WO2014204106A1 - Method for manufacturing permanent magnet - Google Patents

Method for manufacturing permanent magnet Download PDF

Info

Publication number
WO2014204106A1
WO2014204106A1 PCT/KR2014/004647 KR2014004647W WO2014204106A1 WO 2014204106 A1 WO2014204106 A1 WO 2014204106A1 KR 2014004647 W KR2014004647 W KR 2014004647W WO 2014204106 A1 WO2014204106 A1 WO 2014204106A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
content
permanent magnet
sintering
manufacturing
Prior art date
Application number
PCT/KR2014/004647
Other languages
French (fr)
Korean (ko)
Inventor
이성래
김태훈
장태석
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140030533A external-priority patent/KR101527324B1/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2014204106A1 publication Critical patent/WO2014204106A1/en
Priority to US14/974,707 priority Critical patent/US20160104573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Definitions

  • the present invention relates to a method of manufacturing a permanent magnet, and more particularly, to a method of manufacturing a Nd-Fe-B-based permanent magnet with improved coercivity while reducing the amount of Dy used.
  • Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. Recently, in response to environmental problems, as the application of magnets is expanded to home appliances, industrial equipment, electric vehicles, and wind power generation, the performance of Nd-Fe-B magnets has been increasing.
  • the residual magnetic flux density and the magnitude of the coercive force can be given.
  • Increasing the residual magnetic flux density of the Nd-Fe-B-based sintered magnet is achieved by increasing the volume ratio of the Nd 2 Fe 14 B compound and improving the crystal orientation, and various processes have been improved so far.
  • various approaches such as miniaturization of grains, using alloys with increased Nd amounts, or adding effective elements.
  • Dy or Tb the most common method is Dy or Tb.
  • the composition alloy which substituted a part of Nd is used. By replacing Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropic magnetic field of the compound increases and the coercive force also increases.
  • Patent Publication No. 10-2010-0097580 discloses a method for producing a sintered magnet through repeated heat treatment and a sintered magnet manufactured therefrom.
  • Korean Patent Publication No. 10-2010-0097580 does not disclose a method of improving the coercive force and reducing the Dy content in manufacturing a permanent magnet.
  • An object of the present invention is to provide a method for manufacturing a Nd-Fe-B-based permanent magnet with improved coercivity while reducing the amount of Dy used.
  • preparing a powder comprising Nd, Fe, B and Cu Preparing a molded body by forming a specific magnetic field on the powder; Sintering the molded body at a specific sintering temperature; And performing a heat treatment of the sintered molded body at a heat treatment temperature determined according to the content of Cu.
  • the Nd-Fe-B-based permanent magnet is manufactured by improving the coercivity while reducing the amount of Dy by varying the heat treatment temperature according to the Cu content as an additive. can do.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a permanent magnet according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining strip casting and hydrogen treatment in the method of manufacturing the permanent magnet shown in FIG. 1.
  • FIG. 4 is a view for explaining a process of manufacturing a molded body of the manufacturing method of the permanent magnet shown in FIG.
  • FIG. 5 is a view for explaining the sintering (sintering) process of the method of manufacturing a permanent magnet shown in FIG.
  • 6 to 7 are views for explaining the effect of the heat treatment after sintering in the method of manufacturing a permanent magnet according to an embodiment of the present invention.
  • FIG. 12 is a diagram for comparing the microstructure of the Nd-rich grain boundary phase with different Cu content.
  • 13 to 14 are diagrams for explaining the relationship between the Cu content and the heat treatment temperature.
  • FIG. 15 shows the coercive force and residual magnetization change with the primary heat treatment temperature of the sintered magnet containing 0.5 at.% Cu.
  • FIG. 16 is a view illustrating a microstructure of a specimen when the heat treatment is performed at the heat treatment temperature shown in FIG. 8 and the heat treatment temperature shown in FIG. 15.
  • FIG. 18 is a graph showing a change in magnetic properties according to the sintering temperature in accordance with an embodiment of the present invention.
  • 19 is a graph showing the coercive force change according to the first heat treatment temperature change in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a permanent magnet according to an embodiment of the present invention.
  • a powder containing Nd, Fe, B, and Cu may be manufactured (S110).
  • the powder manufacturing process may include processes such as strip casting, hydrotreating, and grinding.
  • FIG. 2 is a view for explaining strip casting and hydrogen treatment in the method of manufacturing the permanent magnet shown in FIG. 1.
  • the permanent magnet may be manufactured by varying the composition of other components depending on the content of Dy.
  • FIG. 3 is a view for explaining a process of grinding the master alloy of the manufacturing method of the permanent magnet shown in FIG.
  • the strip-cast master alloy shown in FIG. 2 may be ground using jet-milling. Due to the grinding process, a ferromagnetic powder having a single crystal can be produced.
  • the content of Cu relative to the powder may be preferably 0.01 to 0.8 weight ratio. When the content of Cu in the powder exceeds 0.8 weight ratio, the density becomes low, and when the content of Cu in the powder is less than 0.01 weight ratio, the effect of Cu addition is insignificant.
  • a molded body may be manufactured by forming a specific magnetic field on the powder (S120).
  • FIG. 4 is a view for explaining a process of manufacturing a molded body of the manufacturing method of the permanent magnet shown in FIG.
  • a green compact may be manufactured by applying pressure to the ferromagnetic powder while applying a specific magnetic field (for example, about 2.2T) to the powder.
  • the produced molded article has easy magnetization axes aligned in one direction.
  • the molded body When the molded body is manufactured, the molded body may be sintered (S130).
  • FIG. 5 is a view for explaining the sintering (sintering) process of the method of manufacturing a permanent magnet shown in FIG.
  • the molded body may be sintered for a predetermined time under a specific atmosphere.
  • the molded body may be sintered at 1070 ° C to 1040 ° C for 4 hours in a vacuum atmosphere.
  • the ideal sintering temperature and sintering time may vary depending on the composition and the atmosphere sintering furnace. Liquid phase sintering may be performed until densification is achieved by about 99%. Through the sintering process, an anisotropic magnet having a full density may be manufactured.
  • heat treatment may be performed (S140).
  • the heat treatment may be performed once, but may be performed a plurality of times to improve properties.
  • heat treatment may proceed three times to improve properties.
  • Ideal heat treatment conditions may vary depending on the composition and environment. Mainly, high temperature heat treatment and low temperature heat treatment can be divided into two processes.
  • the heat treatment may be performed by varying the temperature according to the content of Cu.
  • the heat treatment temperature determined according to the Cu content as described above, even if the amount of Dy (dysprosium) is reduced, the coercive force can be produced a permanent magnet.
  • the heat treatment when the heat treatment is performed a plurality of times, the heat treatment may be performed at a heat treatment temperature determined according to the content of Cu only for the first heat treatment.
  • 6 to 7 are views for explaining the effect of the heat treatment after sintering in the method of manufacturing a permanent magnet according to an embodiment of the present invention.
  • FIG. 6 shows a microstructure in which heat treatment is performed after sintering.
  • Post-sintering annealing is essential to improve the coercive force of Nd-Fe-B sintered magnets. That is, in order to reduce the Dy content, which is an expensive heavy rare earth element, heat treatment after sintering is one of very efficient methods.
  • the coercive force of the sintered magnet is greatly affected by the microstructure of the nonmagnetic Nd-rich triple point and grain boundaries. The heat treatment effect is as follows.
  • continuity of the Nd-rich grain boundary phase may be improved through heat treatment.
  • the coercive force is improved by suppressing the interchange coupling between adjacent ferromagnetic columnar phases.
  • the homogeneity of Nd-rich triple point and grain boundary phases is improved to reduce defects at the interface.
  • the nucleation site of reverse domains is reduced, thereby improving coercivity.
  • a metastable C type Nd 2 O 3 triple point phase and a grain boundary phase are formed. Because of this, lattice mismatch with the columnar phase can be greatly reduced and the coercivity can be improved.
  • FIG. 7 is a view for explaining the effect of the heat treatment after sintering the powder containing Cu.
  • the melting point of the Nd-rich phase is reduced to further improve the continuity and homogeneity of the grain boundary phase.
  • the non-magnetic properties of the Nd-rich triple point and the grain boundary phase are improved by the process decomposition reaction between Nd-Cu formed at about 520 ° C., so that the coercive force may be further improved.
  • Metastable C type Nd2O3 triple point and grain boundary phases are further promoted.
  • the existing ideal Cu content is known to be about 0.1 to 0.2 at.%. However, it is not clear why the ideal Cu content is 0.1 ⁇ 0.2at.%.
  • the sintering temperature is 1040 ° C ⁇ 1070 ° C (1070, 1060, 1050, 1040 ° C), the sintering time is 4 hours.
  • the first heat treatment (PSA, Post-sintering annealing) temperature is 700 °C ⁇ 850 °C (850, 820, 790, 760, 730, 700 °C), the heat treatment time is 2 hours.
  • the secondary heat treatment temperature is 530 ° C., and the heat treatment time is 2 hours.
  • the third heat treatment temperature is 500 °C, the heat treatment time is 2 hours.
  • FIG. 9 is a view showing a relationship between the content of Cu and the coercive force for the experimental example shown in FIG. 9 (a) relates to the first embodiment, FIG. 9 (b) relates to the second embodiment, and FIG. 9 (c) relates to the third embodiment.
  • Fig. 10 shows the microstructure on the Nd-rich triple point of a magnet containing 0.2 at.% Cu.
  • the bright part has a composition of Nd 40 Cu 6 Co 7 O 47 and a small amount of Cu is aggregated.
  • the bright part shows hexagonal Nd 2 O 3 crystal structure, the most stable phase.
  • Fig. 11 shows the microstructure on the Nd-rich triple point of a magnet containing 0.5 at.% Cu.
  • FIG. 11 also has a microstructure similar to that of FIG. 10.
  • Dark part has Nd 45 .2 Cu 36 .8 Co 2 .1 O 15 composition of 0.9 and are aggregated an excess of Cu. But the dark structure is hexagonal Nd 2 O 3 , not C-TYPE Nd 2 O 3 .
  • Bright parts have a composition of Nd 52 Cu 11 .6 .8 .6 Co 1 O 34, and a small amount of Cu is aggregated.
  • the bright part shows hexagonal Nd 2 O 3 crystal structure, the most stable phase.
  • FIG. 12 is a diagram for comparing the microstructure of the Nd-rich grain boundary phase with different Cu content.
  • the addition of Cu lowers the melting point of the Nd-rich phase. This may mean that not only the melting point but also the phase transformation temperature decreases.
  • Figure 14 (a) shows the case where the Cu content is 0.2at.%. Overall, the temperature is lower than that of Cu-free, and the stable hexagonal Nd2O3 phase is stabilized at 850 ° C.
  • Figure 14 (b) shows a case where the Cu content is 0.2at.%. It can be seen that the overall phase transformation temperature is so low that the fcc-NdO phase, not the stable hexagonal Nd 2 O 3 phase, is stabilized at 850 ° C.
  • the Nd 2 O 3 crystal of the metastable C-TYPE may be derived from the h-Nd 2 O 3 crystal structure.
  • the two decisions are closely related to each other. Therefore, when excessive Cu is agglomerated into the invasive sites on the hexagonal Nd 2 O 3 , it may be transformed into C-TYPE Nd 2 O 3 crystals.
  • FIG. 15 shows the coercive force and residual magnetization change with the primary heat treatment temperature of the sintered magnet containing 0.5 at.% Cu.
  • the coercivity is greatly improved when reduced from 850 °C to 790 °C (27.1-> 29.4 kOe).
  • existing ideal trace amounts of Cu may not be ideal compositions.
  • the coercive force can be further improved.
  • the coercive force of the sintered magnet can be improved without adding Dy. That is, Dy reduction type sintered magnets can be manufactured by inexpensive addition of Cu and optimization of heat treatment conditions according to its content.
  • FIG. 16 is a view illustrating a microstructure of a specimen when the heat treatment is performed at the heat treatment temperature shown in FIG. 8 and the heat treatment temperature shown in FIG. 15.
  • Figure 16 (a) shows a microstructure subjected to the heat treatment at a heat treatment temperature of 850 °C conventional method
  • Figure 16 (b) shows a micro structure subjected to the heat treatment at a heat treatment temperature of 790 °C changed according to the Cu content.
  • FIG. 17 is an image obtained by using high-resolution transmission electron microscopy (HRTEM) of FIG. 16 (b).
  • HRTEM high-resolution transmission electron microscopy
  • the first heat treatment temperature was lowered to refine the grains. This may contribute to an improvement in coercivity.
  • Nd-rich triple-phase and grain boundary phases as well as metastable C-TYPE Nd 2 O 3 with excessive Cu agglomeration, were formed again. This may contribute to an improvement in coercivity.
  • the heat treatment temperature is lowered as the Cu content is increased.
  • the permanent magnet produced according to another embodiment of the present invention changes the magnetic properties according to the sintering temperature at the time of filing.
  • FIG. 18 is a graph showing a change in magnetic specificity according to sintering temperature in relation to an embodiment of the present invention.
  • Figure 18 (a) shows the change of the magnetic properties according to the sintering temperature of the permanent magnet according to the second embodiment
  • Figure 18 (b) shows the magnetic properties of the permanent magnet according to the sintering temperature of the second embodiment Indicates a change.
  • the coercive force tends to increase as the sintering temperature decreases. Especially in the case of 0.2, 0.3 wt% Cu added, the coercive force increases rapidly when the sintering temperature is reduced from 1070 ° C to 1060 ° C at the first heat treatment temperature of 850 ° C. Similarly, the highest coercive force comes from specimens with a Cu content of 0.3 wt.% (Sintering temperature 1050 ° C / primary heat treatment 790 ° C).
  • the permanent magnet produced by another embodiment of the present invention changes the coercive force according to the change in the first heat treatment temperature at the time of filing.
  • 19 is a graph showing the coercive force change according to the first heat treatment temperature change in accordance with an embodiment of the present invention.
  • the optimal primary heat treatment temperature also tends to decrease as the Cu content increases.
  • the overall coercive force tends to increase.
  • the method of manufacturing a permanent magnet according to an embodiment of the present invention is to change the sintering temperature or the heat treatment temperature according to the Cu content, thereby reducing the amount of expensive Dy and manufacturing the permanent magnet with improved coercivity. Can be.
  • the manufacturing method of the permanent magnet described above is not limited to the configuration and method of the embodiments described above, the embodiments are a combination of all or part of each embodiment selectively so that various modifications can be made It may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

The present invention relates to a method for manufacturing an Nd-Fe-B-based permanent magnet having an improved coercive force while reducing the amount of Dy used. A method for manufacturing a permanent magnet according to an embodiment of the present invention may comprise the steps of: manufacturing powder including Nd, Fe, B, and Cu; manufacturing a shaped body by forming a specific magnetic field in the powder; sintering the shaped body at a specific sintering temperature; and subjecting the sintered, shaped body to heat treatment at a heat treatment temperature determined according to the content of Cu.

Description

영구 자석의 제조 방법Method of manufacturing permanent magnet
본 발명은 영구 자석의 제조 방법에 관한 것으로, 보다 상세하게는 Dy의 사용량을 저감시키면서도 보자력이 향상된 Nd-Fe-B계 영구 자석을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a permanent magnet, and more particularly, to a method of manufacturing a Nd-Fe-B-based permanent magnet with improved coercivity while reducing the amount of Dy used.
Nd-Fe-B계 영구자석은 그 우수한 자기 특성 때문에, 점점 용도가 확대되어 가고 있다. 최근, 환경문제에 대한 대응으로 가전을 비롯하여, 산업기기, 전기 자동차, 풍력발전으로 자석의 응용의 폭이 확대됨에 따라, Nd-Fe-B계 자석의 고성능화가 요구되고 있다.Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. Recently, in response to environmental problems, as the application of magnets is expanded to home appliances, industrial equipment, electric vehicles, and wind power generation, the performance of Nd-Fe-B magnets has been increasing.
자석 성능의 지표로서, 잔류 자속밀도와 보자력의 크기를 들 수 있다. Nd-Fe-B계 소결 자석의 잔류 자속밀도 증대는 Nd2Fe14B 화합물의 부피율 증대와 결정 배향도 향상에 의해 달성되고 있고, 지금까지 여러 프로세스의 개선이 행해지고 있다. 보자력의 증대에 관해서는, 결정립의 미세화를 도모하고, Nd량을 늘린 조성 합금을 사용하거나, 또는 효과가 있는 원소를 첨가하는 등, 여러 접근 방법이 있는 가운데, 현재 가장 일반적인 수법은 Dy나 Tb로 Nd의 일부를 치환한 조성 합금을 사용하는 것이다. Nd2Fe14B 화합물의 Nd를 이들 원소로 치환함으로써 화합물의 이방성 자계가 증대하고, 보자력도 증대한다. 한편으로, Dy나 Tb에 의한 치환은 화합물의 포화 자기분극을 감소시킨다. 따라서, 상기 수법으로 보자력의 증대를 도모하는 것만으로서는 잔류 자속 밀도의 저하는 피할 수 없다. 또한, Tb나 Dy는 고가의 금속이므로, 가능한 한 사용량을 줄이는 것이 바람직하다.As an index of magnet performance, the residual magnetic flux density and the magnitude of the coercive force can be given. Increasing the residual magnetic flux density of the Nd-Fe-B-based sintered magnet is achieved by increasing the volume ratio of the Nd 2 Fe 14 B compound and improving the crystal orientation, and various processes have been improved so far. In terms of increasing coercivity, there are various approaches such as miniaturization of grains, using alloys with increased Nd amounts, or adding effective elements. Currently, the most common method is Dy or Tb. The composition alloy which substituted a part of Nd is used. By replacing Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropic magnetic field of the compound increases and the coercive force also increases. On the one hand, substitution by Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, the reduction of the residual magnetic flux density cannot be avoided only by increasing the coercive force by the above method. In addition, since Tb and Dy are expensive metals, it is preferable to reduce the usage amount as much as possible.
관련된 선행문헌으로 대한민국 공개특허 10-2010-0097580호가 있다. 상기 공개특허 10-2010-0097580호는 반복 열처리를 통한 소결자석의 제조방법 및 그로부터 제조된 소결 자석에 대해 개시하고 있다.Related prior art is Korean Patent Publication No. 10-2010-0097580. The Patent Publication No. 10-2010-0097580 discloses a method for producing a sintered magnet through repeated heat treatment and a sintered magnet manufactured therefrom.
하지만, 공개특허 10-2010-0097580호는 영구 자석 제조시, 보자력을 향상시킴과 동시에 Dy 함량을 줄이는 방법에 대해서는 개시하고 있지 않다. However, Korean Patent Publication No. 10-2010-0097580 does not disclose a method of improving the coercive force and reducing the Dy content in manufacturing a permanent magnet.
따라서 영구 자석 제조 시, 고가의 Dy 함량을 줄이면서도 보자력을 향상시키는 기술에 대한 연구가 필요한 실정이다.Therefore, when manufacturing permanent magnets, research on a technique for improving coercivity while reducing expensive Dy content is required.
본 발명의 목적은 Dy의 사용량을 저감시키면서도 보자력이 향상된 Nd-Fe-B계 영구 자석을 제조하는 방법을 제공하는 데 있다.An object of the present invention is to provide a method for manufacturing a Nd-Fe-B-based permanent magnet with improved coercivity while reducing the amount of Dy used.
상기 목적을 달성하기 위해 본 발명의 일실시예에 의하면, Nd, Fe, B 및 Cu를 포함하는 분말을 제조하는 단계; 상기 분말에 특정 자장을 형성하여 성형체를 제조하는 단계; 상기 성형체를 특정 소결 온도에서 소결시키는 단계; 및 상기 소결된 성형체를 Cu의 함량에 따라 결정된 열처리 온도에서 열처리를 수행하는 단계를 포함하는 영구 자석의 제조 방법이 제공된다.According to an embodiment of the present invention to achieve the above object, preparing a powder comprising Nd, Fe, B and Cu; Preparing a molded body by forming a specific magnetic field on the powder; Sintering the molded body at a specific sintering temperature; And performing a heat treatment of the sintered molded body at a heat treatment temperature determined according to the content of Cu.
본 발명의 일실시예에 의한 영구 자석의 제조 방법은 영구 자석 제조 시, 첨가물인 Cu함량에 따라 열처리 온도를 달리함으로써, Dy의 사용량을 저감시키면서도 보자력이 향상된 Nd-Fe-B계 영구 자석을 제조할 수 있다.In the method of manufacturing a permanent magnet according to an embodiment of the present invention, the Nd-Fe-B-based permanent magnet is manufactured by improving the coercivity while reducing the amount of Dy by varying the heat treatment temperature according to the Cu content as an additive. can do.
도 1은 본 발명의 일실시예와 관련된 영구 자석의 제조 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of manufacturing a permanent magnet according to an embodiment of the present invention.
도 2 도 1에 도시된 영구 자석의 제조 방법 중 스트립 캐스팅(strip-casting) 및 수소 처리를 설명하기 위한 도면이다.FIG. 2 is a view for explaining strip casting and hydrogen treatment in the method of manufacturing the permanent magnet shown in FIG. 1.
도 3 도 1에 도시된 영구 자석의 제조 방법 중 모합금을 분쇄하는 과정을 설명하기 위한 도면이다.3 is a view for explaining a process of grinding the master alloy of the manufacturing method of the permanent magnet shown in FIG.
도 4 도 1에 도시된 영구 자석의 제조 방법 중 성형체를 제조하는 과정을 설명하기 위한 도면이다.4 is a view for explaining a process of manufacturing a molded body of the manufacturing method of the permanent magnet shown in FIG.
도 5 도 1에 도시된 영구 자석의 제조 방법 중 소결(sintering) 과정을 설명하기 위한 도면이다.5 is a view for explaining the sintering (sintering) process of the method of manufacturing a permanent magnet shown in FIG.
도 6 내지 도 7은 본 발명의 일실시예와 관련된 영구 자석의 제조 방법에서 소결 후 열처리의 효과를 설명하기 위한 도면이다.6 to 7 are views for explaining the effect of the heat treatment after sintering in the method of manufacturing a permanent magnet according to an embodiment of the present invention.
도 8은 영구 자석의 제조 시, 보편적인 방법으로 소결 및 열처리를 수행하는 것을 나타낸다.8 shows that the sintering and heat treatment are performed by a common method in the manufacture of a permanent magnet.
도 9는 Cu의 함량과 보자력 간의 관계를 나타내는 도면이다.9 is a graph showing the relationship between the Cu content and the coercive force.
도 10 내지 도 11은 Cu를 함유하고 있는 영구 자석의 Nd-rich 삼중점상 미세구조를 나타낸다.10-11 show the Nd-rich triple point microstructure of a permanent magnet containing Cu.
도 12는 Cu 함량이 다른 Nd-rich 입계상의 미세구조를 비교하기 위한 도면이다.12 is a diagram for comparing the microstructure of the Nd-rich grain boundary phase with different Cu content.
도 13 내지 도 14는 Cu 함량과 열처리 온도와의 관계를 설명하기 위한 도면이다.13 to 14 are diagrams for explaining the relationship between the Cu content and the heat treatment temperature.
도 15는 0.5 at.% Cu를 함유한 소결 자석의 1차 열처리 온도에 따른 보자력과 잔류 자화 변화를 나타낸다.FIG. 15 shows the coercive force and residual magnetization change with the primary heat treatment temperature of the sintered magnet containing 0.5 at.% Cu.
도 16은 도 8에 도시된 열처리 온도와 도 15에 의한 열처릴 온도로 열처리를 수행하였을 경우의 시편의 미세구조를 나타내는 도면이다.FIG. 16 is a view illustrating a microstructure of a specimen when the heat treatment is performed at the heat treatment temperature shown in FIG. 8 and the heat treatment temperature shown in FIG. 15.
도 17은 도 16(b)를 HRTEM(High-resolution transmission electron microscopy)를 이용하여 획득한 이미지이다.FIG. 17 is an image obtained by using high-resolution transmission electron microscopy (HRTEM) of FIG. 16 (b).
도 18은 본 발명의 일실시예와 관련하여 소결 온도에 따른 자기적 특성의 변화를 나타내는 그래프이다.18 is a graph showing a change in magnetic properties according to the sintering temperature in accordance with an embodiment of the present invention.
도 19은 본 발명의 일실시예와 관련하여 1차 열처리 온도 변화에 따른 보자력 변화를 나타내는 그래프이다.19 is a graph showing the coercive force change according to the first heat treatment temperature change in accordance with an embodiment of the present invention.
이하, 본 발명의 일실시예와 관련된 영구 자석의 제조 방법 및 영구 자석에 대해 도면을 참조하여 설명하도록 하겠다.Hereinafter, a method of manufacturing a permanent magnet and a permanent magnet according to an embodiment of the present invention will be described with reference to the drawings.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise. In this specification, terms such as “consisting of” or “comprising” should not be construed as necessarily including all of the various components or steps described in the specification, and some of the components or some steps It should be construed that it may not be included or may further include additional components or steps.
도 1은 본 발명의 일실시예와 관련된 영구 자석의 제조 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of manufacturing a permanent magnet according to an embodiment of the present invention.
먼저, Nd, Fe, B 및 Cu를 포함하는 분말을 제조할 수 있다(S110). 상기 분말 제조 공정은 스트립 캐스팅(strip-casting), 수소 처리, 분쇄 등의 공정을 포함할 수 있다.First, a powder containing Nd, Fe, B, and Cu may be manufactured (S110). The powder manufacturing process may include processes such as strip casting, hydrotreating, and grinding.
도 2 도 1에 도시된 영구 자석의 제조 방법 중 스트립 캐스팅(strip-casting) 및 수소 처리를 설명하기 위한 도면이다. 이하 실시예에서는 Dy의 함량에 따라 다른 성분의 조성을 달리하여 영구 자석을 제조할 수 있다.FIG. 2 is a view for explaining strip casting and hydrogen treatment in the method of manufacturing the permanent magnet shown in FIG. 1. In the following examples, the permanent magnet may be manufactured by varying the composition of other components depending on the content of Dy.
제1실시예에 의하면, 조성이 Nd12 .00Dy2 .70Fe(76.45-x)CuxB6.00M2 .65 (x=0.2, 0.3, 0.4, 0.5), (at. %, M = Co, Al, and Nb) 인 Strip-cast 모합금을 제조하고, 수소 처리를 수행할 수 있다. 상기 공정으로 인해 입계의 부피 변화하여 단결정으로 분쇄가 용이해질 수 있다.According to the first embodiment, a composition of Nd 12 .00 Dy 2 .70 Fe ( 76.45-x) Cu x B 6.00 M 2 .65 (x = 0.2, 0.3, 0.4, 0.5), (at.%, M = Co, Al, and Nb) strip-cast mother alloy may be prepared, and hydrogen treatment may be performed. Due to the process, the volume of the grain boundary may be changed, thereby facilitating crushing into single crystals.
또한, 제2실시예에 의하면, Nd32 .00 Fe(64.79-x) Cux B0.97 M2 .24(Dy-free) (x=0.2, 0.3, 0.4, 0.5), (at. %, M = Co, Al, and Nb) 인 Strip-cast 모합금을 제조하고, 수소 처리를 수행할 수 있다. 상기 공정으로 인해 입계의 부피 변화하여 단결정으로 분쇄가 용이해질 수 있다.Further, according to the second embodiment, Nd 32 .00 Fe (64.79- x) Cu x B 0.97 M 2 .24 (Dy-free) (x = 0.2, 0.3, 0.4, 0.5), (at.%, M = Co, Al, and Nb) strip-cast mother alloy may be prepared, and hydrogen treatment may be performed. Due to the process, the volume of the grain boundary may be changed, thereby facilitating crushing into single crystals.
또한, 제3실시예에 의하면, Nd29 .00 Dy3 .00 Fe(64.79-x) Cux B0.97 M2 .24(3wt.%Dy-containing) (x=0.2, 0.3, 0.4, 0.5), (at. %, M = Co, Al, and Nb) 인 Strip-cast 모합금을 제조하고, 수소 처리를 수행할 수 있다. 상기 공정으로 인해 입계의 부피 변화하여 단결정으로 분쇄가 용이해질 수 있다.In addition, according to the third embodiment, Nd 29 .00 Dy 3 .00 Fe (64.79-x) Cu x B 0.97 M 2 .24 (3wt.% Dy-containing) (x = 0.2, 0.3, 0.4, 0.5) , (at.%, M = Co, Al, and Nb) to prepare a strip-cast master alloy, and may be subjected to a hydrogen treatment. Due to the process, the volume of the grain boundary may be changed, thereby facilitating crushing into single crystals.
도 3 도 1에 도시된 영구 자석의 제조 방법 중 모합금을 분쇄하는 과정을 설명하기 위한 도면이다.3 is a view for explaining a process of grinding the master alloy of the manufacturing method of the permanent magnet shown in FIG.
상기 도 2에 도시된 Strip-cast 모합금은 jet-milling을 이용하여 분쇄될 수 있다. 상기 분쇄 공정으로 인해 단결정을 가지는 강자성의 분말이 제조될 수 있다.The strip-cast master alloy shown in FIG. 2 may be ground using jet-milling. Due to the grinding process, a ferromagnetic powder having a single crystal can be produced.
상기 분말에 포함된 Cu는 Nd-rich 상의 융점을 가장 효율적으로 낮춰준다. 상기 분말에 대해 Cu의 함량은 0.01 내지 0.8 중량비인 것이 바람직할 수 있다. 분말에 대해 Cu의 함량이 0.8 중량비를 초과하게 되면, 밀도가 낮아지게 되고, 분말에 대해 Cu의 함량이 0.01 중량비 미만이면, Cu 첨가의 효과가 미미해 진다.Cu contained in the powder most effectively lowers the melting point of the Nd-rich phase. The content of Cu relative to the powder may be preferably 0.01 to 0.8 weight ratio. When the content of Cu in the powder exceeds 0.8 weight ratio, the density becomes low, and when the content of Cu in the powder is less than 0.01 weight ratio, the effect of Cu addition is insignificant.
상기 강자성의 분말이 제조되면, 상기 분말에 특정 자장을 형성하여 성형체를 제조할 수 있다(S120).When the ferromagnetic powder is manufactured, a molded body may be manufactured by forming a specific magnetic field on the powder (S120).
도 4 도 1에 도시된 영구 자석의 제조 방법 중 성형체를 제조하는 과정을 설명하기 위한 도면이다.4 is a view for explaining a process of manufacturing a molded body of the manufacturing method of the permanent magnet shown in FIG.
도시된 바와 같이, 상기 강자성에 분말에 특정 자장(예: 약 2.2T)을 자장을 걸어주면서 압력을 가하여 성형체(Green compact)를 제조할 수 있다. 제조된 성형체는 자화 용이축이 한 방향으로 정렬되어 있다.As shown, a green compact may be manufactured by applying pressure to the ferromagnetic powder while applying a specific magnetic field (for example, about 2.2T) to the powder. The produced molded article has easy magnetization axes aligned in one direction.
성형체가 제조되면, 상기 성형체를 소결할 수 있다(S130).When the molded body is manufactured, the molded body may be sintered (S130).
도 5 도 1에 도시된 영구 자석의 제조 방법 중 소결(sintering) 과정을 설명하기 위한 도면이다.5 is a view for explaining the sintering (sintering) process of the method of manufacturing a permanent magnet shown in FIG.
도시된 바와 같이, 상기 성형체를 특정 분위기 하에서 소정 시간 동안 소결할 수 있다. 예를 들어, 상기 성형체를 진공 분위기 하에서 1070℃~1040℃에서 4시간동안 소결할 수 있다. 이상적 소결 온도 및 소결 시간은 조성 및 분위기 소결로 등에 따라 다를 수 있다. 약 99%까지 치밀화가 이루어질 때까지 액상 소결을 진행할 수 있다. 상기 소결 공정을 통해 Full density를 가지는 이방성 자석이 제조될 수 있다.As shown, the molded body may be sintered for a predetermined time under a specific atmosphere. For example, the molded body may be sintered at 1070 ° C to 1040 ° C for 4 hours in a vacuum atmosphere. The ideal sintering temperature and sintering time may vary depending on the composition and the atmosphere sintering furnace. Liquid phase sintering may be performed until densification is achieved by about 99%. Through the sintering process, an anisotropic magnet having a full density may be manufactured.
한편, 본 발명의 일실시예에 의하면, 상기 소결 온도는 구리의 함량에 따라 달라질 수 있다.On the other hand, according to an embodiment of the present invention, the sintering temperature may vary depending on the content of copper.
상기 소결 과정 후, 열처리가 수행될 수 있다(S140). 상기 열처리는 1회 수행도 가능하지만, 특성 향상을 위해 복수회 수행될 수도 있다.After the sintering process, heat treatment may be performed (S140). The heat treatment may be performed once, but may be performed a plurality of times to improve properties.
예를 들어, 소결 후, 특성 향상을 위해서 3차례에 걸쳐서 열처리가 진행될 수 있다. 이상적 열처리 조건은 조성 및 환경에 따라 달라질 수 있다. 주로 고온 열처리 및 저온 열처리 두 공정으로 구분될 수 있다.For example, after sintering, heat treatment may proceed three times to improve properties. Ideal heat treatment conditions may vary depending on the composition and environment. Mainly, high temperature heat treatment and low temperature heat treatment can be divided into two processes.
본 발명의 일실시예에 의하면, Cu의 함량에 따라 열처리를 온도를 달리하여 열처리를 수행할 수 있다. 상기와 같이 Cu의 함량에 따라 결정된 열처리 온도로 열처리를 수행함으로써, Dy(dysprosium) 사용량을 저감시키더라도 보자력이 향상된 영구 자석이 제조될 수 있다. 또한, 열처리를 복수 번 수행하는 경우는 1차 열처리에 한해서 Cu의 함량에 따라 결정된 열처리 온도로 열처리를 수행할 수 있다. According to one embodiment of the present invention, the heat treatment may be performed by varying the temperature according to the content of Cu. By performing the heat treatment at the heat treatment temperature determined according to the Cu content as described above, even if the amount of Dy (dysprosium) is reduced, the coercive force can be produced a permanent magnet. In addition, when the heat treatment is performed a plurality of times, the heat treatment may be performed at a heat treatment temperature determined according to the content of Cu only for the first heat treatment.
이하에서는 소결 열처리 효과 및 Cu의 함량에 따라 열처리 온도를 변화시켜야 하는 이유에 대해 실험을 통해 설명하도록 하겠다.Hereinafter, the reason for changing the heat treatment temperature according to the sintering heat treatment effect and the content of Cu will be described through experiments.
도 6 내지 도 7은 본 발명의 일실시예와 관련된 영구 자석의 제조 방법에서 소결 후 열처리의 효과를 설명하기 위한 도면이다.6 to 7 are views for explaining the effect of the heat treatment after sintering in the method of manufacturing a permanent magnet according to an embodiment of the present invention.
도 6은 소결 후 열처리가 수행되는 미세구조를 나타낸다. 6 shows a microstructure in which heat treatment is performed after sintering.
Nd-Fe-B 소결 자석의 보자력을 향상시키기 위해서는 소결 후 열처리 (post-sintering annealing)이 필수적이다. 즉, 가격이 비싼 중희토류 원소인 Dy 함량을 저감하기 위해서는 소결 후 열처리가 매우 효율적인 방법 중 하나이다. 소결 자석의 보자력은 비자성 Nd-rich 삼중점상 및 입계상의 미세구조에 매우 큰 영향을 받는다. 상기 열처리 효과는 다음과 같다.Post-sintering annealing is essential to improve the coercive force of Nd-Fe-B sintered magnets. That is, in order to reduce the Dy content, which is an expensive heavy rare earth element, heat treatment after sintering is one of very efficient methods. The coercive force of the sintered magnet is greatly affected by the microstructure of the nonmagnetic Nd-rich triple point and grain boundaries. The heat treatment effect is as follows.
먼저, 열처리를 통해 Nd-rich 입계상의 연속성이 향상될 수 있다. 이로 인해, 인접한 강자성 주상간의 상호교환결합(exchange coupling)을 억제하여 보자력이 향상된다. First, continuity of the Nd-rich grain boundary phase may be improved through heat treatment. As a result, the coercive force is improved by suppressing the interchange coupling between adjacent ferromagnetic columnar phases.
또한, Nd-rich 삼중점상 및 입계상의 균질도가 향상되어 계면에서의 defect가 감소된다. 이로 인해, 역자구의 핵생성 자리 (nucleation site of reverse domain)가 감소하여 보자력이 향상된다. In addition, the homogeneity of Nd-rich triple point and grain boundary phases is improved to reduce defects at the interface. As a result, the nucleation site of reverse domains is reduced, thereby improving coercivity.
그리고, 준안정 C type의 Nd2O3 삼중점상 및 입계상이 형성된다. 이로 인해, 주상과의 격자 부정합이 매우 감소하여 보자력이 향상될 수 있다.A metastable C type Nd 2 O 3 triple point phase and a grain boundary phase are formed. Because of this, lattice mismatch with the columnar phase can be greatly reduced and the coercivity can be improved.
열처리를 통한 보자력 향상에 있어서 Al, Ga, Ag, Cu등과 같은 저융점 원소의 첨가는 매우 중요하다. 그중 Cu가 Nd-rich 상의 융점을 가장 효율적으로 낮춰주기 때문에 Cu 첨가가 가장 효율적이다. In improving the coercive force through heat treatment, addition of low melting point elements such as Al, Ga, Ag, Cu, etc. is very important. Among them, Cu is the most efficient because it lowers the melting point of the Nd-rich phase most efficiently.
도 7은 Cu가 함유된 분말의 소결 후 열처리의 효과를 설명하기 위한 도면이다.7 is a view for explaining the effect of the heat treatment after sintering the powder containing Cu.
Cu 첨가 후 열처리 효과는 다음과 같다.The effect of heat treatment after Cu addition is as follows.
먼저. Nd-rich 상의 융점이 감소하여 입계상의 연속성 및 균질도가 더욱 향상된다. first. The melting point of the Nd-rich phase is reduced to further improve the continuity and homogeneity of the grain boundary phase.
또한, 약 520℃ 에서 형성되는 Nd-Cu 간의 공정분해반응에 의해서 Nd-rich 삼중점상 및 입계상의 비자성성이 향상되어 보자력이 더욱 향상될 수 있다. In addition, the non-magnetic properties of the Nd-rich triple point and the grain boundary phase are improved by the process decomposition reaction between Nd-Cu formed at about 520 ° C., so that the coercive force may be further improved.
준안정 C type의 Nd2O3 삼중점상 및 입계상 형성이 더욱 촉진된다. Metastable C type Nd2O3 triple point and grain boundary phases are further promoted.
Cu가 과량 첨가되면 소결 자석의 밀도가 낮아진다. 예를 들어, Cu 함량이 약 0.8at,%을 초과하면, 소결 자석의 밀도가 감소한다. Excessive addition of Cu lowers the density of the sintered magnet. For example, if the Cu content exceeds about 0.8 at,%, the density of the sintered magnet is reduced.
기존의 이상적인 Cu 함량은 0.1 ~ 0.2 at.% 정도라고 알려져 있다. 하지만, 이상적인 Cu 함량이 왜 0.1~0.2at.% 인지는 밝히지 못하고 있다. The existing ideal Cu content is known to be about 0.1 to 0.2 at.%. However, it is not clear why the ideal Cu content is 0.1 ~ 0.2at.%.
도 8은 영구 자석의 제조 시, 보편적인 방법으로 소결 및 열처리를 수행하는 것을 나타낸다.8 shows that the sintering and heat treatment are performed by a common method in the manufacture of a permanent magnet.
도시된 실험예는 제1실시예에 의한 조성이 Nd12.00Dy2.70Fe(76.45-x)CuxB6.00M2.65 (x=0.2, 0.3, 0.4, 0.5)인 소결 자석, 제2실시예에 의한 조성이 Nd32.00 Fe(64.79-x) Cux B0.97 M2.24(Dy-free) (x=0.2, 0.3, 0.4, 0.5), (at. %, M = Co, Al, and Nb), 및 제3실시예에 의한, 조성이 Nd29.00 Dy3.00 Fe(64.79-x) Cux B0.97 M2.24(3wt.%Dy-containing) (x=0.2, 0.3, 0.4, 0.5), (at. %, M = Co, Al, and Nb)에 대한 소결 및 열처리에 대한 실험예이다.The experimental example shown is a sintered magnet whose composition according to the first embodiment is Nd12.00Dy2.70Fe (76.45-x) CuxB6.00M2.65 (x = 0.2, 0.3, 0.4, 0.5), the composition according to the second embodiment Is Nd32.00 Fe (64.79-x) Cux B0.97 M2.24 (Dy-free) (x = 0.2, 0.3, 0.4, 0.5), (at.%, M = Co, Al, and Nb), and According to the third embodiment, the composition is Nd29.00 Dy3.00 Fe (64.79-x) Cux B0.97 M2.24 (3wt.% Dy-containing) (x = 0.2, 0.3, 0.4, 0.5), (at %, M = Co, Al, and Nb) is an experimental example for the sintering and heat treatment.
도시된 바에 의하면, 소결 온도는 1040℃~1070℃(1070, 1060, 1050, 1040℃)이고, 소결 시간은 4시간이다. 또한, 1차 열처리(PSA, Post-sintering annealing) 온도는 700℃~850℃(850, 820, 790, 760, 730, 700℃)이고, 열처리 시간은 2시간이다. 2차 열처리 온도는 530℃이고, 열처리 시간은 2시간이다. 3차 열처리 온도는 500℃이고, 열처리 시간은 2시간이다.As shown, the sintering temperature is 1040 ° C ~ 1070 ° C (1070, 1060, 1050, 1040 ° C), the sintering time is 4 hours. In addition, the first heat treatment (PSA, Post-sintering annealing) temperature is 700 ℃ ~ 850 ℃ (850, 820, 790, 760, 730, 700 ℃), the heat treatment time is 2 hours. The secondary heat treatment temperature is 530 ° C., and the heat treatment time is 2 hours. The third heat treatment temperature is 500 ℃, the heat treatment time is 2 hours.
도 9는 도 8에 의한 실험예에 대한 Cu의 함량과 보자력 간의 관계를 나타내는 도면이다. 도 9(a)는 제1실시예와 관련되고, 도 9(b)는 제2실시예와 관련되고, 도 9(c)는 제3실시예와 관련된다.9 is a view showing a relationship between the content of Cu and the coercive force for the experimental example shown in FIG. 9 (a) relates to the first embodiment, FIG. 9 (b) relates to the second embodiment, and FIG. 9 (c) relates to the third embodiment.
도 9(a)에 의하면, Cu 함량이 증가함에 따라 역시 보자력이 감소하고 있다(28.7 -> 27.1kOe). 그리고 잔류 자화는 크게 변화가 없다. According to FIG. 9 (a), as the Cu content increases, the coercive force also decreases (28.7-> 27.1 kOe). And the residual magnetization does not change significantly.
도 9(b)에 의하면, Cu 함량이 증가함에 따라 역시 보자력이 감소하고 있다(14.0 -> 13.3 kOe). 그리고 잔류 자화는 크게 변화가 없다.According to FIG. 9 (b), the coercivity decreases with increasing Cu content (14.0-> 13.3 kOe). And the residual magnetization does not change significantly.
도 9(c)에 의하면, Cu 함량이 증가함에 따라 역시 보자력이 감소하고 있다(20.5 -> 20.1 kOe). 그리고 잔류 자화는 크게 변화가 없다.According to FIG. 9 (c), as the Cu content increases, the coercive force also decreases (20.5-> 20.1 kOe). And the residual magnetization does not change significantly.
도 10은 0.2at.%의 Cu 를 함유하고 있는 자석의 Nd-rich 삼중점상의 미세구조를 나타낸다.Fig. 10 shows the microstructure on the Nd-rich triple point of a magnet containing 0.2 at.% Cu.
도시된 바와 같이, 상기 미세구조는 Layer structure를 형성하고 있다. 어두운 부분은 Nd40Cu34Co4O22의 조성을 가지고 있으며 과량의 Cu가 응집되어 있다. 또한, 상기 어두운 부분은 C-TYPE의 Nd2O3 결정구조를 보인다. As shown, the microstructure forms a layer structure. The dark part has a composition of Nd 40 Cu 34 Co 4 O 22 and excess Cu is aggregated. In addition, the dark portion shows a C-TYPE Nd 2 O 3 crystal structure.
한편, 밝은 부분은 Nd40Cu6Co7O47 의 조성을 가지고 있으며 소량의 Cu가 응집되어 있다. 상기 밝은 부분은 가장 안정한 상인 hexagonal의 Nd2O3 결정구조를 보인다. On the other hand, the bright part has a composition of Nd 40 Cu 6 Co 7 O 47 and a small amount of Cu is aggregated. The bright part shows hexagonal Nd 2 O 3 crystal structure, the most stable phase.
과량의 Cu 응집이 준안정 C-TYPE의 Nd2O3상을 안정화 시킨다. Layer structure로 보아 과량의 Cu 응집 기구는 3차 열처리 동안에 형성될 수 있는 Nd-Cu 간의 공정분해반응이다. Excess Cu aggregation stabilizes the metastable C-TYPE Nd 2 O 3 phase. The excess Cu agglomeration mechanism in terms of layer structure is a process cracking reaction between Nd-Cu that can be formed during tertiary heat treatment.
도 11은 0.5at.%의 Cu 를 함유하고 있는 자석의 Nd-rich 삼중점상의 미세구조를 나타낸다.Fig. 11 shows the microstructure on the Nd-rich triple point of a magnet containing 0.5 at.% Cu.
도 11의 미세구조도 도 10과 마찬가지로 마찬가지로 Layer structure와 유사한 미세구조를 보인다. The microstructure of FIG. 11 also has a microstructure similar to that of FIG. 10.
어두운 부분은 Nd45 .2Cu36 .8Co2 .1O15 .9의 조성을 가지고 있으며 과량의 Cu가 응집되어 있다. 하지만 어두운 부분의 구조는 C-TYPE의 Nd2O3 가 아닌 hexagonal의 Nd2O3이다Dark part has Nd 45 .2 Cu 36 .8 Co 2 .1 O 15 composition of 0.9 and are aggregated an excess of Cu. But the dark structure is hexagonal Nd 2 O 3 , not C-TYPE Nd 2 O 3 .
밝은 부분은 Nd52 .8Cu11 .6Co1 .6O34의 조성을 가지고 있으며 소량의 Cu가 응집되어 있다. 상기 밝은 부분은 가장 안정한 상인 hexagonal의 Nd2O3 결정구조를 보인다.Bright parts have a composition of Nd 52 Cu 11 .6 .8 .6 Co 1 O 34, and a small amount of Cu is aggregated. The bright part shows hexagonal Nd 2 O 3 crystal structure, the most stable phase.
도 12는 Cu 함량이 다른 Nd-rich 입계상의 미세구조를 비교하기 위한 도면이다.12 is a diagram for comparing the microstructure of the Nd-rich grain boundary phase with different Cu content.
도 12를 통해 보자력에 가장 중요한 역할을 하는 Nd-rich 입계상의 미세구조 비교할 수 있다.12, it is possible to compare the microstructure of the Nd-rich grain boundary that plays the most important role in the coercivity.
도 12(a)는 Cu 함량이 0.2at.%인 경우를 나타내고, 이 경우, C-TYPE의 Nd2O3 의 비정질 입계상이 형성된다. 12 (a) shows a case where the Cu content is 0.2 at.%, In which case an amorphous grain boundary phase of Nd 2 O 3 of C-TYPE is formed.
도 12(b)는 Cu 함량이 0.5at.%인 경우를 나타내고, 이 경우, hexagonal의 Nd2O3의 비정질 입계상이 형성된다.12 (b) shows a case where the Cu content is 0.5 at.%, In which case an amorphous grain boundary phase of hexagonal Nd 2 O 3 is formed.
이러한 Nd-rich 상의 결정구조적 변태 양상 차이로 인해서 보자력이 감소한 것이라는 것을 추측 할 수 있다.  It can be inferred that the coercivity is reduced due to the difference of crystal structure transformation state of Nd-rich phase.
도 13은 Nd-O binary phase diagram을 나타낸다.13 shows an Nd-O binary phase diagram.
도시된 바와 같이, Cu를 첨가하면 Nd-rich 상의 융점이 낮아진다. 이는 융점뿐만 아니라 상변태 온도 또한 감소한다는 것을 의미할 수 있다.As shown, the addition of Cu lowers the melting point of the Nd-rich phase. This may mean that not only the melting point but also the phase transformation temperature decreases.
Dsc 분석과 계산을 통해서 상변태 온도의 변화가 추측될 수 있다.Changes in phase transformation temperature can be inferred from Dsc analysis and calculations.
도 14는 함량과 열처리 온도와의 관계를 설명하기 위한 도면이다.It is a figure for demonstrating the relationship between content and heat processing temperature.
도 14(a)는 Cu 함량이 0.2at.%인 경우를 나타내다. 전체적으로 Cu-free인 경우보다 온도가 낮아졌고, 1차 열처리온도인 850°C 에서는 안정한 hexagonal Nd2O3 상이 안정화 되는 것을 알 수 있다.Figure 14 (a) shows the case where the Cu content is 0.2at.%. Overall, the temperature is lower than that of Cu-free, and the stable hexagonal Nd2O3 phase is stabilized at 850 ° C.
도 14(b)는 Cu 함량이 0.2at.%인 경우를 나타내다. 상변태 온도가 전체적으로 매우 낮아져서 1차 열처리온도인 850°C 에서 안정한 hexagonal Nd2O3 상이 아닌 fcc-NdO 상이 안정화 되는 것을 알 수 있다.Figure 14 (b) shows a case where the Cu content is 0.2at.%. It can be seen that the overall phase transformation temperature is so low that the fcc-NdO phase, not the stable hexagonal Nd 2 O 3 phase, is stabilized at 850 ° C.
즉, 준안정 C-TYPE의 Nd2O3 결정은 h-Nd2O3 결정구조에서 유래될 수 있다. 두 결정은 상호 밀접한 연관이 있다. 따라서, hexagonal Nd2O3 상의 침입형 자리에 과량의 Cu가 응집되면 C-TYPE의 Nd2O3 결정으로 변태 될 수 있다. That is, the Nd 2 O 3 crystal of the metastable C-TYPE may be derived from the h-Nd 2 O 3 crystal structure. The two decisions are closely related to each other. Therefore, when excessive Cu is agglomerated into the invasive sites on the hexagonal Nd 2 O 3 , it may be transformed into C-TYPE Nd 2 O 3 crystals.
하지만, rock salt 구조를 가지는 fcc-NdO의 경우에는, 이 결정구조로 과량의 Cu가 응집되어도 C-TYPE의 Nd2O3 상으로 변태 될 수 없음. 둘간의 상호 연관성이 전무함. 결국 2차 3차 열처리 동안에 안정한 hexagonal Nd2O3로 변태될 수 있다. Cu가 0.5 at.% 첨가된 자석에서는 과량의 Cu가 응집됨에도 불구하고 C-TYPE이 아닌 hexagonal 상이 관찰되고, 이로 인해서 보자력이 감소하는 것이다. 따라서, Cu 함량에 따라서 1차 열처리 온도를 바꿀 필요가 있다.However, in the case of fcc-NdO having a rock salt structure, even if excessive Cu agglomerates with this crystal structure, it cannot be transformed into C-TYPE Nd 2 O 3 phase. There is no correlation between the two. Eventually it can be transformed into a stable hexagonal Nd 2 O 3 during the secondary tertiary heat treatment. In the magnet with 0.5 at.% Of Cu, hexagonal phases, not C-TYPEs, are observed despite excessive Cu agglomeration, thereby reducing the coercive force. Therefore, it is necessary to change the primary heat treatment temperature in accordance with the Cu content.
도 15는 0.5 at.% Cu를 함유한 소결 자석의 1차 열처리 온도에 따른 보자력과 잔류 자화 변화를 나타낸다.FIG. 15 shows the coercive force and residual magnetization change with the primary heat treatment temperature of the sintered magnet containing 0.5 at.% Cu.
기존 850 ℃에서 보다 790 ℃로 감소 시켰을때 보자력이 매우 향상된다(27.1-> 29.4 kOe). 따라서 기존의 이상적인 미량의 Cu가(도 8 실시예의 의한 Cu 추가) 이상적 조성이 아닐 수 있다.The coercivity is greatly improved when reduced from 850 ℃ to 790 ℃ (27.1-> 29.4 kOe). Thus, existing ideal trace amounts of Cu (addition of Cu in FIG. 8 embodiment) may not be ideal compositions.
Cu 함량에 따라서 1차 열처리 온도를 바꿔주면 보자력을 더욱 향상시킬 수 있다. 결과적으로, Dy를 첨가하지 않고 소결 자석의 보자력을 향상시킬 수 있다. 즉, 값싼 Cu 첨가와 그 함량에 따른 열처리 조건 최적화로 Dy 저감형 소결 자석을 제조할 수 있다. By changing the primary heat treatment temperature according to the Cu content, the coercive force can be further improved. As a result, the coercive force of the sintered magnet can be improved without adding Dy. That is, Dy reduction type sintered magnets can be manufactured by inexpensive addition of Cu and optimization of heat treatment conditions according to its content.
도 16은 도 8에 도시된 열처리 온도와 도 15에 의한 열처릴 온도로 열처리를 수행하였을 경우의 시편의 미세구조를 나타내는 도면이다.FIG. 16 is a view illustrating a microstructure of a specimen when the heat treatment is performed at the heat treatment temperature shown in FIG. 8 and the heat treatment temperature shown in FIG. 15.
도 16(a)는 기존 방법인 850℃의 열처리 온도로 열처리를 수행한 미세구조를 나타내고, 도 16(b)는 Cu 함량에 따라 변화된 790℃의 열처리 온도로 열처리를 수행한 미세구조를 나타낸다.Figure 16 (a) shows a microstructure subjected to the heat treatment at a heat treatment temperature of 850 ℃ conventional method, Figure 16 (b) shows a micro structure subjected to the heat treatment at a heat treatment temperature of 790 ℃ changed according to the Cu content.
도 17은 도 16(b)를 HRTEM(High-resolution transmission electron microscopy)를 이용하여 획득한 이미지이다.FIG. 17 is an image obtained by using high-resolution transmission electron microscopy (HRTEM) of FIG. 16 (b).
1차 열처리 온도가 낮아져서 결정립이 미세화 되었다. 이는 보자력 향상에 기여할 수 있다.The first heat treatment temperature was lowered to refine the grains. This may contribute to an improvement in coercivity.
Nd-rich 삼중점상 및 입계상 또한 과량의 Cu가 응집된 준안정 C-TYPE의 Nd2O3가 다시 형성 되었다. 이는 보자력 향상에 기여할 수 있다. Nd-rich triple-phase and grain boundary phases, as well as metastable C-TYPE Nd 2 O 3 with excessive Cu agglomeration, were formed again. This may contribute to an improvement in coercivity.
또한, 도시된 실시예를 통해 Cu함량이 증가함에 따라 열처리 온도가 낮아지는 것을 확인할 수 있다.In addition, it can be seen through the illustrated embodiment that the heat treatment temperature is lowered as the Cu content is increased.
한편, 본 발명의 다른 일실시예에 의해 제조된 영구 자석은 제소 시의 소결 온도에 따라 자기적 특성이 변화한다. On the other hand, the permanent magnet produced according to another embodiment of the present invention changes the magnetic properties according to the sintering temperature at the time of filing.
도 18은 본 발명의 일실시예와 관련하여 소결 온도에 따른 자기적 특정이 변화를 나타내는 그래프이다.18 is a graph showing a change in magnetic specificity according to sintering temperature in relation to an embodiment of the present invention.
도 18(a)는 제2실시예에 의한 영구 자석의 소결 온도에 따른 자기적 특성의 변화를 나타내고, 도 18(b)는 제2실시예에 의한 영구 자석의 소결 온도에 따른 자기적 특성의 변화를 나타낸다.18 (a) shows the change of the magnetic properties according to the sintering temperature of the permanent magnet according to the second embodiment, Figure 18 (b) shows the magnetic properties of the permanent magnet according to the sintering temperature of the second embodiment Indicates a change.
도 18(a)에 의하면, 소결 온도가 감소함에 따라서 보자력이 증가하는 경향 보인다. 또한, Cu 함량이 높은 시편의 경우 (0.4, 0.5 wt%) 보자력이 낮지만, 1차 열처리 온도 및 소결 온도를 감소시킴에 따라서 보자력이 증가하는 경향을 보인다. 1차 열처리 820℃ 일때 Cu 함량이 0.3 wt.% 인 시편의 보자력이 가장 높다. 최고 보자력은 Cu 함량 0.3, 소결온도 1050℃ 1차 열처리 820℃ 일 때 나온다.According to Fig. 18A, the coercive force tends to increase as the sintering temperature decreases. In addition, the coercive force of the Cu content (0.4, 0.5 wt%) is low, but the coercivity tends to increase with decreasing the primary heat treatment temperature and the sintering temperature. At the first heat treatment of 820 ° C, the coercive force of the specimen with the Cu content of 0.3 wt.% Is the highest. The maximum coercive force is obtained when the Cu content is 0.3 and the sintering temperature is 1050 ° C.
도 18(b)에 의하면, 소결 온도가 감소함에 따라서 보자력이 증가하는 경향 보인다. 특히 0.2, 0.3 wt% Cu를 첨가한 시편의 경우에는 1차 열처리 온도 850℃ 일때 소결 온도를 1070℃ 에서 1060℃로 감소하면 보자력이 급증한다. 마찬가지로, 가장 높은 보자력은 Cu 함량이 0.3 wt.%인 시편에서 나온다(소결온도 1050℃/ 1차 열처리 790℃).According to Fig. 18B, the coercive force tends to increase as the sintering temperature decreases. Especially in the case of 0.2, 0.3 wt% Cu added, the coercive force increases rapidly when the sintering temperature is reduced from 1070 ° C to 1060 ° C at the first heat treatment temperature of 850 ° C. Similarly, the highest coercive force comes from specimens with a Cu content of 0.3 wt.% (Sintering temperature 1050 ° C / primary heat treatment 790 ° C).
도 18(b)와 도 18(a)와 차이점이 있다면, Dy가 3 wt.% 첨가된 시편의 경우에는 Cu 함량이 높으면 (0.5, 0.6 wt.%), 1차 열처리 및 소결 온도를 감소시켜도 보자력이 크게 증가하지 않는다. 18 (b) and 18 (a), in the case of specimens added with 3 wt.% Of Dy, when the Cu content is high (0.5, 0.6 wt.%), The first heat treatment and the sintering temperature may be reduced. Coercivity does not increase significantly.
한편, 본 발명의 다른 일실시예에 의해 제조된 영구 자석은 제소 시의 1차 열처리 온도 변화에 따라 보자력이 변화한다. On the other hand, the permanent magnet produced by another embodiment of the present invention changes the coercive force according to the change in the first heat treatment temperature at the time of filing.
도 19은 본 발명의 일실시예와 관련하여 1차 열처리 온도 변화에 따른 보자력 변화를 나타내는 그래프이다.19 is a graph showing the coercive force change according to the first heat treatment temperature change in accordance with an embodiment of the present invention.
도 19(a)는 제2실시예에 의한 영구 자석의 1차 열처리 온도 변화에 따른 보자력 변화를 나타내고, 도 18(b)는 제2실시예에 의한 영구 자석의 1차 열처리 온도 변화에 따른 보자력 변화를 나타낸다.19 (a) shows the coercive force change according to the first heat treatment temperature change of the permanent magnet according to the second embodiment, Figure 18 (b) shows the coercive force according to the first heat treatment temperature change of the permanent magnet according to the second embodiment Indicates a change.
도 19(a)에 의하면, Cu 함량이 증가함에 따라서 최적의 1차 열처리 온도는 감소한다. 또한, 소결 온도가 감소함에 따라서 전체적인 보자력은 증가하는 경향을 나타낸다. 19 (a), as the Cu content increases, the optimum primary heat treatment temperature decreases. Also, as the sintering temperature decreases, the overall coercive force tends to increase.
도 19(b)에 의하면, Cu 함량이 증가함에 따라서 최적의 1차 열처리 온도가 역시 감소하는 경향을 보인다. 또한, 도 19(a)와 마찬가지로 소결 온도가 감소함에 따라서 전체적인 보자력은 증가하는 경향을 보인다. 19 (b), the optimal primary heat treatment temperature also tends to decrease as the Cu content increases. In addition, as shown in FIG. 19 (a), as the sintering temperature decreases, the overall coercive force tends to increase.
이상 설명한 바와 같이, 본 발명의 일실시예에 의한 영구 자석의 제조 방법은 Cu의 함량에 따라 소결 온도 또는 열처리 온도를 달리함으로써, 고가의 Dy의 사용량을 저감시키면서도, 보자력을 향상된 영구 자석을 제조할 수 있다.As described above, the method of manufacturing a permanent magnet according to an embodiment of the present invention is to change the sintering temperature or the heat treatment temperature according to the Cu content, thereby reducing the amount of expensive Dy and manufacturing the permanent magnet with improved coercivity. Can be.
상기와 같이 설명된 영구 자석의 제조 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The manufacturing method of the permanent magnet described above is not limited to the configuration and method of the embodiments described above, the embodiments are a combination of all or part of each embodiment selectively so that various modifications can be made It may be configured.

Claims (5)

  1. Nd, Fe, B 및 Cu를 포함하는 분말을 제조하는 단계;Preparing a powder comprising Nd, Fe, B, and Cu;
    상기 분말에 특정 자장을 형성하여 성형체를 제조하는 단계;Preparing a molded body by forming a specific magnetic field on the powder;
    상기 성형체를 특정 소결 온도에서 소결시키는 단계; 및Sintering the molded body at a specific sintering temperature; And
    상기 소결된 성형체를 Cu의 함량에 따라 결정된 열처리 온도에서 열처리를 수행하는 단계를 포함하는 것을 특징으로 하는 영구 자석의 제조 방법.And heat-treating the sintered molded body at a heat treatment temperature determined according to the content of Cu.
  2. 제 1 항에 있어서, 상기 열처리 수행 단계는The method of claim 1, wherein performing the heat treatment
    복수의 열처리를 포함하고, 상기 Cu의 함량에 따라 결정되는 열처리 온도는 상기 복수의 열처리 중 1차 열처리인 것을 특징으로 하는 영구 자석의 제조 방법.And a plurality of heat treatments, and the heat treatment temperature determined according to the Cu content is a primary heat treatment of the plurality of heat treatments.
  3. 제 1 항에 있어서, 상기 Cu의 함량은The method of claim 1, wherein the content of Cu
    상기 분말에 대해 0.01 내지 0.8의 중량비인 것을 특징으로 하는 영구 자석의 제조 방법.Method for producing a permanent magnet, characterized in that the weight ratio of 0.01 to 0.8 with respect to the powder.
  4. 제 3 항에 있어서, 상기 Cu의 함량에 따라 결정된 열처리 온도는According to claim 3, wherein the heat treatment temperature determined according to the content of Cu is
    상기 Cu의 함량이 증가함에 따라 낮아지는 것을 특징으로 하는 영구 자석의 제조 방법.Method of producing a permanent magnet, characterized in that lowered as the content of Cu increases.
  5. 제 1 항에 있어서, 상기 특정 소결 온도는The method of claim 1, wherein the specific sintering temperature is
    상기 Cu의 함량에 따라 결정된 것을 특징으로 하는 영구 자석의 제조 방법.Method for producing a permanent magnet, characterized in that determined according to the content of Cu.
PCT/KR2014/004647 2013-06-18 2014-05-23 Method for manufacturing permanent magnet WO2014204106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/974,707 US20160104573A1 (en) 2013-06-18 2015-12-18 Method for manufacturing permanent magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130069517 2013-06-18
KR10-2013-0069517 2013-06-18
KR1020140030533A KR101527324B1 (en) 2013-06-18 2014-03-14 Process for producing permanent magnet
KR10-2014-0030533 2014-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/974,707 Continuation US20160104573A1 (en) 2013-06-18 2015-12-18 Method for manufacturing permanent magnet

Publications (1)

Publication Number Publication Date
WO2014204106A1 true WO2014204106A1 (en) 2014-12-24

Family

ID=52104796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004647 WO2014204106A1 (en) 2013-06-18 2014-05-23 Method for manufacturing permanent magnet

Country Status (1)

Country Link
WO (1) WO2014204106A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109161941A (en) * 2018-08-09 2019-01-08 浙江工业大学 A kind of Sintered NdFeB magnet copper composite graphite alkene coating bottoming is to improve corrosion proof method and product
CN113369818A (en) * 2021-06-24 2021-09-10 马桂英 Magnetic steel and magnetic steel processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620813A (en) * 1992-05-08 1994-01-28 Inter Metallics Kk Rare earth anisotropic permanent magnet powder and manufacture thereof
KR20080110450A (en) * 2006-04-14 2008-12-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing rare earth permanent magnet material
JP2011159983A (en) * 2005-04-15 2011-08-18 Hitachi Metals Ltd Rare earth sintered magnet and process for producing the same
KR101165938B1 (en) * 2010-03-31 2012-07-20 닛토덴코 가부시키가이샤 Permanent magnet and manufacturing method for permanent magnet
KR20120086237A (en) * 2011-01-25 2012-08-02 한양대학교 산학협력단 R-Fe-B Sintered magnet with enhancing mechanical property and fabrication method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620813A (en) * 1992-05-08 1994-01-28 Inter Metallics Kk Rare earth anisotropic permanent magnet powder and manufacture thereof
JP2011159983A (en) * 2005-04-15 2011-08-18 Hitachi Metals Ltd Rare earth sintered magnet and process for producing the same
KR20080110450A (en) * 2006-04-14 2008-12-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing rare earth permanent magnet material
KR101165938B1 (en) * 2010-03-31 2012-07-20 닛토덴코 가부시키가이샤 Permanent magnet and manufacturing method for permanent magnet
KR20120086237A (en) * 2011-01-25 2012-08-02 한양대학교 산학협력단 R-Fe-B Sintered magnet with enhancing mechanical property and fabrication method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109161941A (en) * 2018-08-09 2019-01-08 浙江工业大学 A kind of Sintered NdFeB magnet copper composite graphite alkene coating bottoming is to improve corrosion proof method and product
CN113369818A (en) * 2021-06-24 2021-09-10 马桂英 Magnetic steel and magnetic steel processing method
CN113369818B (en) * 2021-06-24 2023-09-08 惠州市富正科技有限公司 Magnetic steel and magnetic steel processing method

Similar Documents

Publication Publication Date Title
Schneider et al. Additional ferromagnetic phases in the Fe Nd B system and the effect of a 600° C annealing
WO2016175377A1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
Takeshita et al. Anisotropic Nd–Fe–B bonded magnets made from HDDR powders
CN111834118B (en) Method for improving coercive force of sintered neodymium-iron-boron magnet and sintered neodymium-iron-boron magnet
WO2016093379A1 (en) Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same
Liu et al. Reducing Dy content by Y substitution in nanocomposite NdFeB alloys with enhanced magnetic properties and thermal stability
JPH01298704A (en) Rare earth permanent magnet
WO2014204106A1 (en) Method for manufacturing permanent magnet
Chen et al. Effects of thermal annealing on improved magnetic properties and microstructure for SmFe11Ti alloy
Huang et al. Production of anisotropic hot deformed Nd-Fe-B magnets with the addition of Pr-Cu-Al alloy based on nanocomposite ribbon
US11987868B2 (en) Preparation method of a rare earth anisotropic bonded magnetic powder
WO2016010348A1 (en) R-fe-b-based sintered magnet containing no heavy rare earth elements, and preparation method therefor
WO2021071236A1 (en) Manufacturing method of sintered magnet
Feng et al. An investigation on nanocrystalline TbCu 7-type SmCo 6.4 Si 0.3 Zr 0.3 C 0.2 alloys with Sm partially substituted by various light and heavy rare Earth elements
US20160104573A1 (en) Method for manufacturing permanent magnet
Saito Magnetic properties of (Sm, Zr) Fe10 and (Sm, Zr) Fe9. 5Ti0. 5 melt-spun ribbons
Kou et al. Highly thermally stable Nd0. 6Y0. 4-Fe-B magnet with a spontaneous shell-strengthened structure by Tb alloying
CN112017835A (en) Low-heavy rare earth high-coercivity sintered neodymium-iron-boron magnet and preparation method thereof
WO2019098716A1 (en) Mn4c manganese carbide magnetic substance and manufacturing method therefor
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
KR20200065958A (en) ThMn12 TYPE MAGNETIC SUBSTANCE AND FABRICATION THEREOF
WO2024106628A1 (en) Hard-soft composite magnetic particle, preparation method thereof, and permanent magnet comprising same
WO2024048972A1 (en) Method for preparing thmn12-type magnetic powder
KR100213333B1 (en) Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith
WO2024048973A1 (en) Method for manufacturing fe-based permanent magnet, and fe-based permanent magnet manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813721

Country of ref document: EP

Kind code of ref document: A1