WO2014206248A1 - 集装箱式沼气净化膜法提纯系统 - Google Patents

集装箱式沼气净化膜法提纯系统 Download PDF

Info

Publication number
WO2014206248A1
WO2014206248A1 PCT/CN2014/080417 CN2014080417W WO2014206248A1 WO 2014206248 A1 WO2014206248 A1 WO 2014206248A1 CN 2014080417 W CN2014080417 W CN 2014080417W WO 2014206248 A1 WO2014206248 A1 WO 2014206248A1
Authority
WO
WIPO (PCT)
Prior art keywords
purification
membrane
gas
container
biogas
Prior art date
Application number
PCT/CN2014/080417
Other languages
English (en)
French (fr)
Inventor
潘文智
周长清
杨兴华
李洪燕
王大伟
李文进
Original Assignee
北京合力清源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京合力清源科技有限公司 filed Critical 北京合力清源科技有限公司
Priority to US14/392,164 priority Critical patent/US9975085B2/en
Publication of WO2014206248A1 publication Critical patent/WO2014206248A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/003Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/10Conditioning the gas to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/106Removal of contaminants of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a biogas treatment technology, in particular to a container type biogas purification membrane purification system.
  • Biogas is a combustible gas produced by the fermentation of microorganisms under anaerobic conditions. Since this gas was first discovered in swamps, it is called biogas. Various organic substances such as human and animal manure, crop straw, sewage, etc. are fermented under anaerobic conditions in a closed biogas fermentation plant, and are decomposed and transformed by a variety of biogas fermentation microorganisms to generate biogas. Biogas is a mixture of various gases. The general book contains 50%-70% methane, 20%-40% carbon dioxide, and a small amount of water vapor, nitrogen, hydrogen and hydrogen sulfide. After purifying and removing the impurity gas, the carbon dioxide gas is purified and purified, and the obtained product gas can reach the national natural gas standard for vehicles.
  • the carbon dioxide content of compressed natural gas for vehicles should be 3.0%. Carbon dioxide is a non-combustible component in biogas. If the content is too high, it will reduce the calorific value of natural gas. The removal of carbon dioxide in biogas is called biogas purification.
  • Physical method pressure swing adsorption method, pressurized water washing method, polymer membrane separation method, etc.
  • chemical method Benfield method, composite catalytic method, steric hindrance method, BV potassium alkali solution method, ammonia water method, etc.;
  • the working principle of the chemical method is to absorb the carbon dioxide in the biogas by using a chemical reagent, and the cost is high because of the large amount of chemical reagent.
  • the three biogas purification methods in the physical method are applied in the field of biogas purification:
  • the working principle of the pressure swing adsorption method is to utilize the difference of the adsorption characteristics of the components in the biogas on the adsorbent and the principle that the adsorption amount changes with the pressure, and the gas separation is realized by the periodic pressure change.
  • the pressure swing adsorption method requires at least two adsorption towers, or three towers, four towers or more.
  • the working principle of the pressurized water washing method is to absorb water under pressure using C 0 2 in the raw material biogas. According to Henry's law, the solubility of a gas in water at isothermal is proportional to the pressure. When the water absorbs co 2 , the high pressure and low temperature are used, and when the gas is desorbed, the low pressure or the temperature is used.
  • the working principle of the membrane separation method is to use the partial pressure of various gases in the biogas to drive the high pressure side (raw material side) and low pressure side (permeate side) of the polymer membrane-polyimide hollow fiber filament tube -- a gas with a large solubility coefficient and a large diffusion coefficient (such as co 2 ,
  • H 2 S preferentially passes through the wall of the tube, and the remaining gas (C) is relatively blocked, thereby achieving the purpose of separation.
  • Both the pressure swing adsorption method and the pressurized water washing method have the disadvantages of large area, non-movable, and complicated process. Pressurized water washing operation is costly, high pressure, low temperature, technical difficulty, and the absorption tower is easy to block.
  • the biogas extracted after desulfurization, impurity removal and coarse dehydration is purified by pressurized water washing method, and is sent to a biogas compressor to compress the gas into the lower part of the absorption tower, and the hot water exchange is carried out in countercurrent contact with the cooling water sprayed from the upper part to absorb the co 2 . gas.
  • Part of the absorption tower exits the tower gas and returns to the tertiary desorption tower; the other part is sent to the molecular sieve adsorber to remove residual moisture and traces of residual co 2 in the gas, which is a qualified product gas.
  • the biogas extracted after desulfurization, impurity removal and crude dehydration is purified by membrane separation method.
  • the biogas is first compressed, and the compressed biogas is dehydrated into a cold dryer, and the dust is finely removed through a filter.
  • the oil is purified, and the purified biogas is heated and then enters the membrane group for purification.
  • Pressure swing adsorption purification of biogas requires regular replacement of molecular sieves and valves, and the maintenance cost is high.
  • Pressurized water washing requires a large amount of circulating water to absorb the co 2 , and the required control valve must be replaced regularly, and the maintenance cost is high.
  • Both pressure swing adsorption and pressurized water washing require the construction of a large adsorption tower (absorption tower), which has a large footprint, is not movable, and has a complicated process.
  • the object of the present invention is to provide a container type biogas purification membrane purification system to overcome the defects of the traditional biogas purification method such as pressure swing adsorption, pressurized water washing, such as large area, high investment, high energy consumption and high running cost. It realizes the advantages of no pollutants, waste water, etc., economic and environmental protection, good mobility, and good flexibility.
  • the present invention provides a container type biogas purification membrane method purification system, which comprises: a desulfurization dehydration unit, a compressor, a purification unit, a heat exchanger, and a membrane group purified system which are sequentially connected in a movable container.
  • the gas unit, the desulfurization and dehydration unit is connected to a biogas source generated by the anaerobic fermentation tank.
  • the purification unit comprises an intercepting pre-filter, a freeze dryer, a coalescing filter, a activated carbon canister, a primary oil-water separation filter and a precision terminal filter, which are connected in series, the intercepting pre-filter and the A compressor is connected, and the precision terminal filter is connected to the heat exchanger.
  • the compressor is an oil-free compressor.
  • the heat exchanger is made of stainless steel material and is provided with an automatic thermostatic control module, and the temperature control range is between 25-40 °C.
  • the membrane group purification gasification unit comprises at least two stages of membrane modules connected in sequence, and each membrane module is arranged in parallel.
  • the membrane group purification gasification unit further comprises:
  • a gas collection line connected to the outlet of the membrane module to collect the methane gas produced by each membrane module
  • the permeate gas return line is connected at its two ends to the membrane module and the compressor, respectively.
  • the gas separation pipeline is provided with a separate stainless steel ball valve at the entrance of each membrane module.
  • the container type biogas purification membrane purification system integrates the purification equipment into the container, the process flow is short, the floor space is saved, and the miniaturization and the movement can be realized; the biogas purification and the polymer membrane are used for carbon dioxide and Separation of methane, low investment, low energy consumption; biogas is purified and decontaminated before entering the membrane purification, ensuring the quality of the purified gas.
  • FIG. 1 is a structural schematic diagram of a container type biogas purification membrane purification system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a purification unit according to an embodiment of the present invention. detailed description
  • the container type biogas purification membrane purification system of the present embodiment comprises a desulfurization dehydration unit, a compressor, a purification unit, a heat exchanger and a membrane group purification gasification unit which are sequentially connected in a movable container.
  • the desulfurization and dehydration unit is connected to a biogas source generated by the anaerobic fermentation tank.
  • the feed gas component is CH 4 55% -65%
  • C0 2 is 35-40%
  • H 2 S concentration varies from material to batch, from several hundred ppm to several thousand ppm Unequal, O 2 ⁇ 0.5%, N 2 ⁇ 3%, traces of ammonia, traces of carbon monoxide.
  • the biogas obtained by desulfurization and dehydration of the desulfurization dehydration unit is compressed by an oil-free compressor, and then passed through a purification unit such as a filter, a refrigerating dryer, or an activated carbon tank degreaser to remove saturated steam, dust particles, and oil.
  • a purification unit such as a filter, a refrigerating dryer, or an activated carbon tank degreaser to remove saturated steam, dust particles, and oil.
  • the purification unit is in turn an intercepting pre-filter, a freeze dryer, a coalescing filter, an activated carbon tank, a primary oil-water separation filter, and a precision terminal filter.
  • the intercepting filter has a filtration accuracy of 3 ⁇ m, the gas source flows from the outside to the inside in the filter, and the filter has a pressure resistance of 34 bar.
  • the filter gas is initially filtered, the dust particles are intercepted, and a large amount of liquid is filtered out, and the filtration efficiency is greater than 92%.
  • the refrigerating dryer is based on the principle of air freezing and water-discharging.
  • the refrigerating equipment is used to cool the compressed biogas to a certain dew point temperature, and the corresponding moisture is deposited, and the gas-liquid separation is performed through the separator, and then the water is discharged by the automatic drain valve. Thereby achieving the purpose of freezing and dehumidification.
  • the coalescing filter further filters the compressed gas, and the filtration precision is 0.5 ⁇ .
  • the flow direction of the gas source in the filter is from inside to outside, degreasing and dewatering, the filtration efficiency is 99.925%, and the filter pressure is 34bar.
  • the activated carbon tank is filled with activated carbon granules to deeply remove the odor such as ammonia and oil in the compressed biogas, and the design pressure is 1.6 MPa.
  • the gas source in the filter flows from the inside to the outside to remove the dust particles adsorbed by the activated carbon.
  • the precision terminal filter has a filtration precision of ⁇ . ⁇ , and the flow direction of the gas in the filter is from the inside to the outside, and the compressed biogas is subjected to more precise first-stage dust removal and degreasing treatment.
  • a differential pressure indicator on the filter indicates the optimum time to replace the filter element, increases filter utilization, and reduces pressure drop. It also has an automatic drain to reliably drain accumulated debris.
  • the biogas After purification, the biogas enters the heat exchanger for temperature adjustment to achieve the temperature before the film is introduced. Find between 25 ° C and 40 ° C.
  • the heat exchanger is made of 316 stainless steel with automatic constant temperature control.
  • the temperature control range is 25-40°C (temperature control accuracy can reach 1 °C).
  • the bypass flow of compressed biogas is controlled.
  • the PLC obtains the temperature sensor.
  • the gas temperature is controlled by the automatic or manual control of the valve opening and closing size to obtain the desired control heat exchange gas flow rate to control the temperature of the compressed biogas after heating.
  • the purified and heat-exchanged biogas enters the membrane group to purify the gas unit to separate the carbon dioxide from the methane.
  • the membrane group purification system uses a frame mounting structure, which is compact in connection and small in space.
  • the membrane group purifying gas unit is divided into four types of pipelines, one is a gas separation pipeline, and the two ends are respectively connected with the heat exchanger and the membrane module inlet, and the compressed gas is evenly distributed to each membrane module, so that each membrane The components work in the same state to ensure the working efficiency of the membrane module, and the gas separation pipeline is provided with independent stainless steel ball valves at the entrance of each membrane module.
  • the second is the gas gathering pipeline, which is connected with the outlet of the membrane module, and collects the methane gas produced by each membrane module to facilitate the transportation of the product gas.
  • the third is the exhaust gas pipeline, which is connected to the membrane module. Because of the high concentration of C 0 2 in the exhaust gas pipeline, it can be recycled or discharged.
  • the fourth is the permeate gas return line. The two ends are connected to the membrane module and the compressor respectively. Since the permeate contains about 49% of CH 4 , it is collected and returned to the compressor for further treatment.
  • the output of the product gas is controlled by monitoring the C0 2 content in the purified gas by a biogas online analyzer.
  • the online biogas analyzer can continuously measure C3 ⁇ 4, C0 2 , 0 2 and other content, H 2 S intermittent measurement. Independent 4-20 mA signal output for each gas.
  • a control unit is further provided, and the control unit is composed of a programmable logic controller, an analog module, a touch screen, a pressure transmitter, a temperature transmitter, and an electric shut-off valve.
  • the unit control unit can complete the interlock protection and control tasks, realize the start-stop control of the refrigerating dryer, and detect the operation and fault status of the refrigerating dryer.
  • the compressed gas over-temperature protection control detects the compressed gas temperature value through a temperature transmitter on the membrane inlet line. When the temperature exceeds the set protection value, the electric three-way shut-off valve stops supplying air to the membrane, and at the same time, switches to bypass return Pipes, to prevent the film from aging at high temperatures and fail.
  • the purity of carbon dioxide is too high, and the carbon dioxide content in the product gas is detected by a purity analyzer on the outlet line of the membrane group.
  • the opening of the electric proportional regulator valve is reduced to increase the carbon dioxide of the membrane group. Separate to obtain a qualified product gas; when the carbon dioxide purity is within the set range, the gas is supplied to the rear end storage tank.
  • Touch screen display and parameter setting function integrated display gas temperature, pressure, purity, cold dryer operation status, and can also set membrane inlet temperature protection value and carbon dioxide purity protection value on the touch screen to realize alarm information inquiry function.
  • Communication function CPU224CN controller body integrated RS485 communication interface and Ethernet communication module, can be configured as MODBUS and Ethernet communication mode respectively, connected with centralized monitoring system network, remote control unit on the centralized control unit computer, parameters Setup, monitoring, data collection records, report management.
  • the biogas was purified by membrane method.
  • the purified gas had a methane content of more than 95%, carbon dioxide of less than 3%, and hydrogen sulfide of less than 10 ppm.
  • the gas requirements of the national natural gas for vehicles were not generated.
  • membrane purification greatly saves floor space and reduces energy consumption.
  • the pressurized water washing requires a process water pump, a cold water circulation pump and a circulating water pump to pump the circulating water, and the total power is about 63.5 kW.
  • the membrane refining container area is only about 10m 2 , and the total biogas compression purification membrane purification project covers a total area of about 500m 2 , while the pressurized water washing entire project covers an area of about 1630m 2 .
  • the above technology was implemented in December 2012 in Deqingyuan Ecological Park, Zhangshanying Town, Yanqing County, Beijing.
  • the biogas membrane purification process used in the first batch of biogas was purified by membrane method to obtain biogas. Case.
  • the entire purification system is placed in a special container that is 4 meters long, 2 meters wide and 2 meters high.
  • the biogas feed gas is 13000 Nm 3 /d, and the biogas is desulfurized and dehydrated before entering the compression purification system. After desulfurization, the hydrogen sulfide content is reduced to below 10 ppm.
  • the purified biogas needs to be compressed to achieve the compression requirement of membrane separation.
  • the pressure is 1.2 MPa, and the compressed biogas enters the biogas purification and purifies the container.
  • the biogas Before the biogas enters the membrane group for carbon dioxide and methane separation, it is first purified to remove oil, moisture and dust. These impurities are removed by a filter, a refrigerating dryer and an activated carbon canister. After purification, the oil and dust levels reach O.Olppm, and there is no liquid water.
  • the purified biogas is exchanged between 25 °C and 40 °C before entering the membrane group, and then purified into the membrane group.
  • the purified product gas has a methane content of more than 95%, a carbon dioxide of less than 3%, and a hydrogen sulfide of less than 10 ppm, which meets the gas requirements of the national automotive compressed natural gas.
  • the membrane purification technology has obvious advantages compared with the pressure swing adsorption and pressurized water washing technology. Because it can be integrated in the container, the device has a compact structure, and is more than the pressure swing adsorption and pressurized water washing area. Small; Because the production and assembly of the equipment are completed in the factory, the on-site installation work is small, only the interface pipe and the external electrical connection are completed, so the installation is convenient; since the functional components are integrated in one integral base, the overall migration can be conveniently performed; Short process, simple equipment maintenance; low investment and operating costs. Industrial applicability
  • the invention provides a container type biogas purification membrane method purification system comprising a desulfurization dehydration unit, a compressor, a purification unit, a heat exchanger and a membrane group purification gasification unit which are sequentially connected in a movable container, and the desulfurization and dehydration unit is connected Biogas source produced by anaerobic fermentation tanks.
  • the container type biogas purification membrane purification system provided by the invention can integrate the purification equipment into the container, has short process flow, saves floor space, can be miniaturized and mobileized; biogas purification uses polymer film to carry out carbon dioxide and methane Separation, less investment, ability Low consumption; biogas is purified and decontaminated before entering the membrane purification, ensuring the gas after purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

一种集装箱式沼气净化膜法提纯系统包括:设置在可移动集装箱内依次连接的脱硫脱水单元、压缩机、净化单元、热交换器和膜组提纯制气单元,脱硫脱水单元连接厌氧发酵罐产生的沼气气源。

Description

集装箱式沼气净化膜法提纯系统 技术领域
本发明涉及沼气处理技术,特别是涉及一种集装箱式沼气净化膜 法提纯系统。 说
背景技术
沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的 一种可燃气体。由于这种气体最先是在沼泽中发现的,所以称为沼气。 人畜粪便、农作物秸秆、污水等各种有机物在密闭的沼气发酵装置内, 在厌氧条件下进行发酵, 被种类繁多的沼气发酵微生物分解转化, 从 而产生沼气。 沼气是多种气体的混合物, 一般书含有甲烷 50%-70%, 二 氧化碳 20%-40%, 其余为少量的水蒸气、 氮气、 氢气和硫化氢等。 经 过净化去除杂质气体, 提纯去除二氧化碳气体, 得到的产品气可达国 家车用天然气标准。
根据国家标准 GB18047 - 2000车用压缩天然气技术指标, 车用压 缩天然气中二氧化碳含量应 3.0 %。 二氧化碳是沼气中的不可燃组 分, 含量过高会降低天然气的燃烧热值, 沼气中的二氧化碳的去除, 称为沼气提纯。
目前, 实际应用的沼气提纯的方法主要分为以下几种:
物理法: 变压吸附法, 加压水洗法, 高分子膜分离法等; 化学法: 本菲尔法, 复合催化法, 空间位阻按法, BV钾碱液法, 氨水法等;
物理化学法: 环丁砜一乙醇胺法, MDEA法等。
化学法的工作原理是用化学试剂对沼气中的二氧化碳进行吸收, 由于需要化学试剂量较大, 成本较高。
物理法中的三种沼气提纯方法在目前沼气提纯领域应用较多: 变压吸附法的工作原理是利用沼气中各组分在吸附剂上吸附特 性的差异以及吸附量随压力变化的原理,通过周期性的压力变化实现 气体的分离。 为了保证对气体的连续处理要求, 变压吸附法至少需要 两个吸附塔, 也可是三塔、 四塔或更多。
加压水洗法的工作原理是利用原料沼气中的 C 02在加压的条件 下用水吸收。 根据亨利定律的理论, 等温下气体在水中的溶解度与压 力成正比。 水吸收 co2时釆用高压及低温, 气体解吸时釆用低压或加 温。
膜分离法的工作原理是利用沼气中各种气体的分压在高分子膜- 聚酰亚胺中空纤维丝管的高压侧(原料侧)与低压侧 (渗透侧)所形 成的驱动力 --分压差作用下, 溶解系数和扩散系数大的气体(如 co2
H2S )优先透过管壁, 其余气体(C )相对受到阻隔, 从而达到分 离的目的。
变压吸附法和加压水洗法都具有占地面积大、 不可移动、 工艺复 杂的缺点。 加压水洗操作费用高、 高压、 低温、 技术难度大, 吸收塔 易堵塞。
脱硫、 除杂、 粗脱水后的沼气釆用变压吸附法进行提纯, 先对沼 的变压吸附装置,利用两台吸附塔中中装填的专用碳分子筛吸附剂选 择性地吸附掉 02、 co2等杂质气体组分, 甲烷从塔顶排出。
脱硫、 除杂、 粗脱水后的沼气釆用加压水洗法进行提纯, 进入沼 气压缩机将气体压缩送入吸收塔下部,与上部喷淋下来的冷却水逆流 接触进行热质交换, 吸收 co2气体。 吸收塔出塔气一部分返回到三级 解吸塔; 另一部分送入分子筛吸附器, 除去气体中残余水分和微量 co2残余, 即为合格的产品气。
脱硫、 除杂、 粗脱水后的沼气釆用膜分离法进行提纯, 先对沼气 进行压缩,压缩后的沼气进入冷干机脱水,经过过滤器精细去除灰尘、 油分进行净化, 净化后的沼气换热后进入膜组进行提纯。
变压吸附提纯沼气因需要定期更换分子筛及阀门, 维修费用高。 加压水洗需要大量的循环水对 co2进行吸收, 所需控制仪表阀门也需 定期更换, 维修费用高。 变压吸附与加压水洗都需建造庞大的吸附塔 (吸收塔), 占地面积大, 不可移动, 工艺复杂。 发明内容
(一) 要解决的技术问题
本发明的目的是提供一种集装箱式沼气净化膜法提纯系统,以克 服传统的沼气提纯方法变压吸附、 加压水洗等占地面积大、 投资高、 能耗高、 运行成本高的缺陷, 实现没有污染物、 废水等的排放, 经济 环保, 移动性好, 灵活性好等优势。
(二)技术方案
为了解决上述技术问题,本发明提供一种集装箱式沼气净化膜法 提纯系统,其包括:设置在可移动集装箱内依次连接的脱硫脱水单元、 压缩机、 净化单元、 热交换器和膜组提纯制气单元, 所述脱硫脱水单 元连接厌氧发酵罐产生的沼气气源。
其中, 所述净化单元包括依次连接的拦截式预过滤器、 冷冻干燥 机、 聚结式过滤器、 活性炭罐、 初级油水分离过滤器和精密终端过滤 器, 所述拦截式预过滤器与所述压缩机连接, 所述精密终端过滤器与 所述热交换器连接。
其中, 所述压缩机为无油压缩机。
其中, 所述热交换器由不锈钢材料制成, 其上设置有自动恒温控 制模块, 温度控制范围在 25-40°C之间。
其中, 所述膜组提纯制气单元包括至少两级依次连接的膜组件, 每级膜组件并列设置多根。
其中, 所述膜组提纯制气单元还包括:
分气管路, 两端分别与热交换器和膜组件入口连接, 将热交换器 排出的气体均匀的分配给每一根膜组件;
集气管路, 与膜组件出口连接, 将每一根膜组件产出的产品甲烷 气进行汇集处理;
排放气管路, 与膜组件连接;
渗透气回流管路, 其两端分别与膜组件和压缩机连接。
其中,所述分气管路在每个膜组件的入口处均设有独立的不锈钢 球阀。
(三) 有益效果
上述技术方案所提供的集装箱式沼气净化膜法提纯系统,把 提纯设备集成在集装箱内, 工艺流程短, 节约了占地面积, 可小 型化、 移动化; 沼气提纯釆用高分子膜对二氧化碳和甲烷进行分 离, 投资少、 能耗低; 沼气在进入膜提纯之前先进行净化去杂, 保证了提纯后气体的品质。 附图说明
图 1是本发明实施例集装箱式沼气净化膜法提纯系统的结构原理 图;
图 2是本发明实施例净化单元的结构原理图。 具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
参照图 1和图 2所示,本实施例集装箱式沼气净化膜法提纯系统包 括设置在可移动集装箱内依次连接的脱硫脱水单元、压缩机、 净化单 元、 热交换器和膜组提纯制气单元, 所述脱硫脱水单元连接厌氧发酵 罐产生的沼气气源。
从厌氧发酵罐出来的沼气气源, 一般压力在 1.6-2.0KPa之间, 中 温发酵沼气原料气温度为 38 °C左右, 原料气组分为 CH4为 55%-65% , C02为 35-40%, H2S浓度由于物料不同而不同, 从几百 ppm至几千 ppm 不等, O2<0.5%, N2<3%, 氨气微量、 一氧化碳微量。
膜法提纯后的产品气中 CH4> 95%, C02<3%, H2S<10ppm, O2<0.5%。
经过脱硫脱水单元脱硫、脱水的沼气经无油压缩机压缩后, 通过 过滤器、冷冻式干燥机、 活性炭罐除油器等净化单元以去除饱和水蒸 汽和灰尘微粒、 油分等。
净化单元依次为拦截式预过滤器、 冷冻干燥机、 聚结式过滤器、 活性炭罐、 初级油水分离过滤器、 精密终端过滤器。
拦截式过滤器, 过滤精度为 3μπι, 气源在过滤器流向为由外向 内, 过滤器耐压 34bar。 对压缩气体进行初步过滤、 拦截掉灰尘颗粒, 滤除大量液体, 过滤效率大于 92%。
冷冻式干燥机是根据空气冷冻析水原理,利用制冷设备使压缩沼 气冷却到一定的露点温度, 析出相应所含的水分, 并通过分离器进行 气液分离, 再由自动排水阀将水排出, 从而达到冷冻除湿的目的。
聚结式过滤对压缩气体进一步过滤, 过滤精度 0.5μπι, 过滤器内 气源流向为由内向外, 除油、 除水, 过滤效率达 99.925%, 过滤器耐 压 34bar。
活性炭罐内装有活性炭颗粒,以深度去除压缩沼气中的异味如氨 及油分, 设计压力 1.6MPa。
初级油水分离过滤器, 过滤精度 Ιμπι, 过滤器内气源流向为由 内向外, 以去除活性炭吸附后的粉尘颗粒。
精密终端过滤器, 过滤精度为 Ο.ΟΙμπι, 过滤器内气源流向为由 内向外, 对压缩沼气进行更精密一级除尘、 除油处理。
在过滤器上均带有压差指示器, 可指示更换滤芯的最佳时间, 提 高过滤器的利用率, 减小压降; 还带有自动排污装置, 可靠地排出积 聚的杂物。
净化后沼气进入热交换器进行温度调节,以达到进膜前温度的要 求 25°C-40°C之间。换热器由 316不锈钢材料制成,具有自动恒温控制, 温度控制范围: 25-40°C (温度控制精度可达士 1 °C ), 控制压缩沼气 的旁通流量, 由 PLC通过温度传感器获得气体温度, 通过自动或手动 控制调节阀开合大小来获得所需的控制换热气体流量来控制加热后 的压缩沼气温度。
净化、换热后的沼气进入膜组提纯制气单元进行二氧化碳与甲烷 的分离, 膜组提纯系统釆用框架安装结构, 连接紧凑, 占用空间小。
膜组提纯制气单元分为四种管路, 一是分气管路, 两端分别与热 交换器和膜组件入口连接, 将压缩气体均匀的分配给每一根膜组件, 使每一根膜组件都在相同的状态下工作, 保证膜组件的工作效率, 并 且分气管路在每个膜组件的入口处均设有独立的不锈钢球阀,当产气 量不需要很大时,可以关闭一定数量的球阀,从而关闭相应的膜组件, 避免了不必要的浪费, 延长了膜组件的使用寿命。 二是集气管路, 与 膜组件出口连接, 将每一根膜组件产出的产品甲烷气进行汇集处理, 便于产品气的输送。 三是排放气管路, 与膜组件连接, 因排放气管路 中的 C 02浓度较高,可以集中回收利用或排放。四是渗透气回流管路, 其两端分别与膜组件和压缩机连接, 渗透气中因含有约 49%的 CH4, 故集中汇集后回流至压缩机再次处理。
通过沼气在线分析仪监测提纯后气体中的 C02含量来控制产品 气的输出。 在线沼气分析仪可连续检测 C¾、 C02、 02等含量, H2S 间歇测量。 各路气体独立的 4-20mA信号输出。
本实施例中还设置有控制单元, 控制单元由可编程逻辑控制器、 模拟量模块、触摸屏、压力变送器、温度变送器及电动切断阀等组成。 釆用自动控制方式, 控制整套设备的正常运行, 实时显示机组运行状 态、 气体压力、 温度、 流量、 纯度等参数等。 同时, 可集中设置膜入 口温度保护值和二氧化碳纯度保护值、 控制冷冻式干燥机的启停、检 测冷冻式干燥机的运行和故障信号, 预留 RS485和 RJ45通讯接口, 可与远程监控中心组网连接。
冷冻式干燥机选择远程控制时,机组控制单元可完成联锁保护和 控制任务, 实现启停控制冷冻式干燥机, 检测冷冻式干燥机的运行和 故障状态。
压缩气体超温保护控制,通过膜入口管路上的温度变送器检测压 缩气体温度值, 当温度超过设定保护值时, 电动三通切断阀停止向膜 供气, 同时, 切换到旁路回流管道, 避免膜在高温下老化而失效。
二氧化碳纯度过高保护控制,通过膜组出口管路上的纯度分析仪 检测产品气中二氧化碳含量, 当二氧化碳纯度大于设定的合格值时, 电动比例调节阀开度减少, 以增加膜组对二氧化碳的分离, 得到合格 的产品气; 当二氧化碳纯度在设定的范围内时, 向后端储罐送气。
触摸屏显示和设定参数功能, 集成显示气体温度、 压力、 纯度、 冷干机运行状态,还可在触摸屏上设置膜入口温度保护值和二氧化碳 纯度保护值, 实现报警信息查询功能等。
通讯功能, CPU224CN控制器本体集成的 RS485通讯接口和以 太网通讯模块, 可分别配置成 MODBUS和以太网通讯方式, 与集中 监控系统组网连接, 远程可在集中控制单元计算机上对机组控制、 参 数设置、 监视、 数据釆集记录、 报表管理。
通过试验发现, 釆用膜法对沼气进行提纯, 提纯后的气体中甲烷 含量在 95%以上, 二氧化碳小于 3%, 硫化氢小于 lOppm, 达到的国家 车用天然气的气体要求,没有污染物产生。相比变压吸附和加压水洗, 同样 13000Nm3/d原始沼气进行提纯的项目,膜法提纯大大节约了占地 面积, 降低了能耗。 整套膜法提纯系统里仅有一台去除水分的冷冻干 燥机, 功率在 6kw。 而加压水洗就需要工艺水泵、 冷水循环泵及循环 水泵对循环水进行泵送, 功率总和约在 63.5kw。
膜法提纯集装箱面积仅约 10m2,整个沼气压缩净化膜法提纯工程 占地总面积约为 500m2, 而加压水洗整个工程占地面积约 1630m2。 上述技术于 2012年 12月,在北京巿延庆县张山营镇德青源生态园 进行实施, 釆用的沼气膜法提纯工艺, 属国内第一套沼气釆用膜法提 纯制取生物燃气的案例。 整套提纯系统放置在一个长 4米, 宽 2米, 高 2米的特制集装箱内。
沼气原料气为 13000Nm3/d,沼气在进入压缩提纯系统之前先进行 脱硫、 脱水处理, 脱硫后硫化氢含量降至 lOppm以下。 提纯后的沼气 需要进行压缩处理, 以达到膜组分离的压缩要求, 压力为 1.2MPa, 压 缩后的沼气进入沼气净化提纯集装箱。
沼气进入膜组进行二氧化碳和甲烷的分离之前,先要进行净化以 去除油分、 水分和灰尘。 釆用过滤器、 冷冻式干燥机和活性炭罐对这 些杂质进行去除, 净化后油分、 灰尘级别达到 O.Olppm, 没有液态水。 净化后的沼气在进入膜组之前换热至 25 °C-40°C之间, 然后进入膜组 提纯。 提纯后的产品气中甲烷含量大于 95%、 二氧化碳小于 3%、 硫 化氢小于 lOppm, 达到了国家车用压缩天然气的气体要求。
由以上实施例可以看出, 相比变压吸附和加压水洗技术,膜提纯 技术具有明显的优势,由于可以集成在集装箱内,因此设备结构紧凑, 比变压吸附和加压水洗占地面积小; 因设备的生产、 组装都在工厂内 完成, 现场安装工作量少, 只需完成接口管道及外部电气的连接, 故 安装方便;由于功能组件集成于一个整体底座,可以方便地整体迁移; 工艺流程短、 设备维护简单; 投资、 运行成本低。 工业实用性
本发明提供一种集装箱式沼气净化膜法提纯系统包括设置在可 移动集装箱内依次连接的脱硫脱水单元、 压缩机、 净化单元、 热交换 器和膜组提纯制气单元,所述脱硫脱水单元连接厌氧发酵罐产生的沼 气气源。本发明提供的集装箱式沼气净化膜法提纯系统能够将提纯设 备集成在集装箱内, 工艺流程短, 节约了占地面积, 可小型化、 移动 化; 沼气提纯釆用高分子膜对二氧化碳和甲烷进行分离, 投资少、 能 耗低; 沼气在进入膜提纯之前先进行净化去杂, 保证了提纯后气体的

Claims

权 利 要 求 书
1、 一种集装箱式沼气净化膜法提纯系统, 其特征在于, 包括: 设置在可移动集装箱内依次连接的脱硫脱水单元、压缩机、净化单元、 热交换器和膜组提纯制气单元,所述脱硫脱水单元连接厌氧发酵罐产 生的沼气气源。
2、 如权利要求 1所述的集装箱式沼气净化膜法提纯系统, 其特 征在于,所述净化单元包括依次连接的拦截式预过滤器、冷冻干燥机、 聚结式过滤器、 活性炭罐、 初级油水分离过滤器和精密终端过滤器, 所述拦截式预过滤器与所述压缩机连接,所述精密终端过滤器与所述 热交换器连接。
3、 如权利要求 1所述的集装箱式沼气净化膜法提纯系统, 其特 征在于, 所述压缩机为无油压缩机。
4、 如权利要求 1所述的集装箱式沼气净化膜法提纯系统, 其特 征在于, 所述热交换器由不锈钢材料制成, 其上设置有自动恒温控制 模块, 温度控制范围在 25-40°C之间。
5、 如权利要求 1所述的集装箱式沼气净化膜法提纯系统, 其特 征在于, 所述膜组提纯制气单元包括至少两级依次连接的膜组件, 每 级膜组件并列设置多根。
6、 如权利要求 5所述的集装箱式沼气净化膜法提纯系统, 其特 征在于, 所述膜组提纯制气单元还包括:
分气管路, 两端分别与热交换器和膜组件入口连接, 将热交换器 排出的气体均匀的分配给每一根膜组件;
集气管路, 与膜组件出口连接, 将每一根膜组件产出的产品甲烷 气进行汇集处理;
排放气管路, 与膜组件连接;
渗透气回流管路, 其两端分别与膜组件和压缩机连接。
7、 如权利要求 6所述的集装箱式沼气净化膜法提纯系统, 其特征 在于, 所述分气管路在每个膜组件的入口处均设有独立的不锈钢球 阀。
PCT/CN2014/080417 2013-06-24 2014-06-20 集装箱式沼气净化膜法提纯系统 WO2014206248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/392,164 US9975085B2 (en) 2013-06-24 2014-06-20 Container-type biogas purification film method purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320365062.3 2013-06-24
CN2013203650623U CN203342628U (zh) 2013-06-24 2013-06-24 集装箱式沼气净化膜法提纯系统

Publications (1)

Publication Number Publication Date
WO2014206248A1 true WO2014206248A1 (zh) 2014-12-31

Family

ID=49742570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080417 WO2014206248A1 (zh) 2013-06-24 2014-06-20 集装箱式沼气净化膜法提纯系统

Country Status (3)

Country Link
US (1) US9975085B2 (zh)
CN (1) CN203342628U (zh)
WO (1) WO2014206248A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336226A (zh) * 2021-06-24 2021-09-03 湖北洁绿环保科技有限公司 一种高纯度液体二氧化碳的生产工艺

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203342628U (zh) * 2013-06-24 2013-12-18 北京合力清源科技有限公司 集装箱式沼气净化膜法提纯系统
CN103881779B (zh) * 2014-03-24 2015-06-03 北京三益能源环保发展股份有限公司 沼气膜法提纯加热系统
CN105477982A (zh) * 2016-01-20 2016-04-13 天津中油现代石油设备有限公司 一种新型安全的天然气橇装式脱硫系统
CN105505497A (zh) * 2016-01-20 2016-04-20 天津中油现代石油设备有限公司 一种新型脱除天然气中硫化氢的橇装设备
CN106430888A (zh) * 2016-11-30 2017-02-22 黑龙江省科学院科技孵化中心 一种移动式污水处理装置及其处理方法
CN106669377A (zh) * 2016-12-28 2017-05-17 宁波兴光新能源投资有限公司 一种填埋气提纯装置
CN108795714A (zh) * 2017-05-02 2018-11-13 扬州永清新能源发展有限公司 一种沼气制备设备及其方法
CN109593582A (zh) * 2018-12-03 2019-04-09 中国船舶重工集团公司第七〇九研究所 沼气膜提纯集成装置及其沼气提纯方法
CN113354464A (zh) * 2021-06-08 2021-09-07 广州城建职业学院 肠道式发酵装置及包含其的有机废物处理设备
US11794148B2 (en) * 2021-08-22 2023-10-24 Nacelle Logistics Llc Natural gas system for on-site processing
CN114907893A (zh) * 2022-05-19 2022-08-16 上海林海生态技术股份有限公司 用于沼气净化装置脱碳系统的冷却方法
CN115367867B (zh) * 2022-07-19 2023-05-05 武汉天源环保股份有限公司 高浓度有机废水资源化处理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028579A (zh) * 2006-11-12 2007-09-05 张晓忠 膜分离技术净化沼气的方法
CN102533369A (zh) * 2012-01-13 2012-07-04 北京昊海天际科技有限公司 一种用于沼气提纯的工艺方法
CN102559316A (zh) * 2011-12-31 2012-07-11 浙江工业大学 净化沼气的方法及其设备
CN202460429U (zh) * 2011-11-17 2012-10-03 黑龙江省森林工程与环境研究所 一种同步分离纯化沼气中甲烷与二氧化碳的膜装置
CN103232871A (zh) * 2013-05-08 2013-08-07 山西汾西机电有限公司 一种沼气提纯系统及其沼气提纯工艺
CN203342628U (zh) * 2013-06-24 2013-12-18 北京合力清源科技有限公司 集装箱式沼气净化膜法提纯系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ553992A (en) * 2007-03-20 2008-10-31 Flotech Holdings Ltd Biogas treatments for increasing the methane concentration
US8153850B2 (en) * 2007-05-11 2012-04-10 The Texas A&M University System Integrated biofuel production system
US8999036B2 (en) * 2012-09-26 2015-04-07 Stearns Conrad Schmidt Consulting Engineers, Inc. Method for production of a compressed natural gas equivalent from landfill gas and other biogases
WO2014082007A2 (en) * 2012-11-26 2014-05-30 Neo Energy, Llc System and method for producing fertilizer from organic waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028579A (zh) * 2006-11-12 2007-09-05 张晓忠 膜分离技术净化沼气的方法
CN202460429U (zh) * 2011-11-17 2012-10-03 黑龙江省森林工程与环境研究所 一种同步分离纯化沼气中甲烷与二氧化碳的膜装置
CN102559316A (zh) * 2011-12-31 2012-07-11 浙江工业大学 净化沼气的方法及其设备
CN102533369A (zh) * 2012-01-13 2012-07-04 北京昊海天际科技有限公司 一种用于沼气提纯的工艺方法
CN103232871A (zh) * 2013-05-08 2013-08-07 山西汾西机电有限公司 一种沼气提纯系统及其沼气提纯工艺
CN203342628U (zh) * 2013-06-24 2013-12-18 北京合力清源科技有限公司 集装箱式沼气净化膜法提纯系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336226A (zh) * 2021-06-24 2021-09-03 湖北洁绿环保科技有限公司 一种高纯度液体二氧化碳的生产工艺

Also Published As

Publication number Publication date
US9975085B2 (en) 2018-05-22
US20160166980A1 (en) 2016-06-16
CN203342628U (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2014206248A1 (zh) 集装箱式沼气净化膜法提纯系统
Golmakani et al. Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation
Shah et al. Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption
US10487282B2 (en) Method and system for providing upgraded biogas
Ryckebosch et al. Techniques for transformation of biogas to biomethane
CN111348623B (zh) 一种“甲醇氧化制甲醛”驰放尾气中氢气回收纯化系统
EP1979446B1 (en) Methane recovery from a landfill gas
CN101028579A (zh) 膜分离技术净化沼气的方法
Žák et al. Single-step purification of raw biogas to biomethane quality by hollow fiber membranes without any pretreatment–An innovation in biogas upgrading
EP3061515A1 (en) Device and method for simultaneous removal of hydrogen sulphide and carbon dioxide from biogas
KR20180007519A (ko) 바이오 가스로부터 메탄 회수율을 향상시킬 수 있는 다단 분리막 시스템
Karne et al. A review on biogas upgradation systems
CN101691320B (zh) 从填埋气中提纯回收甲烷和二氧化碳的装置
KR101442730B1 (ko) 연료전지용 바이오가스 전처리 장치
Nindhia et al. Method on conversion of gasoline to biogas fueled single cylinder of four stroke engine of electric generator
CN102807902A (zh) 焦炉煤气的二次净化方法
CN205559872U (zh) 多通路阀及制氧机
CN103159580B (zh) 一种净化提浓垃圾填埋气中甲烷的方法
KR101717480B1 (ko) 병렬식 psa 및 멤브레인 기반의 바이오 가스 정제를 위한 유량 제어방법
CN201514351U (zh) 高寒地区烟气预处理装置
Deng et al. Biogas cleaning and upgrading
CN203333608U (zh) 一种沼气提纯系统
CN109593582A (zh) 沼气膜提纯集成装置及其沼气提纯方法
Zăbavă et al. Methods of biogas purification-a review.
CN210855273U (zh) 一种高纯硫化氢的提纯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14392164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817294

Country of ref document: EP

Kind code of ref document: A1