WO2014205971A1 - 直冷冰箱 - Google Patents
直冷冰箱 Download PDFInfo
- Publication number
- WO2014205971A1 WO2014205971A1 PCT/CN2013/086314 CN2013086314W WO2014205971A1 WO 2014205971 A1 WO2014205971 A1 WO 2014205971A1 CN 2013086314 W CN2013086314 W CN 2013086314W WO 2014205971 A1 WO2014205971 A1 WO 2014205971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerating
- compressor
- defrosting
- evaporator
- tube
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
Definitions
- the invention relates to the technical field of refrigerators, and in particular to a defrosting system for a direct cooling refrigerator.
- the refrigeration methods of refrigerators are direct cooling and air cooling.
- the two refrigeration methods have their own advantages and disadvantages.
- the direct cold refrigerator is easy to frost, the food is not easy to dry and odor; the air-cooled refrigerator does not frost, but the food is easy to dry and odor.
- the existing defrosting technology generally uses an automatic compensation heating wire to defrost the refrigerating chamber, and the freezing compartment requires the user to perform manual defrost on a regular basis. Manual defrost is time-consuming and laborious, and has become annoyance for many users.
- a direct cooling refrigerator including a compressor, a condenser, a main refrigeration cycle capillary, a freezer compartment evaporator, and a refrigerating and refrigerating evaporation tube constituting a refrigerant circuit, and further includes
- the compressor outlet is in communication with the condenser inlet
- the first switching device that communicates the compressor outlet with the freezer evaporator inlet during defrosting further includes a defrosting refrigerating evaporator tube and during cooling a second switching device that communicates the outlet of the refrigerating and refrigerating evaporator with the inlet of the compressor, and causes the outlet of the defrosted refrigerating tube to communicate with the inlet of the compressor during defrosting.
- the refrigerating and refrigerating evaporation tube is disposed in parallel with the defrosted refrigerating evaporation tube.
- the first switching device is a three-way solenoid valve, and an inlet end of the three-way solenoid valve is connected to an outlet end of the compressor, and an outlet end of the three-way solenoid valve is The inlet end of the condenser is connected, and the other outlet end of the three-way solenoid valve is connected to the inlet end of the freezer evaporator.
- the second switching device is a three-way solenoid valve, and an outlet end of the three-way solenoid valve is connected to an inlet end of the compressor, and an inlet end of the three-way solenoid valve is The outlet end of the refrigerating and refrigerating evaporator is connected, and the other inlet end of the three-way solenoid valve is connected to the outlet end of the defrosted refrigerating tube.
- a defrosting capillary is connected in series between the freezing compartment evaporator and the defrosted refrigerating evaporation tube.
- the direct cooling refrigerator includes a freezing chamber and a refrigerating chamber, and the freezing chamber evaporator is disposed in the freezing chamber, and the refrigerating and refrigerating evaporation tube and the defrosting refrigerating evaporation tube are disposed in the refrigerating chamber, and the refrigerating chamber is further provided with Defrost compensates for electric heating tubes.
- a defrosting thermostat that controls the switching of the first and second switching devices, respectively, is also included.
- the direct cooling refrigerator of the present invention is provided with first and second switching devices, which can be switched between the main refrigeration cycle system and the defrosting refrigeration cycle system as needed to realize automatic defrosting of the freezing compartment.
- FIG. 1 is a schematic structural view of a direct cooling refrigerator according to an embodiment of the present invention.
- Fig. 2 is a schematic view showing the flow of refrigerant in the direct cooling refrigerator of the present invention during cooling.
- Fig. 3 is a schematic view showing the flow of refrigerant in the direct cooling refrigerator of the present invention during defrosting.
- a direct cooling refrigerator includes a main refrigeration cycle system and a defrosting control system.
- the main refrigeration cycle system is connected to the compressor 1, the condenser 2, the main refrigeration cycle capillary 3, the freezer compartment evaporator 4, and the refrigerating and refrigerating evaporator 5 in this order in the refrigerant flow direction.
- the defrosting control system includes a defrosting refrigeration cycle system, a first switching device 6 and a second switching device 7.
- the defrosting refrigeration cycle system includes, in addition to the compressor 1 and the freezer compartment evaporator 4 shared with the main refrigeration cycle system, a defrosting capillary tube 8 and a defrosting refrigerating evaporator tube 9.
- the freezing compartment evaporator 4 is disposed in a freezer compartment (not shown), and the refrigerating and refrigerating evaporation duct 5 and the defrosted refrigerating evaporation duct 9 are disposed in a refrigerator refrigerating compartment (not shown) and arranged in parallel, and A defrosting compensation electric heating pipe 10 is also provided in the refrigerator refrigerating compartment for defrosting the refrigerator compartment.
- the first switching device 6 is connected to the compressor 1 and the condenser 2, the freezer evaporator 4, and can be selectively connected between the condenser 2 and the freezer evaporator 4 to start the main refrigeration cycle system or the defrosting refrigeration cycle system
- the second switch device 7 is connected to the compressor 1 and the refrigerating and refrigerating evaporator tube 5, the defrosted refrigerating evaporator tube 9, and can be connected between the refrigerating and refrigerating evaporator tube 5 and the defrosting refrigerating tube 9 to activate the main refrigeration cycle system or defrost Refrigeration cycle system.
- the first and second switching devices are all three-way solenoid valves, which can be named as the first three-way solenoid valve and the second three-way solenoid valve.
- the inlet end of the first three-way solenoid valve is connected to the refrigerant outlet end of the compressor 1, one outlet end of the first three-way solenoid valve is connected to the inlet end of the condenser 2, and the other outlet end is connected to the inlet of the evaporator 4 of the freezer compartment.
- the end connection, the refrigerant bypass setting, can completely shut off the refrigerant flowing to the condenser 2 when performing defrosting;
- the outlet end of the second three-way solenoid valve is connected with the refrigerant inlet end of the compressor 1
- the second three One inlet end of the solenoid valve is connected to the outlet end of the refrigerating and refrigerating evaporator tube 5
- the other inlet end is connected to the outlet end of the defrosting refrigerating tube 9, and when defrosting, the connection with the refrigerating and refrigerating tube 5 can be Interrupted.
- the flow direction of the refrigerant during normal cooling of the refrigerator is as shown in FIG. 2.
- the first three-way solenoid valve is in a state in which the outlet of the compressor 1 is connected to the condenser 2, and the bypass pipe from the compressor 1 to the evaporator 4 of the freezer compartment is disconnected.
- the condenser 2 is exothermic, the freezer evaporator 4 absorbs heat, and the second three-way solenoid valve is in a state of connecting the refrigerating and refrigerating evaporator 5 to the refrigerant inlet end of the compressor 1, and from the defrosted refrigerating evaporator 9 to the compressor
- the passage of 1 is disconnected, the refrigerating and refrigerating evaporation tube 5 also absorbs heat, and the refrigerator is normally cooled; the refrigerant circulation when the refrigerator needs to be defrosted is shown in FIG.
- the first three-way solenoid valve disconnects the compressor 1 from the condenser 2
- the compressor 1 is directly connected to the freezer evaporator 4, and the second three-way solenoid valve causes the defrosted refrigerating evaporator 9 to be electrically connected to the compressor 1, and the refrigeration refrigerating evaporator 5 and the compressor 1 are closed.
- the freezer evaporator 4 releases heat, the refrigerant passes through the defrosting capillary 8, the defrosting refrigerating tube 9 absorbs heat, and the freezer compartment is in a defrosting state.
- the main refrigeration cycle system is automatically started.
- the first switching device 6 is connected to the compressor 1 and the condenser 2
- the second switching device 7 is connected to the compressor 1 and the refrigerating and refrigerating evaporator tube 5;
- the degree of frost is determined whether or not defrosting is performed; if so, the defrosting thermostat 11 is activated, and the defrosting thermostat 11 switches the first switching device 6 to the connection compressor 1 and the freezing chamber evaporator 4, and at the same time, the second switch
- the device 7 is switched to connect the compressor 1 and the defrosted refrigerating evaporator tube 9, thereby starting the defrosting refrigeration cycle system.
- the main refrigeration cycle time and the time of the defrosting refrigeration cycle are set, that is, after the main refrigeration cycle is performed for a period of time, the defrosting thermostat 11 is automatically activated, and the defrosting thermostat 11 controls the first and second The switching device is switched to the defrosting refrigeration cycle. After a period of time, the defrosting thermostat 11 is turned off, and the first and second switching devices are switched back to the refrigeration cycle, so that the automatic defrosting of the freezing compartment can be achieved.
- the refrigerator of the invention has the following advantages: the defrosting time of the freezer compartment of the refrigerator is short, and the refrigerating compartment of the freezer compartment can be used normally (because the refrigerating compartment is still in normal cooling during defrosting in the freezing compartment), the defrosting thermostat can be controlled as needed The first and second switching devices are automatically switched to achieve switching between the main refrigeration cycle system and the defrost cycle system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Defrosting Systems (AREA)
Abstract
一种直冷冰箱,包括构成冷媒回路的压缩机(1)、冷凝器(2)、主制冷循环毛细管(3)、冷冻室蒸发器(4)及制冷冷藏蒸发管(5),还包括第一开关装置(6),化霜冷藏蒸发管(9)以及第二开关装置(7)。第一开关装置(6)在制冷时使压缩机(1)出口与冷凝器(2)入口相通,而在化霜时使压缩机(1)出口与冷冻室蒸发器(4)入口相通,第二开关装置(7)在制冷时使制冷冷藏蒸发管(5)出口与压缩机(1)入口相通,而在化霜时使化霜冷藏蒸发管(9)出口与压缩机(1)入口相通。直冷冰箱设置第一、第二开关装置(6,7),可根据需要在主制冷循环系统与化霜制冷循环系统之间进行切换,使冷冻室实现自动除霜。
Description
本申请要求了申请日为2013年06月26日,申请号为201310258489.8,发明名称为“直冷冰箱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及冰箱技术领域,尤其涉及一种直冷冰箱的化霜系统。
【背景技术】
目前冰箱的制冷方式有直冷和风冷两种方式。两种制冷方式各有优缺点,直冷冰箱易结霜,食物不易风干串味;风冷冰箱不结霜但食物易风干串味。针对直冷冰箱的结霜问题,现有化霜技术一般采用自动补偿加热丝对冷藏室进行化霜,而冷冻室需要用户定期进行手动除霜。手动除霜费时费力,成为诸多用户的烦恼。
【发明内容】
本发明的目的在于提供一种实现冷冻室自动化霜的直冷冰箱。
为达到上述目的,本发明采用如下技术方案:一种直冷冰箱,包括构成冷媒回路的压缩机、冷凝器、主制冷循环毛细管、冷冻室蒸发器及制冷冷藏蒸发管,还包括在制冷时使所述压缩机出口与所述冷凝器入口相通,而在化霜时使所述压缩机出口与所述冷冻室蒸发器入口相通的第一开关装置,还包括化霜冷藏蒸发管及在制冷时使所述制冷冷藏蒸发管出口与压缩机入口相通,而在化霜时使所述化霜冷藏蒸发管出口与压缩机入口相通的第二开关装置。
作为本发明的进一步改进,所述制冷冷藏蒸发管与所述化霜冷藏蒸发管并联设置。
作为本发明的进一步改进,所述第一开关装置为三通电磁阀,该三通电磁阀的进口端与所述压缩机的出口端连接,所述三通电磁阀的一个出口端与所述冷凝器的进口端连接,所述三通电磁阀的另一个出口端与所述冷冻室蒸发器的进口端连接。
作为本发明的进一步改进,所述第二开关装置为三通电磁阀,该三通电磁阀的出口端与所述压缩机的进口端连接,所述三通电磁阀的一个进口端与所述制冷冷藏蒸发管的出口端连接,所述三通电磁阀的另一个进口端与所述化霜冷藏蒸发管的出口端连接。
作为本发明的进一步改进,所述冷冻室蒸发器与所述化霜冷藏蒸发管之间串接有化霜毛细管。
作为本发明的进一步改进,所述直冷冰箱包括冷冻室和冷藏室,冷冻室蒸发器设置在冷冻室,所述制冷冷藏蒸发管、化霜冷藏蒸发管设置在冷藏室内,冷藏室内还设置有化霜补偿电加热管。
作为本发明的进一步改进,还包括分别控制第一、第二开关装置进行切换的化霜温控器。
与现有技术相比,本发明直冷冰箱设置第一、第二开关装置,可根据需要在主制冷循环系统与化霜制冷循环系统之间进行切换,使冷冻室实现自动除霜。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的有关本发明的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本发明一实施方式直冷冰箱的结构示意图。
图2所示为本发明直冷冰箱在进行制冷时的制冷剂流向示意图。
图3所示为本发明直冷冰箱在进行除霜时的制冷剂流向示意图。
【具体实施方式】
以下将结合附图所示的各实施例对本发明进行详细描述。但这些实施例并不限制本发明,本领域的普通技术人员根据这些实施例所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
如图1所示,本发明一实施方式直冷冰箱包括主制冷循环系统和化霜控制系统。主制冷循环系统按制冷剂流向依次连接有压缩机1、冷凝器2、主制冷循环毛细管3、冷冻室蒸发器4及制冷冷藏蒸发管5。所述化霜控制系统包括化霜制冷循环系统、第一开关装置6与第二开关装置7。所述化霜制冷循环系统除了包括与主制冷循环系统共用的压缩机1、冷冻室蒸发器4外,还包括化霜毛细管8及化霜冷藏蒸发管9。所述冷冻室蒸发器4设置在冰箱冷冻室(未图示)内,所述制冷冷藏蒸发管5、化霜冷藏蒸发管9设置在冰箱冷藏室(未图示)内并且并联设置,另外,冰箱冷藏室内还设有化霜补偿电加热管10,用以对冰箱冷藏室进行化霜。
第一开关装置6连接压缩机1与冷凝器2、冷冻室蒸发器4,并可以在冷凝器2与冷冻室蒸发器4之间选择连接以启动主制冷循环系统或化霜制冷循环系统,第二开关装置7连接压缩机1与制冷冷藏蒸发管5、化霜冷藏蒸发管9,并可以在制冷冷藏蒸发管5、化霜冷藏蒸发管9之间选择连接以启动主制冷循环系统或化霜制冷循环系统。在本实施方式中,第一、第二开关装置都为三通电磁阀,可对应命名为第一三通电磁阀与第二三通电磁阀。第一三通电磁阀的进口端与压缩机1的冷媒出口端连接,第一三通电磁阀的一个出口端与冷凝器2的进口端连接,另一个出口端与冷冻室蒸发器4的进口端连接,这种冷媒旁路设置,在进行化霜时,可将流向冷凝器2的冷媒彻底关断;第二三通电磁阀的出口端与压缩机1的冷媒进口端连接,第二三通电磁阀的一个进口端与制冷冷藏蒸发管5的出口端连接,另一个进口端与化霜冷藏蒸发管9的出口端连接,在进行化霜时,可将与制冷冷藏蒸发管5的连接中断。
冰箱正常制冷时的冷媒流向如图2所示,第一三通电磁阀处于将压缩机1出口与冷凝器2连通状态,而从压缩机1通向冷冻室蒸发器4的旁通管道断开,冷凝器2放热,冷冻室蒸发器4吸热,第二三通电磁阀处于将制冷冷藏蒸发管5与压缩机1的冷媒进口端连通状态,而从化霜冷藏蒸发管9通向压缩机1的通路断开,制冷冷藏蒸发管5也吸热,冰箱正常制冷;冰箱需要化霜时制冷剂循环如图3所示,第一三通电磁阀使压缩机1与冷凝器2通路断开,而使压缩机1直接与冷冻室蒸发器4导通,同时,第二三通电磁阀使化霜冷藏蒸发管9与压缩机1导通,而使制冷冷藏蒸发管5与压缩机1关断,冷冻室蒸发器4放热,制冷剂经过化霜毛细管8、化霜冷藏蒸发管9吸热,冰箱冷冻室处于除霜状态。
具体控制过程中,冰箱开机后,自动启动主制冷循环系统,此时第一开关装置6连接压缩机1与冷凝器2,第二开关装置7连接压缩机1与制冷冷藏蒸发管5;根据结霜程度,判断是否进行化霜;如是,则启动化霜温控器11,化霜温控器11将第一开关装置6切换至连接压缩机1与冷冻室蒸发器4,同时将第二开关装置7切换至连接压缩机1与化霜冷藏蒸发管9,借此启动化霜制冷循环系统。一般来说,会设定主制冷循环时间与化霜制冷循环的时间,即,主制冷循环进行一段时间后,自动启动化霜温控器11,化霜温控器11控制第一、第二开关装置切换至化霜制冷循环阶段,过一段时间,化霜温控器11关闭,第一、第二开关装置重新切换至制冷循环阶段,如此往复,可实现冷冻室的自动除霜。
本发明冰箱具有如下优点:冰箱冷冻室化霜时间短,冷冻室化霜时冷藏室能正常使用(因为冷藏室在冷冻室化霜时还在正常制冷),化霜温控器可根据需要控制第一、第二开关装置进行自动切换,从而实现主制冷循环系统与化霜循环系统的切换。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
Claims (7)
- 一种直冷冰箱,包括构成冷媒回路的压缩机、冷凝器、主制冷循环毛细管、冷冻室蒸发器及制冷冷藏蒸发管,其特征在于,还包括在制冷时使所述压缩机出口与所述冷凝器入口相通,而在化霜时使所述压缩机出口与所述冷冻室蒸发器入口相通的第一开关装置,还包括化霜冷藏蒸发管及在制冷时使所述制冷冷藏蒸发管出口与压缩机入口相通,而在化霜时使所述化霜冷藏蒸发管出口与压缩机入口相通的第二开关装置。
- 根据权利要求1所述的直冷冰箱,其特征在于,所述制冷冷藏蒸发管与所述化霜冷藏蒸发管并联设置。
- 根据权利要求2所述的直冷冰箱,其特征在于,所述第一开关装置为三通电磁阀,该三通电磁阀的进口端与所述压缩机的出口端连接,所述三通电磁阀的一个出口端与所述冷凝器的进口端连接,所述三通电磁阀的另一个出口端与所述冷冻室蒸发器的进口端连接。
- 根据权利要求2所述的直冷冰箱,其特征在于,所述第二开关装置为三通电磁阀,该三通电磁阀的出口端与所述压缩机的进口端连接,所述三通电磁阀的一个进口端与所述制冷冷藏蒸发管的出口端连接,所述三通电磁阀的另一个进口端与所述化霜冷藏蒸发管的出口端连接。
- 根据权利要求1至4中任一项所述的直冷冰箱,其特征在于,所述冷冻室蒸发器与所述化霜冷藏蒸发管之间串接有化霜毛细管。
- 根据权利要求5所述的直冷冰箱,其特征在于,所述直冷冰箱包括冷冻室和冷藏室,冷冻室蒸发器设置在冷冻室,所述制冷冷藏蒸发管、化霜冷藏蒸发管设置在冷藏室内,冷藏室内还设置有化霜补偿电加热管。
- 根据权利要求6所述的直冷冰箱,其特征在于,还包括分别控制第一、第二开关装置进行切换的化霜温控器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310258489.8A CN104251595A (zh) | 2013-06-26 | 2013-06-26 | 直冷冰箱 |
CN201310258489.8 | 2013-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014205971A1 true WO2014205971A1 (zh) | 2014-12-31 |
Family
ID=52140941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/086314 WO2014205971A1 (zh) | 2013-06-26 | 2013-10-31 | 直冷冰箱 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104251595A (zh) |
WO (1) | WO2014205971A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111520942B (zh) * | 2020-05-06 | 2021-02-23 | 珠海格力电器股份有限公司 | 冰箱 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5115840A (ja) * | 1974-07-30 | 1976-02-07 | Sanyo Electric Co | Jososochi |
JPS60182662U (ja) * | 1984-05-15 | 1985-12-04 | シャープ株式会社 | 冷却装置 |
CN2543004Y (zh) * | 2002-04-23 | 2003-04-02 | 广东科龙电器股份有限公司 | 直冷冰箱 |
CN101984312A (zh) * | 2010-11-23 | 2011-03-09 | 深圳和而泰智能控制股份有限公司 | 一种冰箱化霜系统和方法 |
WO2011064928A1 (ja) * | 2009-11-25 | 2011-06-03 | ダイキン工業株式会社 | コンテナ用冷凍装置 |
CN202853235U (zh) * | 2012-11-14 | 2013-04-03 | 合肥晶弘电器有限公司 | 可实现冷冻室蒸发器半自动化霜的直冷系统 |
CN103017427A (zh) * | 2013-01-10 | 2013-04-03 | 合肥美的荣事达电冰箱有限公司 | 冰箱及其制冷系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87215933U (zh) * | 1987-11-30 | 1988-08-10 | 上海制冷设备厂 | 冷柜节能制冷循环装置 |
-
2013
- 2013-06-26 CN CN201310258489.8A patent/CN104251595A/zh active Pending
- 2013-10-31 WO PCT/CN2013/086314 patent/WO2014205971A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5115840A (ja) * | 1974-07-30 | 1976-02-07 | Sanyo Electric Co | Jososochi |
JPS60182662U (ja) * | 1984-05-15 | 1985-12-04 | シャープ株式会社 | 冷却装置 |
CN2543004Y (zh) * | 2002-04-23 | 2003-04-02 | 广东科龙电器股份有限公司 | 直冷冰箱 |
WO2011064928A1 (ja) * | 2009-11-25 | 2011-06-03 | ダイキン工業株式会社 | コンテナ用冷凍装置 |
CN101984312A (zh) * | 2010-11-23 | 2011-03-09 | 深圳和而泰智能控制股份有限公司 | 一种冰箱化霜系统和方法 |
CN202853235U (zh) * | 2012-11-14 | 2013-04-03 | 合肥晶弘电器有限公司 | 可实现冷冻室蒸发器半自动化霜的直冷系统 |
CN103017427A (zh) * | 2013-01-10 | 2013-04-03 | 合肥美的荣事达电冰箱有限公司 | 冰箱及其制冷系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104251595A (zh) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020015407A1 (zh) | 一种具有深冷功能的双系统风冷冰箱及其制冷控制方法 | |
CN108224840B (zh) | 一种热泵空调系统和控制方法 | |
CN106016920B (zh) | 一种双系统冰箱除霜能耗控制方法、系统及冰箱 | |
CN108613453B (zh) | 一种用于冰箱的制冷模块及其控制方法 | |
CN103383157A (zh) | 热泵空调系统及其控制方法 | |
CN112902473B (zh) | 空调换热结构、空调外机、空调系统及空调系统控制方法 | |
CN111207534A (zh) | 制冷系统、制冷设备以及制冷系统的控制方法 | |
WO2013189076A1 (zh) | 制冷设备及其制冷系统和该制冷设备的化霜控制方法 | |
WO2014205972A1 (zh) | 用于直冷冰箱的化霜控制系统 | |
CN213454443U (zh) | 制冷系统 | |
WO2016101672A1 (zh) | 一种冰箱与冰箱的运行控制方法 | |
CN105466112B (zh) | 热气融霜节能制冷系统 | |
CN112902479B (zh) | 一种空调换热结构、空调系统及其控制方法和空调外机 | |
WO2019184408A1 (zh) | 电化学制冷窗式空调除霜控制方法及控制系统、空调 | |
WO2014205973A1 (zh) | 用于直冷冰箱的化霜系统控制方法 | |
CN110285595B (zh) | 制冷系统及具有其的制冷设备 | |
WO2018176800A1 (zh) | 空调器和空调器的运行方法 | |
WO2014205971A1 (zh) | 直冷冰箱 | |
CN203375604U (zh) | 热泵空调系统 | |
JP3426892B2 (ja) | マルチエバポレータ冷蔵庫 | |
CN110736265A (zh) | 一种多功能热泵热水机组 | |
CN106989438B (zh) | 空调设备、多联室内机系统及其控制方法 | |
CN112902475B (zh) | 空调换热结构、空调内机、空调系统及空调系统控制方法 | |
US20230119128A1 (en) | Refrigeration device, refrigerator and control method therefor, food processing method and control device | |
CN111947377A (zh) | 多元化制冷设备及其控制方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13887618 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13887618 Country of ref document: EP Kind code of ref document: A1 |