WO2014203825A1 - Led light source module - Google Patents

Led light source module Download PDF

Info

Publication number
WO2014203825A1
WO2014203825A1 PCT/JP2014/065750 JP2014065750W WO2014203825A1 WO 2014203825 A1 WO2014203825 A1 WO 2014203825A1 JP 2014065750 W JP2014065750 W JP 2014065750W WO 2014203825 A1 WO2014203825 A1 WO 2014203825A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source module
led chip
led
led light
Prior art date
Application number
PCT/JP2014/065750
Other languages
French (fr)
Japanese (ja)
Inventor
智士 内田
洋好 阪口
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013127316A external-priority patent/JP6192377B2/en
Priority claimed from JP2013134090A external-priority patent/JP2015012024A/en
Priority claimed from JP2013134089A external-priority patent/JP2015012023A/en
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2014203825A1 publication Critical patent/WO2014203825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an LED light source module.
  • FIG. 50 shows an example of a conventional LED light source module.
  • the LED light source module 900 shown in the figure includes a substrate 91, an LED chip 95, a submount substrate 96, a case 97, and a sealing resin 99.
  • the LED light source module 900 is used as a point light source of an electronic device by being configured as a relatively small module, and is used as an elongated bar light source by disposing a plurality of LED chips 95 on an elongated substrate 91. And a plurality of LED chips 95 arranged in a matrix on the substrate 91 to be used as a planar light source.
  • the substrate 91 includes a base material 92, an insulating layer 93, and a wiring layer 94.
  • the base material 92 is a metal plate made of, for example, aluminum.
  • the insulating layer 93 is made of, for example, an insulating resin and covers the upper surface of the base material 92 in the drawing.
  • the wiring layer 94 is formed on the insulating layer 93 and forms a conduction path to the LED chip 95.
  • the LED chip 95 has a structure in which a plurality of layers made of semiconductors are stacked, and is mounted on a submount substrate 96.
  • the LED chip 95 and the wiring layer 94 are connected via a wire 90.
  • the submount substrate 96 is made of, for example, Si and bonded to the insulating layer 93.
  • the case 97 surrounds the LED chip 95 and has a reflective surface 98.
  • the sealing resin 99 covers the LED chip 95.
  • LED chips 95 In order to increase the brightness and diversify the color tone of the LED light source module 900, there is a measure to increase the number of LED chips 95. However, arranging the LED chips 95 having different specifications in the same region surrounded by the case 97 needs to solve various problems. For example, if a certain LED chip 95 excessively absorbs the light of the other LED chip 95, the desired increase in luminance and color diversification are hindered.
  • the LED light source module 900 a space for bonding the wire 90 to the wiring layer 94 of the substrate 91 is necessary.
  • the LED light source module 900 is configured to include a plurality of LED chips 95 for the purpose of increasing the brightness, the number of bonding points of the wires 90 to the wiring layer 94 increases. For this reason, there exists a problem that size reduction of the LED light source module 900 is inhibited.
  • the present invention has been conceived under the circumstances described above, and an object thereof is to provide an LED light source module capable of achieving high brightness and diversified color tone. Moreover, this invention makes it the subject to provide the LED light source module which can achieve size reduction.
  • the LED light source module provided by the first aspect of the present invention includes a conduction support member having a main surface, and is supported by the conduction support member on the main surface side, and power is supplied via the conduction support member.
  • the first and second LED chips a case supported by the conductive support member and surrounding the first and second LED chips, and a region surrounded by the case covering the first and second LED chips
  • a wavelength of light emitted from the second LED chip is longer than a wavelength of light emitted from the first LED chip, and the second LED chip is the first LED chip.
  • a second chip substrate made of a material that transmits light from the first semiconductor layer, and a second semiconductor layer stacked on the chip substrate.
  • the second chip substrate is made of sapphire.
  • the second chip substrate is in a position overlapping the first LED chip in the direction in which the main surface faces.
  • the second LED chip emits red light.
  • the first LED chip emits blue light.
  • the first LED chip has a first chip substrate made of sapphire or GaN, and a first semiconductor layer stacked on the first chip substrate.
  • the second chip substrate is in a position overlapping the first chip substrate in the direction in which the main surface is directed.
  • the first LED chip has two first upper surface electrodes formed on the first semiconductor layer.
  • the second LED chip has two second upper surface electrodes formed on the second semiconductor layer.
  • the sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and the first resin It includes a fluorescent material that emits light having a wavelength shorter than that of light emitted from the two LED chips.
  • the fluorescent material is made of sulfide.
  • the fluorescent material emits green light.
  • a first submount substrate interposed between the first LED chip and the conduction support member, and a first submount substrate interposed between the second LED chip and the conduction support member.
  • a second submount substrate, and a direction in which the main surface of each of the first submount substrate and the second submount substrate faces is interposed between the sealing resin and the main surface of the conduction support member.
  • the coating resin is white.
  • part most spaced apart from the said main surface among the junction parts of the said coating resin and the said case is from the said main surface rather than any site
  • the conduction support member has a base material and a wiring layer formed on the base material.
  • the base material is made of metal
  • the conductive support member has an insulating layer interposed between the base material and the wiring layer.
  • the base material has a raised portion that is raised from the main surface, and the first and second LED chips are supported by the raised portion.
  • the raised portion has a top surface parallel to the main surface, and an inclined surface connecting the top surface and the main surface.
  • the second LED chip is supported on the top surface.
  • the insulating layer exposes the top surface of the raised portion.
  • the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
  • the depressed portion has a bottom surface that is parallel to the main surface.
  • the bottom surface is included in the raised portion in the thickness direction view.
  • the LED light source module provided by the second aspect of the present invention includes a conduction support member having a main surface, and is supported by the conduction support member on the main surface side, and power is supplied via the conduction support member.
  • the first and second LED chips, a case supported by the conductive support member and surrounding the first and second LED chips, and a region surrounded by the case covering the first and second LED chips A wavelength of light emitted from the second LED chip is longer than a wavelength of light emitted from the first LED chip, and the main resin of the conductive support member And a coating resin that covers at least a part of the side surface of the second LED chip that faces the direction intersecting the main surface of the second LED chip.
  • the second LED chip has a lower surface electrode, a chip substrate, a semiconductor layer and an upper surface electrode, and the coating resin covers at least a part of the chip substrate.
  • the chip substrate is made of GaAs.
  • the lower surface electrode is bonded to the conductive support member via a conductive bonding material, and the upper surface electrode is connected to the conductive support member via a wire.
  • the first LED chip emits blue light
  • the second LED chip emits red light
  • the sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and the first resin It includes a fluorescent material that emits light having a wavelength shorter than that of light emitted from the two LED chips.
  • the fluorescent material is made of sulfide.
  • the fluorescent material emits green light.
  • the coating resin is white.
  • the coating resin has a refractive index smaller than that of the sealing resin.
  • part most spaced apart from the said main surface among the junction parts of the said coating resin and the said case is from the said main surface rather than any site
  • the first LED chip comprises a pedestal portion having a top surface located in a normal direction of the main surface with respect to the main surface and the insulating layer of the substrate, It is supported on the top surface of the pedestal.
  • At least a part of the pedestal portion excluding the top surface is covered with the coating resin.
  • a submount substrate interposed between the conduction support member and the first LED chip is provided, and the pedestal portion is constituted by the submount substrate.
  • the conduction support member has a base material and a wiring layer formed on the base material.
  • the base material is made of metal
  • the conductive support member has an insulating layer interposed between the base material and the wiring layer.
  • the base material has a raised portion that is raised from the main surface, and the pedestal portion is constituted by the raised portion.
  • the raised portion has the top surface parallel to the main surface and an inclined surface connecting the top surface and the main surface.
  • the insulating layer exposes the top surface of the raised portion.
  • the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
  • the depressed portion has a bottom surface that is parallel to the main surface.
  • the bottom surface is included in the raised portion in the thickness direction view.
  • the LED light source module provided by the third aspect of the present invention includes a conduction support member having a main surface, and first and first powers supported by the main surface and supplied with power via the conduction support member.
  • Two first LED chips wherein the first LED chip has a first lower surface electrode facing the main surface and a first upper surface electrode facing the first lower surface electrode.
  • the second LED chip has a second upper surface electrode facing the same side as the first upper surface electrode of the first LED, and the first upper surface electrode of the first LED chip and the second LED A wire connecting the second upper surface electrode of the chip is provided.
  • the conduction support member has a base material and a wiring layer formed on the base material.
  • the base material is made of metal
  • the conductive support member has an insulating layer interposed between the base material and the wiring layer.
  • the second LED chip has a second lower surface electrode facing the same side as the first lower surface electrode of the first LED chip.
  • the second LED chip has an additional second upper surface electrode facing the same side as the second upper surface electrode.
  • the battery pack further includes a third LED chip supported on the main surface and supplied with electric power via the conduction support member.
  • An additional wire is provided to connect the third upper surface electrode of the LED chip.
  • a submount substrate interposed between the second LED chip and the conduction support member is provided.
  • a sealing resin that covers the first and second LED chips and includes a fluorescent material is further provided.
  • the second LED chip emits blue light.
  • the first LED chip emits red light.
  • the fluorescent material emits green light when excited by blue light.
  • the fluorescent material is made of sulfide.
  • a coating resin that covers at least a part of an inner region that is a region surrounded by the reflection surface of the conduction support member and at least a part of a side surface of the first LED.
  • the coating resin covers portions of the wiring layer exposed from the first and second LED chips in the internal region.
  • the coating resin is white.
  • part most spaced apart from the said main surface of the said base material among the junction parts of the said coating resin and the said case is rather than any site
  • the said base material has the protruding part which protruded rather than the said main surface, and while the said insulating layer covers the said main surface of the said base material, of the said protruding part At least a portion is exposed, and the second LED chip is supported by the raised portion.
  • the raised portion has a top surface parallel to the main surface and an inclined surface connecting the top surface and the main surface.
  • the insulating layer exposes the top surface of the raised portion.
  • the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
  • the depressed portion has a bottom surface that is parallel to the main surface.
  • the bottom surface is included in the raised portion in the thickness direction view.
  • FIG. 3 is a cross-sectional view of a principal part taken along line III-III in FIG. 2.
  • It is a principal part expanded sectional view which shows the LED light source module of FIG. It is a principal part expanded sectional view which shows the LED light source module of FIG.
  • FIG. 18 is an essential part cross-sectional view along the line XVIII-XVIII in FIG. 17. It is a principal part expanded sectional view which shows the LED light source module of FIG. It is a principal part expanded sectional view which shows the LED light source module of FIG. It is principal part sectional drawing which shows the LED light source module based on 7th embodiment of this invention. It is principal part sectional drawing which shows the LED light source module based on 8th embodiment of this invention. It is a principal part expanded sectional view which shows the LED light source module of FIG. It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG.
  • FIG. 33 is a main part sectional view taken along the line XXXIII-XXXIII in FIG. 32;
  • FIG. 32 is an enlarged cross-sectional view of a main part showing the LED light source module of FIG. 31.
  • FIG. 32 is an enlarged cross-sectional view of a main part showing the LED light source module of FIG. It is principal part sectional drawing which shows the LED light source module based on 12th embodiment of this invention.
  • It is a principal part expanded sectional view which shows the LED light source module of FIG.
  • It is principal part sectional drawing which shows the LED light source module based on 13th embodiment of this invention.
  • It is a principal part expanded sectional view which shows the LED light source module of FIG.
  • the LED light source module 101 of this embodiment includes a substrate 200, a first LED chip 310, a second LED chip 320, a coating resin 410, a sealing resin 420, a case 500, a plurality of single function elements 710, and a connector 790. .
  • the LED light source module 101 is configured as an elongated bar light source by arranging a plurality of first LED chips 310 and a plurality of second LED chips 320 on an elongated substrate 200.
  • Such an LED light source module is used to emit planar light from the light guide plate by being disposed at a position facing the side surface of the flat light guide plate. This planar light is used as a backlight of a liquid crystal display device, for example. With the configuration described later, the LED light source module 101 emits white light.
  • FIG. 1 is a plan view of the LED light source module 101
  • FIG. 2 is an enlarged plan view of a main part
  • FIG. 3 is a cross-sectional view in the zx plane along the line III-III in FIG. 4 is an enlarged cross-sectional view of the main part mainly showing the first LED chip 310
  • FIG. 5 is an enlarged cross-sectional view of the main part mainly showing the second LED chip 320.
  • the coating resin 410 and the sealing resin 420 are omitted for convenience of understanding.
  • the substrate 200 as a whole has an elongated shape extending long in the x direction.
  • a plurality of cases 500 are arranged along the longitudinal direction.
  • each case 500 has the same shape, and the configuration inside the case 500 described later is also the same.
  • each single function element 710 is, for example, a Zener diode or a chip resistor.
  • the single function element 710 functions to prevent an excessive reverse voltage from being applied to the first LED chip 310 or the second LED chip 320, for example.
  • the single function element 710 is provided to adjust a difference in operating voltage between a first LED chip 310 and a second LED chip 320 described later.
  • the connector 790 is used to make an electrical connection when the LED light source module 101 is incorporated into a liquid crystal display device, for example.
  • the substrate 200 includes a base 210, an insulating layer 230, a wiring layer 240, and a resist layer 260.
  • the substrate 210 is a substantially strip-shaped metal plate that extends long in the x direction, and is made of, for example, Al, Cu, Fe, or the like.
  • Al is selected as the material of the substrate 210
  • the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm.
  • the substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
  • the insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 .
  • the thickness of the insulating layer 230 is, for example, about 100 ⁇ m.
  • the wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au.
  • the wiring layer 240 is formed on the insulating layer 230. In the region outside the case 500, the wiring layer 240 is covered with a resist layer 260.
  • the resist layer 260 is, for example, white.
  • the case 500 is formed on the substrate 200 so as to surround the first LED chip 310 and the second LED chip 320, and is made of, for example, a white resin, and more specifically, for example, of a white epoxy resin.
  • the case 500 has a reflective surface 501.
  • the reflection surface 501 is inclined with respect to the z direction, and reflects light emitted from the first LED chip 310 and the second LED chip 320 in the x direction and the y direction to emit light upward in the z direction. It fulfills the function to be directed.
  • the first LED chip 310 and the second LED chip 320 are arranged in an area surrounded by the case 500.
  • the first LED chip 310 has a first upper surface electrode 312 and a first upper surface electrode 313 as shown in FIG.
  • the first upper surface electrode 312 and the first upper surface electrode 313 are formed of, for example, an Au plating layer, and one of them functions as a so-called n-type electrode and the other functions as a so-called p-type electrode.
  • the first LED chip 310 includes a first semiconductor layer 315 positioned immediately below the first upper surface electrode 312 and the first upper surface electrode 313, and a first chip substrate 314 on which the first semiconductor layer 315 is formed.
  • the first semiconductor layer 315 is made of a GaN-based semiconductor, for example.
  • the first chip substrate 314 is made of a material that transmits light from the second LED chip 320 described later, and is made of, for example, sapphire or GaN. With such a configuration, the first LED chip 310 emits blue light.
  • the blue light referred to in the present invention has a wavelength range of, for example, about 440 nm to 460 nm.
  • One end of a wire 390 is bonded to each of the first upper surface electrode 312 and the first upper surface electrode 313. The other end of each wire 390 is bonded to an appropriate position on the wiring layer 240.
  • a first submount substrate 301 is provided between the substrate 200 and the first LED chip 310.
  • the first submount substrate 301 has a top surface 301a.
  • the top surface 301 a is parallel to the main surface 211 and supports the first LED chip 310.
  • the first submount substrate 301 is made of, for example, Si and has a thickness of, for example, about 300 ⁇ m.
  • the top surface 301a is coated with a metal such as Al.
  • the first LED chip 310 is indirectly supported on the main surface 211 of the base 210 via the first submount substrate 301.
  • the first submount substrate 301 and the wiring layer 240 are bonded via a metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, Ag.
  • the first LED chip 310 and the first submount substrate 301 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
  • the second LED chip 320 has a second chip substrate 324, a second semiconductor layer 325, a second upper surface electrode 322, and a second upper surface electrode 323.
  • the second chip substrate 324 is made of, for example, sapphire and has a thickness of, for example, about 180 to 250 ⁇ m.
  • the second semiconductor layer 325 is stacked on the upper surface of the second chip substrate 324 in the figure, and is made of, for example, an AlGaInP-based semiconductor material or a GaAs-based semiconductor material.
  • the thickness of the second semiconductor layer 325 is, for example, about 0.5 ⁇ m to 2.0 ⁇ m.
  • the second upper surface electrode 322 and the second upper surface electrode 323 are provided on the upper surface of the second semiconductor layer 325 in the drawing, and are formed of, for example, an Au plating layer.
  • One of the second upper surface electrode 322 and the second upper surface electrode 323 functions as an n-type electrode, and the other functions as a p-type electrode.
  • the second LED chip 320 emits red light.
  • the red light has a wavelength range of, for example, about 600 nm to 670 nm.
  • One end of a wire 390 is bonded to each of the second upper surface electrode 322 and the second upper surface electrode 323. The other end of each wire 390 is bonded to an appropriate position on the wiring layer 240.
  • the second semiconductor layer 325 is grown and formed on a temporary substrate made of, for example, GaAs. Then, the second semiconductor layer 325 is replaced from the temporary substrate to the second chip substrate 324, whereby the second LED chip 320 is obtained.
  • the second chip substrate 324 made of sapphire transmits the blue light from the first LED chip 310.
  • a second submount substrate 302 is provided between the substrate 200 and the second LED chip 320.
  • the second submount substrate 302 has a top surface 302a.
  • the top surface 302a is parallel to the main surface 211 and supports the second LED chip 320.
  • the second submount substrate 302 is made of, for example, Si and has a thickness of, for example, about 300 ⁇ m.
  • the top surface 302a is coated with a metal such as Al.
  • the second LED chip 320 is indirectly supported on the main surface 211 of the base 210 via the second submount substrate 302.
  • the second submount substrate 302 and the wiring layer 240 are bonded via a metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, Ag.
  • the second LED chip 320 and the second submount substrate 302 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
  • the coating resin 410 covers the area surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320.
  • the material of the coating resin 410 is not particularly limited, but in the present embodiment, it is made of a white resin such as a silicone resin mixed with titanium oxide.
  • the coating resin 410 covers at least a part of the side surface of the first submount substrate 301.
  • This side surface is an example of a surface that faces a direction that intersects the direction (z direction) in which the main surface 211 faces, and in the present embodiment, a direction that is perpendicular to the z direction (direction included in the xy plane). It is suitable.
  • the side surface of the first submount substrate 301 is preferably partially or entirely covered with a coating resin.
  • the top surface 301 a of the first submount substrate 301 is preferably exposed from the coating resin 410.
  • the coating resin 410 covers at least a part of the side surface of the second submount substrate 302.
  • This side surface is an example of a surface that faces a direction that intersects the direction (z direction) in which the main surface 211 faces, and in the present embodiment, a direction that is perpendicular to the z direction (direction included in the xy plane). It is suitable.
  • the side surface of the second submount substrate 302 is preferably partially or entirely covered with the coating resin 410.
  • the top surface 302 a of the second submount substrate 302 is preferably exposed from the coating resin 410.
  • the outer edge of the coating resin 410 is in contact with the reflection surface 501 of the case 500.
  • the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 in the z-direction upward is the main portion of any portion of the first LED chip 310 and the second LED chip 320.
  • the surface 211 is spaced upward in the z direction. That is, the distance H0 between the main surface 211 and the portion of the joint portion between the coating resin 410 and the case 500 that is farthest upward in the z direction from the main surface 211 is farthest from the main surface 211 of the first LED chip 310.
  • the distance H1 between the part and the main surface 211 and the distance H2 between the part of the second LED chip 320 farthest from the main surface 211 and the main surface 211 are larger.
  • the coating resin 410 has a reflective surface 411.
  • the reflective surface 411 is gently inclined so as to move away from the base material 210 in the z direction from the vicinity of the upper end of each side surface of the first submount substrate 301 and the second submount substrate 302 toward the reflective surface 501 of the case 500. .
  • the sealing resin 420 covers the first LED chip 310 and the second LED chip 320 in the region surrounded by the case 500.
  • the sealing resin 420 is made of a material in which a fluorescent material is mixed in, for example, a transparent epoxy resin or silicone resin. This fluorescent material emits green light by being excited by blue light from the first LED chip 310, for example.
  • the green light referred to in the present invention has a wavelength range of, for example, about 500 nm to 565 nm.
  • the fluorescent material contained in the sealing resin 420 is a sulfide-based fluorescent material.
  • the sulfide-based fluorescent material is one or more selected from the group consisting of calcium sulfide (CaS), zinc sulfide (ZnS), strontium sulfide (SrS), strontium thiogallate (SrGa2S4), and calcium thiogallate (CaGa2S4). Of sulfides.
  • the sulfide-based fluorescent material constituting the phosphor is a material doped with at least one element of Eu, Tb, Sm, Pr, Dy, and Tm.
  • the fluorescent material is, for example, strontium thiogallate doped with europium (SrGa 2 S 4 : Eu) or calcium thiogallate doped with europium (CaGa 2 S 4 : Eu).
  • the element doped in the fluorescent material emitting green light is not limited to Eu, and may be any of Tb, Sm, Pr, Dy, and Tm.
  • light traveling from the first LED chip 310 toward the second LED chip 320 substantially along the xy plane passes through the second chip substrate 324 of the second LED chip 320. It is possible to penetrate. For this reason, more light from the first LED chip 310 can be emitted, and the LED light source module 101 can have higher luminance or more diverse colors.
  • the second chip substrate 324 occupies most of the second LED chip 320.
  • sapphire which is the material of the second chip substrate 324, is particularly easy to transmit blue light from the first LED chip 310. Therefore, it is reasonable to suppress the blue light from the first LED chip 310 from being absorbed by the second chip substrate 324.
  • the second chip substrate 324 is located at the position overlapping the first LED chip 310 in the z direction, the light traveling along the xy plane from the first LED chip 310 can be suitably transmitted.
  • the first chip substrate 314 of the first LED chip 310 can transmit the red light from the second LED chip 320. Therefore, more light from the second LED chip 320 can be emitted.
  • the sealing resin 420 emits green light when excited by light from the first LED chip 310.
  • the second chip substrate 324 of the second LED chip 320 can transmit this green light. This is advantageous for making the white light from the LED light source module 101 have a desired hue.
  • the first submount substrate 301 and the second submount substrate 302 are covered with the coating resin 410.
  • the first submount substrate 301 and the second submount substrate 302 are made of Si that easily absorbs visible light.
  • the first LED chip 310 and the second LED chip are formed by the first submount substrate 301 and the second submount substrate 302. 320 or the light from the sealing resin 420 can be prevented from being absorbed.
  • the fact that the top surface 301a of the first submount substrate 301 and the top surface 302a of the second submount substrate 302 are coated with Al indicates that the first LED chip 310, the second LED chip 320, or the sealing. There is an advantage that absorption of light from the stop resin 420 can be prevented and reflected.
  • the sealing resin 420 includes a fluorescent material made of sulfide. While such a sulfide has good characteristics for emitting vivid green light, there is a concern that many metals are sulfided.
  • the wiring layer 240 that can undergo sulfuration is covered with the coating resin 410 and is isolated from the sealing resin 420. For this reason, the wiring layer 240 is very unlikely to be subjected to sulfurization.
  • the covering resin 410 covers at least a part of the reflection surface 501 of the case 500.
  • the coating resin 410 is configured to cover most of the reflective surface 501 of the case 500.
  • blue light from the first LED chip 310, red light from the second LED chip 320, and green light from the sealing resin 420 can be prevented from reaching the case 500.
  • the epoxy resin suitable as the material of the case 500 is more significantly deteriorated by light than the silicone resin suitable as the material of the coating resin 410. According to this embodiment, it is possible to suppress the case 500 from being deteriorated by light, and the LED light source module 101 can appropriately emit light over a longer period.
  • FIG. 6 and 7 show an LED light source module according to the second embodiment of the present invention.
  • the LED light source module 102 of the present embodiment is different from the above-described embodiment in the configuration of the substrate 200.
  • the substrate 200 includes a base 210, a plating layer 220, an insulating layer 230, and a wiring layer 240.
  • the substrate 210 is a long rectangular metal plate that extends in the x direction and the y direction and extends in the x direction, for example, and is made of, for example, Al, Cu, Fe, or the like.
  • Al is selected as the material of the substrate 210
  • the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm.
  • the substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
  • a raised portion 212 and a depressed portion 216 are formed on the substrate 210.
  • the raised portion 212 is a portion raised above the main surface 211 in the z direction, and has a top surface 213 and an inclined surface 214 in the present embodiment.
  • the top surface 213 is the surface of the protruding portion 212 that protrudes most upward in the z direction, and is parallel to the main surface 211.
  • the top surface 213 has a rectangular shape.
  • the inclined surface 214 is connected to the main surface 211 and the top surface 213, and is inclined with respect to the xy plane.
  • the height of the raised portion 212 from the main surface 211 is, for example, 150 to 200 ⁇ m.
  • the depressed portion 216 is a portion that is recessed above the back surface 215 in the z direction, and overlaps the raised portion 212 when viewed in the z direction.
  • the depressed portion 216 has a bottom surface 217.
  • the bottom surface 217 is parallel to the back surface 215 and has a rectangular shape in the present embodiment.
  • the bottom surface 217 is included in the raised portion 212.
  • the bottom surface 217 and the top surface 213 have their outer edges almost overlapping each other when viewed in the z direction, or the outer edge of the bottom surface 217 is located slightly inside the outer edge of the top surface 213.
  • the depression depth from the back surface 215 of the depression 216 is, for example, 150 to 200 ⁇ m.
  • the plated layer 220 covers the top surface 213 of the raised portion 212 and is made of a metal such as Cu, Ni, Pd, or Au. In the present embodiment, the plating layer 220 is laminated with Ni, Pd, and Au.
  • the insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 .
  • An opening 231 is formed in the insulating layer 230.
  • the opening 231 is provided to expose at least a part of the raised portion 212, and in the present embodiment, the top surface 213 of the raised portion 212 is exposed.
  • the inclined surface 214 of the raised portion 212 is covered with the insulating layer 230.
  • the thickness of the insulating layer 230 is, for example, about 100 ⁇ m.
  • the wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au.
  • the wiring layer 240 is formed on the insulating layer 230.
  • the wiring layer 240 is formed on a flat portion of the insulating layer 230 that covers the main surface 211.
  • the wiring layer 240 has a base layer 251 and a plating layer 252.
  • the underlayer 251 is formed on the insulating layer 230 and is a layer to which, for example, a Cu foil is attached. Note that the base layer 251 may be formed by plating.
  • the plating layer 252 is formed on the base layer 251, and Ni, Pd, and Au are laminated similarly to the plating layer 220. As will be described later, in the present embodiment, the plating layer 252 of the wiring layer 240 and the plating layer 220 of the substrate 200 are collectively formed by the same process.
  • the first submount substrate 301 and the second submount substrate 302 are both supported by the top surface 213 of the raised portion 212 via the plating layer 220.
  • the first submount substrate 301 and the second submount substrate 302 and the plating layer 220 are bonded together by a metal bonding layer 341.
  • One wire 390 connected to the first LED chip 310 is bonded to an appropriate position (not shown) of the wiring layer 240 located in front of or behind the y direction in FIG.
  • one wire 390 connected to the second LED chip 320 is bonded to an appropriate position (not shown) of the wiring layer 240 located in front of or behind the y direction in FIG.
  • a metal plate 210 ′ is prepared as shown in FIG.
  • the metal plate 210 ′ is made of, for example, Al, Cu, Fe or the like.
  • Al is selected as the material of the metal plate 210 ′
  • the thickness of the metal plate 210 ′ is, for example, about 1.0 to 1.5 mm.
  • the metal plate 210 ′ has a main surface 211 ′ and a back surface 215 ′ that face in opposite directions in the z direction.
  • an insulating layer 230 ′ is formed so as to cover the main surface 211 ′.
  • the insulating layer 230 ′ is made of an insulating resin or an insulating material such as SiO 2 .
  • the thickness of the insulating layer 230 ′ is, for example, about 100 ⁇ m.
  • a base layer 251 ′ is formed so as to cover the insulating layer 230 ′.
  • the underlayer 251 ′ is formed, for example, by attaching a Cu foil on the insulating layer 230 ′.
  • the base layer 251 ' is patterned by using, for example, etching to form the base layer 251 as shown in FIG.
  • the base layer 251 may be formed by attaching a Cu foil that has been previously patterned to the insulating layer 230 ′.
  • the metal plate 210 ′ is processed using the molds 610 and 620.
  • the mold 610 has a rectangular top surface.
  • the mold 620 has a rectangular recess 621.
  • the recess 621 is slightly larger than the upper surface of the mold 610 when viewed in the z direction.
  • a metal mold 610 is disposed on the back surface 215 ′ side of the metal plate 210 ′, and a metal mold 620 is disposed on the main surface 211 ′ side of the metal plate 210 ′. Then, the upper surface of the mold 610 is fitted into the metal plate 210 ′ by bringing the mold 610 and the mold 620 closer to each other. Thereby, the base material 210 which has the protruding part 212 and the depression part 216 is obtained. A portion where the upper surface of the mold 610 is in contact becomes a bottom surface 217 of the depressed portion 216. Further, the surface of the portion that has entered the recess 621 of the mold 620 corresponding to the mold 610 becomes the top surface 213.
  • the base layer 251 is in contact with a position where the concave portion 621 is avoided in the mold 620 and is not deformed.
  • the insulating layer 230 ′ is deformed into a shape along the raised portion 212.
  • the insulating layer 230 is formed as shown in FIG.
  • the process of removing a part of the insulating layer 230 ′ is performed using, for example, a squeegee 630.
  • the lower end edge of the squeegee 630 extends long in parallel to the y direction.
  • the squeegee 630 is moved in the x direction while the lower edge of the squeegee 630 is located at the same level as or slightly below the top surface 213 in the z direction.
  • the portion of the insulating layer 230 ′ located above the top surface 213 in the z direction is removed by the squeegee 630.
  • the insulating layer 230 having the opening 231 exposing only the top surface 213 is formed.
  • the base layer 251 is located sufficiently below the top surface 213 in the z direction, and thus does not contact the squeegee 630.
  • a plating layer 220 and a plating layer 252 are formed.
  • the plated layer 220 and the plated layer 252 are formed by, for example, electrolytic plating. Therefore, the plating layer 220 and the base layer 251 made of Ni, Pd, Au are formed so as to cover the top surface 213 and the base layer 251 of the base material 210, which is a conductor, and is not formed on the insulating layer 230. .
  • the substrate 200 including the base 210, the plating layer 220, the insulating layer 230, and the wiring layer 240 is obtained.
  • the case 500 is formed, the first submount substrate 301 and the first LED chip 310 are mounted, the second submount substrate 302 and the second LED chip 320 are mounted, the coating resin 410 is formed, the wire 390 is bonded, The LED light source module 102 is obtained through the formation of the sealing resin 420.
  • the LED light source module 102 can be increased in brightness and color tone. Further, the first submount substrate 301 and the second submount substrate 302 are supported by the raised portions 212 without the insulating layer 230 interposed therebetween. Thereby, the heat transfer from the first LED chip 310 and the second LED chip 320 is not hindered by the insulating layer 230. Therefore, heat radiation from the first LED chip 310 and the second LED chip 320 can be promoted, and the brightness of the LED light source module 102 can be increased.
  • the wiring layer 240 is formed on the insulating layer 230 and is disposed at a position avoiding the raised portion 212 (base material 210). For this reason, it can avoid that the base material 210 and the wiring layer 240 which consist of a metal are unjustly conducted.
  • the top surface 213 of the raised portion 212 is exposed from the insulating layer 230, and portions other than the top surface 213 are covered with the insulating layer 230.
  • substrate 302, and the 2nd LED chip 320 on the top surface 213 parallel to the main surface 211 can be performed easily.
  • the top surface 213 but also the inclined portion 214 may be exposed from the insulating layer.
  • the raised portion 212 can be easily formed by pressing the mold 610 from the back surface 215 ′ side of the metal plate 210 ′ as shown in FIG. There is an advantage that you can.
  • FIG. 13 shows an LED light source module according to the third embodiment of the present invention.
  • the LED light source module 103 of this embodiment does not include the first submount substrate 301 and the second submount substrate 302. Therefore, the first LED chip 310 and the second LED chip 320 are bonded to the plating layer 220 via the metal bonding layer 341, respectively.
  • the coating resin 410 covers the wiring layer 240 and the insulating layer 230, while exposing the plating layer 220 formed on the top surface 213 of the raised portion 212. For this reason, the plating layer 220 is in contact with the sealing resin 420.
  • the plating layer 220 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the substrate 210 side.
  • the Ni layer is formed directly on the top surface 213 and has a thickness of about 5 ⁇ m, for example.
  • the Pd layer is formed on the Ni layer and has a thickness of about 0.1 ⁇ m, for example.
  • the Au layer is formed on the Pd layer and has a thickness of about 0.1 ⁇ m, for example.
  • the plating layer 252 of the wiring layer 240 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the base layer 251 side. The configurations of these Ni layer, Pd layer, and Au layer are the same as those of the plating layer 220.
  • the LED light source module 103 can be increased in brightness and color tone.
  • the plating layer 220 is in contact with the sealing resin 420.
  • the plating layer 220 is an Au layer whose surface layer has a relatively high resistance to sulfidation. Therefore, the plating layer 220 can be prevented from being sulfided by the fluorescent material of the sealing resin 420.
  • FIG. 14 shows an LED light source module according to the fourth embodiment of the present invention.
  • the LED light source module 104 of this embodiment is mainly different from the LED light source module 101 described above in that the coating resin 410 is not provided.
  • the coating resin 410 is not provided, the wiring layer 240 and the insulating layer 230 are in contact with the sealing resin 420.
  • the wiring layer 240 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the substrate 210 side.
  • the Ni layer is formed directly on the top surface 213 and has a thickness of about 5 ⁇ m, for example.
  • the Pd layer is formed on the Ni layer and has a thickness of about 0.1 ⁇ m, for example.
  • the Au layer is formed on the Pd layer and has a thickness of about 0.1 ⁇ m, for example. Further, it is preferable to provide a Cu layer between the Ni layer and the insulating layer 230.
  • the LED light source module 104 can be increased in brightness and color tone. Even in the configuration without the coating resin 410, the surface layers of the wiring layer 240 and the plating layer 220 are Au layers. Thereby, the wiring layer 240 and the plating layer 220 can be prevented from being sulfided by the sealing resin 420.
  • FIG. 15 shows an LED light source module according to the fifth embodiment of the present invention.
  • the LED light source module 105 of this embodiment is used as a point light source of an electronic device by being configured as a relatively small module.
  • the LED light source modules 101 to 104 described above are different from those configured as bar-shaped light sources extending in the x direction.
  • the lead support 270 and the lead 280 constitute a conduction support member referred to in the present invention.
  • the lead 270 and the lead 280 are made of metal, for example, a Cu plate as a base material is plated with Ni, Au, or the like.
  • the lead 270 has a main surface 271 and a terminal portion 275.
  • the main surface 271 faces upward in the z direction, and supports the second LED chip 320 via the second submount substrate 302.
  • the terminal portion 275 is used for mounting the LED light source module 105 on a circuit board (not shown).
  • the lead 280 has a main surface 281 and a terminal portion 285.
  • the main surface 281 faces upward in the z direction and supports the first LED chip 310 via the first submount substrate 301.
  • the terminal portion 285 is used for mounting the LED light source module 105 on a circuit board (not shown).
  • the case 500 covers a part of each of the lead 270 and the lead 280 and plays a role of relatively fixing them.
  • the LED light source module 105 can be increased in luminance and color tone.
  • the LED light source module 106 of this embodiment includes a substrate 200, a first LED chip 310, a second LED chip 320, a coating resin 410, a sealing resin 420, a case 500, a plurality of single function elements 710 and a connector 790. .
  • the LED light source module 106 is configured as an elongated bar light source by arranging a plurality of first LED chips 310 and a plurality of second LED chips 320 on an elongated substrate 200.
  • Such an LED light source module is used to emit planar light from the light guide plate by being disposed at a position facing the side surface of the flat light guide plate. This planar light is used as a backlight of a liquid crystal display device, for example. With the configuration described later, the LED light source module 106 emits white light.
  • FIG. 16 is a plan view of the LED light source module 106
  • FIG. 17 is an enlarged plan view of a main part.
  • 18 is a cross-sectional view in the zx plane along the line XVIII-XVIII in FIG.
  • FIG. 19 is an enlarged cross-sectional view of main parts mainly showing the first LED chip 310
  • FIG. 20 is an enlarged cross-sectional view showing main parts mainly showing the second LED chip 320.
  • the coating resin 410 and the sealing resin 420 are omitted for convenience of understanding.
  • the substrate 200 as a whole has an elongated shape extending long in the x direction.
  • a plurality of cases 500 are arranged along the longitudinal direction.
  • each case 500 has the same shape, and the configuration inside the case 500 described later is also the same.
  • each single function element 710 is, for example, a Zener diode or a chip resistor.
  • the single function element 710 functions to prevent an excessive reverse voltage from being applied to the first LED chip 310 or the second LED chip 320, for example.
  • a chip resistor is employed as the single function element 710, it is provided to adjust a difference in operating voltage between a first LED chip 310 and a second LED chip 320, which will be described later.
  • the connector 790 is used to make an electrical connection when the LED light source module 106 is incorporated into, for example, a liquid crystal display device.
  • the substrate 200 includes a base 210, an insulating layer 230, a wiring layer 240, and a resist layer 260.
  • the substrate 210 is a substantially strip-shaped metal plate that extends long in the x direction, and is made of, for example, Al, Cu, Fe, or the like.
  • Al is selected as the material of the substrate 210
  • the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm.
  • the substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
  • the insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 .
  • the thickness of the insulating layer 230 is, for example, about 100 ⁇ m.
  • the wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au.
  • the wiring layer 240 is formed on the insulating layer 230. In the region outside the case 500, the wiring layer 240 is covered with a resist layer 260.
  • the resist layer 260 is, for example, white.
  • the case 500 is formed on the substrate 200 so as to surround the first LED chip 310 and the second LED chip 320, and is made of, for example, a white resin, and more specifically, for example, of a white epoxy resin.
  • the case 500 has a reflective surface 501.
  • the reflecting surface 501 is inclined with respect to the z direction, and reflects light emitted from the first LED chip 310 and the second LED chip 320 in the x direction and the y direction to be directed upward in the z direction. Fulfills the function.
  • the first LED chip 310 and the second LED chip 320 are arranged in an area surrounded by the case 500.
  • the first LED chip 310 has an upper surface electrode 312 and an upper surface electrode 313 as shown in FIG.
  • the upper surface electrode 312 and the upper surface electrode 313 are formed of, for example, an Au plating layer, and one of them functions as a so-called n-type electrode and the other functions as a so-called p-type electrode.
  • the first LED chip 310 includes, for example, a semiconductor layer located immediately below the upper surface electrode 312 and the upper surface electrode 313 and, for example, a sapphire substrate on which the semiconductor layer is formed. This semiconductor layer is made of, for example, a GaN-based semiconductor. With such a configuration, the first LED chip 310 emits blue light.
  • the blue light referred to in the present invention has a wavelength range of, for example, about 440 nm to 460 nm.
  • One end of a wire 390 is bonded to each of the upper surface electrode 312 and the upper surface electrode 313.
  • the other end of each wire 390 is bonded to an appropriate position on the wiring layer 240.
  • a submount substrate 301 is provided between the substrate 200 and the first LED chip 310.
  • the submount substrate 301 has a top surface 301a.
  • the top surface 301 a is parallel to the main surface 211 and supports the first LED chip 310.
  • the submount substrate 301 is made of, for example, Si and has a thickness of, for example, about 300 ⁇ m.
  • the first LED chip 310 is indirectly supported on the main surface 211 of the base 210 via the submount substrate 301.
  • the submount substrate 301 and the wiring layer 240 are bonded via a metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, Ag.
  • the first LED chip 310 and the submount substrate 301 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
  • the submount substrate 301 constitutes a pedestal portion referred to in the present invention.
  • the second LED chip 320 includes a chip substrate 323, a semiconductor layer 324, a lower surface electrode 321 and an upper surface electrode 322 as shown in FIGS.
  • the chip substrate 323 is made of, for example, GaAs and has a thickness of, for example, about 180 to 250 ⁇ m.
  • the semiconductor layer 324 is stacked on the upper surface of the chip substrate 323 in the figure, and is made of, for example, a GaAs-based semiconductor material.
  • the thickness of the semiconductor layer 324 is, for example, about 0.5 ⁇ m to 2.0 ⁇ m.
  • the lower surface electrode 321 is provided on the lower surface of the chip substrate 323 in the figure, and functions as, for example, an n-type electrode.
  • the lower electrode 321 is formed of, for example, an Au plating layer.
  • the upper surface electrode 322 is provided on the upper surface of the semiconductor layer 324 in the figure and functions as, for example, a p-type electrode.
  • the upper surface electrode 322 is formed of, for example, an Au plating layer.
  • the second LED chip 320 emits red light.
  • the red light has a wavelength range of, for example, about 600 nm to 670 nm.
  • the lower surface electrode 321 is bonded to the wiring layer 240 through the metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 321 and the wiring layer 240.
  • One end of a wire 390 is bonded to the upper surface electrode 322. The other end of the wire 390 is bonded to an appropriate position on the wiring layer 240.
  • the coating resin 410 covers the area surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320.
  • the material of the coating resin 410 is not particularly limited, but in the present embodiment, it is made of a white resin such as a silicone resin mixed with titanium oxide.
  • the coating resin 410 covers most of the side surfaces of the submount substrate 301.
  • the side surface of the submount substrate 301 is preferably partially or entirely covered with the coating resin 410.
  • the top surface 301 a of the submount substrate 301 is preferably exposed from the coating resin 410.
  • the coating resin 410 covers at least a part of the side surface of the second LED chip 320.
  • This side surface is an example of a surface that faces a direction that intersects the direction (z direction) in which the main surface 211 faces, and in the present embodiment, a direction that is perpendicular to the z direction (direction included in the xy plane). It is suitable.
  • the coating resin 410 in the second LED chip 320, at least a part of the side surface of the chip substrate 323 is covered with the coating resin 410, and more specifically, almost the entire side surface of the chip substrate 323 is covered. It is covered with a coating resin 410.
  • the side surface of the semiconductor layer 324 is allowed to be covered with the coating resin 410, but the entire upper surface is preferably exposed from the coating resin 410.
  • the outer edge of the coating resin 410 is in contact with the reflection surface 501 of the case 500.
  • the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 in the z-direction upward is the main portion of any portion of the first LED chip 310 and the second LED chip 320.
  • the surface 211 is spaced upward in the z direction. That is, the distance H0 between the main surface 211 and the portion of the joint portion between the coating resin 410 and the case 500 that is farthest upward in the z direction from the main surface 211 is farthest from the main surface 211 of the first LED chip 310.
  • the distance H1 between the part and the main surface 211 and the distance H2 between the part of the second LED chip 320 farthest from the main surface 211 and the main surface 211 are larger.
  • the coating resin 410 has a reflective surface 411.
  • the reflective surface 411 is gently inclined so as to move away from the base material 210 in the z direction from the vicinity of the upper surfaces of the submount substrate 301 and the second LED chip 320 toward the reflective surface 501 of the case 500.
  • the sealing resin 420 covers the first LED chip 310 and the second LED chip 320 in the region surrounded by the case 500.
  • the sealing resin 420 is made of a material in which a fluorescent material is mixed in, for example, a transparent epoxy resin or silicone resin. This fluorescent material emits green light by being excited by blue light from the first LED chip 310, for example.
  • the green light referred to in the present invention has a wavelength range of, for example, about 500 nm to 565 nm.
  • the fluorescent material contained in the sealing resin 420 is a sulfide-based fluorescent material.
  • the sulfide-based fluorescent material is one or more selected from the group consisting of calcium sulfide (CaS), zinc sulfide (ZnS), strontium sulfide (SrS), strontium thiogallate (SrGa2S4), and calcium thiogallate (CaGa2S4). Of sulfides.
  • the sulfide-based fluorescent material constituting the phosphor is a material doped with at least one element of Eu, Tb, Sm, Pr, Dy, and Tm.
  • the fluorescent material is, for example, strontium thiogallate doped with europium (SrGa 2 S 4 : Eu) or calcium thiogallate doped with europium (CaGa 2 S 4 : Eu).
  • the element doped in the fluorescent material emitting green light is not limited to Eu, and may be any of Tb, Sm, Pr, Dy, and Tm.
  • the coating resin 410 prevents light traveling substantially along the xy plane among the light emitted from the first LED chip 310 from reaching the side surface of the second LED chip 320. Can do. For this reason, it is possible to emit more light from the first LED chip 310, and it is possible to increase the brightness or diversify the color tone of the LED light source module 106.
  • the second LED chip 320 that emits light having a wavelength longer than that of the first LED chip 310 has a characteristic of easily absorbing light from the first LED chip 310. For this reason, covering the second LED chip 320 with the coating resin 410 is suitable for suppressing light absorption.
  • the chip substrate 323 is a part that occupies most of the second LED chip 320. Further, GaAs which is a material of the chip substrate 323 is particularly easy to absorb blue light from the first LED chip 310. Covering the chip substrate 323 with the coating resin 410 is reasonable for suppressing the blue light from the first LED chip 310 from being absorbed.
  • the semiconductor layer 324 is significantly thinner than the chip substrate 323, and occupies only substantially the upper surface of the second LED chip 320. By exposing at least the upper surface of the semiconductor layer 324 from the coating resin 410, most of the red light from the second LED chip 320 can be appropriately emitted upward in the z direction.
  • the sealing resin 420 emits green light when excited by light from the first LED chip 310. This green light has a shorter wavelength than the red light from the second LED chip 320. For this reason, the green light can also be absorbed by the second LED chip 320. According to this embodiment, it is possible to suppress the green light from the sealing resin 420 from being absorbed by the coating resin 410. This is advantageous for making the white light from the LED light source module 106 have a desired hue.
  • the sealing resin 420 includes a fluorescent material made of sulfide. While such a sulfide has good characteristics for emitting vivid green light, there is a concern that many metals are sulfided.
  • the wiring layer 240 that can undergo sulfuration is covered with the coating resin 410 and is isolated from the sealing resin 420. For this reason, the wiring layer 240 is very unlikely to be subjected to sulfurization.
  • the coating resin 410 covers a part of the submount substrate 301 that supports the first LED chip 310.
  • the submount substrate 301 made of Si can absorb red light from the second LED chip 320 and green light from the sealing resin 420.
  • the coating resin 410 is suitable for suppressing the absorption of these red light and green light.
  • the coating resin 410 is intended to expose the upper surface of the submount substrate 301 while actively covering the side surface of the submount substrate 301. Thereby, it is possible to avoid the covering resin 410 from accidentally covering the first LED chip 310.
  • the covering resin 410 covers at least a part of the reflection surface 501 of the case 500.
  • the coating resin 410 is configured to cover most of the reflective surface 501 of the case 500.
  • blue light from the first LED chip 310, red light from the second LED chip 320, and green light from the sealing resin 420 can be prevented from reaching the case 500.
  • the epoxy resin suitable as the material of the case 500 is more significantly deteriorated by light than the silicone resin suitable as the material of the coating resin 410. According to the present embodiment, the case 500 can be prevented from being deteriorated by light, and the LED light source module 106 can appropriately emit light over a longer period.
  • FIG. 21 shows an LED light source module according to the seventh embodiment of the present invention.
  • an opening 231 is formed in the insulating layer 230 of the substrate 200.
  • the opening 231 has, for example, a rectangular shape as viewed in the z direction, and exposes a part of the main surface 211 of the substrate 210.
  • a plating layer 220 is formed on the exposed portion of the main surface 211.
  • the plated layer 220 is made of a metal such as Cu, Ni, Pd, or Au, and in the present embodiment, Ni, Pd, and Au are laminated.
  • the submount substrate 301 is bonded to the plating layer 220 via the metal bonding layer 341.
  • the wiring layer 240 is composed of the base layer 251 and the plating layer 252.
  • the underlayer 251 is formed directly on the insulating layer 230 and is a layer to which, for example, a Cu foil is attached.
  • the base layer 251 may be formed by plating.
  • the plating layer 252 is formed on the base layer 251.
  • Ni, Pd, and Au are laminated.
  • the plating layer 252 and the plating layer 220 described above can be formed by the same plating process.
  • the covering resin 410 of this embodiment covers the region surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320, as in the above-described embodiment.
  • the joint portion between the coating resin 410 and the case 500 has a relatively small thickness in the z direction. Therefore, the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 is at a height that overlaps the first LED chip 310 or the submount substrate 301 or the second LED chip 320 in the z direction. .
  • the LED light source module 107 can have high brightness and various color tones.
  • the submount substrate 301 is supported by the base member 210 without the insulating layer 230 interposed therebetween. Thereby, the heat from the first LED chip 310 can be transmitted to the base material 210 more efficiently.
  • the substrate 210 is made of Al having a good thermal conductivity. Thereby, the brightness of the first LED chip 310 can be increased, or the secular change can be suppressed.
  • the coating resin 410 is configured such that the height of the joint portion with the case 500 is relatively low. However, even with such a configuration, since the side surface of the second LED chip 320 and the side surface of the submount substrate 301 are covered, the coating resin 410 can contribute to high brightness and a wide variety of colors. Further, the same effect can be expected in that the wiring layer 240 is protected from sulfurization by being covered with the coating resin 410.
  • the form of the coating resin 410 is more preferably the form of the LED light source module 106, the form of the present embodiment can also be taken. In the following embodiments, any form is applicable. Yes.
  • the LED light source module 108 of the present embodiment is different from the above-described embodiment in the configuration of the substrate 200.
  • the substrate 200 includes a base 210, a plating layer 220, an insulating layer 230, and a wiring layer 240.
  • the substrate 210 is a long rectangular metal plate that extends in the x direction and the y direction and extends in the x direction, for example, and is made of, for example, Al, Cu, Fe, or the like.
  • Al is selected as the material of the substrate 210
  • the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm.
  • the substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
  • a raised portion 212 and a depressed portion 216 are formed on the substrate 210.
  • the raised portion 212 is a portion raised above the main surface 211 in the z direction, and has a top surface 213 and an inclined surface 214 in the present embodiment.
  • the top surface 213 is the surface of the protruding portion 212 that protrudes most upward in the z direction, and is parallel to the main surface 211.
  • the top surface 213 has a rectangular shape.
  • the inclined surface 214 is connected to the main surface 211 and the top surface 213, and is inclined with respect to the xy plane.
  • the height of the raised portion 212 from the main surface 211 is, for example, 150 to 200 ⁇ m.
  • the raised portion 212 constitutes a pedestal portion referred to in the present invention.
  • the depressed portion 216 is a portion that is recessed above the back surface 215 in the z direction, and overlaps the raised portion 212 when viewed in the z direction.
  • the depressed portion 216 has a bottom surface 217.
  • the bottom surface 217 is parallel to the back surface 215 and has a rectangular shape in the present embodiment.
  • the bottom surface 217 is included in the raised portion 212.
  • the bottom surface 217 and the top surface 213 have their outer edges almost overlapping each other when viewed in the z direction, or the outer edge of the bottom surface 217 is located slightly inside the outer edge of the top surface 213.
  • the depression depth from the back surface 215 of the depression 216 is, for example, 150 to 200 ⁇ m.
  • the plated layer 220 covers the top surface 213 of the raised portion 212 and is made of a metal such as Cu, Ni, Pd, or Au. In the present embodiment, the plating layer 220 is laminated with Ni, Pd, and Au.
  • the insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 .
  • An opening 231 is formed in the insulating layer 230.
  • the opening 231 is provided to expose at least a part of the raised portion 212, and in the present embodiment, the top surface 213 of the raised portion 212 is exposed.
  • the inclined surface 214 of the raised portion 212 is covered with the insulating layer 230.
  • the thickness of the insulating layer 230 is, for example, about 100 ⁇ m.
  • the wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au.
  • the wiring layer 240 is formed on the insulating layer 230.
  • the wiring layer 240 is formed on a flat portion of the insulating layer 230 that covers the main surface 211.
  • the wiring layer 240 has a base layer 251 and a plating layer 252.
  • the underlayer 251 is formed on the insulating layer 230 and is made of, for example, Cu.
  • the plating layer 252 is formed on the base layer 251, and Ni, Pd, and Au are laminated similarly to the plating layer 220.
  • the plating layer 252 of the wiring layer 240 and the plating layer 220 of the substrate 200 are collectively formed by the same process.
  • the first submount substrate 301 is supported on the top surface 213 of the raised portion 212 via the plating layer 220.
  • the first submount substrate 301 and the plating layer 220 are bonded by a metal bonding layer 341.
  • a metal plate 210 ′ is prepared as shown in FIG.
  • the metal plate 210 ′ is made of, for example, Al, Cu, Fe or the like.
  • Al is selected as the material of the metal plate 210 ′
  • the thickness of the metal plate 210 ′ is, for example, about 1.0 to 1.5 mm.
  • the metal plate 210 ′ has a main surface 211 ′ and a back surface 215 ′ that face in opposite directions in the z direction.
  • an insulating layer 230 ′ is formed so as to cover the main surface 211 ′.
  • the insulating layer 230 ′ is made of an insulating resin or an insulating material such as SiO 2 .
  • the thickness of the insulating layer 230 ′ is, for example, about 100 ⁇ m.
  • a base layer 251 ′ is formed so as to cover the insulating layer 230 ′.
  • the underlayer 251 ′ is formed, for example, by attaching a Cu foil on the insulating layer 230 ′.
  • the base layer 251 ' is patterned by using, for example, etching to form the base layer 251 as shown in FIG.
  • the base layer 251 may be formed by attaching a Cu foil that has been patterned in advance to the insulating layer 230 ′.
  • the metal plate 210 ′ is processed using the molds 610 and 620.
  • the mold 610 has a rectangular top surface.
  • the mold 620 has a rectangular recess 621.
  • the recess 621 is slightly larger than the upper surface of the mold 610 when viewed in the z direction.
  • a metal mold 610 is disposed on the back surface 215 ′ side of the metal plate 210 ′, and a metal mold 620 is disposed on the main surface 211 ′ side of the metal plate 210 ′. Then, the upper surface of the mold 610 is fitted into the metal plate 210 ′ by bringing the mold 610 and the mold 620 closer to each other. Thereby, the base material 210 which has the protruding part 212 and the depression part 216 is obtained. A portion where the upper surface of the mold 610 is in contact becomes a bottom surface 217 of the depressed portion 216. Further, the surface of the portion that has entered the recess 621 of the mold 620 corresponding to the mold 610 becomes the top surface 213.
  • the base layer 251 is in contact with a position where the concave portion 621 is avoided in the mold 620 and is not deformed.
  • the insulating layer 230 ′ is deformed into a shape along the raised portion 212.
  • the insulating layer 230 is formed as shown in FIG.
  • the process of removing a part of the insulating layer 230 ′ is performed using, for example, a squeegee 630.
  • the lower end edge of the squeegee 630 extends long in parallel to the y direction.
  • the squeegee 630 is moved in the x direction while the lower edge of the squeegee 630 is located at the same level as or slightly below the top surface 213 in the z direction.
  • the portion of the insulating layer 230 ′ located above the top surface 213 in the z direction is removed by the squeegee 630.
  • the insulating layer 230 having the opening 231 exposing only the top surface 213 is formed.
  • the base layer 251 is located sufficiently below the top surface 213 in the z direction, and thus does not contact the squeegee 630.
  • a plating layer 220 and a plating layer 252 are formed.
  • the plated layer 220 and the plated layer 252 are formed by, for example, electrolytic plating. Therefore, the plating layer 220 and the base layer 251 made of Ni, Pd, Au are formed so as to cover the top surface 213 and the base layer 251 of the base material 210, which is a conductor, and is not formed on the insulating layer 230. .
  • the substrate 200 including the base 210, the plating layer 220, the insulating layer 230, and the wiring layer 240 is obtained.
  • the LED light source module 108 is obtained.
  • the LED light source module 108 can be increased in brightness and color tone. Further, the submount substrate 301 is supported by the raised portion 212 without the insulating layer 230 interposed therebetween. Thereby, the heat transfer from the first LED chip 310 is not hindered by the insulating layer 230. Therefore, heat radiation from the first LED chip 310 can be promoted, and the brightness of the LED light source module 108 can be increased.
  • the wiring layer 240 is formed on the insulating layer 230 and is disposed at a position avoiding the raised portion 212 (base material 210). For this reason, it can avoid that the base material 210 and the wiring layer 240 which consist of a metal are unjustly conducted.
  • the top surface 213 of the raised portion 212 is exposed from the insulating layer 230, and portions other than the top surface 213 are covered with the insulating layer 230. Thereby, the operation
  • the raised portion 212 can be easily formed by pressing the mold 610 from the back surface 215 'side of the metal plate 210' as shown in FIG. There is an advantage that you can.
  • FIG. 29 shows an LED light source module according to the ninth embodiment of the present invention.
  • the LED light source module 109 of this embodiment does not include the submount substrate 301. For this reason, the first LED chip 310 is bonded to the plating layer 220 via the metal bonding layer 341.
  • the plating layer 220 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the base 210 side.
  • the Ni layer is formed directly on the top surface 213 and has a thickness of about 5 ⁇ m, for example.
  • the Pd layer is formed on the Ni layer and has a thickness of about 0.1 ⁇ m, for example.
  • the Au layer is formed on the Pd layer and has a thickness of about 0.1 ⁇ m, for example.
  • the plating layer 252 of the wiring layer 240 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the base layer 251 side. The configurations of these Ni layer, Pd layer, and Au layer are the same as those of the plating layer 220.
  • the LED light source module 109 can be increased in luminance and color tone.
  • the portion of the wiring layer 240 on which the first LED chip 310 is mounted can contact the sealing resin 420.
  • the wiring layer 240 is an Au layer whose surface layer has a relatively high resistance to sulfidation. Therefore, the wiring layer 240 can be prevented from being sulfided by the fluorescent material of the sealing resin 420.
  • FIG. 30 shows an LED light source module according to the tenth embodiment of the present invention.
  • the LED light source module 110 of this embodiment is used as a point light source of an electronic device by being configured as a relatively small module.
  • the LED light source modules 106 to 109 described above are different from those configured as bar-shaped light sources extending in the x direction.
  • the lead 270, the lead 280, the lead 291 and the lead 292 constitute a conduction support member referred to in the present invention.
  • the lead 270, the lead 280, the lead 291 and the lead 292 are made of metal, for example, a Cu plate as a base material is plated with Ni, Au or the like.
  • the lead 270 has a main surface 271 and a terminal portion 275.
  • the main surface 271 faces upward in the z direction.
  • the terminal portion 275 is used for mounting the LED light source module 110 on a circuit board (not shown).
  • the lead 292 has a main surface 292a.
  • the main surface 292a faces upward in the z direction and supports the second LED chip 320.
  • the other end of the wire 390 whose one end is bonded to the second LED chip 320 is bonded to the main surface 2271 of the lead 270.
  • the lead 292 has a terminal portion that protrudes from the case 500 to a portion not shown.
  • the lead 280 has a main surface 281 and a terminal portion 285.
  • the main surface 281 faces upward in the z direction and supports the first LED chip 310.
  • the terminal portion 285 is used for mounting the LED light source module 110 on a circuit board (not shown).
  • the lead 291 has a main surface 291a.
  • the main surface 291a faces upward in the z direction, and the other end of the wire 390 whose one end is bonded to the first LED chip 310 is bonded.
  • the case 500 covers a part of each of the lead 270, the lead 280, the lead 291 and the lead 292, and plays a role of relatively fixing them.
  • the LED light source module 111 of this embodiment includes a substrate 200, a first LED chip 310, a second LED chip 320, wires 391, a coating resin 410, a sealing resin 420, and a case 500.
  • the LED light source module 111 is configured as an elongated bar-shaped light source by arranging a plurality of first LED chips 310 and a plurality of second LED chips 320 on an elongated substrate 200.
  • Such an LED light source module is used to emit planar light from the light guide plate by being disposed at a position facing the side surface of the flat light guide plate. This planar light is used as a backlight of a liquid crystal display device, for example.
  • the coating resin 410 and the sealing resin 420 are omitted for convenience of understanding.
  • the substrate 200 as a whole has an elongated shape extending in the x direction.
  • a plurality of cases 500 are arranged along the longitudinal direction.
  • each case 500 has the same shape, and the configuration inside the case 500 described later is also the same.
  • the width direction dimension of the portion near the one end of the substrate 200 in the x direction is partially large.
  • a connector 790 is mounted on this portion. The connector 790 is used to make an electrical connection when the LED light source module 111 is incorporated into, for example, a liquid crystal display device.
  • the substrate 200 includes a base 210, an insulating layer 230, a wiring layer 240, and a resist layer 260.
  • the substrate 210 is a substantially strip-shaped metal plate that extends long in the x direction, and is made of, for example, Al, Cu, Fe, or the like.
  • Al is selected as the material of the substrate 210
  • the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm.
  • the substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
  • the insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 .
  • the thickness of the insulating layer 230 is, for example, about 100 ⁇ m.
  • the wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au.
  • the wiring layer 240 is formed on the insulating layer 230. In the present embodiment, the wiring layer 240 is made of only Cu, for example.
  • the wiring layer 240 has a first pad 241 and a second pad 242. The first pad 241 and the second pad 242 are spaced apart in the x direction. In the region outside the case 500, the wiring layer 240 is covered with a resist layer 260.
  • the resist layer 260 is, for example, white.
  • the case 500 is formed on the substrate 200 so as to surround the first LED chip 310 and the second LED chip 320, and is made of, for example, white resin.
  • the case 500 has a reflective surface 501.
  • the reflecting surface 501 is inclined with respect to the z direction, and reflects light emitted from the first LED chip 310 and the second LED chip 320 in the x direction and the y direction to be directed upward in the z direction. Fulfills the function.
  • one first LED chip 310 and one second LED chip 320 are arranged in an area surrounded by the case 500.
  • the first LED chip 310 has a lower surface electrode 311 and an upper surface electrode 312.
  • the lower surface electrode 311 faces downward in the z direction, which is the direction facing the main surface 211 of the substrate 200, and is made of, for example, an Au plating layer.
  • the upper surface electrode 312 faces upward in the z direction opposite to the lower surface electrode 311 and is made of, for example, an Au plating layer.
  • the lower surface electrode 311 corresponds to the first lower surface electrode referred to in the present invention
  • the upper surface electrode 312 corresponds to the first upper surface electrode referred to in the present invention.
  • the first LED chip 310 has, for example, a Si substrate positioned immediately above the lower surface electrode 311 and a semiconductor layer interposed between the Si substrate and the upper surface electrode 312.
  • This semiconductor layer is made of, for example, a GaAs-based semiconductor.
  • the lower surface electrode 311 functions as an n-type electrode
  • the upper surface electrode 312 functions as a p-type electrode. With such a configuration, the first LED chip 310 emits red light mainly upward in the z direction.
  • the lower surface electrode 311 is bonded to the first pad 241 of the wiring layer 240 via the metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 311 and the first pad 241.
  • the upper surface electrode 312 is provided at a position biased in plan view, and is biased toward the second LED chip 320 in the present embodiment.
  • the second LED chip 320 has a lower surface electrode 321 and an upper surface electrode 322.
  • the lower surface electrode 321 faces downward in the z direction, which is the direction facing the main surface 211 of the substrate 200, and is made of, for example, an Au plating layer.
  • the upper surface electrode 322 faces upward in the z direction opposite to the lower surface electrode 321 and is made of, for example, an Au plating layer.
  • the lower surface electrode 321 corresponds to the second lower surface electrode referred to in the present invention
  • the upper surface electrode 322 corresponds to the second upper surface electrode referred to in the present invention.
  • the second LED chip 320 has, for example, a Si substrate located immediately above the lower surface electrode 321 and a semiconductor layer interposed between the Si substrate and the upper surface electrode 322.
  • This semiconductor layer is made of, for example, a GaN-based semiconductor.
  • the lower surface electrode 321 functions as a p-type electrode
  • the upper surface electrode 322 functions as an n-type electrode. With such a configuration, the second LED chip 320 emits blue light mainly upward in the z direction.
  • the lower surface electrode 321 is bonded to the second pad 242 of the wiring layer 240 through the metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 321 and the second pad 242.
  • the upper surface electrode 322 is provided at a position that is biased in plan view. In the present embodiment, the top electrode 322 is biased toward the first LED chip 310 as shown in FIG.
  • the wire 391 connects the upper surface electrode 312 of the first LED chip 310 and the upper surface electrode 322 of the second LED chip 320, and is made of, for example, Au. More specifically, the first bonding portion of the wire 391 is formed on the upper surface electrode 322 of the second LED chip 320. On the other hand, the second bonding portion of the wire 391 is pressure-bonded to the upper surface electrode 312 of the first LED chip 310 against a previously formed Au bump. With such a configuration, the first LED chip 310 and the second LED chip 320 are connected in series via the wire 391.
  • the coating resin 410 covers the area surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320. Most or all of the side surfaces of the first LED chip 310 and the second LED chip 320 are covered with the coating resin 410.
  • the material of the coating resin 410 is not particularly limited, but in the present embodiment, it is made of a white resin such as a silicone resin mixed with titanium oxide.
  • the outer edge of the coating resin 410 is in contact with the reflection surface 501 of the case 500.
  • the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 in the z-direction upward is the main portion of any portion of the first LED chip 310 and the second LED chip 320.
  • the surface 211 is spaced upward in the z direction.
  • the coating resin 410 has a reflective surface 411.
  • the reflective surface 411 is gently inclined so as to move away from the base material 210 in the z direction from the vicinity of the upper surfaces of the first LED chip 310 and the second LED chip 320 toward the reflective surface 501 of the case 500.
  • the sealing resin 420 covers the first LED chip 310 and the second LED chip 320 in the region surrounded by the case 500.
  • the sealing resin 420 is made of a material in which a fluorescent material is mixed in, for example, a transparent epoxy resin or silicone resin. This fluorescent material emits green light when excited by blue light from the second LED chip 320, for example.
  • the fluorescent material contained in the sealing resin 420 is a sulfide-based fluorescent material.
  • the sulfide-based fluorescent material is one or more selected from the group consisting of calcium sulfide (CaS), zinc sulfide (ZnS), strontium sulfide (SrS), strontium thiogallate (SrGa2S4), and calcium thiogallate (CaGa2S4). Of sulfides.
  • the sulfide-based fluorescent material constituting the phosphor is a material doped with at least one element of Eu, Tb, Sm, Pr, Dy, and Tm.
  • the peak of the wavelength of the emitted light is 625 to 740 nm.
  • fluorescent materials that emit red light include calcium sulfide doped with europium (CaS: Eu), zinc sulfide doped with europium (ZnS: Eu), and strontium sulfide doped with europium (SrS: Eu). Consisting of either.
  • the peak of the wavelength of the emitted light is 500-565 nm.
  • the fluorescent material that emits green light is made of, for example, strontium thiogallate doped with europium (SrGa 2 S 4 : Eu) or calcium thiogallate doped with europium (CaGa 2 S 4 : Eu).
  • the element doped in the fluorescent material emitting red light or the fluorescent material emitting green light is not limited to Eu, and may be any of Tb, Sm, Pr, Dy, and Tm.
  • the upper electrode 312 of the first LED chip 310 and the upper electrode 322 of the second LED chip 320 are connected to each other by the wire 391. For this reason, it is not necessary to provide wires extending from the upper surface electrode 312 of the first LED chip 310 and the upper surface electrode 322 of the second LED chip 320 to the wiring layer 240. Thereby, the step of bonding wires to the wiring layer 240 is not necessary, and there is no need to provide a space for entering a bonding capillary or the like around the first LED chip 310 and the second LED chip 320. Therefore, the LED light source module 111 can be reduced in size.
  • the structure of the wiring layer 240 does not need to be a structure suitable for wire bonding. For this reason, it is not necessary to provide Au plating that covers the surface layer, which is a structure suitable for wire bonding. This is advantageous for simplification of the manufacturing process and cost reduction.
  • the coating resin 410 functions as a protective film. Thereby, for example, it is possible to suppress the sulfur gas or the like from reacting with the wiring layer 240.
  • the sealing resin 420 includes a sulfide-based fluorescent material, it is possible to prevent the wiring layer 240 from being deteriorated by the sulfide gas generated from the sealing resin 420.
  • luminance of the LED light source module 111 can be improved by reflecting the light of the 1st LED chip 310 and the 2nd LED chip 320 upwards by making the coating resin 410 white. Furthermore, there is an advantage that brighter white light can be emitted by employing the sealing resin 420 containing a sulfide-based fluorescent material.
  • the coating resin 410 reaches the vicinity of the upper end of the reflection surface 501 of the case 500, the light from the first LED chip 310 and the second LED chip 320 is difficult to reach the case 500.
  • the material of the case 500 that is required to have a relatively high strength is likely to be deteriorated by receiving light as compared with the material of the coating resin 410 that is not required to have a high strength. This deterioration can be suppressed by the coating resin 410.
  • a first LED chip 310, a second LED chip 320, a third LED chip 330, and wires 391 and 392 are arranged in a region surrounded by the case 500.
  • the first LED chip 310 has the same configuration as the LED light source module 111 described above.
  • the second LED chip 320 of the present embodiment has an upper surface electrode 322 and an upper surface electrode 329 as shown in FIG.
  • the upper surface electrode 329 corresponds to the additional second upper surface electrode referred to in the present invention, and is formed of, for example, an Au plating layer.
  • the upper surface electrode 322 functions as an n-type electrode
  • the upper surface electrode 329 functions as a p-type electrode.
  • a submount substrate 301 is provided between the substrate 200 and the second LED chip 320.
  • the submount substrate 301 is made of, for example, Si and has a thickness of, for example, about 300 ⁇ m.
  • the second LED chip 320 is indirectly supported on the main surface 211 of the base 210 via the submount substrate 301.
  • the submount substrate 301 and the second pad 242 of the wiring layer 240 are bonded via a metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, Ag.
  • the second LED chip 320 and the submount substrate 301 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
  • the third LED chip 330 has a lower surface electrode 331 and an upper surface electrode 332.
  • the lower surface electrode 331 faces downward in the z direction, which is the direction facing the main surface 211 of the substrate 200, and is made of, for example, an Au plating layer.
  • the upper surface electrode 332 faces upward in the z direction, which is opposite to the lower surface electrode 331, and is made of, for example, an Au plating layer.
  • the lower electrode 331 corresponds to the third lower electrode referred to in the present invention
  • the upper electrode 332 corresponds to the third upper electrode referred to in the present invention.
  • the third LED chip 330 has, for example, a Si substrate positioned immediately above the lower surface electrode 331 and a semiconductor layer interposed between the Si substrate and the upper surface electrode 332.
  • This semiconductor layer is made of, for example, a GaAs-based semiconductor.
  • the lower surface electrode 331 functions as a p-type electrode
  • the upper surface electrode 332 functions as an n-type electrode. With such a configuration, the third LED chip 330 emits red light mainly upward in the z direction.
  • the lower surface electrode 331 is bonded to the third pad 243 of the wiring layer 240 through the metal bonding layer 341.
  • the metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 331 and the third pad 243.
  • the upper surface electrode 332 is provided at a position that is biased in plan view, and is biased toward the second LED chip 320 in the present embodiment.
  • the wire 391 connects the upper surface electrode 312 of the first LED chip 310 and the upper surface electrode 322 of the second LED chip 320.
  • the wire 392 corresponds to an additional wire in the present invention, and connects the upper surface electrode 329 of the second LED chip 320 and the upper surface electrode 332 of the third LED chip 330.
  • the wiring layer 240 has a first pad 241, a second pad 242, and a third pad 243.
  • the first pad 241 and the third pad 243 form part of a power supply path for lighting the first LED chip 310, the second LED chip 320, and the third LED chip 330.
  • the second pad 242 does not form a power supply path, and is formed as a convenience for joining the submount substrate 301 on which the second LED chip 320 is mounted.
  • the covering resin 410 covers a portion excluding the first LED chip 310, the second LED chip 320, and the third LED chip 330 in the region surrounded by the case 500.
  • the coating resin 410 covers all or most of the side surfaces of the first LED chip 310, the second LED chip 320, and the third LED chip 330.
  • the LED light source module 112 can be reduced in size.
  • the first LED chip 310 that emits red light and the third LED chip 330 with the second LED chip 320 that emits blue light in between, it is possible to avoid a relative shortage of the amount of red light.
  • the three first LED chips 310, the second LED chip 320, and the third LED chip 330 are arranged in a region surrounded by one case 500, all of the wires 391 and 392 are wired.
  • Layer 240 is not bonded. This means that by providing a large number of LED chips, it is possible to reduce the size while increasing the luminance.
  • the base member 210 is formed with a raised portion 212 and a depressed portion 216.
  • the raised portion 212 is a portion raised above the main surface 211 in the z direction, and has a top surface 213 and an inclined surface 214 in the present embodiment.
  • the top surface 213 is the surface of the protruding portion 212 that protrudes most upward in the z direction, and is parallel to the main surface 211.
  • the top surface 213 has a rectangular shape.
  • the inclined surface 214 is connected to the main surface 211 and the top surface 213, and is inclined with respect to the xy plane.
  • the height of the raised portion 212 from the main surface 211 is, for example, 150 to 200 ⁇ m.
  • the depressed portion 216 is a portion that is recessed above the back surface 215 in the z direction, and overlaps the raised portion 212 when viewed in the z direction.
  • the depressed portion 216 has a bottom surface 217.
  • the bottom surface 217 is parallel to the back surface 215 and has a rectangular shape in the present embodiment.
  • the bottom surface 217 is included in the raised portion 212.
  • the bottom surface 217 and the top surface 213 have their outer edges almost overlapping each other when viewed in the z direction, or the outer edge of the bottom surface 217 is located slightly inside the outer edge of the top surface 213.
  • the depression depth from the back surface 215 of the depression 216 is, for example, 150 to 200 ⁇ m.
  • the plated layer 220 covers the top surface 213 of the raised portion 212 and is made of a metal such as Cu, Ni, Pd, or Au. In the present embodiment, the plating layer 220 is made of Cu.
  • a submount substrate 301 is bonded to the plating layer 220.
  • the wiring layer 240 has a structure in which a base layer 251 and a plating layer 252 are laminated.
  • the underlayer 251 is the same as the layer that has formed the wiring layer 240 in the LED light source modules 111 and 112 described above.
  • the plating layer 252 is laminated on the base layer 251 and is made of the same material as the plating layer 220.
  • the insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 .
  • An opening 231 is formed in the insulating layer 230.
  • the opening 231 is provided to expose at least a part of the raised portion 212, and in the present embodiment, the top surface 213 of the raised portion 212 is exposed.
  • the inclined surface 214 of the raised portion 212 is covered with the insulating layer 230.
  • the thickness of the insulating layer 230 is, for example, about 100 ⁇ m.
  • a metal plate 210 ′ is prepared.
  • the metal plate 210 ′ is made of, for example, Al, Cu, Fe or the like.
  • Al is selected as the material of the metal plate 210 ′
  • the thickness of the metal plate 210 ′ is, for example, about 1.0 to 1.5 mm.
  • the metal plate 210 ′ has a main surface 211 ′ and a back surface 215 ′ that face in opposite directions in the z direction.
  • an insulating layer 230 ′ is formed so as to cover the main surface 211 ′.
  • the insulating layer 230 ′ is made of an insulating resin or an insulating material such as SiO 2 .
  • the thickness of the insulating layer 230 ′ is, for example, about 100 ⁇ m.
  • a base layer 251 ′ is formed so as to cover the insulating layer 230 ′.
  • the underlayer 251 ′ is formed, for example, by forming a Cu plating layer on the insulating layer 230 ′ by electroless plating.
  • the base layer 251 ' is patterned by using, for example, etching to form the base layer 251 as shown in FIG.
  • the metal plate 210 ′ is processed using the molds 610 and 620.
  • the mold 610 has a rectangular top surface.
  • the mold 620 has a rectangular recess 621.
  • the recess 621 is slightly larger than the upper surface of the mold 610 when viewed in the z direction.
  • a metal mold 610 is disposed on the back surface 215 ′ side of the metal plate 210 ′, and a metal mold 620 is disposed on the main surface 211 ′ side of the metal plate 210 ′.
  • the upper surface of the mold 610 is fitted into the metal plate 210 ′ by bringing the mold 610 and the mold 620 closer to each other. Thereby, the base material 210 which has the protruding part 212 and the depression part 216 is obtained. A portion where the upper surface of the mold 610 is in contact becomes a bottom surface 217 of the depressed portion 216. Further, the surface of the portion that has entered the recess 621 of the mold 620 corresponding to the mold 610 becomes the top surface 213. At this time, in this embodiment, the base layer 251 is in contact with a position where the concave portion 621 is avoided in the mold 620 and is not deformed. The insulating layer 230 ′ is deformed into a shape along the raised portion 212.
  • the insulating layer 230 is formed as shown in FIG.
  • the process of removing a part of the insulating layer 230 ′ is performed using, for example, a squeegee 630.
  • the lower end edge of the squeegee 630 extends long in parallel to the y direction.
  • the squeegee 630 is moved in the x direction while the lower edge of the squeegee 630 is located at the same level as or slightly below the top surface 213 in the z direction.
  • the portion of the insulating layer 230 ′ located above the top surface 213 in the z direction is removed by the squeegee 630.
  • the insulating layer 230 having the opening 231 exposing only the top surface 213 is formed.
  • the base layer 251 is located sufficiently below the top surface 213 in the z direction, and thus does not contact the squeegee 630.
  • a plating layer 220 and a plating layer 252 are formed.
  • the plated layer 220 and the plated layer 252 are formed by, for example, electrolytic plating.
  • the plating layer 220 and the base layer 251 are formed so as to cover the top surface 213 and the base layer 251 of the base material 210 which is a conductor, and are not formed on the insulating layer 230.
  • the substrate 200 including the base 210, the plating layer 220, the insulating layer 230, and the wiring layer 240 is obtained.
  • the LED light source module 113 is obtained.
  • the LED light source module 113 can be downsized.
  • the second LED chip 320 is supported by the raised portion 212 without the insulating layer 230 interposed therebetween. Thereby, the heat transfer from the second LED chip 320 is not hindered by the insulating layer 230. Therefore, heat radiation from the second LED chip 320 can be promoted, and the brightness of the LED light source module 113 can be increased.
  • FIG. 46 shows an LED light source module according to the fourteenth embodiment of the present invention.
  • the LED light source module 114 of this embodiment is different from the LED light source module 113 described above in that the plating layer 220 is not provided and the wiring layer 240 is a single layer. That is, in the present embodiment, the plating process described with reference to FIG. 45 is omitted. Also according to such an embodiment, the LED light source module 114 can be downsized.
  • FIG. 47 shows an LED light source module according to the fifteenth embodiment of the present invention.
  • the LED light source module 115 of this embodiment is different from the LED light source module 113 described above in that it does not include the submount substrate 301. That is, the second LED chip 320 is bonded to the insulating layer 230 that covers the top surface 213 of the raised portion 212 of the substrate 210.
  • the height of the raised portion 212 is substantially the same as the height of the first LED chip 310 and the third LED chip 330. Also according to such an embodiment, the LED light source module 115 can be downsized.
  • FIG. 48 shows an LED light source module according to the sixteenth embodiment of the present invention.
  • the first LED chip 310 emits red light
  • the second LED chip 320 emits blue light
  • the third LED chip 330 emits green light.
  • the third LED chip 330 has a semiconductor layer made of, for example, a GaN-based semiconductor.
  • the sealing resin 420 is made of a transparent resin, and no fluorescent material is mixed therein.
  • the LED light source module 116 can be downsized. Further, white light can be generated by red light from the first LED chip 310, blue light from the second LED chip 320, and green light from the third LED chip 330.
  • the coating resin 410 is provided for the purpose of increasing the brightness. However, since there is no risk of deterioration due to the sulfide gas caused by the sealing resin 420, the configuration in which the coating resin 410 is omitted in this respect. It is good.
  • FIG. 49 shows an LED light source module according to the seventeenth embodiment of the present invention.
  • the LED light source module 117 of this embodiment is used as a point light source of an electronic device by being configured as a relatively small module.
  • the LED light source modules 111 to 116 described above are different from those configured as bar-shaped light sources extending in the x direction.
  • the point that the LED light source module 117 includes the first LED chip 310 and the second LED chip 320 is similar to the LED light source module 111 described above, but the configuration used as a point light source such as the LED light source module 117 is the above.
  • the configurations of the LED light source modules 112 to 116 may be applied as appropriate.
  • the conduction support member referred to in the present invention is constituted by the two leads 270 and the leads 280.
  • the lead 270 and the lead 280 are made of metal, for example, a Cu plate as a base material is plated with Ni, Au, or the like.
  • the lead 270 has a main surface 271 and a terminal portion 275.
  • the main surface 271 faces upward in the z direction and supports the first LED chip 310.
  • the terminal portion 275 is used for mounting the LED light source module 117 on a circuit board (not shown).
  • the lead 280 has a main surface 281 and a terminal portion 285.
  • the main surface 281 faces upward in the z direction and supports the second LED chip 320.
  • the terminal portion 285 is used for mounting the LED light source module 107 on a circuit board (not shown). Also according to such an embodiment, the LED light source module 117 can be downsized.
  • the LED light source module according to the present invention is not limited to the above-described embodiment.
  • the specific configuration of each part of the LED light source module according to the present invention can be varied in design in various ways.
  • the LED light source module is used as a point light source of an electronic device by being configured as a relatively small module, and an elongated bar light source by arranging a plurality of LED chips on an elongated conductive support member Used as a planar light source by arranging a plurality of LED chips on a conductive support member in a matrix.
  • an elongated bar light source by arranging a plurality of LED chips on an elongated conductive support member used as a planar light source by arranging a plurality of LED chips on a conductive support member in a matrix.
  • a planar light is emitted from the light guide plate by disposing the LED light source module at a position facing the side surface of the flat light guide plate.
  • the LED light source module functions as a light source of the liquid crystal display device by transmitting the planar light through the liquid crystal panel superimposed on the light guide plate.
  • the LED light source module functions as a backlight of the liquid crystal display device by arranging the liquid crystal panel and the LED light source module so as to overlap each other.
  • the LED light source module according to the present invention is used in various forms for various applications.
  • the coating resin 410 is not limited to a configuration made of a white resin, and a material capable of suppressing the light from the first LED chip 310 from being absorbed by the second LED chip 320 can be employed.
  • a material capable of suppressing the light from the first LED chip 310 from being absorbed by the second LED chip 320 can be employed.
  • the coating resin 410 is made of a material having a refractive index smaller than that of the sealing resin 420, when light travels from the sealing resin 420 to the coating resin 410, total reflection is performed at these interfaces. Can occur. Even with such a configuration, an effect of suppressing light absorption by the second LED chip 320 can be expected.
  • Appendix 1 A conduction support member having a main surface; First and second LED chips supported by the conduction support member on the main surface side and supplied with power via the conduction support member; A case supported by the conduction support member and surrounding the first and second LED chips; Sealing resin that covers the first and second LED chips in a region surrounded by the case, The wavelength of the light emitted from the second LED chip is longer than the wavelength of the light emitted from the first LED chip, A coating resin that is interposed between the sealing resin and the main surface of the conduction support member and covers at least a part of a side surface of the second LED chip that faces in a direction intersecting the direction in which the main surface faces.
  • the second LED chip has a lower surface electrode, a chip substrate, a semiconductor layer, and an upper surface electrode, The LED light source module according to appendix 1, wherein the coating resin covers at least a part of the chip substrate.
  • the LED light source module according to appendix 2 wherein the chip substrate is made of GaAs.
  • the lower surface electrode is bonded to the conductive support member via a conductive bonding material, The LED light source module according to appendix 2 or 3, wherein the upper surface electrode is electrically connected to the conduction support member via a wire.
  • the first LED chip emits blue light
  • the sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and from the wavelength of the light emitted from the second LED chip. 6.
  • (Appendix 12) A pedestal having a top surface located in a direction normal to the main surface from the main surface and the insulating layer of the substrate; The LED light source module according to any one of appendices 1 to 11, wherein the first LED chip is supported on the top surface of the pedestal portion.
  • (Appendix 13) The LED light source module according to appendix 12, wherein at least a part of the base portion excluding the top surface is covered with the coating resin.
  • (Appendix 14) A submount substrate interposed between the conductive support member and the first LED chip; The LED light source module according to appendix 12 or 13, wherein the pedestal portion is configured by the sub-mound substrate.
  • (Appendix 15) The LED light source module according to appendix 12 or 13, wherein the conduction support member includes a base material and a wiring layer formed on the base material.
  • the base material is made of metal, The LED light source module according to appendix 15, wherein the conduction support member has an insulating layer interposed between the base material and the wiring layer.
  • the base material has a raised portion raised from the main surface, The LED light source module according to appendix 16, wherein the pedestal portion is configured by the raised portion.
  • (Appendix 18) The LED light source module according to appendix 17, wherein the raised portion includes the top surface parallel to the main surface and an inclined surface connecting the top surface and the main surface.
  • (Appendix 19) The LED light source module according to appendix 17 or 18, wherein the insulating layer exposes the top surface of the raised portion.
  • (Appendix 21) The LED light source module according to appendix 20, wherein the depressed portion has a bottom surface that is parallel to the main surface.
  • (Appendix 22) The LED light source module according to appendix 21, wherein the bottom surface is included in the raised portion in the thickness direction view.
  • a conduction support member having a main surface; First and second LED chips supported by the main surface and supplied with power via the conduction support member, The first LED chip has a first lower surface electrode facing the main surface and a first upper surface electrode facing the opposite side of the first lower surface electrode, The second LED chip has a second upper surface electrode facing the same side as the first upper surface electrode of the first LED chip, An LED light source module comprising a wire connecting the first upper surface electrode of the first LED chip and the second upper surface electrode of the second LED chip.
  • the LED light source module according to appendix 23, wherein the conduction support member includes a base material and a wiring layer formed on the base material.
  • the base material is made of metal
  • (Appendix 28) Further comprising a third LED chip supported by the main surface and supplied with power via the conduction support member;
  • the third LED chip has a third lower surface electrode facing the main surface and a third upper surface electrode facing the opposite side of the third lower surface electrode, 28.
  • the LED light source module according to appendix 28 comprising a submount substrate interposed between the second LED chip and the conduction support member.
  • the LED according to appendix 35 comprising a coating resin that covers at least a part of an inner region that is a region surrounded by the reflection surface of the conduction support member and at least a part of a side surface of the first LED chip.
  • Light source module. (Appendix 37) 37.
  • Appendix 39 The portion of the joint portion between the coating resin and the case that is the most distant from the main surface of the base material is further away from the main surface than any portion of the first and second LED chips.
  • the LED light source module according to any one of 36 to 38.
  • the base material has a raised portion raised from the main surface, The insulating layer covers the main surface of the base material and exposes at least a part of the raised portion, The LED light source module according to appendix 25, wherein the second LED chip is supported by the raised portion.
  • the LED light source module according to appendix 40, wherein the raised portion has a top surface that is parallel to the main surface and an inclined surface that connects the top surface and the main surface.
  • the LED light source module according to appendix 41, wherein the insulating layer exposes the top surface of the raised portion.
  • Appendix 43 43.
  • the LED light source module according to appendix 42 wherein the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion in the thickness direction view.
  • (Appendix 44) 44 44.
  • the LED light source module according to appendix 43, wherein the depressed portion has a bottom surface that is parallel to the main surface.
  • the LED light source module according to appendix 44 wherein the bottom surface is included in the raised portion when viewed in the thickness direction.

Abstract

An LED light source module (101) is provided with: a substrate (200) which has a main surface (211); a first LED chip (310) and a second LED chip (320); a case which is supported by the substrate (200) and surrounds the first LED chip (310) and the second LED chip (320); and a sealing resin (420) which covers the first LED chip (310) and the second LED chip (320) in a region that is surrounded by the case. The wavelength of the light emitted from the second LED chip (320) is longer than the wavelength of the light emitted from the first LED chip (310). The second LED chip (320) has a second chip substrate (324), which is formed of a material that transmits the light from the first LED chip (310), and a second semiconductor layer (325) which is laminated on the chip substrate (324). Higher luminance and a wider array of colors can be achieved by this configuration.

Description

LED光源モジュールLED light source module
 本発明は、LED光源モジュールに関する。 The present invention relates to an LED light source module.
 図50は、従来のLED光源モジュールの一例を示している。同図に示されたLED光源モジュール900は、基板91、LEDチップ95、サブマウント基板96、ケース97および封止樹脂99を備えている。LED光源モジュール900は、比較的小型のモジュールとして構成されることにより、電子機器の点光源として用いられるもの、細長い基板91に複数のLEDチップ95が配置されることにより細長いバー状光源として用いられるもの、基板91に複数のLEDチップ95がマトリクス状に配置されることにより、面状光源として用いられるもの、などがある。 FIG. 50 shows an example of a conventional LED light source module. The LED light source module 900 shown in the figure includes a substrate 91, an LED chip 95, a submount substrate 96, a case 97, and a sealing resin 99. The LED light source module 900 is used as a point light source of an electronic device by being configured as a relatively small module, and is used as an elongated bar light source by disposing a plurality of LED chips 95 on an elongated substrate 91. And a plurality of LED chips 95 arranged in a matrix on the substrate 91 to be used as a planar light source.
 基板91は、基材92、絶縁層93および配線層94からなる。基材92は、たとえばアルミなどからなる金属板である。絶縁層93は、たとえば絶縁性樹脂からなり、基材92の図中上面を覆っている。配線層94は、絶縁層93上に形成されており、LEDチップ95への導通経路を形成している。LEDチップ95は、半導体からなる複数の層が積層された構造を有し、サブマウント基板96上に搭載されている。LEDチップ95と配線層94とはワイヤ90を介して接続されている。サブマウント基板96は、たとえばSiからなり、絶縁層93に接合されている。ケース97は、LEDチップ95を囲んでおり、反射面98を有する。封止樹脂99は、LEDチップ95を覆っている。 The substrate 91 includes a base material 92, an insulating layer 93, and a wiring layer 94. The base material 92 is a metal plate made of, for example, aluminum. The insulating layer 93 is made of, for example, an insulating resin and covers the upper surface of the base material 92 in the drawing. The wiring layer 94 is formed on the insulating layer 93 and forms a conduction path to the LED chip 95. The LED chip 95 has a structure in which a plurality of layers made of semiconductors are stacked, and is mounted on a submount substrate 96. The LED chip 95 and the wiring layer 94 are connected via a wire 90. The submount substrate 96 is made of, for example, Si and bonded to the insulating layer 93. The case 97 surrounds the LED chip 95 and has a reflective surface 98. The sealing resin 99 covers the LED chip 95.
 LED光源モジュール900の高輝度化や色調の多彩化を図るには、LEDチップ95の個数を増加させる方策がある。しかし、互いに仕様が異なるLEDチップ95をケース97に囲まれた同一領域に配置することは、様々な問題を解決する必要がある。たとえば、あるLEDチップ95が、他のLEDチップ95の光を過度に吸収してしまうと、所望の高輝度化や色調の多彩化が阻害されてしまう。 In order to increase the brightness and diversify the color tone of the LED light source module 900, there is a measure to increase the number of LED chips 95. However, arranging the LED chips 95 having different specifications in the same region surrounded by the case 97 needs to solve various problems. For example, if a certain LED chip 95 excessively absorbs the light of the other LED chip 95, the desired increase in luminance and color diversification are hindered.
 また、LED光源モジュール900においては、ワイヤ90を基板91の配線層94にボンディングするためのスペースが必要である。たとえば、LED光源モジュール900の高輝度化を目的として複数のLEDチップ95を備える構成とした場合、配線層94に対するワイヤ90のボンディング箇所が増加する。このため、LED光源モジュール900の小型化が阻害されるという問題がある。 Further, in the LED light source module 900, a space for bonding the wire 90 to the wiring layer 94 of the substrate 91 is necessary. For example, when the LED light source module 900 is configured to include a plurality of LED chips 95 for the purpose of increasing the brightness, the number of bonding points of the wires 90 to the wiring layer 94 increases. For this reason, there exists a problem that size reduction of the LED light source module 900 is inhibited.
特開2007-208150号公報JP 2007-208150 A
 本発明は、上記した事情のもとで考え出されたものであって、高輝度化や色調の多彩化を図ることが可能なLED光源モジュールを提供することをその課題とする。また、本発明は、小型化を図ることが可能なLED光源モジュールを提供することをその課題とする。 The present invention has been conceived under the circumstances described above, and an object thereof is to provide an LED light source module capable of achieving high brightness and diversified color tone. Moreover, this invention makes it the subject to provide the LED light source module which can achieve size reduction.
 本発明の第一の側面によって提供されるLED光源モジュールは、主面を有する導通支持部材と、上記主面側において上記導通支持部材に支持され、かつ上記導通支持部材を経由して電力が供給される第一および第二LEDチップと、上記導通支持部材に支持され、上記第一および第二LEDチップを囲むケースと、上記ケースに囲まれた領域において上記第一および第二LEDチップを覆う封止樹脂と、を備えており、上記第二LEDチップから発せられる光の波長は、上記第一LEDチップから発せられる光の波長よりも長く、上記第二LEDチップは、上記第一LEDチップからの光を透過する材質からなる第二チップ基板と、このチップ基板上に積層された第二半導体層と、を有する。 The LED light source module provided by the first aspect of the present invention includes a conduction support member having a main surface, and is supported by the conduction support member on the main surface side, and power is supplied via the conduction support member. The first and second LED chips, a case supported by the conductive support member and surrounding the first and second LED chips, and a region surrounded by the case covering the first and second LED chips A wavelength of light emitted from the second LED chip is longer than a wavelength of light emitted from the first LED chip, and the second LED chip is the first LED chip. A second chip substrate made of a material that transmits light from the first semiconductor layer, and a second semiconductor layer stacked on the chip substrate.
 本発明の好ましい実施の形態においては、上記第二チップ基板は、サファイアからなる。 In a preferred embodiment of the present invention, the second chip substrate is made of sapphire.
 本発明の好ましい実施の形態においては、上記第二チップ基板は、上記主面が向く方向において上記第一LEDチップと重なる位置にある。 In a preferred embodiment of the present invention, the second chip substrate is in a position overlapping the first LED chip in the direction in which the main surface faces.
 本発明の好ましい実施の形態においては、上記第二LEDチップは、赤色光を発する。 In a preferred embodiment of the present invention, the second LED chip emits red light.
 本発明の好ましい実施の形態においては、上記第一LEDチップは、青色光を発する。 In a preferred embodiment of the present invention, the first LED chip emits blue light.
 本発明の好ましい実施の形態においては、上記第一LEDチップは、サファイアまたはGaNからなる第一チップ基板と、この第一チップ基板上に積層された第一半導体層と、を有する。 In a preferred embodiment of the present invention, the first LED chip has a first chip substrate made of sapphire or GaN, and a first semiconductor layer stacked on the first chip substrate.
 本発明の好ましい実施の形態においては、上記第二チップ基板は、上記主面が向く方向において上記第一チップ基板と重なる位置にある。 In a preferred embodiment of the present invention, the second chip substrate is in a position overlapping the first chip substrate in the direction in which the main surface is directed.
 本発明の好ましい実施の形態においては、上記第一LEDチップは、上記第一半導体層上に形成された2つの第一上面電極を有する。 In a preferred embodiment of the present invention, the first LED chip has two first upper surface electrodes formed on the first semiconductor layer.
 本発明の好ましい実施の形態においては、上記第二LEDチップは、上記第二半導体層上に形成された2つの第二上面電極を有する。 In a preferred embodiment of the present invention, the second LED chip has two second upper surface electrodes formed on the second semiconductor layer.
 本発明の好ましい実施の形態においては、上記封止樹脂は、上記第一LEDチップから発せられる光によって励起されることにより、上記第一LEDチップから発せられる光の波長とは異なり、かつ上記第二LEDチップから発せられる光の波長よりも短い波長の光を発する蛍光材料を含む。 In a preferred embodiment of the present invention, the sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and the first resin It includes a fluorescent material that emits light having a wavelength shorter than that of light emitted from the two LED chips.
 本発明の好ましい実施の形態においては、上記蛍光材料は、硫化物からなる。 In a preferred embodiment of the present invention, the fluorescent material is made of sulfide.
 本発明の好ましい実施の形態においては、上記蛍光材料は、緑色光を発する。 In a preferred embodiment of the present invention, the fluorescent material emits green light.
 本発明の好ましい実施の形態においては、上記第一LEDチップと上記導通支持部材との間に介在する第一サブマウント基板と、上記第二LEDチップと上記導通支持部材との間に介在する第二サブマウント基板と、上記封止樹脂と上記導通支持部材の上記主面との間に介在するとともに、上記第一サブマウント基板および上記第二サブマウント基板それぞれのうち上記主面が向く方向と交差する方向を向く側面の少なくとも一部を覆う被覆樹脂と、をさらに備える。 In a preferred embodiment of the present invention, a first submount substrate interposed between the first LED chip and the conduction support member, and a first submount substrate interposed between the second LED chip and the conduction support member. A second submount substrate, and a direction in which the main surface of each of the first submount substrate and the second submount substrate faces is interposed between the sealing resin and the main surface of the conduction support member. And a covering resin covering at least a part of the side surface facing the intersecting direction.
 本発明の好ましい実施の形態においては、上記被覆樹脂は、白色である。 In a preferred embodiment of the present invention, the coating resin is white.
 本発明の好ましい実施の形態においては、上記被覆樹脂と上記ケースとの接合部分のうち上記主面から最も離間した部位は、上記第一および第二LEDチップのいずれの部位よりも上記主面から離間している。 In preferable embodiment of this invention, the site | part most spaced apart from the said main surface among the junction parts of the said coating resin and the said case is from the said main surface rather than any site | part of said 1st and 2nd LED chip. It is separated.
 本発明の好ましい実施の形態においては、上記導通支持部材は、基材とこの基材上に形成された配線層とを有する。 In a preferred embodiment of the present invention, the conduction support member has a base material and a wiring layer formed on the base material.
 本発明の好ましい実施の形態においては、上記基材は、金属からなり、上記導通支持部材は、上記基材と上記配線層との間に介在する絶縁層を有する。 In a preferred embodiment of the present invention, the base material is made of metal, and the conductive support member has an insulating layer interposed between the base material and the wiring layer.
 本発明の好ましい実施の形態においては、上記基材は、上記主面よりも隆起した隆起部を有し、上記第一および上記第二LEDチップは、上記隆起部によって支持されている。 In a preferred embodiment of the present invention, the base material has a raised portion that is raised from the main surface, and the first and second LED chips are supported by the raised portion.
 本発明の好ましい実施の形態においては、上記隆起部は、上記主面と平行である頂面と、この頂面および上記主面を繋ぐ傾斜面と、を有しており、上記第一および上記第二LEDチップは、上記頂面に支持されている。 In a preferred embodiment of the present invention, the raised portion has a top surface parallel to the main surface, and an inclined surface connecting the top surface and the main surface. The second LED chip is supported on the top surface.
 本発明の好ましい実施の形態においては、上記絶縁層は、上記隆起部のうち上記頂面を露出させている。 In a preferred embodiment of the present invention, the insulating layer exposes the top surface of the raised portion.
 本発明の好ましい実施の形態においては、上記基材は、その厚さ方向において上記隆起部の反対側に位置し、上記厚さ方向視において上記隆起部に重なる陥没部を有する。 In a preferred embodiment of the present invention, the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
 本発明の好ましい実施の形態においては、上記陥没部は、上記主面と平行である底面を有する。 In a preferred embodiment of the present invention, the depressed portion has a bottom surface that is parallel to the main surface.
 本発明の好ましい実施の形態においては、上記底面は、上記厚さ方向視において上記隆起部に内包されている。 In a preferred embodiment of the present invention, the bottom surface is included in the raised portion in the thickness direction view.
 本発明の第二の側面によって提供されるLED光源モジュールは、主面を有する導通支持部材と、上記主面側において上記導通支持部材に支持され、かつ上記導通支持部材を経由して電力が供給される第一および第二LEDチップと、上記導通支持部材に支持され、上記第一および第二LEDチップを囲むケースと、上記ケースに囲まれた領域において上記第一および第二LEDチップを覆う封止樹脂と、を備えており、上記第二LEDチップから発せられる光の波長は、上記第一LEDチップから発せられる光の波長よりも長く、上記封止樹脂と上記導通支持部材の上記主面との間に介在するとともに、上記第二LEDチップのうち上記主面が向く方向と交差する方向を向く側面の少なくとも一部を覆う被覆樹脂をさらに備える。 The LED light source module provided by the second aspect of the present invention includes a conduction support member having a main surface, and is supported by the conduction support member on the main surface side, and power is supplied via the conduction support member. The first and second LED chips, a case supported by the conductive support member and surrounding the first and second LED chips, and a region surrounded by the case covering the first and second LED chips A wavelength of light emitted from the second LED chip is longer than a wavelength of light emitted from the first LED chip, and the main resin of the conductive support member And a coating resin that covers at least a part of the side surface of the second LED chip that faces the direction intersecting the main surface of the second LED chip.
 本発明の好ましい実施の形態においては、上記第二LEDチップは、下面電極、チップ基板、半導体層および上面電極を有し、上記被覆樹脂は、上記チップ基板の少なくとも一部を覆っている。 In a preferred embodiment of the present invention, the second LED chip has a lower surface electrode, a chip substrate, a semiconductor layer and an upper surface electrode, and the coating resin covers at least a part of the chip substrate.
 本発明の好ましい実施の形態においては、上記チップ基板は、GaAsからなる。 In a preferred embodiment of the present invention, the chip substrate is made of GaAs.
 本発明の好ましい実施の形態においては、上記下面電極は、導通接合材を介して上記導通支持部材に接合されており、上記上面電極は、ワイヤを介して上記導通支持部材に導通している。 In a preferred embodiment of the present invention, the lower surface electrode is bonded to the conductive support member via a conductive bonding material, and the upper surface electrode is connected to the conductive support member via a wire.
 本発明の好ましい実施の形態においては、上記第一LEDチップは、青色光を発し、上記第二LEDチップは、赤色光を発する。 In a preferred embodiment of the present invention, the first LED chip emits blue light, and the second LED chip emits red light.
 本発明の好ましい実施の形態においては、上記封止樹脂は、上記第一LEDチップから発せられる光によって励起されることにより、上記第一LEDチップから発せられる光の波長とは異なり、かつ上記第二LEDチップから発せられる光の波長よりも短い波長の光を発する蛍光材料を含む。 In a preferred embodiment of the present invention, the sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and the first resin It includes a fluorescent material that emits light having a wavelength shorter than that of light emitted from the two LED chips.
 本発明の好ましい実施の形態においては、上記蛍光材料は、硫化物からなる。 In a preferred embodiment of the present invention, the fluorescent material is made of sulfide.
 本発明の好ましい実施の形態においては、上記蛍光材料は、緑色光を発する。 In a preferred embodiment of the present invention, the fluorescent material emits green light.
 本発明の好ましい実施の形態においては、上記被覆樹脂は、白色である。 In a preferred embodiment of the present invention, the coating resin is white.
 本発明の好ましい実施の形態においては、上記被覆樹脂は、上記封止樹脂よりも屈折率が小である。 In a preferred embodiment of the present invention, the coating resin has a refractive index smaller than that of the sealing resin.
 本発明の好ましい実施の形態においては、上記被覆樹脂と上記ケースとの接合部分のうち上記主面から最も離間した部位は、上記第一および第二LEDチップのいずれの部位よりも上記主面から離間している。 In preferable embodiment of this invention, the site | part most spaced apart from the said main surface among the junction parts of the said coating resin and the said case is from the said main surface rather than any site | part of said 1st and 2nd LED chip. It is separated.
 本発明の好ましい実施の形態においては、上記基板の上記主面および上記絶縁層よりも上記主面の法線方向に位置する頂面を有する台座部を備えており、上記第一LEDチップは、上記台座部の上記頂面に支持されている。 In a preferred embodiment of the present invention, the first LED chip comprises a pedestal portion having a top surface located in a normal direction of the main surface with respect to the main surface and the insulating layer of the substrate, It is supported on the top surface of the pedestal.
 本発明の好ましい実施の形態においては、上記台座部のうち上記頂面を除く部位の少なくとも一部が、上記被覆樹脂によって覆われている。 In a preferred embodiment of the present invention, at least a part of the pedestal portion excluding the top surface is covered with the coating resin.
 本発明の好ましい実施の形態においては、上記導通支持部材と上記第一LEDチップとの間に介在するサブマウント基板を備えており、上記台座部は、上記サブマウンド基板によって構成されている。 In a preferred embodiment of the present invention, a submount substrate interposed between the conduction support member and the first LED chip is provided, and the pedestal portion is constituted by the submount substrate.
 本発明の好ましい実施の形態においては、上記導通支持部材は、基材とこの基材上に形成された配線層とを有する。 In a preferred embodiment of the present invention, the conduction support member has a base material and a wiring layer formed on the base material.
 本発明の好ましい実施の形態においては、上記基材は、金属からなり、上記導通支持部材は、上記基材と上記配線層との間に介在する絶縁層を有する。 In a preferred embodiment of the present invention, the base material is made of metal, and the conductive support member has an insulating layer interposed between the base material and the wiring layer.
 本発明の好ましい実施の形態においては、上記基材は、上記主面よりも隆起した隆起部を有し、上記台座部は、上記隆起部によって構成されている。 In a preferred embodiment of the present invention, the base material has a raised portion that is raised from the main surface, and the pedestal portion is constituted by the raised portion.
 本発明の好ましい実施の形態においては、上記隆起部は、上記主面と平行である上記頂面と、この頂面および上記主面を繋ぐ傾斜面と、を有する。 In a preferred embodiment of the present invention, the raised portion has the top surface parallel to the main surface and an inclined surface connecting the top surface and the main surface.
 本発明の好ましい実施の形態においては、上記絶縁層は、上記隆起部のうち上記頂面を露出させている。 In a preferred embodiment of the present invention, the insulating layer exposes the top surface of the raised portion.
 本発明の好ましい実施の形態においては、上記基材は、その厚さ方向において上記隆起部の反対側に位置し、上記厚さ方向視において上記隆起部に重なる陥没部を有する。 In a preferred embodiment of the present invention, the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
 本発明の好ましい実施の形態においては、上記陥没部は、上記主面と平行である底面を有する。 In a preferred embodiment of the present invention, the depressed portion has a bottom surface that is parallel to the main surface.
 本発明の好ましい実施の形態においては、上記底面は、上記厚さ方向視において上記隆起部に内包されている。 In a preferred embodiment of the present invention, the bottom surface is included in the raised portion in the thickness direction view.
 本発明の第三の側面によって提供されるLED光源モジュールは、主面を有する導通支持部材と、上記主面に支持され、かつ上記導通支持部材を経由して電力が供給される第一および第二LEDチップと、を備えており、上記第一LEDチップは、上記主面と対向する方向を向く第一下面電極およびこの第一下面電極とは反対側を向く第一上面電極を有しており、上記第二LEDチップは、上記第一LEDの上記第一上面電極と同じ側を向く第二上面電極を有しており、上記第一LEDチップの上記第一上面電極と上記第二LEDチップの上記第二上面電極とを接続するワイヤを備える。 The LED light source module provided by the third aspect of the present invention includes a conduction support member having a main surface, and first and first powers supported by the main surface and supplied with power via the conduction support member. Two first LED chips, wherein the first LED chip has a first lower surface electrode facing the main surface and a first upper surface electrode facing the first lower surface electrode. The second LED chip has a second upper surface electrode facing the same side as the first upper surface electrode of the first LED, and the first upper surface electrode of the first LED chip and the second LED A wire connecting the second upper surface electrode of the chip is provided.
 本発明の好ましい実施の形態においては、上記導通支持部材は、基材とこの基材上に形成された配線層とを有する。 In a preferred embodiment of the present invention, the conduction support member has a base material and a wiring layer formed on the base material.
 本発明の好ましい実施の形態においては、上記基材は、金属からなり、上記導通支持部材は、上記基材と上記配線層との間に介在する絶縁層を有する。 In a preferred embodiment of the present invention, the base material is made of metal, and the conductive support member has an insulating layer interposed between the base material and the wiring layer.
 本発明の好ましい実施の形態においては、上記第二LEDチップは、上記第一LEDチップの上記第一下面電極と同じ側を向く第二下面電極を有する。 In a preferred embodiment of the present invention, the second LED chip has a second lower surface electrode facing the same side as the first lower surface electrode of the first LED chip.
 本発明の好ましい実施の形態においては、上記第二LEDチップは、上記第二上面電極と同じ側を向く追加の第二上面電極を有する。 In a preferred embodiment of the present invention, the second LED chip has an additional second upper surface electrode facing the same side as the second upper surface electrode.
 本発明の好ましい実施の形態においては、上記主面に支持され、かつ上記導通支持部材を経由して電力が供給される第三LEDチップをさらに備えており、上記第三LEDチップは、上記主面と対向する方向を向く第三下面電極およびこの第三下面電極とは反対側を向く第三上面電極を有しており、上記第二LEDチップの上記追加の第二上面電極と上記第三LEDチップの上記第三上面電極とを接続する追加のワイヤを備えている。 In a preferred embodiment of the present invention, the battery pack further includes a third LED chip supported on the main surface and supplied with electric power via the conduction support member. A third lower surface electrode facing the surface and a third upper surface electrode facing away from the third lower surface electrode, and the additional second upper surface electrode of the second LED chip and the third upper surface electrode. An additional wire is provided to connect the third upper surface electrode of the LED chip.
 本発明の好ましい実施の形態においては、上記第二LEDチップと上記導通支持部材との間に介在するサブマウント基板を備える。 In a preferred embodiment of the present invention, a submount substrate interposed between the second LED chip and the conduction support member is provided.
 本発明の好ましい実施の形態においては、上記第一および第二LEDチップを覆うとともに蛍光材料を含む封止樹脂をさらに備える。 In a preferred embodiment of the present invention, a sealing resin that covers the first and second LED chips and includes a fluorescent material is further provided.
 本発明の好ましい実施の形態においては、上記第二LEDチップは、青色光を発する。 In a preferred embodiment of the present invention, the second LED chip emits blue light.
 本発明の好ましい実施の形態においては、上記第一LEDチップは、赤色光を発する。 In a preferred embodiment of the present invention, the first LED chip emits red light.
 本発明の好ましい実施の形態においては、上記蛍光材料は、青色光によって励起されることにより緑色光を発する。 In a preferred embodiment of the present invention, the fluorescent material emits green light when excited by blue light.
 本発明の好ましい実施の形態においては、上記蛍光材料は、硫化物からなる。 In a preferred embodiment of the present invention, the fluorescent material is made of sulfide.
 本発明の好ましい実施の形態においては、上記導通支持部材に支持されており、かつ上記第一および第二LEDチップを囲む反射面を有するケースをさらに備えている。 In a preferred embodiment of the present invention, there is further provided a case which is supported by the conduction support member and has a reflection surface surrounding the first and second LED chips.
 本発明の好ましい実施の形態においては、上記導通支持部材のうち上記反射面に囲まれた領域である内部領域の少なくとも一部と、上記第一LEDの側面の少なくとも一部と、を覆う被覆樹脂を備える。 In a preferred embodiment of the present invention, a coating resin that covers at least a part of an inner region that is a region surrounded by the reflection surface of the conduction support member and at least a part of a side surface of the first LED. Is provided.
 本発明の好ましい実施の形態においては、上記被覆樹脂は、上記配線層のうち上記内部領域において上記第一および上記第二LEDチップから露出した部分を覆っている。 In a preferred embodiment of the present invention, the coating resin covers portions of the wiring layer exposed from the first and second LED chips in the internal region.
 本発明の好ましい実施の形態においては、上記被覆樹脂は、白色である。 In a preferred embodiment of the present invention, the coating resin is white.
 本発明の好ましい実施の形態においては、上記被覆樹脂と上記ケースとの接合部分のうち上記基材の上記主面から最も離間した部位は、上記第一および第二LEDチップのいずれの部位よりも上記主面から離間している。 In preferable embodiment of this invention, the site | part most spaced apart from the said main surface of the said base material among the junction parts of the said coating resin and the said case is rather than any site | part of said 1st and 2nd LED chip. It is separated from the main surface.
 本発明の好ましい実施の形態においては、上記基材は、上記主面よりも隆起した隆起部を有しており、上記絶縁層は、上記基材の上記主面を覆うとともに、上記隆起部の少なくとも一部を露出させており、上記第二LEDチップは、上記隆起部に支持されている。 In preferable embodiment of this invention, the said base material has the protruding part which protruded rather than the said main surface, and while the said insulating layer covers the said main surface of the said base material, of the said protruding part At least a portion is exposed, and the second LED chip is supported by the raised portion.
 本発明の好ましい実施の形態においては、上記隆起部は、上記主面と平行である頂面と、この頂面および上記主面を繋ぐ傾斜面と、を有する。 In a preferred embodiment of the present invention, the raised portion has a top surface parallel to the main surface and an inclined surface connecting the top surface and the main surface.
 本発明の好ましい実施の形態においては、上記絶縁層は、上記隆起部のうち上記頂面を露出させている。 In a preferred embodiment of the present invention, the insulating layer exposes the top surface of the raised portion.
 本発明の好ましい実施の形態においては、上記基材は、その厚さ方向において上記隆起部の反対側に位置し、上記厚さ方向視において上記隆起部に重なる陥没部を有する。 In a preferred embodiment of the present invention, the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
 本発明の好ましい実施の形態においては、上記陥没部は、上記主面と平行である底面を有する。 In a preferred embodiment of the present invention, the depressed portion has a bottom surface that is parallel to the main surface.
 本発明の好ましい実施の形態においては、上記底面は、上記厚さ方向視において上記隆起部に内包されている。 In a preferred embodiment of the present invention, the bottom surface is included in the raised portion in the thickness direction view.
 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
本発明の第一実施形態に基づくLED光源モジュールを示す平面図である。It is a top view which shows the LED light source module based on 1st embodiment of this invention. 図1のLED光源モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the LED light source module of FIG. 図2のIII-III線に沿う要部断面図である。FIG. 3 is a cross-sectional view of a principal part taken along line III-III in FIG. 2. 図1のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 図1のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 本発明の第二実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 2nd embodiment of this invention. 図6のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 図6のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図6のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図6のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図6のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図6のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 本発明の第三実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 3rd embodiment of this invention. 本発明の第四実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 4th embodiment of this invention. 本発明の第五実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 5th embodiment of this invention. 本発明の第六実施形態に基づくLED光源モジュールを示す平面図である。It is a top view which shows the LED light source module based on 6th embodiment of this invention. 図16のLED光源モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the LED light source module of FIG. 図17のXVIII-XVIII線に沿う要部断面図である。FIG. 18 is an essential part cross-sectional view along the line XVIII-XVIII in FIG. 17. 図16のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 図16のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 本発明の第七実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 7th embodiment of this invention. 本発明の第八実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 8th embodiment of this invention. 図22のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 図22のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図22のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図22のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図22のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図22のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 本発明の第九実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 9th embodiment of this invention. 本発明の第十実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 10th Embodiment of this invention. 本発明の第十一実施形態に基づくLED光源モジュールを示す平面図である。It is a top view which shows the LED light source module based on 11th embodiment of this invention. 図31のLED光源モジュールを示す要部平面図である。It is a principal part top view which shows the LED light source module of FIG. 図32のXXXIII-XXXIII線に沿う要部断面図である。FIG. 33 is a main part sectional view taken along the line XXXIII-XXXIII in FIG. 32; 図31のLED光源モジュールを示す要部拡大断面図である。FIG. 32 is an enlarged cross-sectional view of a main part showing the LED light source module of FIG. 31. 図31のLED光源モジュールを示す要部拡大断面図である。FIG. 32 is an enlarged cross-sectional view of a main part showing the LED light source module of FIG. 本発明の第十二実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 12th embodiment of this invention. 図36のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 図36のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 本発明の第十三実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 13th embodiment of this invention. 図39のLED光源モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the LED light source module of FIG. 図39のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図39のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図39のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図39のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 図39のLED光源モジュールの製造方法の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the manufacturing method of the LED light source module of FIG. 本発明の第十四実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 14th embodiment of this invention. 本発明の第十五実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 15th embodiment of this invention. 本発明の第十六実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 16th embodiment of this invention. 本発明の第十七実施形態に基づくLED光源モジュールを示す要部断面図である。It is principal part sectional drawing which shows the LED light source module based on 17th embodiment of this invention. 従来のLED光源モジュールの一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the conventional LED light source module.
 以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
 図1~図5は、本発明の第一実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール101は、基板200、第一LEDチップ310、第二LEDチップ320、被覆樹脂410、封止樹脂420、ケース500、複数の単機能素子710およびコネクタ790を備えている。LED光源モジュール101は、細長い基板200に複数の第一LEDチップ310および複数の第二LEDチップ320が配置されることにより細長いバー状光源として構成されている。このようなLED光源モジュールは、平板状の導光板の側面に正対する位置に配置されることにより、この導光板から面状光を出射するために用いられる。この面状光は、たとえば液晶表示装置のバックライトとして利用される。後述する構成により、LED光源モジュール101は、白色光を出射する。 1 to 5 show an LED light source module according to the first embodiment of the present invention. The LED light source module 101 of this embodiment includes a substrate 200, a first LED chip 310, a second LED chip 320, a coating resin 410, a sealing resin 420, a case 500, a plurality of single function elements 710, and a connector 790. . The LED light source module 101 is configured as an elongated bar light source by arranging a plurality of first LED chips 310 and a plurality of second LED chips 320 on an elongated substrate 200. Such an LED light source module is used to emit planar light from the light guide plate by being disposed at a position facing the side surface of the flat light guide plate. This planar light is used as a backlight of a liquid crystal display device, for example. With the configuration described later, the LED light source module 101 emits white light.
 図1は、LED光源モジュール101の平面図であり、図2は、要部拡大平面図である。図3は、図2のIII-III線に沿うzx平面における断面図である。図4は、主に第一LEDチップ310を示す要部拡大断面図であり、図5は、主に第二LEDチップ320を示す要部拡大断面図である。なお、図2においては、理解の便宜上、被覆樹脂410および封止樹脂420を省略している。 FIG. 1 is a plan view of the LED light source module 101, and FIG. 2 is an enlarged plan view of a main part. FIG. 3 is a cross-sectional view in the zx plane along the line III-III in FIG. 4 is an enlarged cross-sectional view of the main part mainly showing the first LED chip 310, and FIG. 5 is an enlarged cross-sectional view of the main part mainly showing the second LED chip 320. In FIG. 2, the coating resin 410 and the sealing resin 420 are omitted for convenience of understanding.
 図1に示すように、基板200は、全体としてx方向に長く延びる細長形状とされている。この長手方向に沿って、複数のケース500が配置されている。本実施形態においては、それぞれのケース500は同一形状であり、後述するケース500の内部における構成も同一である。 As shown in FIG. 1, the substrate 200 as a whole has an elongated shape extending long in the x direction. A plurality of cases 500 are arranged along the longitudinal direction. In the present embodiment, each case 500 has the same shape, and the configuration inside the case 500 described later is also the same.
 図2に示すように、基板200のx方向一端寄り部分は、幅方向寸法が部分的に大となっている。この部分に、複数の単機能素子710およびコネクタ790が搭載されている。各単機能素子710は、たとえばツェナーダイオードあるいはチップ抵抗器などである。単機能素子710としてツェナーダイオードを採用する場合、単機能素子710は、たとえば第一LEDチップ310もしくは第二LEDチップ320に過大な逆電圧が印加されることを回避する機能を果たす。単機能素子710としてチップ抵抗器を採用する場合、単機能素子710は、後述する第一LEDチップ310と第二LEDチップ320との動作電圧の差を調整するために設けられている。コネクタ790は、LED光源モジュール101を、たとえば液晶表示装置に組み込む際に、電気的な接続をなすために用いられる。 As shown in FIG. 2, the width direction dimension of the portion near the one end of the substrate 200 in the x direction is partially large. A plurality of single function elements 710 and connectors 790 are mounted on this portion. Each single function element 710 is, for example, a Zener diode or a chip resistor. When a Zener diode is employed as the single function element 710, the single function element 710 functions to prevent an excessive reverse voltage from being applied to the first LED chip 310 or the second LED chip 320, for example. When a chip resistor is employed as the single function element 710, the single function element 710 is provided to adjust a difference in operating voltage between a first LED chip 310 and a second LED chip 320 described later. The connector 790 is used to make an electrical connection when the LED light source module 101 is incorporated into a liquid crystal display device, for example.
 基板200は、基材210、絶縁層230、配線層240およびレジスト層260からなる。 The substrate 200 includes a base 210, an insulating layer 230, a wiring layer 240, and a resist layer 260.
 基材210は、x方向に長く延びる略帯状の金属板であり、たとえばAl、Cu、Feなどからなる。本実施形態においては、基材210の材質としてAlが選択されており、基材210の厚さはたとえば1.0~1.5mm程度である。基材210は、主面211および裏面215を有する。主面211および裏面215は、z方向において互いに反対方向を向く。 The substrate 210 is a substantially strip-shaped metal plate that extends long in the x direction, and is made of, for example, Al, Cu, Fe, or the like. In the present embodiment, Al is selected as the material of the substrate 210, and the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm. The substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
 絶縁層230は、基材210の主面211を覆っており、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230の厚さは、たとえば100μm程度である。 The insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 . The thickness of the insulating layer 230 is, for example, about 100 μm.
 配線層240は、第一LEDチップ310および第二LEDチップ320への導通経路を形成するものであり、Cu,Ni,Pd,Auなどの金属からなる。配線層240は、絶縁層230上に形成されている。ケース500の外側の領域においては、配線層240は、レジスト層260によって覆われている。レジスト層260は、たとえば白色である。 The wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au. The wiring layer 240 is formed on the insulating layer 230. In the region outside the case 500, the wiring layer 240 is covered with a resist layer 260. The resist layer 260 is, for example, white.
 ケース500は、第一LEDチップ310および第二LEDチップ320を囲むように基板200上に形成されており、たとえば白色樹脂からなり、より具体的にはたとえば白色のエポキシ樹脂からなる。ケース500は、反射面501を有している。反射面501は、z方向に対して傾斜しており、第一LEDチップ310および第二LEDチップ320からx方向およびy方向に向かって発せられた光を反射することによりz方向上方に光を向かわせる機能を果たす。 The case 500 is formed on the substrate 200 so as to surround the first LED chip 310 and the second LED chip 320, and is made of, for example, a white resin, and more specifically, for example, of a white epoxy resin. The case 500 has a reflective surface 501. The reflection surface 501 is inclined with respect to the z direction, and reflects light emitted from the first LED chip 310 and the second LED chip 320 in the x direction and the y direction to emit light upward in the z direction. It fulfills the function to be directed.
 図2および図3に示すように、ケース500に囲まれた領域には、第一LEDチップ310と第二LEDチップ320が配置されている。 As shown in FIGS. 2 and 3, the first LED chip 310 and the second LED chip 320 are arranged in an area surrounded by the case 500.
 第一LEDチップ310は、図4に示すように第一上面電極312および第一上面電極313を有している。第一上面電極312および第一上面電極313は、たとえばAuメッキ層によって形成されており、一方がいわゆるn型電極として機能し、他方がいわゆるp型電極として機能する。第一LEDチップ310は、第一上面電極312および第一上面電極313の直下に位置する第一半導体層315と、この第一半導体層315が形成された第一チップ基板314とを有する。第一半導体層315は、たとえばGaN系半導体からなる。第一チップ基板314は、後述する第二LEDチップ320からの光を透過する材質からなり、たとえばサファイアまたはGaNからなる。このような構成により、第一LEDチップ310は、青色光を発する。なお、本発明で言う青色光は、その波長域がたとえば440nm~460nm程度である。第一上面電極312および第一上面電極313には、それぞれワイヤ390の一端がボンディングされている。各ワイヤ390の他端は、配線層240の適所にボンディングされている。 The first LED chip 310 has a first upper surface electrode 312 and a first upper surface electrode 313 as shown in FIG. The first upper surface electrode 312 and the first upper surface electrode 313 are formed of, for example, an Au plating layer, and one of them functions as a so-called n-type electrode and the other functions as a so-called p-type electrode. The first LED chip 310 includes a first semiconductor layer 315 positioned immediately below the first upper surface electrode 312 and the first upper surface electrode 313, and a first chip substrate 314 on which the first semiconductor layer 315 is formed. The first semiconductor layer 315 is made of a GaN-based semiconductor, for example. The first chip substrate 314 is made of a material that transmits light from the second LED chip 320 described later, and is made of, for example, sapphire or GaN. With such a configuration, the first LED chip 310 emits blue light. The blue light referred to in the present invention has a wavelength range of, for example, about 440 nm to 460 nm. One end of a wire 390 is bonded to each of the first upper surface electrode 312 and the first upper surface electrode 313. The other end of each wire 390 is bonded to an appropriate position on the wiring layer 240.
 基板200と第一LEDチップ310との間には、第一サブマウント基板301が設けられている。第一サブマウント基板301は、頂面301aを有している。頂面301aは、主面211と平行であり、第一LEDチップ310を支持している。第一サブマウント基板301は、たとえばSiからなり、その厚さがたとえば300μm程度である。また、頂面301aには、たとえばAlなどの金属からなるコーティングが施されている。本実施形態においては、第一LEDチップ310は、第一サブマウント基板301を介して基材210の主面211に間接的に支持されている。第一サブマウント基板301と配線層240とは、金属接合層341を介して接合されている。本実施形態においては、金属接合層341は、たとえばAgからなる。また、第一LEDチップ310と第一サブマウント基板301とは、たとえばSiあるいはエポキシ樹脂からなる接合層342を介して接合されている。 A first submount substrate 301 is provided between the substrate 200 and the first LED chip 310. The first submount substrate 301 has a top surface 301a. The top surface 301 a is parallel to the main surface 211 and supports the first LED chip 310. The first submount substrate 301 is made of, for example, Si and has a thickness of, for example, about 300 μm. The top surface 301a is coated with a metal such as Al. In the present embodiment, the first LED chip 310 is indirectly supported on the main surface 211 of the base 210 via the first submount substrate 301. The first submount substrate 301 and the wiring layer 240 are bonded via a metal bonding layer 341. In the present embodiment, the metal bonding layer 341 is made of, for example, Ag. The first LED chip 310 and the first submount substrate 301 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
 第二LEDチップ320は、図3および図5に示すように、第二チップ基板324、第二半導体層325、第二上面電極322および第二上面電極323を有する。第二チップ基板324は、たとえばサファイアからなり、その厚さがたとえば180~250μm程度である。第二半導体層325は、第二チップ基板324の図中上面に積層されており、たとえばAlGaInP系半導体材料またはGaAs系半導体材料などからなる。第二半導体層325の厚さは、たとえば0.5μm~2.0μm程度である。第二上面電極322および第二上面電極323は、第二半導体層325の図中上面に設けられており、たとえばAuメッキ層によって形成されている。第二上面電極322および第二上面電極323は、一方がn型電極として機能し、他方がp型電極として機能する。このような構成により、第二LEDチップ320は、赤色光を発する。なお、本発明で言う赤色光は、その波長域がたとえば600nm~670nm程度である。第二上面電極322および第二上面電極323には、それぞれワイヤ390の一端がボンディングされている。各ワイヤ390の他端は、配線層240の適所にボンディングされている。 As shown in FIGS. 3 and 5, the second LED chip 320 has a second chip substrate 324, a second semiconductor layer 325, a second upper surface electrode 322, and a second upper surface electrode 323. The second chip substrate 324 is made of, for example, sapphire and has a thickness of, for example, about 180 to 250 μm. The second semiconductor layer 325 is stacked on the upper surface of the second chip substrate 324 in the figure, and is made of, for example, an AlGaInP-based semiconductor material or a GaAs-based semiconductor material. The thickness of the second semiconductor layer 325 is, for example, about 0.5 μm to 2.0 μm. The second upper surface electrode 322 and the second upper surface electrode 323 are provided on the upper surface of the second semiconductor layer 325 in the drawing, and are formed of, for example, an Au plating layer. One of the second upper surface electrode 322 and the second upper surface electrode 323 functions as an n-type electrode, and the other functions as a p-type electrode. With such a configuration, the second LED chip 320 emits red light. In the present invention, the red light has a wavelength range of, for example, about 600 nm to 670 nm. One end of a wire 390 is bonded to each of the second upper surface electrode 322 and the second upper surface electrode 323. The other end of each wire 390 is bonded to an appropriate position on the wiring layer 240.
 第二LEDチップ320の製造工程においては、たとえばGaAsからなる仮基板上に、第二半導体層325が成長形成される。そして、この第二半導体層325が、上記仮基板から第二チップ基板324へと張り替えられることにより、第二LEDチップ320が得られる。サファイアからなる第二チップ基板324は、第一LEDチップ310からの青色光を透過する。 In the manufacturing process of the second LED chip 320, the second semiconductor layer 325 is grown and formed on a temporary substrate made of, for example, GaAs. Then, the second semiconductor layer 325 is replaced from the temporary substrate to the second chip substrate 324, whereby the second LED chip 320 is obtained. The second chip substrate 324 made of sapphire transmits the blue light from the first LED chip 310.
 基板200と第二LEDチップ320との間には、第二サブマウント基板302が設けられている。第二サブマウント基板302は、頂面302aを有している。頂面302aは、主面211と平行であり、第二LEDチップ320を支持している。第二サブマウント基板302は、たとえばSiからなり、その厚さがたとえば300μm程度である。また、頂面302aには、たとえばAlなどの金属からなるコーティングが施されている。本実施形態においては、第二LEDチップ320は、第二サブマウント基板302を介して基材210の主面211に間接的に支持されている。第二サブマウント基板302と配線層240とは、金属接合層341を介して接合されている。本実施形態においては、金属接合層341は、たとえばAgからなる。また、第二LEDチップ320と第二サブマウント基板302とは、たとえばSiあるいはエポキシ樹脂からなる接合層342を介して接合されている。 A second submount substrate 302 is provided between the substrate 200 and the second LED chip 320. The second submount substrate 302 has a top surface 302a. The top surface 302a is parallel to the main surface 211 and supports the second LED chip 320. The second submount substrate 302 is made of, for example, Si and has a thickness of, for example, about 300 μm. The top surface 302a is coated with a metal such as Al. In the present embodiment, the second LED chip 320 is indirectly supported on the main surface 211 of the base 210 via the second submount substrate 302. The second submount substrate 302 and the wiring layer 240 are bonded via a metal bonding layer 341. In the present embodiment, the metal bonding layer 341 is made of, for example, Ag. The second LED chip 320 and the second submount substrate 302 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
 被覆樹脂410は、第一LEDチップ310、第二LEDチップ320を除き、ケース500によって囲まれた領域を覆っている。被覆樹脂410の材質は特に限定されないが、本実施形態においては、たとえば酸化チタンが混入されたシリコーン樹脂などの白色樹脂からなる。 The coating resin 410 covers the area surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320. The material of the coating resin 410 is not particularly limited, but in the present embodiment, it is made of a white resin such as a silicone resin mixed with titanium oxide.
 図4に示すように、被覆樹脂410は、第一サブマウント基板301の側面の少なくとも一部を覆っている。この側面は、主面211が向く方向(z方向)と交差する方向を向く面の一例であり、本実施形態においては、z方向に対して垂直である方向(xy平面に含まれる方向)を向いている。また、本実施形態においては、第一サブマウント基板301の側面は、その一部あるいは全てが被覆樹脂によって覆われていることが好ましい。一方、第一サブマウント基板301の頂面301aは、被覆樹脂410から露出していることが好ましい。 As shown in FIG. 4, the coating resin 410 covers at least a part of the side surface of the first submount substrate 301. This side surface is an example of a surface that faces a direction that intersects the direction (z direction) in which the main surface 211 faces, and in the present embodiment, a direction that is perpendicular to the z direction (direction included in the xy plane). It is suitable. In the present embodiment, the side surface of the first submount substrate 301 is preferably partially or entirely covered with a coating resin. On the other hand, the top surface 301 a of the first submount substrate 301 is preferably exposed from the coating resin 410.
 図5に示すように、被覆樹脂410は、第二サブマウント基板302の側面の少なくとも一部を覆っている。この側面は、主面211が向く方向(z方向)と交差する方向を向く面の一例であり、本実施形態においては、z方向に対して垂直である方向(xy平面に含まれる方向)を向いている。また、本実施形態においては、第二サブマウント基板302の側面は、その一部あるいは全てが被覆樹脂410によって覆われていることが好ましい。一方、第二サブマウント基板302の頂面302aは、被覆樹脂410から露出していることが好ましい。 As shown in FIG. 5, the coating resin 410 covers at least a part of the side surface of the second submount substrate 302. This side surface is an example of a surface that faces a direction that intersects the direction (z direction) in which the main surface 211 faces, and in the present embodiment, a direction that is perpendicular to the z direction (direction included in the xy plane). It is suitable. In the present embodiment, the side surface of the second submount substrate 302 is preferably partially or entirely covered with the coating resin 410. On the other hand, the top surface 302 a of the second submount substrate 302 is preferably exposed from the coating resin 410.
 図3に示すように、被覆樹脂410は、その外端縁がケース500の反射面501に接している。本実施形態においては、被覆樹脂410とケース500との接合部分のうち主面211からz方向上方に最も離間した部位は、第一LEDチップ310および第二LEDチップ320のいずれの部位よりも主面211からz方向上方に離間している。すなわち、被覆樹脂410とケース500との接合部分のうち主面211からz方向上方に最も離間した部位と主面211との距離H0は、第一LEDチップ310のうち主面211から最も離間した部位と主面211との距離H1、および第二LEDチップ320のうち主面211から最も離間した部位と主面211との距離H2のいずれよりも大となっている。 As shown in FIG. 3, the outer edge of the coating resin 410 is in contact with the reflection surface 501 of the case 500. In the present embodiment, the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 in the z-direction upward is the main portion of any portion of the first LED chip 310 and the second LED chip 320. The surface 211 is spaced upward in the z direction. That is, the distance H0 between the main surface 211 and the portion of the joint portion between the coating resin 410 and the case 500 that is farthest upward in the z direction from the main surface 211 is farthest from the main surface 211 of the first LED chip 310. The distance H1 between the part and the main surface 211 and the distance H2 between the part of the second LED chip 320 farthest from the main surface 211 and the main surface 211 are larger.
 被覆樹脂410は、反射面411を有している。反射面411は、第一サブマウント基板301および第二サブマウント基板302のそれぞれの側面上端付近からケース500の反射面501に向かうほどz方向において基材210から遠ざかるようになだらかに傾斜している。 The coating resin 410 has a reflective surface 411. The reflective surface 411 is gently inclined so as to move away from the base material 210 in the z direction from the vicinity of the upper end of each side surface of the first submount substrate 301 and the second submount substrate 302 toward the reflective surface 501 of the case 500. .
 封止樹脂420は、ケース500によって囲まれた領域において、第一LEDチップ310および第二LEDチップ320を覆っている。封止樹脂420は、たとえば透明なエポキシ樹脂またはシリコーン樹脂などに蛍光材料が混入された材質からなる。この蛍光材料は、たとえば第一LEDチップ310からの青色光によって励起されることにより、緑色光を発する。なお、本発明で言う緑色光は、その波長域がたとえば500nm~565nm程度である。 The sealing resin 420 covers the first LED chip 310 and the second LED chip 320 in the region surrounded by the case 500. The sealing resin 420 is made of a material in which a fluorescent material is mixed in, for example, a transparent epoxy resin or silicone resin. This fluorescent material emits green light by being excited by blue light from the first LED chip 310, for example. The green light referred to in the present invention has a wavelength range of, for example, about 500 nm to 565 nm.
 本実施形態においては、封止樹脂420に含まれる上記蛍光材料は、硫化物系の蛍光材料である。硫化物系の蛍光材料は、カルシウムサルファイド(CaS)、ジンクサルファイド(ZnS)、ストロンチウムサルファイド(SrS)、ストロンチウムチオガレート(SrGa2S4)、および、カルシウムチオガレート(CaGa2S4)からなる群より選択される1以上の硫化物を含む。蛍光体を構成する硫化物系の蛍光材料は、Eu、Tb、Sm、Pr、Dy、およびTmのうちの少なくとも一元素がドーピングされた材料である。 In the present embodiment, the fluorescent material contained in the sealing resin 420 is a sulfide-based fluorescent material. The sulfide-based fluorescent material is one or more selected from the group consisting of calcium sulfide (CaS), zinc sulfide (ZnS), strontium sulfide (SrS), strontium thiogallate (SrGa2S4), and calcium thiogallate (CaGa2S4). Of sulfides. The sulfide-based fluorescent material constituting the phosphor is a material doped with at least one element of Eu, Tb, Sm, Pr, Dy, and Tm.
 緑色光を発する蛍光材料の場合、上記蛍光材料は、たとえば、ユーロピウムがドーピングされたストロンチウムチオガレート(SrGa24:Eu)、または、ユーロピウムがドーピングされたカルシウムチオガレート(CaGa24:Eu)よりなる。緑色光を発する蛍光材料にドーピングされる元素は、Euに限定されず、Tb、Sm、Pr、Dy、およびTmのいずれかであってもよい。 In the case of a fluorescent material that emits green light, the fluorescent material is, for example, strontium thiogallate doped with europium (SrGa 2 S 4 : Eu) or calcium thiogallate doped with europium (CaGa 2 S 4 : Eu). ). The element doped in the fluorescent material emitting green light is not limited to Eu, and may be any of Tb, Sm, Pr, Dy, and Tm.
 次に、LED光源モジュール101の作用について説明する。 Next, the operation of the LED light source module 101 will be described.
 本実施形態によれば、第一LEDチップ310から発せられた光のうちxy平面に略沿って第二LEDチップ320に向かって進行する光は、第二LEDチップ320の第二チップ基板324を透過することが可能である。このため、第一LEDチップ310からの光をより多く出射させることが可能であり、LED光源モジュール101の高輝度化あるいは色調の多彩化を図ることができる。 According to this embodiment, light traveling from the first LED chip 310 toward the second LED chip 320 substantially along the xy plane passes through the second chip substrate 324 of the second LED chip 320. It is possible to penetrate. For this reason, more light from the first LED chip 310 can be emitted, and the LED light source module 101 can have higher luminance or more diverse colors.
 第二チップ基板324は、第二LEDチップ320の大部分を占める部位である。また、第二チップ基板324の材質であるサファイアは、第一LEDチップ310からの青色光を特に透過しやすい。したがって、第一LEDチップ310からの青色光が第二チップ基板324によって吸収されることを抑制するのに合理的である。 The second chip substrate 324 occupies most of the second LED chip 320. In addition, sapphire, which is the material of the second chip substrate 324, is particularly easy to transmit blue light from the first LED chip 310. Therefore, it is reasonable to suppress the blue light from the first LED chip 310 from being absorbed by the second chip substrate 324.
 第二チップ基板324が、z方向において第一LEDチップ310と重なる位置にあることにより、第一LEDチップ310からxy平面に沿って進行してきた光を好適に透過させることができる。 Since the second chip substrate 324 is located at the position overlapping the first LED chip 310 in the z direction, the light traveling along the xy plane from the first LED chip 310 can be suitably transmitted.
 第一LEDチップ310の第一チップ基板314は、第二LEDチップ320からの赤色光を透過させことが可能である。したがって、第二LEDチップ320からの光をより多く出射させることができる。 The first chip substrate 314 of the first LED chip 310 can transmit the red light from the second LED chip 320. Therefore, more light from the second LED chip 320 can be emitted.
 封止樹脂420は、第一LEDチップ310からの光によって励起されることにより緑色光を発する。第二LEDチップ320の第二チップ基板324は、この緑色光を透過させることが可能である。これは、LED光源モジュール101からの白色光を所望の色合いとするのに有利である。 The sealing resin 420 emits green light when excited by light from the first LED chip 310. The second chip substrate 324 of the second LED chip 320 can transmit this green light. This is advantageous for making the white light from the LED light source module 101 have a desired hue.
 本実施形態によれば、第一サブマウント基板301および第二サブマウント基板302の側面は、そのほとんどが被覆樹脂410によって覆われている。第一サブマウント基板301および第二サブマウント基板302は、可視光を吸収しやすいSiからなるが、第一サブマウント基板301および第二サブマウント基板302によって第一LEDチップ310や第二LEDチップ320、あるいは封止樹脂420からの光が吸収されることを防止することができる。また、第一サブマウント基板301の頂面301aおよび第二サブマウント基板302の頂面302aにAlからなるコーティングが施されていることは、第一LEDチップ310や第二LEDチップ320、あるいは封止樹脂420からの光の吸収を阻止し、これらを反射することができるという利点がある。 According to the present embodiment, most of the side surfaces of the first submount substrate 301 and the second submount substrate 302 are covered with the coating resin 410. The first submount substrate 301 and the second submount substrate 302 are made of Si that easily absorbs visible light. The first LED chip 310 and the second LED chip are formed by the first submount substrate 301 and the second submount substrate 302. 320 or the light from the sealing resin 420 can be prevented from being absorbed. In addition, the fact that the top surface 301a of the first submount substrate 301 and the top surface 302a of the second submount substrate 302 are coated with Al indicates that the first LED chip 310, the second LED chip 320, or the sealing. There is an advantage that absorption of light from the stop resin 420 can be prevented and reflected.
 また、封止樹脂420は、硫化物からなる蛍光材料を含んでいる。このような硫化物は、鮮やかな緑色光を発するのに良好な特性を有する一方、多くの金属を硫化させる点が懸念される。本実施形態においては、硫化を受けうる配線層240が、被覆樹脂410によって覆われており、封止樹脂420からは隔離されている。このため、配線層240は硫化を受けるおそれが非常に少ない。 The sealing resin 420 includes a fluorescent material made of sulfide. While such a sulfide has good characteristics for emitting vivid green light, there is a concern that many metals are sulfided. In the present embodiment, the wiring layer 240 that can undergo sulfuration is covered with the coating resin 410 and is isolated from the sealing resin 420. For this reason, the wiring layer 240 is very unlikely to be subjected to sulfurization.
 被覆樹脂410は、ケース500の反射面501の少なくとも一部を覆っている。特に、距離H0が、距離H1および距離H2に対して上述した関係とされることにより、被覆樹脂410はケース500の反射面501の大部分を覆う構成となっている。これにより、第一LEDチップ310からの青色光、第二LEDチップ320からの赤色光および封止樹脂420からの緑色光がケース500に到達することを抑制することができる。ケース500の材質として好適なエポキシ樹脂は、被覆樹脂410の材質として好適なシリコーン樹脂よりも光による劣化が顕著である。本実施形態によれば、ケース500が光によって劣化されることを抑制可能であり、より長期間においてLED光源モジュール101を適切に発光させることができる。 The covering resin 410 covers at least a part of the reflection surface 501 of the case 500. In particular, since the distance H0 has the relationship described above with respect to the distance H1 and the distance H2, the coating resin 410 is configured to cover most of the reflective surface 501 of the case 500. Thereby, blue light from the first LED chip 310, red light from the second LED chip 320, and green light from the sealing resin 420 can be prevented from reaching the case 500. The epoxy resin suitable as the material of the case 500 is more significantly deteriorated by light than the silicone resin suitable as the material of the coating resin 410. According to this embodiment, it is possible to suppress the case 500 from being deteriorated by light, and the LED light source module 101 can appropriately emit light over a longer period.
 図6~図15は、本発明に係るLED光源モジュールの他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 6 to 15 show other embodiments of the LED light source module according to the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
 図6および図7は、本発明の第二実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール102は、基板200の構成が上述した実施形態と異なっている。 6 and 7 show an LED light source module according to the second embodiment of the present invention. The LED light source module 102 of the present embodiment is different from the above-described embodiment in the configuration of the substrate 200.
 基板200は、基材210、メッキ層220、絶縁層230および配線層240からなる。 The substrate 200 includes a base 210, a plating layer 220, an insulating layer 230, and a wiring layer 240.
 基材210は、x方向およびy方向に広がり、たとえばx方向に長く延びる長矩形状の金属板であり、たとえばAl、Cu、Feなどからなる。本実施形態においては、基材210の材質としてAlが選択されており、基材210の厚さはたとえば1.0~1.5mm程度である。基材210は、主面211および裏面215を有する。主面211および裏面215は、z方向において互いに反対方向を向く。基材210には、隆起部212および陥没部216が形成されている。 The substrate 210 is a long rectangular metal plate that extends in the x direction and the y direction and extends in the x direction, for example, and is made of, for example, Al, Cu, Fe, or the like. In the present embodiment, Al is selected as the material of the substrate 210, and the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm. The substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction. A raised portion 212 and a depressed portion 216 are formed on the substrate 210.
 隆起部212は、主面211よりもz方向上方に隆起した部位であり、本実施形態においては、頂面213および傾斜面214を有する。頂面213は、隆起部212のうちz方向上方にもっとも突出した部位の表面であり、主面211と平行である。本実施形態においては、頂面213は、矩形状である。傾斜面214は、主面211と頂面213とに繋がっており、xy平面に対して傾斜している。隆起部212の主面211からの隆起高さは、たとえば150~200μmである。 The raised portion 212 is a portion raised above the main surface 211 in the z direction, and has a top surface 213 and an inclined surface 214 in the present embodiment. The top surface 213 is the surface of the protruding portion 212 that protrudes most upward in the z direction, and is parallel to the main surface 211. In the present embodiment, the top surface 213 has a rectangular shape. The inclined surface 214 is connected to the main surface 211 and the top surface 213, and is inclined with respect to the xy plane. The height of the raised portion 212 from the main surface 211 is, for example, 150 to 200 μm.
 陥没部216は、裏面215よりもz方向上方に凹んだ部位であり、z方向視において隆起部212と重なっている。本実施形態においては、陥没部216は、底面217を有している。底面217は、裏面215と平行であり、本実施形態においては、矩形状である。z方向視において、底面217は、隆起部212に内包されている。また底面217と頂面213とは、z方向視においてそれぞれの外縁が互いにほとんど重なっているか、底面217の外縁が頂面213の外縁に対して若干内側に位置している。陥没部216の裏面215からの陥没深さは、たとえば150~200μmである。 The depressed portion 216 is a portion that is recessed above the back surface 215 in the z direction, and overlaps the raised portion 212 when viewed in the z direction. In the present embodiment, the depressed portion 216 has a bottom surface 217. The bottom surface 217 is parallel to the back surface 215 and has a rectangular shape in the present embodiment. When viewed in the z direction, the bottom surface 217 is included in the raised portion 212. Further, the bottom surface 217 and the top surface 213 have their outer edges almost overlapping each other when viewed in the z direction, or the outer edge of the bottom surface 217 is located slightly inside the outer edge of the top surface 213. The depression depth from the back surface 215 of the depression 216 is, for example, 150 to 200 μm.
 メッキ層220は、隆起部212の頂面213を覆っており、Cu,Ni,Pd,Auなどの金属からなる。本実施形態においては、メッキ層220は、Ni,Pd,Auが積層されている。 The plated layer 220 covers the top surface 213 of the raised portion 212 and is made of a metal such as Cu, Ni, Pd, or Au. In the present embodiment, the plating layer 220 is laminated with Ni, Pd, and Au.
 絶縁層230は、基材210の主面211を覆っており、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230には、開口231が形成されている。開口231は、隆起部212の少なくとも一部を露出させるために設けられており、本実施形態においては、隆起部212の頂面213を露出させている。一方、隆起部212の傾斜面214は、絶縁層230によって覆われている。絶縁層230の厚さは、たとえば100μm程度である。 The insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 . An opening 231 is formed in the insulating layer 230. The opening 231 is provided to expose at least a part of the raised portion 212, and in the present embodiment, the top surface 213 of the raised portion 212 is exposed. On the other hand, the inclined surface 214 of the raised portion 212 is covered with the insulating layer 230. The thickness of the insulating layer 230 is, for example, about 100 μm.
 配線層240は、第一LEDチップ310および第二LEDチップ320への導通経路を形成するものであり、Cu,Ni,Pd,Auなどの金属からなる。配線層240は、絶縁層230上に形成されており、本実施形態においては、絶縁層230のうち主面211を覆う平坦な部位に形成されている。図6に示すように、本実施形態においては、配線層240は、下地層251とメッキ層252とを有している。下地層251は、絶縁層230上に形成されており、たとえばCu箔が貼り付けられた層である。なお、下地層251をメッキによって形成してもよい。メッキ層252は、下地層251上に形成されており、メッキ層220と同様にNi,Pd,Auが積層されている。後述するように、本実施形態においては、配線層240のメッキ層252と基板200のメッキ層220とは同一の工程によって一括して形成される。 The wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au. The wiring layer 240 is formed on the insulating layer 230. In the present embodiment, the wiring layer 240 is formed on a flat portion of the insulating layer 230 that covers the main surface 211. As shown in FIG. 6, in the present embodiment, the wiring layer 240 has a base layer 251 and a plating layer 252. The underlayer 251 is formed on the insulating layer 230 and is a layer to which, for example, a Cu foil is attached. Note that the base layer 251 may be formed by plating. The plating layer 252 is formed on the base layer 251, and Ni, Pd, and Au are laminated similarly to the plating layer 220. As will be described later, in the present embodiment, the plating layer 252 of the wiring layer 240 and the plating layer 220 of the substrate 200 are collectively formed by the same process.
 第一サブマウント基板301および第二サブマウント基板302は、メッキ層220を介して、ともに隆起部212の頂面213に支持されている。第一サブマウント基板301および第二サブマウント基板302とメッキ層220とは、金属接合層341によって接合されている。第一LEDチップ310に接続された一方のワイヤ390は、図6においてy方向手前もしくは奥方に位置する配線層240の図示しない適所にボンディングされている。また、第二LEDチップ320に接続された一方のワイヤ390は、図6においてy方向手前もしくは奥方に位置する配線層240の図示しない適所にボンディングされている。 The first submount substrate 301 and the second submount substrate 302 are both supported by the top surface 213 of the raised portion 212 via the plating layer 220. The first submount substrate 301 and the second submount substrate 302 and the plating layer 220 are bonded together by a metal bonding layer 341. One wire 390 connected to the first LED chip 310 is bonded to an appropriate position (not shown) of the wiring layer 240 located in front of or behind the y direction in FIG. Further, one wire 390 connected to the second LED chip 320 is bonded to an appropriate position (not shown) of the wiring layer 240 located in front of or behind the y direction in FIG.
 次に、LED光源モジュール102の製造方法の一例について、図8~図12を参照しつつ以下に説明する。 Next, an example of a method for manufacturing the LED light source module 102 will be described below with reference to FIGS.
 まず、図8に示すように金属板210’を用意する。金属板210’は、たとえばAl、Cu、Feなどからなる。本実施形態においては、金属板210’の材質としてAlが選択されており、金属板210’の厚さはたとえば1.0~1.5mm程度である。金属板210’は、z方向において互いに反対方向を向く主面211’および裏面215’を有する。次いで、主面211’を覆うように絶縁層230’を形成する。絶縁層230’は、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230’の厚さは、たとえば100μm程度である。次いで、絶縁層230’を覆うように下地層251’を形成する。下地層251’の形成は、たとえば絶縁層230’上にCu箔を貼り付けることによってなされる。 First, a metal plate 210 ′ is prepared as shown in FIG. The metal plate 210 ′ is made of, for example, Al, Cu, Fe or the like. In the present embodiment, Al is selected as the material of the metal plate 210 ′, and the thickness of the metal plate 210 ′ is, for example, about 1.0 to 1.5 mm. The metal plate 210 ′ has a main surface 211 ′ and a back surface 215 ′ that face in opposite directions in the z direction. Next, an insulating layer 230 ′ is formed so as to cover the main surface 211 ′. The insulating layer 230 ′ is made of an insulating resin or an insulating material such as SiO 2 . The thickness of the insulating layer 230 ′ is, for example, about 100 μm. Next, a base layer 251 ′ is formed so as to cover the insulating layer 230 ′. The underlayer 251 ′ is formed, for example, by attaching a Cu foil on the insulating layer 230 ′.
 次いで、下地層251’にたとえばエッチングを用いたパターニングを施すことにより、図9に示すように下地層251を形成する。なお、あらかじめパターンニングが施されたCu箔を絶縁層230’に貼り付けることによって下地層251を形成してもよい。次いで、図10に示すように、金型610,620を用いて金属板210’を加工する。金型610は、上面が矩形状である。金型620は、矩形状の凹部621を有している。凹部621は、z方向視において金型610の上面よりも若干大となっている。金属板210’の裏面215’側に金型610を配置し、金属板210’の主面211’側に金型620を配置する。そして、金型610と金型620とを接近させることにより、金属板210’に金型610の上面を嵌入させる。これにより、隆起部212と陥没部216とを有する基材210が得られる。金型610の上面が接していた部位が陥没部216の底面217となる。また、金型610に対応して金型620の凹部621に進入した部位の表面が頂面213となる。この際、本実施形態においては、下地層251は、金型620のうち凹部621を避けた位置と当接しており、変形されない。絶縁層230’は、隆起部212に沿った形状に変形される。 Next, the base layer 251 'is patterned by using, for example, etching to form the base layer 251 as shown in FIG. Note that the base layer 251 may be formed by attaching a Cu foil that has been previously patterned to the insulating layer 230 ′. Next, as shown in FIG. 10, the metal plate 210 ′ is processed using the molds 610 and 620. The mold 610 has a rectangular top surface. The mold 620 has a rectangular recess 621. The recess 621 is slightly larger than the upper surface of the mold 610 when viewed in the z direction. A metal mold 610 is disposed on the back surface 215 ′ side of the metal plate 210 ′, and a metal mold 620 is disposed on the main surface 211 ′ side of the metal plate 210 ′. Then, the upper surface of the mold 610 is fitted into the metal plate 210 ′ by bringing the mold 610 and the mold 620 closer to each other. Thereby, the base material 210 which has the protruding part 212 and the depression part 216 is obtained. A portion where the upper surface of the mold 610 is in contact becomes a bottom surface 217 of the depressed portion 216. Further, the surface of the portion that has entered the recess 621 of the mold 620 corresponding to the mold 610 becomes the top surface 213. At this time, in this embodiment, the base layer 251 is in contact with a position where the concave portion 621 is avoided in the mold 620 and is not deformed. The insulating layer 230 ′ is deformed into a shape along the raised portion 212.
 次いで、絶縁層230’の一部を除去することにより、図11に示すように絶縁層230を形成する。絶縁層230’の一部を除去する処理は、たとえばスキージ630を用いてなされる。スキージ630の下端縁は、y方向に平行に長く延びている。このスキージ630の下端縁をz方向において頂面213と同じか、若干下方に位置させた状態で、スキージ630をx方向に移動させる。これにより、絶縁層230’のうち頂面213よりもz方向上方に位置する部分がスキージ630によって除去される。この結果、頂面213のみを露出させる開口231を有する絶縁層230が形成される。本実施形態においては、下地層251は、頂面213よりも十分にz方向下方に位置するため、スキージ630には接触しない。 Next, by removing a part of the insulating layer 230 ', the insulating layer 230 is formed as shown in FIG. The process of removing a part of the insulating layer 230 ′ is performed using, for example, a squeegee 630. The lower end edge of the squeegee 630 extends long in parallel to the y direction. The squeegee 630 is moved in the x direction while the lower edge of the squeegee 630 is located at the same level as or slightly below the top surface 213 in the z direction. As a result, the portion of the insulating layer 230 ′ located above the top surface 213 in the z direction is removed by the squeegee 630. As a result, the insulating layer 230 having the opening 231 exposing only the top surface 213 is formed. In the present embodiment, the base layer 251 is located sufficiently below the top surface 213 in the z direction, and thus does not contact the squeegee 630.
 次いで、図12に示すように、メッキ層220およびメッキ層252を形成する。メッキ層220およびメッキ層252は、たとえば電解メッキによって形成される。このため、導電体である基材210の頂面213および下地層251を覆うように、ともにNi,Pd,Auからなるメッキ層220および下地層251が形成され、絶縁層230上には形成されない。以上の工程を経ることにより、基材210、メッキ層220、絶縁層230および配線層240からなる基板200が得られる。 Next, as shown in FIG. 12, a plating layer 220 and a plating layer 252 are formed. The plated layer 220 and the plated layer 252 are formed by, for example, electrolytic plating. Therefore, the plating layer 220 and the base layer 251 made of Ni, Pd, Au are formed so as to cover the top surface 213 and the base layer 251 of the base material 210, which is a conductor, and is not formed on the insulating layer 230. . Through the above steps, the substrate 200 including the base 210, the plating layer 220, the insulating layer 230, and the wiring layer 240 is obtained.
 この後は、ケース500の形成、第一サブマウント基板301および第一LEDチップ310の搭載、第二サブマウント基板302および第二LEDチップ320の搭載、被覆樹脂410の形成、ワイヤ390のボンディングおよび封止樹脂420の形成を経ることにより、LED光源モジュール102が得られる。 Thereafter, the case 500 is formed, the first submount substrate 301 and the first LED chip 310 are mounted, the second submount substrate 302 and the second LED chip 320 are mounted, the coating resin 410 is formed, the wire 390 is bonded, The LED light source module 102 is obtained through the formation of the sealing resin 420.
 このような実施形態によっても、LED光源モジュール102の高輝度化および色調の多彩化を図ることができる。また、第一サブマウント基板301および第二サブマウント基板302は、絶縁層230を介することなく隆起部212に支持されている。これにより、第一LEDチップ310および第二LEDチップ320からの伝熱が絶縁層230によって妨げられることがない。したがって、第一LEDチップ310および第二LEDチップ320からの放熱を促進することが可能であり、LED光源モジュール102の高輝度化を図ることができる。 Also according to such an embodiment, the LED light source module 102 can be increased in brightness and color tone. Further, the first submount substrate 301 and the second submount substrate 302 are supported by the raised portions 212 without the insulating layer 230 interposed therebetween. Thereby, the heat transfer from the first LED chip 310 and the second LED chip 320 is not hindered by the insulating layer 230. Therefore, heat radiation from the first LED chip 310 and the second LED chip 320 can be promoted, and the brightness of the LED light source module 102 can be increased.
 配線層240は、絶縁層230上に形成されており、隆起部212(基材210)を避けた位置に配置されている。このため、金属からなる基材210と配線層240とが不当に導通することを回避することができる。 The wiring layer 240 is formed on the insulating layer 230 and is disposed at a position avoiding the raised portion 212 (base material 210). For this reason, it can avoid that the base material 210 and the wiring layer 240 which consist of a metal are unjustly conducted.
 隆起部212のうち頂面213が絶縁層230から露出しており、頂面213以外の部分は絶縁層230に覆われている。これにより、主面211と平行である頂面213に第一サブマウント基板301および第一LEDチップ310と第二サブマウント基板302および第二LEDチップ320を搭載する作業を容易に行うことができる。なお、絶縁層230の除去方法によっては、頂面213のみならず、傾斜部214も絶縁層から露出する場合がある。 The top surface 213 of the raised portion 212 is exposed from the insulating layer 230, and portions other than the top surface 213 are covered with the insulating layer 230. Thereby, the operation | work which mounts the 1st submount board | substrate 301, the 1st LED chip 310, the 2nd submount board | substrate 302, and the 2nd LED chip 320 on the top surface 213 parallel to the main surface 211 can be performed easily. . Note that depending on the method of removing the insulating layer 230, not only the top surface 213 but also the inclined portion 214 may be exposed from the insulating layer.
 隆起部212の裏側に位置する陥没部216を有する構成は、図10に示すように金属板210’の裏面215’側から金型610を押圧することにより容易に隆起部212を形成することができるという利点がある。 In the configuration having the depressed portion 216 located on the back side of the raised portion 212, the raised portion 212 can be easily formed by pressing the mold 610 from the back surface 215 ′ side of the metal plate 210 ′ as shown in FIG. There is an advantage that you can.
 図13は、本発明の第三実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール103は、第一サブマウント基板301および第二サブマウント基板302を備えていない。このため、第一LEDチップ310および第二LEDチップ320は、金属接合層341を介してメッキ層220にそれぞれ接合されている。 FIG. 13 shows an LED light source module according to the third embodiment of the present invention. The LED light source module 103 of this embodiment does not include the first submount substrate 301 and the second submount substrate 302. Therefore, the first LED chip 310 and the second LED chip 320 are bonded to the plating layer 220 via the metal bonding layer 341, respectively.
 被覆樹脂410は、配線層240および絶縁層230を覆っている一方、隆起部212の頂面213に形成されたメッキ層220を露出させている。このため、メッキ層220は、封止樹脂420と接している。 The coating resin 410 covers the wiring layer 240 and the insulating layer 230, while exposing the plating layer 220 formed on the top surface 213 of the raised portion 212. For this reason, the plating layer 220 is in contact with the sealing resin 420.
 本実施形態においては、メッキ層220は、基材210側から順に積層されたNi層、Pd層およびAu層からなる。上記Ni層は、頂面213に直接形成されており、厚さがたとえば5μm程度である。上記Pd層は上記Ni層上に形成されており、厚さがたとえば0.1μm程度である。上記Au層は上記Pd層上に形成されており、厚さがたとえば0.1μm程度である。同様に、配線層240のメッキ層252は、下地層251側から順に積層されたNi層、Pd層およびAu層からなる。これらのNi層、Pd層およびAu層の構成は、メッキ層220と同様である。 In the present embodiment, the plating layer 220 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the substrate 210 side. The Ni layer is formed directly on the top surface 213 and has a thickness of about 5 μm, for example. The Pd layer is formed on the Ni layer and has a thickness of about 0.1 μm, for example. The Au layer is formed on the Pd layer and has a thickness of about 0.1 μm, for example. Similarly, the plating layer 252 of the wiring layer 240 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the base layer 251 side. The configurations of these Ni layer, Pd layer, and Au layer are the same as those of the plating layer 220.
 このような実施形態によっても、LED光源モジュール103の高輝度化および色調の多彩化を図ることができる。本実施形態においては、メッキ層220が封止樹脂420と接触する。しかし、メッキ層220は、その表層が硫化に対する耐性が比較的高いAu層とされている。したがって、メッキ層220が封止樹脂420の蛍光材料によって硫化されることを防止することができる。 Also according to such an embodiment, the LED light source module 103 can be increased in brightness and color tone. In the present embodiment, the plating layer 220 is in contact with the sealing resin 420. However, the plating layer 220 is an Au layer whose surface layer has a relatively high resistance to sulfidation. Therefore, the plating layer 220 can be prevented from being sulfided by the fluorescent material of the sealing resin 420.
 図14は、本発明の第四実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール104は、上述したLED光源モジュール101と比較して、被覆樹脂410を備えない点が主な相違点である。 FIG. 14 shows an LED light source module according to the fourth embodiment of the present invention. The LED light source module 104 of this embodiment is mainly different from the LED light source module 101 described above in that the coating resin 410 is not provided.
 被覆樹脂410を備えないため、配線層240および絶縁層230は、封止樹脂420と接している。 Since the coating resin 410 is not provided, the wiring layer 240 and the insulating layer 230 are in contact with the sealing resin 420.
 本実施形態においては、配線層240は、基材210側から順に積層されたNi層、Pd層およびAu層からなる。上記Ni層は、頂面213に直接形成されており、厚さがたとえば5μm程度である。上記Pd層は上記Ni層上に形成されており、厚さがたとえば0.1μm程度である。上記Au層は上記Pd層上に形成されており、厚さがたとえば0.1μm程度である。また、上記Ni層と絶縁層230との間にCu層を設けることが好ましい。 In the present embodiment, the wiring layer 240 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the substrate 210 side. The Ni layer is formed directly on the top surface 213 and has a thickness of about 5 μm, for example. The Pd layer is formed on the Ni layer and has a thickness of about 0.1 μm, for example. The Au layer is formed on the Pd layer and has a thickness of about 0.1 μm, for example. Further, it is preferable to provide a Cu layer between the Ni layer and the insulating layer 230.
 このような実施形態によっても、LED光源モジュール104の高輝度化および色調の多彩化を図ることができる。被覆樹脂410を備えない構成であっても、配線層240およびメッキ層220の表層がAu層とされている。これにより、配線層240およびメッキ層220が封止樹脂420によって硫化されることを防止することができる。 Also according to such an embodiment, the LED light source module 104 can be increased in brightness and color tone. Even in the configuration without the coating resin 410, the surface layers of the wiring layer 240 and the plating layer 220 are Au layers. Thereby, the wiring layer 240 and the plating layer 220 can be prevented from being sulfided by the sealing resin 420.
 図15は、本発明の第五実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール105は、比較的小型のモジュールとして構成されることにより、電子機器の点光源として用いられるものである。この点において、上述したLED光源モジュール101~104が、x方向に長く延びるバー状光源として構成されている点と異なる。 FIG. 15 shows an LED light source module according to the fifth embodiment of the present invention. The LED light source module 105 of this embodiment is used as a point light source of an electronic device by being configured as a relatively small module. In this respect, the LED light source modules 101 to 104 described above are different from those configured as bar-shaped light sources extending in the x direction.
 本実施形態においては、リード270およびリード280によって本発明で言う導通支持部材が構成されている。リード270およびリード280は、金属からなり、たとえば母材としてのCu板にNiやAuなどのメッキが施されている。 In this embodiment, the lead support 270 and the lead 280 constitute a conduction support member referred to in the present invention. The lead 270 and the lead 280 are made of metal, for example, a Cu plate as a base material is plated with Ni, Au, or the like.
 リード270は、主面271および端子部275を有している。主面271は、z方向上方を向いており、第二サブマウント基板302を介して第二LEDチップ320を支持している。端子部275は、LED光源モジュール105を図示しない回路基板などに実装するために用いられる。 The lead 270 has a main surface 271 and a terminal portion 275. The main surface 271 faces upward in the z direction, and supports the second LED chip 320 via the second submount substrate 302. The terminal portion 275 is used for mounting the LED light source module 105 on a circuit board (not shown).
 リード280は、主面281および端子部285を有している。主面281は、z方向上方を向いており第一サブマウント基板301を介して第一LEDチップ310を支持している。端子部285は、LED光源モジュール105を図示しない回路基板などに実装するために用いられる。 The lead 280 has a main surface 281 and a terminal portion 285. The main surface 281 faces upward in the z direction and supports the first LED chip 310 via the first submount substrate 301. The terminal portion 285 is used for mounting the LED light source module 105 on a circuit board (not shown).
 ケース500は、リード270およびリード280の一部ずつを覆っており、これらを相対的に固定する役割を果たしている。 The case 500 covers a part of each of the lead 270 and the lead 280 and plays a role of relatively fixing them.
 このような実施形態によっても、LED光源モジュール105の高輝度化および色調の多彩化を図ることができる。 Also according to such an embodiment, the LED light source module 105 can be increased in luminance and color tone.
 図16~図20は、本発明の第六実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール106は、基板200、第一LEDチップ310、第二LEDチップ320、被覆樹脂410、封止樹脂420、ケース500、複数の単機能素子710およびコネクタ790を備えている。LED光源モジュール106は、細長い基板200に複数の第一LEDチップ310および複数の第二LEDチップ320が配置されることにより細長いバー状光源として構成されている。このようなLED光源モジュールは、平板状の導光板の側面に正対する位置に配置されることにより、この導光板から面状光を出射するために用いられる。この面状光は、たとえば液晶表示装置のバックライトとして利用される。後述する構成により、LED光源モジュール106は、白色光を出射する。 16 to 20 show an LED light source module according to the sixth embodiment of the present invention. The LED light source module 106 of this embodiment includes a substrate 200, a first LED chip 310, a second LED chip 320, a coating resin 410, a sealing resin 420, a case 500, a plurality of single function elements 710 and a connector 790. . The LED light source module 106 is configured as an elongated bar light source by arranging a plurality of first LED chips 310 and a plurality of second LED chips 320 on an elongated substrate 200. Such an LED light source module is used to emit planar light from the light guide plate by being disposed at a position facing the side surface of the flat light guide plate. This planar light is used as a backlight of a liquid crystal display device, for example. With the configuration described later, the LED light source module 106 emits white light.
 図16は、LED光源モジュール106の平面図であり、図17は、要部拡大平面図である。図18は、図17のXVIII-XVIII線に沿うzx平面における断面図である。図19は、主に第一LEDチップ310を示す要部拡大断面図であり、図20は、主に第二LEDチップ320を示す要部拡大断面図である。なお、図17においては、理解の便宜上、被覆樹脂410および封止樹脂420を省略している。 FIG. 16 is a plan view of the LED light source module 106, and FIG. 17 is an enlarged plan view of a main part. 18 is a cross-sectional view in the zx plane along the line XVIII-XVIII in FIG. FIG. 19 is an enlarged cross-sectional view of main parts mainly showing the first LED chip 310, and FIG. 20 is an enlarged cross-sectional view showing main parts mainly showing the second LED chip 320. In FIG. 17, the coating resin 410 and the sealing resin 420 are omitted for convenience of understanding.
 図16に示すように、基板200は、全体としてx方向に長く延びる細長形状とされている。この長手方向に沿って、複数のケース500が配置されている。本実施形態においては、それぞれのケース500は同一形状であり、後述するケース500の内部における構成も同一である。 As shown in FIG. 16, the substrate 200 as a whole has an elongated shape extending long in the x direction. A plurality of cases 500 are arranged along the longitudinal direction. In the present embodiment, each case 500 has the same shape, and the configuration inside the case 500 described later is also the same.
 図17に示すように、基板200のx方向一端寄り部分は、幅方向寸法が部分的に大となっている。この部分に、複数の単機能素子710およびコネクタ790が搭載されている。各単機能素子710は、たとえばツェナーダイオードあるいはチップ抵抗器などである。単機能素子710としてツェナーダイオードを採用する場合、単機能素子710は、たとえば第一LEDチップ310もしくは第二LEDチップ320に過大な逆電圧が印加されることを回避する機能を果たす。単機能素子710としてチップ抵抗器を採用する場合、後述する第一LEDチップ310と第二LEDチップ320との動作電圧の差を調整するために設けられている。コネクタ790は、LED光源モジュール106を、たとえば液晶表示装置に組み込む際に、電気的な接続をなすために用いられる。 As shown in FIG. 17, the width direction dimension of the portion near the one end of the substrate 200 in the x direction is partially large. A plurality of single function elements 710 and connectors 790 are mounted on this portion. Each single function element 710 is, for example, a Zener diode or a chip resistor. When a Zener diode is employed as the single function element 710, the single function element 710 functions to prevent an excessive reverse voltage from being applied to the first LED chip 310 or the second LED chip 320, for example. When a chip resistor is employed as the single function element 710, it is provided to adjust a difference in operating voltage between a first LED chip 310 and a second LED chip 320, which will be described later. The connector 790 is used to make an electrical connection when the LED light source module 106 is incorporated into, for example, a liquid crystal display device.
 基板200は、基材210、絶縁層230、配線層240およびレジスト層260からなる。 The substrate 200 includes a base 210, an insulating layer 230, a wiring layer 240, and a resist layer 260.
 基材210は、x方向に長く延びる略帯状の金属板であり、たとえばAl、Cu、Feなどからなる。本実施形態においては、基材210の材質としてAlが選択されており、基材210の厚さはたとえば1.0~1.5mm程度である。基材210は、主面211および裏面215を有する。主面211および裏面215は、z方向において互いに反対方向を向く。 The substrate 210 is a substantially strip-shaped metal plate that extends long in the x direction, and is made of, for example, Al, Cu, Fe, or the like. In the present embodiment, Al is selected as the material of the substrate 210, and the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm. The substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
 絶縁層230は、基材210の主面211を覆っており、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230の厚さは、たとえば100μm程度である。 The insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 . The thickness of the insulating layer 230 is, for example, about 100 μm.
 配線層240は、第一LEDチップ310および第二LEDチップ320への導通経路を形成するものであり、Cu,Ni,Pd,Auなどの金属からなる。配線層240は、絶縁層230上に形成されている。ケース500の外側の領域においては、配線層240は、レジスト層260によって覆われている。レジスト層260は、たとえば白色である。 The wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au. The wiring layer 240 is formed on the insulating layer 230. In the region outside the case 500, the wiring layer 240 is covered with a resist layer 260. The resist layer 260 is, for example, white.
 ケース500は、第一LEDチップ310および第二LEDチップ320を囲むように基板200上に形成されており、たとえば白色樹脂からなり、より具体的にはたとえば白色のエポキシ樹脂からなる。ケース500は、反射面501を有している。反射面501は、z方向に対して傾斜しており、第一LEDチップ310および第二LEDチップ320からx方向およびy方向に向かって発せられた光を反射することによりz方向上方に向かわせる機能を果たす。 The case 500 is formed on the substrate 200 so as to surround the first LED chip 310 and the second LED chip 320, and is made of, for example, a white resin, and more specifically, for example, of a white epoxy resin. The case 500 has a reflective surface 501. The reflecting surface 501 is inclined with respect to the z direction, and reflects light emitted from the first LED chip 310 and the second LED chip 320 in the x direction and the y direction to be directed upward in the z direction. Fulfills the function.
 図17および図18に示すように、ケース500に囲まれた領域には、第一LEDチップ310と第二LEDチップ320が配置されている。 As shown in FIGS. 17 and 18, the first LED chip 310 and the second LED chip 320 are arranged in an area surrounded by the case 500.
 第一LEDチップ310は、図19に示すように上面電極312および上面電極313を有している。上面電極312および上面電極313は、たとえばAuメッキ層によって形成されており、一方がいわゆるn型電極として機能し、他方がいわゆるp型電極として機能する。第一LEDチップ310は、たとえば上面電極312および上面電極313の直下に位置する半導体層と、この半導体層が形成されたたとえばサファイア基板とを有する。この半導体層は、たとえばGaN系半導体からなる。このような構成により、第一LEDチップ310は、青色光を発する。なお、本発明で言う青色光は、その波長域がたとえば440nm~460nm程度である。上面電極312および上面電極313には、それぞれワイヤ390の一端がボンディングされている。各ワイヤ390の他端は、配線層240の適所にボンディングされている。 The first LED chip 310 has an upper surface electrode 312 and an upper surface electrode 313 as shown in FIG. The upper surface electrode 312 and the upper surface electrode 313 are formed of, for example, an Au plating layer, and one of them functions as a so-called n-type electrode and the other functions as a so-called p-type electrode. The first LED chip 310 includes, for example, a semiconductor layer located immediately below the upper surface electrode 312 and the upper surface electrode 313 and, for example, a sapphire substrate on which the semiconductor layer is formed. This semiconductor layer is made of, for example, a GaN-based semiconductor. With such a configuration, the first LED chip 310 emits blue light. The blue light referred to in the present invention has a wavelength range of, for example, about 440 nm to 460 nm. One end of a wire 390 is bonded to each of the upper surface electrode 312 and the upper surface electrode 313. The other end of each wire 390 is bonded to an appropriate position on the wiring layer 240.
 基板200と第一LEDチップ310との間には、サブマウント基板301が設けられている。サブマウント基板301は、頂面301aを有している。頂面301aは、主面211と平行であり、第一LEDチップ310を支持している。サブマウント基板301は、たとえばSiからなり、その厚さがたとえば300μm程度である。本実施形態においては、第一LEDチップ310は、サブマウント基板301を介して基材210の主面211に間接的に支持されている。サブマウント基板301と配線層240とは、金属接合層341を介して接合されている。本実施形態においては、金属接合層341は、たとえばAgからなる。また、第一LEDチップ310とサブマウント基板301とは、たとえばSiあるいはエポキシ樹脂からなる接合層342を介して接合されている。本実施形態においては、サブマウント基板301によって本発明で言う台座部が構成されている。 A submount substrate 301 is provided between the substrate 200 and the first LED chip 310. The submount substrate 301 has a top surface 301a. The top surface 301 a is parallel to the main surface 211 and supports the first LED chip 310. The submount substrate 301 is made of, for example, Si and has a thickness of, for example, about 300 μm. In the present embodiment, the first LED chip 310 is indirectly supported on the main surface 211 of the base 210 via the submount substrate 301. The submount substrate 301 and the wiring layer 240 are bonded via a metal bonding layer 341. In the present embodiment, the metal bonding layer 341 is made of, for example, Ag. The first LED chip 310 and the submount substrate 301 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin. In the present embodiment, the submount substrate 301 constitutes a pedestal portion referred to in the present invention.
 第二LEDチップ320は、図18および図20に示すように、チップ基板323、半導体層324、下面電極321および上面電極322を有する。チップ基板323は、たとえばGaAsからなり、その厚さがたとえば180~250μm程度である。半導体層324は、チップ基板323の図中上面に積層されており、たとえばGaAs系の半導体材料からなる。半導体層324の厚さは、たとえば0.5μm~2.0μm程度である。下面電極321は、チップ基板323の図中下面に設けられており、たとえばn型電極として機能する。下面電極321は、たとえばAuメッキ層によって形成されている。上面電極322は、半導体層324の図中上面に設けられており、たとえばp型電極として機能する。上面電極322は、たとえばAuメッキ層によって形成されている。このような構成により、第二LEDチップ320は、赤色光を発する。なお、本発明で言う赤色光は、その波長域がたとえば600nm~670nm程度である。 The second LED chip 320 includes a chip substrate 323, a semiconductor layer 324, a lower surface electrode 321 and an upper surface electrode 322 as shown in FIGS. The chip substrate 323 is made of, for example, GaAs and has a thickness of, for example, about 180 to 250 μm. The semiconductor layer 324 is stacked on the upper surface of the chip substrate 323 in the figure, and is made of, for example, a GaAs-based semiconductor material. The thickness of the semiconductor layer 324 is, for example, about 0.5 μm to 2.0 μm. The lower surface electrode 321 is provided on the lower surface of the chip substrate 323 in the figure, and functions as, for example, an n-type electrode. The lower electrode 321 is formed of, for example, an Au plating layer. The upper surface electrode 322 is provided on the upper surface of the semiconductor layer 324 in the figure and functions as, for example, a p-type electrode. The upper surface electrode 322 is formed of, for example, an Au plating layer. With such a configuration, the second LED chip 320 emits red light. In the present invention, the red light has a wavelength range of, for example, about 600 nm to 670 nm.
 下面電極321は、金属接合層341を介して配線層240に接合されている。金属接合層341は、たとえばAgペーストからなる。あるいは、下面電極321と配線層240とを共晶接合することによって、金属接合層341が形成されてもよい。上面電極322には、ワイヤ390の一端がボンディングされている。ワイヤ390の他端は、配線層240の適所にボンディングされている。 The lower surface electrode 321 is bonded to the wiring layer 240 through the metal bonding layer 341. The metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 321 and the wiring layer 240. One end of a wire 390 is bonded to the upper surface electrode 322. The other end of the wire 390 is bonded to an appropriate position on the wiring layer 240.
 被覆樹脂410は、第一LEDチップ310、第二LEDチップ320を除き、ケース500によって囲まれた領域を覆っている。被覆樹脂410の材質は特に限定されないが、本実施形態においては、たとえば酸化チタンが混入されたシリコーン樹脂などの白色樹脂からなる。 The coating resin 410 covers the area surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320. The material of the coating resin 410 is not particularly limited, but in the present embodiment, it is made of a white resin such as a silicone resin mixed with titanium oxide.
 図19に示すように、被覆樹脂410は、サブマウント基板301の側面のほとんどを覆っている。サブマウント基板301の側面は、その一部あるいは全てが被覆樹脂410によって覆われていることが好ましい。一方、サブマウント基板301の頂面301aは、被覆樹脂410から露出していることが好ましい。 As shown in FIG. 19, the coating resin 410 covers most of the side surfaces of the submount substrate 301. The side surface of the submount substrate 301 is preferably partially or entirely covered with the coating resin 410. On the other hand, the top surface 301 a of the submount substrate 301 is preferably exposed from the coating resin 410.
 図20に示すように、被覆樹脂410は、第二LEDチップ320の側面の少なくとも一部を覆っている。この側面は、主面211が向く方向(z方向)と交差する方向を向く面の一例であり、本実施形態においては、z方向に対して垂直である方向(xy平面に含まれる方向)を向いている。また、本実施形態においては、第二LEDチップ320のうち、チップ基板323の側面の少なくとも一部が被覆樹脂410によって覆われており、より具体的には、チップ基板323の側面のほぼ全体が被覆樹脂410によって覆われている。一方、半導体層324については、その側面が被覆樹脂410によって覆われることは許容されるが、その上面は全体が被覆樹脂410から露出することが好ましい。 As shown in FIG. 20, the coating resin 410 covers at least a part of the side surface of the second LED chip 320. This side surface is an example of a surface that faces a direction that intersects the direction (z direction) in which the main surface 211 faces, and in the present embodiment, a direction that is perpendicular to the z direction (direction included in the xy plane). It is suitable. In the present embodiment, in the second LED chip 320, at least a part of the side surface of the chip substrate 323 is covered with the coating resin 410, and more specifically, almost the entire side surface of the chip substrate 323 is covered. It is covered with a coating resin 410. On the other hand, the side surface of the semiconductor layer 324 is allowed to be covered with the coating resin 410, but the entire upper surface is preferably exposed from the coating resin 410.
 図18に示すように、被覆樹脂410は、その外端縁がケース500の反射面501に接している。本実施形態においては、被覆樹脂410とケース500との接合部分のうち主面211からz方向上方に最も離間した部位は、第一LEDチップ310および第二LEDチップ320のいずれの部位よりも主面211からz方向上方に離間している。すなわち、被覆樹脂410とケース500との接合部分のうち主面211からz方向上方に最も離間した部位と主面211との距離H0は、第一LEDチップ310のうち主面211から最も離間した部位と主面211との距離H1、および第二LEDチップ320のうち主面211から最も離間した部位と主面211との距離H2のいずれよりも大となっている。 As shown in FIG. 18, the outer edge of the coating resin 410 is in contact with the reflection surface 501 of the case 500. In the present embodiment, the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 in the z-direction upward is the main portion of any portion of the first LED chip 310 and the second LED chip 320. The surface 211 is spaced upward in the z direction. That is, the distance H0 between the main surface 211 and the portion of the joint portion between the coating resin 410 and the case 500 that is farthest upward in the z direction from the main surface 211 is farthest from the main surface 211 of the first LED chip 310. The distance H1 between the part and the main surface 211 and the distance H2 between the part of the second LED chip 320 farthest from the main surface 211 and the main surface 211 are larger.
 被覆樹脂410は、反射面411を有している。反射面411は、サブマウント基板301および第二LEDチップ320の上面付近からケース500の反射面501に向かうほどz方向において基材210から遠ざかるようになだらかに傾斜している。 The coating resin 410 has a reflective surface 411. The reflective surface 411 is gently inclined so as to move away from the base material 210 in the z direction from the vicinity of the upper surfaces of the submount substrate 301 and the second LED chip 320 toward the reflective surface 501 of the case 500.
 封止樹脂420は、ケース500によって囲まれた領域において、第一LEDチップ310および第二LEDチップ320を覆っている。封止樹脂420は、たとえば透明なエポキシ樹脂またはシリコーン樹脂などに蛍光材料が混入された材質からなる。この蛍光材料は、たとえば第一LEDチップ310からの青色光によって励起されることにより、緑色光を発する。なお、本発明で言う緑色光は、その波長域がたとえば500nm~565nm程度である。 The sealing resin 420 covers the first LED chip 310 and the second LED chip 320 in the region surrounded by the case 500. The sealing resin 420 is made of a material in which a fluorescent material is mixed in, for example, a transparent epoxy resin or silicone resin. This fluorescent material emits green light by being excited by blue light from the first LED chip 310, for example. The green light referred to in the present invention has a wavelength range of, for example, about 500 nm to 565 nm.
 本実施形態においては、封止樹脂420に含まれる上記蛍光材料は、硫化物系の蛍光材料である。硫化物系の蛍光材料は、カルシウムサルファイド(CaS)、ジンクサルファイド(ZnS)、ストロンチウムサルファイド(SrS)、ストロンチウムチオガレート(SrGa2S4)、および、カルシウムチオガレート(CaGa2S4)からなる群より選択される1以上の硫化物を含む。蛍光体を構成する硫化物系の蛍光材料は、Eu、Tb、Sm、Pr、Dy、およびTmのうちの少なくとも一元素がドーピングされた材料である。 In the present embodiment, the fluorescent material contained in the sealing resin 420 is a sulfide-based fluorescent material. The sulfide-based fluorescent material is one or more selected from the group consisting of calcium sulfide (CaS), zinc sulfide (ZnS), strontium sulfide (SrS), strontium thiogallate (SrGa2S4), and calcium thiogallate (CaGa2S4). Of sulfides. The sulfide-based fluorescent material constituting the phosphor is a material doped with at least one element of Eu, Tb, Sm, Pr, Dy, and Tm.
 緑色光を発する蛍光材料の場合、上記蛍光材料は、たとえば、ユーロピウムがドーピングされたストロンチウムチオガレート(SrGa24:Eu)、または、ユーロピウムがドーピングされたカルシウムチオガレート(CaGa24:Eu)よりなる。緑色光を発する蛍光材料にドーピングされる元素は、Euに限定されず、Tb、Sm、Pr、Dy、およびTmのいずれかであってもよい。 In the case of a fluorescent material that emits green light, the fluorescent material is, for example, strontium thiogallate doped with europium (SrGa 2 S 4 : Eu) or calcium thiogallate doped with europium (CaGa 2 S 4 : Eu). ). The element doped in the fluorescent material emitting green light is not limited to Eu, and may be any of Tb, Sm, Pr, Dy, and Tm.
 次に、LED光源モジュール106の作用について説明する。 Next, the operation of the LED light source module 106 will be described.
 本実施形態によれば、第一LEDチップ310から発せられた光のうちxy平面に略沿って進行する光が、第二LEDチップ320の側面に到達することを、被覆樹脂410によって抑制することができる。このため、第一LEDチップ310からの光をより多く出射させることが可能であり、LED光源モジュール106の高輝度化あるいは色調の多彩化を図ることができる。特に、第一LEDチップ310よりも長い波長の光を発する第二LEDチップ320は、第一LEDチップ310からの光を吸収しやすい特性を有する。このため、被覆樹脂410によって第二LEDチップ320を覆うことは、光の吸収を抑制するのに適している。 According to the present embodiment, the coating resin 410 prevents light traveling substantially along the xy plane among the light emitted from the first LED chip 310 from reaching the side surface of the second LED chip 320. Can do. For this reason, it is possible to emit more light from the first LED chip 310, and it is possible to increase the brightness or diversify the color tone of the LED light source module 106. In particular, the second LED chip 320 that emits light having a wavelength longer than that of the first LED chip 310 has a characteristic of easily absorbing light from the first LED chip 310. For this reason, covering the second LED chip 320 with the coating resin 410 is suitable for suppressing light absorption.
 チップ基板323は、第二LEDチップ320の大部分を占める部位である。また、チップ基板323の材質であるGaAsは、第一LEDチップ310からの青色光を特に吸収しやすい。このチップ基板323を被覆樹脂410によって覆うことは、第一LEDチップ310からの青色光が吸収されることを抑制するのに合理的である。 The chip substrate 323 is a part that occupies most of the second LED chip 320. Further, GaAs which is a material of the chip substrate 323 is particularly easy to absorb blue light from the first LED chip 310. Covering the chip substrate 323 with the coating resin 410 is reasonable for suppressing the blue light from the first LED chip 310 from being absorbed.
 半導体層324は、チップ基板323よりも顕著に薄いものであり、第二LEDチップ320のほぼ上面のみを占めるものである。少なくとも、半導体層324の上面を被覆樹脂410から露出させることにより、第二LEDチップ320からの赤色光のほとんどを適切にz方向上方へと出射させることができる。 The semiconductor layer 324 is significantly thinner than the chip substrate 323, and occupies only substantially the upper surface of the second LED chip 320. By exposing at least the upper surface of the semiconductor layer 324 from the coating resin 410, most of the red light from the second LED chip 320 can be appropriately emitted upward in the z direction.
 封止樹脂420は、第一LEDチップ310からの光によって励起されることにより緑色光を発する。この緑色光は、第二LEDチップ320からの赤色光よりも波長が短い。このため、第二LEDチップ320によってこの緑色光も吸収されうる。本実施形態によれば、被覆樹脂410によって封止樹脂420からの緑色光が吸収されることを抑制することが可能である。これは、LED光源モジュール106からの白色光を所望の色合いとするのに有利である。 The sealing resin 420 emits green light when excited by light from the first LED chip 310. This green light has a shorter wavelength than the red light from the second LED chip 320. For this reason, the green light can also be absorbed by the second LED chip 320. According to this embodiment, it is possible to suppress the green light from the sealing resin 420 from being absorbed by the coating resin 410. This is advantageous for making the white light from the LED light source module 106 have a desired hue.
 また、封止樹脂420は、硫化物からなる蛍光材料を含んでいる。このような硫化物は、鮮やかな緑色光を発するのに良好な特性を有する一方、多くの金属を硫化させる点が懸念される。本実施形態においては、硫化を受けうる配線層240が、被覆樹脂410によって覆われており、封止樹脂420からは隔離されている。このため、配線層240は硫化を受けるおそれが非常に少ない。 The sealing resin 420 includes a fluorescent material made of sulfide. While such a sulfide has good characteristics for emitting vivid green light, there is a concern that many metals are sulfided. In the present embodiment, the wiring layer 240 that can undergo sulfuration is covered with the coating resin 410 and is isolated from the sealing resin 420. For this reason, the wiring layer 240 is very unlikely to be subjected to sulfurization.
 被覆樹脂410は、第一LEDチップ310を支持するサブマウント基板301の一部を覆っている。Siからなるサブマウント基板301は、第二LEDチップ320からの赤色光や封止樹脂420からの緑色光を吸収しうる。被覆樹脂410は、これらの赤色光や緑色光が吸収されることを抑制するのに適している。また、被覆樹脂410は、サブマウント基板301の側面を積極的に覆うものの、サブマウント基板301の上面は露出させることが意図されている。これにより、被覆樹脂410が誤って第一LEDチップ310を覆ってしまうことを回避可能である。 The coating resin 410 covers a part of the submount substrate 301 that supports the first LED chip 310. The submount substrate 301 made of Si can absorb red light from the second LED chip 320 and green light from the sealing resin 420. The coating resin 410 is suitable for suppressing the absorption of these red light and green light. The coating resin 410 is intended to expose the upper surface of the submount substrate 301 while actively covering the side surface of the submount substrate 301. Thereby, it is possible to avoid the covering resin 410 from accidentally covering the first LED chip 310.
 被覆樹脂410は、ケース500の反射面501の少なくとも一部を覆っている。特に、距離H0が、距離H1および距離H2に対して上述した関係とされることにより、被覆樹脂410はケース500の反射面501の大部分を覆う構成となっている。これにより、第一LEDチップ310からの青色光、第二LEDチップ320からの赤色光および封止樹脂420からの緑色光がケース500に到達することを抑制することができる。ケース500の材質として好適なエポキシ樹脂は、被覆樹脂410の材質として好適なシリコーン樹脂よりも光による劣化が顕著である。本実施形態によれば、ケース500が光によって劣化されることを抑制可能であり、より長期間においてLED光源モジュール106を適切に発光させることができる。 The covering resin 410 covers at least a part of the reflection surface 501 of the case 500. In particular, since the distance H0 has the relationship described above with respect to the distance H1 and the distance H2, the coating resin 410 is configured to cover most of the reflective surface 501 of the case 500. Thereby, blue light from the first LED chip 310, red light from the second LED chip 320, and green light from the sealing resin 420 can be prevented from reaching the case 500. The epoxy resin suitable as the material of the case 500 is more significantly deteriorated by light than the silicone resin suitable as the material of the coating resin 410. According to the present embodiment, the case 500 can be prevented from being deteriorated by light, and the LED light source module 106 can appropriately emit light over a longer period.
 図21~図30は、本発明に係るLED光源モジュールの他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 21 to 30 show other embodiments of the LED light source module according to the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
 図21は、本発明の第七実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール107においては、基板200の絶縁層230に開口231が形成されている。開口231は、たとえばz方向視矩形状であり、基材210の主面211の一部を露出させている。この主面211の露出部分に、メッキ層220が形成されている。メッキ層220は、Cu,Ni,Pd,Auなどの金属からなり、本実施形態においては、Ni,Pd,Auが積層されている。サブマウント基板301は、金属接合層341を介してメッキ層220に接合されている。 FIG. 21 shows an LED light source module according to the seventh embodiment of the present invention. In the LED light source module 107 of this embodiment, an opening 231 is formed in the insulating layer 230 of the substrate 200. The opening 231 has, for example, a rectangular shape as viewed in the z direction, and exposes a part of the main surface 211 of the substrate 210. A plating layer 220 is formed on the exposed portion of the main surface 211. The plated layer 220 is made of a metal such as Cu, Ni, Pd, or Au, and in the present embodiment, Ni, Pd, and Au are laminated. The submount substrate 301 is bonded to the plating layer 220 via the metal bonding layer 341.
 また、本実施形態においては、配線層240は、下地層251およびメッキ層252からなる。下地層251は、絶縁層230上に直接形成されており、たとえばCu箔が貼り付けられた層である。なお、下地層251をメッキによって形成してもよい。メッキ層252は、下地層251上に形成されており、本実施形態においては、Ni,Pd,Auが積層されている。メッキ層252と上述したメッキ層220とは、同一のメッキ工程によって形成することができる。 In the present embodiment, the wiring layer 240 is composed of the base layer 251 and the plating layer 252. The underlayer 251 is formed directly on the insulating layer 230 and is a layer to which, for example, a Cu foil is attached. Note that the base layer 251 may be formed by plating. The plating layer 252 is formed on the base layer 251. In this embodiment, Ni, Pd, and Au are laminated. The plating layer 252 and the plating layer 220 described above can be formed by the same plating process.
 本実施形態の被覆樹脂410は、上述した実施形態と同様に、第一LEDチップ310、第二LEDチップ320を除き、ケース500によって囲まれた領域を覆っている。しかしながら、被覆樹脂410とケース500との接合部分は、z方向における厚さが比較的薄いものとされている。このため、被覆樹脂410とケース500との接合部分のうち主面211から最も離間した部位は、z方向において第一LEDチップ310あるいはサブマウント基板301や第二LEDチップ320と重なる高さにある。 The covering resin 410 of this embodiment covers the region surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320, as in the above-described embodiment. However, the joint portion between the coating resin 410 and the case 500 has a relatively small thickness in the z direction. Therefore, the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 is at a height that overlaps the first LED chip 310 or the submount substrate 301 or the second LED chip 320 in the z direction. .
 このような実施形態によっても、LED光源モジュール107の高輝度化や色調の多彩化を図ることができる。また、本実施形態においては、サブマウント基板301は、絶縁層230を介すること無く基材210に支持されている。これにより、第一LEDチップ310からの熱をより効率よく基材210へと伝えることができる。さらに、基材210は、良好な熱伝導率を有するAlからなる。これにより、第一LEDチップ310の高輝度化、あるいは経年変化の抑制を図ることができる。 Also according to such an embodiment, the LED light source module 107 can have high brightness and various color tones. In the present embodiment, the submount substrate 301 is supported by the base member 210 without the insulating layer 230 interposed therebetween. Thereby, the heat from the first LED chip 310 can be transmitted to the base material 210 more efficiently. Further, the substrate 210 is made of Al having a good thermal conductivity. Thereby, the brightness of the first LED chip 310 can be increased, or the secular change can be suppressed.
 本実施形態においては、被覆樹脂410は、上述したLED光源モジュール106とは異なり、ケース500との接合部分の高さが相対的に低い構成とされている。しかし、このような構成であっても、第二LEDチップ320の側面やサブマウント基板301の側面が覆われていることにより、被覆樹脂410は高輝度化や色調の多彩化に寄与しうる。また、配線層240が被覆樹脂410で覆われていることにより硫化から保護される点についても同様の効果が期待できる。このように、被覆樹脂410の形成形態は、LED光源モジュール106の形態がより好ましいものの、本実施形態における形態も取りうるものであり、以降の実施形態においては、いずれの形態であっても適用しうる。 In the present embodiment, unlike the LED light source module 106 described above, the coating resin 410 is configured such that the height of the joint portion with the case 500 is relatively low. However, even with such a configuration, since the side surface of the second LED chip 320 and the side surface of the submount substrate 301 are covered, the coating resin 410 can contribute to high brightness and a wide variety of colors. Further, the same effect can be expected in that the wiring layer 240 is protected from sulfurization by being covered with the coating resin 410. Thus, although the form of the coating resin 410 is more preferably the form of the LED light source module 106, the form of the present embodiment can also be taken. In the following embodiments, any form is applicable. Yes.
 図22および図23は、本発明の第八実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール108は、基板200の構成が上述した実施形態と異なっている。 22 and 23 show an LED light source module according to the eighth embodiment of the present invention. The LED light source module 108 of the present embodiment is different from the above-described embodiment in the configuration of the substrate 200.
 基板200は、基材210、メッキ層220、絶縁層230および配線層240からなる。 The substrate 200 includes a base 210, a plating layer 220, an insulating layer 230, and a wiring layer 240.
 基材210は、x方向およびy方向に広がり、たとえばx方向に長く延びる長矩形状の金属板であり、たとえばAl、Cu、Feなどからなる。本実施形態においては、基材210の材質としてAlが選択されており、基材210の厚さはたとえば1.0~1.5mm程度である。基材210は、主面211および裏面215を有する。主面211および裏面215は、z方向において互いに反対方向を向く。基材210には、隆起部212および陥没部216が形成されている。 The substrate 210 is a long rectangular metal plate that extends in the x direction and the y direction and extends in the x direction, for example, and is made of, for example, Al, Cu, Fe, or the like. In the present embodiment, Al is selected as the material of the substrate 210, and the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm. The substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction. A raised portion 212 and a depressed portion 216 are formed on the substrate 210.
 隆起部212は、主面211よりもz方向上方に隆起した部位であり、本実施形態においては、頂面213および傾斜面214を有する。頂面213は、隆起部212のうちz方向上方にもっとも突出した部位の表面であり、主面211と平行である。本実施形態においては、頂面213は、矩形状である。傾斜面214は、主面211と頂面213とに繋がっており、xy平面に対して傾斜している。隆起部212の主面211からの隆起高さは、たとえば150~200μmである。本実施形態においては、隆起部212によって、本発明で言う台座部が構成されている。 The raised portion 212 is a portion raised above the main surface 211 in the z direction, and has a top surface 213 and an inclined surface 214 in the present embodiment. The top surface 213 is the surface of the protruding portion 212 that protrudes most upward in the z direction, and is parallel to the main surface 211. In the present embodiment, the top surface 213 has a rectangular shape. The inclined surface 214 is connected to the main surface 211 and the top surface 213, and is inclined with respect to the xy plane. The height of the raised portion 212 from the main surface 211 is, for example, 150 to 200 μm. In the present embodiment, the raised portion 212 constitutes a pedestal portion referred to in the present invention.
 陥没部216は、裏面215よりもz方向上方に凹んだ部位であり、z方向視において隆起部212と重なっている。本実施形態においては、陥没部216は、底面217を有している。底面217は、裏面215と平行であり、本実施形態においては、矩形状である。z方向視において、底面217は、隆起部212に内包されている。また底面217と頂面213とは、z方向視においてそれぞれの外縁が互いにほとんど重なっているか、底面217の外縁が頂面213の外縁に対して若干内側に位置している。陥没部216の裏面215からの陥没深さは、たとえば150~200μmである。 The depressed portion 216 is a portion that is recessed above the back surface 215 in the z direction, and overlaps the raised portion 212 when viewed in the z direction. In the present embodiment, the depressed portion 216 has a bottom surface 217. The bottom surface 217 is parallel to the back surface 215 and has a rectangular shape in the present embodiment. When viewed in the z direction, the bottom surface 217 is included in the raised portion 212. Further, the bottom surface 217 and the top surface 213 have their outer edges almost overlapping each other when viewed in the z direction, or the outer edge of the bottom surface 217 is located slightly inside the outer edge of the top surface 213. The depression depth from the back surface 215 of the depression 216 is, for example, 150 to 200 μm.
 メッキ層220は、隆起部212の頂面213を覆っており、Cu,Ni,Pd,Auなどの金属からなる。本実施形態においては、メッキ層220は、Ni,Pd,Auが積層されている。 The plated layer 220 covers the top surface 213 of the raised portion 212 and is made of a metal such as Cu, Ni, Pd, or Au. In the present embodiment, the plating layer 220 is laminated with Ni, Pd, and Au.
 絶縁層230は、基材210の主面211を覆っており、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230には、開口231が形成されている。開口231は、隆起部212の少なくとも一部を露出させるために設けられており、本実施形態においては、隆起部212の頂面213を露出させている。一方、隆起部212の傾斜面214は、絶縁層230によって覆われている。絶縁層230の厚さは、たとえば100μm程度である。 The insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 . An opening 231 is formed in the insulating layer 230. The opening 231 is provided to expose at least a part of the raised portion 212, and in the present embodiment, the top surface 213 of the raised portion 212 is exposed. On the other hand, the inclined surface 214 of the raised portion 212 is covered with the insulating layer 230. The thickness of the insulating layer 230 is, for example, about 100 μm.
 配線層240は、第一LEDチップ310および第二LEDチップ320への導通経路を形成するものであり、Cu,Ni,Pd,Auなどの金属からなる。配線層240は、絶縁層230上に形成されており、本実施形態においては、絶縁層230のうち主面211を覆う平坦な部位に形成されている。図22に示すように、本実施形態においては、配線層240は、下地層251とメッキ層252とを有している。下地層251は、絶縁層230上に形成されており、たとえばCuからなる。メッキ層252は、下地層251上に形成されており、メッキ層220と同様にNi,Pd,Auが積層されている。後述するように、本実施形態においては、配線層240のメッキ層252と基板200のメッキ層220とは同一の工程によって一括して形成される。 The wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au. The wiring layer 240 is formed on the insulating layer 230. In the present embodiment, the wiring layer 240 is formed on a flat portion of the insulating layer 230 that covers the main surface 211. As shown in FIG. 22, in the present embodiment, the wiring layer 240 has a base layer 251 and a plating layer 252. The underlayer 251 is formed on the insulating layer 230 and is made of, for example, Cu. The plating layer 252 is formed on the base layer 251, and Ni, Pd, and Au are laminated similarly to the plating layer 220. As will be described later, in the present embodiment, the plating layer 252 of the wiring layer 240 and the plating layer 220 of the substrate 200 are collectively formed by the same process.
 第一サブマウント基板301は、メッキ層220を介して、隆起部212の頂面213に支持されている。第一サブマウント基板301とメッキ層220とは、金属接合層341によって接合されている。 The first submount substrate 301 is supported on the top surface 213 of the raised portion 212 via the plating layer 220. The first submount substrate 301 and the plating layer 220 are bonded by a metal bonding layer 341.
 次に、LED光源モジュール108の製造方法の一例について、図24~図28を参照しつつ以下に説明する。 Next, an example of a method for manufacturing the LED light source module 108 will be described below with reference to FIGS.
 まず、図24に示すように金属板210’を用意する。金属板210’は、たとえばAl、Cu、Feなどからなる。本実施形態においては、金属板210’の材質としてAlが選択されており、金属板210’の厚さはたとえば1.0~1.5mm程度である。金属板210’は、z方向において互いに反対方向を向く主面211’および裏面215’を有する。次いで、主面211’を覆うように絶縁層230’を形成する。絶縁層230’は、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230’の厚さは、たとえば100μm程度である。次いで、絶縁層230’を覆うように下地層251’を形成する。下地層251’の形成は、たとえば絶縁層230’上にCu箔を貼り付けることによってなされる。 First, a metal plate 210 ′ is prepared as shown in FIG. The metal plate 210 ′ is made of, for example, Al, Cu, Fe or the like. In the present embodiment, Al is selected as the material of the metal plate 210 ′, and the thickness of the metal plate 210 ′ is, for example, about 1.0 to 1.5 mm. The metal plate 210 ′ has a main surface 211 ′ and a back surface 215 ′ that face in opposite directions in the z direction. Next, an insulating layer 230 ′ is formed so as to cover the main surface 211 ′. The insulating layer 230 ′ is made of an insulating resin or an insulating material such as SiO 2 . The thickness of the insulating layer 230 ′ is, for example, about 100 μm. Next, a base layer 251 ′ is formed so as to cover the insulating layer 230 ′. The underlayer 251 ′ is formed, for example, by attaching a Cu foil on the insulating layer 230 ′.
 次いで、下地層251’にたとえばエッチングを用いたパターニングを施すことにより、図25に示すように下地層251を形成する。なお、あらかじめパターニングが施されたCu箔を絶縁層230’に貼り付けることによって下地層251を形成してもよい。次いで、図26に示すように、金型610,620を用いて金属板210’を加工する。金型610は、上面が矩形状である。金型620は、矩形状の凹部621を有している。凹部621は、z方向視において金型610の上面よりも若干大となっている。金属板210’の裏面215’側に金型610を配置し、金属板210’の主面211’側に金型620を配置する。そして、金型610と金型620とを接近させることにより、金属板210’に金型610の上面を嵌入させる。これにより、隆起部212と陥没部216とを有する基材210が得られる。金型610の上面が接していた部位が陥没部216の底面217となる。また、金型610に対応して金型620の凹部621に進入した部位の表面が頂面213となる。この際、本実施形態においては、下地層251は、金型620のうち凹部621を避けた位置と当接しており、変形されない。絶縁層230’は、隆起部212に沿った形状に変形される。 Next, the base layer 251 'is patterned by using, for example, etching to form the base layer 251 as shown in FIG. Note that the base layer 251 may be formed by attaching a Cu foil that has been patterned in advance to the insulating layer 230 ′. Next, as shown in FIG. 26, the metal plate 210 ′ is processed using the molds 610 and 620. The mold 610 has a rectangular top surface. The mold 620 has a rectangular recess 621. The recess 621 is slightly larger than the upper surface of the mold 610 when viewed in the z direction. A metal mold 610 is disposed on the back surface 215 ′ side of the metal plate 210 ′, and a metal mold 620 is disposed on the main surface 211 ′ side of the metal plate 210 ′. Then, the upper surface of the mold 610 is fitted into the metal plate 210 ′ by bringing the mold 610 and the mold 620 closer to each other. Thereby, the base material 210 which has the protruding part 212 and the depression part 216 is obtained. A portion where the upper surface of the mold 610 is in contact becomes a bottom surface 217 of the depressed portion 216. Further, the surface of the portion that has entered the recess 621 of the mold 620 corresponding to the mold 610 becomes the top surface 213. At this time, in this embodiment, the base layer 251 is in contact with a position where the concave portion 621 is avoided in the mold 620 and is not deformed. The insulating layer 230 ′ is deformed into a shape along the raised portion 212.
 次いで、絶縁層230’の一部を除去することにより、図27に示すように絶縁層230を形成する。絶縁層230’の一部を除去する処理は、たとえばスキージ630を用いてなされる。スキージ630の下端縁は、y方向に平行に長く延びている。このスキージ630の下端縁をz方向において頂面213と同じか、若干下方に位置させた状態で、スキージ630をx方向に移動させる。これにより、絶縁層230’のうち頂面213よりもz方向上方に位置する部分がスキージ630によって除去される。この結果、頂面213のみを露出させる開口231を有する絶縁層230が形成される。本実施形態においては、下地層251は、頂面213よりも十分にz方向下方に位置するため、スキージ630には接触しない。 Next, by removing a part of the insulating layer 230 ', the insulating layer 230 is formed as shown in FIG. The process of removing a part of the insulating layer 230 ′ is performed using, for example, a squeegee 630. The lower end edge of the squeegee 630 extends long in parallel to the y direction. The squeegee 630 is moved in the x direction while the lower edge of the squeegee 630 is located at the same level as or slightly below the top surface 213 in the z direction. As a result, the portion of the insulating layer 230 ′ located above the top surface 213 in the z direction is removed by the squeegee 630. As a result, the insulating layer 230 having the opening 231 exposing only the top surface 213 is formed. In the present embodiment, the base layer 251 is located sufficiently below the top surface 213 in the z direction, and thus does not contact the squeegee 630.
 次いで、図28に示すように、メッキ層220およびメッキ層252を形成する。メッキ層220およびメッキ層252は、たとえば電解メッキによって形成される。このため、導電体である基材210の頂面213および下地層251を覆うように、ともにNi,Pd,Auからなるメッキ層220および下地層251が形成され、絶縁層230上には形成されない。以上の工程を経ることにより、基材210、メッキ層220、絶縁層230および配線層240からなる基板200が得られる。 Next, as shown in FIG. 28, a plating layer 220 and a plating layer 252 are formed. The plated layer 220 and the plated layer 252 are formed by, for example, electrolytic plating. Therefore, the plating layer 220 and the base layer 251 made of Ni, Pd, Au are formed so as to cover the top surface 213 and the base layer 251 of the base material 210, which is a conductor, and is not formed on the insulating layer 230. . Through the above steps, the substrate 200 including the base 210, the plating layer 220, the insulating layer 230, and the wiring layer 240 is obtained.
 この後は、ケース500の形成、第一サブマウント基板301および第一LEDチップ310の搭載、第二LEDチップ320の搭載、被覆樹脂410の形成、ワイヤ390のボンディングおよび封止樹脂420の形成を経ることにより、LED光源モジュール108が得られる。 Thereafter, the case 500 is formed, the first submount substrate 301 and the first LED chip 310 are mounted, the second LED chip 320 is mounted, the coating resin 410 is formed, the wire 390 is bonded, and the sealing resin 420 is formed. As a result, the LED light source module 108 is obtained.
 このような実施形態によっても、LED光源モジュール108の高輝度化および色調の多彩化を図ることができる。また、サブマウント基板301は、絶縁層230を介することなく隆起部212に支持されている。これにより、第一LEDチップ310からの伝熱が絶縁層230によって妨げられることがない。したがって、第一LEDチップ310からの放熱を促進することが可能であり、LED光源モジュール108の高輝度化を図ることができる。 Also according to such an embodiment, the LED light source module 108 can be increased in brightness and color tone. Further, the submount substrate 301 is supported by the raised portion 212 without the insulating layer 230 interposed therebetween. Thereby, the heat transfer from the first LED chip 310 is not hindered by the insulating layer 230. Therefore, heat radiation from the first LED chip 310 can be promoted, and the brightness of the LED light source module 108 can be increased.
 配線層240は、絶縁層230上に形成されており、隆起部212(基材210)を避けた位置に配置されている。このため、金属からなる基材210と配線層240とが不当に導通することを回避することができる。 The wiring layer 240 is formed on the insulating layer 230 and is disposed at a position avoiding the raised portion 212 (base material 210). For this reason, it can avoid that the base material 210 and the wiring layer 240 which consist of a metal are unjustly conducted.
 隆起部212のうち頂面213が絶縁層230から露出しており、頂面213以外の部分は絶縁層230に覆われている。これにより、主面211と平行である頂面213にサブマウント基板301および第一LEDチップ310を搭載する作業を容易に行うことができる。なお、絶縁層230の除去方法によっては、頂面213のみならず、傾斜部214も絶縁層から露出する場合がある。 The top surface 213 of the raised portion 212 is exposed from the insulating layer 230, and portions other than the top surface 213 are covered with the insulating layer 230. Thereby, the operation | work which mounts the submount board | substrate 301 and the 1st LED chip 310 on the top surface 213 parallel to the main surface 211 can be performed easily. Note that depending on the method of removing the insulating layer 230, not only the top surface 213 but also the inclined portion 214 may be exposed from the insulating layer.
 隆起部212の裏側に位置する陥没部216を有する構成は、図26に示すように金属板210’の裏面215’側から金型610を押圧することにより容易に隆起部212を形成することができるという利点がある。 In the configuration having the depressed portion 216 located on the back side of the raised portion 212, the raised portion 212 can be easily formed by pressing the mold 610 from the back surface 215 'side of the metal plate 210' as shown in FIG. There is an advantage that you can.
 図29は、本発明の第九実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール109は、サブマウント基板301を備えていない。このため、第一LEDチップ310は、金属接合層341を介してメッキ層220に接合されている。 FIG. 29 shows an LED light source module according to the ninth embodiment of the present invention. The LED light source module 109 of this embodiment does not include the submount substrate 301. For this reason, the first LED chip 310 is bonded to the plating layer 220 via the metal bonding layer 341.
 また、本実施形態においては、メッキ層220は、基材210側から順に積層されたNi層、Pd層およびAu層からなる。上記Ni層は、頂面213に直接形成されており、厚さがたとえば5μm程度である。上記Pd層は上記Ni層上に形成されており、厚さがたとえば0.1μm程度である。上記Au層は上記Pd層上に形成されており、厚さがたとえば0.1μm程度である。同様に、配線層240のメッキ層252は、下地層251側から順に積層されたNi層、Pd層およびAu層からなる。これらのNi層、Pd層およびAu層の構成は、メッキ層220と同様である。 In the present embodiment, the plating layer 220 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the base 210 side. The Ni layer is formed directly on the top surface 213 and has a thickness of about 5 μm, for example. The Pd layer is formed on the Ni layer and has a thickness of about 0.1 μm, for example. The Au layer is formed on the Pd layer and has a thickness of about 0.1 μm, for example. Similarly, the plating layer 252 of the wiring layer 240 includes a Ni layer, a Pd layer, and an Au layer that are sequentially stacked from the base layer 251 side. The configurations of these Ni layer, Pd layer, and Au layer are the same as those of the plating layer 220.
 このような実施形態によっても、LED光源モジュール109の高輝度化および色調の多彩化を図ることができる。本実施形態においては、配線層240のうち第一LEDチップ310が搭載された部分が封止樹脂420と接触しうる。しかし、配線層240は、その表層が硫化に対する耐性が比較的高いAu層とされている。したがって、配線層240が封止樹脂420の蛍光材料によって硫化されることを防止することができる。 Also according to such an embodiment, the LED light source module 109 can be increased in luminance and color tone. In the present embodiment, the portion of the wiring layer 240 on which the first LED chip 310 is mounted can contact the sealing resin 420. However, the wiring layer 240 is an Au layer whose surface layer has a relatively high resistance to sulfidation. Therefore, the wiring layer 240 can be prevented from being sulfided by the fluorescent material of the sealing resin 420.
 図30は、本発明の第十実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール110は、比較的小型のモジュールとして構成されることにより、電子機器の点光源として用いられるものである。この点において、上述したLED光源モジュール106~109が、x方向に長く延びるバー状光源として構成されている点と異なる。 FIG. 30 shows an LED light source module according to the tenth embodiment of the present invention. The LED light source module 110 of this embodiment is used as a point light source of an electronic device by being configured as a relatively small module. In this respect, the LED light source modules 106 to 109 described above are different from those configured as bar-shaped light sources extending in the x direction.
 本実施形態においては、リード270、リード280、リード291およびリード292によって本発明で言う導通支持部材が構成されている。リード270、リード280、リード291およびリード292は、金属からなり、たとえば母材としてのCu板にNiやAuなどのメッキが施されている。 In this embodiment, the lead 270, the lead 280, the lead 291 and the lead 292 constitute a conduction support member referred to in the present invention. The lead 270, the lead 280, the lead 291 and the lead 292 are made of metal, for example, a Cu plate as a base material is plated with Ni, Au or the like.
 リード270は、主面271および端子部275を有している。主面271は、z方向上方を向いている。端子部275は、LED光源モジュール110を図示しない回路基板などに実装するために用いられる。リード292は、主面292aを有している。主面292aは、z方向上方を向いており第二LEDチップ320を支持している。第二LEDチップ320に一端がボンディングされたワイヤ390の他端は、リード270の主面2271にボンディングされている。リード292は、ケース500から図示しない部位に突出する端子部を有している。 The lead 270 has a main surface 271 and a terminal portion 275. The main surface 271 faces upward in the z direction. The terminal portion 275 is used for mounting the LED light source module 110 on a circuit board (not shown). The lead 292 has a main surface 292a. The main surface 292a faces upward in the z direction and supports the second LED chip 320. The other end of the wire 390 whose one end is bonded to the second LED chip 320 is bonded to the main surface 2271 of the lead 270. The lead 292 has a terminal portion that protrudes from the case 500 to a portion not shown.
 リード280は、主面281および端子部285を有している。主面281は、z方向上方を向いており第一LEDチップ310を支持している。端子部285は、LED光源モジュール110を図示しない回路基板などに実装するために用いられる。リード291は、主面291aを有している。主面291aは、z方向上方を向いており第一LEDチップ310に一端がボンディングされたワイヤ390の他端がボンディングされている。 The lead 280 has a main surface 281 and a terminal portion 285. The main surface 281 faces upward in the z direction and supports the first LED chip 310. The terminal portion 285 is used for mounting the LED light source module 110 on a circuit board (not shown). The lead 291 has a main surface 291a. The main surface 291a faces upward in the z direction, and the other end of the wire 390 whose one end is bonded to the first LED chip 310 is bonded.
 ケース500は、リード270、リード280、リード291およびリード292の一部ずつを覆っており、これらを相対的に固定する役割を果たしている。 The case 500 covers a part of each of the lead 270, the lead 280, the lead 291 and the lead 292, and plays a role of relatively fixing them.
 このような実施形態によっても、LED光源モジュール110の高輝度化および色調の多彩化を図ることができる。 Also according to such an embodiment, it is possible to increase the brightness and diversify the color tone of the LED light source module 110.
 図31~図35は、本発明の第十一実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール111は、基板200、第一LEDチップ310、第二LEDチップ320、ワイヤ391、被覆樹脂410、封止樹脂420およびケース500を備えている。LED光源モジュール111は、細長い基板200に複数の第一LEDチップ310および複数の第二LEDチップ320が配置されることにより細長いバー状光源として構成されている。このようなLED光源モジュールは、平板状の導光板の側面に正対する位置に配置されることにより、この導光板から面状光を出射するために用いられる。この面状光は、たとえば液晶表示装置のバックライトとして利用される。なお、図32においては、理解の便宜上、被覆樹脂410および封止樹脂420を省略している。 31 to 35 show an LED light source module according to the eleventh embodiment of the present invention. The LED light source module 111 of this embodiment includes a substrate 200, a first LED chip 310, a second LED chip 320, wires 391, a coating resin 410, a sealing resin 420, and a case 500. The LED light source module 111 is configured as an elongated bar-shaped light source by arranging a plurality of first LED chips 310 and a plurality of second LED chips 320 on an elongated substrate 200. Such an LED light source module is used to emit planar light from the light guide plate by being disposed at a position facing the side surface of the flat light guide plate. This planar light is used as a backlight of a liquid crystal display device, for example. In FIG. 32, the coating resin 410 and the sealing resin 420 are omitted for convenience of understanding.
 基板200は、全体としてx方向に長く延びる細長形状とされている。この長手方向に沿って、複数のケース500が配置されている。本実施形態においては、それぞれのケース500は同一形状であり、後述するケース500の内部における構成も同一である。 The substrate 200 as a whole has an elongated shape extending in the x direction. A plurality of cases 500 are arranged along the longitudinal direction. In the present embodiment, each case 500 has the same shape, and the configuration inside the case 500 described later is also the same.
 基板200のx方向一端寄り部分は、幅方向寸法が部分的に大となっている。この部分には、コネクタ790が搭載されている。コネクタ790は、LED光源モジュール111を、たとえば液晶表示装置に組み込む際に、電気的な接続をなすために用いられる。 The width direction dimension of the portion near the one end of the substrate 200 in the x direction is partially large. A connector 790 is mounted on this portion. The connector 790 is used to make an electrical connection when the LED light source module 111 is incorporated into, for example, a liquid crystal display device.
 基板200は、基材210、絶縁層230、配線層240およびレジスト層260からなる。 The substrate 200 includes a base 210, an insulating layer 230, a wiring layer 240, and a resist layer 260.
 基材210は、x方向に長く延びる略帯状の金属板であり、たとえばAl、Cu、Feなどからなる。本実施形態においては、基材210の材質としてAlが選択されており、基材210の厚さはたとえば1.0~1.5mm程度である。基材210は、主面211および裏面215を有する。主面211および裏面215は、z方向において互いに反対方向を向く。 The substrate 210 is a substantially strip-shaped metal plate that extends long in the x direction, and is made of, for example, Al, Cu, Fe, or the like. In the present embodiment, Al is selected as the material of the substrate 210, and the thickness of the substrate 210 is, for example, about 1.0 to 1.5 mm. The substrate 210 has a main surface 211 and a back surface 215. The main surface 211 and the back surface 215 are opposite to each other in the z direction.
 絶縁層230は、基材210の主面211を覆っており、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230の厚さは、たとえば100μm程度である。 The insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 . The thickness of the insulating layer 230 is, for example, about 100 μm.
 配線層240は、第一LEDチップ310および第二LEDチップ320への導通経路を形成するものであり、Cu,Ni,Pd,Auなどの金属からなる。配線層240は、絶縁層230上に形成されている。本実施形態においては、配線層240は、たとえばCuのみからなる。配線層240は、第一パッド241および第二パッド242を有する。第一パッド241および第二パッド242は、x方向において離間配置されている。また、ケース500の外側の領域においては、配線層240は、レジスト層260によって覆われている。レジスト層260は、たとえば白色である。 The wiring layer 240 forms a conduction path to the first LED chip 310 and the second LED chip 320, and is made of a metal such as Cu, Ni, Pd, or Au. The wiring layer 240 is formed on the insulating layer 230. In the present embodiment, the wiring layer 240 is made of only Cu, for example. The wiring layer 240 has a first pad 241 and a second pad 242. The first pad 241 and the second pad 242 are spaced apart in the x direction. In the region outside the case 500, the wiring layer 240 is covered with a resist layer 260. The resist layer 260 is, for example, white.
 ケース500は、第一LEDチップ310および第二LEDチップ320を囲むように基板200上に形成されており、たとえば白色樹脂からなる。ケース500は、反射面501を有している。反射面501は、z方向に対して傾斜しており、第一LEDチップ310および第二LEDチップ320からx方向およびy方向に向かって発せられた光を反射することによりz方向上方に向かわせる機能を果たす。 The case 500 is formed on the substrate 200 so as to surround the first LED chip 310 and the second LED chip 320, and is made of, for example, white resin. The case 500 has a reflective surface 501. The reflecting surface 501 is inclined with respect to the z direction, and reflects light emitted from the first LED chip 310 and the second LED chip 320 in the x direction and the y direction to be directed upward in the z direction. Fulfills the function.
 図32および図33に示すように、ケース500に囲まれた領域には、1つの第一LEDチップ310と1つの第二LEDチップ320が配置されている。 32 and 33, one first LED chip 310 and one second LED chip 320 are arranged in an area surrounded by the case 500.
 図33および図34に示すように、第一LEDチップ310は、下面電極311および上面電極312を有している。下面電極311は、基板200の主面211と対向する方向であるz方向下方を向いており、たとえばAuメッキ層からなる。上面電極312は、下面電極311とは反対側であるz方向上方を向いており、たとえばAuメッキ層からなる。下面電極311は、本発明で言う第一下面電極に相当し、上面電極312は、本発明で言う第一上面電極に相当する。 33 and 34, the first LED chip 310 has a lower surface electrode 311 and an upper surface electrode 312. The lower surface electrode 311 faces downward in the z direction, which is the direction facing the main surface 211 of the substrate 200, and is made of, for example, an Au plating layer. The upper surface electrode 312 faces upward in the z direction opposite to the lower surface electrode 311 and is made of, for example, an Au plating layer. The lower surface electrode 311 corresponds to the first lower surface electrode referred to in the present invention, and the upper surface electrode 312 corresponds to the first upper surface electrode referred to in the present invention.
 第一LEDチップ310は、たとえば下面電極311の直上に位置するSi基板と、このSi基板と上面電極312との間に介在する半導体層とを有する。この半導体層は、たとえばGaAs系半導体からなる。また、下面電極311は、n型電極として機能し、上面電極312は、p型電極として機能する。このような構成により、第一LEDチップ310は、赤色光を主にz方向上方に向けて出射する。 The first LED chip 310 has, for example, a Si substrate positioned immediately above the lower surface electrode 311 and a semiconductor layer interposed between the Si substrate and the upper surface electrode 312. This semiconductor layer is made of, for example, a GaAs-based semiconductor. The lower surface electrode 311 functions as an n-type electrode, and the upper surface electrode 312 functions as a p-type electrode. With such a configuration, the first LED chip 310 emits red light mainly upward in the z direction.
 下面電極311は、金属接合層341を介して配線層240の第一パッド241に接合されている。金属接合層341は、たとえばAgペーストからなる。あるいは、下面電極311と第一パッド241とを共晶接合することによって、金属接合層341が形成されてもよい。上面電極312は、平面視において偏った位置に設けられており、本実施形態においては、第二LEDチップ320寄りに偏っている。 The lower surface electrode 311 is bonded to the first pad 241 of the wiring layer 240 via the metal bonding layer 341. The metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 311 and the first pad 241. The upper surface electrode 312 is provided at a position biased in plan view, and is biased toward the second LED chip 320 in the present embodiment.
 図33および図35に示すように、第二LEDチップ320は、下面電極321および上面電極322を有している。下面電極321は、基板200の主面211と対向する方向であるz方向下方を向いており、たとえばAuメッキ層からなる。上面電極322は、下面電極321とは反対側であるz方向上方を向いており、たとえばAuメッキ層からなる。下面電極321は、本発明で言う第二下面電極に相当し、上面電極322は、本発明で言う第二上面電極に相当する。 As shown in FIGS. 33 and 35, the second LED chip 320 has a lower surface electrode 321 and an upper surface electrode 322. The lower surface electrode 321 faces downward in the z direction, which is the direction facing the main surface 211 of the substrate 200, and is made of, for example, an Au plating layer. The upper surface electrode 322 faces upward in the z direction opposite to the lower surface electrode 321 and is made of, for example, an Au plating layer. The lower surface electrode 321 corresponds to the second lower surface electrode referred to in the present invention, and the upper surface electrode 322 corresponds to the second upper surface electrode referred to in the present invention.
 第二LEDチップ320は、たとえば下面電極321の直上に位置するSi基板と、このSi基板と上面電極322との間に介在する半導体層とを有する。この半導体層は、たとえばGaN系半導体からなる。また、下面電極321は、p型電極として機能し、上面電極322は、n型電極として機能する。このような構成により、第二LEDチップ320は、青色光を主にz方向上方に向けて出射する。 The second LED chip 320 has, for example, a Si substrate located immediately above the lower surface electrode 321 and a semiconductor layer interposed between the Si substrate and the upper surface electrode 322. This semiconductor layer is made of, for example, a GaN-based semiconductor. The lower surface electrode 321 functions as a p-type electrode, and the upper surface electrode 322 functions as an n-type electrode. With such a configuration, the second LED chip 320 emits blue light mainly upward in the z direction.
 下面電極321は、金属接合層341を介して配線層240の第二パッド242に接合されている。金属接合層341は、たとえばAgペーストからなる。あるいは、下面電極321と第二パッド242とを共晶接合することによって、金属接合層341が形成されてもよい。上面電極322は、平面視において偏った位置に設けられており、本実施形態においては、図32に示すように第一LEDチップ310寄りに偏っている。 The lower surface electrode 321 is bonded to the second pad 242 of the wiring layer 240 through the metal bonding layer 341. The metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 321 and the second pad 242. The upper surface electrode 322 is provided at a position that is biased in plan view. In the present embodiment, the top electrode 322 is biased toward the first LED chip 310 as shown in FIG.
 ワイヤ391は、第一LEDチップ310の上面電極312と第二LEDチップ320の上面電極322とを接続しており、たとえばAuからなる。より具体的には、第二LEDチップ320の上面電極322には、ワイヤ391のファーストボンディング部が形成されている。一方、第一LEDチップ310の上面電極312には、予め形成されたAuバンプに対してワイヤ391のセカンドボンディング部が圧着されている。このような構成により、第一LEDチップ310と第二LEDチップ320とは、ワイヤ391を介して直列に接続されている。 The wire 391 connects the upper surface electrode 312 of the first LED chip 310 and the upper surface electrode 322 of the second LED chip 320, and is made of, for example, Au. More specifically, the first bonding portion of the wire 391 is formed on the upper surface electrode 322 of the second LED chip 320. On the other hand, the second bonding portion of the wire 391 is pressure-bonded to the upper surface electrode 312 of the first LED chip 310 against a previously formed Au bump. With such a configuration, the first LED chip 310 and the second LED chip 320 are connected in series via the wire 391.
 被覆樹脂410は、第一LEDチップ310、第二LEDチップ320を除き、ケース500によって囲まれた領域を覆っている。第一LEDチップ310および第二LEDチップ320それぞれの側面は、その大部分または全部が被覆樹脂410によって覆われている。被覆樹脂410の材質は特に限定されないが、本実施形態においては、たとえば酸化チタンが混入されたシリコーン樹脂などの白色樹脂からなる。 The coating resin 410 covers the area surrounded by the case 500 except for the first LED chip 310 and the second LED chip 320. Most or all of the side surfaces of the first LED chip 310 and the second LED chip 320 are covered with the coating resin 410. The material of the coating resin 410 is not particularly limited, but in the present embodiment, it is made of a white resin such as a silicone resin mixed with titanium oxide.
 被覆樹脂410は、その外端縁がケース500の反射面501に接している。本実施形態においては、被覆樹脂410とケース500との接合部分のうち主面211からz方向上方に最も離間した部位は、第一LEDチップ310および第二LEDチップ320のいずれの部位よりも主面211からz方向上方に離間している。被覆樹脂410は、反射面411を有している。反射面411は、第一LEDチップ310および第二LEDチップ320の上面付近からケース500の反射面501に向かうほどz方向において基材210から遠ざかるようになだらかに傾斜している。 The outer edge of the coating resin 410 is in contact with the reflection surface 501 of the case 500. In the present embodiment, the portion of the joint portion between the coating resin 410 and the case 500 that is farthest from the main surface 211 in the z-direction upward is the main portion of any portion of the first LED chip 310 and the second LED chip 320. The surface 211 is spaced upward in the z direction. The coating resin 410 has a reflective surface 411. The reflective surface 411 is gently inclined so as to move away from the base material 210 in the z direction from the vicinity of the upper surfaces of the first LED chip 310 and the second LED chip 320 toward the reflective surface 501 of the case 500.
 封止樹脂420は、ケース500によって囲まれた領域において、第一LEDチップ310および第二LEDチップ320を覆っている。封止樹脂420は、たとえば透明なエポキシ樹脂またはシリコーン樹脂などに蛍光材料が混入された材質からなる。この蛍光材料は、たとえば第二LEDチップ320からの青色光によって励起されることにより、緑色光を発する。 The sealing resin 420 covers the first LED chip 310 and the second LED chip 320 in the region surrounded by the case 500. The sealing resin 420 is made of a material in which a fluorescent material is mixed in, for example, a transparent epoxy resin or silicone resin. This fluorescent material emits green light when excited by blue light from the second LED chip 320, for example.
 本実施形態においては、封止樹脂420に含まれる上記蛍光材料は、硫化物系の蛍光材料である。硫化物系の蛍光材料は、カルシウムサルファイド(CaS)、ジンクサルファイド(ZnS)、ストロンチウムサルファイド(SrS)、ストロンチウムチオガレート(SrGa2S4)、および、カルシウムチオガレート(CaGa2S4)からなる群より選択される1以上の硫化物を含む。蛍光体を構成する硫化物系の蛍光材料は、Eu、Tb、Sm、Pr、Dy、およびTmのうちの少なくとも一元素がドーピングされた材料である。 In the present embodiment, the fluorescent material contained in the sealing resin 420 is a sulfide-based fluorescent material. The sulfide-based fluorescent material is one or more selected from the group consisting of calcium sulfide (CaS), zinc sulfide (ZnS), strontium sulfide (SrS), strontium thiogallate (SrGa2S4), and calcium thiogallate (CaGa2S4). Of sulfides. The sulfide-based fluorescent material constituting the phosphor is a material doped with at least one element of Eu, Tb, Sm, Pr, Dy, and Tm.
 赤色光を発する蛍光材料の場合、発せられる光の波長のピークは、625-740nmである。赤色光を発する蛍光材料は、たとえば、ユーロピウムがドーピングされたカルシウムサルファイド(CaS:Eu)、ユーロピウムがドーピングされたジンクサルファイド(ZnS:Eu)、および、ユーロピウムがドーピングされたストロンチウムサルファイド(SrS:Eu)のいずれかよりなる。緑色光を発する蛍光材料の場合、発せられる光の波長のピークは、500-565nmである。緑色光を発する蛍光材料は、たとえば、ユーロピウムがドーピングされたストロンチウムチオガレート(SrGa24:Eu)、または、ユーロピウムがドーピングされたカルシウムチオガレート(CaGa24:Eu)よりなる。赤色を発する蛍光材料や緑色光を発する蛍光材料にドーピングされる元素は、Euに限定されず、Tb、Sm、Pr、Dy、およびTmのいずれかであってもよい。 In the case of a fluorescent material that emits red light, the peak of the wavelength of the emitted light is 625 to 740 nm. Examples of fluorescent materials that emit red light include calcium sulfide doped with europium (CaS: Eu), zinc sulfide doped with europium (ZnS: Eu), and strontium sulfide doped with europium (SrS: Eu). Consisting of either. In the case of a fluorescent material that emits green light, the peak of the wavelength of the emitted light is 500-565 nm. The fluorescent material that emits green light is made of, for example, strontium thiogallate doped with europium (SrGa 2 S 4 : Eu) or calcium thiogallate doped with europium (CaGa 2 S 4 : Eu). The element doped in the fluorescent material emitting red light or the fluorescent material emitting green light is not limited to Eu, and may be any of Tb, Sm, Pr, Dy, and Tm.
 次に、LED光源モジュール111の作用について説明する。 Next, the operation of the LED light source module 111 will be described.
 本実施形態によれば、図33~図35に示すように、ワイヤ391によって第一LEDチップ310の上面電極312と第二LEDチップ320の上面電極322とが互いに接続されている。このため、第一LEDチップ310の上面電極312および第二LEDチップ320の上面電極322から配線層240へと延びるワイヤは設ける必要がない。これにより、配線層240へとワイヤをボンディングする工程が不要であり、第一LEDチップ310および第二LEDチップ320の周囲に、ボンディングのためのキャピラリなどを進入させるスペースを設けずに済む。したがって、LED光源モジュール111の小型化を図ることができる。 According to the present embodiment, as shown in FIGS. 33 to 35, the upper electrode 312 of the first LED chip 310 and the upper electrode 322 of the second LED chip 320 are connected to each other by the wire 391. For this reason, it is not necessary to provide wires extending from the upper surface electrode 312 of the first LED chip 310 and the upper surface electrode 322 of the second LED chip 320 to the wiring layer 240. Thereby, the step of bonding wires to the wiring layer 240 is not necessary, and there is no need to provide a space for entering a bonding capillary or the like around the first LED chip 310 and the second LED chip 320. Therefore, the LED light source module 111 can be reduced in size.
 配線層240にワイヤをボンディングしないため、配線層240の構造をワイヤボンディングに適した構造とする必要がない。このため、ワイヤボンディングに適した構造である表層を覆うAuメッキなどを設けずにすむ。これは、製造工程の簡略化とともにコスト低減に有利である。 Since no wire is bonded to the wiring layer 240, the structure of the wiring layer 240 does not need to be a structure suitable for wire bonding. For this reason, it is not necessary to provide Au plating that covers the surface layer, which is a structure suitable for wire bonding. This is advantageous for simplification of the manufacturing process and cost reduction.
 また、被覆樹脂410により配線層240が覆われているため、被覆樹脂410が保護膜として機能する。これにより、たとえば硫化ガスなどが配線層240と反応するのを抑制できる。特に封止樹脂420が硫化物系の蛍光材料を含むため、封止樹脂420から生じた硫化ガスによって配線層240が劣化することを防止することができる。また、被覆樹脂410を白色とすることによって、第一LEDチップ310および第二LEDチップ320の光を上方に反射することにより、LED光源モジュール111の輝度を向上することができる。さらに、硫化物系の蛍光材料を含む封止樹脂420を採用することにより、より鮮やかな白色光を発することができるという利点がある。 Further, since the wiring layer 240 is covered with the coating resin 410, the coating resin 410 functions as a protective film. Thereby, for example, it is possible to suppress the sulfur gas or the like from reacting with the wiring layer 240. In particular, since the sealing resin 420 includes a sulfide-based fluorescent material, it is possible to prevent the wiring layer 240 from being deteriorated by the sulfide gas generated from the sealing resin 420. Moreover, the brightness | luminance of the LED light source module 111 can be improved by reflecting the light of the 1st LED chip 310 and the 2nd LED chip 320 upwards by making the coating resin 410 white. Furthermore, there is an advantage that brighter white light can be emitted by employing the sealing resin 420 containing a sulfide-based fluorescent material.
 被覆樹脂410がケース500の反射面501の上端付近まで到達していることにより、第一LEDチップ310および第二LEDチップ320からの光は、ケース500には到達しにくい構成となっている。比較的高強度とすることが求められるケース500の材質は、たとえばそれほど強度が求められない被覆樹脂410の材質と比べて、光を受けることによって劣化しやすい。この劣化を、被覆樹脂410によって抑制することができる。 Since the coating resin 410 reaches the vicinity of the upper end of the reflection surface 501 of the case 500, the light from the first LED chip 310 and the second LED chip 320 is difficult to reach the case 500. The material of the case 500 that is required to have a relatively high strength is likely to be deteriorated by receiving light as compared with the material of the coating resin 410 that is not required to have a high strength. This deterioration can be suppressed by the coating resin 410.
 図36~図49は、本発明の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 36 to 49 show other embodiments of the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
 図36~図38は、本発明の第十二実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール112は、ケース500に囲まれた領域に第一LEDチップ310、第二LEDチップ320および第三LEDチップ330とワイヤ391,392が配置されている。第一LEDチップ310は、上述したLED光源モジュール111と同様の構成である。 36 to 38 show an LED light source module according to the twelfth embodiment of the present invention. In the LED light source module 112 of the present embodiment, a first LED chip 310, a second LED chip 320, a third LED chip 330, and wires 391 and 392 are arranged in a region surrounded by the case 500. The first LED chip 310 has the same configuration as the LED light source module 111 described above.
 本実施形態の第二LEDチップ320は、図37に示すように上面電極322および上面電極329を有している。上面電極329は、本発明で言う追加の第二上面電極に相当し、たとえばAuメッキ層によって形成されている。上面電極322は、n型電極として機能し、上面電極329は、p型電極として機能する。 The second LED chip 320 of the present embodiment has an upper surface electrode 322 and an upper surface electrode 329 as shown in FIG. The upper surface electrode 329 corresponds to the additional second upper surface electrode referred to in the present invention, and is formed of, for example, an Au plating layer. The upper surface electrode 322 functions as an n-type electrode, and the upper surface electrode 329 functions as a p-type electrode.
 また、本実施形態においては、基板200と第二LEDチップ320との間にサブマウント基板301が設けられている。サブマウント基板301は、たとえばSiからなり、その厚さがたとえば300μm程度である。本実施形態においては、第二LEDチップ320は、サブマウント基板301を介して基材210の主面211に間接的に支持されている。サブマウント基板301と配線層240の第二パッド242とは、金属接合層341を介して接合されている。本実施形態においては、金属接合層341は、たとえばAgからなる。また、第二LEDチップ320とサブマウント基板301とは、たとえばSiあるいはエポキシ樹脂からなる接合層342を介して接合されている。 In this embodiment, a submount substrate 301 is provided between the substrate 200 and the second LED chip 320. The submount substrate 301 is made of, for example, Si and has a thickness of, for example, about 300 μm. In the present embodiment, the second LED chip 320 is indirectly supported on the main surface 211 of the base 210 via the submount substrate 301. The submount substrate 301 and the second pad 242 of the wiring layer 240 are bonded via a metal bonding layer 341. In the present embodiment, the metal bonding layer 341 is made of, for example, Ag. The second LED chip 320 and the submount substrate 301 are bonded via a bonding layer 342 made of, for example, Si or epoxy resin.
 図36および図38に示すように、第三LEDチップ330は、下面電極331および上面電極332を有している。下面電極331は、基板200の主面211と対向する方向であるz方向下方を向いており、たとえばAuメッキ層からなる。上面電極332は、下面電極331とは反対側であるz方向上方を向いており、たとえばAuメッキ層からなる。下面電極331は、本発明で言う第三下面電極に相当し、上面電極332は、本発明で言う第三上面電極に相当する。 As shown in FIGS. 36 and 38, the third LED chip 330 has a lower surface electrode 331 and an upper surface electrode 332. The lower surface electrode 331 faces downward in the z direction, which is the direction facing the main surface 211 of the substrate 200, and is made of, for example, an Au plating layer. The upper surface electrode 332 faces upward in the z direction, which is opposite to the lower surface electrode 331, and is made of, for example, an Au plating layer. The lower electrode 331 corresponds to the third lower electrode referred to in the present invention, and the upper electrode 332 corresponds to the third upper electrode referred to in the present invention.
 第三LEDチップ330は、たとえば下面電極331の直上に位置するSi基板と、このSi基板と上面電極332との間に介在する半導体層とを有する。この半導体層は、たとえばGaAs系半導体からなる。また、下面電極331は、p型電極として機能し、上面電極332は、n型電極として機能する。このような構成により、第三LEDチップ330は、赤色光を主にz方向上方に向けて出射する。 The third LED chip 330 has, for example, a Si substrate positioned immediately above the lower surface electrode 331 and a semiconductor layer interposed between the Si substrate and the upper surface electrode 332. This semiconductor layer is made of, for example, a GaAs-based semiconductor. The lower surface electrode 331 functions as a p-type electrode, and the upper surface electrode 332 functions as an n-type electrode. With such a configuration, the third LED chip 330 emits red light mainly upward in the z direction.
 下面電極331は、金属接合層341を介して配線層240の第三パッド243に接合されている。金属接合層341は、たとえばAgペーストからなる。あるいは、下面電極331と第三パッド243とを共晶接合することによって、金属接合層341が形成されてもよい。上面電極332は、平面視において偏った位置に設けられており、本実施形態においては、第二LEDチップ320寄りに偏っている。 The lower surface electrode 331 is bonded to the third pad 243 of the wiring layer 240 through the metal bonding layer 341. The metal bonding layer 341 is made of, for example, an Ag paste. Alternatively, the metal bonding layer 341 may be formed by eutectic bonding of the lower surface electrode 331 and the third pad 243. The upper surface electrode 332 is provided at a position that is biased in plan view, and is biased toward the second LED chip 320 in the present embodiment.
 本実施形態においては、ワイヤ391は、第一LEDチップ310の上面電極312と第二LEDチップ320の上面電極322とを接続している。また、ワイヤ392は、本発明で言う追加のワイヤに相当し、第二LEDチップ320の上面電極329と第三LEDチップ330の上面電極332とを接続している。 In this embodiment, the wire 391 connects the upper surface electrode 312 of the first LED chip 310 and the upper surface electrode 322 of the second LED chip 320. The wire 392 corresponds to an additional wire in the present invention, and connects the upper surface electrode 329 of the second LED chip 320 and the upper surface electrode 332 of the third LED chip 330.
 配線層240は、第一パッド241、第二パッド242および第三パッド243を有している。このうち第一パッド241および第三パッド243は、第一LEDチップ310、第二LEDチップ320および第三LEDチップ330を点灯させるための電力供給経路の一部をなす。一方、第二パッド242は、電力供給経路をなしておらず、第二LEDチップ320が搭載されたサブマウント基板301を接合するための便宜として形成されている。 The wiring layer 240 has a first pad 241, a second pad 242, and a third pad 243. Among these, the first pad 241 and the third pad 243 form part of a power supply path for lighting the first LED chip 310, the second LED chip 320, and the third LED chip 330. On the other hand, the second pad 242 does not form a power supply path, and is formed as a convenience for joining the submount substrate 301 on which the second LED chip 320 is mounted.
 被覆樹脂410は、ケース500に囲まれた領域のうち、第一LEDチップ310、第二LEDチップ320および第三LEDチップ330を除く部位を覆っている。また、被覆樹脂410は、第一LEDチップ310、第二LEDチップ320および第三LEDチップ330それぞれの側面のすべてまたは大部分を覆っている。 The covering resin 410 covers a portion excluding the first LED chip 310, the second LED chip 320, and the third LED chip 330 in the region surrounded by the case 500. The coating resin 410 covers all or most of the side surfaces of the first LED chip 310, the second LED chip 320, and the third LED chip 330.
 このような実施形態によっても、LED光源モジュール112の小型化を図ることができる。青色光を発する第二LEDチップ320を挟んで赤色光を発する第一LEDチップ310と第三LEDチップ330とを配置することにより、赤色光の光量が相対的に不足することを回避できる。また、3つの第一LEDチップ310、第二LEDチップ320および第三LEDチップ330が1つのケース500に囲まれた領域に配置されているにもかかわらず、ワイヤ391,392のいずれもが配線層240にはボンディングされていない。これは、多数のLEDチップを備えることによって高輝度化を図りつつ、小型化を図ることができることを意味する。 Also in this embodiment, the LED light source module 112 can be reduced in size. By arranging the first LED chip 310 that emits red light and the third LED chip 330 with the second LED chip 320 that emits blue light in between, it is possible to avoid a relative shortage of the amount of red light. In addition, although the three first LED chips 310, the second LED chip 320, and the third LED chip 330 are arranged in a region surrounded by one case 500, all of the wires 391 and 392 are wired. Layer 240 is not bonded. This means that by providing a large number of LED chips, it is possible to reduce the size while increasing the luminance.
 図39および図40は、本発明の第十三実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール113においては、基材210には、隆起部212および陥没部216が形成されている。 39 and 40 show an LED light source module according to the thirteenth embodiment of the present invention. In the LED light source module 113 of the present embodiment, the base member 210 is formed with a raised portion 212 and a depressed portion 216.
 隆起部212は、主面211よりもz方向上方に隆起した部位であり、本実施形態においては、頂面213および傾斜面214を有する。頂面213は、隆起部212のうちz方向上方にもっとも突出した部位の表面であり、主面211と平行である。本実施形態においては、頂面213は、矩形状である。傾斜面214は、主面211と頂面213とに繋がっており、xy平面に対して傾斜している。隆起部212の主面211からの隆起高さは、たとえば150~200μmである。 The raised portion 212 is a portion raised above the main surface 211 in the z direction, and has a top surface 213 and an inclined surface 214 in the present embodiment. The top surface 213 is the surface of the protruding portion 212 that protrudes most upward in the z direction, and is parallel to the main surface 211. In the present embodiment, the top surface 213 has a rectangular shape. The inclined surface 214 is connected to the main surface 211 and the top surface 213, and is inclined with respect to the xy plane. The height of the raised portion 212 from the main surface 211 is, for example, 150 to 200 μm.
 陥没部216は、裏面215よりもz方向上方に凹んだ部位であり、z方向視において隆起部212と重なっている。本実施形態においては、陥没部216は、底面217を有している。底面217は、裏面215と平行であり、本実施形態においては、矩形状である。z方向視において、底面217は、隆起部212に内包されている。また底面217と頂面213とは、z方向視においてそれぞれの外縁が互いにほとんど重なっているか、底面217の外縁が頂面213の外縁に対して若干内側に位置している。陥没部216の裏面215からの陥没深さは、たとえば150~200μmである。 The depressed portion 216 is a portion that is recessed above the back surface 215 in the z direction, and overlaps the raised portion 212 when viewed in the z direction. In the present embodiment, the depressed portion 216 has a bottom surface 217. The bottom surface 217 is parallel to the back surface 215 and has a rectangular shape in the present embodiment. When viewed in the z direction, the bottom surface 217 is included in the raised portion 212. Further, the bottom surface 217 and the top surface 213 have their outer edges almost overlapping each other when viewed in the z direction, or the outer edge of the bottom surface 217 is located slightly inside the outer edge of the top surface 213. The depression depth from the back surface 215 of the depression 216 is, for example, 150 to 200 μm.
 メッキ層220は、隆起部212の頂面213を覆っており、Cu,Ni,Pd,Auなどの金属からなる。本実施形態においては、メッキ層220は、Cuからなる。メッキ層220には、サブマウント基板301が接合されている。 The plated layer 220 covers the top surface 213 of the raised portion 212 and is made of a metal such as Cu, Ni, Pd, or Au. In the present embodiment, the plating layer 220 is made of Cu. A submount substrate 301 is bonded to the plating layer 220.
 配線層240は、下地層251およびメッキ層252が積層された構成とされている。下地層251は、上述したLED光源モジュール111,112における配線層240を構成していた層と同様のものである。メッキ層252は、下地層251上に積層されており、メッキ層220と同一の材質によって構成されている。 The wiring layer 240 has a structure in which a base layer 251 and a plating layer 252 are laminated. The underlayer 251 is the same as the layer that has formed the wiring layer 240 in the LED light source modules 111 and 112 described above. The plating layer 252 is laminated on the base layer 251 and is made of the same material as the plating layer 220.
 絶縁層230は、基材210の主面211を覆っており、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230には、開口231が形成されている。開口231は、隆起部212の少なくとも一部を露出させるために設けられており、本実施形態においては、隆起部212の頂面213を露出させている。一方、隆起部212の傾斜面214は、絶縁層230によって覆われている。絶縁層230の厚さは、たとえば100μm程度である。 The insulating layer 230 covers the main surface 211 of the substrate 210 and is made of an insulating material such as an insulating resin or SiO 2 . An opening 231 is formed in the insulating layer 230. The opening 231 is provided to expose at least a part of the raised portion 212, and in the present embodiment, the top surface 213 of the raised portion 212 is exposed. On the other hand, the inclined surface 214 of the raised portion 212 is covered with the insulating layer 230. The thickness of the insulating layer 230 is, for example, about 100 μm.
 次に、LED光源モジュール113の製造方法の一例について、図41~図45を参照しつつ以下に説明する。 Next, an example of a manufacturing method of the LED light source module 113 will be described below with reference to FIGS.
 まず、図41に示すように金属板210’を用意する。金属板210’は、たとえばAl、Cu、Feなどからなる。本実施形態においては、金属板210’の材質としてAlが選択されており、金属板210’の厚さはたとえば1.0~1.5mm程度である。金属板210’は、z方向において互いに反対方向を向く主面211’および裏面215’を有する。次いで、主面211’を覆うように絶縁層230’を形成する。絶縁層230’は、絶縁性樹脂あるいはSiO2などの絶縁材料からなる。絶縁層230’の厚さは、たとえば100μm程度である。次いで、絶縁層230’を覆うように下地層251’を形成する。下地層251’の形成は、たとえば絶縁層230’上に無電解メッキによってCuメッキ層を形成することによりなされる。 First, as shown in FIG. 41, a metal plate 210 ′ is prepared. The metal plate 210 ′ is made of, for example, Al, Cu, Fe or the like. In the present embodiment, Al is selected as the material of the metal plate 210 ′, and the thickness of the metal plate 210 ′ is, for example, about 1.0 to 1.5 mm. The metal plate 210 ′ has a main surface 211 ′ and a back surface 215 ′ that face in opposite directions in the z direction. Next, an insulating layer 230 ′ is formed so as to cover the main surface 211 ′. The insulating layer 230 ′ is made of an insulating resin or an insulating material such as SiO 2 . The thickness of the insulating layer 230 ′ is, for example, about 100 μm. Next, a base layer 251 ′ is formed so as to cover the insulating layer 230 ′. The underlayer 251 ′ is formed, for example, by forming a Cu plating layer on the insulating layer 230 ′ by electroless plating.
 次いで、下地層251’にたとえばエッチングを用いたパターニングを施すことにより、図42に示すように下地層251を形成する。次いで、図43に示すように、金型610,620を用いて金属板210’を加工する。金型610は、上面が矩形状である。金型620は、矩形状の凹部621を有している。凹部621は、z方向視において金型610の上面よりも若干大となっている。金属板210’の裏面215’側に金型610を配置し、金属板210’の主面211’側に金型620を配置する。そして、金型610と金型620とを接近させることにより、金属板210’に金型610の上面を嵌入させる。これにより、隆起部212と陥没部216とを有する基材210が得られる。金型610の上面が接していた部位が陥没部216の底面217となる。また、金型610に対応して金型620の凹部621に進入した部位の表面が頂面213となる。この際、本実施形態においては、下地層251は、金型620のうち凹部621を避けた位置と当接しており、変形されない。絶縁層230’は、隆起部212に沿った形状に変形される。 Next, the base layer 251 'is patterned by using, for example, etching to form the base layer 251 as shown in FIG. Next, as shown in FIG. 43, the metal plate 210 ′ is processed using the molds 610 and 620. The mold 610 has a rectangular top surface. The mold 620 has a rectangular recess 621. The recess 621 is slightly larger than the upper surface of the mold 610 when viewed in the z direction. A metal mold 610 is disposed on the back surface 215 ′ side of the metal plate 210 ′, and a metal mold 620 is disposed on the main surface 211 ′ side of the metal plate 210 ′. Then, the upper surface of the mold 610 is fitted into the metal plate 210 ′ by bringing the mold 610 and the mold 620 closer to each other. Thereby, the base material 210 which has the protruding part 212 and the depression part 216 is obtained. A portion where the upper surface of the mold 610 is in contact becomes a bottom surface 217 of the depressed portion 216. Further, the surface of the portion that has entered the recess 621 of the mold 620 corresponding to the mold 610 becomes the top surface 213. At this time, in this embodiment, the base layer 251 is in contact with a position where the concave portion 621 is avoided in the mold 620 and is not deformed. The insulating layer 230 ′ is deformed into a shape along the raised portion 212.
 次いで、絶縁層230’の一部を除去することにより、図44に示すように絶縁層230を形成する。絶縁層230’の一部を除去する処理は、たとえばスキージ630を用いてなされる。スキージ630の下端縁は、y方向に平行に長く延びている。このスキージ630の下端縁をz方向において頂面213と同じか、若干下方に位置させた状態で、スキージ630をx方向に移動させる。これにより、絶縁層230’のうち頂面213よりもz方向上方に位置する部分がスキージ630によって除去される。この結果、頂面213のみを露出させる開口231を有する絶縁層230が形成される。本実施形態においては、下地層251は、頂面213よりも十分にz方向下方に位置するため、スキージ630には接触しない。 Next, by removing a part of the insulating layer 230 ', the insulating layer 230 is formed as shown in FIG. The process of removing a part of the insulating layer 230 ′ is performed using, for example, a squeegee 630. The lower end edge of the squeegee 630 extends long in parallel to the y direction. The squeegee 630 is moved in the x direction while the lower edge of the squeegee 630 is located at the same level as or slightly below the top surface 213 in the z direction. As a result, the portion of the insulating layer 230 ′ located above the top surface 213 in the z direction is removed by the squeegee 630. As a result, the insulating layer 230 having the opening 231 exposing only the top surface 213 is formed. In the present embodiment, the base layer 251 is located sufficiently below the top surface 213 in the z direction, and thus does not contact the squeegee 630.
 次いで、図45に示すように、メッキ層220およびメッキ層252を形成する。メッキ層220およびメッキ層252は、たとえば電解メッキによって形成される。このため、導電体である基材210の頂面213および下地層251を覆うようにメッキ層220および下地層251が形成され、絶縁層230上には形成されない。以上の工程を経ることにより、基材210、メッキ層220、絶縁層230および配線層240からなる基板200が得られる。 Next, as shown in FIG. 45, a plating layer 220 and a plating layer 252 are formed. The plated layer 220 and the plated layer 252 are formed by, for example, electrolytic plating. For this reason, the plating layer 220 and the base layer 251 are formed so as to cover the top surface 213 and the base layer 251 of the base material 210 which is a conductor, and are not formed on the insulating layer 230. Through the above steps, the substrate 200 including the base 210, the plating layer 220, the insulating layer 230, and the wiring layer 240 is obtained.
 この後は、ケース500の形成、第一LEDチップ310、第二LEDチップ320、サブマウント基板301および第三LEDチップ330の搭載、ワイヤ391,392のボンディングおよび封止樹脂420の形成を経ることにより、LED光源モジュール113が得られる。 Thereafter, the case 500 is formed, the first LED chip 310, the second LED chip 320, the submount substrate 301 and the third LED chip 330 are mounted, the wires 391 and 392 are bonded, and the sealing resin 420 is formed. Thus, the LED light source module 113 is obtained.
 このような実施形態によっても、LED光源モジュール113の小型化を図ることができる。また、第二LEDチップ320は、絶縁層230を介することなく隆起部212に支持されている。これにより、第二LEDチップ320からの伝熱が絶縁層230によって妨げられることがない。したがって、第二LEDチップ320からの放熱を促進することが可能であり、LED光源モジュール113の高輝度化を図ることができる。 Also in this embodiment, the LED light source module 113 can be downsized. The second LED chip 320 is supported by the raised portion 212 without the insulating layer 230 interposed therebetween. Thereby, the heat transfer from the second LED chip 320 is not hindered by the insulating layer 230. Therefore, heat radiation from the second LED chip 320 can be promoted, and the brightness of the LED light source module 113 can be increased.
 図46は、本発明の第十四実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール114においては、上述したLED光源モジュール113と比べて、メッキ層220を備えておらず、配線層240が単層とされている点が異なっている。すなわち、本実施形態においては、図45を用いて説明したメッキ工程が省略されている。このような実施形態によっても、LED光源モジュール114の小型化を図ることができる。 FIG. 46 shows an LED light source module according to the fourteenth embodiment of the present invention. The LED light source module 114 of this embodiment is different from the LED light source module 113 described above in that the plating layer 220 is not provided and the wiring layer 240 is a single layer. That is, in the present embodiment, the plating process described with reference to FIG. 45 is omitted. Also according to such an embodiment, the LED light source module 114 can be downsized.
 図47は、本発明の第十五実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール115は、上述したLED光源モジュール113と比べてサブマウント基板301を備えていない点が異なっている。すなわち、第二LEDチップ320が、基材210の隆起部212の頂面213を覆う絶縁層230に接合されている。本実施形態においては、隆起部212の高さは、第一LEDチップ310および第三LEDチップ330の高さと略同一とされている。このような実施形態によっても、LED光源モジュール115の小型化を図ることができる。 FIG. 47 shows an LED light source module according to the fifteenth embodiment of the present invention. The LED light source module 115 of this embodiment is different from the LED light source module 113 described above in that it does not include the submount substrate 301. That is, the second LED chip 320 is bonded to the insulating layer 230 that covers the top surface 213 of the raised portion 212 of the substrate 210. In the present embodiment, the height of the raised portion 212 is substantially the same as the height of the first LED chip 310 and the third LED chip 330. Also according to such an embodiment, the LED light source module 115 can be downsized.
 図48は、本発明の第十六実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール116は、第一LEDチップ310が赤色光を発し、第二LEDチップ320が青色光を発し、第三LEDチップ330が緑色光を発する。第三LEDチップ330は、たとえばGaN系半導体からなる半導体層を有する。また、本実施形態においては、封止樹脂420は、透明な樹脂からなり、蛍光材料は混入されていない。このような実施形態によっても、LED光源モジュール116の小型化を図ることができる。また、第一LEDチップ310からの赤色光、第二LEDチップ320からの青色光および第三LEDチップ330から緑色光によって、白色光を生成することができる。このため、封止樹脂420には、蛍光材料を混入する必要がない。本実施形態においては、高輝度化等の目的により被覆樹脂410を設けているが、封止樹脂420に起因する硫化ガスによる劣化のおそれがないため、この点において、被覆樹脂410を省略した構成としてもよい。 FIG. 48 shows an LED light source module according to the sixteenth embodiment of the present invention. In the LED light source module 116 of the present embodiment, the first LED chip 310 emits red light, the second LED chip 320 emits blue light, and the third LED chip 330 emits green light. The third LED chip 330 has a semiconductor layer made of, for example, a GaN-based semiconductor. In this embodiment, the sealing resin 420 is made of a transparent resin, and no fluorescent material is mixed therein. Also according to such an embodiment, the LED light source module 116 can be downsized. Further, white light can be generated by red light from the first LED chip 310, blue light from the second LED chip 320, and green light from the third LED chip 330. For this reason, it is not necessary to mix the fluorescent material into the sealing resin 420. In the present embodiment, the coating resin 410 is provided for the purpose of increasing the brightness. However, since there is no risk of deterioration due to the sulfide gas caused by the sealing resin 420, the configuration in which the coating resin 410 is omitted in this respect. It is good.
 図49は、本発明の第十七実施形態に基づくLED光源モジュールを示している。本実施形態のLED光源モジュール117は、比較的小型のモジュールとして構成されることにより、電子機器の点光源として用いられるものである。この点において、上述したLED光源モジュール111~116が、x方向に長く延びるバー状光源として構成されている点と異なる。LED光源モジュール117が第一LEDチップ310および第二LEDチップ320を備える点は、上述したLED光源モジュール111と類似しているが、LED光源モジュール117のような点光源として用いられる構成に、上述したLED光源モジュール112~116における構成を適宜適用しても良いことはもちろんである。 FIG. 49 shows an LED light source module according to the seventeenth embodiment of the present invention. The LED light source module 117 of this embodiment is used as a point light source of an electronic device by being configured as a relatively small module. In this respect, the LED light source modules 111 to 116 described above are different from those configured as bar-shaped light sources extending in the x direction. The point that the LED light source module 117 includes the first LED chip 310 and the second LED chip 320 is similar to the LED light source module 111 described above, but the configuration used as a point light source such as the LED light source module 117 is the above. Of course, the configurations of the LED light source modules 112 to 116 may be applied as appropriate.
 本実施形態においては、2つのリード270およびリード280によって本発明で言う導通支持部材が構成されている。リード270およびリード280は、金属からなり、たとえば母材としてのCu板にNiやAuなどのメッキが施されている。 In the present embodiment, the conduction support member referred to in the present invention is constituted by the two leads 270 and the leads 280. The lead 270 and the lead 280 are made of metal, for example, a Cu plate as a base material is plated with Ni, Au, or the like.
 リード270は、主面271および端子部275を有している。主面271は、z方向上方を向いており第一LEDチップ310を支持している。端子部275は、LED光源モジュール117を図示しない回路基板などに実装するために用いられる。 The lead 270 has a main surface 271 and a terminal portion 275. The main surface 271 faces upward in the z direction and supports the first LED chip 310. The terminal portion 275 is used for mounting the LED light source module 117 on a circuit board (not shown).
 リード280は、主面281および端子部285を有している。主面281は、z方向上方を向いており第二LEDチップ320を支持している。端子部285は、LED光源モジュール107を図示しない回路基板などに実装するために用いられる。このような実施形態によっても、LED光源モジュール117の小型化を図ることができる。 The lead 280 has a main surface 281 and a terminal portion 285. The main surface 281 faces upward in the z direction and supports the second LED chip 320. The terminal portion 285 is used for mounting the LED light source module 107 on a circuit board (not shown). Also according to such an embodiment, the LED light source module 117 can be downsized.
 本発明に係るLED光源モジュールは、上述した実施形態に限定されるものではない。本発明に係るLED光源モジュールの各部の具体的な構成は、種々に設計変更自在である。 The LED light source module according to the present invention is not limited to the above-described embodiment. The specific configuration of each part of the LED light source module according to the present invention can be varied in design in various ways.
 本発明に係るLED光源モジュールは、比較的小型のモジュールとして構成されることにより、電子機器の点光源として用いられるもの、細長い導通支持部材に複数のLEDチップが配置されることにより細長いバー状光源として用いられるもの、導通支持部材に複数のLEDチップがマトリクス状に配置されることにより、面状光源として用いられるもの、などがある。上記バー状光源の具体的な用途の一例としては、平板状の導光板の側面に正対する位置にLED光源モジュールが配置されることにより、この導光板から面状光を出射する構成が挙げられる。この導光板に重ねられた液晶パネルに上記面状光を透過させることにより、LED光源モジュールは、液晶表示装置の光源として機能する。また、上記面状光源の具体的な用途の一例としては、液晶パネルとLED光源モジュールを重ねて配置することにより、LED光源モジュールは液晶表示装置のバックライトとして機能する。これらの用途はあくまで一例であり、本発明に係るLED光源モジュールは、様々な用途に種々の形態によって用いられる。 The LED light source module according to the present invention is used as a point light source of an electronic device by being configured as a relatively small module, and an elongated bar light source by arranging a plurality of LED chips on an elongated conductive support member Used as a planar light source by arranging a plurality of LED chips on a conductive support member in a matrix. As an example of a specific application of the bar-shaped light source, there is a configuration in which a planar light is emitted from the light guide plate by disposing the LED light source module at a position facing the side surface of the flat light guide plate. . The LED light source module functions as a light source of the liquid crystal display device by transmitting the planar light through the liquid crystal panel superimposed on the light guide plate. As an example of a specific application of the planar light source, the LED light source module functions as a backlight of the liquid crystal display device by arranging the liquid crystal panel and the LED light source module so as to overlap each other. These applications are merely examples, and the LED light source module according to the present invention is used in various forms for various applications.
 被覆樹脂410は、白色樹脂からなる構成に限定されず、第一LEDチップ310からの光が第二LEDチップ320に吸収されることを抑制しうる材質が採用できる。たとえば、被覆樹脂410を封止樹脂420の材質よりも屈折率が小である材質を採用することにより、封止樹脂420から被覆樹脂410へと光が進行する場合に、これらの界面において全反射が生じうる。このような構成によっても、第二LEDチップ320による光の吸収を抑制する効果が期待できる。 The coating resin 410 is not limited to a configuration made of a white resin, and a material capable of suppressing the light from the first LED chip 310 from being absorbed by the second LED chip 320 can be employed. For example, when the coating resin 410 is made of a material having a refractive index smaller than that of the sealing resin 420, when light travels from the sealing resin 420 to the coating resin 410, total reflection is performed at these interfaces. Can occur. Even with such a configuration, an effect of suppressing light absorption by the second LED chip 320 can be expected.
 以上のまとめとして、これらの実施形態にかかる構成およびそのバリエーションを以下に付記として列挙する。
  (付記1)
 主面を有する導通支持部材と、
 上記主面側において上記導通支持部材に支持され、かつ上記導通支持部材を経由して電力が供給される第一および第二LEDチップと、
 上記導通支持部材に支持され、上記第一および第二LEDチップを囲むケースと、
 上記ケースに囲まれた領域において上記第一および第二LEDチップを覆う封止樹脂と、を備えており、
 上記第二LEDチップから発せられる光の波長は、上記第一LEDチップから発せられる光の波長よりも長く、
 上記封止樹脂と上記導通支持部材の上記主面との間に介在するとともに、上記第二LEDチップのうち上記主面が向く方向と交差する方向を向く側面の少なくとも一部を覆う被覆樹脂をさらに備える、LED光源モジュール。
  (付記2)
 上記第二LEDチップは、下面電極、チップ基板、半導体層および上面電極を有し、
 上記被覆樹脂は、上記チップ基板の少なくとも一部を覆っている、付記1に記載のLED光源モジュール。
  (付記3)
 上記チップ基板は、GaAsからなる、付記2に記載のLED光源モジュール。
  (付記4)
 上記下面電極は、導通接合材を介して上記導通支持部材に接合されており、
 上記上面電極は、ワイヤを介して上記導通支持部材に導通している、付記2または3に記載のLED光源モジュール。
  (付記5)
 上記第一LEDチップは、青色光を発し、
 上記第二LEDチップは、赤色光を発する、付記1ないし4のいずれかに記載のLED光源モジュール。
  (付記6)
 上記封止樹脂は、上記第一LEDチップから発せられる光によって励起されることにより、上記第一LEDチップから発せられる光の波長とは異なり、かつ上記第二LEDチップから発せられる光の波長よりも短い波長の光を発する蛍光材料を含む、付記5に記載のLED光源モジュール。
  (付記7)
 上記蛍光材料は、硫化物からなる、付記6に記載のLED光源モジュール。
  (付記8)
 上記蛍光材料は、緑色光を発する、付記6または7に記載のLED光源モジュール。
  (付記9)
 上記被覆樹脂は、白色である、付記1ないし8のいずれかに記載のLED光源モジュール。
  (付記10)
 上記被覆樹脂は、上記封止樹脂よりも屈折率が小である、付記1ないし8のいずれかに記載のLED光源モジュール。
  (付記11)
 上記被覆樹脂と上記ケースとの接合部分のうち上記主面から最も離間した部位は、上記第一および第二LEDチップのいずれの部位よりも上記主面から離間している、付記1ないし10のいずれかに記載のLED光源モジュール。
  (付記12)
 上記基板の上記主面および上記絶縁層よりも上記主面の法線方向に位置する頂面を有する台座部を備えており、
 上記第一LEDチップは、上記台座部の上記頂面に支持されている、付記1ないし11のいずれかに記載のLED光源モジュール。
  (付記13)
 上記台座部のうち上記頂面を除く部位の少なくとも一部が、上記被覆樹脂によって覆われている、付記12に記載のLED光源モジュール。
  (付記14)
 上記導通支持部材と上記第一LEDチップとの間に介在するサブマウント基板を備えており、
 上記台座部は、上記サブマウンド基板によって構成されている、付記12または13に記載のLED光源モジュール。
  (付記15)
 上記導通支持部材は、基材とこの基材上に形成された配線層とを有する、付記12または13に記載のLED光源モジュール。
  (付記16)
 上記基材は、金属からなり、
 上記導通支持部材は、上記基材と上記配線層との間に介在する絶縁層を有する、付記15に記載のLED光源モジュール。
  (付記17)
 上記基材は、上記主面よりも隆起した隆起部を有し、
 上記台座部は、上記隆起部によって構成されている、付記16に記載のLED光源モジュール。
  (付記18)
 上記隆起部は、上記主面と平行である上記頂面と、この頂面および上記主面を繋ぐ傾斜面と、を有する、付記17に記載のLED光源モジュール。
  (付記19)
 上記絶縁層は、上記隆起部のうち上記頂面を露出させている、付記17または18に記載のLED光源モジュール。
  (付記20)
 上記基材は、その厚さ方向において上記隆起部の反対側に位置し、上記厚さ方向視において上記隆起部に重なる陥没部を有する、付記17ないし19のいずれかに記載のLED光源モジュール。
  (付記21)
 上記陥没部は、上記主面と平行である底面を有する、付記20に記載のLED光源モジュール。
  (付記22)
 上記底面は、上記厚さ方向視において上記隆起部に内包されている、付記21に記載のLED光源モジュール。
  (付記23)
 主面を有する導通支持部材と、
 上記主面に支持され、かつ上記導通支持部材を経由して電力が供給される第一および第二LEDチップと、を備えており、
 上記第一LEDチップは、上記主面と対向する方向を向く第一下面電極およびこの第一下面電極とは反対側を向く第一上面電極を有しており、
 上記第二LEDチップは、上記第一LEDチップの上記第一上面電極と同じ側を向く第二上面電極を有しており、
 上記第一LEDチップの上記第一上面電極と上記第二LEDチップの上記第二上面電極とを接続するワイヤを備える、LED光源モジュール。
  (付記24)
 上記導通支持部材は、基材とこの基材上に形成された配線層とを有する、付記23に記載のLED光源モジュール。
  (付記25)
 上記基材は、金属からなり、
 上記導通支持部材は、上記基材と上記配線層との間に介在する絶縁層を有する、付記24に記載のLED光源モジュール。
  (付記26)
 上記第二LEDチップは、上記第一LEDチップの上記第一下面電極と同じ側を向く第二下面電極を有する、付記23ないし25のいずれかに記載のLED光源モジュール。
  (付記27)
 上記第二LEDチップは、上記第二上面電極と同じ側を向く追加の第二上面電極を有する、付記23ないし25のいずれかに記載のLED光源モジュール。
  (付記28)
 上記主面に支持され、かつ上記導通支持部材を経由して電力が供給される第三LEDチップをさらに備えており、
 上記第三LEDチップは、上記主面と対向する方向を向く第三下面電極およびこの第三下面電極とは反対側を向く第三上面電極を有しており、
 上記第二LEDチップの上記追加の第二上面電極と上記第三LEDチップの上記第三上面電極とを接続する追加のワイヤを備えている、付記27に記載のLED光源モジュール。
  (付記29)
 上記第二LEDチップと上記導通支持部材との間に介在するサブマウント基板を備える、付記28に記載のLED光源モジュール。
  (付記30)
 上記第一および第二LEDチップを覆うとともに蛍光材料を含む封止樹脂をさらに備える、付記23ないし29のいずれかに記載のLED光源モジュール。
  (付記31)
 上記第二LEDチップは、青色光を発する、付記30に記載のLED光源モジュール。
  (付記32)
 上記第一LEDチップは、赤色光を発する、付記31に記載のLED光源モジュール。
  (付記33)
 上記蛍光材料は、青色光によって励起されることにより緑色光を発する、付記31または32に記載のLED光源モジュール。
  (付記34)
 上記蛍光材料は、硫化物からなる、付記33に記載のLED光源モジュール。
  (付記35)
 上記導通支持部材に支持されており、かつ上記第一および第二LEDチップを囲む反射面を有するケースをさらに備えている、付記23ないし34のいずれかに記載のLED光源モジュール。
  (付記36)
 上記導通支持部材のうち上記反射面に囲まれた領域である内部領域の少なくとも一部と、上記第一LEDチップの側面の少なくとも一部と、を覆う被覆樹脂を備える、付記35に記載のLED光源モジュール。
  (付記37)
 上記被覆樹脂は、上記配線層のうち上記内部領域において上記第一および上記第二LEDチップから露出した部分を覆っている、付記36に記載のLED光源モジュール。
  (付記38)
 上記被覆樹脂は、白色である、付記36または37に記載のLED光源モジュール。
  (付記39)
 上記被覆樹脂と上記ケースとの接合部分のうち上記基材の上記主面から最も離間した部位は、上記第一および第二LEDチップのいずれの部位よりも上記主面から離間している、付記36ないし38のいずれかに記載のLED光源モジュール。
  (付記40)
 上記基材は、上記主面よりも隆起した隆起部を有しており、
 上記絶縁層は、上記基材の上記主面を覆うとともに、上記隆起部の少なくとも一部を露出させており、
 上記第二LEDチップは、上記隆起部に支持されている、付記25に記載のLED光源モジュール。
  (付記41)
 上記隆起部は、上記主面と平行である頂面と、この頂面および上記主面を繋ぐ傾斜面と、を有する、付記40に記載のLED光源モジュール。
  (付記42)
 上記絶縁層は、上記隆起部のうち上記頂面を露出させている、付記41に記載のLED光源モジュール。
  (付記43)
 上記基材は、その厚さ方向において上記隆起部の反対側に位置し、上記厚さ方向視において上記隆起部に重なる陥没部を有する、付記42に記載のLED光源モジュール。
  (付記44)
 上記陥没部は、上記主面と平行である底面を有する、付記43に記載のLED光源モジュール。
  (付記45)
 上記底面は、上記厚さ方向視において上記隆起部に内包されている、付記44に記載のLED光源モジュール。
As a summary of the above, the configurations and variations thereof according to these embodiments are listed as appendices below.
(Appendix 1)
A conduction support member having a main surface;
First and second LED chips supported by the conduction support member on the main surface side and supplied with power via the conduction support member;
A case supported by the conduction support member and surrounding the first and second LED chips;
Sealing resin that covers the first and second LED chips in a region surrounded by the case,
The wavelength of the light emitted from the second LED chip is longer than the wavelength of the light emitted from the first LED chip,
A coating resin that is interposed between the sealing resin and the main surface of the conduction support member and covers at least a part of a side surface of the second LED chip that faces in a direction intersecting the direction in which the main surface faces. An LED light source module further provided.
(Appendix 2)
The second LED chip has a lower surface electrode, a chip substrate, a semiconductor layer, and an upper surface electrode,
The LED light source module according to appendix 1, wherein the coating resin covers at least a part of the chip substrate.
(Appendix 3)
The LED light source module according to appendix 2, wherein the chip substrate is made of GaAs.
(Appendix 4)
The lower surface electrode is bonded to the conductive support member via a conductive bonding material,
The LED light source module according to appendix 2 or 3, wherein the upper surface electrode is electrically connected to the conduction support member via a wire.
(Appendix 5)
The first LED chip emits blue light,
The LED light source module according to any one of appendices 1 to 4, wherein the second LED chip emits red light.
(Appendix 6)
The sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and from the wavelength of the light emitted from the second LED chip. 6. The LED light source module according to appendix 5, including a fluorescent material that emits light having a short wavelength.
(Appendix 7)
The LED light source module according to appendix 6, wherein the fluorescent material is made of sulfide.
(Appendix 8)
The LED light source module according to appendix 6 or 7, wherein the fluorescent material emits green light.
(Appendix 9)
The LED light source module according to any one of appendices 1 to 8, wherein the coating resin is white.
(Appendix 10)
The LED light source module according to any one of appendices 1 to 8, wherein the coating resin has a refractive index smaller than that of the sealing resin.
(Appendix 11)
The part of the joint portion between the coating resin and the case that is farthest from the main surface is further from the main surface than any part of the first and second LED chips. The LED light source module according to any one of the above.
(Appendix 12)
A pedestal having a top surface located in a direction normal to the main surface from the main surface and the insulating layer of the substrate;
The LED light source module according to any one of appendices 1 to 11, wherein the first LED chip is supported on the top surface of the pedestal portion.
(Appendix 13)
The LED light source module according to appendix 12, wherein at least a part of the base portion excluding the top surface is covered with the coating resin.
(Appendix 14)
A submount substrate interposed between the conductive support member and the first LED chip;
The LED light source module according to appendix 12 or 13, wherein the pedestal portion is configured by the sub-mound substrate.
(Appendix 15)
The LED light source module according to appendix 12 or 13, wherein the conduction support member includes a base material and a wiring layer formed on the base material.
(Appendix 16)
The base material is made of metal,
The LED light source module according to appendix 15, wherein the conduction support member has an insulating layer interposed between the base material and the wiring layer.
(Appendix 17)
The base material has a raised portion raised from the main surface,
The LED light source module according to appendix 16, wherein the pedestal portion is configured by the raised portion.
(Appendix 18)
The LED light source module according to appendix 17, wherein the raised portion includes the top surface parallel to the main surface and an inclined surface connecting the top surface and the main surface.
(Appendix 19)
The LED light source module according to appendix 17 or 18, wherein the insulating layer exposes the top surface of the raised portion.
(Appendix 20)
20. The LED light source module according to any one of appendices 17 to 19, wherein the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
(Appendix 21)
The LED light source module according to appendix 20, wherein the depressed portion has a bottom surface that is parallel to the main surface.
(Appendix 22)
The LED light source module according to appendix 21, wherein the bottom surface is included in the raised portion in the thickness direction view.
(Appendix 23)
A conduction support member having a main surface;
First and second LED chips supported by the main surface and supplied with power via the conduction support member,
The first LED chip has a first lower surface electrode facing the main surface and a first upper surface electrode facing the opposite side of the first lower surface electrode,
The second LED chip has a second upper surface electrode facing the same side as the first upper surface electrode of the first LED chip,
An LED light source module comprising a wire connecting the first upper surface electrode of the first LED chip and the second upper surface electrode of the second LED chip.
(Appendix 24)
The LED light source module according to appendix 23, wherein the conduction support member includes a base material and a wiring layer formed on the base material.
(Appendix 25)
The base material is made of metal,
The LED light source module according to appendix 24, wherein the conduction support member has an insulating layer interposed between the base material and the wiring layer.
(Appendix 26)
26. The LED light source module according to any one of appendices 23 to 25, wherein the second LED chip has a second lower surface electrode facing the same side as the first lower surface electrode of the first LED chip.
(Appendix 27)
The LED light source module according to any one of appendices 23 to 25, wherein the second LED chip has an additional second upper surface electrode facing the same side as the second upper surface electrode.
(Appendix 28)
Further comprising a third LED chip supported by the main surface and supplied with power via the conduction support member;
The third LED chip has a third lower surface electrode facing the main surface and a third upper surface electrode facing the opposite side of the third lower surface electrode,
28. The LED light source module according to appendix 27, comprising an additional wire connecting the additional second upper surface electrode of the second LED chip and the third upper surface electrode of the third LED chip.
(Appendix 29)
29. The LED light source module according to appendix 28, comprising a submount substrate interposed between the second LED chip and the conduction support member.
(Appendix 30)
30. The LED light source module according to any one of appendices 23 to 29, further comprising a sealing resin that covers the first and second LED chips and includes a fluorescent material.
(Appendix 31)
The LED light source module according to appendix 30, wherein the second LED chip emits blue light.
(Appendix 32)
32. The LED light source module according to appendix 31, wherein the first LED chip emits red light.
(Appendix 33)
The LED light source module according to appendix 31 or 32, wherein the fluorescent material emits green light when excited by blue light.
(Appendix 34)
34. The LED light source module according to appendix 33, wherein the fluorescent material is made of sulfide.
(Appendix 35)
35. The LED light source module according to any one of appendices 23 to 34, further comprising a case supported by the conduction support member and having a reflective surface surrounding the first and second LED chips.
(Appendix 36)
36. The LED according to appendix 35, comprising a coating resin that covers at least a part of an inner region that is a region surrounded by the reflection surface of the conduction support member and at least a part of a side surface of the first LED chip. Light source module.
(Appendix 37)
37. The LED light source module according to appendix 36, wherein the coating resin covers a portion of the wiring layer exposed from the first and second LED chips in the internal region.
(Appendix 38)
The LED light source module according to appendix 36 or 37, wherein the coating resin is white.
(Appendix 39)
The portion of the joint portion between the coating resin and the case that is the most distant from the main surface of the base material is further away from the main surface than any portion of the first and second LED chips. The LED light source module according to any one of 36 to 38.
(Appendix 40)
The base material has a raised portion raised from the main surface,
The insulating layer covers the main surface of the base material and exposes at least a part of the raised portion,
The LED light source module according to appendix 25, wherein the second LED chip is supported by the raised portion.
(Appendix 41)
41. The LED light source module according to appendix 40, wherein the raised portion has a top surface that is parallel to the main surface and an inclined surface that connects the top surface and the main surface.
(Appendix 42)
42. The LED light source module according to appendix 41, wherein the insulating layer exposes the top surface of the raised portion.
(Appendix 43)
43. The LED light source module according to appendix 42, wherein the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion in the thickness direction view.
(Appendix 44)
44. The LED light source module according to appendix 43, wherein the depressed portion has a bottom surface that is parallel to the main surface.
(Appendix 45)
45. The LED light source module according to appendix 44, wherein the bottom surface is included in the raised portion when viewed in the thickness direction.

Claims (23)

  1.  主面を有する導通支持部材と、
     上記主面側において上記導通支持部材に支持され、かつ上記導通支持部材を経由して電力が供給される第一および第二LEDチップと、
     上記導通支持部材に支持され、上記第一および第二LEDチップを囲むケースと、
     上記ケースに囲まれた領域において上記第一および第二LEDチップを覆う封止樹脂と、を備えており、
     上記第二LEDチップから発せられる光の波長は、上記第一LEDチップから発せられる光の波長よりも長く、
     上記第二LEDチップは、上記第一LEDチップからの光を透過する材質からなる第二チップ基板と、このチップ基板上に積層された第二半導体層と、を有する、LED光源モジュール。
    A conduction support member having a main surface;
    First and second LED chips supported by the conduction support member on the main surface side and supplied with power via the conduction support member;
    A case supported by the conduction support member and surrounding the first and second LED chips;
    Sealing resin that covers the first and second LED chips in a region surrounded by the case,
    The wavelength of the light emitted from the second LED chip is longer than the wavelength of the light emitted from the first LED chip,
    The second LED chip is an LED light source module including a second chip substrate made of a material that transmits light from the first LED chip, and a second semiconductor layer stacked on the chip substrate.
  2.  上記第二チップ基板は、サファイアからなる、請求項1に記載のLED光源モジュール。 The LED light source module according to claim 1, wherein the second chip substrate is made of sapphire.
  3.  上記第二チップ基板は、上記主面が向く方向において上記第一LEDチップと重なる位置にある、請求項1または2に記載のLED光源モジュール。 3. The LED light source module according to claim 1, wherein the second chip substrate is in a position overlapping the first LED chip in a direction in which the main surface faces.
  4.  上記第二LEDチップは、赤色光を発する、請求項1ないし3のいずれかに記載のLED光源モジュール。 The LED light source module according to any one of claims 1 to 3, wherein the second LED chip emits red light.
  5.  上記第一LEDチップは、青色光を発する、請求項4に記載のLED光源モジュール。 The LED light source module according to claim 4, wherein the first LED chip emits blue light.
  6.  上記第一LEDチップは、サファイアまたはGaNからなる第一チップ基板と、この第一チップ基板上に積層された第一半導体層と、を有する、請求項5に記載のLED光源モジュール。 The LED light source module according to claim 5, wherein the first LED chip has a first chip substrate made of sapphire or GaN, and a first semiconductor layer stacked on the first chip substrate.
  7.  上記第二チップ基板は、上記主面が向く方向において上記第一チップ基板と重なる位置にある、請求項6に記載のLED光源モジュール。 The LED light source module according to claim 6, wherein the second chip substrate is in a position overlapping with the first chip substrate in a direction in which the main surface faces.
  8.  上記第一LEDチップは、上記第一半導体層上に形成された2つの第一上面電極を有する、請求項6または7に記載のLED光源モジュール。 The LED light source module according to claim 6 or 7, wherein the first LED chip has two first upper surface electrodes formed on the first semiconductor layer.
  9.  上記第二LEDチップは、上記第二半導体層上に形成された2つの第二上面電極を有する、請求項8に記載のLED光源モジュール。 The LED light source module according to claim 8, wherein the second LED chip has two second upper surface electrodes formed on the second semiconductor layer.
  10.  上記封止樹脂は、上記第一LEDチップから発せられる光によって励起されることにより、上記第一LEDチップから発せられる光の波長とは異なり、かつ上記第二LEDチップから発せられる光の波長よりも短い波長の光を発する蛍光材料を含む、請求項4ないし9のいずれかに記載のLED光源モジュール。 The sealing resin is different from the wavelength of the light emitted from the first LED chip by being excited by the light emitted from the first LED chip, and from the wavelength of the light emitted from the second LED chip. The LED light source module according to claim 4, further comprising a fluorescent material that emits light having a short wavelength.
  11.  上記蛍光材料は、硫化物からなる、請求項10に記載のLED光源モジュール。 The LED light source module according to claim 10, wherein the fluorescent material is made of sulfide.
  12.  上記蛍光材料は、緑色光を発する、請求項11に記載のLED光源モジュール。 The LED light source module according to claim 11, wherein the fluorescent material emits green light.
  13.  上記第一LEDチップと上記導通支持部材との間に介在する第一サブマウント基板と、
     上記第二LEDチップと上記導通支持部材との間に介在する第二サブマウント基板と、
     上記封止樹脂と上記導通支持部材の上記主面との間に介在するとともに、上記第一サブマウント基板および上記第二サブマウント基板それぞれのうち上記主面が向く方向と交差する方向を向く側面の少なくとも一部を覆う被覆樹脂と、
    をさらに備える、請求項1ないし12のいずれかに記載のLED光源モジュール。
    A first submount substrate interposed between the first LED chip and the conduction support member;
    A second submount substrate interposed between the second LED chip and the conduction support member;
    A side surface that is interposed between the sealing resin and the main surface of the conductive support member and faces the direction intersecting with the direction in which the main surface faces in each of the first submount substrate and the second submount substrate. Coating resin covering at least a part of
    The LED light source module according to claim 1, further comprising:
  14.  上記被覆樹脂は、白色である、請求項13に記載のLED光源モジュール。 The LED light source module according to claim 13, wherein the coating resin is white.
  15.  上記被覆樹脂と上記ケースとの接合部分のうち上記主面から最も離間した部位は、上記第一および第二LEDチップのいずれの部位よりも上記主面から離間している、請求項13または14に記載のLED光源モジュール。 The part most distant from the said main surface among the junction parts of the said coating resin and the said case is spaced apart from the said main surface rather than any part of said 1st and 2nd LED chip. LED light source module of description.
  16.  上記導通支持部材は、基材とこの基材上に形成された配線層とを有する、請求項1ないし15のいずれかに記載のLED光源モジュール。 The LED light source module according to any one of claims 1 to 15, wherein the conduction support member includes a base material and a wiring layer formed on the base material.
  17.  上記基材は、金属からなり、
     上記導通支持部材は、上記基材と上記配線層との間に介在する絶縁層を有する、請求項16に記載のLED光源モジュール。
    The base material is made of metal,
    The LED light source module according to claim 16, wherein the conduction support member has an insulating layer interposed between the base material and the wiring layer.
  18.  上記基材は、上記主面よりも隆起した隆起部を有し、
     上記第一および上記第二LEDチップは、上記隆起部によって支持されている、請求項17に記載のLED光源モジュール。
    The base material has a raised portion raised from the main surface,
    The LED light source module according to claim 17, wherein the first and second LED chips are supported by the raised portion.
  19.  上記隆起部は、上記主面と平行である頂面と、この頂面および上記主面を繋ぐ傾斜面と、を有しており、
     上記第一および上記第二LEDチップは、上記頂面に支持されている、請求項18に記載のLED光源モジュール。
    The raised portion has a top surface that is parallel to the main surface, and an inclined surface that connects the top surface and the main surface,
    The LED light source module according to claim 18, wherein the first and second LED chips are supported on the top surface.
  20.  上記絶縁層は、上記隆起部のうち上記頂面を露出させている、請求項19に記載のLED光源モジュール。 The LED light source module according to claim 19, wherein the insulating layer exposes the top surface of the raised portion.
  21.  上記基材は、その厚さ方向において上記隆起部の反対側に位置し、上記厚さ方向視において上記隆起部に重なる陥没部を有する、請求項20に記載のLED光源モジュール。 21. The LED light source module according to claim 20, wherein the base material has a depressed portion that is located on the opposite side of the raised portion in the thickness direction and overlaps the raised portion when viewed in the thickness direction.
  22.  上記陥没部は、上記主面と平行である底面を有する、請求項21に記載のLED光源モジュール。 The LED light source module according to claim 21, wherein the depressed portion has a bottom surface parallel to the main surface.
  23.  上記底面は、上記厚さ方向視において上記隆起部に内包されている、請求項22に記載のLED光源モジュール。 The LED light source module according to claim 22, wherein the bottom surface is included in the raised portion when viewed in the thickness direction.
PCT/JP2014/065750 2013-06-18 2014-06-13 Led light source module WO2014203825A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013127316A JP6192377B2 (en) 2013-06-18 2013-06-18 LED light source module
JP2013-127316 2013-06-18
JP2013134090A JP2015012024A (en) 2013-06-26 2013-06-26 Led light source module
JP2013-134089 2013-06-26
JP2013-134090 2013-06-26
JP2013134089A JP2015012023A (en) 2013-06-26 2013-06-26 Led light source module

Publications (1)

Publication Number Publication Date
WO2014203825A1 true WO2014203825A1 (en) 2014-12-24

Family

ID=52104560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065750 WO2014203825A1 (en) 2013-06-18 2014-06-13 Led light source module

Country Status (1)

Country Link
WO (1) WO2014203825A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158373A (en) * 2000-11-07 2002-05-31 Kokuren Koden Kagi Kofun Yugenkoshi Light emitting diode and method of manufacturing the same
JP2006245443A (en) * 2005-03-07 2006-09-14 Citizen Electronics Co Ltd Light emitting device and illumination device
JP2008053691A (en) * 2006-08-25 2008-03-06 Samsung Electro-Mechanics Co Ltd White led module
JP2012023188A (en) * 2010-07-14 2012-02-02 Iwatani Internatl Corp Led package device
JP2012151436A (en) * 2010-11-05 2012-08-09 Rohm Co Ltd Semiconductor light emitting device
JP2013120778A (en) * 2011-12-06 2013-06-17 Rohm Co Ltd Light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158373A (en) * 2000-11-07 2002-05-31 Kokuren Koden Kagi Kofun Yugenkoshi Light emitting diode and method of manufacturing the same
JP2006245443A (en) * 2005-03-07 2006-09-14 Citizen Electronics Co Ltd Light emitting device and illumination device
JP2008053691A (en) * 2006-08-25 2008-03-06 Samsung Electro-Mechanics Co Ltd White led module
JP2012023188A (en) * 2010-07-14 2012-02-02 Iwatani Internatl Corp Led package device
JP2012151436A (en) * 2010-11-05 2012-08-09 Rohm Co Ltd Semiconductor light emitting device
JP2013120778A (en) * 2011-12-06 2013-06-17 Rohm Co Ltd Light emitting device

Similar Documents

Publication Publication Date Title
CN107275301B (en) Light emitting device
JP5233170B2 (en) LIGHT EMITTING DEVICE, RESIN MOLDED BODY FORMING LIGHT EMITTING DEVICE, AND METHOD FOR PRODUCING THEM
JP4747726B2 (en) Light emitting device
JP4077170B2 (en) Semiconductor light emitting device
CN100565948C (en) Light-emitting device
KR101593740B1 (en) Light-emitting device and manufacturing method for light-emitting device
JP6131048B2 (en) LED module
JP6211795B2 (en) LED light source module
US20100163920A1 (en) Semiconductor light emitting device
EP2385549A2 (en) Chip package, package module, and illumination apparatus including chip package module
TW201444124A (en) Circuit board, optical semiconductor device and manufacturing method for same
JPWO2009041318A1 (en) Light emitting element and light emitting device using the same
JP2008060344A (en) Semiconductor light-emitting device
JP2014107307A (en) Light-emitting device
JP6004795B2 (en) LED light source device and light reflective substrate
JP6523597B2 (en) Light emitting device
JP2012114284A (en) Led module and illuminating device
JP6090680B2 (en) Light emitting module
JP5082427B2 (en) Light emitting device
JP2007258620A (en) Light emitting device
JP2014029970A (en) Light source device, light source unit, and liquid crystal display device
JP2007288138A (en) Light emitting device
JP2008218998A (en) Light emitting device
JP2004186309A (en) Semiconductor light emitting device equipped with metal package
JP6192377B2 (en) LED light source module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813622

Country of ref document: EP

Kind code of ref document: A1