WO2014205738A1 - 基于内窥镜的多光谱视频导航系统和方法 - Google Patents

基于内窥镜的多光谱视频导航系统和方法 Download PDF

Info

Publication number
WO2014205738A1
WO2014205738A1 PCT/CN2013/078168 CN2013078168W WO2014205738A1 WO 2014205738 A1 WO2014205738 A1 WO 2014205738A1 CN 2013078168 W CN2013078168 W CN 2013078168W WO 2014205738 A1 WO2014205738 A1 WO 2014205738A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
light source
visible light
light
signal acquisition
Prior art date
Application number
PCT/CN2013/078168
Other languages
English (en)
French (fr)
Inventor
田捷
迟崇魏
叶津佐
杨鑫
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to PCT/CN2013/078168 priority Critical patent/WO2014205738A1/zh
Publication of WO2014205738A1 publication Critical patent/WO2014205738A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters

Definitions

  • the present invention relates to the field of optical imaging technology, and more particularly to an endoscope-based multi-spectral video navigation system and method.
  • the endoscopic detection method has the advantages of controllable depth of detection, and can effectively solve the problem of tissue penetration depth.
  • the fluorescence position can be observed and localized in the body, and depth detection can be performed by entering the tissue through the endoscope head.
  • a single-spectrum video imaging system which has the disadvantages of a single imaging spectrum and incomplete information, and multi-spectral imaging can effectively overcome the above shortcomings.
  • most multi-spectral imaging systems still use a single imaging device, which uses a filter wheel to perform multi-spectral switching and time-sharing using the same imaging device, which has great limitations in video imaging effects.
  • the invention adopts two imaging devices to realize multi-spectral real-time imaging by sharing an optical path and adding different filtering devices in front of the imaging device. The information of different spectra is presented on the computer display on the imaging result, and the technician realizes the image navigation guiding operation.
  • the invention is based on the characteristics of optical molecular images, and Based on long-term research experience in the field of optical imaging, two cameras are used to achieve functions such as fluorescence, visible light, and fused image acquisition.
  • an endoscope-based multi-spectral imaging system comprising: an endoscope head module 110, a light source module 120, an optical signal acquisition module 130, a control and processing module 140, and a multi-spectral switching module 150, where:
  • the endoscope head module 110 is configured to perform endoscopy on the detection area 100 of the tissue to be measured, and transmit the reflected light of the detection area 100 to the optical signal acquisition module 130; the light source module 120 and the inner light
  • the squint lens module 110 is connected to provide excitation light and visible light to the endoscope head module 110;
  • the optical signal acquisition module 130 is coupled to the endoscope head module 110 for obtaining fluorescent and visible light images according to the reflected light of the detection area 100 transmitted by the endoscope head module 110;
  • the control and processing module 140 is coupled to the optical signal acquisition module 130 for controlling the fluorescent camera 134 and the color camera 136 in the optical signal acquisition module 130 for acquisition by the optical signal acquisition module 130.
  • the fluorescent and visible light images are processed and displayed, and the worker operates on the tissue to be tested according to the displayed fluorescent and visible light images;
  • the multi-spectral switching module 150 is configured to provide the light source module 120 and the optical signal acquisition module 130 with filters of different spectra.
  • a method for multispectral imaging using the endoscope-based multi-spectral imaging system comprising the following steps:
  • Step S1 causing the excitation light source 121 and the visible light source 123 to respectively illuminate the detection area 100;
  • Step S2 according to the detection characteristic, the spectrum switching module 150 sets parameters of the filter in the light source module 120 and the optical signal acquisition module 130;
  • Step S3 the control module 141 adjusts imaging parameters of the fluorescence camera 134 and the color camera 136, and the fluorescent camera 134 and the color camera 136 respectively collect images according to the reflected light of the detection region 100 having different spectra or energies;
  • Step S4 the image processing module 142 picks up the fluorescent camera 134 and the color camera 136. Collecting the obtained image for processing;
  • Step S5 the display module 143 performs real-time display on the processed image obtained in the step S4. If the displayed image does not meet the definition requirement, the optical signal acquisition module 130 adjusts the parameters of the lens 131 until the The image displayed by the display module 143 reaches the definition requirement;
  • Step S6 The mobile endoscope head module 110 searches for a fluorescent object in the detection area 100 of the tissue to be tested, and finally obtains a clear image of the fluorescent object.
  • the invention realizes the excitation of the light source and the collection of the light by the endoscope head module, the optical signal acquisition module collects the light in real time, the multi-spectral conversion module filters the light of different spectral segments, and the control and processing module performs real-time on the collected image information.
  • the processing the images of different spectral segments are put together, the image fusion of the spectrum is realized and displayed, so that the staff can perform targeted operations on the tissue to be tested according to the displayed fluorescent and visible light images.
  • Most endoscopic fluorescent products on the market currently use a single CCD camera for imaging. The disadvantage is that only fluorescent images or visible light images can be seen during imaging, and multi-spectral images cannot be seen.
  • the invention effectively solves the problem, and also breaks the technical monopoly situation of foreign companies in China, reduces the threshold of multi-spectral endoscopic imaging research, and expands the space for optical molecular imaging probes to be selected, extending The scope of optical molecular imaging research and application.
  • FIG. 1 is a structural block diagram of an endoscope-based multi-spectral video navigation system according to the present invention
  • FIG. 2 is a system schematic diagram of an endoscope-based multi-spectral video navigation system according to the present invention
  • Flow chart of a multi-spectral video navigation method of a mirror
  • an endoscope-based multi-spectral video navigation system is proposed.
  • 1 is a structural block diagram of an endoscope-based multi-spectral video navigation system according to the present invention
  • FIG. 2 is a system schematic diagram of an endoscope-based multi-spectral video navigation system according to the present invention, as shown in FIG. 1 and FIG.
  • the multi-spectral video navigation system includes: an endoscope head module 110, a light source module 120, an optical signal acquisition module 130, a control and processing module 140, and a multi-spectral switching module 150, wherein:
  • the endoscope head module 110 is configured to perform endoscopy on the detection area 100 of the tissue to be measured, and transmit the reflected light of the detection area 100 to the optical signal acquisition module 130; the light source module 120 and the inner light
  • the scope module 110 is connected to provide excitation light and visible light to the endoscope head module 110, and the visible light is used as background illumination light;
  • the optical signal acquisition module 130 is connected to the endoscope head module 110 for The reflected light of the detection area 100 transmitted by the endoscope head module 110 obtains fluorescence and visible light images;
  • the control and processing module 140 is coupled to the optical signal acquisition module 130 for controlling the fluorescent camera 134 and the color camera 136 in the optical signal acquisition module 130 for acquisition by the optical signal acquisition module 130.
  • the fluorescent and visible light images are processed and displayed, and the worker operates on the tissue to be tested according to the displayed fluorescent and visible light images;
  • the multi-spectral switching module 150 is configured to provide the light source module 120 and the optical signal acquisition module 130 with filters of different spectra.
  • the endoscope lens module 110 further includes an excitation optical fiber 111, a visible light fiber 112, and a signal acquisition fiber 113.
  • the excitation optical fiber 111 and the visible light fiber 112 are distributed around the signal acquisition fiber 113.
  • the excitation light fiber 111 is connected to the filter 122 of the light source module 120 for guiding the excitation light emitted by the excitation light source 121 in the light source module 120 to irradiate the detection region 100 with excitation light;
  • the visible light fiber 112 is connected to the filter two 124 in the light source module 120 for guiding visible light emitted by the visible light source 123 in the light source module 120 to provide an illumination source for the detection area 100.
  • the signal acquisition fiber 113 is connected to the front end of the lens 131 in the optical signal acquisition module 130 for collecting the reflected light of the excitation light and visible light in the detection area 100, and guiding the reflected light to the lens. 131 places.
  • the light source module 120 further includes an excitation light source 121, a filter one 122, a visible light source 123, and a filter two 124, wherein the excitation light source 121 passes through the filter one 122 and the endoscope lens
  • the excitation light fiber 111 in the module 110 is connected to provide excitation light for the excitation light fiber 111, and the excitation light source 121 can adopt a wide-spectrum light source such as a wavelength tunable laser or a tungsten halogen lamp;
  • the filter two 124 is connected to the visible light fiber 112 in the endoscope lens module 110 for providing visible light to the visible light fiber 112.
  • the visible light source 123 may be a narrow spectrum such as a tungsten halogen lamp or an LED lamp. Seg
  • the optical signal acquisition module 130 further includes a lens 131, a beam splitting prism 132, a filter three 133, a fluorescent camera 134, a filter four 135, and a color camera 136, wherein the lens 131 and the endoscope lens
  • the signal acquisition fiber 113 in the module 110 is connected to guide the emitted light to the beam splitting prism 132, and adjust the imaging sharpness by adjusting parameters such as a focal length and a focus ring;
  • the beam splitting prism 132 is composed of two It is composed of a light splitting element such as a beam splitting prism or a 55 beam splitting prism.
  • the incident light end of the beam splitting prism 132 is connected to the end of the lens 131, and the two exit ends of the beam splitting prism 132 pass through the filter three 133 and the filter respectively.
  • the sheet 4 135 is connected to the fluorescent camera 134 and the color camera 136 for splitting a light beam transmitted by the lens 131 into two beams according to the spectrum or energy of the light; the fluorescent camera 134 and the color camera 136 pass data.
  • the line 101 is connected to the control and processing module 140 for imaging according to the outgoing light of the beam splitting prism 132, and will be respectively obtained Image transmission spectra having different energies or different to the control and processing module 140.
  • the control and processing module 140 further includes a control module 141, an image processing module 142, and a display module 143, wherein the control module 141 is used for imaging parameters of the fluorescent camera 134 and the color camera 136 (such as exposure time, etc.)
  • the image processing module 142 is configured to process the image data captured by the fluorescent camera 134 and the color camera 136, the processing includes at least image fusion, and may further include a processing operation such as image denoising;
  • the display module 143 is configured to perform real-time display on the image obtained by the image processing module 142 for the staff to observe and perform a treatment operation on the tissue to be tested, so that the system realizes the function of multi-spectral video navigation. .
  • the multi-spectral switching module 150 is a filter wheel device for exciting according to different fluorescence Features, adjust the spectral range of each filter to ensure the excitation and acquisition of multi-spectral light, to avoid mutual interference of different spectral light, once the spectrum of each filter is adjusted, it will not be in the whole real-time navigation process. Switch again.
  • the number of the filters can be installed as needed. In an embodiment of the invention, the number of the filters is four: a filter one 122, a filter two 124, a filter three 133, and a filter four 135, the spectrum of the filter is in the near infrared range, specifically:
  • the filter 122 has a spectral range of 710 nm to 770 nm and a diameter of 25 mm;
  • the filter section 124 has a spectrum of 400 nm to 650 nm and a diameter of 25 mm;
  • the filter III 133 has a spectral range of 810 nm to 870 nm and a diameter of 50 mm;
  • the filter 135 has a spectral range of 400 nm to 650 nm and a diameter of 50 mm.
  • the filter with the appropriate spectrum can be switched according to the specific needs.
  • an endoscope-based multispectral video navigation method comprising the steps of:
  • Step S1 causing the excitation light source 121 and the visible light source 123 to respectively illuminate the detection area 100;
  • Step S2 according to the detection characteristic, the spectrum switching module 150 sets parameters of the filter in the light source module 120 and the optical signal acquisition module 130;
  • Step S3 the control module 141 adjusts imaging parameters of the fluorescence camera 134 and the color camera 136, and the fluorescent camera 134 and the color camera 136 respectively collect images according to the reflected light of the detection region 100 having different spectra or energies;
  • Step S4 the image processing module 142 processes the images acquired by the fluorescent camera 134 and the color camera 136, the processing includes at least image fusion, and may further include processing operations such as image denoising;
  • step S5 the display module 143 performs real-time video display on the processed image obtained in the step S4. If the displayed image does not meet the definition requirement, the optical signal acquisition module 130 adjusts the parameters of the lens 131 until The image displayed by the display module 143 meets the definition requirement;
  • Step S6 moving the endoscope head module 110, searching in the detection area 100 of the tissue to be tested Looking for a fluorescent object, finally obtaining and displaying a clear image of the fluorescent object; Step S7, the worker operates the tissue to be tested according to the clear image of the fluorescent object.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Endoscopes (AREA)

Abstract

一种基于内窥镜的多光谱视频导航系统,该系统包括:内窥镜头模块(110),用于实现内窥;光源模块(120),用于提供近红外和可见光光源;光学信号采集模块(130),用于采集近红外及可见光图像;多光谱转换模块(150),用于对不同光谱谱段进行成像;控制与处理模块(140),用于对相机进行控制、对采集到的图像进行处理以实现视频导航。同时还公开了一种利用所述系统进行多光谱视频导航的方法。该系统和方法有效地解决了目前绝大部分内窥镜荧光产品只能看到荧光图像或者可见光图像,无法看到多光谱图像的问题,同时降低了多光谱内窥镜成像研究的门槛,拓展了光学分子影像探针可选择的空间,延伸了光学分子影像研究与应用的范围。

Description

基于内窥镜的多光谱视频导航系统和方法
技术领域 本发明涉及光学成像技术领域, 特别是一种基于内窥镜的多光谱视 频导航系统和方法。
背景技术 近年来, 由于分子影像学技术的不断发展, 继放射性核素成像、 正 电子发射断层扫描、 单光子发射计算机断层和磁共振成像之后, 出现了 高分辨率的光学成像, 其中近红外荧光成像倍受关注。 但是即使光学分 子影像的应用领域较广, 组织穿透深度仍是其广泛应用的一大障碍, 如 何能够实现在体的深度探测是目前亟待解决的问题。
内窥式的探测方式具有探测深度可控等优点, 可以有效解决组织穿 透深度的问题。 通过本发明方法, 可以在体观测和定位荧光位置, 并通 过内窥镜头进入组织中进行深度探测。
目前市面上常见的是单光谱视频成像系统, 这种系统具有成像谱段 单一, 信息不完整等缺点, 而多光谱成像能够有效的克服上述缺点。 但 是目前大部分多光谱成像系统采用的仍是单台成像设备, 利用滤光轮进 行多光谱切换, 分时使用同一台成像设备, 这就在视频成像效果上具有 很大的局限。 本发明采用两台成像设备, 通过共用一个光学通路, 在成 像设备前增加不同的滤光装置, 实现多光谱的实时成像。 在成像结果上 将不同光谱的信息呈现在计算机显示器上, 技术人员实现图像导航引导 操作。
发明内容 本发明的目的是解决上述现有技术存在的缺陷, 提供一种基于内窥 镜的多光谱视频导航系统和方法。 本发明根据光学分子影像的特点, 并 基于长期在光学成像领域的研究经验, 采用两台相机来实现荧光、 可见 光以及融合图像的获取等功能。
根据本发明的一方面, 提出一种基于内窥镜的多光谱成像系统, 该 系统包括: 内窥镜头模块 110、 光源模块 120、 光学信号采集模块 130、 控制与处理模块 140和多光谱切换模块 150, 其中:
所述内窥镜头模块 110,用于对待测组织的探测区域 100进行内窥, 并将所述探测区域 100的反射光传输至所述光学信号采集模块 130; 所述光源模块 120与所述内窥镜头模块 110连接, 用于为所述内窥 镜头模块 110提供激发光和可见光;
所述光学信号采集模块 130与所述内窥镜头模块 110连接, 用于根 据所述内窥镜头模块 110传输的所述探测区域 100的反射光得到荧光和 可见光图像;
所述控制与处理模块 140与所述光学信号采集模块 130连接, 用于 对所述光学信号采集模块 130中的荧光相机 134和彩色相机 136进行控 制, 对所述光学信号采集模块 130采集得到的荧光和可见光图像进行处 理并显示, 工作人员根据显示出的荧光和可见光图像对于所述待测组织 进行操作;
所述多光谱切换模块 150, 用于为所述光源模块 120和所述光学信 号采集模块 130提供不同光谱的滤光片。
根据本发明的另一方面, 提出一种利用所述基于内窥镜的多光谱成 像系统进行多光谱成像的方法, 该方法包括以下歩骤:
歩骤 S1 ,使激发光源 121和可见光光源 123对探测区域 100分别进 行照射;
歩骤 S2, 根据探测特性, 光谱切换模块 150对于光源模块 120、 光 学信号采集模块 130中滤光片的参数进行设置;
歩骤 S3 ,控制模块 141对荧光相机 134和彩色相机 136的成像参数 进行调整,所述荧光相机 134和彩色相机 136分别根据所述探测区域 100 具有不同光谱或者能量的反射光采集得到图像;
歩骤 S4,图像处理模块 142对所述荧光相机 134和彩色相机 136采 集得到的图像进行处理;
歩骤 S5, 显示模块 143对于所述歩骤 S4得到的处理后的图像进行 实时显示, 若显示的图像达不到清晰度要求, 则通过光学信号采集模块 130来调节镜头 131的参数, 直到所述显示模块 143显示的图像达到清 晰度要求;
歩骤 S6, 移动内窥镜头模块 110, 在待测组织的探测区域 100内寻 找荧光物体, 最终得到所述荧光物体的清晰图像。
本发明通过内窥镜头模块实现光源的激发和光线的采集, 光学信号 采集模块进行实时采集光线, 多光谱转换模块对不同谱段的光线进行过 滤, 控制与处理模块对采集到的图像信息进行实时的处理, 将不同谱段 的图像拼合到一起, 实现光谱的图像融合并进行显示, 使得工作人员能 够根据显示出的荧光和可见光图像对于待测组织进行针对性的操作。 目 前市面上绝大部分内窥镜荧光产品均采用单一 CCD相机进行成像, 其 缺点在于成像时只能看到荧光图像或者可见光图像, 而无法看到多光谱 的图像。 而本发明有效的解决了该问题, 同时也打破了国外公司在华的 技术垄断状况, 降低了多光谱内窥镜成像研究的门槛, 拓展了光学分子 影像探针可供选择的空间, 延伸了光学分子影像研究与应用的范围。
附图说明 图 1是本发明基于内窥镜的多光谱视频导航系统的结构框图; 图 2是本发明基于内窥镜的多光谱视频导航系统的系统原理图; 图 3是本发明基于内窥镜的多光谱视频导航方法的流程图。
具体实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例, 并参照附图, 对本发明进一歩详细说明。
根据本发明的一方面, 提出一种基于内窥镜的多光谱视频导航系统, 图 1是本发明基于内窥镜的多光谱视频导航系统的结构框图, 图 2是本 发明基于内窥镜的多光谱视频导航系统的系统原理图, 如图 1和图 2所 示, 所述多光谱视频导航系统包括: 内窥镜头模块 110、光源模块 120、 光学信号采集模块 130、 控制与处理模块 140和多光谱切换模块 150, 其中:
所述内窥镜头模块 110,用于对待测组织的探测区域 100进行内窥, 并将所述探测区域 100的反射光传输至所述光学信号采集模块 130; 所述光源模块 120与所述内窥镜头模块 110连接, 用于为所述内窥 镜头模块 110提供激发光和可见光, 所述可见光作为背景照明光; 所述光学信号采集模块 130与所述内窥镜头模块 110连接, 用于根 据所述内窥镜头模块 110传输的所述探测区域 100的反射光得到荧光和 可见光图像;
所述控制与处理模块 140与所述光学信号采集模块 130连接, 用于 对所述光学信号采集模块 130中的荧光相机 134和彩色相机 136进行控 制, 对所述光学信号采集模块 130采集得到的荧光和可见光图像进行处 理并显示, 工作人员根据显示出的荧光和可见光图像对于所述待测组织 进行操作;
所述多光谱切换模块 150, 用于为所述光源模块 120和所述光学信 号采集模块 130提供不同光谱的滤光片。
所述内窥镜镜头模块 110进一歩包括激发光光纤 111、 可见光光纤 112和信号采集光纤 113, 所述激发光光纤 111、 可见光光纤 112分布在 所述信号采集光纤 113的周围, 其中, 所述激发光光纤 111与所述光源 模块 120中的滤光片一 122连接, 用于引导出所述光源模块 120中的激 发光源 121发出的激发光, 以对所述探测区域 100进行激发光照射; 所 述可见光光纤 112与所述光源模块 120中的滤光片二 124连接, 用于引 导出所述光源模块 120中的可见光光源 123发出的可见光, 以为所述探 测区域 100提供照明光源; 所述信号采集光纤 113与所述光学信号采集 模块 130中的镜头 131的前端连接, 用于采集所述激发光和可见光在所 述探测区域 100的反射光, 并将所述反射光引导至所述镜头 131处。 所述光源模块 120进一歩包括激发光源 121、 滤光片一 122、 可见 光光源 123和滤光片二 124, 其中, 所述激发光源 121通过所述滤光片 一 122与所述内窥镜镜头模块 110中的激发光光纤 111连接, 用于为所 述激发光光纤 111提供激发光, 所述激发光源 121可采用波长可调激光 器或者卤钨灯等宽谱段光源;所述可见光光源 123通过所述滤光片二 124 与所述内窥镜镜头模块 110中的可见光光纤 112连接, 用于为所述可见 光光纤 112提供可见光,所述可见光光源 123可采用卤钨灯或者 LED灯 等窄谱段特定波长或波段光源。
所述光学信号采集模块 130进一歩包括镜头 131、 分光棱镜 132、 滤光片三 133、 荧光相机 134、 滤光片四 135和彩色相机 136, 其中, 所 述镜头 131与所述内窥镜镜头模块 110中的信号采集光纤 113相连接, 用于将所述发射光引导至所述分光棱镜 132处, 并通过调整焦距、 调焦 环等参数来调整成像清晰度;所述分光棱镜 132由二向分光棱镜或者 55 分光棱镜等分光元件组成,所述分光棱镜 132的入射光端与所述镜头 131 的末端相连, 所述分光棱镜 132的两个出射端分别通过滤光片三 133和 滤光片四 135与所述荧光相机 134和彩色相机 136相连, 用于将所述镜 头 131传输的一束光线按照光线的光谱或者能量的不同分成两束; 所述 荧光相机 134和彩色相机 136通过数据线 101与所述控制与处理模块 140 连接, 用于根据所述分光棱镜 132的出射光线进行成像, 并将分别得到 的具有不同光谱或者不同能量的图像传输至所述控制与处理模块 140。
所述控制与处理模块 140进一歩包括控制模块 141、 图像处理模块 142和显示模块 143, 其中, 所述控制模块 141用于对所述荧光相机 134 和彩色相机 136的成像参数 (比如曝光时间等) 进行控制; 所述图像处 理模块 142用于对所述荧光相机 134和彩色相机 136拍摄得到的图像数 据进行处理, 所述处理至少包括图像融合, 另外还可以包括图像去噪等 处理操作; 所述显示模块 143用于对于所述图像处理模块 142处理后得 到的图像进行实时显示, 以供工作人员观察并对于所述待测组织进行治 疗操作, 这样本系统就实现了多光谱视频导航的功能。
所述多光谱切换模块 150为滤光轮装置, 用于根据不同荧光的激发 特性, 调整各个滤光片的谱段, 以保证多光谱光线的激发和采集, 避免 不同光谱光线的相互干扰, 各个滤光片的谱段一旦调整好后, 在整个实 时导航的过程中将不再切换。 所述滤光片的数量可根据需要进行安装, 在本发明一实施例中, 所述滤光片的数量为 4片: 滤光片一 122、 滤光 片二 124、 滤光片三 133和滤光片四 135, 所述滤光片的谱段为近红外 范围, 具体为:
滤光片一 122的谱段为 710nm-770nm, 直径为 25mm;
滤光片二 124的谱段为 400nm-650nm, 直径为 25mm;
滤光片三 133的谱段为 810nm-870nm, 直径为 50mm;
滤光片四 135的谱段为 400nm-650nm, 直径为 50mm。
在操作人员实际使用过程中, 可以根据具体的需求切换具有合适光 谱的滤光片。
根据本发明的另一方面, 还提出一种利用所述基于内窥镜的多光谱 视频导航方法, 所述方法包括以下歩骤:
歩骤 S1 ,使激发光源 121和可见光光源 123对探测区域 100分别进 行照射;
歩骤 S2, 根据探测特性, 光谱切换模块 150对于光源模块 120、 光 学信号采集模块 130中滤光片的参数进行设置;
歩骤 S3 ,控制模块 141对荧光相机 134和彩色相机 136的成像参数 进行调整,所述荧光相机 134和彩色相机 136分别根据所述探测区域 100 具有不同光谱或者能量的反射光采集得到图像;
歩骤 S4,图像处理模块 142对所述荧光相机 134和彩色相机 136采 集得到的图像进行处理, 所述处理至少包括图像融合, 另外还可以包括 图像去噪等处理操作;
歩骤 S5, 显示模块 143对于所述歩骤 S4得到的处理后的图像进行 实时视频显示, 若显示的图像达不到清晰度要求, 则通过光学信号采集 模块 130来调节镜头 131的参数, 直到所述显示模块 143显示的图像达 到清晰度要求;
歩骤 S6, 移动内窥镜头模块 110, 在待测组织的探测区域 100内寻 找荧光物体, 最终得到并显示所述荧光物体的清晰图像; 歩骤 S7 ,工作人员根据所述荧光物体的清晰图像对于所述待测组织 进行操作。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、一种基于内窥镜的多光谱成像系统, 其特征在于, 该系统包括: 内窥镜头模块 (110)、 光源模块 (120)、 光学信号采集模块 (130)、 控 制与处理模块 (140) 和多光谱切换模块 (150), 其中:
所述内窥镜头模块 (110), 用于对待测组织的探测区域 (100) 进 行内窥, 并将所述探测区域 (100) 的反射光传输至所述光学信号采集 模块 ( 130);
所述光源模块 (120) 与所述内窥镜头模块 (110) 连接, 用于为所 述内窥镜头模块 (110) 提供激发光和可见光;
所述光学信号采集模块 (130) 与所述内窥镜头模块 (110 ) 连接, 用于根据所述内窥镜头模块 (110) 传输的所述探测区域 (100) 的反射 光得到荧光和可见光图像;
所述控制与处理模块(140)与所述光学信号采集模块(130)连接, 用于对所述光学信号采集模块 (130) 中的荧光相机 (134) 和彩色相机 ( 136) 进行控制, 对所述光学信号采集模块 (130) 采集得到的荧光和 可见光图像进行处理并显示, 工作人员根据显示出的荧光和可见光图像 对于所述待测组织进行操作;
所述多光谱切换模块 (150), 用于为所述光源模块 (120 ) 和所述 光学信号采集模块 (130) 提供不同光谱的滤光片。
2、 根据权利要求 1 所述的系统, 其特征在于, 所述内窥镜镜头模 块 (110) 进一歩包括激发光光纤 (111 )、 可见光光纤 (112) 和信号采 集光纤 (113 ), 其中:
所述激发光光纤(111 )与所述光源模块(120)中的滤光片一(122) 连接, 用于引导出所述光源模块 (120) 中的激发光源 (121 ) 发出的激 发光, 以对所述探测区域 (100) 进行激发光照射;
所述可见光光纤( 112)与所述光源模块( 120)中的滤光片二( 124) 连接, 用于引导出所述光源模块 (120) 中的可见光光源 (123 ) 发出的 可见光, 以为所述探测区域 (100) 提供照明光源; 所述信号采集光纤 (113) 与所述光学信号采集模块 (130) 中的镜 头 (131) 的前端连接, 用于采集所述激发光和可见光在所述探测区域 (100) 的反射光, 并将所述反射光引导至所述镜头 (131) 处。
3、根据权利要求 2所述的系统,其特征在于,所述激发光光纤(111)、 可见光光纤 (112) 分布在所述信号采集光纤 (113) 的周围。
4、根据权利要求 1所述的系统,其特征在于,所述光源模块(120) 进一歩包括激发光源 (121)、 滤光片一 (122)、 可见光光源 (123) 和 滤光片二 (124), 其中:
所述激发光源 (121) 通过所述滤光片一 (122) 与所述内窥镜镜头 模块(110)中的激发光光纤(111)连接,用于为所述激发光光纤(111) 提供激发光;
所述可见光光源 (123) 通过所述滤光片二 (124) 与所述内窥镜镜 头模块(110)中的可见光光纤(112)连接,用于为所述可见光光纤(112) 提供可见光。
5、根据权利要求 4所述的系统,其特征在于,所述激发光源(121) 采用宽谱段光源, 所述可见光光源 (123) 采用窄谱段特定波长或波段 光源。
6、 根据权利要求 1 所述的系统, 其特征在于, 所述光学信号采集 模块(130)进一歩包括镜头(131)、分光棱镜(132)、滤光片三(133)、 荧光相机 (134)、 滤光片四 (135) 和彩色相机 (136), 其中:
所述镜头 (131) 与所述内窥镜镜头模块 (110) 中的信号采集光纤 (113) 相连接, 用于将所述发射光引导至所述分光棱镜 (132) 处和调 整成像清晰度;
所述分光棱镜 (132) 的入射光端与所述镜头 (131) 的末端相连, 两个出射端分别通过滤光片三 (133) 和滤光片四 (135) 与所述荧光相 机 (134) 和彩色相机 (136) 相连, 用于将所述镜头 (131) 传输的一 束光线按照光线的光谱或者能量的不同分成两束;
所述荧光相机 (134) 和彩色相机 (136) 通过数据线 (101) 与所 述控制与处理模块 (140) 连接, 用于根据所述分光棱镜 (132) 的出射 光线进行成像, 并将分别得到的具有不同光谱或者不同能量的图像传输 至所述控制与处理模块 (140)。
7、根据权利要求 6所述的系统,其特征在于,所述分光棱镜(132) 由二向分光棱镜或者 55分光棱镜组成。
8、 根据权利要求 1 所述的系统, 其特征在于, 所述控制与处理模 块 (140) 进一歩包括控制模块 (141 )、 图像处理模块 (142) 和显示模 块 ( 143 ), 其中:
所述控制模块( 141 )用于对所述荧光相机( 134 )和彩色相机(136) 的成像参数进行控制;
所述图像处理模块 (142) 用于对所述荧光相机 (134) 和彩色相机 ( 136) 拍摄得到的图像数据进行处理;
所述显示模块 (143 ) 用于对于所述图像处理模块 (142) 处理后得 到的图像进行实时显示。
9、 根据权利要求 1 所述的系统, 其特征在于, 所述多光谱切换模 块 (150) 为滤光轮装置, 用于根据不同荧光的激发特性, 调整各个滤 光片的谱段, 以保证多光谱光线的激发和采集, 避免不同光谱光线的相 互干扰。
10、 一种利用权利要求 1所述的基于内窥镜的多光谱成像系统进行 多光谱成像的方法, 其特征在于, 该方法包括以下歩骤:
歩骤 S1,使激发光源( 121 )和可见光光源( 123 )对探测区域(100) 分别进行照射;
歩骤 S2,根据探测特性,光谱切换模块(150)对于光源模块(120)、 光学信号采集模块 (130) 中滤光片的参数进行设置;
歩骤 S3 , 控制模块 (141 ) 对荧光相机 (134) 和彩色相机 (136) 的成像参数进行调整, 所述荧光相机 (134) 和彩色相机 (136) 分别根 据所述探测区域(100)具有不同光谱或者能量的反射光采集得到图像; 歩骤 S4, 图像处理模块(142)对所述荧光相机(134)和彩色相机 ( 136) 采集得到的图像进行处理;
歩骤 S5, 显示模块(143 )对于所述歩骤 S4得到的处理后的图像进 行实时显示, 若显示的图像达不到清晰度要求, 则通过光学信号采集模 块 (130) 来调节镜头 (131 ) 的参数, 直到所述显示模块 (143 ) 显示 的图像达到清晰度要求;
歩骤 S6,移动内窥镜头模块(110),在待测组织的探测区域(100) 内寻找荧光物体, 最终得到所述荧光物体的清晰图像;
歩骤 S7,工作人员根据所述荧光物体的清晰图像对于所述待测组织 进行操作。
PCT/CN2013/078168 2013-06-27 2013-06-27 基于内窥镜的多光谱视频导航系统和方法 WO2014205738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078168 WO2014205738A1 (zh) 2013-06-27 2013-06-27 基于内窥镜的多光谱视频导航系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078168 WO2014205738A1 (zh) 2013-06-27 2013-06-27 基于内窥镜的多光谱视频导航系统和方法

Publications (1)

Publication Number Publication Date
WO2014205738A1 true WO2014205738A1 (zh) 2014-12-31

Family

ID=52140833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078168 WO2014205738A1 (zh) 2013-06-27 2013-06-27 基于内窥镜的多光谱视频导航系统和方法

Country Status (1)

Country Link
WO (1) WO2014205738A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106228117A (zh) * 2016-07-13 2016-12-14 福州米立科技有限公司 人脸识别单摄像头采集成像系统
CN106447703A (zh) * 2016-08-31 2017-02-22 北京数字精准医疗科技有限公司 近红外荧光与契伦科夫荧光融合成像方法及设备
CN110226974A (zh) * 2019-07-08 2019-09-13 中国科学技术大学 一种基于增强现实的近红外荧光成像系统
CN113261911A (zh) * 2021-05-14 2021-08-17 天津工业大学 一种荧光电子内窥镜成像系统及其检测方法
CN113687564A (zh) * 2021-08-17 2021-11-23 中科领航医疗科技有限公司 一种手术导航与放射性植入系统用相机夹具及其使用方法
CN114052911A (zh) * 2021-12-01 2022-02-18 辽宁北镜医疗科技有限公司 一种近红外荧光术中导航系统、方法及可存储介质
CN115825032A (zh) * 2023-02-08 2023-03-21 之江实验室 一种数字化荧光仿生模体成像方法及系统
CN116385337A (zh) * 2022-12-15 2023-07-04 陕西中科创孚医疗科技有限责任公司 一种基于多光融合的甲状旁腺识别装置及方法
CN116849624A (zh) * 2023-08-31 2023-10-10 南京诺源医疗器械有限公司 基于4cmos图像传感器的荧光成像方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100262017A1 (en) * 2002-03-12 2010-10-14 Frangioni John V Multi-channel medical imaging system
CN101943796A (zh) * 2010-08-26 2011-01-12 杨晓峰 多光谱内窥镜光学切换系统
EP2301416A1 (en) * 2009-09-24 2011-03-30 Fujifilm Corporation Method of controlling endoscope and endoscope
CN102151122A (zh) * 2011-03-17 2011-08-17 中国科学院自动化研究所 激发荧光分子成像系统及一次荧光成像方法
CN102440760A (zh) * 2010-08-31 2012-05-09 富士胶片株式会社 图像获取及显示方法和图像捕获及显示设备
CN102721469A (zh) * 2012-06-14 2012-10-10 中国科学院自动化研究所 双相机的多光谱成像系统和方法
CN102809429A (zh) * 2012-07-26 2012-12-05 中国科学院自动化研究所 基于双相机的多光谱成像系统和方法
CN103300812A (zh) * 2013-06-27 2013-09-18 中国科学院自动化研究所 基于内窥镜的多光谱视频导航系统和方法
CN103340601A (zh) * 2013-06-27 2013-10-09 中国科学院自动化研究所 基于内窥镜的多光谱成像系统和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100262017A1 (en) * 2002-03-12 2010-10-14 Frangioni John V Multi-channel medical imaging system
EP2301416A1 (en) * 2009-09-24 2011-03-30 Fujifilm Corporation Method of controlling endoscope and endoscope
CN101943796A (zh) * 2010-08-26 2011-01-12 杨晓峰 多光谱内窥镜光学切换系统
CN102440760A (zh) * 2010-08-31 2012-05-09 富士胶片株式会社 图像获取及显示方法和图像捕获及显示设备
CN102151122A (zh) * 2011-03-17 2011-08-17 中国科学院自动化研究所 激发荧光分子成像系统及一次荧光成像方法
CN102721469A (zh) * 2012-06-14 2012-10-10 中国科学院自动化研究所 双相机的多光谱成像系统和方法
CN102809429A (zh) * 2012-07-26 2012-12-05 中国科学院自动化研究所 基于双相机的多光谱成像系统和方法
CN103300812A (zh) * 2013-06-27 2013-09-18 中国科学院自动化研究所 基于内窥镜的多光谱视频导航系统和方法
CN103340601A (zh) * 2013-06-27 2013-10-09 中国科学院自动化研究所 基于内窥镜的多光谱成像系统和方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106228117A (zh) * 2016-07-13 2016-12-14 福州米立科技有限公司 人脸识别单摄像头采集成像系统
CN106228117B (zh) * 2016-07-13 2023-08-18 福州米立科技股份有限公司 人脸识别单摄像头采集成像系统
CN106447703A (zh) * 2016-08-31 2017-02-22 北京数字精准医疗科技有限公司 近红外荧光与契伦科夫荧光融合成像方法及设备
CN110226974A (zh) * 2019-07-08 2019-09-13 中国科学技术大学 一种基于增强现实的近红外荧光成像系统
CN113261911A (zh) * 2021-05-14 2021-08-17 天津工业大学 一种荧光电子内窥镜成像系统及其检测方法
CN113687564B (zh) * 2021-08-17 2022-11-25 中科领航医疗科技有限公司 一种手术导航与放射性植入系统用相机夹具及其使用方法
CN113687564A (zh) * 2021-08-17 2021-11-23 中科领航医疗科技有限公司 一种手术导航与放射性植入系统用相机夹具及其使用方法
CN114052911A (zh) * 2021-12-01 2022-02-18 辽宁北镜医疗科技有限公司 一种近红外荧光术中导航系统、方法及可存储介质
CN114052911B (zh) * 2021-12-01 2024-03-01 辽宁北镜医疗科技有限公司 一种近红外荧光术中导航系统、方法及可存储介质
CN116385337A (zh) * 2022-12-15 2023-07-04 陕西中科创孚医疗科技有限责任公司 一种基于多光融合的甲状旁腺识别装置及方法
CN116385337B (zh) * 2022-12-15 2023-10-17 西安长空医疗科技服务有限公司 一种基于多光融合的甲状旁腺识别装置及方法
CN115825032A (zh) * 2023-02-08 2023-03-21 之江实验室 一种数字化荧光仿生模体成像方法及系统
CN115825032B (zh) * 2023-02-08 2023-05-02 之江实验室 一种数字化荧光仿生模体成像方法及系统
CN116849624A (zh) * 2023-08-31 2023-10-10 南京诺源医疗器械有限公司 基于4cmos图像传感器的荧光成像方法及系统
CN116849624B (zh) * 2023-08-31 2023-11-10 南京诺源医疗器械有限公司 基于4cmos的图像传感器荧光成像方法及系统

Similar Documents

Publication Publication Date Title
WO2014205738A1 (zh) 基于内窥镜的多光谱视频导航系统和方法
CN103300812A (zh) 基于内窥镜的多光谱视频导航系统和方法
CN103340601A (zh) 基于内窥镜的多光谱成像系统和方法
WO2016011611A1 (zh) 内窥式光学分子影像导航系统和多光谱成像方法
CN106901679B (zh) 荧光显微内窥成像系统及荧光显微内窥成像方法
US11744439B2 (en) Micro CMOS scopes for medical imaging
CN107510430A (zh) 一种同时获取可见光彩色图像与血流图像的内窥镜光学成像方法及系统
CN114599263A (zh) 用于医疗成像的系统和方法
US10524647B2 (en) Smartphone endoscope system
CN107049214A (zh) 自动调焦显微内窥荧光成像系统
CN103654700A (zh) 荧光内窥成像系统及成像方法
US11803951B2 (en) High resolution microendoscope employing differential structured illumination and method of using same
US11653824B2 (en) Medical observation system and medical observation device
EP3009098A1 (en) Microscope system for surgery
US10447906B2 (en) Dual path endoscope
CN107518879A (zh) 一种荧光成像装置及方法
CN207516243U (zh) 层析内窥显微光谱成像装置
JP6859554B2 (ja) 観察補助装置、情報処理方法、およびプログラム
CN105852784A (zh) 一种多谱医用内窥镜镜头及系统
WO2019100449A1 (zh) 一种基于传像光纤的手术导航系统
Higgins et al. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions
TWI692342B (zh) 快速組織分子光譜成像裝置
CN217792957U (zh) 内窥镜系统
CN208837876U (zh) 快速组织分子光谱成像装置
CN110115557B (zh) 一种高光谱内窥成像装置及成像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888424

Country of ref document: EP

Kind code of ref document: A1