガラス層を形成したが、本実施例では酸化物ガラス粉末をコールドスプレーにより、遮熱コーティング上に吹き付けて酸化物ガラス層を形成した点が異なる。用いた粉末の粒径は10-30μmである。その他の実験条件は実施例2と同様である。 In Example 2, the oxide glass layer was formed using the oxide glass paste, but in this example, the oxide glass layer was formed by spraying the oxide glass powder onto the thermal barrier coating by cold spraying. . The particle size of the powder used is 10-30 μm. Other experimental conditions are the same as in Example 2.
 加工後の表面にはNi基合金金属成分と推測されるスパッタが付着していた。加工後の試験片を水に浸漬して、酸化物ガラスとともに、スパッタを除去した。水洗浄後の試験片には酸化物ガラスは肉眼では確認できず、ほぼ除去された。酸化物ガラス層が無い場合と比較すると、外観上、スパッタやドロスの付着はなく、表面清浄に優れた孔加工部品が得られた。 The spatter that is presumed to be a Ni-based alloy metal component was adhered to the surface after processing. The processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was almost removed. Compared with the case where there was no oxide glass layer, there was no spatter or dross adhesion in appearance, and a hole processed part excellent in surface cleaning was obtained.
 高周波誘導結合プラズマ発光分光分析装置を用いて、レーザ加工部近傍を分析した結果、Vが検出された。V成分はセラミック層、Ni基合金中に含まれていないため、酸化物ガラスの残渣と考えられる。 V was detected as a result of analyzing the vicinity of the laser machined part using a high frequency inductively coupled plasma optical emission spectrometer. Since the V component is not contained in the ceramic layer and the Ni-based alloy, it is considered to be a residue of oxide glass.
 本実施例のようにコールドスプレー法を用いると、発電プラントのような大型装置にも効率良く酸化物ガラス層を形成することができるので、加工時間を短縮することができる。 When the cold spray method is used as in this embodiment, the oxide glass layer can be efficiently formed even in a large apparatus such as a power plant, so that the processing time can be shortened.
 実施例1で作製した酸化物ガラスペーストにNi合金粉末を加えてセラミックス遮熱コーティング付きのNi基合金の孔加工を実施した。Ni基合金粉末の粒径は30-60μmであり、ペースト中の含有率を30体積%とした。その他の実験条件は実施例2と同様である。 Ni alloy powder was added to the oxide glass paste produced in Example 1 to drill a Ni-based alloy with a ceramic thermal barrier coating. The particle size of the Ni-based alloy powder was 30-60 μm, and the content in the paste was 30% by volume. Other experimental conditions are the same as in Example 2.
 加工後の表面にはNi基合金金属成分と推測されるスパッタが付着していた。加工後の試験片を水に浸漬して、酸化物ガラスとともに、スパッタを除去した。水洗浄後の試験片には酸化物ガラスは肉眼では確認できず、ほぼ除去された。酸化物ガラス層が無い場合と比較すると、外観上、スパッタやドロスの付着はなく、表面清浄に優れた孔加工部品が得られた。 The spatter that is presumed to be a Ni-based alloy metal component was adhered to the surface after processing. The processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was almost removed. Compared with the case where there was no oxide glass layer, there was no spatter or dross adhesion in appearance, and a hole processed part excellent in surface cleaning was obtained.
 高周波誘導結合プラズマ発光分光分析装置を用いて、レーザ加工部近傍を分析した結果、Vが検出された。V成分はセラミック層、Ni基合金中に含まれていないため、酸化物ガラスの残渣と考えられる。 V was detected as a result of analyzing the vicinity of the laser machined part using a high frequency inductively coupled plasma optical emission spectrometer. Since the V component is not contained in the ceramic layer and the Ni-based alloy, it is considered to be a residue of oxide glass.
 実施例1で作製した酸化物ガラスペーストを使用して、図3に示すようにプリント配線基板用のガラス含有エポキシ樹脂に銅箔を張り合わせた板に対して、孔加工を行った。8はガラスエポキシ、9は銅箔を示す。 Using the oxide glass paste produced in Example 1, as shown in FIG. 3, hole processing was performed on a plate obtained by bonding a copper foil to a glass-containing epoxy resin for a printed wiring board. 8 is a glass epoxy and 9 is a copper foil.
 銅箔の厚さは18μmである。酸化物ガラス組成はV2O5が70mol%、P2O5が30mol%とした。酸化物ガラスペーストを銅張板にスクリーン印刷により塗布し、150℃に加熱したホットプレート上で10分間乾燥させた。乾燥後、レーザに孔加工を実施した。使用したレーザはCO2レーザである。酸化物ガラス層の上からCO2レーザを照射して孔加工を実施した。孔径はφ0.1mmとし、孔角度は90°とした。酸化物ガラス層はCO2レーザをよく吸収するため、銅箔に対しても孔加工が可能であった。加工後の表面にはCuと推測される加工残渣が付着していた。加工後の試験片を水に浸漬して、酸化物ガラスとともに、加工残渣を除去した。水洗浄後の試験片には、酸化物ガラスは肉眼では確認できず、ほぼ除去されていた。高周波誘導結合プラズマ発光分光分析装置を用いて、レーザ加工部近傍を分析した結果、Vは検出されなかった。銅箔の表面は非常に滑らかであるため、酸化物ガラスは水洗により完全に除去されたと考えられる。 The thickness of the copper foil is 18 μm. The oxide glass composition was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 . The oxide glass paste was applied to a copper-clad plate by screen printing and dried on a hot plate heated to 150 ° C. for 10 minutes. After drying, the laser was drilled. The laser used was a CO 2 laser. Hole processing was performed by irradiating a CO 2 laser on the oxide glass layer. The hole diameter was φ0.1 mm and the hole angle was 90 °. Since the oxide glass layer absorbs the CO 2 laser well, it was possible to drill holes in the copper foil. The processing residue presumed to be Cu adhered to the surface after processing. The processed test piece was immersed in water, and the processing residue was removed together with the oxide glass. In the test piece after water washing, the oxide glass could not be confirmed with the naked eye and was almost removed. As a result of analyzing the vicinity of the laser processing portion using a high-frequency inductively coupled plasma optical emission spectrometer, V was not detected. Since the surface of the copper foil is very smooth, it is considered that the oxide glass was completely removed by washing with water.
 酸化物ガラス層が無い場合と比較すると、外観上、スパッタやドロスの付着はなく、表面清浄に優れた孔加工部品が得られた。 Compared with the case without the oxide glass layer, there was no adhesion of spatter and dross on the appearance, and a hole processed part excellent in surface cleaning was obtained.
 本実施例では、酸化物ガラスをスクリーン印刷により、塗布したが、ディスペンサー法により、孔加工部にだけ塗布することでも同様の効果が得られる。 In this embodiment, the oxide glass is applied by screen printing, but the same effect can be obtained by applying only to the hole processed portion by the dispenser method.
 上記と同様の試験を比較例でも実施した。酸化物ガラス組成はV2O5が40mol%、TeO2が40mol%、Ag2Oが20mol%(比較例のNo.4)とした。加工後の表面にはスパッタやドロスが付着していた。この試験片を水に2h浸漬させたが、酸化物ガラスは水溶せず、スパッタ、ドロス、酸化物ガラスは銅箔に付着したままであり、効果はなかった。 A test similar to the above was also performed in the comparative example. The oxide glass composition was 40 mol% for V 2 O 5 , 40 mol% for TeO 2 , and 20 mol% for Ag 2 O (No. 4 in the comparative example). Sputters and dross adhered to the surface after processing. Although this test piece was immersed in water for 2 hours, the oxide glass did not dissolve in water, and the sputter, dross, and oxide glass remained attached to the copper foil, and there was no effect.
 実施例1で作製した酸化物ガラスペーストを使用して316ステンレス鋼に対して、図4に示すように切断を行った。10は316ステンレス鋼、11は切断部品を示す。 Using the oxide glass paste prepared in Example 1, 316 stainless steel was cut as shown in FIG. 10 is 316 stainless steel, 11 is a cutting part.
 酸化物ガラス組成はV2O5が70mol%、P2O5が30mol%とした。酸化物ガラスペーストを316ステンレス鋼に塗布し、150℃に加熱したホットプレート上で10分間乾燥させた。乾燥後、レーザで316ステンレス鋼を切断した。使用したレーザはファイバレーザである。板厚は6mmであり、切断用ガスにはArガスを用いた。ガスは0.5MPaとした。加工後の表面にはスパッタが付着していた。加工後の試験片を水に浸漬して、酸化物ガラスとともに、スパッタを除去した。水洗浄後の試験片には酸化物ガラスは肉眼では確認できず、除去された。酸化物ガラス層が無い場合と比較すると、外観上、スパッタやドロスの付着はなく、表面清浄に優れた切断加工部品が得られた。 The oxide glass composition was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 . The oxide glass paste was applied to 316 stainless steel and dried for 10 minutes on a hot plate heated to 150 ° C. After drying, 316 stainless steel was cut with a laser. The laser used is a fiber laser. The plate thickness was 6 mm, and Ar gas was used as the cutting gas. The gas was 0.5 MPa. Spatter adhered to the surface after processing. The processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was removed. Compared with the case without the oxide glass layer, there was no spatter or dross adhesion on the appearance, and a cut processed part excellent in surface cleaning was obtained.
 実施例1で作製した酸化物ガラスペーストを使用して316ステンレス鋼に対して、図5に示すように溶接を行った。酸化物ガラス組成はV2O5が70mol%、P2O5が30mol%とした。酸化物ガラスペーストを316ステンレス鋼に塗布し、150℃に加熱したホットプレート上で10分間乾燥させた。乾燥後、316ステンレス鋼を突き合わせてレーザ溶接を実施した。使用したレーザはファイバレーザである。板厚は6mmであり、シールドガスにはArガスを用いた。ガス流量は30L/minとした。加工後の表面にはスパッタが付着していた。加工後の試験片を水に浸漬して、酸化物ガラスとともに、スパッタを除去した。水洗浄後の試験片には酸化物ガラスは肉眼では確認できず、除去された。酸化物ガラス層が無い場合と比較すると、外観上、スパッタやドロスの付着はなく、表面清浄に優れた溶接加工部品が得られた。 As shown in FIG. 5, welding was performed on 316 stainless steel using the oxide glass paste prepared in Example 1. The oxide glass composition was 70 mol% for V 2 O 5 and 30 mol% for P 2 O 5 . The oxide glass paste was applied to 316 stainless steel and dried for 10 minutes on a hot plate heated to 150 ° C. After drying, 316 stainless steel was butted and laser welding was performed. The laser used is a fiber laser. The plate thickness was 6 mm, and Ar gas was used as the shielding gas. The gas flow rate was 30 L / min. Spatter adhered to the surface after processing. The processed test piece was immersed in water, and the spatter was removed together with the oxide glass. In the test piece after washing with water, the oxide glass could not be confirmed with the naked eye and was removed. Compared to the case without the oxide glass layer, there was no spatter or dross adhesion in appearance, and a welded part excellent in surface cleaning was obtained.
 以上より、セラミックや金属上に、表1に示されるような洗浄性に優れるガラスで保護層を形成することにより、レーザ加工時にスパッタ等の残渣が発生しても、ガラスごと洗浄できる。これにより、マスキング剤等を利用する従来技術に比べてレーザ加工が簡単であり、清浄な表面の部材が得られる。レーザ加工は上記の孔加工、切断、溶接に限られず、基材を貫通しない加工であってもよい。 As described above, by forming a protective layer on a ceramic or metal with a glass having excellent cleaning properties as shown in Table 1, even if a residue such as spatter is generated during laser processing, the entire glass can be cleaned. Thereby, laser processing is simpler than the prior art using a masking agent or the like, and a member having a clean surface can be obtained. Laser processing is not limited to the above hole processing, cutting, and welding, and may be processing that does not penetrate the base material.
1 Ni基合金
2 下地層
3 遮熱コーティング
4 酸化物ガラス層
5 レーザ
6 加工残渣
7 孔加工部
8 ガラスエポキシ
9 銅箔 
10 316ステンレス鋼
11 切断部品
12 溶接部
DESCRIPTION OF SYMBOLS 1 Ni base alloy 2 Underlayer 3 Thermal barrier coating 4 Oxide glass layer 5 Laser 6 Processing residue 7 Hole processing part 8 Glass epoxy 9 Copper foil
10 316 stainless steel 11 Cutting part 12 Welded part

Claims (15)

  1.  部品の表面に保護層を形成する保護工程と、前記保護層にレーザを照射して前記部品を加工する加工工程とを備えたレーザ加工部品の製造方法において、前記保護層がPを含む酸化物ガラスであり、前記加工工程後に前記保護層を液体で溶かす除去工程を備えることを特徴とするレーザ加工部品の製造方法。 An oxide containing P in the protective layer manufacturing method, comprising: a protective step of forming a protective layer on a surface of the component; and a processing step of processing the component by irradiating the protective layer with a laser. A method for manufacturing a laser-machined component, comprising glass, and a removal step of dissolving the protective layer with a liquid after the processing step.
  2.  請求項1において、前記酸化物ガラスは更にVを含むことを特徴とするレーザ加工部品の製造方法。 2. The method of manufacturing a laser-machined component according to claim 1, wherein the oxide glass further contains V.
  3.  請求項1において、前記酸化物ガラスは更にVを含み、酸化物換算でP2O5が5~50mol%、V2O5が50~95mol%であり、P2O5+V2O5≧68mol%であることを特徴とするレーザ加工部品の製造方法。 2. The oxide glass according to claim 1, wherein the oxide glass further contains V, P 2 O 5 is 5 to 50 mol% in terms of oxide, V 2 O 5 is 50 to 95 mol%, and P 2 O 5 + V 2 O 5 ≧ A method for producing a laser-machined component, characterized by being 68 mol%.
  4.  請求項1において、前記酸化物ガラスは更にNaを含み、酸化物換算でP2O5が40~70mol%、Na2Oが25~50mol%であることを特徴とするレーザ加工部品の製造方法。 2. The method of manufacturing a laser-machined part according to claim 1, wherein the oxide glass further contains Na, P 2 O 5 is 40 to 70 mol% and Na 2 O is 25 to 50 mol% in terms of oxide. .
  5.  請求項1において、前記酸化物ガラスは更にFe、Li、Na、K、Ba、Ca、Bのいずれかを含むことを特徴とするレーザ加工部品の製造方法。 2. The method of manufacturing a laser-machined part according to claim 1, wherein the oxide glass further contains any one of Fe, Li, Na, K, Ba, Ca, and B.
  6.  請求項1において、前記保護工程は前記酸化物ガラスの粉末を前記部品に吹き付けて前記保護層を形成することを特徴とするレーザ加工部品の製造方法。 2. The method of manufacturing a laser-machined component according to claim 1, wherein in the protection step, the protective layer is formed by spraying the oxide glass powder onto the component.
  7.  請求項1において、前記保護工程は前記酸化物ガラスを含むペーストを前記部品に塗布し、乾燥させて、前記保護層を形成することを特徴とするレーザ加工部品の製造方法。 2. The method of manufacturing a laser-machined component according to claim 1, wherein in the protection step, the protective layer is formed by applying a paste containing the oxide glass to the component and drying the paste.
  8.  請求項1において、前記液体は水であることを特徴とするレーザ加工部品の製造方法。 2. The method of manufacturing a laser-machined component according to claim 1, wherein the liquid is water.
  9.  部品の表面に保護層を形成する保護工程と、前記保護層にレーザを照射して前記部品を加工する加工工程とを備えたレーザ加工方法において、前記保護層がPを含む酸化物ガラスであり、前記加工工程後に前記保護層を液体で溶かす除去工程を備えることを特徴とするレーザ加工方法。 In a laser processing method comprising a protective step of forming a protective layer on the surface of a component, and a processing step of processing the component by irradiating the protective layer with a laser, the protective layer is an oxide glass containing P A laser processing method comprising a removal step of dissolving the protective layer with a liquid after the processing step.
  10.  請求項9において、前記酸化物ガラスは更にVを含むことを特徴とするレーザ加工方法。 10. The laser processing method according to claim 9, wherein the oxide glass further contains V.
  11.  請求項9において、前記酸化物ガラスは更にVを含み、酸化物換算でP2O5が5~50mol%、V2O5が50~95mol%であり、P2O5+V2O5≧68mol%であることを特徴とするレーザ加工方法。 10. The oxide glass according to claim 9, further comprising V, P 2 O 5 in an oxide conversion of 5 to 50 mol%, V 2 O 5 of 50 to 95 mol%, and P 2 O 5 + V 2 O 5 ≧ The laser processing method characterized by being 68 mol%.
  12.  請求項9において、前記酸化物ガラスは更にNaを含み、酸化物換算でP2O5が40~70mol%、Na2Oが25~50mol%であることを特徴とするレーザ加工方法。 10. The laser processing method according to claim 9, wherein the oxide glass further contains Na, P 2 O 5 is 40 to 70 mol% and Na 2 O is 25 to 50 mol% in terms of oxide.
  13.  請求項9において、前記保護工程は前記酸化物ガラスの粉末を前記部品に吹き付けて前記保護層を形成することを特徴とするレーザ加工方法。 10. The laser processing method according to claim 9, wherein in the protection step, the protective layer is formed by spraying the oxide glass powder onto the component.
  14.  請求項9において、前記保護工程は前記酸化物ガラスを含むペーストを前記部品に塗布し、乾燥させて、前記保護層を形成することを特徴とするレーザ加工方法。 10. The laser processing method according to claim 9, wherein in the protection step, the protective layer is formed by applying a paste containing the oxide glass to the component and drying the paste.
  15.  請求項9において、前記液体は水であることを特徴とするレーザ加工方法。 10. The laser processing method according to claim 9, wherein the liquid is water.
PCT/JP2013/067170 2013-06-24 2013-06-24 Laser-processed component manufacturing method and laser processing method WO2014207790A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/067170 WO2014207790A1 (en) 2013-06-24 2013-06-24 Laser-processed component manufacturing method and laser processing method
CN201380076295.4A CN105189019B (en) 2013-06-24 2013-06-24 Laser machine the manufacture method and laser processing of part
JP2015523671A JP6038313B2 (en) 2013-06-24 2013-06-24 Manufacturing method of laser processed component and laser processing method
TW103116713A TWI556896B (en) 2013-06-24 2014-05-12 Manufacturing method of laser processing member and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067170 WO2014207790A1 (en) 2013-06-24 2013-06-24 Laser-processed component manufacturing method and laser processing method

Publications (1)

Publication Number Publication Date
WO2014207790A1 true WO2014207790A1 (en) 2014-12-31

Family

ID=52141199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067170 WO2014207790A1 (en) 2013-06-24 2013-06-24 Laser-processed component manufacturing method and laser processing method

Country Status (4)

Country Link
JP (1) JP6038313B2 (en)
CN (1) CN105189019B (en)
TW (1) TWI556896B (en)
WO (1) WO2014207790A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047503A (en) * 2016-09-19 2018-03-29 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method for manufacturing work-piece micromachine-worked by laser abrasion
CN109641269A (en) * 2016-09-29 2019-04-16 Jx金属株式会社 It is laser sintered to use surface-treated metal powder
WO2020081318A1 (en) * 2018-10-19 2020-04-23 Corning Incorporated Device including vias and method and material for fabricating vias

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102110764B1 (en) * 2017-05-10 2020-05-14 최병찬 Appratus and method for laser processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505557A (en) * 1994-09-13 1998-06-02 ザール リミテッド Inkjet print head
JP2009501087A (en) * 2005-07-13 2009-01-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method for monitoring slot formation in a substrate
JP2012125829A (en) * 2010-12-17 2012-07-05 Panasonic Corp Laser jointing method and jointing part
WO2013011568A1 (en) * 2011-07-19 2013-01-24 株式会社日立製作所 Electrode for ion secondary batteries, method for producing electrode for ion secondary batteries, lithium ion secondary battery, and magnesium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617297A (en) * 1979-07-20 1981-02-19 Mutoh Ind Ltd Moving load reducing device for lateral carsor in rail type universal parallel rule* etc*
TWI257336B (en) * 2004-12-28 2006-07-01 Ind Tech Res Inst Laser-aided cutting device
JP2007307599A (en) * 2006-05-20 2007-11-29 Sumitomo Electric Ind Ltd Body formed with through-hole and laser beam machining method
JP2011189362A (en) * 2010-03-12 2011-09-29 Mitsubishi Materials Corp Apparatus and method of laser machining
DE102010003817B4 (en) * 2010-04-09 2013-04-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Workpiece protection film and thus film-coated workpiece
TWI438836B (en) * 2010-11-05 2014-05-21 Win Semiconductors Corp A fabrication method for dicing of semiconductor wafers using laser cutting techniques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505557A (en) * 1994-09-13 1998-06-02 ザール リミテッド Inkjet print head
JP2009501087A (en) * 2005-07-13 2009-01-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method for monitoring slot formation in a substrate
JP2012125829A (en) * 2010-12-17 2012-07-05 Panasonic Corp Laser jointing method and jointing part
WO2013011568A1 (en) * 2011-07-19 2013-01-24 株式会社日立製作所 Electrode for ion secondary batteries, method for producing electrode for ion secondary batteries, lithium ion secondary battery, and magnesium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047503A (en) * 2016-09-19 2018-03-29 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method for manufacturing work-piece micromachine-worked by laser abrasion
JP7078366B2 (en) 2016-09-19 2022-05-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Methods for manufacturing workpieces that are micromachined by laser ablation
CN109641269A (en) * 2016-09-29 2019-04-16 Jx金属株式会社 It is laser sintered to use surface-treated metal powder
JPWO2018062527A1 (en) * 2016-09-29 2019-06-24 Jx金属株式会社 Surface-treated metal powder for laser sintering
JP2020073727A (en) * 2016-09-29 2020-05-14 Jx金属株式会社 Surface-treated metal powder for laser sintering
JP7079237B2 (en) 2016-09-29 2022-06-01 Jx金属株式会社 Surface-treated metal powder for laser sintering
WO2020081318A1 (en) * 2018-10-19 2020-04-23 Corning Incorporated Device including vias and method and material for fabricating vias
US20210359185A1 (en) * 2018-10-19 2021-11-18 Corning Incorporated Device including vias and method and material for fabricating vias

Also Published As

Publication number Publication date
TWI556896B (en) 2016-11-11
JPWO2014207790A1 (en) 2017-02-23
CN105189019B (en) 2017-12-22
CN105189019A (en) 2015-12-23
JP6038313B2 (en) 2016-12-07
TW201509580A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
EP1889683B1 (en) Lead-free solder paste
JP6038313B2 (en) Manufacturing method of laser processed component and laser processing method
TWI292355B (en)
KR101009564B1 (en) Conductive filler
US20060183270A1 (en) Tools and methods for forming conductive bumps on microelectronic elements
JP2004025305A (en) Residue-free solder paste
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP6575301B2 (en) Sealing paste, brazing joint material and method for producing the same, sealing lid material and method for producing the same, and package sealing method
TW201628760A (en) Solder bump forming method
CN105479030A (en) Active anti-corrosion SnZn base brazing filler metal, manufacturing method thereof and low-temperature ultrasonic brazing method of ceramic and/or composite material and aluminum and magnesium alloy
WO2020231643A1 (en) Silicate glass compositions useful for the efficient production of through glass vias
JP2012250240A (en) Metal filler, solder paste, and connected structure
CN111112842A (en) Gold-removing tin-coating method and application
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP2007021580A (en) Solder alloy for producing sputtering target, and sputtering target using the same
JP2014069194A (en) Solder paste
CN105925948A (en) Aluminum alloy surface activation connection method
JP2008288403A (en) Method of manufacturing ceramic substrate
CN102120828B (en) Swelling solution for removing through-hole residues of epoxy resin circuit board
JP2009072827A (en) Method of manufacturing member to be formed with solder layer
TWI673372B (en) Au-sn alloy solder paste, method for manufacturing au-sn alloy solder layer and au-sn alloy solder layer
TWI655717B (en) Sealing paste, hard soldering material, manufacturing method thereof, sealing cover material, manufacturing method thereof, and package sealing method
JP2016101595A (en) Masking agent for laser processing and method for production of laser processed component
JP6458285B2 (en) Device manufacturing method
JP2012250239A (en) Metal filler, solder paste, and connected structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076295.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887870

Country of ref document: EP

Kind code of ref document: A1