WO2014204168A1 - Multilayer optical film, method for preparing same and polarizing plate comprising same - Google Patents

Multilayer optical film, method for preparing same and polarizing plate comprising same Download PDF

Info

Publication number
WO2014204168A1
WO2014204168A1 PCT/KR2014/005288 KR2014005288W WO2014204168A1 WO 2014204168 A1 WO2014204168 A1 WO 2014204168A1 KR 2014005288 W KR2014005288 W KR 2014005288W WO 2014204168 A1 WO2014204168 A1 WO 2014204168A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
film layer
multilayer optical
weight
Prior art date
Application number
PCT/KR2014/005288
Other languages
French (fr)
Korean (ko)
Inventor
엄준근
이남정
곽상민
윤석일
박세정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140072860A external-priority patent/KR101613785B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/385,643 priority Critical patent/US9804307B2/en
Priority to CN201480000916.5A priority patent/CN104395792A/en
Priority to JP2015541709A priority patent/JP6140833B2/en
Publication of WO2014204168A1 publication Critical patent/WO2014204168A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a multilayer optical film, a method of manufacturing the same, and a polarizing plate including the same.
  • polarizing plates used in image display apparatuses such as liquid crystal display devices generally use a triacetyl cellulose film (hereinafter, TAC film) as a protective film for protecting a polyvinyl alcohol polarizer.
  • TAC film triacetyl cellulose film
  • the TAC film does not have sufficient heat and moisture resistance, and when used under high temperature or high humidity, the TAC film has a problem in that polarization plate characteristics such as polarization degree and color are degraded due to film deformation. Therefore, in recent years, a method of using a transparent acrylic resin film having excellent moisture resistance and heat resistance instead of the TAC film has been proposed as a material of the polarizer protective film.
  • UV absorbers are mostly decomposed during high temperature processing, not only the UV absorbing ability is lowered, but also the yellowing of the resin and the film is caused by thermal decomposition of the UV absorber.
  • the benzotriazine-based compound has a high ultraviolet B region (315 nm ⁇ 280 nm) absorption capacity, but the ultraviolet A region (400 nm ⁇ 315 nm) absorption ability is low, so added in excess in order to increase the ultraviolet A region absorption capacity Should be.
  • the excess UV absorber is added, the acrylic resin melted under the high temperature and pressure of the extruder during the acrylic film manufacturing process passes through the T-die and passes through the casting roll.
  • the sudden cooling in the UV absorber decomposes out of the film as the phenomenon of migration to the casting roll was severe, as a result of the thermal decomposition of the UV absorber is also buried in the film has a problem that the appearance of the film is poor.
  • the known ultraviolet absorbers have a low molecular weight and a glass transition temperature
  • the glass transition temperature of the resin composition is greatly lowered, thereby lowering heat resistance or adversely affecting optical properties of the optical film.
  • the present invention is to provide a multilayer optical film having excellent heat resistance, excellent ultraviolet absorption performance and high economical efficiency, a method of manufacturing the same, and a polarizing plate including the same.
  • this invention is a 1st film layer formed from the thermoplastic acrylic resin composition containing 0.01 weight part-2.0 weight part of triazine type ultraviolet absorbers with respect to 100 weight part of thermoplastic acrylic resin compositions. ; 0.1 to 5.0 parts by weight of at least one ultraviolet absorber selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet absorbers A second film layer formed of a thermoplastic acrylic resin composition; And a third film layer formed of a thermoplastic acrylic resin composition including 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber.
  • the present invention provides a method for manufacturing a multilayer optical film comprising coextruding a first film layer, a second film layer and a third film layer as described above, and stretching the coextruded film. to provide.
  • a polarizer comprising a polarizer and a protective film provided on at least one surface of the polarizer, at least one of the protective film is the first film layer, the second film layer and the third film layer It provides a polarizing plate which is a multilayer optical film containing.
  • the multilayer optical film according to the present invention is excellent in heat resistance and excellent in ultraviolet absorption performance, but has high economical efficiency.
  • the manufacturing method of the multilayer optical film according to the present invention since the film manufacturing process and the stretching process can be configured continuously, the productivity is improved, and the optical film production having the desired UV transmittance without any additional process Since it is easy, there is high economical efficiency, and the optical film manufactured by this is very excellent in mechanical strength and impact strength.
  • the polarizing plate of the present invention includes a polarizer and a protective film provided on at least one surface of the polarizer, wherein at least one of the protective film comprises the first film layer, the second film layer and the third film layer. It is an optical film and is excellent in durability.
  • FIG. 1 is a view showing a multilayer optical film according to an embodiment of the present invention.
  • the inventors of the present invention as a result of research to develop an optical film that is excellent in UV blocking effect and also excellent in physical properties such as transparency, color and heat resistance, and has high UV absorption performance and excellent economy, A multilayer optical film has been developed.
  • the inventors of the present invention by producing an optical film in a multi-layer, and selectively using the type and components of the ultraviolet absorber of each film layer, according to the present invention having excellent ultraviolet absorption performance, but having high economic efficiency and thermal stability
  • the multilayer optical film was completed.
  • the first film layer formed of a thermoplastic acrylic resin composition containing 0.01 parts by weight to 2.0 parts by weight of the triazine-based ultraviolet absorber with respect to 100 parts by weight of the thermoplastic acrylic resin composition; 0.1 to 5.0 parts by weight of at least one ultraviolet absorber selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet absorbers
  • a second film layer formed of a thermoplastic acrylic resin composition
  • a third film layer formed of a thermoplastic acrylic resin composition including 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber.
  • the multilayer optical film according to the present invention has a multilayer structure of the first film layer 10, the second film layer 20, and the third film layer 30.
  • the optical film of the multilayer structure as described above has an advantage that can be produced by changing the configuration of each film layer. That is, the first film layer and the third film layer include a triazine-based ultraviolet absorbent having excellent heat resistance, and the second film layer has a triazole-based, benzophenon-based, and oxanilide having excellent ultraviolet absorption performance.
  • an optical film excellent in both heat resistance and ultraviolet absorbing performance can be produced.
  • an optical film having excellent heat resistance can be obtained, thereby lowering the production cost of the optical film, which is very advantageous in terms of economy. There is an advantage.
  • the thermoplastic acrylic resin composition forming the first film layer and the third film layer the content of the triazine-based UV absorber may be in the range of 0.01 parts by weight to 2.0 parts by weight based on 100 parts by weight of the thermoplastic acrylic resin composition. .
  • the content of the triazine-based UV absorber included in the first film layer and the third film layer satisfies the numerical range, the acrylic resin melted under high temperature and pressure in the extruder during the manufacturing of the multilayer optical film is When suddenly cooled in the process of passing through the die and passing through the T-die, the UV absorber decomposes and escapes from the film. Can be prevented.
  • thermoplastic acrylic resin composition forming the second film layer is composed of a triazole, benzophenon, oxanilide, and cyanoacryl ultraviolet absorbers.
  • the content of the at least one ultraviolet absorber selected from the group may range from 0.1 parts by weight to 5.0 parts by weight based on 100 parts by weight of the thermoplastic acrylic resin composition.
  • the glass transition temperature of the resin composition can be prevented from being greatly reduced, and the multilayer optical film of the present invention has heat resistance characteristics and ultraviolet absorption performance. This is very excellent.
  • the amount of the ultraviolet absorber included in the first film layer and the third film layer is added in excess of the numerical range, or the content of the ultraviolet absorber included in the second film layer is the upper numerical range.
  • the excess amount is added in excess, the melt viscosity difference between the thermoplastic resin composition forming the first film layer and the second film layer or between the thermoplastic acrylic resin composition forming the third film layer and the second film layer is severe. In this case, a wave pattern may occur at each interface of the multilayer optical film, thereby causing a problem of poor appearance characteristics of the film.
  • the triazine-based UV absorber included in the first film layer and the third film layer is particularly limited as long as the ultraviolet absorption performance is in the range of 10% to 80% in the wavelength range of 280nm to 400nm.
  • the benzotriazine-based compound including a hydroxy group and the benzotriazine-based compound including one or more organic residues having 1 to 20 carbon atoms may be used.
  • the maximum absorption wavelength ( ⁇ max) of the triazine-based ultraviolet absorber moves to a long wavelength region near the 380 nm wavelength band. Because it works, there is a very advantageous effect in terms of minimizing the content of the ultraviolet absorber included in the film.
  • the triazine-based ultraviolet absorber included in the thermoplastic resin composition forming the first film layer and the third film layer has a weight molecular weight of 300 to 2,000.
  • the weight molecular weight of the triazine-based UV absorber satisfies the above numerical range, it has excellent compatibility with the ultraviolet absorber and the thermoplastic acrylic resin composition, and has excellent mechanical and thermal properties of the formed first and third film layers. There is this.
  • the first film layer and the third film layer when measured in terms of the thickness of the optical film 60 ⁇ m, the linear light transmittance of 10% to 30% at 380nm wavelength Can be.
  • the 380nm wavelength it is called a UVA region, which is not absorbed by the ozone layer, and because the intensity is also very high, it must be blocked. Therefore, when the straight light transmittance of the first film layer and the third film layer in the above conditions satisfy the above numerical range, it is possible to obtain an optical film excellent in the ultraviolet absorption performance, in particular the ultraviolet absorption performance of the UVA region.
  • the linear light transmittance when measured in terms of the thickness of the optical film 60 ⁇ m, the linear light transmittance may be 3% to 12% at 290nm wavelength.
  • the 290nm wavelength is called the UVB region, which is mostly absorbed by the ozone layer, but because the energy is strong as the wavelength is short, it needs to be blocked even if the amount reaching the surface is small. Therefore, under the above conditions, when the linear light transmittance of the first film layer and the third film layer satisfies the numerical range, it is possible to obtain an optical film having excellent ultraviolet absorption performance, in particular, the ultraviolet absorption performance of the UVB region.
  • the ultraviolet absorber of the second film layer is not particularly limited as long as the ultraviolet absorbing performance is in the range of 10% to 80% in the wavelength range of 280nm to 400nm, for example, triazole ( Triazole), benzophenone (Benzophenon), oxanilide (Oxanilide) and may be one or more selected from the group consisting of cyanoacryl (Cyanoacryl) ultraviolet absorber.
  • the ultraviolet absorber included in the second film layer in the present invention comprises a triazole compound containing a hydroxy group, an acrylonitrile group and a chlorine element, and a triazole compound including one or more organic residues having 1 to 20 carbon atoms. At least one selected from the group is more preferable because an optical film having a desired ultraviolet absorbing performance can be obtained while minimizing the content of the ultraviolet absorbing performance of the optical film, that is, the content of the ultraviolet absorbent.
  • the ultraviolet absorber included in the thermoplastic resin composition forming the second film layer the weight average molecular weight is preferably 100 to 1000 or 200 to 800.
  • the thermal stability of the ultraviolet absorbent is excellent, the thermal stability of the resin composition is also excellent, and the boiling point is high, and it is easy to control the addition amount of the ultraviolet absorbent. This is because the mechanical and thermal properties of the formed second film layer are excellent.
  • the second film layer may have a linear light transmittance of 1% to 15% at a wavelength of 380 nm when measured in terms of a thickness of 60 ⁇ m of the optical film.
  • the linear light transmittance of the second film layer satisfies the numerical range under the above conditions, the degeneration of the polarizer by the ultraviolet rays, in particular the UVA region, may be prevented. It can be prevented from adversely affecting.
  • the second film layer may have a linear light transmittance of 0.1% to 7% at a wavelength of 290 nm when measured in terms of a thickness of 60 ⁇ m of the optical film.
  • the linear light transmittance of the second film layer satisfies the numerical range, it is possible to prevent denaturation of the polarizer due to ultraviolet rays, particularly ultraviolet rays in the UVB region. It can be prevented from adversely affecting.
  • thermoplastic acrylic resin contains the copolymer containing the (a) alkyl (meth) acrylate type unit and (b) styrene type unit.
  • thermoplastic acrylic resin may further include an aromatic resin having a carbonate portion in the main chain.
  • the alkyl (meth) acrylate-based unit gives a negative in-plane retardation (Rin) and a negative thickness direction retardation (Rth) to the film in the stretching process to a weak degree
  • the styrene-based unit is a strong negative surface
  • the internal phase difference Rin and the negative thickness direction phase difference Rth can be provided.
  • the aromatic resin having a carbonate portion in the main chain can provide positive in-plane retardation (Rin) characteristics and positive thickness direction retardation (Rth) characteristics.
  • the negative in-plane retardation means that the refractive index is greatest in the direction perpendicular to the stretching direction
  • the positive in-plane retardation means that the refractive index is greatest in the stretching direction
  • the negative thickness retardation means that the refractive index in the thickness direction is the plane. It means larger than the direction average refractive index
  • a positive thickness direction retardation means that in-plane average refractive index is larger than thickness direction refractive index.
  • the retardation characteristics of the optical film produced therefrom may vary depending on the composition, the stretching direction, the stretching ratio and the stretching method of each component. Therefore, in this invention, the composition and the extending
  • the copolymer in the present specification means that an element referred to as a 'unit' in the present specification is polymerized into a monomer to be included as a repeating unit in the copolymer resin, and in the present specification, the copolymer is a block copolymer or It may be a random copolymer, but the copolymer form is not limited thereto.
  • alkyl (meth) acrylate-based unit in the present specification includes both 'alkyl acrylate-based unit' and 'alkyl methacrylate-based unit', but is not limited thereto, optical transparency, commercial
  • the alkyl moiety of the alkyl (meth) acrylate-based unit preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and is a methyl group or an ethyl group. More preferred.
  • alkyl (meth) acrylate units are methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, hydroxyethyl methacrylate , Isobonyl methacrylate and cyclohexyl methacrylate may be at least one selected from the group consisting of, but is not limited thereto.
  • the alkyl (meth) acrylate-based unit includes 70 parts by weight to 98 parts by weight based on 100 parts by weight of the copolymer, more preferably contains 82 parts by weight to 97 parts by weight.
  • the content satisfies the above range, a film having excellent transmittance and heat resistance of the optical film may be obtained, and the birefringence generated during stretching may be minimized.
  • the (b) styrene-based unit can improve the polymerization efficiency between the monomers, the film produced by the resin composition comprising the same can easily control the stretching phase difference more excellent birefringence A zero retardation film having a property can be obtained.
  • the (b) styrene-based unit may be an unsubstituted styrene monomer or a substituted styrene monomer.
  • the substituted styrene monomer may be styrene substituted with a substituent containing an aliphatic hydrocarbon or hetero atom in a benzene ring or vinyl group.
  • styrene substituted with C 1-4 alkyl or halogen can be used. More specifically, the styrene monomer may be used at least one selected from the group consisting of styrene, ⁇ -methyl styrene, p-bromo styrene, p-methyl styrene and p-chloro styrene, most preferably styrene, ⁇ -methylstyrene and p-methyl styrene.
  • the content of the styrene monomer is preferably about 0.1 part by weight to about 10 parts by weight based on 100 parts by weight of the copolymer, and more preferably about 0.5 parts by weight to about 5 parts by weight. If the content of the styrene monomer meets the above range, it is because the stretching phase difference of the film can be easily adjusted to obtain a more preferable effect in terms of the optical properties of the film.
  • the aromatic resin having a carbonate portion in the main chain contains 5 to 10,000 at least one unit represented by the following [Formula I].
  • X is a divalent group comprising at least one benzene ring. More specifically, X is preferably a divalent group selected from the group consisting of the following structural formulas.
  • the aromatic resin having a carbonate part in the main chain is added to the phase difference control may be included in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the total thermoplastic acrylic resin composition, 1 part by weight to 5 It is more preferable to be included in about a weight part.
  • the aromatic resin having a carbonate portion in the main chain is contained in a smaller amount than this, there is a problem that the thickness direction retardation of the stretched film is increased in a positive direction, and when included in an amount exceeding this, the thickness direction retardation of the stretched film is negative. There is a problem that increases in the direction of.
  • the absolute value of the surface direction phase difference R in defined by the following [Formula 1] and the thickness direction defined by the following [Formula 2]
  • the absolute value of the retardation (R th ) may be added by adjusting the content so as to be 5 nm, preferably 3 nm, and more preferably 0, respectively.
  • n x is the largest refractive index of the in-plane refractive index of the optical film
  • n y is the refractive index of the direction perpendicular to n x of the in-plane refractive index of the optical film
  • n z is the refractive index in the thickness direction
  • d is the thickness of the film.
  • the resin composition of the present invention including the copolymer resin and the aromatic resin having a carbonate portion in the main chain may be prepared using a method well known in the art, such as, for example, a compounding method.
  • the copolymer comprising the (a) alkyl (meth) acrylate unit and (b) styrene unit is (c) at least one in terms of providing excellent heat resistance to the film produced using the same. It is preferable to further include a 3-membered to 6-membered heterocyclic unit substituted with a carbonyl group, wherein the heterocyclic unit is selected from the group consisting of maleic anhydride, maleimide, glutaric anhydride, glutalimide, lactone and lactam Can be.
  • the copolymer resin and the main chain have a carbonate moiety.
  • Compatibility with the aromatic resin can be improved.
  • the (c) three- to six-membered heterocyclic unit substituted with at least one carbonyl group more specifically, for example, ethyl maleimide, n-butyl maleimide, t-butyl maleimide, cyclohexyl maleimide It is preferable that it is a maleimide derivative like a phenyl maleimide etc., and it is especially preferable that it is a phenyl maleimide type unit.
  • the phenyl maleimide unit has a uniform chemical structure under the influence of a substituted phenyl group, thus making it easy to form copolymers with (a) alkyl (meth) acrylate units and (b) styrene units and improve heat resistance. This is because there is an advantage that the polymerization time is relatively short.
  • phenyl maleimide-based unit is a group consisting of phenyl maleimide, nitrophenyl maleimide, monochlorophenyl maleimide, dichlorophenyl maleimide, monomethylphenyl maleimide, dimethylphenyl maleimide, and ethylmethylphenyl maleimide It is preferably at least one selected from.
  • the (c) at least one member of the three to six-membered heterocyclic unit substituted with a carbonyl group is preferably included in an amount of 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the copolymer resin.
  • the content of the three to six-membered heterocyclic unit substituted with the at least one carbonyl group satisfies the numerical range, the optical film is excellent in heat resistance, and the resin properties become unstable, resulting in breakage of the optical film. It can prevent an easy state.
  • the thermoplastic acrylic copolymer may further include an alkyl acrylate unit in order to impart polymerization stability and thermal stability to the resin composition and toughness to the stretched film.
  • an alkyl acrylate unit in order to impart polymerization stability and thermal stability to the resin composition and toughness to the stretched film.
  • the alkyl moiety of the alkyl acrylate monomer may be a cycloalkyl group or a substituted alkyl group, preferably has 1 to 10 carbon atoms, more preferably 1 to 6, and is a methyl group or an ethyl group. Most preferred. Specifically, it may be methyl acrylate, ethyl acrylate, isopropyl acrylate n-butyl acrylate, t-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, hydroxymethyl acrylate or hydroxyethyl acrylate. It is not limited to this.
  • the alkyl acrylate-based unit may include about 0.1 parts by weight to about 5 parts by weight based on 100 parts by weight of the thermoplastic acrylic copolymer, and more preferably about 0.5 parts by weight to about 3.0 parts by weight.
  • the polymerization between the (a) alkyl (meth) acrylate-based unit and (c) at least one carbonyl group substituted with at least one carbonyl group at the time of copolymerization It is easy, it is possible to overcome the thermal decomposition phenomenon that can occur in the resin melting process, it is very advantageous because it has the effect that the stretching process is easily carried out by giving toughness when stretching the film.
  • the thermoplastic acrylic resin used in the embodiment of the present invention can be suitably used as long as the glass transition temperature is 70 ° C or higher.
  • the glass transition temperature of the thermoplastic acrylic resin is preferably 110 ° C. or higher, for example, 115 ° C. or higher, 120 ° C. or higher, or 125 ° C. or higher. The higher the glass transition temperature of the thermoplastic acrylic resin, the higher the temperature at which the fusion of the pellets occurs, so that pellets can be manufactured at a higher temperature, and as a result, a thermoplastic acrylic resin pellet having a lower water content can be produced.
  • the ultraviolet absorber is not particularly limited in shape, but may be, for example, powder, granule, flake, liquid, or the like.
  • the glass transition temperature difference of the films constituting each film layer may be 2 ° C or less.
  • the bending and curling phenomenon may be prevented from occurring in the multilayer optical film due to the difference in the coefficient of thermal expansion of each film layer. Can be.
  • the multilayer optical film according to the present invention may have a UV transmittance in the range of 1% to 10% at a wavelength of 380 nm.
  • a UV transmittance in the range of 1% to 10% at a wavelength of 380 nm.
  • the UV transmittance near the 400 nm wavelength band becomes high, that is, when the light transmittance decreases, the reddish reddish light becomes more intense, resulting in a yellowing phenomenon in which the film turns yellow. This is because the color change and the polarization of the polarization element may occur.
  • the first film layer, the second film layer, and the third film layer may be coextruded.
  • the multilayer optical film is manufactured by the co-extrusion process as described above, it is possible to manufacture an optical film having a desired ultraviolet absorption performance without any additional process, there is an advantage that it is easy to control the thickness of each layer and the content of the ultraviolet absorber.
  • the linear light transmittance when measured in terms of a thickness of 60 ⁇ m of the optical film, the linear light transmittance may be 80% or more at a wavelength of 550 nm, and more specifically, may be 85% to 100%.
  • the transmittance of the polarizing plate is improved to improve visibility, prevent color change, and contrast.
  • the contrast ratio (CR) is reduced, so that the clarity of the liquid crystal panel is excellent.
  • the multilayer optical film may have a straight light transmittance of 0.1% to 15%, more preferably 0.1% to 10% at a wavelength of 380 nm when measured in terms of a thickness of 60 ⁇ m of the optical film.
  • the optical film has excellent ultraviolet absorption performance, particularly ultraviolet absorption performance in the UVA region.
  • the multilayer optical film may have a linear light transmittance of 0.01% to 5%, more preferably 0.01% to 4% at a wavelength of 290 nm when measured in terms of a thickness of 60 ⁇ m of the optical film.
  • the optical film has excellent ultraviolet absorption performance, particularly ultraviolet absorption performance in the UVB region.
  • the components of the ultraviolet absorber of the first film layer and the third film layer are the same, and the components of the ultraviolet absorber of each film layer are changed in such a manner that the ultraviolet components of the second film layer are different.
  • the present invention provides a method for producing a multilayer optical film comprising the step of stretching the coextruded film.
  • the step of co-extrusion of the first film layer, the second film layer and the third film layer is to obtain a multilayer optical film in a continuous process, it is performed by co-extrusion Can be. More specifically, for example, it may be performed by a coextrusion T die method, a coextrusion inflation method, a coextrusion lamination method, but is not limited thereto.
  • the co-extrusion of the first film layer, the second film layer and the third film layer may be performed by a co-extrusion T die method.
  • the thermoplastic acrylic resin composition forming the second film layer may be extruded using a biaxial first extruder having a diameter of 32 ⁇ and an L / D of 40
  • the first film layer and The thermoplastic resin composition forming the third film layer may be extruded using a second uniaxial extruder having a diameter of 30 ⁇ and an L / D of 28.
  • the resin melted in the first extruder and the second extruder are respectively joined in a feed block unit after the extruder to form a melt flow layer, and then formed into a multilayer film through a T-die.
  • L / D means a value obtained by dividing the entire length of the screw by the screw diameter.
  • the extrusion temperature during the co-extrusion is appropriately selected so that the resin is a melt viscosity suitable for extrusion film forming, the first film layer, the second film layer and the third film layer all 220 °C to 290 °C or 240 °C to May be 280 ° C.
  • the temperature difference between the first film layer and the second film layer or the extrusion temperature difference between the third film layer and the second film layer may be such that the resin of each film layer is in a T die or in a feed block.
  • the melt viscosity may be excessively changed by temperature change, and may be within 30 ° C. or within 20 ° C. so that moldability does not deteriorate.
  • the melt viscosity of the thermoplastic acrylic resin composition forming the first film layer, the second film layer, and the third film layer is 200 Pa ⁇ s to 900 Pa ⁇ under conditions of a melting temperature of 265 ° C. and a shear rate of 100 l / s. It may be s, wherein the difference in melt viscosity between the thermoplastic acrylic resin composition forming the first film layer and the second film layer or the difference in melt viscosity between the thermoplastic acrylic resin composition forming the third film layer and the second film layer, It may be within 300 Pa.s, preferably 50 Pa.s to 200 Pa.s, in order to ensure moldability, in particular the uniformity of the thickness of each layer. This is because when the viscosity difference of the molten resin constituting each film layer exceeds 300 Pa ⁇ s, the appearance quality of the film is deteriorated due to the generation of wave patterns due to the difference in shear rate at each film layer interface.
  • thermoplastic acrylic resin used for the multilayer optical film of the present invention can obtain sufficient adhesion strength in a state where the first film layer, the second film layer, and the third film layer are in direct contact with each other by thermal fusion by coextrusion. . Moreover, even after extending
  • the first film layer or the third film layer may be formed by coating and curing. .
  • the stretching step in the step of stretching the co-extruded film may be performed in the longitudinal direction (MD) stretching, transverse direction (TD) stretching, respectively, or both. have.
  • both longitudinal stretching and transverse stretching are performed, either stretching may be performed first and then stretched in the other direction, or both directions may be stretched simultaneously.
  • the stretching may be performed in one step or may be performed in multiple steps.
  • longitudinal stretching stretching by the speed difference between the rolls can be performed, and in the case of transverse stretching, a tenter can be used.
  • the rail starting angle of the tenter is usually within 10 ° to suppress the bowing phenomenon occurring during the lateral stretching and to control the angle of the optical axis regularly. Even when the transverse stretching is carried out in multiple stages, the anti-boeing effect can be obtained.
  • the stretching ratio in the step of stretching the coextruded film 1.3 times to 3.5 times, 1.5 times to 3.0 times or 1.7 times to 2.7 times in the longitudinal direction (MD) can be.
  • MD longitudinal direction
  • the longitudinal direction refers to the film advancing direction.
  • the draw ratio in the stretching of the coextruded film may be 1.3 times to 3.5 times, 1.5 times to 3.0 times, or 1.7 times to 2.7 times in the transverse direction (TD).
  • TD transverse direction
  • the film is excellent in handleability, and breakage of the stretched film can be prevented.
  • the longitudinal direction (MD, Machine Direction) refers to the film advancing direction.
  • the transverse direction (MD, Machine Direction) means a direction perpendicular to the film advancing direction.
  • the stretching temperature based on the glass transition temperature of the film of each film layer of the multilayer optical film in adjusting the phase difference.
  • the glass transition temperature of the film having the highest glass transition temperature among the film layers of the multilayer optical film may be a temperature within +30 °C or +20 °C.
  • all the glass transition temperatures of the film of each film layer of the said multilayer optical film are 110 degreeC or more, In particular, in order to ensure thermal stability and stretchability, the glass transition temperature of the film of each film layer is 110 degreeC. It is preferable that they are -180 degreeC or 120 degreeC-150 degreeC.
  • the film manufacturing process and the stretching process can be continuously configured, the productivity is improved, and since it is easy to manufacture the optical film having the desired UV transmittance without any additional process, the high It is economical, and the optical film produced thereby has a significant increase in mechanical strength and impact strength.
  • a polarizer and a protective film provided on at least one surface of the polarizer, wherein at least one of the protective films includes a first film layer, a second film layer, and a third film layer. It provides a polarizing plate which is the multilayer optical film.
  • the multilayer optical film according to the present invention can be used as a polarizer protective film.
  • the surface may be modified to improve adhesion.
  • Modification methods include a method of treating the surface of the protective film by corona treatment, plasma treatment, UV treatment, and the like to form a primer layer on the surface of the protective film, and the above two methods may be used at the same time.
  • the kind of primer is not specifically limited, It is preferable to use the compound which has a reactive functional group like a silane coupling agent.
  • Polarizing plate comprising a multilayer optical film according to the present invention as a protective film, the polarizer and a protective film provided on at least one side of the polarizer, at least one of the protective film is a structure of the multilayer optical film according to the present invention described above It can have
  • the polarizer can be used without limitation known in the art, for example, a film made of polyvinyl alcohol (PVA) containing iodine or dichroic dye can be used. have.
  • the polarizer may be prepared by dyeing iodine or dichroic dye on the PVA film, but a method of manufacturing the same is not particularly limited.
  • the polarizer means a state not including a protective film
  • the polarizing plate means a state including a polarizer and a protective film.
  • Adhesion of the polarizer and the protective film may be performed using an adhesive layer.
  • the adhesive that can be used when laminating the protective film and the polarizing plate is not particularly limited as long as it is known in the art.
  • a one-component or two-component polyvinyl alcohol (PVA) adhesive, a polyurethane adhesive, an epoxy adhesive, a styrene butadiene rubber (SBR) adhesive, or a hot melt adhesive can be used.
  • the adhesion of the polarizer and the protective film is first coated with an adhesive using a roll coater, gravure coater, bar coater, knife coater, or capillary coater on the surface of the polarizer protective film or PVA film that is a polarizer,
  • the protective film and the polarizing film may be carried out by a method of laminating by heat pressing at room temperature or pressing at room temperature. In the case of using a hot melt adhesive, a heat press roll should be used.
  • an adhesive may also be used as long as it can exert sufficient adhesive force.
  • the adhesive is preferably hardened by heat or ultraviolet rays after lamination, and thus the mechanical strength is improved to the level of the adhesive.
  • the adhesive strength is also large, and thus the adhesive strength is such that it does not peel off without breaking of either film to which the adhesive is attached. It is preferable.
  • examples of the pressure-sensitive adhesive that can be used include natural rubber, synthetic rubber or elastomer, vinyl chloride / vinyl acetate copolymer, polyvinyl alkyl ether, polyacrylate, modified polyolefin-based pressure-sensitive adhesive having excellent optical transparency, and a curing agent such as isocyanate is added thereto.
  • a curing agent such as isocyanate is added thereto.
  • One curable adhesive can be mentioned.
  • the polarizing plate according to the present invention manufactured as described above may be used in various applications. Specifically, it can be preferably used for an image display device including a polarizing plate for liquid crystal display (LCD), an anti-reflective polarizing plate of an organic EL display device, and the like.
  • the polarizing plate according to the present invention combines various optical layers such as retardation plates, light diffusing plates, viewing angle expanding plates, brightness enhancing plates, reflecting plates such as various functional films, for example, ⁇ / 4 plates, ⁇ / 2 plates, and the like. It can be applied to one composite polarizer.
  • the polarizing plate may be provided with an adhesive layer on at least one surface so as to be easily applied to an image display device.
  • a release film may be further provided on the pressure-sensitive adhesive layer to protect the pressure-sensitive adhesive layer until the polarizing plate is applied to an image display device or the like.
  • the polarizing plate according to the present invention includes a polarizer and a protective film provided on at least one surface of the polarizer, wherein at least one of the protective films includes the first film layer, the second film layer, and the third film layer.
  • the polarizing plate which is an optical film is excellent in durability.
  • the primary polymerization was carried out at 80 ° C., and after the suspension reached 80 ° C., it was confirmed that a polymerization peak was generated after about 60 minutes, and the temperature was raised to 115 ° C. to carry out secondary polymerization for about 40 minutes.
  • the suspension was cooled to 30 ° C. to obtain a resin composition in the form of polymerized particles.
  • the resin composition was used after washing with distilled water and dehydrating and drying.
  • the resin composition showed a spherical particle form having an average diameter of 250 ⁇ m as confirmed using an optical microscope (LV100P, Nikon).
  • the prepared resin was measured for glass transition temperature (Tg) by using a DSC (DSC823, Mettler Toledo) at 10 °C / min temperature rising conditions.
  • the raw material pellets were manufactured in the same manner as in Preparation Example 1, except that 3 parts by weight of a triazole UV absorber (TINUVIN 326, BASF) was used based on 100 parts by weight of the resin composition using the resin composition.
  • a triazole UV absorber TINUVIN 326, BASF
  • the raw material pellets were manufactured in the same manner as in Production Example 1 except that the ultraviolet absorbent was not used using the resin composition.
  • the raw material pellets were manufactured in the same manner as in Production Example 1, except that 2 parts by weight of the ultraviolet absorbent was used based on 100 parts by weight of the resin composition using the resin composition.
  • the raw material pellets were manufactured in the same manner as in Production Example 2, except that 6 parts by weight of the ultraviolet absorber was used based on 100 parts by weight of the resin composition using the resin composition.
  • a resin composition was prepared in the same manner except that acrylonitrile and styrene copolymer resin pellets (82TR, LG Chem.) Were used.
  • a raw material pellet was manufactured in the same manner as in Production Example 1, except that 1 part by weight of a triazine-based ultraviolet absorber (Tinuvin-1577, BASF) was used based on 100 parts by weight of the resin composition.
  • a triazine-based ultraviolet absorber Tinuvin-1577, BASF
  • a raw material pellet was manufactured in the same manner as in Production Example 1, except that 1 part by weight of a triazine-based ultraviolet absorber (Tinuvin-1577, BASF) was used based on 100 parts by weight of the resin composition.
  • a triazine-based ultraviolet absorber Tinuvin-1577, BASF
  • the raw material pellets prepared according to Preparation Example 1 were hot-air dried at 80 ° C. for 6 hours and melted with a second extruder at 260 ° C. to form a first film layer and a third film layer.
  • the raw material pellets prepared according to Preparation Example 2 were hot air dried at 80 ° C. for 6 hours, and melted with a first extruder at 265 ° C. to form a second film layer.
  • the first film layer, the second film layer and the third film layer is passed through a coat hanger type T-die (T-die), and the optical of 210 ⁇ m thickness through a chrome plating casting roll, drying roll, etc.
  • T-die coat hanger type T-die
  • a film was prepared.
  • the thickness of the prepared film was measured using a contact thickness meter (m-hite, TEAS, Swiss).
  • the film was oriented in the longitudinal direction (MD) and in the transverse direction (200 mm / min) at 131 ° C. to 135 ° C. under conditions of 10 ° C. higher than the glass transition temperature (Tg) of each film layer using an experimental film stretching equipment.
  • TD was stretched 100% each to prepare a multilayer optical film having a thickness of 52 ⁇ m.
  • Example 1 the first film layer and the third film layer is formed using the raw material pellets prepared in Preparation Example 2, and the second film layer is formed using the raw material pellets prepared in Preparation Example 1
  • a multilayer optical film having a thickness of 54 ⁇ m was prepared in the same manner as the above.
  • Example 1 the first film layer and the third film layer was formed using the raw material pellets prepared in Preparation Example 1, and the second film layer was formed using the raw material pellets prepared in Preparation Example 3.
  • a multilayer optical film having a thickness of 55 ⁇ m was manufactured in the same manner as the above.
  • Example 1 the first film layer and the third film layer is formed using the raw material pellets prepared in Preparation Example 1, and the second film layer is formed using the raw material pellets prepared in Preparation Example 5.
  • a multilayer optical film having a thickness of 58 ⁇ m was prepared in the same manner except as described above.
  • Example 1 the first film layer and the third film layer is formed using the raw material pellets prepared in Preparation Example 2, and the second film layer is formed using the raw material pellets prepared in Preparation Example 3
  • a multilayer optical film having a thickness of 53 ⁇ m was prepared in the same manner except the above.
  • Example 1 the first film layer and the third film layer was formed using the raw material pellets prepared in Preparation Example 2, and the second film layer was formed using the raw material pellets prepared in Preparation Example 4.
  • a multilayer optical film having a thickness of 54 ⁇ m was prepared in the same manner as the above.
  • Example 1 a multilayer optical film having a thickness of 57 ⁇ m was manufactured in the same manner except that the first film layer and the third film layer were formed using the raw material pellets prepared in Preparation Example 4.
  • Example 1 a multilayer optical film having a thickness of 54 ⁇ m was manufactured in the same manner except that the first film layer and the third film layer were formed using the raw material pellets prepared in Preparation Example 6.
  • Example 1 a 52-micrometer-thick multilayer optical film was produced by the same method except having formed the 1st film layer and the 3rd film layer using the raw material pellet manufactured according to manufacture example 7.
  • Example 1 the multilayer optical film of 52 micrometers in thickness was produced by the same method except having formed all the 1st film layer-the 3rd film layer using the raw material pellet manufactured by the manufacture example 2.
  • Example 1 a single-layer optical film having a thickness of 51 ⁇ m was manufactured in the same manner except that the raw material pellets prepared in Preparation Example 8 were formed using a first extruder.
  • the linear light transmittance was measured and the results are shown in the following [Table 2]. At this time, the linear light transmittance of the optical film was measured using a UV-Visible Spectrophotomer (U-3310, Hitachi, Japan) without the integrating sphere.
  • the impact strength of the film was measured and the results are shown in the following [Table 2].
  • the impact strength is measured by dropping a metal ball of a predetermined weight by using a Drop Impact Tester equipment to measure the height of the film break, and convert the potential energy corresponding to the measured height into the unit volume of the film to the impact strength Converted.
  • Example 1 As shown in the above [Table 2], in the case of Example 1, a multilayer optical film was obtained in which no roll contamination occurred, the external appearance property of the film was excellent, and the straight light transmittance and the impact strength were also excellent.

Abstract

The present invention relates to a multilayer optical film, a method for preparing same, and a polarizing plate comprising same, wherein the multilayer optical film comprises: a first film layer formed of a thermoplastic acryl-based resin composition including 0.01 to 2.0 parts by weight of a triazine-based ultraviolet ray absorbing agent based on 100 parts by weight of a thermoplastic acryl-based resin composition; a second film layer formed of a thermoplastic acryl-based resin composition including 0.1 to 5.0 parts by weight of one or more ultraviolet ray absorbing agent(s) selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet ray absorbing agents; and a third film layer formed of a thermoplastic acryl-based resin composition including 0.01 to 2.0 parts by weight of triazine-based ultraviolet ray absorbing agent.

Description

다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판Multi-layered optical film, manufacturing method thereof and polarizing plate comprising the same
본 발명은 다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판에 관한 것이다.The present invention relates to a multilayer optical film, a method of manufacturing the same, and a polarizing plate including the same.
최근 광학 기술의 발전에 따라 종래의 브라운관(CRT)를 대체하는 플라즈마 디스플레이(PDP), 액정 디스플레이(LCD), 유기 EL 디스플레이(LED) 등과 같은 다양한 디스플레이 기술이 제안되고 시판되고 있다. 한편, 이러한 디스플레이 장치들에는 편광필름, 편광자 보호 필름, 위상차 필름, 도광판, 플라스틱 기판과 같은 다양한 폴리머 필름들이 사용되고 있으며, 이러한 디스플레이용 폴리머 소재는 그 요구 특성이 한층 고도화되고 있는 추세이다.Recently, with the development of optical technology, various display technologies, such as plasma display (PDP), liquid crystal display (LCD), organic EL display (LED), etc., replacing conventional CRTs, have been proposed and marketed. Meanwhile, various polymer films, such as polarizing films, polarizer protective films, retardation films, light guide plates, and plastic substrates, are used in these display devices, and the display polymer material has a trend of being further advanced.
한편, 현재 액정표시장치와 같은 화상표시장치에서 사용되는 편광판은 일반적으로 폴리비닐 알코올 편광자를 보호하기 위한 보호 필름으로 트리아세틸셀룰로오스 필름(이하, TAC 필름)을 주로 사용하고 있다. 그러나, TAC 필름은 내습열성이 충분하지 않아, 고온 또는 고습 하에서 사용되면 필름 변형에 의해 편광도나 색상 등의 편광판 특성이 저하된다는 문제점을 가지고 있다. 따라서, 최근에는 편광자 보호 필름의 재료로 TAC 필름 대신 내습열성이 우수한 투명성 아크릴계 수지 필름을 사용하는 방안이 제안되었다. On the other hand, polarizing plates used in image display apparatuses such as liquid crystal display devices generally use a triacetyl cellulose film (hereinafter, TAC film) as a protective film for protecting a polyvinyl alcohol polarizer. However, the TAC film does not have sufficient heat and moisture resistance, and when used under high temperature or high humidity, the TAC film has a problem in that polarization plate characteristics such as polarization degree and color are degraded due to film deformation. Therefore, in recent years, a method of using a transparent acrylic resin film having excellent moisture resistance and heat resistance instead of the TAC film has been proposed as a material of the polarizer protective film.
또한, 이러한 아크릴계 필름에 자외선 흡수제를 첨가하여 자외선 흡수 성능을 갖게 함으로써, 편광자가 자외선에 의해 열화되는 것을 방지하는 기술도 제안되었다. 이러한 종래의 아크릴 필름의 경우, 자외선 흡수제로 벤조트리아졸(benzotriazol)계 화합물, 벤조페논(benzophenone)계 화합물, 벤조트리아진(Benzotriazine)계 화합물, 시아노 아크릴레이트(cyano acrylate)계 화합물 또는 살리실산계 화합물 등이 사용될 수 있음이 알려져 있다. Moreover, the technique which prevents a polarizer from being degraded by an ultraviolet-ray by adding a ultraviolet absorber to such an acryl-type film to have ultraviolet absorption performance was also proposed. In the case of such a conventional acrylic film, a benzotriazol compound, a benzophenone compound, a benzotriazine compound, a cyano acrylate compound, or a salicylic acid type as a ultraviolet absorber It is known that compounds and the like can be used.
그러나 상기 알려진 자외선 흡수제들은 대부분 고온 가공 시에 분해되기 때문에 자외선 흡수 능력이 떨어질 뿐 아니라, 자외선 흡수제의 열 분해에 의해 수지 및 필름이 황변되는 문제가 있다. However, since the UV absorbers are mostly decomposed during high temperature processing, not only the UV absorbing ability is lowered, but also the yellowing of the resin and the film is caused by thermal decomposition of the UV absorber.
특히, 상기 벤조트리아진(Benzotriazine)계 화합물은 자외선 B영역(315nm ~ 280nm) 흡수능은 높지만, 자외선 A영역(400nm ~ 315nm) 흡수능이 낮은 특성을 갖기 때문에, 자외선 A 영역 흡수능을 높이기 위해서는 과량으로 첨가해야 한다. 그러나, 이와 같이 과량의 자외선 흡수제를 첨가시킬 경우 아크릴 필름 제조과정에서 압출기의 높은 온도와 압력을 받아 용융되어 나온 아크릴 수지가 티-다이(T-die)를 지나 캐스팅 롤(Casting Roll)을 거치는 과정에서 갑자기 식을 때 자외선 흡수제가 분해되면서 필름 밖으로 빠져 나와 캐스팅 롤에 묻는 현상인 마이그레이션이 심하였으며, 그 결과 열분해 되는 자외선 흡수제가 필름에도 묻어나게 되어 필름 외관이 불량해지는 문제점이 있다.In particular, the benzotriazine-based compound has a high ultraviolet B region (315 nm ~ 280 nm) absorption capacity, but the ultraviolet A region (400 nm ~ 315 nm) absorption ability is low, so added in excess in order to increase the ultraviolet A region absorption capacity Should be. However, when the excess UV absorber is added, the acrylic resin melted under the high temperature and pressure of the extruder during the acrylic film manufacturing process passes through the T-die and passes through the casting roll. When the sudden cooling in the UV absorber decomposes out of the film as the phenomenon of migration to the casting roll was severe, as a result of the thermal decomposition of the UV absorber is also buried in the film has a problem that the appearance of the film is poor.
더욱이, 상기 알려진 자외선 흡수제들은 분자량 및 유리전이온도가 낮기 때문에 이를 아크릴 수지에 다량 첨가하면 수지 조성물의 유리전이온도가 크게 저하되어 내열성이 떨어지거나, 광학 필름의 광학 물성에 악영향을 미칠 수 있다.Furthermore, since the known ultraviolet absorbers have a low molecular weight and a glass transition temperature, when a large amount of the ultraviolet absorber is added to the acrylic resin, the glass transition temperature of the resin composition is greatly lowered, thereby lowering heat resistance or adversely affecting optical properties of the optical film.
따라서, 자외선 흡수 성능이 우수하면서도 높은 유리전이온도(Tg)값을 가지며, 착색 및 오염 문제가 발생하지 않도록 광학 필름을 제조할 수 있는 기술의 개발이 요구된다.Accordingly, there is a need for the development of a technology capable of manufacturing an optical film having excellent UV absorption performance but having a high glass transition temperature (Tg) value and preventing coloring and contamination problems.
본 발명은, 내열성이 우수하고, 자외선 흡수 성능이 우수하면서도, 높은 경제성을 가지는 다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판을 제공하고자 한다. The present invention is to provide a multilayer optical film having excellent heat resistance, excellent ultraviolet absorption performance and high economical efficiency, a method of manufacturing the same, and a polarizing plate including the same.
상기 과제를 해결하기 위해서, 일 측면에서, 본 발명은, 열 가소성 아크릴계 수지 조성물 100 중량부에 대하여, 트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제1필름층; 트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상의 자외선 흡수제 0.1 중량부 내지 5.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제2필름층; 및 트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제3필름층을 포함하는 다층 광학 필름을 제공한다. MEANS TO SOLVE THE PROBLEM In order to solve the said subject, in one aspect, this invention is a 1st film layer formed from the thermoplastic acrylic resin composition containing 0.01 weight part-2.0 weight part of triazine type ultraviolet absorbers with respect to 100 weight part of thermoplastic acrylic resin compositions. ; 0.1 to 5.0 parts by weight of at least one ultraviolet absorber selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet absorbers A second film layer formed of a thermoplastic acrylic resin composition; And a third film layer formed of a thermoplastic acrylic resin composition including 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber.
다른 측면에서, 본 발명은, 상기한 바와 같은 제1필름층, 제2필름층 및 제3필름층을 공압출하는 단계, 상기 공압출된 필름을 연신하는 단계를 포함하는 다층 광학 필름 제조방법을 제공한다.In another aspect, the present invention provides a method for manufacturing a multilayer optical film comprising coextruding a first film layer, a second film layer and a third film layer as described above, and stretching the coextruded film. to provide.
또 다른 측면에서, 본 발명은, 편광자 및 상기 편광자의 적어도 일면에 구비된 보호필름을 포함하는 편광판으로서, 상기 보호필름 중 적어도 하나가 상기 제1필름층, 제2필름층 및 제3필름층을 포함하는 다층 광학 필름인 편광판을 제공한다. In another aspect, the present invention, a polarizer comprising a polarizer and a protective film provided on at least one surface of the polarizer, at least one of the protective film is the first film layer, the second film layer and the third film layer It provides a polarizing plate which is a multilayer optical film containing.
본 발명에 따른 다층 광학 필름은, 내열성이 우수하고, 자외선 흡수 성능이 우수하면서도, 높은 경제성을 가진다.The multilayer optical film according to the present invention is excellent in heat resistance and excellent in ultraviolet absorption performance, but has high economical efficiency.
또한, 본 발명에 따른 다층 광학 필름의 제조방법에 의하는 경우, 필름 제조공정 및 연신공정을 연속식으로 구성할 수 있으므로 생산성이 향상되고, 별도의 추가 공정 없이 원하는 자외선 투과도를 갖는 광학 필름 제조가 용이하므로 높은 경제성이 있으며, 이에 의해 제조된 광학 필름은 기계적 강도 및 충격 강도가 매우 우수하다. In addition, according to the manufacturing method of the multilayer optical film according to the present invention, since the film manufacturing process and the stretching process can be configured continuously, the productivity is improved, and the optical film production having the desired UV transmittance without any additional process Since it is easy, there is high economical efficiency, and the optical film manufactured by this is very excellent in mechanical strength and impact strength.
또한, 본 발명의 편광판은, 편광자 및 상기 편광자의 적어도 일면에 구비된 보호필름을 포함하며, 상기 보호필름 중 적어도 하나가 상기 제1필름층, 제2필름층 및 제3필름층을 포함하는 다층 광학 필름인 것으로 내구성이 우수하다. In addition, the polarizing plate of the present invention includes a polarizer and a protective film provided on at least one surface of the polarizer, wherein at least one of the protective film comprises the first film layer, the second film layer and the third film layer. It is an optical film and is excellent in durability.
도 1은 본 발명의 일 구현예에 따른 다층 광학 필름을 도시한 도면이다.1 is a view showing a multilayer optical film according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Shape and size of the elements in the drawings may be exaggerated for more clear description.
본 발명의 발명자들은 자외선 차단 효과가 우수하면서, 동시에 투명도, 색감 및 내열성과 같은 물성도 우수하고, 높은 자외선 흡수 성능을 가지며, 경제성이 우수한 광학 필름을 개발하기 위해 연구를 거듭한 결과, 본 발명의 다층 광학 필름을 개발하기에 이르렀다.The inventors of the present invention, as a result of research to develop an optical film that is excellent in UV blocking effect and also excellent in physical properties such as transparency, color and heat resistance, and has high UV absorption performance and excellent economy, A multilayer optical film has been developed.
즉, 본 발명의 발명자들은, 광학 필름을 다층으로 제조하고, 각 필름 층의 자외선 흡수제의 종류 및 성분을 선택적으로 사용함으로써, 자외선 흡수 성능이 우수하면서도, 높은 경제성 및 열 안정성을 갖는 본 발명에 따른 다층 광학 필름을 완성하였다. That is, the inventors of the present invention, by producing an optical film in a multi-layer, and selectively using the type and components of the ultraviolet absorber of each film layer, according to the present invention having excellent ultraviolet absorption performance, but having high economic efficiency and thermal stability The multilayer optical film was completed.
일 측면에서, 본 발명은, 열 가소성 아크릴계 수지 조성물 100 중량부에 대하여, 트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제1필름층; 트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상의 자외선 흡수제 0.1 중량부 내지 5.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제2필름층; 및 트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제3필름층을 포함하는 다층 광학 필름을 제공한다. In one aspect, the present invention, the first film layer formed of a thermoplastic acrylic resin composition containing 0.01 parts by weight to 2.0 parts by weight of the triazine-based ultraviolet absorber with respect to 100 parts by weight of the thermoplastic acrylic resin composition; 0.1 to 5.0 parts by weight of at least one ultraviolet absorber selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet absorbers A second film layer formed of a thermoplastic acrylic resin composition; And a third film layer formed of a thermoplastic acrylic resin composition including 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber.
도 1에는 본 발명의 다층 광학 필름의 일 구현예가 개시되어 있다. 도 1에 도시된 바와 같이, 본 발명에 따른 다층 광학 필름은, 제1필름층(10), 제2필름층(20) 및 제3필름층(30)의 다층 구조를 갖는다. 상기와 같은 다층 구조의 광학 필름은 각 필름 층의 구성을 달리하여 제조할 수 있는 장점이 있다. 즉, 제1필름층 및 제3필름층에는 내열성이 뛰어난 트리아진계 자외선 흡수제를 포함시키고, 제2필름층에는 자외선 흡수 성능이 우수한 트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상의 자외선 흡수제를 포함시킴으로써, 내열성과 자외선 흡수 성능이 모두 우수한 광학 필름을 제조할 수 있다. 특히, 매우 고가인 트리아진계 자외선 흡수제를, 상기와 같은 다층 광학 필름의 일부 층에만 소량 사용하여도 내열성이 우수한 광학 필름을 얻을 수 있으므로, 광학 필름의 생산 단가를 낮출 수 있어 경제적인 측면에서 매우 유리한 장점이 있다. 1, an embodiment of a multilayer optical film of the present invention is disclosed. As shown in FIG. 1, the multilayer optical film according to the present invention has a multilayer structure of the first film layer 10, the second film layer 20, and the third film layer 30. The optical film of the multilayer structure as described above has an advantage that can be produced by changing the configuration of each film layer. That is, the first film layer and the third film layer include a triazine-based ultraviolet absorbent having excellent heat resistance, and the second film layer has a triazole-based, benzophenon-based, and oxanilide having excellent ultraviolet absorption performance. By including at least one ultraviolet absorber selected from the group consisting of (Oxanilide) and cyanoacryl-based ultraviolet absorbers, an optical film excellent in both heat resistance and ultraviolet absorbing performance can be produced. In particular, even if a very expensive triazine-based UV absorber is used in a small amount only in some layers of the multilayer optical film as described above, an optical film having excellent heat resistance can be obtained, thereby lowering the production cost of the optical film, which is very advantageous in terms of economy. There is an advantage.
한편, 상기 제1필름층 및 제3필름층을 형성하는 열 가소성 아크릴계 수지 조성물은, 트리아진계 자외선 흡수제의 함량이 열 가소성 아크릴계 수지 조성물 100 중량부에 대하여 0.01 중량부 내지 2.0 중량부 범위일 수 있다. 제1필름층 및 제3필름층에 포함되는 트리아진계 자외선 흡수제의 함량이 상기 수치범위를 만족하는 경우에는, 다층 광학 필름의 제조과정 중 압출기에서 높은 온도와 압력을 받아 용융되어 나온 아크릴 수지가 티-다이(T-die)를 지나 캐스팅 롤(Casting Roll)을 거치는 과정에서 갑자기 식을 때 자외선 흡수제가 분해되면서 필름 밖으로 빠져 나와 캐스팅 롤에 묻는 현상인 마이그레이션이 발생하지 않으므로, 자외선 흡수제가 필름의 오염원으로 작용하는 것을 방지할 수 있다. 이를 통해 외관 특성이 우수하며, 동시에 자외선 흡수 성능도 우수한 다층 광학 필름을 얻을 수 있다. 또한, 고가의 트리아진계 자외선 흡수제를 소량만 첨가하여도 우수한 내열성을 갖는 광학 필름을 얻을 수 있으므로 제조 원가를 낮출 수 있어 생산성을 향상시킬 수 있는 장점도 있다.On the other hand, the thermoplastic acrylic resin composition forming the first film layer and the third film layer, the content of the triazine-based UV absorber may be in the range of 0.01 parts by weight to 2.0 parts by weight based on 100 parts by weight of the thermoplastic acrylic resin composition. . When the content of the triazine-based UV absorber included in the first film layer and the third film layer satisfies the numerical range, the acrylic resin melted under high temperature and pressure in the extruder during the manufacturing of the multilayer optical film is When suddenly cooled in the process of passing through the die and passing through the T-die, the UV absorber decomposes and escapes from the film. Can be prevented. As a result, a multilayer optical film having excellent appearance characteristics and excellent ultraviolet absorption performance can be obtained. In addition, since an optical film having excellent heat resistance can be obtained even by adding a small amount of an expensive triazine-based ultraviolet absorber, manufacturing cost can be lowered and productivity can be improved.
또한, 상기 제2필름층을 형성하는 열 가소성 아크릴계 수지 조성물은, 트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상의 자외선 흡수제의 함량이 열 가소성 아크릴계 수지 조성물 100 중량부에 대하여 0.1 중량부 내지 5.0 중량부 범위일 수 있다. 제2필름층에 포함되는 자외선 흡수제의 함량이 상기 수치범위를 만족하는 경우 수지 조성물의 유리전이온도가 큰 폭으로 저하되는 것을 방지할 수 있어, 본 발명의 다층 광학 필름은 내열 특성 및 자외선 흡수 성능이 매우 우수하다. In addition, the thermoplastic acrylic resin composition forming the second film layer is composed of a triazole, benzophenon, oxanilide, and cyanoacryl ultraviolet absorbers. The content of the at least one ultraviolet absorber selected from the group may range from 0.1 parts by weight to 5.0 parts by weight based on 100 parts by weight of the thermoplastic acrylic resin composition. When the content of the ultraviolet absorber included in the second film layer satisfies the numerical range, the glass transition temperature of the resin composition can be prevented from being greatly reduced, and the multilayer optical film of the present invention has heat resistance characteristics and ultraviolet absorption performance. This is very excellent.
특히, 본 발명에서, 상기 제1필름층 및 제3필름층에 포함되는 자외선 흡수제의 함량이 상기 수치범위를 초과하여 과량으로 첨가되거나, 제2필름층에 포함되는 자외선 흡수제의 함량이 상치 수치범위를 초과하여 과량으로 첨가되는 경우에는 제1필름층 및 제2필름층을 형성하는 열 가소성 수지 조성물 간 또는 제3필름층 및 제2필름층을 형성하는 열 가소성 아크릴계 수지 조성물 간의 용융 점도 차이가 심하게 발생할 수 있고, 이 경우 다층 광학 필름의 각 계면에 물결 무늬가 발생하여 필름의 외관 특성이 불량해지는 문제점이 발생할 수 있다. In particular, in the present invention, the amount of the ultraviolet absorber included in the first film layer and the third film layer is added in excess of the numerical range, or the content of the ultraviolet absorber included in the second film layer is the upper numerical range. When the excess amount is added in excess, the melt viscosity difference between the thermoplastic resin composition forming the first film layer and the second film layer or between the thermoplastic acrylic resin composition forming the third film layer and the second film layer is severe. In this case, a wave pattern may occur at each interface of the multilayer optical film, thereby causing a problem of poor appearance characteristics of the film.
한편, 본 발명에 따른 다층 광학 필름에 있어서, 상기 제1필름층 및 제3필름층에 포함되는 트리아진계 자외선 흡수제는 280nm 내지 400nm 파장 범위에서 자외선 흡수 성능이 10% 내지 80% 범위인 것이면 특별히 제한되는 것은 아니나, 예를 들면, 히드록시기를 포함하는 벤조트리아진계 화합물 및 탄소수 1 내지 20인 유기 잔기를 1종 이상 포함하는 벤조트리아진계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기한 바와 같이, 벤조트리아진계 화합물이 히드록시기 또는 탄소수 1 내지 20인 유기 잔기를 1종 이상 포함하는 경우, 상기 트라이진계 자외선 흡수제의 최대 흡수 파장(λmax)이 380nm 파장대역 근방인 장파장 영역으로 이동하는 작용을 하기 때문에 필름에 포함되는 자외선 흡수제의 함량을 최소화 할 수 있는 측면에서 매우 유리한 효과가 있다. On the other hand, in the multilayer optical film according to the present invention, the triazine-based UV absorber included in the first film layer and the third film layer is particularly limited as long as the ultraviolet absorption performance is in the range of 10% to 80% in the wavelength range of 280nm to 400nm. For example, the benzotriazine-based compound including a hydroxy group and the benzotriazine-based compound including one or more organic residues having 1 to 20 carbon atoms may be used. As described above, when the benzotriazine-based compound contains at least one hydroxyl group or an organic moiety having 1 to 20 carbon atoms, the maximum absorption wavelength (λmax) of the triazine-based ultraviolet absorber moves to a long wavelength region near the 380 nm wavelength band. Because it works, there is a very advantageous effect in terms of minimizing the content of the ultraviolet absorber included in the film.
특히, 상기 제1필름층 및 제3필름층을 형성하는 열 가소성 수지 조성물에 포함되는 트리아진계 자외선 흡수제는, 중량분자량이 300 내지 2,000인 것이 바람직하다. 트리아진계 자외선 흡수제의 중량분자량이 상기 수치범위를 만족하는 경우, 자외선 흡수제와 열 가소성 아크릴계 수지 조성물과의 상용성이 우수하고, 형성된 제1필름층 및 제3필름층의 기계적, 열적 물성이 우수한 장점이 있다. In particular, the triazine-based ultraviolet absorber included in the thermoplastic resin composition forming the first film layer and the third film layer has a weight molecular weight of 300 to 2,000. When the weight molecular weight of the triazine-based UV absorber satisfies the above numerical range, it has excellent compatibility with the ultraviolet absorber and the thermoplastic acrylic resin composition, and has excellent mechanical and thermal properties of the formed first and third film layers. There is this.
한편, 본 발명에 따른 다층 광학 필름에 있어서, 상기 제1필름층 및 제3필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 380nm 파장에서 직진 광 투과율이 10% 내지 30% 일 수 있다. 380nm 파장의 경우 UVA 영역이라 하는데, 이는 오존층에 흡수되지 않고, 강도(Intensity) 또한 매우 높기 때문에 반드시 차단해야 할 필요가 있다. 따라서, 상기와 같은 조건에서 제1필름층 및 제3필름층의 직진 광 투과율이 상기 수치범위를 만족하는 경우, 자외선 흡수 성능, 특히 UVA 영역의 자외선 흡수 성능이 우수한 광학 필름을 얻을 수 있다. On the other hand, in the multilayer optical film according to the present invention, the first film layer and the third film layer, when measured in terms of the thickness of the optical film 60㎛, the linear light transmittance of 10% to 30% at 380nm wavelength Can be. In the case of the 380nm wavelength, it is called a UVA region, which is not absorbed by the ozone layer, and because the intensity is also very high, it must be blocked. Therefore, when the straight light transmittance of the first film layer and the third film layer in the above conditions satisfy the above numerical range, it is possible to obtain an optical film excellent in the ultraviolet absorption performance, in particular the ultraviolet absorption performance of the UVA region.
또한, 상기 제1필름층 및 제3필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 290nm 파장에서 직진 광 투과율이 3% 내지 12% 일 수 있다. 290nm 파장의 경우 UVB 영역이라 하는데, 이는 대부분이 오존층에 흡수되지만, 파장이 짧은 만큼 에너지가 강하기 때문에 지표에 도달하는 양이 적을지라도 차단해야 할 필요가 있다. 따라서, 상기와 같은 조건에서 제1필름층 및 제3필름층의 직진 광 투과율이 상기 수치범위를 만족하는 경우 자외선 흡수 성능, 특히 UVB 영역의 자외선 흡수 성능이 우수한 광학 필름을 얻을 수 있다. In addition, the first film layer and the third film layer, when measured in terms of the thickness of the optical film 60㎛, the linear light transmittance may be 3% to 12% at 290nm wavelength. The 290nm wavelength is called the UVB region, which is mostly absorbed by the ozone layer, but because the energy is strong as the wavelength is short, it needs to be blocked even if the amount reaching the surface is small. Therefore, under the above conditions, when the linear light transmittance of the first film layer and the third film layer satisfies the numerical range, it is possible to obtain an optical film having excellent ultraviolet absorption performance, in particular, the ultraviolet absorption performance of the UVB region.
본 발명에 따른 다층 광학 필름에 있어서, 상기 제2필름층의 자외선 흡수제는 280nm 내지 400nm 파장 범위에서 자외선 흡수 성능이 10% 내지 80% 범위인 것이면 특별히 제한되는 것은 아니나, 예를 들면, 트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다. 특히, 본 발명에서 제2필름층에 포함되는 자외선 흡수제는 히드록시기와 아크릴로니트릴기 및 염소 원소를 포함하는 트리아졸계 화합물 및 탄소수 1 내지 20의 유기 잔기를 1종 이상 포함하는 트리아졸계 화합물 등으로 이루어진 군으로부터 선택된 1종 이상인 것이 광학 필름의 자외선 흡수 성능을 향상시키는 측면, 즉 자외선 흡수제의 함량을 최소화하면서도, 원하는 자외선 흡수 성능을 갖는 광학 필름을 얻을 수 있으므로 보다 바람직하다. In the multilayer optical film according to the present invention, the ultraviolet absorber of the second film layer is not particularly limited as long as the ultraviolet absorbing performance is in the range of 10% to 80% in the wavelength range of 280nm to 400nm, for example, triazole ( Triazole), benzophenone (Benzophenon), oxanilide (Oxanilide) and may be one or more selected from the group consisting of cyanoacryl (Cyanoacryl) ultraviolet absorber. In particular, the ultraviolet absorber included in the second film layer in the present invention comprises a triazole compound containing a hydroxy group, an acrylonitrile group and a chlorine element, and a triazole compound including one or more organic residues having 1 to 20 carbon atoms. At least one selected from the group is more preferable because an optical film having a desired ultraviolet absorbing performance can be obtained while minimizing the content of the ultraviolet absorbing performance of the optical film, that is, the content of the ultraviolet absorbent.
또한, 상기 제2필름층을 형성하는 열 가소성 수지 조성물에 포함되는 자외선 흡수제는, 중량평균분자량이 100 내지 1000 또는 200 내지 800인 것이 바람직하다. 제2필름층에 포함되는 자외선 흡수제의 중량평균분자량이 상기 수치범위를 만족하는 경우 자외선 흡수제의 열 안정성이 우수하여, 수지 조성물의 열 안정성도 우수하며, 비점이 높아 자외선 흡수제의 첨가량 제어가 용이하고, 형성된 제2필름층의 기계적, 열적 물성이 우수하기 때문이다. In addition, the ultraviolet absorber included in the thermoplastic resin composition forming the second film layer, the weight average molecular weight is preferably 100 to 1000 or 200 to 800. When the weight average molecular weight of the ultraviolet absorber included in the second film layer satisfies the above numerical range, the thermal stability of the ultraviolet absorbent is excellent, the thermal stability of the resin composition is also excellent, and the boiling point is high, and it is easy to control the addition amount of the ultraviolet absorbent. This is because the mechanical and thermal properties of the formed second film layer are excellent.
한편, 본 발명에 따른 다층 광학 필름에 있어서, 상기 제2필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 380nm 파장에서 직진광 투과율이 1% 내지 15% 일 수 있다. 상기와 같은 조건에서 제2필름층의 직진 광 투과율이 상기 수치범위를 만족하는 경우, 자외선, 특히 UVA 영역의 자외선에 의한 편광소자의 변성을 방지할 수 있으므로, UVA 영역의 자외선이 편광자의 광학 물성에 악영향을 미치는 것을 방지할 수 있다. Meanwhile, in the multilayer optical film according to the present invention, the second film layer may have a linear light transmittance of 1% to 15% at a wavelength of 380 nm when measured in terms of a thickness of 60 μm of the optical film. When the linear light transmittance of the second film layer satisfies the numerical range under the above conditions, the degeneration of the polarizer by the ultraviolet rays, in particular the UVA region, may be prevented. It can be prevented from adversely affecting.
또한, 상기 제2필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 290nm 파장에서 직진광 투과율이 0.1% 내지 7% 일 수 있다. 상기와 같은 조건에서 제2필름층의 직진 광 투과율이 상기 수치범위를 만족하는 경우, 자외선, 특히 UVB 영역의 자외선에 의한 편광소자의 변성을 방지할 수 있으므로, UVB 영역의 자외선이 편광자의 광학 물성에 악영향을 미치는 것을 방지할 수 있다. In addition, the second film layer may have a linear light transmittance of 0.1% to 7% at a wavelength of 290 nm when measured in terms of a thickness of 60 μm of the optical film. Under the above conditions, when the linear light transmittance of the second film layer satisfies the numerical range, it is possible to prevent denaturation of the polarizer due to ultraviolet rays, particularly ultraviolet rays in the UVB region. It can be prevented from adversely affecting.
한편, 상기 열 가소성 아크릴계 수지는, (a)알킬(메트)아크릴레이트계 단위와 (b)스티렌계 단위를 포함하는 공중합체를 포함한다. 또한, 상기 열 가소성 아크릴계 수지는 주쇄에 카보네이트 부를 갖는 방향족계 수지를 더 포함할 수 있다. In addition, the said thermoplastic acrylic resin contains the copolymer containing the (a) alkyl (meth) acrylate type unit and (b) styrene type unit. In addition, the thermoplastic acrylic resin may further include an aromatic resin having a carbonate portion in the main chain.
본 발명에 있어서, 상기 알킬(메트)아크릴레이트계 단위는 연신 과정에서 필름에 부의 면 내 위상차(Rin)와 음의 두께 방향 위상차(Rth)를 약한 정도로 부여하고, 상기 스티렌계 단위는 강한 부의 면 내 위상차(Rin)와 음의 두께 방향 위상차(Rth)를 부여할 수 있다. 한편, 주쇄에 카보네이트 부를 갖는 방향족계 수지는 정의 면 내 위상차(Rin) 특성 및 양의 두께 방향 위상차(Rth) 특성을 부여할 수 있다. In the present invention, the alkyl (meth) acrylate-based unit gives a negative in-plane retardation (Rin) and a negative thickness direction retardation (Rth) to the film in the stretching process to a weak degree, the styrene-based unit is a strong negative surface The internal phase difference Rin and the negative thickness direction phase difference Rth can be provided. On the other hand, the aromatic resin having a carbonate portion in the main chain can provide positive in-plane retardation (Rin) characteristics and positive thickness direction retardation (Rth) characteristics.
여기서, 부의 면내 위상차란 연신 방향과 면내에서 수직한 방향으로 굴절률이 가장 커지는 것을 의미하고, 정의 면내 위상차란 연신방향으로 굴절율이 가장 커지는 것을 의미하며, 음의 두께 방향 위상차는 두께 방향의 굴절율이 면 방향 평균 굴절률보다 큰 것을 의미하고, 양의 두께 방향 위상차는 면 내 평균 굴절률이 두께 방향 굴절률보다 큰 것을 의미한다. Here, the negative in-plane retardation means that the refractive index is greatest in the direction perpendicular to the stretching direction, and the positive in-plane retardation means that the refractive index is greatest in the stretching direction, and the negative thickness retardation means that the refractive index in the thickness direction is the plane. It means larger than the direction average refractive index, and a positive thickness direction retardation means that in-plane average refractive index is larger than thickness direction refractive index.
전술한 각 단위의 특성에 의해, 이로부터 제조되는 광학 필름의 위상차 특성은 각 성분들의 조성, 연신 방향, 연신비 및 연신방법에 따라 달라질 수 있다. 따라서, 본 발명에서는 상기 각 성분의 조성과 연신 방법을 조절하여, 특히 제로(0) 위상차 필름, 즉 보호 필름으로 사용할 수 있는 다층 광학 필름을 제조할 수 있다. By the characteristics of each unit described above, the retardation characteristics of the optical film produced therefrom may vary depending on the composition, the stretching direction, the stretching ratio and the stretching method of each component. Therefore, in this invention, the composition and the extending | stretching method of each said component can be adjusted, and especially the multilayer optical film which can be used as a zero retardation film, ie, a protective film, can be manufactured.
한편, 본 명세서에서 공중합체라 함은, 본 명세서에서 '단위'로 언급된 요소가 단량체로 중합되어 공중합체 수지 내에서 반복 단위로서 포함되는 것을 의미하며, 본 명세서에서 상기 공중합체는 블록 공중합체 또는 랜덤 공중합체일 수 있으나, 공중합 형태가 이에 제한되는 것은 아니다.Meanwhile, the copolymer in the present specification means that an element referred to as a 'unit' in the present specification is polymerized into a monomer to be included as a repeating unit in the copolymer resin, and in the present specification, the copolymer is a block copolymer or It may be a random copolymer, but the copolymer form is not limited thereto.
또한, 본 명세서에서 '알킬(메트)아크릴레이트계 단위' 의미는, '알킬아크릴레이트계 단위' 및 '알킬메타크릴레이트계 단위'를 모두 포함하는 것으로, 이로써 한정되는 것은 아니나, 광학적 투명성, 상용성, 가공성 및 생산성을 고려할 때, 상기 알킬(메트)아크릴레이트계 단위의 알킬 부(moiety)는 탄소수가 1 내지 10인 것이 바람직하고, 탄소수가 1 내지 4인 것이 더욱 바람직하며, 메틸기 또는 에틸기인 것이 더욱 바람직하다. 보다 구체적으로, 상기 알킬(메트)아크릴레이트계 단위는 메틸메타크릴레이트, 에틸메타크릴레이트, 이소프로필메타크릴레이트, n-부틸메타크릴레이트, t-부틸메타크릴레이트, 히드록시에틸메타크릴레이트, 이소보닐메타크릴레이트 및 시클로헥실메타크릴레이트로 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있으나, 이에 제한되는 것은 아니다.In addition, the term "alkyl (meth) acrylate-based unit" in the present specification includes both 'alkyl acrylate-based unit' and 'alkyl methacrylate-based unit', but is not limited thereto, optical transparency, commercial In view of the properties, processability and productivity, the alkyl moiety of the alkyl (meth) acrylate-based unit preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and is a methyl group or an ethyl group. More preferred. More specifically, the alkyl (meth) acrylate units are methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, hydroxyethyl methacrylate , Isobonyl methacrylate and cyclohexyl methacrylate may be at least one selected from the group consisting of, but is not limited thereto.
이때, 상기 알킬(메트)아크릴레이트계 단위는 공중합체 100 중량부를 기준으로 70 중량부 내지 98 중량부 정도를 포함하며, 82 중량부 내지 97 중량부 정도를 포함하는 것이 더욱 바람직하다. 함량이 상기 범위를 만족하는 경우, 광학 필름의 투과도 및 내열성이 우수한 필름을 얻을 수 있으며, 연신 시 발생하는 복굴절성을 최소화할 수 있다.In this case, the alkyl (meth) acrylate-based unit includes 70 parts by weight to 98 parts by weight based on 100 parts by weight of the copolymer, more preferably contains 82 parts by weight to 97 parts by weight. When the content satisfies the above range, a film having excellent transmittance and heat resistance of the optical film may be obtained, and the birefringence generated during stretching may be minimized.
다음으로, 본 발명에 있어서, 상기 (b)스티렌계 단위는 각 단량체 간의 중합 효율을 향상시킬 수 있고, 이를 포함하는 수지 조성물에 의해 제조된 필름은 연신 위상차를 보다 용이하게 제어할 수 있어서 우수한 복굴절성을 가진 제로 위상차 필름을 얻을 수 있다.Next, in the present invention, the (b) styrene-based unit can improve the polymerization efficiency between the monomers, the film produced by the resin composition comprising the same can easily control the stretching phase difference more excellent birefringence A zero retardation film having a property can be obtained.
이때, 상기 (b)스티렌계 단위로는, 치환되지 않은 스티렌 단량체 또는 치환된 스티렌 단량체일 수 있다. 상기 치환된 스티렌 단량체는 벤젠고리 또는 비닐기에 지방족 탄화수소 또는 헤테로 원자를 포함하는 치환기로 치환된 스티렌일 수 있다. 예를 들면, 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 2,4-디메틸스티렌, 2,5-디메틸스티렌, 2-메틸-4-클로로스티렌, 2,4,6-트리메틸스티렌, cis-β-메틸스티렌, trans-β-메틸스티렌, 4-메틸-α-메틸스티렌, 4-플루오르-α-메틸스티렌, 4-클로로-α-메틸스티렌, 4-브로모-α-메틸스티렌, 4-t-부틸스티렌, 2-플루오르스티렌, 3-플루오르스티렌, 4-플루오로스티렌, 2,4-디플루오로스티렌, 2,3,4,5,6-펜타플루오로스티렌, 2-클로로스티렌, 3-클로로스티렌, 4-클로로스티렌, 2,4-디클로로스티렌, 2,6-디클로로스티렌, 옥타클로로스티렌, 2-브로모스티렌, 3-브로모스티렌, 4-브로모스티렌, 2,4-디브로모스티렌, α-브로모스티렌 및 β-브로모스티렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 보다 바람직하게는, C1-4 알킬 또는 할로겐으로 치환된 스티렌을 사용할 수 있다. 보다 상세하게 상기 스티렌계 단량체는 스티렌, α-메틸스티렌, p-브로모 스티렌, p-메틸 스티렌 및 p-클로로 스티렌으로 이루어진 군으부터 선택되는 1종 이상을 사용할 수 있으며, 가장 바람직하게는 스티렌, α-메틸스티렌 및 p-메틸 스티렌이다. In this case, the (b) styrene-based unit may be an unsubstituted styrene monomer or a substituted styrene monomer. The substituted styrene monomer may be styrene substituted with a substituent containing an aliphatic hydrocarbon or hetero atom in a benzene ring or vinyl group. For example, styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 2-methyl-4-chlorostyrene, 2,4,6- Trimethylstyrene, cis-β-methylstyrene, trans-β-methylstyrene, 4-methyl-α-methylstyrene, 4-fluoro-α-methylstyrene, 4-chloro-α-methylstyrene, 4-bromo-α -Methylstyrene, 4-t-butylstyrene, 2-fluorostyrene, 3-fluorostyrene, 4-fluorostyrene, 2,4-difluorostyrene, 2,3,4,5,6-pentafluorostyrene , 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, octachlorostyrene, 2-bromostyrene, 3-bromostyrene, 4-bromo It may be one or more selected from the group consisting of styrene, 2,4-dibromostyrene, α-bromostyrene and β-bromostyrene, but is not limited thereto. More preferably, styrene substituted with C 1-4 alkyl or halogen can be used. More specifically, the styrene monomer may be used at least one selected from the group consisting of styrene, α-methyl styrene, p-bromo styrene, p-methyl styrene and p-chloro styrene, most preferably styrene, α-methylstyrene and p-methyl styrene.
상기 스티렌계 단량체의 함량은 상기 공중합체 100 중량부를 기준으로 0.1 중량부 내지 10 중량부 정도인 것이 바람직하며, 0.5 중량부 내지 5 중량부 정도를 포함하는 것이 더욱 바람직하다. 스티렌계 단량체의 함량이 상기 범위를 만족할 경우, 필름의 연신 위상차 조절이 용이하여 필름의 광학적 특성 면에서 보다 바람직한 효과를 얻을 수 있기 때문이다.The content of the styrene monomer is preferably about 0.1 part by weight to about 10 parts by weight based on 100 parts by weight of the copolymer, and more preferably about 0.5 parts by weight to about 5 parts by weight. If the content of the styrene monomer meets the above range, it is because the stretching phase difference of the film can be easily adjusted to obtain a more preferable effect in terms of the optical properties of the film.
한편, 본 발명에 있어서, 상기 주쇄에 카보네이트 부를 갖는 방향족계 수지는 하기 [화학식 I]로 표시되는 적어도 1종의 단위를 5 내지 10,000 개 포함하는 것이 바람직하다. On the other hand, in the present invention, it is preferable that the aromatic resin having a carbonate portion in the main chain contains 5 to 10,000 at least one unit represented by the following [Formula I].
[화학식 I][Formula I]
Figure PCTKR2014005288-appb-I000001
Figure PCTKR2014005288-appb-I000001
상기 식에서, X는 적어도 하나의 벤젠 고리를 포함하는 2가 기이다. 보다 상세하게, 상기 X는 하기 구조식으로 이루어진 그룹으로부터 선택된 2가 기인 것이 바람직하다. Wherein X is a divalent group comprising at least one benzene ring. More specifically, X is preferably a divalent group selected from the group consisting of the following structural formulas.
Figure PCTKR2014005288-appb-I000002
Figure PCTKR2014005288-appb-I000002
한편, 상기 주쇄에 카보네이트 부를 갖는 방향족계 수지는 위상차 조절을 위해 첨가되는 것으로 전체 열 가소성 아크릴계 수지 조성물 100 중량부를 기준으로 0.1 중량부 내지 10 중량부 정도의 함량으로 포함될 수 있으며, 1 중량부 내지 5 중량부 정도로 포함되는 것이 보다 바람직하다. 상기 주쇄에 카보네이트 부를 갖는 방향족계 수지가 이보다 적은 양으로 포함되는 경우 연신 필름의 두께 방향 위상차가 양의 방향으로 증가되는 문제가 있으며, 이를 초과하는 양으로 포함되는 경우 연신 필름의 두께 방향 위상차가 음의 방향으로 증가되는 문제가 있다. 또한, 10 중량부를 초과하는 경우에는, 열 가소성 아크릴계 수지 조성물과 상용성이 저하하여, 백화 현상이 발생하는 문제가 있다. 따라서, 주쇄에 카보네이트 부를 갖는 방향족계 수지의 함량이 상기 수치범위를 만족하는 경우, 하기 [식 1]로 정의되는 면 방향 위상차(Rin)의 절대값 및 하기 [식 2]로 정의되는 두께 방향 위상차(Rth)의 절대값을 각각 5nm, 바람직하게는 3nm, 더욱 바람직하게는 0이 되도록 함량을 조절하여 첨가할 수 있다.On the other hand, the aromatic resin having a carbonate part in the main chain is added to the phase difference control may be included in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the total thermoplastic acrylic resin composition, 1 part by weight to 5 It is more preferable to be included in about a weight part. When the aromatic resin having a carbonate portion in the main chain is contained in a smaller amount than this, there is a problem that the thickness direction retardation of the stretched film is increased in a positive direction, and when included in an amount exceeding this, the thickness direction retardation of the stretched film is negative. There is a problem that increases in the direction of. Moreover, when it exceeds 10 weight part, compatibility with a thermoplastic acrylic resin composition falls, and there exists a problem that a whitening phenomenon generate | occur | produces. Therefore, when the content of the aromatic resin having a carbonate moiety in the main chain satisfies the numerical range, the absolute value of the surface direction phase difference R in defined by the following [Formula 1] and the thickness direction defined by the following [Formula 2] The absolute value of the retardation (R th ) may be added by adjusting the content so as to be 5 nm, preferably 3 nm, and more preferably 0, respectively.
[식 1] Rin = (nx - ny) × d, [Formula 1] R in = (n x -n y ) × d,
[식 2] Rth = (nz - ny) × dR th = (n z -n y ) × d
상기 [식 1] 및 [식 2]에 있어서,In [Formula 1] and [Formula 2],
nx는 광학 필름의 면 방향 굴절율 중 가장 큰 굴절율이고,n x is the largest refractive index of the in-plane refractive index of the optical film,
ny는 광학 필름의 면 방향 굴절율 중 nx와 수직인 방향의 굴절율이고,n y is the refractive index of the direction perpendicular to n x of the in-plane refractive index of the optical film,
nz는 두께 방향의 굴절율이고,n z is the refractive index in the thickness direction,
d는 필름의 두께이다.d is the thickness of the film.
이때, 상기 공중합체 수지와 주쇄에 카보네이트 부를 갖는 방향족계 수지를 포함하는 본 발명의 수지 조성물은, 예를 들면, 컴파운딩법과 같은 당해 기술 분야에 잘 알려진 방법을 이용하여 제조될 수 있다.In this case, the resin composition of the present invention including the copolymer resin and the aromatic resin having a carbonate portion in the main chain may be prepared using a method well known in the art, such as, for example, a compounding method.
나아가, 상기 (a)알킬(메트)아크릴레이트계 단위와 (b)스티렌계 단위를 포함하는 공중합체는 이를 이용하여 제조되는 필름에 우수한 내열성을 제공할 수 있는 측면에서, (c)적어도 하나의 카르보닐기로 치환된 3원소 내지 6원소 헤테로고리 단위를 추가로 포함하는 것이 바람직하며, 상기 헤테로고리 단위는 말레산 무수물, 말레이미드, 글루탈산 무수물, 글루탈이미드, 락톤 및 락탐으로 이루어진 군으로부터 선택될 수 있다. 또한, 상기 (c)적어도 하나의 카르보닐기로 치환된 3원소 내지 6원소 헤테로고리 단위와 상기 (a)알킬(메트)아크릴레이트계 단위가 공중합체를 구성하는 경우 공중합체 수지와 주쇄에 카보네이트 부를 갖는 방향족계 수지와의 상용성을 향상시킬 수 있다. Further, the copolymer comprising the (a) alkyl (meth) acrylate unit and (b) styrene unit is (c) at least one in terms of providing excellent heat resistance to the film produced using the same. It is preferable to further include a 3-membered to 6-membered heterocyclic unit substituted with a carbonyl group, wherein the heterocyclic unit is selected from the group consisting of maleic anhydride, maleimide, glutaric anhydride, glutalimide, lactone and lactam Can be. In addition, when the (c) 3- to 6-membered heterocyclic unit substituted with at least one carbonyl group and the (a) alkyl (meth) acrylate-based unit constitute a copolymer, the copolymer resin and the main chain have a carbonate moiety. Compatibility with the aromatic resin can be improved.
한편, 상기 (c)적어도 하나의 카르보닐기로 치환된 3원소 내지 6원소 헤테로고리 단위는, 보다 구체적으로 예를 들면, 에틸 말레이미드, n-부틸 말레이미드, t-부틸 말레이미드, 시클로헥실 말레이미드, 페닐 말레이미드 등과 같은 말레이미드 유도체인 것이 바람직하며, 페닐 말레이미드계 단위인 것이 특히 바람직하다. 페닐 말레이미드계 단위는 치환되어 있는 페닐기의 영향으로 단량체의 화학적인 구조가 일정하여 (a)알킬(메트)아크릴레이트계 단위와 (b)스티렌계 단위 와 공중합체 형성이 용이하고, 내열성을 향상시킬 수 있으며, 중합시간이 상대적으로 짧은 장점이 있기 때문이다. On the other hand, the (c) three- to six-membered heterocyclic unit substituted with at least one carbonyl group, more specifically, for example, ethyl maleimide, n-butyl maleimide, t-butyl maleimide, cyclohexyl maleimide It is preferable that it is a maleimide derivative like a phenyl maleimide etc., and it is especially preferable that it is a phenyl maleimide type unit. The phenyl maleimide unit has a uniform chemical structure under the influence of a substituted phenyl group, thus making it easy to form copolymers with (a) alkyl (meth) acrylate units and (b) styrene units and improve heat resistance. This is because there is an advantage that the polymerization time is relatively short.
한편, 상기 페닐 말레이미드계 단위의 구체적인 예로는 페닐말레이미드, 니트로페닐 말레이미드, 모노클로로페닐 말레이미드, 디클로로페닐 말레이미드, 모노메틸페닐 말레이미드, 디메틸페닐 말레이미드, 및 에틸메틸페닐 말레이미드로 이루어진 군으로부터 선택되는 적어도 하나인 것이 바람직하다.On the other hand, specific examples of the phenyl maleimide-based unit is a group consisting of phenyl maleimide, nitrophenyl maleimide, monochlorophenyl maleimide, dichlorophenyl maleimide, monomethylphenyl maleimide, dimethylphenyl maleimide, and ethylmethylphenyl maleimide It is preferably at least one selected from.
이때, 상기 (c)적어도 하나의 카르보닐기로 치환된 3원소 내지 6원소 헤테로고리 단위는 공중합체 수지 100 중량부에 대하여, 0.1 중량부 내지 10 중량부의 함량으로 포함되는 것이 바람직하다. 상기 적어도 하나의 카르보닐기로 치환된 3원소 내지 6원소 헤테로고리 단위의 함량이 상기 수치범위를 만족하는 경우 광학 필름의 내열성이 우수하고, 수지 특성이 불안정(brittle)하게 되어 제조된 광학 필름이 부러지기 쉬운 상태가 되는 것을 방지할 수 있다.At this time, the (c) at least one member of the three to six-membered heterocyclic unit substituted with a carbonyl group is preferably included in an amount of 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the copolymer resin. When the content of the three to six-membered heterocyclic unit substituted with the at least one carbonyl group satisfies the numerical range, the optical film is excellent in heat resistance, and the resin properties become unstable, resulting in breakage of the optical film. It can prevent an easy state.
한편, 본 발명에 있어서, 상기 열 가소성 아크릴계 공중합체는, 수지 조성물에 중합 안정성 및 열 안정성과 연신된 필름에 강인성을 부여하기 위하여, 알킬아크릴레이트계 단위를 더 포함할 수 있다. 이 구조 단위를 도입함으로써, 이형성 등의 성형 가공성이 향상하고, 공정 중 열에 의한 중량 감소를 방지하는 등 내열성이 뛰어난 조성물을 얻을 수 있다. Meanwhile, in the present invention, the thermoplastic acrylic copolymer may further include an alkyl acrylate unit in order to impart polymerization stability and thermal stability to the resin composition and toughness to the stretched film. By introducing this structural unit, it is possible to obtain a composition having excellent heat resistance such as molding processability such as mold release property and preventing weight loss due to heat during the process.
이때, 상기 알킬아크릴레이트계 단량체의 알킬 부(moiety)는 시클로알킬기 또는 치환된 알킬기일 수 있고, 탄소수가 1 내지 10 정도인 것이 바람직하며, 1 내지 6인 것이 더욱 바람직하고, 메틸기 또는 에틸기인 것이 가장 바람직하다. 구체적으로 메틸아크릴레이트, 에틸아크릴레이트, 이소프로필아크릴레이트 n-부틸아크릴레이트, t-부틸아크릴레이트, 시클로헥실 아크릴레이트, 이소보닐 아크릴레이트, 히드록시메틸 아크릴레이트 또는 히드록시에틸 아크릴레이트일 수 있으나 이에 제한되는 것은 아니다.In this case, the alkyl moiety of the alkyl acrylate monomer may be a cycloalkyl group or a substituted alkyl group, preferably has 1 to 10 carbon atoms, more preferably 1 to 6, and is a methyl group or an ethyl group. Most preferred. Specifically, it may be methyl acrylate, ethyl acrylate, isopropyl acrylate n-butyl acrylate, t-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, hydroxymethyl acrylate or hydroxyethyl acrylate. It is not limited to this.
상기 알킬아크릴레이트계 단위는 열 가소성 아크릴계 공중합체 100 중량부를 기준으로 0.1 중량부 내지 5 중량부 정도를 포함할 수 있으며, 0.5 중량부 내지 3.0 중량부 정도를 포함하는 것이 더욱 바람직하다. 알킬아크릴레이트계 단위의 함량이 상기 범위일 경우, 공중합체 형성시 (a)알킬(메트)아크릴레이트계 단위와 (c)적어도 하나의 카르보닐기로 치환된 3원소 내지 6원소 헤테로고리 단위간 중합이 용이하고, 수지 용융 과정에서 발생할 수 있는 열 분해 현상을 극복할 수 있으며, 필름 연신 시 강인성을 부여하여 연신 공정이 용이하게 진행되는 효과가 있으므로 매우 유리하다.The alkyl acrylate-based unit may include about 0.1 parts by weight to about 5 parts by weight based on 100 parts by weight of the thermoplastic acrylic copolymer, and more preferably about 0.5 parts by weight to about 3.0 parts by weight. When the content of the alkyl acrylate-based unit is in the above range, the polymerization between the (a) alkyl (meth) acrylate-based unit and (c) at least one carbonyl group substituted with at least one carbonyl group at the time of copolymerization It is easy, it is possible to overcome the thermal decomposition phenomenon that can occur in the resin melting process, it is very advantageous because it has the effect that the stretching process is easily carried out by giving toughness when stretching the film.
한편, 본 발명의 실시형태에서 사용되는 열 가소성 아크릴계 수지는, 유리전이온도가 70℃ 이상이면 매우 적합하게 사용할 수 있다. 펠렛의 흡습을 더욱 억제하기 위하여, 열 가소성 아크릴계 수지의 유리전이온도는 110℃ 이상인 것이 바람직하고, 예를 들면, 115℃ 이상, 120℃ 이상 또는 125℃ 이상일 수 있다. 열 가소성 아크릴계 수지의 유리전이온도가 높으면 높을수록, 펠렛의 융착이 일어나는 온도가 높아지기 때문에, 보다 높은 온도에서 펠렛 제조가 가능하므로, 결과적으로 보다 함수량이 낮은 열 가소성 아크릴계 수지 펠렛을 제조할 수 있다.On the other hand, the thermoplastic acrylic resin used in the embodiment of the present invention can be suitably used as long as the glass transition temperature is 70 ° C or higher. In order to further suppress the moisture absorption of the pellets, the glass transition temperature of the thermoplastic acrylic resin is preferably 110 ° C. or higher, for example, 115 ° C. or higher, 120 ° C. or higher, or 125 ° C. or higher. The higher the glass transition temperature of the thermoplastic acrylic resin, the higher the temperature at which the fusion of the pellets occurs, so that pellets can be manufactured at a higher temperature, and as a result, a thermoplastic acrylic resin pellet having a lower water content can be produced.
다음으로, 상기 자외선 흡수제는 그 형상이 특별히 한정되는 것은 아니나, 예를 들면 파우더(powder), 과립(granule) 또는 플래이크(flake) 또는 액상(Liquid)등일 수 있다.Next, the ultraviolet absorber is not particularly limited in shape, but may be, for example, powder, granule, flake, liquid, or the like.
본 발명에 따른 다층 광학 필름에 있어서, 각 필름 층을 구성하는 필름의 유리전이온도 차이는 2℃ 이하일 수 있다. 각 필름 층을 구성하는 필름의 유리전이온도 차이가 상기 수치범위를 만족하는 경우 각 필름 층의 열팽창 계수 차이로 인해, 다층 광학 필름에 휨(bending) 및 컬(curl) 현상이 발생하는 것을 방지할 수 있다. In the multilayer optical film according to the present invention, the glass transition temperature difference of the films constituting each film layer may be 2 ° C or less. When the glass transition temperature difference of the films constituting each film layer satisfies the numerical range, the bending and curling phenomenon may be prevented from occurring in the multilayer optical film due to the difference in the coefficient of thermal expansion of each film layer. Can be.
본 발명에 따른 다층 광학 필름은, 380nm 파장에서 자외선 투과율이 1% 내지 10% 범위일 수 있다. 380nm 파장에서 자외선 투과율이 상기 수치범위를 만족하는 경우, 이는 400nm 내지 800nm의 가시광선 영역, 특히 400nm 파장대역 근방에서의 자외선 흡수능이 우수한 것을 나타내므로, 이 근방에서의 광 투과도가 감소하는 것을 방지할 수 있고, 이러한 다층 광학 필름을 적용한 편광판의 내구성을 향상시킬 수 있다. 이와 관련하여, 400nm 파장대역 근방의 자외선 투과율이 높아지는 경우, 즉, 광 투과도가 감소하는 경우에는 상대적으로 붉은 계열의 빛이 더 도드라지게 되어, 필름이 누렇게 변하는 황변 현상이 발생할 수 있고, 이로 인해 편광판의 색상 변화 및 편광소자의 변성이 발생할 수 있기 때문이다. The multilayer optical film according to the present invention may have a UV transmittance in the range of 1% to 10% at a wavelength of 380 nm. When the ultraviolet transmittance at the wavelength of 380 nm satisfies the above numerical range, this indicates that the ultraviolet light absorbing ability is excellent in the visible light region of 400 nm to 800 nm, especially in the vicinity of the 400 nm wavelength band, thereby preventing the decrease in light transmittance in the vicinity. The durability of the polarizing plate to which such a multilayer optical film is applied can be improved. In this regard, when the UV transmittance near the 400 nm wavelength band becomes high, that is, when the light transmittance decreases, the reddish reddish light becomes more intense, resulting in a yellowing phenomenon in which the film turns yellow. This is because the color change and the polarization of the polarization element may occur.
본 발명에 따른 다층 광학 필름은, 제1필름층, 제2필름층 및 제3필름층을 공압출한 것일 수 있다. 다층 광학 필름을 상기와 같이 공압출 공정으로 제조하는 경우, 별도의 추가 공정 없이 원하는 자외선 흡수 성능을 갖는 광학 필름 제조가 가능하며, 각 층의 두께 조절 및 자외선 흡수제 함량 조절이 용이하다는 장점이 있다.In the multilayer optical film according to the present invention, the first film layer, the second film layer, and the third film layer may be coextruded. When the multilayer optical film is manufactured by the co-extrusion process as described above, it is possible to manufacture an optical film having a desired ultraviolet absorption performance without any additional process, there is an advantage that it is easy to control the thickness of each layer and the content of the ultraviolet absorber.
본 발명에 따른 다층 광학 필름은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 550nm 파장에서 직진 광 투과율이 80% 이상일 수 있고, 보다 구체적으로는 85% 내지 100%일 수 있다. 상기 다층 광학 필름을 광학 필름의 두께 60㎛로 환산하여, 550nm 파장에서 측정한 직진 광 투과율이 상기 수치범위를 만족하는 경우, 편광판의 투과도가 향상되어 시인성이 우수하고, 색상 변화를 방지하며, 콘트라스트비(Contrast ratio, CR)가 감소하여 액정 패널의 선명도가 우수하다.In the multilayer optical film according to the present invention, when measured in terms of a thickness of 60 μm of the optical film, the linear light transmittance may be 80% or more at a wavelength of 550 nm, and more specifically, may be 85% to 100%. When the multilayer optical film is converted to a thickness of 60 μm of the optical film and the linear light transmittance measured at the wavelength of 550 nm satisfies the numerical range, the transmittance of the polarizing plate is improved to improve visibility, prevent color change, and contrast. The contrast ratio (CR) is reduced, so that the clarity of the liquid crystal panel is excellent.
또한, 상기 다층 광학 필름은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 380nm 파장에서 직진 광 투과율이 0.1% 내지 15%, 보다 바람직하게는 0.1% 내지 10% 일 수 있다. 상기 다층 필름을 광학 필름의 두께 60㎛로 환산하여, 380nm 파장에서 측정한 직진 광 투과율이 상기 수치범위를 만족하는 경우, 자외선 흡수 성능, 특히 UVA 영역의 자외선 흡수 성능이 우수하므로, 이와 같은 광학 필름을 편광판에 적용하는 경우, UVA 영역의 자외선에 의한 편광 소자의 변성을 방지할 수 있다. In addition, the multilayer optical film may have a straight light transmittance of 0.1% to 15%, more preferably 0.1% to 10% at a wavelength of 380 nm when measured in terms of a thickness of 60 μm of the optical film. When the multilayer film is converted to a thickness of 60 μm of the optical film and the linear light transmittance measured at the wavelength of 380 nm satisfies the numerical range, the optical film has excellent ultraviolet absorption performance, particularly ultraviolet absorption performance in the UVA region. When it is applied to the polarizing plate, it is possible to prevent denaturation of the polarizing element due to ultraviolet rays in the UVA region.
나아가, 상기 다층 광학 필름은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 290nm 파장에서 직진 광 투과율이 0.01% 내지 5%, 보다 바람직하게는 0.01% 내지 4% 일 수 있다. 상기 다층 필름을 광학 필름의 두께 60㎛로 환산하여, 290nm 파장에서 측정한 직진광 투과율이 상기 수치범위를 만족하는 경우, 자외선 흡수 성능, 특히 UVB 영역의 자외선 흡수 성능이 우수하므로, 이와 같은 광학 필름을 편광판에 적용하는 경우, UVB 영역의 자외선에 의한 편광 소자의 변성을 방지할 수 있다.Furthermore, the multilayer optical film may have a linear light transmittance of 0.01% to 5%, more preferably 0.01% to 4% at a wavelength of 290 nm when measured in terms of a thickness of 60 μm of the optical film. When the multilayer film is converted into a thickness of 60 µm of the optical film and the linear light transmittance measured at the wavelength of 290 nm satisfies the numerical range, the optical film has excellent ultraviolet absorption performance, particularly ultraviolet absorption performance in the UVB region. When applied to the polarizing plate, it is possible to prevent denaturation of the polarizing element due to ultraviolet rays in the UVB region.
본 발명에 따른 다층 광학 필름은, 제1필름층 및 제3필름층의 자외선 흡수제의 성분은 동일하고, 제2필름층의 자외선 성분을 상이하게 하는 방식으로, 각 필름 층의 자외선 흡수제의 성분을 선택적으로 사용함으로써, 자외선 흡수 성능이 우수하면서도, 높은 경제성 및 열 안정성을 갖는 장점이 있다. In the multilayer optical film according to the present invention, the components of the ultraviolet absorber of the first film layer and the third film layer are the same, and the components of the ultraviolet absorber of each film layer are changed in such a manner that the ultraviolet components of the second film layer are different. By using selectively, there is an advantage of excellent ultraviolet absorption performance, but also having high economy and thermal stability.
다음으로, 본 발명에 따른 다층 광학 필름의 제조방법을 설명한다.Next, the manufacturing method of the multilayer optical film which concerns on this invention is demonstrated.
다른 측면에서 본 발명은, 전술한 제1필름층, 제2필름층 및 제3필름층을 공압출하는 단계; 및 상기 공압출된 필름을 연신하는 단계를 포함하는 다층 광학 필름의 제조방법을 제공한다. In another aspect, the present invention, the first film layer, the second film layer and the third film layer by co-extrusion; And it provides a method for producing a multilayer optical film comprising the step of stretching the coextruded film.
본 발명에 따른 광학 필름의 제조방법에 있어서, 상기 제1필름층, 제2필름층 및 제3필름층을 공압출하는 단계는 연속 공정으로 다층 광학 필름을 얻기 위한 것으로, 공압출에 의해 수행될 수 있다. 보다 구체적으로 예를 들면, 공압출 T 다이법, 공압출 인플레이션법, 공압출 라미네이션법 등에 의해 수행될 수 있으나, 이에 제한되는 것은 아니다. In the manufacturing method of the optical film according to the present invention, the step of co-extrusion of the first film layer, the second film layer and the third film layer is to obtain a multilayer optical film in a continuous process, it is performed by co-extrusion Can be. More specifically, for example, it may be performed by a coextrusion T die method, a coextrusion inflation method, a coextrusion lamination method, but is not limited thereto.
특히, 상기 제1필름층, 제2필름층 및 제3필름층을 공압출하는 단계는 공압출 T 다이법에 의해 수행될 수 있다. 예를 들면, 제2필름층을 형성하는 상기 열 가소성 아크릴계 수지 조성물은 직경이 32φ 이고, L/D가 40인 이축 형태의 제1압출기를 이용하여 압출을 수행할 수 있고, 제1필름층 및 제3필름층을 형성하는 상기 열 가소성 수지 조성물은 직경이 30φ 이며 L/D가 28인 일축 형태의 제2압출기를 이용하여 압출을 수행할 수 있다. 상기 제1압출기 및 제2압출기에서 각각 용융된 수지는 압출기 이후 피드 블록 유닛(Feed Block Unit)에서 합류하여 각각 용융 흐름층을 형성하고, 티-다이(T-die)를 통해 다층필름으로 성형될 수 있다. 여기서, L/D는 스크류(screw)의 전체 길이를 스크류 직경으로 나눈 값을 의미한다. In particular, the co-extrusion of the first film layer, the second film layer and the third film layer may be performed by a co-extrusion T die method. For example, the thermoplastic acrylic resin composition forming the second film layer may be extruded using a biaxial first extruder having a diameter of 32φ and an L / D of 40, and the first film layer and The thermoplastic resin composition forming the third film layer may be extruded using a second uniaxial extruder having a diameter of 30φ and an L / D of 28. The resin melted in the first extruder and the second extruder are respectively joined in a feed block unit after the extruder to form a melt flow layer, and then formed into a multilayer film through a T-die. Can be. Here, L / D means a value obtained by dividing the entire length of the screw by the screw diameter.
한편, 상기 공압출 수행시 압출 온도는, 수지가 압출 제막에 적합한 용융 점도가 되도록 적절하게 선택되는데, 제1필름층, 제2필름층 및 제3필름층 모두 220℃ 내지 290℃ 또는 240℃ 내지 280℃ 일 수 있다. 또한, 상기 다층 광학 필름에서 제1필름층 및 제2필름층과의 온도차이 또는 제3필름층 및 제2필름층과의 압출 온도차는, 각 필름 층의 수지가 T 다이 내 또는 피드 블록 내에서 접촉했을 때에, 온도 변화에 의해서 용융 점도가 과도하게 변화하여, 성형성이 악화하지 않도록, 30℃ 이내 또는 20℃ 이내일 수 있다. On the other hand, the extrusion temperature during the co-extrusion is appropriately selected so that the resin is a melt viscosity suitable for extrusion film forming, the first film layer, the second film layer and the third film layer all 220 ℃ to 290 ℃ or 240 ℃ to May be 280 ° C. Further, in the multilayer optical film, the temperature difference between the first film layer and the second film layer or the extrusion temperature difference between the third film layer and the second film layer may be such that the resin of each film layer is in a T die or in a feed block. When contacted, the melt viscosity may be excessively changed by temperature change, and may be within 30 ° C. or within 20 ° C. so that moldability does not deteriorate.
또한, 상기 제1필름층, 제2필름층 및 제3필름층을 형성하는 열 가소성 아크릴계 수지 조성물의 용융 점도는 용융 온도 265℃, 전단 속도 100ℓ/s의 조건에서 200 Pa·s 내지 900 Pa·s일 수 있으며, 이때 제1필름층 및 제2필름층을 형성하는 열 가소성 아크릴계 수지 조성물 간의 용융 점도 차 또는 제3필름층 및 제2필름층을 형성하는 열 가소성 아크릴계 수지 조성물 간의 용융 점도 차는, 성형성, 특히 각 층의 두께의 균일성을 확보하기 위해서 300 Pa·s 이내, 바람직하게는 50 Pa·s 내지 200 Pa·s 일 수 있다. 각 필름층을 구성하는 용융 수지의 점도 차이가 300 Pa·s 를 초과하는 경우, 각 필름층 계면에서 전단 속도 차이에 의한 물결 무늬 발생으로 필름의 외관 품질이 불량해지는 문제점이 있기 때문이다. The melt viscosity of the thermoplastic acrylic resin composition forming the first film layer, the second film layer, and the third film layer is 200 Pa · s to 900 Pa · under conditions of a melting temperature of 265 ° C. and a shear rate of 100 l / s. It may be s, wherein the difference in melt viscosity between the thermoplastic acrylic resin composition forming the first film layer and the second film layer or the difference in melt viscosity between the thermoplastic acrylic resin composition forming the third film layer and the second film layer, It may be within 300 Pa.s, preferably 50 Pa.s to 200 Pa.s, in order to ensure moldability, in particular the uniformity of the thickness of each layer. This is because when the viscosity difference of the molten resin constituting each film layer exceeds 300 Pa · s, the appearance quality of the film is deteriorated due to the generation of wave patterns due to the difference in shear rate at each film layer interface.
본 발명의 다층 광학 필름에 이용되는 열 가소성 아크릴계 수지는, 공압출에 의한 열융착에 의해, 제1필름층, 제2필름층 및 제3필름층이 직접 접한 상태에서 충분한 밀착 강도를 얻을 수 있다. 또한 연신 처리를 한 후에도, 상기 제1필름층, 제2필름층 및 제3필름층의 밀착성은 양호하게 유지된다. The thermoplastic acrylic resin used for the multilayer optical film of the present invention can obtain sufficient adhesion strength in a state where the first film layer, the second film layer, and the third film layer are in direct contact with each other by thermal fusion by coextrusion. . Moreover, even after extending | stretching process, the adhesiveness of the said 1st film layer, the 2nd film layer, and the 3rd film layer is maintained favorable.
한편, 상기 다층 광학 필름의 제조방법에 있어서, 모든 필름 층이 공압출에 의해 제조되는 것으로 한정되는 것은 아니며, 제1필름층 또는 제3필름층은, 예를 들면 코팅 및 경화하여 형성될 수도 있다. On the other hand, in the manufacturing method of the multilayer optical film, not all film layers are limited to being manufactured by co-extrusion, the first film layer or the third film layer, for example, may be formed by coating and curing. .
다음으로, 상기 공압출된 필름을 연신하는 단계를 설명하기로 한다. Next, the step of stretching the coextruded film will be described.
본 발명에 따른 광학 필름의 제조방법에 있어서, 상기 공압출된 필름을 연신하는 단계에서의 연신 공정은 종 방향(MD) 연신, 횡 방향(TD) 연신을 각각 수행할 수도 있고, 모두 수행할 수도 있다. 또한, 종 방향 연신과 횡 방향 연신을 모두 수행하는 경우에, 어느 한 쪽을 먼저 연신한 후에 다른 방향으로 연신할 수도 있고, 두 방향을 동시에 연신할 수도 있다. 또한, 상기 연신은 한 단계로 수행될 수도 있고, 다단계에 걸쳐 이루어질 수도 있다. 종 방향 연신의 경우, 롤 사이의 속도 차에 의한 연신을 수행할 수 있으며, 횡 방향 연신의 경우 텐타를 사용할 수 있다. 텐타의 레일 개시각은 통상 10° 이내로 하여, 횡 방향 연신 시에 생기는 보잉(Bowing) 현상을 억제하고 광학 축의 각도를 규칙적으로 제어한다. 횡 방향 연신을 다 단계로 수행할 경우에도 보잉 억제 효과를 얻을 수 있다. 상기와 같은 연신 과정을 통해 필름의 위상차 특성을 조절할 수 있다. In the manufacturing method of the optical film according to the present invention, the stretching step in the step of stretching the co-extruded film may be performed in the longitudinal direction (MD) stretching, transverse direction (TD) stretching, respectively, or both. have. In addition, in the case where both longitudinal stretching and transverse stretching are performed, either stretching may be performed first and then stretched in the other direction, or both directions may be stretched simultaneously. In addition, the stretching may be performed in one step or may be performed in multiple steps. In the case of longitudinal stretching, stretching by the speed difference between the rolls can be performed, and in the case of transverse stretching, a tenter can be used. The rail starting angle of the tenter is usually within 10 ° to suppress the bowing phenomenon occurring during the lateral stretching and to control the angle of the optical axis regularly. Even when the transverse stretching is carried out in multiple stages, the anti-boeing effect can be obtained. Through the stretching process as described above it is possible to adjust the phase difference characteristics of the film.
본 발명에 따른 광학 필름의 제조방법에 있어서, 상기 공압출된 필름을 연신하는 단계에서의 연신 배율은, 종 방향(MD)으로 1.3배 내지 3.5배, 1.5배 내지 3.0배 또는 1.7배 내지 2.7배일 수 있다. 종 방향 연신 배율이 상기 수치범위를 만족하는 경우 필름의 취급성이 우수하고, 연신 필름의 파단을 방지할 수 있다. 한편, 본 명세서에서, 종 방향(MD, Machine Direction)은 필름 진행 방향을 의미한다.In the manufacturing method of the optical film according to the present invention, the stretching ratio in the step of stretching the coextruded film, 1.3 times to 3.5 times, 1.5 times to 3.0 times or 1.7 times to 2.7 times in the longitudinal direction (MD) Can be. When the longitudinal stretch magnification satisfies the numerical range, the film is excellent in handleability, and breakage of the stretched film can be prevented. In the present specification, the longitudinal direction (MD, Machine Direction) refers to the film advancing direction.
또한, 상기 공압출된 필름을 연신하는 단계에서의 연신 배율은, 횡 방향(TD)으로 1.3배 내지 3.5배, 1.5배 내지 3.0배 또는 1.7 내지 2.7배일 수 있다. 횡 방향 연신 배율이 상기 수치범위를 만족하는 경우 필름의 취급성이 우수하고, 연신 필름의 파단을 방지할 수 있다. 한편, 본 명세서에서, 종 방향(MD, Machine Direction)은 필름 진행 방향을 의미한다. 한편, 본 명세서에서, 횡 방향(MD, Machine Direction)은 필름 진행 방향에 수직한 방향을 의미한다.In addition, the draw ratio in the stretching of the coextruded film may be 1.3 times to 3.5 times, 1.5 times to 3.0 times, or 1.7 times to 2.7 times in the transverse direction (TD). When the lateral stretch magnification satisfies the numerical range, the film is excellent in handleability, and breakage of the stretched film can be prevented. In the present specification, the longitudinal direction (MD, Machine Direction) refers to the film advancing direction. In the present specification, the transverse direction (MD, Machine Direction) means a direction perpendicular to the film advancing direction.
한편, 본 발명에 따른 광학 필름의 제조방법에서의 연신하는 단계에 있어서, 연신 온도는 상기 다층 광학 필름의 각 필름층의 필름의 유리전이온도에 기초하여 결정하는 것이 위상차를 조정하는데 있어서 바람직하다. 구체적으로, 상기 다층 광학 필름의 각 필름층 중 가장 높은 유리전이온도를 가진 필름의 유리전이온도 +30℃ 이내 또는 +20℃ 이내의 온도일 수 있다. 연신 온도가 상기 수치범위를 만족하는 경우 광학 필름의 기계적 물성이 우수하고, 연신시 필름 파단이 발생하는 문제점을 방지할 수 있다. On the other hand, in the stretching step in the method for producing an optical film according to the present invention, it is preferable to determine the stretching temperature based on the glass transition temperature of the film of each film layer of the multilayer optical film in adjusting the phase difference. Specifically, the glass transition temperature of the film having the highest glass transition temperature among the film layers of the multilayer optical film may be a temperature within +30 ℃ or +20 ℃. When the stretching temperature satisfies the numerical range, the mechanical properties of the optical film may be excellent, and the problem of film breakage may be prevented during stretching.
이때, 상기 다층 광학 필름의 각 필름층의 필름의 유리전이온도는, 모두 110℃ 이상인 것이 바람직하고, 특히, 열 안정성 및 연신 가공성을 확보하기 위해서, 각 필름층의 필름의 유리전이온도는 110℃ 내지 180℃ 또는 120℃ 내지 150℃인 것이 바람직하다.At this time, it is preferable that all the glass transition temperatures of the film of each film layer of the said multilayer optical film are 110 degreeC or more, In particular, in order to ensure thermal stability and stretchability, the glass transition temperature of the film of each film layer is 110 degreeC. It is preferable that they are -180 degreeC or 120 degreeC-150 degreeC.
본 발명에 따른 상기 광학 필름 제조방법에 의하는 경우 필름 제조공정 및 연신공정을 연속식으로 구성할 수 있으므로, 생산성이 향상되고, 별도의 추가 공정 없이 원하는 자외선 투과도를 갖는 광학 필름 제조가 용이하므로 높은 경제성이 있으며, 이에 의해 제조된 광학 필름은 기계적 강도 및 충격 강도가 현저하게 증가된다. In the optical film manufacturing method according to the present invention, since the film manufacturing process and the stretching process can be continuously configured, the productivity is improved, and since it is easy to manufacture the optical film having the desired UV transmittance without any additional process, the high It is economical, and the optical film produced thereby has a significant increase in mechanical strength and impact strength.
본 발명의 제3태양에 의하면, 편광자 및 상기 편광자의 적어도 일면에 구비된 보호필름을 포함하는 편광판으로서, 상기 보호필름 중 적어도 하나가 제1필름층, 제2필름층 및 제3필름층으로 이루어진 상기 다층 광학 필름인 편광판을 제공한다. According to a third aspect of the present invention, there is provided a polarizer and a protective film provided on at least one surface of the polarizer, wherein at least one of the protective films includes a first film layer, a second film layer, and a third film layer. It provides a polarizing plate which is the multilayer optical film.
본 발명에 따른 다층 광학 필름은 편광자 보호필름으로 사용될 수 있다. 이 경우, 접착력 향상을 위해 표면을 개질할 수 있다. 개질 방법으로는 코로나 처리, 플라즈마 처리, UV 처리 등으로 보호필름의 표면을 처리하는 방법과 보호필름의 표면에 프라이머층을 형성하는 방법 등이 있고, 상기 두 방법을 동시에 사용할 수도 있다. 프라이머의 종류는 특별히 한정되지 않지만 실란 커플링제와 같이 반응성 관능기를 가지는 화합물을 사용하는 것이 바람직하다.The multilayer optical film according to the present invention can be used as a polarizer protective film. In this case, the surface may be modified to improve adhesion. Modification methods include a method of treating the surface of the protective film by corona treatment, plasma treatment, UV treatment, and the like to form a primer layer on the surface of the protective film, and the above two methods may be used at the same time. Although the kind of primer is not specifically limited, It is preferable to use the compound which has a reactive functional group like a silane coupling agent.
본 발명에 따른 다층 광학 필름을 보호필름으로 포함하는 편광판은, 편광자 및 상기 편광자의 적어도 일면에 구비된 보호필름을 포함하고, 상기 보호필름 중 적어도 하나가 전술한 본 발명에 따른 다층 광학 필름인 구조를 가질 수 있다.Polarizing plate comprising a multilayer optical film according to the present invention as a protective film, the polarizer and a protective film provided on at least one side of the polarizer, at least one of the protective film is a structure of the multilayer optical film according to the present invention described above It can have
한편, 본 발명에 따른 편광판에 있어서, 상기 편광자로는 당해 기술분야에 알려져 있는 것을 제한 없이 사용할 수 있으며, 예를 들면 요오드 또는 이색성 염료를 포함하는 폴리비닐알콜(PVA)로 이루어진 필름을 사용할 수 있다. 상기 편광자는 PVA 필름에 요오드 또는 이색성 염료를 염착시켜서 제조될 수 있으나, 이의 제조방법은 특별히 한정되지 않는다. 본 명세서에 있어서, 편광자는 보호 필름을 포함하지 않는 상태를 의미하며, 편광판은 편광자와 보호 필름을 포함하는 상태를 의미한다.On the other hand, in the polarizing plate according to the present invention, as the polarizer can be used without limitation known in the art, for example, a film made of polyvinyl alcohol (PVA) containing iodine or dichroic dye can be used. have. The polarizer may be prepared by dyeing iodine or dichroic dye on the PVA film, but a method of manufacturing the same is not particularly limited. In the present specification, the polarizer means a state not including a protective film, and the polarizing plate means a state including a polarizer and a protective film.
상기 편광자와 보호필름의 접착은 접착제층을 이용하여 수행할 수 있다. 상기 보호 필름과 편광판의 합지시 사용 가능한 접착제로는 당해 기술 분야에 알려져 있는 것이면 특별히 한정되지 않는다. 예를 들면, 일액형 또는 이액형의 폴리비닐알콜(PVA)계 접착제, 폴리우레탄계 접착제, 에폭시계 접착제, 스티렌 부타디엔 고무계(SBR계) 접착제, 또는 핫멜트형 접착제 등이 있다. Adhesion of the polarizer and the protective film may be performed using an adhesive layer. The adhesive that can be used when laminating the protective film and the polarizing plate is not particularly limited as long as it is known in the art. For example, a one-component or two-component polyvinyl alcohol (PVA) adhesive, a polyurethane adhesive, an epoxy adhesive, a styrene butadiene rubber (SBR) adhesive, or a hot melt adhesive can be used.
나아가, 상기 편광자와 보호필름의 접착은 편광자용 보호 필름 또는 편광자인 PVA 필름의 표면 상에 롤 코터, 그라비어 코터, 바 코터, 나이프 코터, 또는 캐필러리 코터 등을 사용하여 접착제를 먼저 코팅하고, 접착제가 완전히 건조되기 전에 보호 필름과 편광막을 합지 롤로 가열압착하거나 상온압착하여 합지하는 방법에 의하여 수행될 수 있다. 핫멜트형 접착제를 이용하는 경우에는 가열 압착롤을 사용하여야 한다.Further, the adhesion of the polarizer and the protective film is first coated with an adhesive using a roll coater, gravure coater, bar coater, knife coater, or capillary coater on the surface of the polarizer protective film or PVA film that is a polarizer, Before the adhesive is completely dried, the protective film and the polarizing film may be carried out by a method of laminating by heat pressing at room temperature or pressing at room temperature. In the case of using a hot melt adhesive, a heat press roll should be used.
또한, 충분한 점착력을 발휘할 수 있으면 점착제도 사용될 수 있다. 점착제는 합지 후 열 또는 자외선에 의하여 충분히 경화가 일어나 기계적 강도가 접착제 수준으로 향상되는 것이 바람직하며, 계면접착력도 커서 점착제가 부착된 양쪽 필름 중 어느 한 쪽의 파괴 없이는 박리되지 않는 정도의 점착력을 갖는 것이 바람직하다.In addition, an adhesive may also be used as long as it can exert sufficient adhesive force. The adhesive is preferably hardened by heat or ultraviolet rays after lamination, and thus the mechanical strength is improved to the level of the adhesive. The adhesive strength is also large, and thus the adhesive strength is such that it does not peel off without breaking of either film to which the adhesive is attached. It is preferable.
특히, 사용 가능한 점착제의 구체적인 예로서는 광학투명성이 우수한 천연고무, 합성고무 또는 엘라스토머, 염화비닐/초산비닐 공중합체, 폴리비닐알킬에테르, 폴리아크릴레이트, 변성 폴리올레핀계 점착제 등과 여기에 이소시아네이트 등의 경화제를 첨가한 경화형 점착제를 들 수 있다.In particular, examples of the pressure-sensitive adhesive that can be used include natural rubber, synthetic rubber or elastomer, vinyl chloride / vinyl acetate copolymer, polyvinyl alkyl ether, polyacrylate, modified polyolefin-based pressure-sensitive adhesive having excellent optical transparency, and a curing agent such as isocyanate is added thereto. One curable adhesive can be mentioned.
상기와 같이 제조되는 본 발명에 따른 편광판은 각종 용도에 이용될 수 있다. 구체적으로, 액정표시장치(LCD)용 편광판, 유기 EL 표시장치의 반사 방지용 편광판 등을 포함하는 화상표시장치에 바람직하게 사용될 수 있다. 또한, 본 발명에 따른 편광판은 각종 기능성 막, 예를 들면 λ/4판, λ/2판 등의 위상차판, 광확산판, 시야각 확대판, 휘도 향상판, 반사판 등의 여러 가지 광학층을 조합한 복합 편광판에 적용될 수 있다.The polarizing plate according to the present invention manufactured as described above may be used in various applications. Specifically, it can be preferably used for an image display device including a polarizing plate for liquid crystal display (LCD), an anti-reflective polarizing plate of an organic EL display device, and the like. In addition, the polarizing plate according to the present invention combines various optical layers such as retardation plates, light diffusing plates, viewing angle expanding plates, brightness enhancing plates, reflecting plates such as various functional films, for example, λ / 4 plates, λ / 2 plates, and the like. It can be applied to one composite polarizer.
상기 편광판은 이후 화상표시장치 등에의 적용이 용이하도록 적어도 일면에 점착제층을 구비할 수 있다. 또한, 상기 편광판이 화상표시장치 등에 적용될 때까지 점착제층을 보호하기 위하여 상기 점착제층 상에 이형필름을 추가로 구비할 수 있다.The polarizing plate may be provided with an adhesive layer on at least one surface so as to be easily applied to an image display device. In addition, a release film may be further provided on the pressure-sensitive adhesive layer to protect the pressure-sensitive adhesive layer until the polarizing plate is applied to an image display device or the like.
본 발명에 따른 편광판은, 편광자 및 상기 편광자의 적어도 일면에 구비된 보호필름을 포함하는 것으로서, 상기 보호필름 중 적어도 하나가 상기 제1필름층, 제2필름층 및 제3필름층을 포함하는 다층 광학 필름인 편광판은 내구성이 우수하다.The polarizing plate according to the present invention includes a polarizer and a protective film provided on at least one surface of the polarizer, wherein at least one of the protective films includes the first film layer, the second film layer, and the third film layer. The polarizing plate which is an optical film is excellent in durability.
제조예 1Preparation Example 1
(1)수지 조성물의 제조 (1) Preparation of resin composition
메틸메타크릴레이트 92 중량부, N-페닐말레이미드 5 중량부, α-메틸 스티렌 2 중량부 및 메타크릴레이트 1 중량부로 구성된 단량체 혼합물 1000g을 준비하여, 5리터 반응기에 증류수 2000g, 5% 폴리비닐알콜 용액 8.4g(POVAL PVA217, Kuraray사), 붕산 0.1g, 노말옥틸메르캅탄 2.5g 및 2,2'-아조비스 이소부티로니트릴 1.5g과 혼합하여 400rpm으로 교반하면서 수상에 분산시켰다.1000 g of a monomer mixture consisting of 92 parts by weight of methyl methacrylate, 5 parts by weight of N-phenylmaleimide, 2 parts by weight of α-methyl styrene and 1 part by weight of methacrylate was prepared, and 2000 g of distilled water and 5% polyvinyl chloride were prepared in a 5 liter reactor. 8.4 g of alcohol solution (POVAL PVA217, Kuraray), 0.1 g of boric acid, 2.5 g of normal octyl mercaptan and 1.5 g of 2,2'-azobis isobutyronitrile were mixed and dispersed in an aqueous phase with stirring at 400 rpm.
다음으로, 1차 중합은 80℃에서 수행하였으며, 현탁액이 80℃에 도달하고 나서, 약 60분 후 중합 최고점이 발생하는 것을 확인하고, 115℃로 승온하여 약 40분간 2차 중합을 실시하였다. 상기와 같은 2차 중합 실시 후, 현탁액을 30℃로 냉각하였으며, 중합된 입자 형태의 수지 조성물을 얻었다. 상기 수지 조성물은 증류수로 세척하여 탈수한 후 건조 과정을 거친 후 사용하였다. Next, the primary polymerization was carried out at 80 ° C., and after the suspension reached 80 ° C., it was confirmed that a polymerization peak was generated after about 60 minutes, and the temperature was raised to 115 ° C. to carry out secondary polymerization for about 40 minutes. After the second polymerization as described above, the suspension was cooled to 30 ° C. to obtain a resin composition in the form of polymerized particles. The resin composition was used after washing with distilled water and dehydrating and drying.
이때, 상기 수지 조성물은 광학 현미경(LV100P, Nikon)을 이용하여 확인한 결과 250㎛의 평균 직경을 갖는 구형의 입자 형태를 나타내었다.At this time, the resin composition showed a spherical particle form having an average diameter of 250㎛ as confirmed using an optical microscope (LV100P, Nikon).
(2)원료 펠렛의 제조(2) Production of raw material pellets
다음으로, 상기 수지 조성물 100 중량부에 트리아진계 자외선 흡수제(Tinuvin-1577, BASF사) 1 중량부를 넣어 솔리드 믹서(Solid Mixer)에서 2분간 혼합한 뒤, 상기 원료 혼합물을 원료 호퍼(hopper)로부터 제2압출기까지를 질소 치환한 24φ의 제2압출기에 공급하여 260℃에서 용융하여 원료 펠렛(pellet)을 제조하였다.Next, 1 part by weight of a triazine-based UV absorber (Tinuvin-1577, BASF) was added to 100 parts by weight of the resin composition, followed by mixing for 2 minutes in a solid mixer, and then the raw material mixture was prepared from a raw material hopper. Up to two extruders were supplied to a second extruder of 24 φ which was nitrogen-substituted and melted at 260 ° C. to prepare raw pellets.
이때, 상기 제조된 수지는 DSC(DSC823, Mettler Toledo)를 이용하여 10℃/min 승온 조건으로 유리전이 온도(Tg)를 측정하였다. At this time, the prepared resin was measured for glass transition temperature (Tg) by using a DSC (DSC823, Mettler Toledo) at 10 ℃ / min temperature rising conditions.
제조예 2Preparation Example 2
제조예 1에 있어서, 동일한 조성 및 방법으로 수지 조성물을 제조하였다.In Production Example 1, a resin composition was produced with the same composition and method.
다음으로, 상기 수지 조성물을 이용하여 수지 조성물 100 중량부를 기준으로 트리아졸계 자외선 흡수제(TINUVIN 326, BASF) 3 중량부를 사용하는 것 외에는 제조예 1과 동일한 방법으로 원료 펠렛을 제조하였다. Next, the raw material pellets were manufactured in the same manner as in Preparation Example 1, except that 3 parts by weight of a triazole UV absorber (TINUVIN 326, BASF) was used based on 100 parts by weight of the resin composition using the resin composition.
제조예 3Preparation Example 3
제조예 1에 있어서, 동일한 조성 및 방법으로 수지 조성물을 제조하였다.In Production Example 1, a resin composition was produced with the same composition and method.
다음으로, 상기 수지 조성물을 이용하여 자외선 흡수제를 포함하지 않은 것 외에는 제조예 1과 동일한 방법으로 원료 펠렛을 제조하였다. Next, the raw material pellets were manufactured in the same manner as in Production Example 1 except that the ultraviolet absorbent was not used using the resin composition.
제조예 4Preparation Example 4
제조예 1에 있어서, 동일한 조성 및 방법으로 수지 조성물을 제조하였다.In Production Example 1, a resin composition was produced with the same composition and method.
다음으로, 상기 수지 조성물을 이용하여 수지 조성물 100 중량부를 기준으로 자외선 흡수제 2 중량부를 사용하는 것 외에는, 제조예 1과 동일한 방법으로 원료 펠렛을 제조하였다. Next, the raw material pellets were manufactured in the same manner as in Production Example 1, except that 2 parts by weight of the ultraviolet absorbent was used based on 100 parts by weight of the resin composition using the resin composition.
제조예 5Preparation Example 5
제조예 2에 있어서, 동일한 조성 및 방법으로 수지 조성물을 제조하였다.In Production Example 2, a resin composition was produced with the same composition and method.
다음으로, 상기 수지 조성물을 이용하여 수지 조성물 100 중량부를 기준으로 자외선 흡수제 6 중량부를 사용하는 것 외에는, 제조예 2와 동일한 방법으로 원료 펠렛을 제조하였다. Next, the raw material pellets were manufactured in the same manner as in Production Example 2, except that 6 parts by weight of the ultraviolet absorber was used based on 100 parts by weight of the resin composition using the resin composition.
제조예 6Preparation Example 6
제조예 1에 있어서, 아크릴로니트릴 및 스티렌 공중합체 수지 펠렛 (82TR, LG Chem.)을 이용한 것 외에는 동일한 방법으로 수지 조성물을 제조하였다. In Production Example 1, a resin composition was prepared in the same manner except that acrylonitrile and styrene copolymer resin pellets (82TR, LG Chem.) Were used.
다음으로, 상기 수지 조성물 100 중량부를 기준으로 트리아진계 자외선 흡수제(Tinuvin-1577, BASF사) 1 중량부를 사용한 것 외에는, 제조예 1과 동일한 방법으로 원료 펠렛을 제조하였다. Next, a raw material pellet was manufactured in the same manner as in Production Example 1, except that 1 part by weight of a triazine-based ultraviolet absorber (Tinuvin-1577, BASF) was used based on 100 parts by weight of the resin composition.
제조예 7Preparation Example 7
제조예 1에 있어서, 폴리카보네이트 수지 펠렛(LUPOY, LG Chem.)을 이용한 것 외에는 동일한 방법으로 수지 조성물을 제조하였다. In Production Example 1, a resin composition was prepared in the same manner except that polycarbonate resin pellets (LUPOY, LG Chem.) Were used.
다음으로, 상기 수지 조성물 100 중량부를 기준으로 트리아진계 자외선 흡수제(Tinuvin-1577, BASF사) 1 중량부를 사용한 것 외에는, 제조예 1과 동일한 방법으로 원료 펠렛을 제조하였다.Next, a raw material pellet was manufactured in the same manner as in Production Example 1, except that 1 part by weight of a triazine-based ultraviolet absorber (Tinuvin-1577, BASF) was used based on 100 parts by weight of the resin composition.
제조예 8Preparation Example 8
제조예 1에 있어서, 동일한 조성 및 방법으로 수지 조성물을 제조하였다.In Production Example 1, a resin composition was produced with the same composition and method.
다음으로, 상기 수지 조성물을 이용하여 수지 조성물 100 중량부를 기준으로 트리아진계 자외선 흡수제 (Tinuvin-1577, BASF사) 1 중량부와 트리아졸계 자외선 흡수제 (TINUVIN 326, BASF) 3 중량부를 혼합하여 사용한 것 외에는, 제조예 1과 동일한 방법으로 원료 펠렛을 제조하였다. Next, except that 1 part by weight of a triazine-based UV absorber (Tinuvin-1577, BASF) and 3 parts by weight of a triazole-based UV absorber (TINUVIN 326, BASF) were used based on 100 parts by weight of the resin composition. , The raw material pellets were prepared in the same manner as in Preparation Example 1.
상기 제조예 1 내지 8에 따라 제조된 원료 펠렛에 첨가된 자외선 흡수제의 종류, 분자량 및 함량을 하기 [표 1]에 나타내었다.The type, molecular weight and content of the ultraviolet absorber added to the raw material pellets prepared according to Preparation Examples 1 to 8 are shown in the following [Table 1].
표 1
구분  자외선 흡수제 자외선 흡수제 분자량 자외선 흡수제 함량 (wt%) Tg(℃)
제조예1 Triazine계 425 1.0 125
제조예2 Triazole계 316 3.0 124
제조예3 - - - 125
제조예4 Triazine계 425 2.0 123
제조예5 Triazole계 316 6.0 122
제조예6 Triazine계 425 1.0 116
제조예7 Triazine계 425 1.0 143
제조예8 Triazine계 및 Triazole계 Triazine계: 425Triazole계: 316 Triazine계: 1.0Triazole계: 3.0 123
Table 1
division UV absorbers UV absorber molecular weight UV absorber content (wt%) Tg (℃)
Preparation Example 1 Triazine system 425 1.0 125
Preparation Example 2 Triazole type 316 3.0 124
Preparation Example 3 - - - 125
Preparation Example 4 Triazine system 425 2.0 123
Preparation Example 5 Triazole type 316 6.0 122
Preparation Example 6 Triazine system 425 1.0 116
Preparation Example 7 Triazine system 425 1.0 143
Preparation Example 8 Triazine and Triazole Triazine system: 425 Triazole system: 316 Triazine system: 1.0 Triazole system: 3.0 123
실시예 1Example 1
제조예 1에 따라 제조된 원료 펠렛을 80℃에서 6시간 동안 열풍 건조하고, 260℃에서 제2압출기로 용융하여 제1필름층 및 제3필름층을 형성하였다. 또한, 제조예 2에 따라 제조된 원료 펠렛을 80℃에서 6시간 동안 열풍 건조하고, 265℃에서 제1압출기로 용융하여 제2필름층을 형성하였다.The raw material pellets prepared according to Preparation Example 1 were hot-air dried at 80 ° C. for 6 hours and melted with a second extruder at 260 ° C. to form a first film layer and a third film layer. In addition, the raw material pellets prepared according to Preparation Example 2 were hot air dried at 80 ° C. for 6 hours, and melted with a first extruder at 265 ° C. to form a second film layer.
다음으로, 상기 제1필름층, 제2필름층 및 제3필름층을 코트 행거 타입의 티-다이(T-die)에 통과시키고, 크롬 도금 캐스팅 롤 및 건조 롤 등을 거쳐 두께 210㎛의 광학 필름을 제조하였다. 이때, 제조된 필름의 두께는 접촉식 두께 측정기(m-hite, TEAS, Swiss)를 이용하여 측정하였다.Next, the first film layer, the second film layer and the third film layer is passed through a coat hanger type T-die (T-die), and the optical of 210㎛ thickness through a chrome plating casting roll, drying roll, etc. A film was prepared. At this time, the thickness of the prepared film was measured using a contact thickness meter (m-hite, TEAS, Swiss).
그 후, 상기 필름을 실험용 필름 연신 장비를 사용하여 각 필름층의 유리전이온도(Tg) 보다 10℃ 높은 조건인 131℃ 내지 135℃에서 200mm/min의 속도로 종 방향(MD) 및 횡 방향(TD) 방향으로 각각 100% 연신하여 두께 52㎛의 다층 광학 필름을 제조하였다.Thereafter, the film was oriented in the longitudinal direction (MD) and in the transverse direction (200 mm / min) at 131 ° C. to 135 ° C. under conditions of 10 ° C. higher than the glass transition temperature (Tg) of each film layer using an experimental film stretching equipment. TD) was stretched 100% each to prepare a multilayer optical film having a thickness of 52 μm.
비교예 1Comparative Example 1
실시예 1에 있어서, 제조예 2에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성하고, 제조예 1에 따라 제조된 원료 펠렛을 이용하여 제2필름층을 형성한 것 외에는 동일한 방법으로 두께 54㎛의 다층 광학 필름을 제조하였다. In Example 1, the first film layer and the third film layer is formed using the raw material pellets prepared in Preparation Example 2, and the second film layer is formed using the raw material pellets prepared in Preparation Example 1 A multilayer optical film having a thickness of 54 µm was prepared in the same manner as the above.
비교예 2Comparative Example 2
실시예 1에 있어서, 제조예 1에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성하고, 제조예 3에 따라 제조된 원료 펠렛을 이용하여 제2필름층을 형성한 것 외에는 동일한 방법으로 두께 55㎛의 다층 광학 필름을 제조하였다. In Example 1, the first film layer and the third film layer was formed using the raw material pellets prepared in Preparation Example 1, and the second film layer was formed using the raw material pellets prepared in Preparation Example 3. A multilayer optical film having a thickness of 55 µm was manufactured in the same manner as the above.
비교예 3Comparative Example 3
실시예 1에 있어서, 제조예 1에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성하고, 제조예 5에 따라 제조된 원료 펠렛을 이용하여 제2필름층을 형성한 것 외에는 동일한 방법으로 두께 58㎛의 다층 광학 필름을 제조하였다. In Example 1, the first film layer and the third film layer is formed using the raw material pellets prepared in Preparation Example 1, and the second film layer is formed using the raw material pellets prepared in Preparation Example 5. A multilayer optical film having a thickness of 58 μm was prepared in the same manner except as described above.
비교예 4Comparative Example 4
실시예 1에 있어서, 제조예 2에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성하고, 제조예 3에 따라 제조된 원료 펠렛을 이용하여 제2필름층을 형성한 것 외에는 동일한 방법으로 두께 53㎛의 다층 광학 필름을 제조하였다. In Example 1, the first film layer and the third film layer is formed using the raw material pellets prepared in Preparation Example 2, and the second film layer is formed using the raw material pellets prepared in Preparation Example 3 A multilayer optical film having a thickness of 53 μm was prepared in the same manner except the above.
비교예 5Comparative Example 5
실시예 1에 있어서, 제조예 2에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성하고, 제조예 4에 따라 제조된 원료 펠렛을 이용하여 제2필름층을 형성한 것 외에는 동일한 방법으로 두께 54㎛의 다층 광학 필름을 제조하였다. In Example 1, the first film layer and the third film layer was formed using the raw material pellets prepared in Preparation Example 2, and the second film layer was formed using the raw material pellets prepared in Preparation Example 4. A multilayer optical film having a thickness of 54 µm was prepared in the same manner as the above.
비교예 6Comparative Example 6
실시예 1에 있어서, 제조예 4에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성한 것 외에는 동일한 방법으로 두께 57㎛의 다층 광학 필름을 제조하였다. In Example 1, a multilayer optical film having a thickness of 57 μm was manufactured in the same manner except that the first film layer and the third film layer were formed using the raw material pellets prepared in Preparation Example 4.
비교예 7Comparative Example 7
실시예 1에 있어서, 제조예 6에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성한 것 외에는 동일한 방법으로 두께 54㎛의 다층 광학 필름을 제조하였다. In Example 1, a multilayer optical film having a thickness of 54 μm was manufactured in the same manner except that the first film layer and the third film layer were formed using the raw material pellets prepared in Preparation Example 6.
비교예 8Comparative Example 8
실시예 1에 있어서, 제조예 7에 따라 제조된 원료 펠렛을 이용하여 제1필름층 및 제3필름층을 형성한 것 외에는 동일한 방법으로 두께 52㎛의 다층 광학 필름을 제조하였다. In Example 1, a 52-micrometer-thick multilayer optical film was produced by the same method except having formed the 1st film layer and the 3rd film layer using the raw material pellet manufactured according to manufacture example 7.
비교예 9Comparative Example 9
실시예 1에 있어서, 제1필름층 내지 제3필름층을 모두 제조예 2에 따라 제조된 원료 펠렛을 이용하여 형성한 것 외에는 동일한 방법으로 두께 52㎛의 다층 광학 필름을 제조하였다. In Example 1, the multilayer optical film of 52 micrometers in thickness was produced by the same method except having formed all the 1st film layer-the 3rd film layer using the raw material pellet manufactured by the manufacture example 2.
비교예 10Comparative Example 10
실시예 1에 있어서, 제조예 8에 따라 제조된 원료 펠렛을 제1압출기를 이용하여 필름을 형성한 것을 제외하고는 동일한 방법으로 두께 51㎛의 단층 광학 필름을 제조하였다. In Example 1, a single-layer optical film having a thickness of 51 μm was manufactured in the same manner except that the raw material pellets prepared in Preparation Example 8 were formed using a first extruder.
<롤 오염 여부 측정><Measuring roll contamination>
상기 실시예 1 및 비교예 1 내지 10에 따른 다층 광학 필름의 제조 과정에서 롤 오염 여부를 측정하여 결과를 하기 [표 2]에 나타내었다. 롤 오염 여부는 필름 제막 1시간 후 캐스팅 롤 표면을 관찰하여 자외선 흡수제에 의한 오염도를 육안으로 확인하는 방법으로 측정하였다. 이때, 캐스팅 롤 오염도는 롤 표면을 육안으로 관찰하였을 때 탁한 부분이 존재할 경우 "○"로 표시하였고, 유리면처럼 깨끗한 상태를 유지하는 경우 "×"로 표시하였다.In the manufacturing process of the multilayer optical film according to Example 1 and Comparative Examples 1 to 10 by measuring the contamination of the roll is shown in Table 2 below. Roll contamination was measured by observing the surface of the casting roll 1 hour after film forming to visually confirm the degree of contamination by the ultraviolet absorbent. At this time, the degree of contamination of the casting roll was expressed as "○" when the cloudy surface was observed with the naked eye, and "x" when maintaining the clean state as the glass surface.
<필름의 외관 불량 여부 측정><Measure the appearance of film defects>
상기 실시예 1 및 비교예 1 내지 10에 따른 다층 광학 필름의 제조 과정에서 필름의 외관 불량 여부를 측정하여 결과를 하기 [표 2]에 나타내었다. 필름의 외관 불량 측정은 캐스팅 롤을 거친 상기 광학 필름에 대하여 육안 관찰을 통하여 필름의 외관 불량 여부를 확인하는 방법으로 수행하였다. 이때, 제막된 필름의 각 층 사이에 물결 무늬 불량이 존재할 경우 "×"로 표시하였고, 유리면과 같이 깨끗한 상태를 유지하는 경우 "○"로 표시하였다. In the manufacturing process of the multilayer optical film according to Example 1 and Comparative Examples 1 to 10 by measuring the appearance of the film is poor, the results are shown in the following [Table 2]. Measurement of the appearance defect of the film was performed by a method of confirming whether the appearance defect of the film through visual observation of the optical film passed through the casting roll. At this time, when there was a wave pattern defect between each layer of the film formed, it was indicated by "x", and when maintaining a clean state, such as a glass surface, it was indicated by "○".
<광학 필름의 직진광 투과도 측정><Measurement of Straight Light Transmittance of Optical Film>
상기 실시예 1 및 비교예 1 내지 10에 따라 제조된 광학 필름에 대하여, 직진광 투과도를 측정하여 결과를 하기 [표 2]에 나타내었다. 이때, 광학 필름의 직진광 투과도는 UV-Visible Spectrophotomer(U-3310, Hitachi, Japan)를 이용하여 적분구를 장착하지 않은 상태에서 측정하였다.With respect to the optical film prepared according to Example 1 and Comparative Examples 1 to 10, the linear light transmittance was measured and the results are shown in the following [Table 2]. At this time, the linear light transmittance of the optical film was measured using a UV-Visible Spectrophotomer (U-3310, Hitachi, Japan) without the integrating sphere.
<광학 필름의 충격 강도 측정><Measurement of Impact Strength of Optical Film>
상기 실시예 1 및 비교예 1 내지 10에 따라 제조된 광학 필름에 대하여, 필름의 충격 강도를 측정하여 결과를 하기 [표 2]에 나타내었다. 이때, 상기 충격 강도는 Drop Impact Tester 장비를 이용하여 일정 무게의 금속 Ball을 낙하시켜 필름이 파단 되는 높이를 측정하고, 이렇게 측정된 높이에 해당하는 위치 에너지를 필름의 단위 체적으로 환산하여 충격 강도로 변환하였다. For the optical film prepared according to Example 1 and Comparative Examples 1 to 10, the impact strength of the film was measured and the results are shown in the following [Table 2]. At this time, the impact strength is measured by dropping a metal ball of a predetermined weight by using a Drop Impact Tester equipment to measure the height of the film break, and convert the potential energy corresponding to the measured height into the unit volume of the film to the impact strength Converted.
표 2
구분  필름 두께(㎛) 롤 오염 여부 필름 외관 직진 광 투과도(%) 필름의 충격 강도 (단위 : kPa)
290nm 380nm
실시예 1 52 X O 0.02 2.08 558
비교예 1 54 O O 0.02 10.37 568
비교예 2 55 X O 4.91 80.26 487
비교예 3 58 X X 0 0.05 541
비교예 4 53 O O 5.86 14.92 494
비교예 5 54 O O 0 7.26 4878
비교예 6 57 O O 0 1.74 506
비교예 7 54 X X 0.03 2.47 420
비교예 8 52 X X 0.02 2.31 1122
비교예 9 52 O O 0.01 1.08 537
비교예 10 51 O X 0.02 2.34 340
TABLE 2
division Film thickness (㎛) Whether the roll is dirty Film appearance Straight light transmittance (%) Impact Strength of Film (Unit: kPa)
290 nm 380nm
Example 1 52 X O 0.02 2.08 558
Comparative Example 1 54 O O 0.02 10.37 568
Comparative Example 2 55 X O 4.91 80.26 487
Comparative Example 3 58 X X 0 0.05 541
Comparative Example 4 53 O O 5.86 14.92 494
Comparative Example 5 54 O O 0 7.26 4878
Comparative Example 6 57 O O 0 1.74 506
Comparative Example 7 54 X X 0.03 2.47 420
Comparative Example 8 52 X X 0.02 2.31 1122
Comparative Example 9 52 O O 0.01 1.08 537
Comparative Example 10 51 O X 0.02 2.34 340
상기 [표 2]에 나타낸 바와 같이, 실시예 1의 경우, 롤 오염이 발생하지 않았고, 필름의 외관 특성이 우수하며, 직진 광 투과도 및 충격 강도 역시 우수한 다층 광학 필름이 얻어졌다. As shown in the above [Table 2], in the case of Example 1, a multilayer optical film was obtained in which no roll contamination occurred, the external appearance property of the film was excellent, and the straight light transmittance and the impact strength were also excellent.
그러나, 비교예 1 및 비교예 4 내지 6에 따른 광학 필름의 경우 롤이 오염되는 문제점이 발생하였으며 직진 광 투과율도 좋지 않음을 알 수 있다. 또한, 비교예 2 및 4에 따른 광학 필름의 경우 직진 광 투과도가 현저하게 좋지 않음을 알 수 있다. However, in the case of the optical film according to Comparative Example 1 and Comparative Examples 4 to 6, there was a problem that the roll is contaminated and the straight light transmittance is also not good. In addition, in the case of the optical films according to Comparative Examples 2 and 4 it can be seen that the straight light transmittance is not very good.
한편, 비교예 3에 따른 광학 필름의 경우 제2필름층에 포함된 다량의 자외선 흡수제로 인해 제1필름층 및 제3필름층과 용융 점도 불균형이 발생하였고, 이로 인해 필름층의 계면에 물결 무늬가 관찰되었다. 나아가, 비교예 7 및 8에 따른 광학 필름의 경우 제2필름층을 형성하는 수지 조성물과 유리전이온도 차이가 큰 수지 조성물을 제1필름층 및 제3필름층으로 사용했기 때문에, 비교예 3과 마찬가지로 제2필름층과 용융 점도 불균형 문제가 발생하였고, 이로 인해 각 필름층의 계면에 물결 무늬가 관찰되었다. 또한, 비교예 10과 같이 광학 필름을 단층으로 형성하는 경우에는 충격 강도가 현저하게 떨어짐을 알 수 있었다. On the other hand, in the optical film according to Comparative Example 3, due to the large amount of ultraviolet absorber included in the second film layer, the melt viscosity imbalance with the first film layer and the third film layer occurred, resulting in a wave pattern on the interface of the film layer Was observed. Furthermore, in the case of the optical films according to Comparative Examples 7 and 8, the resin composition forming the second film layer and the resin composition having a large difference in glass transition temperature were used as the first film layer and the third film layer. Similarly, there was a problem of unbalanced melt viscosity with the second film layer, and as a result, a wave pattern was observed at the interface of each film layer. Moreover, when forming an optical film in a single layer like the comparative example 10, it turned out that impact strength falls remarkably.
이상에서 본 명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations can be made without departing from the technical spirit of the present invention described in the claims. It will be obvious to those who have ordinary knowledge of.
[부호의 설명][Description of the code]
10 : 제1필름층10: first film layer
20 : 제2필름층20: second film layer
30 : 제3필름층30: third film layer

Claims (20)

  1. 열 가소성 아크릴계 수지 조성물 100 중량부에 대하여,To 100 parts by weight of the thermoplastic acrylic resin composition,
    트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제1필름층;A first film layer formed of a thermoplastic acrylic resin composition comprising 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber;
    트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상의 자외선 흡수제 0.1 중량부 내지 5.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제2필름층; 및0.1 to 5.0 parts by weight of at least one ultraviolet absorber selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet absorbers A second film layer formed of a thermoplastic acrylic resin composition; And
    트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제3필름층을 포함하는 다층 광학 필름. A multilayer optical film comprising a third film layer formed of a thermoplastic acrylic resin composition comprising 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1필름층 및 제3필름층의 자외선 흡수제는 중량평균분자량이 300 내지 2000 인 다층 광학 필름. The ultraviolet absorber of the first film layer and the third film layer is a multilayer optical film having a weight average molecular weight of 300 to 2000.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1필름층 및 제3필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 380nm 파장에서 직진 광 투과율이 10% 내지 30% 인 다층 광학 필름.The first film layer and the third film layer is a multilayer optical film having a linear light transmittance of 10% to 30% at a wavelength of 380nm when measured in terms of a thickness of 60㎛ of the optical film.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1필름층 및 제3필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 290nm 파장에서 직진 광 투과율이 3% 내지 12% 인 다층 광학 필름.The first film layer and the third film layer is a multilayer optical film having a linear light transmittance of 3% to 12% at a wavelength of 290nm when measured in terms of a thickness of 60㎛ of the optical film.
  5. 제1항에 있어서, The method of claim 1,
    상기 제2필름층의 자외선 흡수제는 중량평균분자량이 100 내지 1000인 다층 광학 필름.The ultraviolet absorber of the second film layer is a multilayer optical film having a weight average molecular weight of 100 to 1000.
  6. 제1항에 있어서,The method of claim 1,
    상기 제2필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 380nm 파장에서 직진 광 투과율이 1% 내지 15% 인 다층 광학 필름.The second film layer is a multilayer optical film having a linear light transmittance of 1% to 15% at a wavelength of 380 nm when measured in terms of a thickness of 60 μm of the optical film.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2필름층은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 290nm 파장에서 직진 광 투과율이 0.1% 내지 7% 인 다층 광학 필름.The second film layer is a multilayer optical film having a linear light transmittance of 0.1% to 7% at a wavelength of 290nm when measured in terms of a thickness of 60㎛ of the optical film.
  8. 제 1항에 있어서,The method of claim 1,
    상기 열 가소성 아크릴계 수지 조성물은 상기 열 가소성 아크릴계 수지가 알킬(메트)아크릴레이트계 단위 및 스티렌계 단위를 포함하는 공중합체를 포함하는 것인 다층 광학 필름. The thermoplastic acrylic resin composition is a multilayer optical film wherein the thermoplastic acrylic resin comprises a copolymer comprising an alkyl (meth) acrylate unit and a styrene unit.
  9. 제8항에 있어서,The method of claim 8,
    상기 열 가소성 아크릴계 수지 조성물은 상기 열 가소성 아크릴계 수지가 주쇄에 카보네이트 부를 갖는 방향족계 수지를 더 포함하는 것인 다층 광학 필름.The thermoplastic acrylic resin composition is a multilayer optical film that the thermoplastic acrylic resin further comprises an aromatic resin having a carbonate portion in the main chain.
  10. 제1항에 있어서, The method of claim 1,
    각 필름층을 구성하는 열 가소성 아크릴계 수지 조성물의 유리전이온도 차이는 2℃ 이하인 다층 광학 필름.The multilayer optical film whose glass transition temperature difference of the thermoplastic acrylic resin composition which comprises each film layer is 2 degrees C or less.
  11. 제1항에 있어서, The method of claim 1,
    상기 다층 광학 필름은, 380nm 파장에서 자외선 투과율이 0.1% 내지 10% 인 다층 광학 필름.The multilayer optical film has a UV transmittance of 0.1% to 10% at a wavelength of 380nm.
  12. 제1항에 있어서,The method of claim 1,
    상기 다층 광학 필름은, 제1필름층, 제2필름층 및 제3필름층을 공압출한 것인 다층 광학 필름.The said multilayer optical film is a multilayer optical film which coextruded the 1st film layer, the 2nd film layer, and the 3rd film layer.
  13. 제1항에 있어서,The method of claim 1,
    상기 다층 광학 필름은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 550nm 파장에서 직진 광 투과율이 85% 내지 100%인 다층 광학 필름.The multilayer optical film has a straight light transmittance of 85% to 100% at a wavelength of 550 nm when measured in terms of a thickness of 60 μm of the optical film.
  14. 제1항에 있어서, The method of claim 1,
    상기 다층 광학 필름은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 380nm 파장에서 직진 광 투과율이 0.1% 내지 15%인 다층 광학 필름.The multilayer optical film has a linear light transmittance of 0.1% to 15% at a wavelength of 380 nm when measured in terms of a thickness of 60 μm of the optical film.
  15. 제1항에 있어서, The method of claim 1,
    상기 다층 광학 필름은, 광학 필름의 두께 60㎛로 환산하여 측정한 경우, 290nm 파장에서 직진 광 투과율이 0.01% 내지 5%인 다층 광학 필름.The multilayer optical film has a linear light transmittance of 0.01% to 5% at 290 nm wavelength when measured in terms of a thickness of 60 μm of the optical film.
  16. 열 가소성 아크릴계 수지 조성물 100 중량부에 대하여, To 100 parts by weight of the thermoplastic acrylic resin composition,
    트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제1필름층; A first film layer formed of a thermoplastic acrylic resin composition comprising 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber;
    트리아졸(Triazole)계, 벤조페논(Benzophenon)계, 옥사닐라이드(Oxanilide)계 및 시아노아크릴(Cyanoacryl)계 자외선 흡수제로 이루어진 그룹으로부터 선택된 1종 이상의 자외선 흡수제 0.1 중량부 내지 5.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제2필름층; 및0.1 to 5.0 parts by weight of at least one ultraviolet absorber selected from the group consisting of triazole-based, benzophenon-based, oxanilide-based and cyanoacryl-based ultraviolet absorbers A second film layer formed of a thermoplastic acrylic resin composition; And
    트리아진계 자외선 흡수제 0.01 중량부 내지 2.0 중량부를 포함하는 열 가소성 아크릴계 수지 조성물로 형성된 제3필름층을 공압출하는 단계, 및Co-extruding a third film layer formed of a thermoplastic acrylic resin composition comprising 0.01 parts by weight to 2.0 parts by weight of a triazine ultraviolet absorber, and
    상기 공압출된 필름을 연신하는 단계를 포함하는 다층 광학 필름의 제조방법.Stretching the coextruded film.
  17. 제16항에 있어서, The method of claim 16,
    상기 연신하는 단계는 상기 공압출된 필름을 종 방향(MD)으로 1.3배 내지 3.5배 연신하는 것인 다층 광학 필름의 제조방법.The stretching step is a 1.3 to 3.5 times the stretching of the coextruded film in the longitudinal direction (MD) method for producing a multilayer optical film.
  18. 제16항에 있어서, The method of claim 16,
    상기 연신하는 단계는 상기 공압출된 필름을 횡 방향(TD)으로 1.3배 내지 3.5배 연신하는 것인 다층 광학 필름의 제조방법.The stretching step is a 1.3 to 3.5 times the stretching of the co-extruded film in the transverse direction (TD) manufacturing method of the multilayer optical film.
  19. 제16항에 있어서,The method of claim 16,
    상기 연신하는 단계는, 상기 다층 광학 필름의 각 필름층 중 가장 높은 유리전이온도를 가진 필름의 유리전이온도 +30℃ 이내의 온도에서 연신하는 것인 다층 광학 필름의 제조방법.The stretching may include stretching at a temperature within + 30 ° C. of the glass transition temperature of the film having the highest glass transition temperature among the film layers of the multilayer optical film.
  20. 편광자; 및 Polarizer; And
    상기 편광자의 적어도 일면에 구비된 보호필름을 포함하는 편광판으로서, 상기 보호필름 중 적어도 하나가 청구항 제1항 내지 제15항 중 어느 한 항의 다층 광학 필름인 편광판.A polarizing plate comprising a protective film provided on at least one surface of the polarizer, wherein at least one of the protective film is a multilayer optical film of any one of claims 1 to 15.
PCT/KR2014/005288 2013-06-18 2014-06-17 Multilayer optical film, method for preparing same and polarizing plate comprising same WO2014204168A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/385,643 US9804307B2 (en) 2013-06-18 2014-06-17 Multilayer optical film, method of producing the same and polarizer comprising the same
CN201480000916.5A CN104395792A (en) 2013-06-18 2014-06-17 Multilayer optical film, method for preparing same and polarizing plate comprising same
JP2015541709A JP6140833B2 (en) 2013-06-18 2014-06-17 Multilayer optical film, method for producing the same, and polarizing plate including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130069629 2013-06-18
KR10-2013-0069629 2013-06-18
KR1020140072860A KR101613785B1 (en) 2013-06-18 2014-06-16 Multilayer optical films, method of producing the same and polarizer comprising the same
KR10-2014-0072860 2014-06-16

Publications (1)

Publication Number Publication Date
WO2014204168A1 true WO2014204168A1 (en) 2014-12-24

Family

ID=52104841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005288 WO2014204168A1 (en) 2013-06-18 2014-06-17 Multilayer optical film, method for preparing same and polarizing plate comprising same

Country Status (2)

Country Link
CN (1) CN104395792A (en)
WO (1) WO2014204168A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088728A (en) * 2015-11-10 2017-05-25 株式会社カネカ Optical film, polarizing plate, and image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638927B1 (en) * 2016-12-28 2024-02-20 니폰 제온 가부시키가이샤 Optical films and polarizers
KR102176881B1 (en) * 2018-04-18 2020-11-10 주식회사 엘지화학 Retardation film, polarizing plate comprising same and liquid crystal display device comprising the same
KR102113420B1 (en) * 2018-04-18 2020-05-20 주식회사 엘지화학 Retardation film, polarizing plate comprising same and liquid crystal display device comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243364A1 (en) * 2004-04-28 2007-10-18 Shigetoshi Maekawa Acrylic Resin Films and Process for Producing the Same
JP2008181079A (en) * 2006-12-27 2008-08-07 Nitto Denko Corp Polarizer protection film, polarizing plate and image display
JP2010065109A (en) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd Thermoplastic resin composition and film using the same
US20100202049A1 (en) * 2007-09-17 2010-08-12 Lg Chem, Ltd. Optical film and method of manufacturing the same
KR20120005123A (en) * 2010-07-08 2012-01-16 주식회사 엘지화학 (meth)acrylic resin composition and optical film comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082197A (en) * 2006-10-26 2009-07-29 가부시키가이샤 닛폰 쇼쿠바이 Polarizer protection film, polarizing plate and image display
JP2008181078A (en) * 2006-12-27 2008-08-07 Nitto Denko Corp Polarizer protection film, polarizing plate and image display device
WO2008136346A1 (en) * 2007-04-26 2008-11-13 Zeon Corporation Display screen protection film and polarization plate
KR101786524B1 (en) * 2009-09-23 2017-10-18 미쯔비시 케미컬 주식회사 Laminated polyester film
JP2011232504A (en) * 2010-04-27 2011-11-17 Sumitomo Chemical Co Ltd Laminate for protection of liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243364A1 (en) * 2004-04-28 2007-10-18 Shigetoshi Maekawa Acrylic Resin Films and Process for Producing the Same
JP2008181079A (en) * 2006-12-27 2008-08-07 Nitto Denko Corp Polarizer protection film, polarizing plate and image display
US20100202049A1 (en) * 2007-09-17 2010-08-12 Lg Chem, Ltd. Optical film and method of manufacturing the same
JP2010065109A (en) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd Thermoplastic resin composition and film using the same
KR20120005123A (en) * 2010-07-08 2012-01-16 주식회사 엘지화학 (meth)acrylic resin composition and optical film comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088728A (en) * 2015-11-10 2017-05-25 株式会社カネカ Optical film, polarizing plate, and image display device

Also Published As

Publication number Publication date
CN104395792A (en) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2009091225A2 (en) Composition for liquid crystal alignment layer, preparation method of liquid crystal alignment layer using the same, and optical film comprising the liquid crystal alignment layer
WO2017095176A1 (en) Optical element
WO2010002198A9 (en) Adhesive composition, protective film for a polarizing plate, polarizing plate, and liquid crystal display
WO2014204168A1 (en) Multilayer optical film, method for preparing same and polarizing plate comprising same
WO2009088240A2 (en) Optical film and electronic information device employing the same
WO2013180504A1 (en) Resin composition, optical film formed using same, and polarizer and liquid crystal display device comprising same
WO2014157848A1 (en) Optical film having superior ultraviolet ray protection function and polarizing plate comprising same
WO2015008925A1 (en) Polarising film and image display apparatus having same
WO2014148684A1 (en) Protection film and polarizing plate using same
WO2014185685A1 (en) Polarizing plate
WO2017039209A1 (en) Cover window substrate and image display device comprising same
WO2016052951A1 (en) Polarizing plate and image display apparatus comprising same
WO2013094969A2 (en) Polarizing plate and image display device having same
WO2019083160A1 (en) Liquid crystal phase difference film, polarizing plate for light-emitting display device including same, and light-emitting display device including same
WO2019013516A1 (en) Circular polarizer
WO2014193072A1 (en) Optical film with excellent ultraviolet cut-off function and polarizing plate including same
WO2020091550A1 (en) Polarizing plate
WO2018004288A2 (en) Polyester multilayered film
WO2013055158A4 (en) Adhesive for polarizing plate, and polarizing plate comprising same
WO2013055154A2 (en) Double-sided polarizing plate and optical device including same
WO2011162499A2 (en) Acrylic copolymer, and optical film containing same
WO2019013520A1 (en) Circular polarizing plate
WO2012002706A2 (en) Protective film
WO2020231195A1 (en) Light-diffuser, light diffusing adhesive, light diffusing hard coat member, light diffusion film, and image forming apparatus including light diffusion film
WO2019203596A1 (en) Retardation film, polarizing plate comprising same, and liquid crystal display device comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14385643

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813440

Country of ref document: EP

Kind code of ref document: A1