WO2014204021A1 - Biodegradable resin composition for preparing foam body - Google Patents

Biodegradable resin composition for preparing foam body Download PDF

Info

Publication number
WO2014204021A1
WO2014204021A1 PCT/KR2013/005317 KR2013005317W WO2014204021A1 WO 2014204021 A1 WO2014204021 A1 WO 2014204021A1 KR 2013005317 W KR2013005317 W KR 2013005317W WO 2014204021 A1 WO2014204021 A1 WO 2014204021A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
resin composition
polylactic acid
weight
biodegradable
Prior art date
Application number
PCT/KR2013/005317
Other languages
French (fr)
Korean (ko)
Inventor
안종원
권오현
Original Assignee
주식회사 블리스팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 블리스팩 filed Critical 주식회사 블리스팩
Priority to PCT/KR2013/005317 priority Critical patent/WO2014204021A1/en
Publication of WO2014204021A1 publication Critical patent/WO2014204021A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a biodegradable resin composition for producing a foam, and more particularly, to a biodegradable resin composition for producing a foam having improved heat resistance and improved foamability.
  • Foamed plastics have excellent packaging functionality such as cushioning, waterproofing, hygiene, heat shielding, light weight, moldability, and so on.Insulation materials for building, buffering for consumer electronics, concentrated seafood box, rich for marine products, packaging for food and medicine, packaging for home delivery It is widely used as a helmet, surfboard interior material, and other industrial packaging materials.
  • Biodegradable plastics are produced using biomass, which is almost infinitely present in nature. After use, they are decomposed into water and carbon dioxide and used as raw materials for bioorganic resources. Cleanliness is completely decomposed into water and carbon dioxide.
  • Polylactic acid (poly (lactic acid), PLA) is a bio-based polymer, a lactic acid polymer produced by fermenting corn starch.
  • Polylactic acid is a relatively inexpensive biodegradable plastic that can be prepared relatively inexpensively and is compostable.
  • the polylactic acid has excellent characteristics such as resistance to mold, exploitation resistance to food, etc., and the range of its use field is expanding.
  • polylactic acid has some disadvantages such as weak impact resistance, heat resistance, long molding time, and the like.
  • the polymer material In general, in order to manufacture plastic foam, the polymer material must maintain an appropriate melt viscosity so that the foam cells can grow and stabilize under an appropriate foaming environment.
  • the polylactic acid an aliphatic polyester
  • the polylactic acid is an extrusion foaming process due to the linear structural characteristics, crystallization characteristics, low melt viscosity and weak melt strength, which do not effectively maintain the bubbles expanded by the blowing agent during melting and easily burst or collapse. This is not easy.
  • WO 2005/085346 discloses a foamable thermoplastic polymer containing 0.01 to 5 parts by weight of (meth) acrylic acid ester and / or glycidyl ester based on 100 parts by weight of polylactic acid aliphatic polyester.
  • the (meth) acrylic acid ester and glycidyl ester only serve as a crosslinking agent of the polylactic acid-based aliphatic polyester, thereby failing to obtain a flexible composition and having low heat resistance.
  • the inventors have described polylactic acid; And modifying the polylactic acid by melt kneading the biodegradable resin composition for preparing a foam comprising a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.
  • the present invention was completed by confirming that a foamed polylactic acid resin composition can form a biodegradable polylactic acid foam having a stable cell and improved heat resistance.
  • An object of the present invention is to provide a biodegradable resin composition for producing a foam having improved heat resistance and improved foamability.
  • Another object of the present invention is to provide a method for producing a biodegradable foam using the biodegradable resin composition for producing the foam.
  • Another object of the present invention is to provide a biodegradable foam produced by the above method.
  • this invention provides the biodegradable resin composition for foam manufacture containing the following.
  • polylactic acid means a polymer containing a lactic acid unit.
  • the lactic acid may be L-lactic acid, D-lactic acid, or a combination thereof.
  • the polylactic acid may be 50 mol% or more, preferably 50 to 80 mol% of lactic acid units.
  • the polylactic acid may contain ⁇ -hydroxy acid (ie, glycolic acid), 3-hydroxybutyl acid, 3-hydroxy valeric acid, 3-hydroxy caproic acid, etc., in addition to the lactic acid unit, and a mixing ratio thereof. Is not limited.
  • the polylactic acid does not easily maintain the bubble expanded by the blowing agent during melting due to the structural characteristics, crystallization characteristics, low melt viscosity and weak melt strength of the linearity, and easily burst or collapse, which is not easy to extrusion foaming process.
  • polylactic acid has a low heat resistance, so there is a limit to the application of products requiring heat. Accordingly, in order to produce a polylactic acid foam having a stable cell, it is necessary to maintain an appropriate melt viscosity so that the foam cell can grow stably and continuously, and to modify the polylactic acid to improve heat resistance.
  • the present invention (A) 50 to 95 parts by weight of polylactic acid; And (B) a biodegradable resin composition for preparing a foam comprising 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. It is characterized in that the polylactic acid foam can be produced and improved heat resistance.
  • the polylactic acid in the biodegradable resin composition for producing a foam of the present invention is modified with monomers under melt kneading to exhibit improved properties.
  • the heat resistance of the polylactic acid foam can be improved by using a monomer containing acrylic acid.
  • the crystallization temperature (Tc) that the maximum crystallization rate is increased compared to the case without using it was confirmed that the heat resistance can be improved (Experimental example 1, Table 3).
  • the melt index (MI) of the resin composition can be lowered to increase the foamability.
  • the glycidyl methacrylate also serves as an initiator due to the epoxy group as a characteristic functional group, thereby allowing modification without additional addition of a peroxide initiator.
  • melt index of the resin composition can be significantly lowered than when not used (Experimental Example 2, Table 4).
  • the weight ratio of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate may be 1 to 10: 1 to 6: 1: 0.1 to 1. That is, 1 to 10 parts by weight of 2-ethylhexyl acrylate, 1 to 6 parts by weight of 2-hydroxyethyl acrylate, and 0.1 to 1 part by weight of glycidyl methacrylate may be based on 1 part by weight of acrylic acid. .
  • peroxide initiator can be further used to more easily modify the polylactic acid.
  • glycidyl methacrylate also serves as an initiator, modification is possible without additional addition of peroxide initiator.
  • peroxide initiator di-t-butyl peroxide, dicumyl peroxide, di-t-amyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, t-butyl Peroxy benzoate etc. can be used individually or in combination.
  • the content of the peroxide initiator may be 0.01 to 10 parts by weight based on 100 parts by weight of the total polylactic acid and monomers.
  • the present invention provides a method for producing a biodegradable foam comprising the following steps.
  • step 2 foaming the kneaded product (step 2).
  • the method may further include cooling the kneaded material (step 1-1) between step 1) and step 2).
  • Step 1 (A) 50 to 95 parts by weight of polylactic acid; And (B) melt kneading the biodegradable resin composition for preparing a foam comprising 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. It is a step of modifying the polylactic acid into a monomer by melt kneading a resin composition comprising a polylactic acid and a monomer.
  • the biodegradable resin composition for producing a foam may further include (C) a peroxide initiator.
  • the melt kneading may be performed using an extruder.
  • an extruder a twin screw extruder, a single screw extruder, or the like may be used.
  • a twin screw extruder may be used.
  • the melt kneading is preferably performed by kneading the vacuum pump to a barrel of a twin screw extruder in a vacuum state of -1 kgf / cm 2 or less.
  • the biaxial screw may be used by mixing arrangement of the metering unit, the compression unit and the mixing unit, preferably the first metering unit, compression unit, mixing unit, the second metering unit, compression unit, mixing unit, compression unit , Mixing section, and compression section can be used.
  • the monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate is preferably injected through the second metering unit.
  • the injection of the monomer may use a liquid injection pump, preferably a high pressure metering pump capable of injection up to 10 bar.
  • the melt kneading may be preferably performed at 160 to 230 °C.
  • Step 1-1 is a step of cooling the kneaded material, wherein the modified polylactic acid resin composition is cooled for use in a subsequent process.
  • step 2 the kneaded product is foamed, and the kneaded and modified polylactic acid resin composition is foamed to prepare a foam.
  • the foaming is an azo compound such as azodicarbonamide as a blowing agent; Nitroso compounds such as N, N-dinitrosopentamethylenetetramine and N, N-dinitroso-N, N-dimethylterephthalate; Hydrazine compounds such as hydrazine hydrate; Inorganic blowing agents such as sodium bicarbonate; Inorganic compounds such as nitrogen, carbon dioxide, and water; Hydrocarbons such as methane, ethane, propane, butane and pentane; Freon compounds, such as chlorofluorocarbons (CFC);
  • the organic solvent represented by various alcohols, such as ethanol and methanol, can be performed using 1 or more types, but it is not limited to this.
  • polylactic acid 95 parts by weight of polylactic acid; And 5 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate in a weight ratio of 3: 2: 1: 0.6, followed by melt kneading in an extruder and foaming It was confirmed that a foam in which a stable cell was formed can be produced.
  • the present invention also provides a biodegradable foam prepared by the above production method.
  • the biodegradable foams of the present invention have excellent heat resistance, stable foaming properties and biodegradability by using polylactic acid modified with 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.
  • biodegradable foam of the present invention is non-toxic because there is no unreacted monomer in the foam by using a polylactic acid modified with a specific monomer according to the above production method, Food Code No. 7. Has the advantage of meeting the standards and specifications of utensil and container packaging.
  • the biodegradable foam of the present invention is selected from the group consisting of food packaging materials, electronics packaging materials, food trays, refrigerator trays, aquatic products rich, helmet interior materials, surfboard interior materials and building insulation materials. It can be used as either material, and various applications are possible.
  • the present invention is polylactic acid; And modifying the polylactic acid by melt kneading a biodegradable resin composition for preparing a foam comprising a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.
  • a biodegradable polylactic acid foam having a stable cell and improved heat resistance can be produced.
  • Figure 1 is a result of observing the shape of the surface and cross-section of the foam using a scanning electron microscope (SEM) for the morphological observation of the foam of the sheet form of the present invention.
  • SEM scanning electron microscope
  • (a) is Tilt 0 °, x 1k surface appearance
  • (b) Tilt 15 °, x 30 cross-sectional view
  • (c) Tilt 0 °, x 50, cross-sectional view
  • (d ) Is the cross-sectional view when Tilt 15 °, x 50.
  • Figure 2 is a graph showing the results of examining the biodegradability of the foam of the sheet form of the present invention.
  • the biodegradable resin composition for preparing a foam was introduced into a single screw foam extruder (65 mm, L / D 48, model WKY-E65, Won Yeon, Korea), and foamed by injecting nitrogen gas as a blowing agent to obtain a foam in the form of a sheet.
  • a biodegradable resin composition for preparing a foam was obtained in the same manner as in Example 1, and then foamed in the same manner to obtain a foam in the form of a sheet.
  • a biodegradable resin composition for preparing foams was obtained in the same manner as in Example 1 to obtain a foam in the form of a sheet.
  • a biodegradable resin composition for preparing foams was obtained in the same manner as in Example 1 except that 2-ethylhexyl acrylate (EHA) and 2-hydroxyethyl acrylate (HEA) were used as monomers in a 1: 1 manner.
  • EHA 2-ethylhexyl acrylate
  • HOA 2-hydroxyethyl acrylate
  • thermo analysis of the biodegradable resin composition for preparing foams obtained in Examples 1 to 5 and Comparative Examples 1 to 14 was carried out to measure the glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm).
  • Tg glass transition temperature
  • Tc crystallization temperature
  • Tm melting temperature
  • PVA polylactic acid
  • the melt index of the biodegradable resin composition for producing a foam obtained in Examples 1 to 5 and Comparative Examples 1 to 14 was measured.
  • the melt index of polylactic acid (PLA) was also measured.
  • the polylactic acid is modified as a monomer, but the overall melt index is significantly higher, but Examples 1 to 5, using the glycidyl methacrylate (GMA) as a monomer, and Comparative Examples 1 to In the case of 11, the melt index (MI) was lowered to maintain the proper melt viscosity to allow the foam cells (cell) to grow and stabilize, it was found that the foamability of the polylactic acid can be improved.
  • GMA glycidyl methacrylate
  • Foaming properties of the foam in the form of a sheet prepared in Example 1 were investigated. Specifically, the density, thickness and foaming rate of the foam sheet were measured. In this case, the foaming rate is a value obtained by dividing the density of the biodegradable resin composition for producing a foam by the density of the foam. For comparison, the density of polylactic acid (PLA) was also measured.
  • PVA polylactic acid
  • the foam of the present invention forms an overall homogeneous (foam cell), the inner surface of the closed cell is sufficiently formed as compared to the open cell (open cell), the outer surface of the outer shell without cell formation It was observed that there was no cell hole formed. Therefore, it was expected that the mechanical strength such as tensile strength, compressive strength and impact strength would be excellent through this structure.
  • the impact strength of the foam sheet was measured according to the test method of JIS K 7110 using an Izod impact strength device. As a result, the impact strength was found to be 2.7 kg f ⁇ cm / cm. The results show that the foam sheet forms a homogeneous cell as a whole, and that the closed cell is sufficiently formed on the inner surface as compared to the open cell, and the outer surface shows structurally sufficient resistance to impact by the formation of the shell without cell formation. It seemed to be due.
  • Example 1 The heat resistance of the foam in the form of a sheet prepared in Example 1 was investigated.
  • Heat Sag Test was performed for 60 minutes at a constant temperature according to Japanese standard JIS K-7195. As a result, the result was bent within 10 mm at 102 ⁇ 3 °C, from the results it can be seen that the foam sheet is heat resistance up to 105 °C maximum.
  • the biodegradability test was carried out according to the measurement of the biodegradability and disintegration degree of the plastic under composting conditions-Part 1: titration of carbon dioxide generated by titration (KSM 3100-1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

The present invention relates to a biodegradable resin composition for preparing a foam body and, more specifically, to a biodegradable resin composition for preparing a foam body, having enhanced heat resistance and improved foam processability, the composition comprising poly(lactic acid), and a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.

Description

발포체 제조용 생분해성 수지 조성물Biodegradable Resin Compositions for Foam Production
본 발명은 발포체 제조용 생분해성 수지 조성물에 관한 것으로, 더욱 상세하게는 내열성이 향상되고 발포 가공성이 개선된 발포체 제조용 생분해성 수지 조성물에 관한 것이다.The present invention relates to a biodegradable resin composition for producing a foam, and more particularly, to a biodegradable resin composition for producing a foam having improved heat resistance and improved foamability.
발포 플라스틱은 완충성, 방수성, 위생성, 열차단성, 경량성, 성형성 등 포장의 기능성이 우수하여 건축 단열재, 가전 완충 포장재, 농축수산물 상자, 수산물 양식용 부자, 식품과 의약품의 포장용기, 택배용 포장재, 헬멧 및 서핑보드 내장재, 기타 산업용 포장재 등으로 널리 사용되고 있다.Foamed plastics have excellent packaging functionality such as cushioning, waterproofing, hygiene, heat shielding, light weight, moldability, and so on.Insulation materials for building, buffering for consumer electronics, concentrated seafood box, rich for marine products, packaging for food and medicine, packaging for home delivery It is widely used as a helmet, surfboard interior material, and other industrial packaging materials.
삶의 질 향상과 쾌적한 생활환경에 대한 사회적 관심이 높아지면서, 편리하게 사용하고 버리는 것으로 인식되어 왔던 발포 플라스틱에 대해서도 지속 가능한 순환형 시스템을 구축하여야 할 필요성이 대두되고 있다.As the social interest in improving the quality of life and the comfortable living environment increases, the necessity of establishing a sustainable recycling system for foamed plastics, which has been recognized as convenient to use and discarded, is emerging.
생분해성 플라스틱은 자연계에 거의 무한적으로 존재하는 생물유기자원(Biomass)을 이용하여 생산이 이루어지고, 사용 후에는 물과 이산화탄소로 분해되어 다시 생물유기자원의 원료로 이용됨으로써 자연계 내에서 미생물에 의하여 물과 이산화탄소로 완전히 분해되는 청정성을 지니고 있다.Biodegradable plastics are produced using biomass, which is almost infinitely present in nature. After use, they are decomposed into water and carbon dioxide and used as raw materials for bioorganic resources. Cleanliness is completely decomposed into water and carbon dioxide.
폴리유산(poly(lactic acid), PLA)은 바이오 기반 고분자로, 옥수수 전분을 발효하여 생성된 유산(lactic acid)의 중합체이다. 폴리유산은 비교적 저렴하게 제조될 수 있으며, 퇴비화 조건에서 분해속도가 빠른 생분해성 플라스틱이다. 또한, 폴리유산은 곰팡이에 대한 저항성, 식품에 대한 내착취성 등의 우수한 특성을 보유하여 그 이용 분야의 범위가 확대되고 있다. 그러나, 이러한 장점에도 불구하고 폴리유산은 취약한 내충격성과 내열성, 오랜 성형시간 등의 단점이 있어 다양한 응용에 일부 제한이 있다.Polylactic acid (poly (lactic acid), PLA) is a bio-based polymer, a lactic acid polymer produced by fermenting corn starch. Polylactic acid is a relatively inexpensive biodegradable plastic that can be prepared relatively inexpensively and is compostable. In addition, the polylactic acid has excellent characteristics such as resistance to mold, exploitation resistance to food, etc., and the range of its use field is expanding. However, in spite of these advantages, polylactic acid has some disadvantages such as weak impact resistance, heat resistance, long molding time, and the like.
일반적으로 플라스틱 발포체를 제조하기 위하여는 적절한 발포환경 하에서 발포체 기포(cell)가 성장 및 안정화할 수 있도록 고분자 물질이 적정한 용융점도를 유지해야만 한다. 그러나, 지방족 폴리에스터인 폴리유산은 선형성의 구조적 특징과 결정화 특성, 낮은 용융점도와 약한 용융강도로 인하여 용융시 발포제에 의하여 팽창되는 버블을 효과적으로 유지시키지 못하고 쉽게 터지거나 무너지는 결과를 초래하여 압출 발포 공정이 용이하지 않다. In general, in order to manufacture plastic foam, the polymer material must maintain an appropriate melt viscosity so that the foam cells can grow and stabilize under an appropriate foaming environment. However, the polylactic acid, an aliphatic polyester, is an extrusion foaming process due to the linear structural characteristics, crystallization characteristics, low melt viscosity and weak melt strength, which do not effectively maintain the bubbles expanded by the blowing agent during melting and easily burst or collapse. This is not easy.
종래 폴리유산과 같은 생분해성 폴리에스테르 수지를 이용한 발포체의 제조방법으로는 일본 특허공개 평10-324766호에 2염기산과 글리콜로부터 합성된 생분해성 폴리에스테르 수지를, 유기 과산화물과 불포화 결합을 하는 화합물과 조합시켜 가교시킴으로써 발포 가능한 생분해성 폴리에스테르 수지를 얻을 수 있음이 개시되어 있으나, 상기와 같이 얻어진 생분해성 폴리에스테르 수지의 내열성이 낮아 적용이 제한적인 단점이 있다. 또한, 국제특허공개 WO2005/085346호에는 폴리유산계 지방족 폴리에스테르 100 중량부에 대하여 (메타)아크릴산 에스테르 및/또는 글리시딜 에스테르를 0.01 내지 5 중량부 함유하는 발포 가능한 열가소성 중합체가 개시되어 있으나, 상기 (메타)아크릴산 에스테르 및 글리시딜 에스테르가 폴리유산계 지방족 폴리에스테르의 가교제로서의 역할만 하는 것으로 유연성 있는 조성물을 얻을 수 없고 내열성이 낮아 적용이 제한적인 단점이 있다.Conventionally, a method for producing a foam using a biodegradable polyester resin such as polylactic acid is disclosed in Japanese Patent Application Laid-open No. Hei 10-324766 for a biodegradable polyester resin synthesized from dibasic acids and glycols, with a compound having an unsaturated bond with an organic peroxide It is disclosed that a biodegradable polyester resin that can be foamed by crosslinking in combination can be obtained. However, the biodegradable polyester resin obtained as described above has a disadvantage in that application is limited due to low heat resistance. In addition, WO 2005/085346 discloses a foamable thermoplastic polymer containing 0.01 to 5 parts by weight of (meth) acrylic acid ester and / or glycidyl ester based on 100 parts by weight of polylactic acid aliphatic polyester. The (meth) acrylic acid ester and glycidyl ester only serve as a crosslinking agent of the polylactic acid-based aliphatic polyester, thereby failing to obtain a flexible composition and having low heat resistance.
이러한 배경 하에서, 본 발명자들은 폴리유산; 및 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체를 포함하는 발포체 제조용 생분해성 수지 조성물을 용융 혼련하여 폴리유산을 개질시킨 후 상기 개질된 폴리유산 수지 조성물을 발포시킴으로써 안정된 셀을 형성하고 내열성이 향상된 생분해성 폴리유산 발포체를 제조할 수 있음을 확인하고 본 발명을 완성하였다.Under this background, the inventors have described polylactic acid; And modifying the polylactic acid by melt kneading the biodegradable resin composition for preparing a foam comprising a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. The present invention was completed by confirming that a foamed polylactic acid resin composition can form a biodegradable polylactic acid foam having a stable cell and improved heat resistance.
본 발명의 목적은 내열성이 향상되고 발포 가공성이 개선된 발포체 제조용 생분해성 수지 조성물을 제공하는 것이다.An object of the present invention is to provide a biodegradable resin composition for producing a foam having improved heat resistance and improved foamability.
본 발명의 다른 목적은 상기 발포체 제조용 생분해성 수지 조성물을 이용하여 생분해성 발포체를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a biodegradable foam using the biodegradable resin composition for producing the foam.
본 발명의 또 다른 목적은 상기 방법으로 제조된 생분해성 발포체를 제공하는 것이다.Another object of the present invention is to provide a biodegradable foam produced by the above method.
상기 과제를 해결하기 위해, 본 발명은 하기를 포함하는 발포체 제조용 생분해성 수지 조성물을 제공한다.In order to solve the said subject, this invention provides the biodegradable resin composition for foam manufacture containing the following.
(A) 폴리유산 50 내지 95 중량부; 및(A) 50 to 95 parts by weight of polylactic acid; And
(B) 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체 5 내지 50 중량부.(B) 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.
본 발명에서 사용하는 용어 "폴리유산(poly(lactic acid), PLA)"은 유산(lactic acid) 단위를 포함하는 중합체를 의미한다. 구체적으로, 상기 유산은 L-유산, D-유산, 또는 이의 조합일 수 있다. 본 발명에서, 폴리유산은 유산 단위를 50몰% 이상, 바람직하기로 50 내지 80몰% 포함하는 것일 수 있다. 상기 폴리유산은 유산 단위 이외에 α-하이드록시산(즉, 글리콜산), 3-하이드록시부틸산, 3-하이드록시 발레릭산, 3-하이드록시 카프로산 등을 함유할 수 있으며, 이들의 혼합비율은 제한되지 않는다.As used herein, the term "polylactic acid (poly (lactic acid), PLA)" means a polymer containing a lactic acid unit. Specifically, the lactic acid may be L-lactic acid, D-lactic acid, or a combination thereof. In the present invention, the polylactic acid may be 50 mol% or more, preferably 50 to 80 mol% of lactic acid units. The polylactic acid may contain α-hydroxy acid (ie, glycolic acid), 3-hydroxybutyl acid, 3-hydroxy valeric acid, 3-hydroxy caproic acid, etc., in addition to the lactic acid unit, and a mixing ratio thereof. Is not limited.
폴리유산은 선형성의 구조적 특징과 결정화 특성, 낮은 용융점도와 약한 용융강도로 인하여 용융시 발포제에 의하여 팽창되는 버블을 효과적으로 유지시키지 못하고 쉽게 터지거나 무너지는 결과를 초래하여 압출 발포 공정이 용이하지 않다. 또한, 폴리유산은 내열성이 낮아서 내열을 필요로 하는 제품의 응용에는 한계가 있다. 이에 따라 안정된 셀을 가지는 폴리유산 발포체를 제조하기 위하여 발포체 셀이 안정적이고 지속적으로 성장할 수 있도록 적정한 용융점도를 유지할 수 있고, 내열성을 향상시킬 수 있도록 폴리유산을 개질할 필요가 있다.The polylactic acid does not easily maintain the bubble expanded by the blowing agent during melting due to the structural characteristics, crystallization characteristics, low melt viscosity and weak melt strength of the linearity, and easily burst or collapse, which is not easy to extrusion foaming process. In addition, polylactic acid has a low heat resistance, so there is a limit to the application of products requiring heat. Accordingly, in order to produce a polylactic acid foam having a stable cell, it is necessary to maintain an appropriate melt viscosity so that the foam cell can grow stably and continuously, and to modify the polylactic acid to improve heat resistance.
본 발명은 (A) 폴리유산 50 내지 95 중량부; 및 (B) 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체 5 내지 50 중량부를 포함하는 발포체 제조용 생분해성 수지 조성물을 제공함으로써 안정된 셀을 형성하고 내열성이 향상된 폴리유산 발포체를 제조할 수 있는 것을 특징으로 한다. The present invention (A) 50 to 95 parts by weight of polylactic acid; And (B) a biodegradable resin composition for preparing a foam comprising 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. It is characterized in that the polylactic acid foam can be produced and improved heat resistance.
본 발명의 발포체 제조용 생분해성 수지 조성물 중의 폴리유산은 용융 혼련 하에 단량체로 개질되어 개선된 특성을 나타내게 된다.The polylactic acid in the biodegradable resin composition for producing a foam of the present invention is modified with monomers under melt kneading to exhibit improved properties.
특히, 본 발명에서는 아크릴산을 포함하는 단량체를 사용함으로써 폴리유산 발포체의 내열성을 향상시킬 수 있다.In particular, in the present invention, the heat resistance of the polylactic acid foam can be improved by using a monomer containing acrylic acid.
구체적으로, 본 발명의 일 실시예에서는 폴리유산에 아크릴산을 포함하는 단량체를 사용한 경우, 사용하지 않은 경우에 비해 결정화 속도가 최대가 되는 결정화 온도(Tc)가 높아져 내열성이 향상될 수 있음을 확인하였다(실험예 1, 표 3).Specifically, in one embodiment of the present invention, when the monomer containing acrylic acid in the polylactic acid, the crystallization temperature (Tc) that the maximum crystallization rate is increased compared to the case without using it was confirmed that the heat resistance can be improved (Experimental example 1, Table 3).
또한, 본 발명에서는 단량체로서 글리시딜 메타크릴레이트를 사용함으로써 수지 조성물의 용융지수(melt index, MI)를 낮추어 발포 가공성을 높일 수 있다. 또한, 상기 글리시딜 메타크릴레이트는 특성 관능기인 에폭시기로 인한 개시제 역할도 하여 과산화물 개시제의 추가적인 첨가 없이도 개질이 가능하게 한다.In addition, in the present invention, by using glycidyl methacrylate as the monomer, the melt index (MI) of the resin composition can be lowered to increase the foamability. In addition, the glycidyl methacrylate also serves as an initiator due to the epoxy group as a characteristic functional group, thereby allowing modification without additional addition of a peroxide initiator.
구체적으로, 본 발명의 일 실시예에서는 글리시딜 메타크릴레이트를 사용한 경우, 사용하지 않은 경우에 비해 수지 조성물의 용융지수를 현저하게 낮출 수 있음을 확인하였다(실험예 2, 표 4).Specifically, in one embodiment of the present invention, when glycidyl methacrylate is used, it was confirmed that the melt index of the resin composition can be significantly lowered than when not used (Experimental Example 2, Table 4).
본 발명에서, 상기 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트의 중량비는 1~10:1~6:1:0.1~1일 수 있다. 즉, 아크릴산 1 중량부를 기준으로, 2-에틸헥실 아크릴레이트는 1~10 중량부, 2-히드록시에틸 아크릴레이트는 1~6 중량부, 글리시딜 메타크릴레이트는 0.1~1 중량부일 수 있다.In the present invention, the weight ratio of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate may be 1 to 10: 1 to 6: 1: 0.1 to 1. That is, 1 to 10 parts by weight of 2-ethylhexyl acrylate, 1 to 6 parts by weight of 2-hydroxyethyl acrylate, and 0.1 to 1 part by weight of glycidyl methacrylate may be based on 1 part by weight of acrylic acid. .
본 발명에서는 폴리유산의 개질을 보다 용이하게 수행하기 위하여 (C) 과산화물 개시제를 추가로 사용할 수 있다. 상기에서 설명한 바와 같이, 글리시딜 메타크릴레이트가 개시제 역할도 하므로, 과산화물 개시제의 추가적인 첨가 없이도 개질은 가능하다. 상기 과산화물 개시제로는 디-t-부틸퍼옥사이드, 디큐밀퍼옥사이드, 디-t-아밀퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥신-3, t-부틸퍼옥시벤조에이트 등을 단독 또는 조합하여 사용할 수 있다.In the present invention (C) peroxide initiator can be further used to more easily modify the polylactic acid. As described above, since glycidyl methacrylate also serves as an initiator, modification is possible without additional addition of peroxide initiator. As the peroxide initiator, di-t-butyl peroxide, dicumyl peroxide, di-t-amyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, t-butyl Peroxy benzoate etc. can be used individually or in combination.
본 발명에서, 상기 과산화물 개시제의 함량은 폴리유산과 단량체의 전체 100 중량부에 대하여 0.01 내지 10 중량부일 수 있다.In the present invention, the content of the peroxide initiator may be 0.01 to 10 parts by weight based on 100 parts by weight of the total polylactic acid and monomers.
또한, 본 발명은 하기 단계를 포함하는 생분해성 발포체의 제조방법을 제공한다.In addition, the present invention provides a method for producing a biodegradable foam comprising the following steps.
1) (A) 폴리유산 50 내지 95 중량부; 및 (B) 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체 5 내지 50 중량부를 포함하는 발포체 제조용 생분해성 수지 조성물을 용융 혼련시키는 단계(단계 1); 및1) (A) 50 to 95 parts by weight of polylactic acid; And (B) melt kneading the biodegradable resin composition for preparing a foam, comprising 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. Step 1); And
2) 상기 혼련물을 발포시키는 단계(단계 2).2) foaming the kneaded product (step 2).
바람직하기로, 상기 단계 1)과 단계 2) 사이에 상기 혼련물을 냉각시키는 단계(단계 1-1)를 추가로 포함할 수 있다.Preferably, the method may further include cooling the kneaded material (step 1-1) between step 1) and step 2).
상기 단계 1은, (A) 폴리유산 50 내지 95 중량부; 및 (B) 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체 5 내지 50 중량부를 포함하는 발포체 제조용 생분해성 수지 조성물을 용융 혼련시키는 단계로서, 폴리유산 및 단량체를 포함하는 수지 조성물을 용융 혼련시킴으로써 폴리유산을 단량체로 개질시키는 단계이다. Step 1, (A) 50 to 95 parts by weight of polylactic acid; And (B) melt kneading the biodegradable resin composition for preparing a foam comprising 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. It is a step of modifying the polylactic acid into a monomer by melt kneading a resin composition comprising a polylactic acid and a monomer.
바람직하기로, 상기 발포체 제조용 생분해성 수지 조성물은 (C) 과산화물 개시제를 추가로 포함할 수 있다.Preferably, the biodegradable resin composition for producing a foam may further include (C) a peroxide initiator.
상기 폴리유산; 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체; 및 과산화물 개시제의 종류 및 중량비 등은 상기 발포체 제조용 생분해성 수지 조성물에서 설명한 바와 동일하다.The polylactic acid; Monomers including 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate; And the kind and weight ratio of the peroxide initiator are the same as described in the biodegradable resin composition for preparing the foam.
본 발명에서, 상기 용융 혼련은 압출기를 사용하여 수행할 수 있다. 상기 압출기로는 이축 스크류 압출기(twin screw extruder), 단축 스크류 압출기(single screw extruder) 등을 사용할 수 있으며, 바람직하기로는 이축 스크류 압출기를 사용할 수 있다.In the present invention, the melt kneading may be performed using an extruder. As the extruder, a twin screw extruder, a single screw extruder, or the like may be used. Preferably, a twin screw extruder may be used.
본 발명에서, 상기 용융 혼련은 진공 펌프를 이축 스크류 압출기의 바렐에 연결하여 -1 kgf/cm2 이하의 진공상태에서 용융 혼련을 수행하는 것이 바람직하다.In the present invention, the melt kneading is preferably performed by kneading the vacuum pump to a barrel of a twin screw extruder in a vacuum state of -1 kgf / cm 2 or less.
본 발명에서, 상기 이축 스크류는 계량부, 압축부 및 혼합부를 혼합 배열하여 사용할 수 있으며, 바람직하기로는 제 1 계량부, 압축부, 혼합부, 제 2 계량부, 압축부, 혼합부, 압축부, 혼합부, 및 압축부의 배열로 사용할 수 있다.In the present invention, the biaxial screw may be used by mixing arrangement of the metering unit, the compression unit and the mixing unit, preferably the first metering unit, compression unit, mixing unit, the second metering unit, compression unit, mixing unit, compression unit , Mixing section, and compression section can be used.
본 발명에서, 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체는 제 2 계량부를 통하여 주입하는 것이 바람직하다.In the present invention, the monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate is preferably injected through the second metering unit.
본 발명에서, 상기 단량체의 주입은 액상 주입 펌프를 이용할 수가 있으며, 바람직하기는 최대 10 bar까지 주입이 가능한 고압 정량 펌프를 사용할 수 있다.In the present invention, the injection of the monomer may use a liquid injection pump, preferably a high pressure metering pump capable of injection up to 10 bar.
본 발명에서, 상기 용융 혼련은 바람직하기로 160 내지 230℃에서 수행할 수 있다.In the present invention, the melt kneading may be preferably performed at 160 to 230 ℃.
상기 단계 1-1은, 상기 혼련물을 냉각시키는 단계로서, 개질된 폴리유산 수지 조성물을 이후 공정에 사용하기 위하여 냉각시키는 단계이다.Step 1-1 is a step of cooling the kneaded material, wherein the modified polylactic acid resin composition is cooled for use in a subsequent process.
상기 단계 2는, 상기 혼련물을 발포시키는 단계로서, 혼련되어 개질된 폴리유산 수지 조성물을 발포시켜 발포체를 제조하는 단계이다.In step 2, the kneaded product is foamed, and the kneaded and modified polylactic acid resin composition is foamed to prepare a foam.
본 발명에서, 상기 발포는 발포제로서 아조디카본아미드 등의 아조화합물; N,N-디니트로소펜타메틸렌테트라민, N,N-디니트로소-N,N-디메틸테레프탈레이트 등의 니트로소화합물; 하이드라진 하이드레이트 등의 하이드라진화합물; 탄산수소나트륨 등의 무기계 발포제; 질소, 이산화탄소, 물 등의 무기 화합물; 메탄, 에탄, 프로판, 부탄, 펜탄 등의 탄화수소; 염화불화탄소(CFC) 등의 프레온화합물; 에탄올, 메탄올 등의 각종 알콜류로 대표되는 유기 용매 등을 1종 이상을 사용하여 수행할 수 있으며, 이에 제한되는 것은 아니다.In the present invention, the foaming is an azo compound such as azodicarbonamide as a blowing agent; Nitroso compounds such as N, N-dinitrosopentamethylenetetramine and N, N-dinitroso-N, N-dimethylterephthalate; Hydrazine compounds such as hydrazine hydrate; Inorganic blowing agents such as sodium bicarbonate; Inorganic compounds such as nitrogen, carbon dioxide, and water; Hydrocarbons such as methane, ethane, propane, butane and pentane; Freon compounds, such as chlorofluorocarbons (CFC); The organic solvent represented by various alcohols, such as ethanol and methanol, can be performed using 1 or more types, but it is not limited to this.
본 발명의 일 실시예에서는 폴리유산 95 중량부; 및 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 3:2:1:0.6의 중량비로 포함하는 단량체 5 중량부를 혼합하여 압출기에서 용융 혼련시킨 후 발포시킴으로써 안정된 셀이 형성된 발포체를 제조할 수 있음을 확인하였다.In one embodiment of the present invention, 95 parts by weight of polylactic acid; And 5 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate in a weight ratio of 3: 2: 1: 0.6, followed by melt kneading in an extruder and foaming It was confirmed that a foam in which a stable cell was formed can be produced.
또한, 본 발명은 상기 제조방법으로 제조된 생분해성 발포체를 제공한다.The present invention also provides a biodegradable foam prepared by the above production method.
본 발명의 생분해성 발포체는 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트로 개질된 폴리유산을 사용함으로써 우수한 내열성, 안정적인 발포 특성 및 생분해성을 갖는다. The biodegradable foams of the present invention have excellent heat resistance, stable foaming properties and biodegradability by using polylactic acid modified with 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.
또한, 본 발명의 생분해성 발포체는 상기 제조방법에 따라 특정 단량체로 개질시킨 폴리유산을 사용함으로써 발포체 내 미반응 단량체가 없어 독성이 없고, 식품공전 제7. 기구 및 용기 포장의 기준 및 규격에 적합한 장점을 갖는다.In addition, the biodegradable foam of the present invention is non-toxic because there is no unreacted monomer in the foam by using a polylactic acid modified with a specific monomer according to the above production method, Food Code No. 7. Has the advantage of meeting the standards and specifications of utensil and container packaging.
상기한 바와 같은 특성 및 장점에 따라, 본 발명의 생분해성 발포체는 식품 포장재, 전자제품 포장재, 식품 트레이, 냉장고 트레이, 수산물 양식용 부자, 헬멧 내장재, 서핑보드 내장재 및 건축 단열재로 이루어진 군으로부터 선택되는 어느 하나의 재료로서 사용될 수 있어 다양한 응용이 가능하다.According to the above characteristics and advantages, the biodegradable foam of the present invention is selected from the group consisting of food packaging materials, electronics packaging materials, food trays, refrigerator trays, aquatic products rich, helmet interior materials, surfboard interior materials and building insulation materials. It can be used as either material, and various applications are possible.
본 발명은 폴리유산; 및 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체를 포함하는 발포체 제조용 생분해성 수지 조성물을 용융 혼련하여 폴리유산을 개질시킨 후 상기 개질된 폴리유산 수지 조성물을 발포시킴으로써 안정된 셀을 형성하고 내열성이 향상된 생분해성 폴리유산 발포체를 제조할 수 있다.The present invention is polylactic acid; And modifying the polylactic acid by melt kneading a biodegradable resin composition for preparing a foam comprising a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate. By foaming the polylactic acid resin composition, a biodegradable polylactic acid foam having a stable cell and improved heat resistance can be produced.
도 1은 본 발명의 시트 형태의 발포체의 형상학적 관찰을 위하여 주사전자현미경(SEM)을 이용하여 발포체의 표면 및 단면의 형태를 관찰한 결과이다. 이때, (a)는 Tilt 0°, x 1k인 경우 표면 모습이고, (b)는 Tilt 15°, x 30인 경우 단면 모습, (c)는 Tilt 0°, x 50인 경우 단면 모습, (d)는 Tilt 15°, x 50인 경우 단면 모습이다.Figure 1 is a result of observing the shape of the surface and cross-section of the foam using a scanning electron microscope (SEM) for the morphological observation of the foam of the sheet form of the present invention. Here, (a) is Tilt 0 °, x 1k surface appearance, (b) Tilt 15 °, x 30 cross-sectional view, (c) Tilt 0 °, x 50, cross-sectional view, (d ) Is the cross-sectional view when Tilt 15 °, x 50.
도 2는 본 발명의 시트 형태의 발포체의 생분해성을 조사한 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of examining the biodegradability of the foam of the sheet form of the present invention.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1 내지 5Examples 1-5
폴리유산(수평균분자량 264,000 g/mol, 무게평균분자량 442,000 g/mol, NatureWorks LLC) 95 중량부, 및 하기 표 1에 기재된 배합비의 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체와 함께 디큐밀퍼옥사이드 0.3 중량부를 이축 스크류 압출기(32mm, L/D 36)에서 압출베드 온도 200℃, 다이출구 온도 190℃로 압출해 펠렛상으로 절단 가공하여 발포체 제조용 생분해성 수지 조성물을 얻었다. 상기 발포체 제조용 생분해성 수지 조성물을 단축 스크류 발포 압출기(65 mm, L/D 48, 모델 WKY-E65, 원기연, 대한민국)에 투입하고 발포제로서 질소 가스를 주입하여 발포시켜 시트 형태의 발포체를 얻었다.95 parts by weight of polylactic acid (number average molecular weight 264,000 g / mol, weight average molecular weight 442,000 g / mol, NatureWorks LLC), and 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and acrylic acid in the compounding ratios shown in Table 1 below. And 0.3 parts by weight of dicumyl peroxide together with a monomer including glycidyl methacrylate in a twin screw extruder (32 mm, L / D 36) at an extrusion bed temperature of 200 ° C. and a die exit temperature of 190 ° C. to cut into pellets. To obtain a biodegradable resin composition for producing a foam. The biodegradable resin composition for preparing a foam was introduced into a single screw foam extruder (65 mm, L / D 48, model WKY-E65, Won Yeon, Korea), and foamed by injecting nitrogen gas as a blowing agent to obtain a foam in the form of a sheet.
표 1
구분 단량체(중량부)
2-에틸헥실 아크릴레이트(EHA) 2-히드록시에틸 아크릴레이트(HEA) 아크릴산(AA) 글리시딜 메타크릴레이트(GMA)
실시예 1 3 2 1 0.6
실시예 2 3 2 1 1.2
실시예 3 3 2 1 1.8
실시예 4 3 2 1 2.4
실시예 5 3 2 1 3.0
Table 1
division Monomer (parts by weight)
2-ethylhexyl acrylate (EHA) 2-hydroxyethyl acrylate (HEA) Acrylic acid (AA) Glycidyl Methacrylate (GMA)
Example 1 3 2 One 0.6
Example 2 3 2 One 1.2
Example 3 3 2 One 1.8
Example 4 3 2 One 2.4
Example 5 3 2 One 3.0
비교예 1 내지 11Comparative Examples 1 to 11
단량체의 배합비를 하기 표 2의 조성으로 각각 달리하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 발포체 제조용 생분해성 수지 조성물을 얻은 다음, 동일한 방법으로 이를 발포시켜 시트 형태의 발포체를 얻었다.Except for varying the compounding ratio of the monomer in the composition of Table 2 below, a biodegradable resin composition for preparing a foam was obtained in the same manner as in Example 1, and then foamed in the same manner to obtain a foam in the form of a sheet.
표 2
구분 단량체(중량부)
2-에틸헥실 아크릴레이트(EHA) 2-히드록시에틸 아크릴레이트(HEA) 아크릴산(AA) 글리시딜 메타크릴레이트(GMA)
비교예 1 1 1 1 0.6
비교예 2 2 3 1 0.6
비교예 3 5 4 1 0.6
비교예 4 2 3 1 1.2
비교예 5 5 4 1 1.2
비교예 6 2 3 1 1.8
비교예 7 5 4 1 1.8
비교예 8 2 3 1 2.4
비교예 9 5 4 1 2.4
비교예 10 2 3 1 3.0
비교예 11 5 4 1 3.0
TABLE 2
division Monomer (parts by weight)
2-ethylhexyl acrylate (EHA) 2-hydroxyethyl acrylate (HEA) Acrylic acid (AA) Glycidyl Methacrylate (GMA)
Comparative Example 1 One One One 0.6
Comparative Example 2 2 3 One 0.6
Comparative Example 3 5 4 One 0.6
Comparative Example 4 2 3 One 1.2
Comparative Example 5 5 4 One 1.2
Comparative Example 6 2 3 One 1.8
Comparative Example 7 5 4 One 1.8
Comparative Example 8 2 3 One 2.4
Comparative Example 9 5 4 One 2.4
Comparative Example 10 2 3 One 3.0
Comparative Example 11 5 4 One 3.0
비교예 12Comparative Example 12
단량체로서 2-에틸헥실 아크릴레이트(EHA)를 단독으로 사용하는 것을 제외하고는 실시예 1과 동일하게 발포체 제조용 생분해성 수지 조성물을 얻고 이를 이용하여 시트 형태의 발포체를 얻었다.Except for using 2-ethylhexyl acrylate (EHA) alone as a monomer, a biodegradable resin composition for preparing foams was obtained in the same manner as in Example 1 to obtain a foam in the form of a sheet.
비교예 13Comparative Example 13
단량체로서 2-에틸헥실 아크릴레이트(EHA)와 2-히드록시에틸 아크릴레이트(HEA)를 1:1로 사용하는 것을 제외하고는 실시예 1과 동일하게 발포체 제조용 생분해성 수지 조성물을 얻고 이를 이용하여 시트 형태의 발포체를 얻었다.A biodegradable resin composition for preparing foams was obtained in the same manner as in Example 1 except that 2-ethylhexyl acrylate (EHA) and 2-hydroxyethyl acrylate (HEA) were used as monomers in a 1: 1 manner. A foam in the form of a sheet was obtained.
비교예 14Comparative Example 14
단량체로서 2-에틸헥실 아크릴레이트(EHA)와 아크릴산(AA)을 1:1로 사용하는 것을 제외하고는 실시예 1과 동일하게 발포체 제조용 생분해성 수지 조성물을 얻고 이를 이용하여 시트 형태의 발포체를 얻었다.Except for using 2-ethylhexyl acrylate (EHA) and acrylic acid (AA) as monomer as 1: 1, a biodegradable resin composition for preparing foam was obtained in the same manner as in Example 1 to obtain a foam in the form of a sheet. .
실험예 1: 발포체 제조용 생분해성 수지 조성물의 열분석Experimental Example 1: Thermal Analysis of Biodegradable Resin Compositions for Foam Production
상기 실시예 1 내지 5, 및 비교예 1 내지 14에서 얻은 발포체 제조용 생분해성 수지 조성물의 열분석을 실시하여 유리전이온도(Tg), 결정화온도(Tc) 및 용융온도(Tm)를 측정하였다. 비교를 위하여, 폴리유산(PLA)의 열분석도 함께 실시하였다.Thermal analysis of the biodegradable resin composition for preparing foams obtained in Examples 1 to 5 and Comparative Examples 1 to 14 was carried out to measure the glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm). For comparison, thermal analysis of polylactic acid (PLA) was also performed.
그 결과를 하기 표 3에 나타내었다.The results are shown in Table 3 below.
표 3
구분 유리전이온도(Tg, ℃) 결정화온도(Tc, ℃) 용융온도(Tm, ℃)
폴리유산(PLA) 65 - 152
실시예 1 58 105 147/157
실시예 2 58 105 149/158
실시예 3 59 106 150/158
실시예 4 59 106 151/160
실시예 5 60 107 151/160
비교예 1 59 105 148/157
비교예 2 59 105 149/157
비교예 3 59 105 158/156
비교예 4 60 105 149/159
비교예 5 59 106 159/158
비교예 6 58 105 150/158
비교예 7 59 105 149/159
비교예 8 60 106 150/159
비교예 9 60 106 151/160
비교예 10 60 106 150/160
비교예 11 60 104 151/161
비교예 12 58 90 141/152
비교예 13 59 89 140/152
비교예 14 61 112 141/150
TABLE 3
division Glass transition temperature (Tg, ℃) Crystallization Temperature (Tc, ℃) Melt temperature (Tm, ℃)
Polylactic Acid (PLA) 65 - 152
Example 1 58 105 147/157
Example 2 58 105 149/158
Example 3 59 106 150/158
Example 4 59 106 151/160
Example 5 60 107 151/160
Comparative Example 1 59 105 148/157
Comparative Example 2 59 105 149/157
Comparative Example 3 59 105 158/156
Comparative Example 4 60 105 149/159
Comparative Example 5 59 106 159/158
Comparative Example 6 58 105 150/158
Comparative Example 7 59 105 149/159
Comparative Example 8 60 106 150/159
Comparative Example 9 60 106 151/160
Comparative Example 10 60 106 150/160
Comparative Example 11 60 104 151/161
Comparative Example 12 58 90 141/152
Comparative Example 13 59 89 140/152
Comparative Example 14 61 112 141/150
상기 표 3의 결과를 통해, 단량체로서 아크릴산을 사용한 경우가 사용하지 않은 경우에 비해 결정화 속도가 최대가 되는 결정화 온도(Tc)가 높아져 내열성이 향상될 수 있음을 알 수 있었다.As a result of Table 3, it can be seen that the crystallization temperature (Tc), the maximum crystallization rate is increased compared to the case where no acrylic acid is used as the monomer, the heat resistance can be improved.
실험예 2: 발포체 제조용 생분해성 수지 조성물의 용융지수 조사Experimental Example 2: Investigation of Melt Index of Biodegradable Resin Composition for Foam Production
상기 실시예 1 내지 5, 및 비교예 1 내지 14에서 얻은 발포체 제조용 생분해성 수지 조성물의 용융지수를 측정하였다. 비교를 위하여, 폴리유산(PLA)의 용융지수도 함께 측정하였다.The melt index of the biodegradable resin composition for producing a foam obtained in Examples 1 to 5 and Comparative Examples 1 to 14 was measured. For comparison, the melt index of polylactic acid (PLA) was also measured.
그 결과를 하기 표 4에 나타내었다.The results are shown in Table 4 below.
표 4
구분 용융지수(g/10min, 2.16kg/200℃)
폴리유산(PLA) 5
실시예 1 5
실시예 2 5
실시예 3 4
실시예 4 4
실시예 5 3
비교예 1 6
비교예 2 5
비교예 3 5
비교예 4 5
비교예 5 5
비교예 6 5
비교예 7 5
비교예 8 4
비교예 9 4
비교예 10 4
비교예 11 4
비교예 12 15
비교예 13 15
비교예 14 16
Table 4
division Melt Index (g / 10min, 2.16kg / 200 ℃)
Polylactic Acid (PLA) 5
Example 1 5
Example 2 5
Example 3 4
Example 4 4
Example 5 3
Comparative Example 1 6
Comparative Example 2 5
Comparative Example 3 5
Comparative Example 4 5
Comparative Example 5 5
Comparative Example 6 5
Comparative Example 7 5
Comparative Example 8 4
Comparative Example 9 4
Comparative Example 10 4
Comparative Example 11 4
Comparative Example 12 15
Comparative Example 13 15
Comparative Example 14 16
상기 표 4의 결과를 통해, 폴리유산이 단량체로 개질됨에 따라 전반적으로 용융지수가 현저하게 높아지지만, 단량체로서 글리시딜 메타크릴레이트(GMA)를 사용한 실시예 1 내지 5, 및 비교예 1 내지 11의 경우, 용융지수(melt index, MI)가 낮아져 적정한 용융 점도를 유지시킴으로써 발포체 기포(cell)가 성장 및 안정화 될 수 있도록 하여 폴리유산의 발포 가공성을 개선할 수 있음을 알 수 있었다.Through the results of Table 4, the polylactic acid is modified as a monomer, but the overall melt index is significantly higher, but Examples 1 to 5, using the glycidyl methacrylate (GMA) as a monomer, and Comparative Examples 1 to In the case of 11, the melt index (MI) was lowered to maintain the proper melt viscosity to allow the foam cells (cell) to grow and stabilize, it was found that the foamability of the polylactic acid can be improved.
실험예 3: 본 발명의 발포체의 발포 특성 조사Experimental Example 3: Investigation of the Foaming Properties of the Foam of the Present Invention
상기 실시예 1에서 제조한 시트 형태의 발포체의 발포 특성을 조사하였다. 구체적으로, 발포 시트의 밀도, 두께 및 발포율을 측정하였다. 이때 발포율은 발포체 제조용 생분해성 수지 조성물의 밀도를 발포체의 밀도로 나눈 값이다. 비교를 위하여, 폴리유산(PLA)의 밀도도 함께 측정하였다.Foaming properties of the foam in the form of a sheet prepared in Example 1 were investigated. Specifically, the density, thickness and foaming rate of the foam sheet were measured. In this case, the foaming rate is a value obtained by dividing the density of the biodegradable resin composition for producing a foam by the density of the foam. For comparison, the density of polylactic acid (PLA) was also measured.
그 결과를 하기 표 5에 나타내었다.The results are shown in Table 5 below.
표 5
구분
폴리유산(PLA)의 밀도 1.24 g/㎤
발포체 제조용 생분해성 수지 조성물의 밀도 1.22 g/㎤
발포 시트의 밀도 0.17 g/㎤
발포 시트의 두께 2.0±0.4 mm
발포율 7배
Table 5
division value
Density of Polylactic Acid (PLA) 1.24 g / cm 3
Density of Biodegradable Resin Compositions for Foam Production 1.22 g / cm 3
Density of foam sheet 0.17 g / cm 3
Thickness of foam sheet 2.0 ± 0.4 mm
Firing rate 7 times
실험예 4: 본 발명의 발포체의 형상학적 분석Experimental Example 4: Geometry Analysis of the Foam of the Invention
상기 실시예 1에서 제조한 시트 형태의 발포체의 형상학적 관찰을 위하여 주사전자현미경(SEM)을 이용하여 발포체의 표면 및 단면의 형태를 관찰하였다.For the morphological observation of the sheet-shaped foam prepared in Example 1, the shape of the surface and the cross section of the foam was observed using a scanning electron microscope (SEM).
그 결과를 도 1에 나타내었다. 이때, (a)는 Tilt 0°, x 1k인 경우 표면 모습이고, (b)는 Tilt 15°, x 30인 경우 단면 모습, (c)는 Tilt 0°, x 50인 경우 단면 모습, (d)는 Tilt 15°, x 50인 경우 단면 모습이다.The results are shown in FIG. Here, (a) is Tilt 0 °, x 1k surface appearance, (b) Tilt 15 °, x 30 cross-sectional view, (c) Tilt 0 °, x 50, cross-sectional view, (d ) Is the cross-sectional view when Tilt 15 °, x 50.
도 1을 통해, 본 발명의 발포체가 전체적으로 균질한 셀(foam cell)을 형성하고 있으며, 내면에는 개방형 셀(opened cell) 형성에 비하여 폐쇄형 셀이 충분히 형성되어 있고, 외면에는 셀 형성 없이 외피가 형성되어 셀 홀(cell hole)이 없는 것이 관찰되었다. 따라서, 이러한 구조를 통해 인장강도, 압축강도 및 충격강도 등 기계적 강도가 우수할 것으로 기대되었다.Through Figure 1, the foam of the present invention forms an overall homogeneous (foam cell), the inner surface of the closed cell is sufficiently formed as compared to the open cell (open cell), the outer surface of the outer shell without cell formation It was observed that there was no cell hole formed. Therefore, it was expected that the mechanical strength such as tensile strength, compressive strength and impact strength would be excellent through this structure.
실험예 5: 본 발명의 발포체의 기계적 특성 조사Experimental Example 5: Investigation of the mechanical properties of the foam of the present invention
상기 실시예 1에서 제조한 시트 형태의 발포체의 기계적 특성을 조사하였다.The mechanical properties of the foam in the form of a sheet prepared in Example 1 were investigated.
먼저, 발포체의 인장강도와 신장율을 측정하기 위하여, Cross-Head 속도를 10 mm/min으로 하여 실온에서 KS M 3054의 시험방법으로 측정하였으며, 발포 전후의 특성 변화를 조사하기 위하여 발포 전의 수지 조성물의 인장강도와 연신율도 함께 조사하였다. 그 결과를 하기 표 6에 나타내었다.First, in order to measure the tensile strength and elongation rate of the foam, the cross-head speed was measured by the test method of KS M 3054 at room temperature at 10 mm / min, and the resin composition before foaming was investigated in order to investigate the change of properties before and after foaming. Tensile strength and elongation were also investigated. The results are shown in Table 6 below.
표 6
구분 인장강도(MPa) 연신율(%)
수지 54 12
발포체 2.8 8.7
Table 6
division Tensile Strength (MPa) Elongation (%)
Suzy 54 12
Foam 2.8 8.7
상기 표 6의 결과를 통해, 발포체의 인장강도는 수지 대비 약 1/20으로 감소하였고 연신율은 약 1/4로 감소하였는데 이는 발포(7배 발포)로 인한 것으로 보이며, 발포 배율이 높아짐에 따라서 연신율도 현저히 감소할 것으로 보였다. 상기의 결과는 일반적인 발포체의 인장강도를 기준(0.3 MPa)으로 보았을 때 비교적 높은 값을 나타내는 것으로 나타났다.Through the results of Table 6, the tensile strength of the foam was reduced to about 1/20 compared to the resin and the elongation was reduced to about 1/4, which seems to be due to foaming (7 times foaming), the elongation as the foaming ratio increases It also seemed to decrease significantly. The above results were found to show relatively high values based on the tensile strength of the general foam (0.3 MPa).
한편, 발포체의 압축강도를 측정하기 위하여 Cross-Head 속도를 10 mm/min으로 하여 실온에서 KS M 844의 시험방법으로 측정하였다. 그 결과, 압축강도는 7.2±0.9 kgf/㎠으로 나타났다.On the other hand, in order to measure the compressive strength of the foam was measured by the test method of KS M 844 at room temperature with a cross-head speed of 10 mm / min. As a result, the compressive strength was 7.2 ± 0.9 kg f / ㎠.
또한, 발포체의 충격강도를 측정하기 위하여, 아이조드 충격 강도기를 이용하고 JIS K 7110의 시험방법에 따라 발포 시트의 충격강도를 측정하였다. 그 결과, 충격강도는 2.7 kgf·cm/cm으로 나타났다. 상기 결과는 발포 시트가 전체적으로 균질한 셀을 형성하고 있고 내면에는 개방형 셀의 형성에 비하여 폐쇄형 셀이 충분히 형성되어 있고, 외면에는 셀 형성 없이 외피의 형성으로 충격에 대하여 구조적으로 충분한 내성을 나타내기 때문인 것으로 보였다.In addition, in order to measure the impact strength of the foam, the impact strength of the foam sheet was measured according to the test method of JIS K 7110 using an Izod impact strength device. As a result, the impact strength was found to be 2.7 kg f · cm / cm. The results show that the foam sheet forms a homogeneous cell as a whole, and that the closed cell is sufficiently formed on the inner surface as compared to the open cell, and the outer surface shows structurally sufficient resistance to impact by the formation of the shell without cell formation. It seemed to be due.
실험예 6: 본 발명의 발포체의 내열성 조사Experimental Example 6: Investigation of heat resistance of the foam of the present invention
상기 실시예 1에서 제조한 시트 형태의 발포체의 내열성을 조사하였다.The heat resistance of the foam in the form of a sheet prepared in Example 1 was investigated.
내열성 시험(Heat Sag Test)은 일본 규격 JIS K-7195에 준하여 일정온도에서 60분 동안 수행하였다. 그 결과, 102±3℃에서 10 mm 이내에서 구부러진 결과를 얻었으며, 이의 결과로부터 발포 시트는 최대 105℃ 이하에서 내열성이 있는 것을 알 수 있었다.Heat Sag Test was performed for 60 minutes at a constant temperature according to Japanese standard JIS K-7195. As a result, the result was bent within 10 mm at 102 ± 3 ℃, from the results it can be seen that the foam sheet is heat resistance up to 105 ℃ maximum.
실험예 7: 본 발명의 발포체의 안전성 조사Experimental Example 7: Investigation of the safety of the foam of the present invention
상기 실시예 1에서 제조한 시트 형태의 발포체의 안전성(safety)을 조사하였다.The safety of the sheet-shaped foam prepared in Example 1 was investigated.
안전성 시험은 <식품공전 제7. 기구 및 용기·포장의 기준 및 규격>에 의거하여 수행하였다. 그 결과를 하기 표 7에 나타내었다.The safety test was conducted in <Food Code Article 7. It was carried out according to the standards and specifications of instruments, containers and packaging. The results are shown in Table 7 below.
표 7
시험항목 단위 규격기준 결과
용출시험 납(Pb) mg/L 1.0 이하 불검출(검출한계 0.01)
과망간산칼륨 소비량 10 이하 2
증발 잔류물 4% 초산 30 이하 8
30 이하 3
n-헵탄 30 이하 7
20% 에탄올 30 이하 4
시험방법 식품공전 제7. 기구 및 용기·포장의 기준 및 규격
TABLE 7
Test Items unit Standard result
Dissolution Test Pb mg / L 1.0 or less Not detected (detection limit 0.01)
Potassium Permanganate Consumption below 10 2
Evaporation residue 4% acetic acid 30 or less 8
water 30 or less 3
n-heptane 30 or less 7
20% ethanol 30 or less 4
Test Methods Food Code Article 7. Standards and standards for utensils, containers and packaging
상기 표 7을 통해, 시험항목 모두에서 불검출 또는 기준치 이하의 결과를 보임을 알 수 있으며, 이로써 본 발명의 발포체가 발포체내 미반응 단량체가 없어 독성이 없고, 식품공전 제7. 기구 및 용기 포장의 기준 및 규격에 적합함을 확인할 수 있었다.Through Table 7, it can be seen that all of the test items showed the results of not detected or below the reference value, whereby the foam of the present invention has no toxicity because there is no unreacted monomer in the foam, and Food Code Article 7. It was confirmed that the standard and the standard of the packaging of the apparatus and the container were met.
실험예 8: 본 발명의 발포체의 생분해성 조사Experimental Example 8: Investigation of biodegradability of the foam of the present invention
상기 실시예 1에서 제조한 시트 형태의 발포체의 생분해성을 조사하였다.The biodegradability of the foam in the form of a sheet prepared in Example 1 was investigated.
발포체의 생분해성을 확인하기 위하여, 퇴비화 조건에서 플라스틱의 생분해도 및 붕괴도의 측정-제1부:적정에 의한 발생 이산화탄소 정량법(KSM 3100-1)에 준하여 생분해도 시험을 수행하였다.In order to confirm the biodegradability of the foam, the biodegradability test was carried out according to the measurement of the biodegradability and disintegration degree of the plastic under composting conditions-Part 1: titration of carbon dioxide generated by titration (KSM 3100-1).
그 결과를 도 2에 나타내었다.The results are shown in FIG.
도 2를 통해, 발포체의 45일 경과 후 생분해도는 기준 물질인 셀룰로오스의 생분해도(75.6%) 대비하여 95.1%로 나타남을 확인할 수 있다. 따라서, 본 발명의 발포체가 우수한 생분해성을 나타냄을 알 수 있었다.Through FIG. 2, it can be seen that the biodegradability after 45 days of the foam is 95.1% compared to the biodegradation degree (75.6%) of the reference material cellulose. Thus, it was found that the foam of the present invention exhibited excellent biodegradability.

Claims (11)

  1. 하기를 포함하는 발포체 제조용 생분해성 수지 조성물:Biodegradable resin composition for producing a foam comprising:
    (A) 폴리유산 50 내지 95 중량부; 및(A) 50 to 95 parts by weight of polylactic acid; And
    (B) 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트를 포함하는 단량체 5 내지 50 중량부.(B) 5 to 50 parts by weight of a monomer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate.
  2. 제1항에 있어서, 상기 2-에틸헥실 아크릴레이트, 2-히드록시에틸 아크릴레이트, 아크릴산 및 글리시딜 메타크릴레이트의 중량비는 1~10:1~6:1:0.1~1인 조성물.The composition of claim 1, wherein the weight ratio of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, acrylic acid and glycidyl methacrylate is from 1 to 10: 1 to 6: 1: 0.1 to 1.
  3. 제1항에 있어서, 과산화물 개시제를 추가로 포함하는 조성물.The composition of claim 1 further comprising a peroxide initiator.
  4. 제3항에 있어서, 상기 과산화물 개시제의 함량은 폴리유산과 단량체의 전체 100 중량부에 대하여 0.01 내지 10 중량부인 조성물.The composition of claim 3, wherein the content of the peroxide initiator is 0.01 to 10 parts by weight based on 100 parts by weight of the total polylactic acid and the monomers.
  5. 하기 단계를 포함하는 생분해성 발포체의 제조방법:Method for producing a biodegradable foam comprising the following steps:
    제1항 내지 제4항 중 어느 한 항의 발포체 제조용 생분해성 수지 조성물을 용융 혼련시키는 단계(단계 1); 및Melting and kneading the biodegradable resin composition for producing a foam according to any one of claims 1 to 4 (Step 1); And
    상기 혼련물을 발포시키는 단계(단계 2).Foaming the kneaded product (step 2).
  6. 제5항에 있어서, 상기 단계 1)과 단계 2) 사이에 상기 혼련물을 냉각시키는 단계(단계 1-1)를 추가로 포함하는 방법.6. The method of claim 5, further comprising the step of cooling said kneaded material between steps 1) and 2) (step 1-1).
  7. 제5항에 있어서, 상기 용융 혼련은 압출기를 사용하여 수행하는 방법.The method of claim 5 wherein said melt kneading is performed using an extruder.
  8. 제5항에 있어서, 상기 용융 혼련은 160 내지 230℃에서 수행하는 방법.The method of claim 5, wherein the melt kneading is performed at 160 to 230 ° C. 7.
  9. 제5항에 있어서, 상기 발포는 발포제로서 아조디카본아미드, N,N-디니트로소펜타메틸렌테트라민, N,N-디니트로소-N,N-디메틸테레프탈레이트, 하이드라진 하이드레이트, 탄산수소나트륨, 질소, 이산화탄소, 물, 메탄, 에탄, 프로판, 부탄, 펜탄, 염화불화탄소(CFC), 에탄올 및 메탄올로 이루어진 군으로부터 선택되는 1종 이상을 사용하여 수행하는 방법.The foaming agent according to claim 5, wherein the foaming agent is azodicarbonamide, N, N-dinitrosopentamethylenetetramine, N, N-dinitroso-N, N-dimethylterephthalate, hydrazine hydrate, sodium hydrogencarbonate as a blowing agent. And nitrogen, carbon dioxide, water, methane, ethane, propane, butane, pentane, chlorofluorocarbons (CFCs), ethanol and methanol.
  10. 제5항의 제조방법으로 제조된 생분해성 발포체.Biodegradable foam prepared by the method of claim 5.
  11. 제10항에 있어서, 상기 발포체는 식품 포장재, 전자제품 포장재, 식품 트레이, 냉장고 트레이, 수산물 양식용 부자, 헬멧 내장재, 서핑보드 내장재 및 건축 단열재로 이루어진 군으로부터 선택되는 어느 하나의 재료로서 사용되는 발포체.11. The foam according to claim 10, wherein the foam is used as any one material selected from the group consisting of food packaging materials, electronics packaging materials, food trays, refrigerator trays, aquaculture products rich, helmet interior materials, surfboard interior materials and building insulation materials. .
PCT/KR2013/005317 2013-06-17 2013-06-17 Biodegradable resin composition for preparing foam body WO2014204021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005317 WO2014204021A1 (en) 2013-06-17 2013-06-17 Biodegradable resin composition for preparing foam body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005317 WO2014204021A1 (en) 2013-06-17 2013-06-17 Biodegradable resin composition for preparing foam body

Publications (1)

Publication Number Publication Date
WO2014204021A1 true WO2014204021A1 (en) 2014-12-24

Family

ID=52104740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005317 WO2014204021A1 (en) 2013-06-17 2013-06-17 Biodegradable resin composition for preparing foam body

Country Status (1)

Country Link
WO (1) WO2014204021A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409551A (en) * 2020-11-26 2021-02-26 四会市邦得利化工有限公司 Degradable polylactic resin film-forming emulsion and preparation method and application thereof
CN113929831A (en) * 2021-09-08 2022-01-14 湖北中烟工业有限责任公司 Preparation method and application of polylactic acid with high melt strength

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134948A (en) * 2003-12-12 2006-12-28 이 아이 듀폰 디 네모아 앤드 캄파니 Toughened poly(lactic acid) compositions
KR20090024758A (en) * 2006-06-16 2009-03-09 아르끄마 프랑스 Composite based on polylactic acid and a polyamide, having improved impact resistance, its manufacturing process and use
KR20090073927A (en) * 2007-12-31 2009-07-03 제일모직주식회사 Antimicrobial polylactic acid resin composition
KR20100078850A (en) * 2008-12-30 2010-07-08 제일모직주식회사 Polylactic acid resin composition
KR20110130029A (en) * 2010-05-27 2011-12-05 주식회사 블리스팩 Biodegradable materials having excellent transparency and flexibility, its manufacturing process and formed products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134948A (en) * 2003-12-12 2006-12-28 이 아이 듀폰 디 네모아 앤드 캄파니 Toughened poly(lactic acid) compositions
KR20090024758A (en) * 2006-06-16 2009-03-09 아르끄마 프랑스 Composite based on polylactic acid and a polyamide, having improved impact resistance, its manufacturing process and use
KR20090073927A (en) * 2007-12-31 2009-07-03 제일모직주식회사 Antimicrobial polylactic acid resin composition
KR20100078850A (en) * 2008-12-30 2010-07-08 제일모직주식회사 Polylactic acid resin composition
KR20110130029A (en) * 2010-05-27 2011-12-05 주식회사 블리스팩 Biodegradable materials having excellent transparency and flexibility, its manufacturing process and formed products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409551A (en) * 2020-11-26 2021-02-26 四会市邦得利化工有限公司 Degradable polylactic resin film-forming emulsion and preparation method and application thereof
CN113929831A (en) * 2021-09-08 2022-01-14 湖北中烟工业有限责任公司 Preparation method and application of polylactic acid with high melt strength

Similar Documents

Publication Publication Date Title
Standau et al. Chemical modification and foam processing of polylactide (PLA)
US10518444B2 (en) Compostable or biobased foams
JP2837274B2 (en) Foamed polyester resin and method for producing the same
KR101025977B1 (en) Water-soluble Biodegradable Material
US8420707B2 (en) Biomass composite composition and foaming method thereof
WO2021159705A1 (en) Supercritical fluid injection foaming polylactide foam material and preparation method therefor
EP1721935A1 (en) Biodegradable polyester resin composition, process for producing the same, and foam and molding obtained therefrom
JP2007530319A (en) Polylactide foam extruded by carbon dioxide foaming
JP2003128901A (en) Biodegradable polyester resin composition, method for producing the same and foam and molded article obtained therefrom
CN113801450A (en) Full-biodegradable modified plastic for high-temperature-resistant extrusion straw product and preparation method thereof
CN102702560B (en) Compound foaming manufacturing method for polypropylene foaming material
CA2917356A1 (en) Heat resistant polylactic acid
JP5339857B2 (en) Resin composition for foaming biodegradable flame retardant polyester, foam obtained therefrom, and molded product thereof
KR20110022575A (en) Extruded foams made with polylactides that have high molecular weights and high intrinsic viscosities
CN103224697B (en) PHA/PCL blend of a kind of fully biodegradable and preparation method thereof
WO2014204021A1 (en) Biodegradable resin composition for preparing foam body
EP1137696B1 (en) Increasing the melt viscosities of a polyester resin
KR101735887B1 (en) Polylactic acid-based resin foam and method of producing the same
KR101376712B1 (en) Method for Manufacturing Biodegradable polymer Fibers
WO2013006781A2 (en) Compostable or biobased foams, method of manufacture and use
JP3944281B2 (en) Polyglycolic acid foam
KR20150002540A (en) Resin composition comprising polyalkylene carbonate
CN114605694B (en) Reinforced polybutene foam material and preparation method thereof
CN114874594B (en) High-resilience wave-absorbing foam material and preparation method thereof
KR101540108B1 (en) A composition of a biodegradable resin for preparation of foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 23-02-16

122 Ep: pct application non-entry in european phase

Ref document number: 13887129

Country of ref document: EP

Kind code of ref document: A1