WO2014203719A1 - Plasma processing apparatus and plasma processing method - Google Patents

Plasma processing apparatus and plasma processing method Download PDF

Info

Publication number
WO2014203719A1
WO2014203719A1 PCT/JP2014/064681 JP2014064681W WO2014203719A1 WO 2014203719 A1 WO2014203719 A1 WO 2014203719A1 JP 2014064681 W JP2014064681 W JP 2014064681W WO 2014203719 A1 WO2014203719 A1 WO 2014203719A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
plasma processing
lower electrode
plasma
processing apparatus
Prior art date
Application number
PCT/JP2014/064681
Other languages
French (fr)
Japanese (ja)
Inventor
仁彦 出道
範芳 小浜
朋宏 福田
Original Assignee
東京エレクトロン株式会社
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, シャープ株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2014203719A1 publication Critical patent/WO2014203719A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/32779Continuous moving of batches of workpieces

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method for performing plasma processing on an object to be processed.
  • a flat panel display typified by a liquid crystal display (LCD), a solar cell, or the like
  • a predetermined process such as etching or film formation is performed on the substrate.
  • a plasma processing apparatus used for such processing a parallel plate type plasma processing apparatus is known.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-136350 proposes that a quartz focus ring is disposed around a substrate in a plasma etching apparatus that performs plasma etching on an FPD substrate.
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-110652 proposes a proposal for adjusting the impedance of a focus ring in a plasma etching apparatus that performs a plasma etching process on a semiconductor substrate.
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-173223 discloses that, in a plasma etching apparatus that performs a plasma etching process on a semiconductor substrate, the etching rate depends on the height of the focus ring.
  • the solar cell substrate is rectangular, so unlike the circular semiconductor substrate, the deposition rate at the corners of the substrate tends to be lower than the central portion, or in the film formation of microcrystalline silicon, There has been a problem that the degree of crystallinity tends to be uneven.
  • the solar cell substrate since the solar cell substrate has a thickness several times that of the LCD substrate used for manufacturing the liquid crystal display, a step is generated between the substrate and the mounting table.
  • the gas supply to the corner portion becomes insufficient, or the spread of plasma is suppressed, and the deposition rate of the corner portion of the substrate is further reduced compared to the central portion,
  • the degree of crystallinity decreases.
  • the solar cell plasma processing apparatus used for producing microcrystalline silicon is used at a relatively high pressure of 400 Pa or more, there is a problem that the flow of gas becomes slow and the influence is larger.
  • the present invention provides a plasma processing apparatus capable of ensuring the uniformity of processing within the substrate surface.
  • the plasma processing apparatus of the present invention provides a high-frequency power to at least one of a processing container that can be evacuated, an upper electrode and a lower electrode that are disposed to face each other, and the upper electrode or the lower electrode. And a high-frequency power supply to be supplied.
  • the lower electrode is provided adjacent to the rectangular mounting area for mounting the rectangular substrate and the outer side so as to surround the mounting area, and the substrate is not mounted. And a non-mounting area.
  • the plasma processing apparatus of this invention has provided the convex part in the one part or the whole of the said non-mounting area
  • the convex portion may be partially provided around a corner of the rectangular mounting region.
  • the upper electrode or the lower electrode may have a rectangular shape in plan view, and in the upper electrode or the lower electrode, a feeding portion to which high-frequency power is supplied from the high-frequency power source, You may be provided in the side part which makes the long side of the said rectangle.
  • the convex portion may be partially provided outside the long side of the rectangular mounting region on the same side as the power feeding site, or the rectangle on the side opposite to the power feeding site. It may be partially provided outside the long side of the mounting area.
  • the convex portion may be provided so as to surround the entire rectangular mounting region.
  • the height of the convex portion may be the same as the thickness of the substrate placed in the placement area, or may be smaller than the thickness of the substrate. Good.
  • the height of the convex portion is relatively high around the corner of the rectangular placement region, and the short side or the central portion of the long side of the rectangular placement region. It may be formed low in a portion adjacent to the.
  • the convex portion may be provided integrally with the lower electrode.
  • the convex portion may be a plate-like member that can be attached to and detached from the lower electrode.
  • the convex portion may be made of a dielectric or a conductor.
  • the substrate may be a glass substrate for solar cells.
  • the substrate is placed in the mounting area and plasma processing is performed.
  • a film forming process by a plasma CVD method may be performed on the substrate.
  • the convex portion is provided in a part or the whole of the non-mounting region where the substrate is not mounted, even when processing a rectangular substrate, In particular, a decrease in the deposition rate and crystallinity of the corner portion is improved, and the uniformity of processing within the substrate surface can be ensured.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 1 is a sectional view showing a schematic configuration example of a plasma film forming apparatus 100 according to the first embodiment of the present invention.
  • 2 is a plan view of a state in which the substrate S as the object to be processed is placed on the lower electrode 5 in the plasma film forming apparatus 100
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is.
  • a plasma film forming apparatus 100 includes a processing container 1 capable of evacuating a rectangular substrate S, and an upper electrode 3 as a cathode electrode disposed opposite to each other in the processing container 1. And a lower electrode 5 as an anode electrode.
  • the plasma film forming apparatus 100 includes a high frequency power source 7 that supplies high frequency power to the upper electrode 3, an auxiliary plate 9 that is a plate-like member provided on the lower electrode 5, and the plasma film forming apparatus 100. And a control unit 60 for controlling the respective components.
  • the plasma film forming apparatus 100 is configured as a batch type parallel plate type plasma film forming apparatus that performs film formation on a plurality of substrates S simultaneously by, for example, a plasma CVD method.
  • substrate S the glass substrate for solar cells can be mentioned.
  • the processing container 1 has a box shape that can be evacuated.
  • the processing container 1 is grounded.
  • a metal such as aluminum, an aluminum alloy, or stainless steel is used for the processing container 1.
  • the processing container 1 includes a ceiling portion 11, a rectangular tubular side wall portion 13, and a bottom wall portion 15.
  • the side wall 13 is provided with an opening (not shown) that is opened and closed when the substrate S is loaded and unloaded, and the opening is opened and closed by a gate valve.
  • an exhaust port 15 a is formed in the bottom wall portion 15. The exhaust port 15 a is connected to the exhaust device 21 via the exhaust pipe 23.
  • the upper electrode 3 and the lower electrode 5 are arranged in parallel to each other and form a pair of parallel plate electrodes. Both the upper electrode 3 and the lower electrode 5 are made of a metal such as aluminum, aluminum alloy, stainless steel, or the like. Both the upper electrode 3 and the lower electrode 5 are rectangular in plan view.
  • the upper electrode 3 has a function as a shower head for introducing gas into the processing container 1. That is, the upper electrode 3 has a hollow shape, and a gas diffusion space 31 is provided therein. A plurality of gas discharge holes 33 for discharging a processing gas are formed on the lower surface of the upper electrode 3. Further, a gas introduction portion 35 communicating with the gas diffusion space 31 is provided on the side portion of the upper electrode 3. Further, the lower surface of the upper electrode 3 forms a facing surface 37 facing the lower electrode 5.
  • the upper electrode 3 may not have a function as a shower head.
  • the upper electrode 3 may be a flat metal plate that does not include the gas diffusion space 31 and the gas discharge hole 33.
  • a power supply unit (not shown) to which high-frequency power from the high-frequency power source 7 is supplied is provided on the long side of the upper electrode 3.
  • the lower electrode 5 has a rectangular shape as a whole, and has a long side 5a and a short side 5b.
  • the lower electrode 5 is fixed to the side wall portion 13 of the processing container 1. Therefore, the lower electrode 5 is at ground potential.
  • the upper surface of the lower electrode 5, that is, the surface facing the upper electrode 3 is a substrate mounting surface on which the substrate S is mounted.
  • the substrate placement surface of the lower electrode 5 has a rectangular placement region R1 on which the rectangular substrate S is placed and a non-placement region R2 on which the substrate S is not placed.
  • the non-mounting region R2 is provided adjacent to the outside so as to surround the mounting region R1.
  • the lower electrode 5 has a plurality of substrate support pins (not shown) that can project and retract with respect to the substrate mounting surface, and use the substrate support pins to communicate with an external transfer device.
  • the delivery of the substrate S can be performed.
  • the periphery of the corner of the rectangular mounting region R1 is represented by reference numerals C1, C2, C3, and C4, and the short side or the long side of the rectangular mounting region R1 is shown.
  • the periphery of the central portion is represented by reference numerals E1, E2, E3, and E4.
  • auxiliary plate 9 as a convex portion is attached to almost the entire non-mounting region R2 of lower electrode 5.
  • the auxiliary plate 9 has a frame shape and is disposed so as to surround the entire rectangular placement region R1.
  • the auxiliary plate 9 is a plate-like member that can be attached to and detached from the lower electrode 5.
  • assistant plate 9 may be divided
  • the auxiliary plate 9 is made of a dielectric or a conductor.
  • the dielectric include quartz, ceramics, and heat-resistant synthetic resin.
  • the conductor include the same material as the lower electrode 5, for example, a metal material such as aluminum, an aluminum alloy, and stainless steel.
  • one upper electrode 3 and one lower electrode 5 form a pair to constitute one plasma processing unit 10.
  • a plurality of plasma processing units 10 are stacked in multiple stages.
  • the number of plasma processing units 10 in the processing container 1 can be set in the range of 3 to 10, for example.
  • the upper electrode 3 is provided with a power supply unit (not shown), and a power supply line 71 is connected to the power supply unit.
  • the power supply line 71 is connected to a high-frequency power source 7 for plasma formation via a matching unit 73. Thereby, for example, high frequency power of 11 MHz is supplied from the high frequency power supply 7 to each upper electrode 3.
  • the power supply line 71 is introduced into the processing container 1 through a power supply opening 13 a formed in the side wall portion 13 of the processing container 1.
  • a vacuum holding means such as a bellows (not shown) is provided around the power supply opening 13a.
  • the matching unit 73 is provided with a matching circuit (not shown) having one end connected to the high frequency power supply 7 via a coaxial cable, for example, and the other end of the matching circuit is connected to the upper electrode via the feeder 71. 3 is connected to the side of the long side.
  • the matching circuit performs impedance adjustment (matching) between the load (plasma) and the high-frequency power source 7 in accordance with the impedance of the plasma, and plays a role of attenuating the reflected wave generated in the circuit of the plasma film forming apparatus 100.
  • the plasma film forming apparatus 100 further includes an exhaust mechanism 20 that exhausts the inside of the processing container 1 under reduced pressure.
  • the exhaust mechanism 20 includes, for example, an exhaust device 21 having a vacuum pump such as a dry pump, and an exhaust pipe 23 connecting the exhaust device 21 and the exhaust port 15a. By operating the vacuum pump of the exhaust device 21, the internal space of the processing container 1 is evacuated to a predetermined degree of vacuum.
  • the plasma film forming apparatus 100 further includes a gas supply device 40 that supplies a gas into the processing container 1.
  • the gas supply device 40 is connected to the gas supply source 41, a plurality of pipes 43 (only one is shown) for introducing a processing gas into the processing container 1, and a plurality of pipes 43 provided to these pipes 43.
  • Valve 45 (only two are shown) and a mass flow controller (MFC) 47.
  • the plurality of pipes 43 are connected to a gas introduction part 35 provided on a side part of the upper electrode 3 via a gas introduction part 13 b of the side wall part 13 of the processing container 1.
  • the processing gas can be supplied from the gas supply source 41 to the gas diffusion space 31 via the pipe 43, the gas introduction part 13 b, and the gas introduction part 35.
  • the type of gas supplied to the gas diffusion space 31 and the flow rate of these gases are controlled by opening and closing the mass flow controller 47 and the valve 45.
  • an external gas supply device not included in the configuration of the plasma film forming apparatus 100 may be used.
  • Each component of the plasma film forming apparatus 100 is connected to the control unit 60 and controlled by the control unit 60.
  • the control unit 60 is typically a computer.
  • the control unit 60 includes a controller 61 having a CPU, and a user interface 62 and a storage unit 63 connected to the controller 61.
  • the controller 61 is a component related to process conditions such as high-frequency output, impedance matching by the matching unit 73, pressure in the processing chamber 1, gas flow rate, etc. (for example, the high-frequency power source 7, matching unit). 73, the exhaust device 21, the gas supply device 40, etc.).
  • the user interface 62 includes a keyboard and a touch panel on which a process manager manages command input to manage the plasma film forming apparatus 100, a display that visualizes and displays the operating status of the plasma film forming apparatus 100, and the like. Yes.
  • the storage unit 63 stores a control program (software) for realizing various processes executed by the plasma film forming apparatus 100 under the control of the controller 61, a recipe in which process condition data, and the like are recorded. .
  • the controller 61 calls and executes an arbitrary control program or recipe from the storage unit 63 as necessary, such as an instruction from the user interface 62. Accordingly, a desired process is performed in the processing container 1 of the plasma film forming apparatus 100 under the control of the controller 61.
  • control program and recipe described above can be stored in a computer-readable storage medium such as a CD-ROM, hard disk, flexible disk, flash memory, or DVD. Also, the above recipe can be transmitted from other devices as needed via, for example, a dedicated line and used online.
  • FIGS. 4 and 5 are schematic diagrams for explaining the flow of gas on the substrate S in the conventional plasma film forming apparatus.
  • FIG. 4 shows a cross section near the corner of the substrate S.
  • the substrate S for solar cells has a thickness T of about 2 mm to 4 mm, for example, several times to about 10 times the thickness of a glass substrate for FPD having a thickness of about 0.3 mm to 0.7 mm. Yes. Therefore, for example, as shown in FIG. 4, a step 80 is generated between the end portion of the substrate S and the upper surface of the lower electrode 5, and the distance between the upper electrode 3 and the lower electrode 5 changes substantially.
  • This step 80 makes the flow of the gas G from the surface of the substrate S toward the peripheral edge of the substrate S non-uniform. That is, as shown in FIG. 5, the flow of the gas G tends to go in the direction of the step 80 having a lower flow path resistance, so that the flow from the vicinity of the center of the substrate S toward the step 80 at the shortest distance increases. The flow to the corner portion of the substrate S becomes small.
  • the thickness of the white arrow indicates the flow rate of the gas G, and the thicker the flow rate, the greater the flow rate (the same applies in FIG. 7).
  • the corner portion of the substrate S is originally an area where the gas G is difficult to reach because the distance from the center of the substrate S is the longest, but the corner portion of the substrate S is formed by the step 80 between the substrate S and the upper surface of the lower electrode 5.
  • the flow of gas G to the gas further decreases.
  • the deposition rate is reduced, and in the film formation of microcrystalline silicon, the film is formed in a pressure region of 400 Pa or more, so that the gas flow becomes slow and the crystallization of the microcrystalline silicon proceeds. The tendency to decrease becomes stronger.
  • the step 80 caused by the thickness of the substrate S suppresses the spread of the plasma P formed between the parallel plate electrodes in the lateral direction. That is, at the peripheral portion of the substrate S, the distance (gap) from the substrate S or the lower electrode 5 to the upper electrode 3 varies greatly due to the presence of the step 80, so that the impedance between the parallel plate electrodes changes, and the plasma density increases. descend. As a result, as shown in FIG. 4, the plasma P does not spread to the peripheral portion of the substrate S, particularly to the corner portion where the distance from the center of the substrate S is the largest.
  • the deposition rate is reduced, and in the formation of microcrystalline silicon, the film is formed in a pressure region of 400 Pa or higher, so that the plasma P is less likely to spread and the progress of crystallization of microcrystalline silicon is reduced. The tendency becomes stronger.
  • the decrease in the deposition rate and the decrease in the degree of crystallinity of microcrystalline Si due to the step 80 as described above are problems that have hardly occurred when a circular semiconductor substrate or an FPD substrate having a small thickness is used as an object to be processed. is there.
  • FIG. 6 and 7 are schematic diagrams for explaining the gas flow on the substrate S in the plasma film forming apparatus 100 of the present embodiment in which the auxiliary plate 9 as a convex portion is provided in the non-mounting region R2.
  • FIG. 6 is a cross-sectional view of the lower electrode 5 of the present embodiment in which an auxiliary plate 9 as a convex portion is provided in the non-mounting region R2.
  • FIG. 6 shows a cross section taken along line VI-VI in FIG.
  • the step 80 between the substrate S and the lower electrode 5 can be reduced or eliminated by the auxiliary plate 9.
  • the auxiliary plate 9 promotes the spread of the plasma P between the parallel plate electrodes by reducing or eliminating the step 80, and the plasma P is also provided above the corner portion of the substrate S as shown in FIG. Has the effect of encouraging the spread.
  • the height of the action of the auxiliary plate 9 of the present embodiment is more important than the material of the auxiliary plate 9.
  • the action of the auxiliary plate 9 of the present embodiment is considered to have a different mechanism of action from the focus ring used in the conventional plasma etching apparatus.
  • the plasma film forming apparatus 100 of the present embodiment is suitable for processing a large substrate S having a short side exceeding 1 m, for example, and in particular a solar cell substrate having a thickness T in the range of 2 mm to 4 mm. Suitable for processing.
  • FIGS. 8 and 9 are cross-sectional views of the main part near the surface of the lower electrode 5 for explaining the height of the auxiliary plate in the plasma film forming apparatus.
  • the film-forming gas G injected from the gas discharge hole 33 of the upper electrode 3 having a function as a shower head toward the upper surface of the substrate S is as shown by the white arrow in FIG. It can flow smoothly from the central part side toward the peripheral part. Further, by eliminating the step 80, the plasma P also expands in the lateral direction and reaches the peripheral edge of the substrate S sufficiently.
  • the auxiliary plate 9 has an action of urging the deposition gas G and the plasma P to reach the peripheral portion of the substrate S, particularly the corner portion.
  • the height of the auxiliary plate 9 can be set smaller than or larger than the thickness of the substrate S.
  • the height H2 of the auxiliary plate 9 is set smaller than the thickness T of the substrate S placed in the placement region R1 (that is, H2 ⁇ T).
  • the step 80 is not completely eliminated, but the step is reduced by the height H2 of the auxiliary plate 9.
  • the flow of the gas G that escapes toward the long side or short side step 80 of the substrate S at the shortest distance without going from the vicinity of the center of the substrate S to the corner portion is greater than in the case of FIGS. Get smaller.
  • the spread of the plasma P in the lateral direction at the corner of the substrate S is also larger than in the case of FIG.
  • the height H2 is preferably set within a range of 0.5T ⁇ H2 ⁇ T, for example.
  • the height H3 of the auxiliary plate 9 is set to be larger than the thickness T of the substrate S placed on the placement region R1 (that is, H3> T).
  • a step 81 opposite to that in FIG. 4 occurs, but the auxiliary plate 9 serves as a weir, so that the gas G stays on the substrate S, and as a result, the gas G reaches the peripheral edge of the substrate S. Conceivable.
  • the height H3 is preferably set within a range of T ⁇ H3 ⁇ 2T, for example.
  • the flow of the gas G on the substrate S and the spread of the plasma P can be finely adjusted by changing the height of the auxiliary plate 9.
  • the height of the auxiliary plate 9 is set to be relatively high around the corners C1, C2, C3, and C4 of the rectangular mounting region R1, and the non-mounting region R2 Further, it can be set low in the periphery E1, E2, E3, and E4 around the central part of the short side or the long side of the rectangular placement region R1.
  • the height of the auxiliary plate 9 is set to the above H1 at the corners C1, C2, C3, and C4 around the corner of the placement region R1 (see FIG.
  • a command is input from the user interface 62 to the controller 61 so as to perform a film forming process in the plasma film forming apparatus 100.
  • the controller 61 reads a recipe stored in the storage unit 63 or a computer-readable storage medium.
  • each end device of the plasma film forming apparatus 100 (for example, the high frequency power supply 7, the matching unit 73, the exhaust device 21, the gas supply device 40, etc.) is executed from the controller 61 so that the film forming process is executed according to the conditions based on the recipe. ) Is sent a control signal.
  • the gate valve (not shown) is opened, and a plurality of substrates S are carried into the processing container 1 through the gate valve and the opening (not shown) of the side wall 13 by an external transfer device.
  • the Each substrate S is placed on the lower electrode 5 via a plurality of substrate support pins (not shown).
  • the gate valve is closed, and the inside of the processing container 1 is evacuated by the exhaust device 21.
  • a processing gas having a predetermined flow rate is injected from the gas discharge hole 33 of the upper electrode 3 toward the upper surface of the substrate S by the gas supply device 40.
  • the internal space of the processing container 1 is adjusted to a predetermined pressure by adjusting the exhaust amount and the gas supply amount.
  • the plasma film forming apparatus 100 can be preferably used for the purpose of performing a film forming process on the substrate S, for example, in a solar cell manufacturing process.
  • FIGS. 10 and 11 are explanatory views showing the arrangement of the auxiliary plate 91 on the lower electrode 5 in the second embodiment.
  • differences from the first embodiment will be described.
  • the auxiliary plate 91 as a plate-like member constituting the convex portion is partially arranged around the corner of the rectangular placement region R1. That is, in the non-mounting region R2 of the lower electrode 5, the auxiliary plate 91 is disposed only around the corners C1, C2, C3, and C4 of the rectangular mounting region R1. As described above, the corner portion of the substrate S is the portion where the gas G hardly reaches in the plane of the substrate S. Therefore, in the present embodiment, the auxiliary plate 91 is disposed only around the corners of the rectangular placement region R1 in the non-mounting region R2, so that the corner portion of the substrate S is disposed. It is possible to improve film formation defects such as a decrease in the deposition rate of the film and to achieve uniform film formation processing within the surface of the substrate S.
  • the auxiliary plate 91 includes a rectangular partial auxiliary plate 91A and a rectangular partial auxiliary plate 91B. That is, the auxiliary plate 91 includes a combination of two partial auxiliary plates 91A and 91B.
  • the partial auxiliary plates 91 ⁇ / b> A and 91 ⁇ / b> B are plate-like members that can be attached to and detached from the lower electrode 5.
  • each auxiliary plate 91 may be integrally formed, for example with the planar view L-shaped member, or may be comprised by the 3 or more partial plate.
  • auxiliary plate 91 need not be provided at all four locations C1, C2, C3, and C4 around the corner of the placement region R1 in the non-mounting region R2, but can be provided at any location.
  • FIG. 12 is an explanatory diagram showing the arrangement of convex portions on the lower electrode 5 in the third embodiment. Here, differences from the first embodiment will be described.
  • the auxiliary plate 93 as a plate-like member constituting the convex portion is partially arranged outside the central portion of the long side of the rectangular placement region R1.
  • High frequency power is supplied to the upper electrode 3 from a high frequency power source 7.
  • the position of the lower electrode 5 corresponding to the power supply portion to which the power supply line 71 is connected in the upper electrode 3 is indicated by an arrow P ⁇ b> 1 (hereinafter referred to as a power supply position P ⁇ b> 1).
  • the feeding position P ⁇ b> 1 is provided on the side of the upper electrode 3 that forms the long side of the rectangle.
  • the auxiliary plate 93 serving as a plate-like member constituting the convex portion takes into consideration the power feeding position P1 in the upper electrode 3, and the non-mounting region R2 near the center of the long side 5a of the lower electrode 5. Is placed only in. That is, in the non-mounting region R2, the auxiliary plate 93 is located in the periphery E3 of the central portion of the long side of the mounting region R1 on the same side as the power feeding position P1 and the mounting region R1 on the opposite side to the power feeding position P1. It is provided in the periphery E4 of the center part of a long side, respectively.
  • the electric field distribution between the parallel plate electrodes is biased, and feeding is performed.
  • the deposition rate decreases in the region close to the position P1 or the region on the opposite side of the power feeding position P1 (that is, near the center of the long side of the peripheral portion of the substrate S), and in the case of a microcrystalline silicon film, the crystallinity is low. May be lower. Therefore, in the plasma film forming apparatus of the present embodiment, the outside of the central portion of the long side of the mounting region R1 on the same side as the power feeding position P1 and the long side of the mounting region R1 on the side opposite to the power feeding position P1.
  • auxiliary plates 93 were provided on the outside of the central part.
  • the auxiliary plate 93 can locally increase the gas flow in the vicinity of the center of the long side of the peripheral portion of the substrate S more than other parts, or can promote the expansion of the plasma P locally. Therefore, it is possible to improve film formation defects such as a decrease in the deposition rate and make the film formation process uniform in the plane of the substrate S.
  • the auxiliary plate 93 has a periphery E3 around the central portion of the long side of the mounting region R1 on the same side as the power feeding position P1, or a periphery of the central portion of the long side of the mounting region R1 on the side opposite to the power feeding position P1. You may provide in either one of E4.
  • FIG. 13 is a cross-sectional view of the lower electrode 5 in the fourth embodiment. Here, differences from the first embodiment will be described.
  • the convex portion 95 is provided integrally with the lower electrode 5.
  • the convex portion 95 can be formed by performing processing such as cutting or polishing on the flat lower electrode 5. Further, it is possible to form, for example, a convex portion 95 on the flat lower electrode 5 by a thermal spraying method.
  • the convex portion 95 can also be formed of, for example, a ceramic sprayed film having plasma erosion resistance.
  • the convex part 95 in this Embodiment may be provided over the perimeter of mounting area
  • Other configurations and effects of the plasma film forming apparatus of the present embodiment are the same as those of the plasma film forming apparatus 100 of the first embodiment, and thus description thereof is omitted.
  • the upper electrode 3 has a long side of 1500 mm ⁇ a short side of 1160 mm, and the size of the glass substrate is 1400 ⁇ 1000 ⁇ 4.0 mm.
  • the distance (gap) between the upper electrode 3 and the lower electrode 5 was 15 mm.
  • the auxiliary plate 91A has a long side of 215 mm ⁇ short side of 40 mm, and the auxiliary plate 91B has a long side of 165 mm ⁇ short side of 50 mm.
  • the heights of the auxiliary plates 91A and 91B were both 4 mm, and the same thickness as that of the substrate S was used. Further, as the auxiliary plate 91, an experiment was performed on a ceramic plate and an aluminum plate.
  • the deposition rate and crystallinity of the microcrystalline silicon film in Experimental Example 1 were measured at 21 points on the substrate S as shown in FIG.
  • the results of the deposition rate are shown in FIG. 15, and the crystallinity data are shown in FIG.
  • the crystallinity was expressed as a ratio Ic / Ia between the amorphous silicon peak Ia (480 cm ⁇ 1 ) and the microcrystalline silicon peak Ic (520 cm ⁇ 1 ) measured by a Raman spectrophotometer.
  • the deposition rate of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S was remarkably improved.
  • FIG. 16 shows that the crystallinity of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S tends to decrease.
  • the deposition rate increased, but the crystallinity decreased, indicating a contradictory tendency.
  • the deposition rate increases, but the crystallinity tends to decrease.
  • the supply of high-frequency power increases, both the deposition rate and crystallinity tend to increase. Therefore, in the present experimental example, the effect of the auxiliary plate 91 is dominated by the effect of improving the gas flow at the corner portion of the substrate S. As a result, the deposition rate is improved and the crystallinity is lowered at the corner portion. It is thought that it was caused. Note that the decrease in crystallinity at the corner portion of the substrate S can be corrected by increasing the high-frequency power supplied from the high-frequency power source 7 to the upper electrode 3.
  • Example 2 In this experiment, an aluminum auxiliary plate 91 was used as an auxiliary plate, and the same conditions as in Experimental Example 1 were provided except that high frequency power of 27 MHz, which is generally considered to be difficult for plasma to spread, was supplied from the high frequency power source 7 to the upper electrode 3. I went there.
  • the measurement result of the deposition rate is shown in FIG. 17, and the measurement result of the crystallinity is shown in FIG. From FIG. 17, the deposition rate of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S was remarkably improved by installing the auxiliary plate 91 made of aluminum.
  • the crystallinity of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S was also significantly improved.
  • FIG. 17 and FIG. 18 show that the deposition rate and the crystallinity tend to be improved in the corner portion of the substrate S.
  • the auxiliary plate 91 improves the supply of high-frequency power by expanding the gas flow and plasma in the corner portion of the substrate S, so that the deposition rate and crystallinity in the corner portion are improved. It is done.
  • the high frequency power is supplied to the upper electrode 3.
  • the high frequency power may be applied using the lower electrode 5 of the pair of parallel plate electrodes as the cathode electrode.
  • the plasma film forming apparatus may be configured to supply a plurality of high frequency powers having different frequencies to the pair of parallel plate electrodes.
  • the batch type plasma film forming apparatus 100 of FIG. 1 in which a plurality of plasma processing units 10 are stacked in multiple stages is taken as an example, but the present invention is also applied to a single wafer type plasma film forming apparatus. Applicable.

Abstract

In a plasma film-forming apparatus (100), a supplementary plate (9) as a protruding section is mounted on substantially the whole non-placing region (R2) of a lower electrode (5). The supplementary plate (9) has a frame shape, and is disposed to surround the whole rectangular placing region (R1). The supplementary plate (9) is a board-like member that can be attached to and detached from the lower electrode (5), and is configured from a dielectric material, such as quartz, ceramic, and heat-resistant synthetic resin, or a conductive material, such as aluminum, aluminum alloy, and stainless steel. A step (80) between a substrate (S) and the lower electrode (5) is reduced or eliminated by means of the supplementary plate (9), and a gas (G) is made to easily flow to a corner section of the substrate (S).

Description

プラズマ処理装置及びプラズマ処理方法Plasma processing apparatus and plasma processing method
 本発明は、被処理体に対してプラズマ処理を行うプラズマ処理装置及びプラズマ処理方法に関する。 The present invention relates to a plasma processing apparatus and a plasma processing method for performing plasma processing on an object to be processed.
 半導体基板、液晶ディスプレイ(LCD)に代表されるフラットパネルディスプレイ(FPD)、太陽電池などの製造過程においては、基板に対し、エッチングや成膜等の所定の処理が施される。このような処理に用いるプラズマ処理装置として、平行平板型プラズマ処理装置が知られている。 In a manufacturing process of a semiconductor substrate, a flat panel display (FPD) typified by a liquid crystal display (LCD), a solar cell, or the like, a predetermined process such as etching or film formation is performed on the substrate. As a plasma processing apparatus used for such processing, a parallel plate type plasma processing apparatus is known.
 基板に対し、プラズマエッチング処理を行うプラズマエッチング装置では、基板の外周部付近のプラズマの状態を制御するため、基板の周囲にフォーカスリングを配置することが行われる。例えば、特許文献1(日本国特開平2005-136350号公報)では、FPD用基板にプラズマエッチング処理を行うプラズマエッチング装置において、基板の周囲に石英製のフォーカスリングを配置する提案がなされている。また、特許文献2(日本国特開平2002-110652号公報)では、半導体基板にプラズマエッチング処理を行うプラズマエッチング装置において、フォーカスリングのインピーダンス調整を行う提案がなされている。さらに、特許文献3(日本国特開平2006-173223号公報)では、半導体基板にプラズマエッチング処理を行うプラズマエッチング装置において、エッチングレートがフォーカスリングの高さに依存することが開示されている。 In a plasma etching apparatus that performs a plasma etching process on a substrate, a focus ring is disposed around the substrate in order to control the state of plasma near the outer periphery of the substrate. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2005-136350) proposes that a quartz focus ring is disposed around a substrate in a plasma etching apparatus that performs plasma etching on an FPD substrate. In Patent Document 2 (Japanese Patent Laid-Open No. 2002-110652), there is a proposal for adjusting the impedance of a focus ring in a plasma etching apparatus that performs a plasma etching process on a semiconductor substrate. Further, Patent Document 3 (Japanese Patent Laid-Open No. 2006-173223) discloses that, in a plasma etching apparatus that performs a plasma etching process on a semiconductor substrate, the etching rate depends on the height of the focus ring.
 平行平板型のプラズマ処理装置を用いて大型で大面積の基板に対してプラズマ処理を行う場合、基板の面内での処理の均一性を確保することが重要である。しかし、例えば太陽電池用基板は、矩形であるため、円形の半導体基板とは異なり、基板のコーナー部の堆積レートが中央部に比べて低下しやすくなったり、微結晶シリコンの成膜においては、結晶化度が不均一になりやすくなったりする、という問題があった。また、太陽電池用基板は、液晶ディスプレイの製造に用いるLCD用基板と比べて数倍程度の厚みを有するため、基板と載置台との間に段差が生じる。この段差によって、コーナー部へのガス供給が不十分となったり、プラズマの拡がりが抑制されたりして、基板のコーナー部の堆積レートが中央部に比べて、さらに低下してしまうという問題や、微結晶シリコンの成膜においては、結晶化度が低下してしまうという問題があった。特に、微結晶シリコンの作製に用いられる太陽電池用プラズマ処理装置は、400Pa以上の比較的高い圧力で用いられるので、ガスの流れが遅くなり、より影響が大きいという課題があった。 When plasma processing is performed on a large substrate having a large area using a parallel plate type plasma processing apparatus, it is important to ensure uniformity of processing within the surface of the substrate. However, for example, the solar cell substrate is rectangular, so unlike the circular semiconductor substrate, the deposition rate at the corners of the substrate tends to be lower than the central portion, or in the film formation of microcrystalline silicon, There has been a problem that the degree of crystallinity tends to be uneven. In addition, since the solar cell substrate has a thickness several times that of the LCD substrate used for manufacturing the liquid crystal display, a step is generated between the substrate and the mounting table. Due to this step, the gas supply to the corner portion becomes insufficient, or the spread of plasma is suppressed, and the deposition rate of the corner portion of the substrate is further reduced compared to the central portion, In the formation of microcrystalline silicon, there is a problem that the degree of crystallinity decreases. In particular, since the solar cell plasma processing apparatus used for producing microcrystalline silicon is used at a relatively high pressure of 400 Pa or more, there is a problem that the flow of gas becomes slow and the influence is larger.
 本発明は、基板面内での処理の均一性を確保できるプラズマ処理装置を提供する。 The present invention provides a plasma processing apparatus capable of ensuring the uniformity of processing within the substrate surface.
 本発明のプラズマ処理装置は、真空引き可能な処理容器と、前記処理容器内において、互いに対向して配置される上部電極及び下部電極と、前記上部電極又は前記下部電極の少なくとも片方に高周波電力を供給する高周波電源と、を備えている。本発明のプラズマ処理装置は、前記下部電極が、矩形の基板を載置する矩形の載置領域と、該載置領域を囲むようにその外側に隣接して設けられ、前記基板を載置しない非載置領域と、を有している。そして、本発明のプラズマ処理装置は、前記非載置領域の一部分又は全体に、凸状部を設けている。 The plasma processing apparatus of the present invention provides a high-frequency power to at least one of a processing container that can be evacuated, an upper electrode and a lower electrode that are disposed to face each other, and the upper electrode or the lower electrode. And a high-frequency power supply to be supplied. In the plasma processing apparatus of the present invention, the lower electrode is provided adjacent to the rectangular mounting area for mounting the rectangular substrate and the outer side so as to surround the mounting area, and the substrate is not mounted. And a non-mounting area. And the plasma processing apparatus of this invention has provided the convex part in the one part or the whole of the said non-mounting area | region.
 本発明のプラズマ処理装置において、前記凸状部は、前記矩形の載置領域の角部の周囲に部分的に設けられていてもよい。 In the plasma processing apparatus of the present invention, the convex portion may be partially provided around a corner of the rectangular mounting region.
 本発明のプラズマ処理装置において、前記上部電極又は前記下部電極は、平面視矩形をなしていてもよく、前記上部電極又は前記下部電極において、前記高周波電源から高周波電力が供給される給電部位が、前記矩形の長辺をなす側部に設けられていてもよい。この場合、前記凸状部は、前記給電部位と同じ側の前記矩形の載置領域の長辺の外側に部分的に設けられていてもよく、あるいは、前記給電部位とは反対側の前記矩形の載置領域の長辺の外側に部分的に設けられていてもよい。 In the plasma processing apparatus of the present invention, the upper electrode or the lower electrode may have a rectangular shape in plan view, and in the upper electrode or the lower electrode, a feeding portion to which high-frequency power is supplied from the high-frequency power source, You may be provided in the side part which makes the long side of the said rectangle. In this case, the convex portion may be partially provided outside the long side of the rectangular mounting region on the same side as the power feeding site, or the rectangle on the side opposite to the power feeding site. It may be partially provided outside the long side of the mounting area.
 本発明のプラズマ処理装置において、前記凸状部は、前記矩形の載置領域の全体を囲むように設けられていてもよい。 In the plasma processing apparatus of the present invention, the convex portion may be provided so as to surround the entire rectangular mounting region.
 本発明のプラズマ処理装置は、前記凸状部の高さが、前記載置領域に載置される前記基板の厚みと同じであってもよいし、あるいは、前記基板の厚みよりも小さくてもよい。 In the plasma processing apparatus of the present invention, the height of the convex portion may be the same as the thickness of the substrate placed in the placement area, or may be smaller than the thickness of the substrate. Good.
 本発明のプラズマ処理装置において、前記凸状部の高さが、相対的に、前記矩形の載置領域の角部の周囲で高く、前記矩形の載置領域の短辺もしくは長辺の中央部分に隣接する部分で低く形成されていてもよい。 In the plasma processing apparatus of the present invention, the height of the convex portion is relatively high around the corner of the rectangular placement region, and the short side or the central portion of the long side of the rectangular placement region. It may be formed low in a portion adjacent to the.
 本発明のプラズマ処理装置において、前記凸状部は、前記下部電極と一体に設けられていてもよい。 In the plasma processing apparatus of the present invention, the convex portion may be provided integrally with the lower electrode.
 本発明のプラズマ処理装置において、前記凸状部は、前記下部電極に着脱可能な板状部材であってもよい。 In the plasma processing apparatus of the present invention, the convex portion may be a plate-like member that can be attached to and detached from the lower electrode.
 本発明のプラズマ処理装置において、前記凸状部は、誘電体又は導電体によって構成されていてもよい。 In the plasma processing apparatus of the present invention, the convex portion may be made of a dielectric or a conductor.
 本発明のプラズマ処理装置は、前記基板が太陽電池用のガラス基板であってもよい。 In the plasma processing apparatus of the present invention, the substrate may be a glass substrate for solar cells.
 本発明のプラズマ処理方法は、上記いずれかのプラズマ処理装置において、前記載置領域に前記基板を載置してプラズマ処理を行う。この場合、前記基板に対し、プラズマCVD法による成膜処理を行うものであってもよい。 In the plasma processing method of the present invention, in any one of the above plasma processing apparatuses, the substrate is placed in the mounting area and plasma processing is performed. In this case, a film forming process by a plasma CVD method may be performed on the substrate.
 本発明のプラズマ処理装置及びプラズマ処理方法によれば、下部電極において、基板を載置しない非載置領域の一部分又は全体に、凸状部を設けたので、矩形の基板を処理する場合でも、特にコーナー部の堆積レートや結晶化度などの低下が改善され、基板面内での処理の均一性を確保できる。 According to the plasma processing apparatus and the plasma processing method of the present invention, in the lower electrode, since the convex portion is provided in a part or the whole of the non-mounting region where the substrate is not mounted, even when processing a rectangular substrate, In particular, a decrease in the deposition rate and crystallinity of the corner portion is improved, and the uniformity of processing within the substrate surface can be ensured.
本発明の第1の実施の形態に係るプラズマ成膜装置の概略構成例を示す断面図である。It is sectional drawing which shows the schematic structural example of the plasma film-forming apparatus which concerns on the 1st Embodiment of this invention. 図1のプラズマ成膜装置における下部電極に基板を載置した状態の平面図である。It is a top view of the state which mounted the board | substrate in the lower electrode in the plasma film-forming apparatus of FIG. 図2のIII-III線矢視における断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 従来のプラズマ成膜装置における基板上のガスの流れを説明する模式図である。It is a schematic diagram explaining the flow of the gas on the board | substrate in the conventional plasma film-forming apparatus. 従来のプラズマ成膜装置における基板上のガスの流れを説明する模式図である。It is a schematic diagram explaining the flow of the gas on the board | substrate in the conventional plasma film-forming apparatus. 第1の実施の形態に係るプラズマ成膜装置における基板上のガスの流れを説明する模式図である。It is a schematic diagram explaining the flow of the gas on the board | substrate in the plasma film-forming apparatus which concerns on 1st Embodiment. 第1の実施の形態に係るプラズマ成膜装置における基板上のガスの流れを説明する模式図である。It is a schematic diagram explaining the flow of the gas on the board | substrate in the plasma film-forming apparatus which concerns on 1st Embodiment. 第1の実施の形態に係るプラズマ成膜装置における補助プレートの高さの説明に供する図面である。It is drawing used for description of the height of the auxiliary | assistant plate in the plasma film-forming apparatus which concerns on 1st Embodiment. 第1の実施の形態に係るプラズマ成膜装置における補助プレートの高さの説明に供する図面である。It is drawing used for description of the height of the auxiliary | assistant plate in the plasma film-forming apparatus which concerns on 1st Embodiment. 本発明の第2の実施の形態に係るプラズマ成膜装置において、下部電極に基板を載置した状態の平面図である。In the plasma film-forming apparatus which concerns on the 2nd Embodiment of this invention, it is a top view of the state which mounted the board | substrate in the lower electrode. 本発明の第2の実施の形態に係るプラズマ成膜装置において、下部電極に補助プレートを設置した状態を示す要部斜視図である。It is a principal part perspective view which shows the state which installed the auxiliary | assistant plate in the lower electrode in the plasma film-forming apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るプラズマ成膜装置において、下部電極に基板を載置した状態の平面図である。In the plasma film-forming apparatus which concerns on the 3rd Embodiment of this invention, it is a top view of the state which mounted the board | substrate in the lower electrode. 本発明の第4の実施の形態に係るプラズマ成膜装置における下部電極の断面図である。It is sectional drawing of the lower electrode in the plasma film-forming apparatus which concerns on the 4th Embodiment of this invention. 実験例における基板上の測定ポイントと補助プレートの配置を説明する図面である。It is drawing explaining the arrangement | positioning of the measurement point and auxiliary | assistant plate on a board | substrate in an experiment example. 実験例1における堆積レートの結果を示すグラフである。10 is a graph showing the result of the deposition rate in Experimental Example 1. 実験例1における結晶化度の結果を示すグラフである。6 is a graph showing the results of crystallinity in Experimental Example 1. 実験例2における堆積レートの結果を示すグラフである。It is a graph which shows the result of the deposition rate in example 2 of an experiment. 実験例2における結晶化度の結果を示すグラフである。6 is a graph showing the results of crystallinity in Experimental Example 2.
 以下、添付図面を参照しながら本発明の実施の形態に係るプラズマ成膜装置について説明する。 Hereinafter, a plasma film forming apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
<第1の実施の形態>
 図1~3を参照して、本発明の第1の実施の形態に係るプラズマ成膜装置について説明する。図1は、本発明の第1の実施の形態に係るプラズマ成膜装置100の概略構成例を示す断面図である。また、図2は、プラズマ成膜装置100における下部電極5に被処理体である基板Sを載置した状態の平面図であり、図3は、図2のIII-III線矢視における断面図である。
<First Embodiment>
A plasma film forming apparatus according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view showing a schematic configuration example of a plasma film forming apparatus 100 according to the first embodiment of the present invention. 2 is a plan view of a state in which the substrate S as the object to be processed is placed on the lower electrode 5 in the plasma film forming apparatus 100, and FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is.
 図1に示すように、プラズマ成膜装置100は、矩形の基板Sを収容する真空引き可能な処理容器1と、処理容器1内において、互いに対向して配置されるカソード電極としての上部電極3及びアノード電極としての下部電極5と、を備えている。また、プラズマ成膜装置100は、上部電極3に高周波電力を供給する高周波電源7と、下部電極5に設けられた凸状部としての板状部材である補助プレート9と、プラズマ成膜装置100の各構成部を制御する制御部60と、を備えている。プラズマ成膜装置100は、複数の基板Sに対して、同時に、例えばプラズマCVD法による成膜を行なうバッチ式の平行平板型プラズマ成膜装置として構成されている。なお、基板Sとしては、太陽電池用のガラス基板を挙げることができる。 As shown in FIG. 1, a plasma film forming apparatus 100 includes a processing container 1 capable of evacuating a rectangular substrate S, and an upper electrode 3 as a cathode electrode disposed opposite to each other in the processing container 1. And a lower electrode 5 as an anode electrode. The plasma film forming apparatus 100 includes a high frequency power source 7 that supplies high frequency power to the upper electrode 3, an auxiliary plate 9 that is a plate-like member provided on the lower electrode 5, and the plasma film forming apparatus 100. And a control unit 60 for controlling the respective components. The plasma film forming apparatus 100 is configured as a batch type parallel plate type plasma film forming apparatus that performs film formation on a plurality of substrates S simultaneously by, for example, a plasma CVD method. In addition, as the board | substrate S, the glass substrate for solar cells can be mentioned.
<処理容器>
 処理容器1は、真空引き可能な箱型をなしている。この処理容器1は接地されている。処理容器1は、例えば、アルミニウム、アルミニウム合金、ステンレス等の金属が用いられる。処理容器1は、天井部11、角筒状の側壁部13及び底壁部15を備えている。側壁部13には、基板Sの搬入搬出時に開閉される図示しない開口が設けられており、該開口はゲートバルブによって開閉される。また、底壁部15には、排気口15aが形成されている。この排気口15aは、排気管23を介して排気装置21に接続されている。
<Processing container>
The processing container 1 has a box shape that can be evacuated. The processing container 1 is grounded. For example, a metal such as aluminum, an aluminum alloy, or stainless steel is used for the processing container 1. The processing container 1 includes a ceiling portion 11, a rectangular tubular side wall portion 13, and a bottom wall portion 15. The side wall 13 is provided with an opening (not shown) that is opened and closed when the substrate S is loaded and unloaded, and the opening is opened and closed by a gate valve. Further, an exhaust port 15 a is formed in the bottom wall portion 15. The exhaust port 15 a is connected to the exhaust device 21 via the exhaust pipe 23.
<平行平板電極>
 上部電極3及び下部電極5は、互いに平行に配置され、対をなして平行平板電極を構成している。上部電極3及び下部電極5は、いずれも、例えば、アルミニウム、アルミニウム合金、ステンレス等の金属によって形成されている。上部電極3又は下部電極5は、いずれも平面視矩形をなしている。
<Parallel plate electrode>
The upper electrode 3 and the lower electrode 5 are arranged in parallel to each other and form a pair of parallel plate electrodes. Both the upper electrode 3 and the lower electrode 5 are made of a metal such as aluminum, aluminum alloy, stainless steel, or the like. Both the upper electrode 3 and the lower electrode 5 are rectangular in plan view.
 上部電極3は、処理容器1内にガスを導入するシャワーヘッドとしての機能を有している。すなわち、上部電極3は中空状をなし、その内部には、ガス拡散空間31が設けられている。また、上部電極3の下面には、処理ガスを吐出する複数のガス吐出孔33が形成されている。さらに、上部電極3の側部には、ガス拡散空間31に連通するガス導入部35が設けられている。また、上部電極3の下面は、下部電極5との対向面37を形成している。なお、上部電極3は、シャワーヘッドとしての機能を有さなくてもよく、例えば、ガス拡散空間31やガス吐出孔33を有しない平板状の金属プレートでもよい。なお、上部電極3の長辺の側部には、高周波電源7からの高周波電力が供給される給電部(図示省略)が設けられている。 The upper electrode 3 has a function as a shower head for introducing gas into the processing container 1. That is, the upper electrode 3 has a hollow shape, and a gas diffusion space 31 is provided therein. A plurality of gas discharge holes 33 for discharging a processing gas are formed on the lower surface of the upper electrode 3. Further, a gas introduction portion 35 communicating with the gas diffusion space 31 is provided on the side portion of the upper electrode 3. Further, the lower surface of the upper electrode 3 forms a facing surface 37 facing the lower electrode 5. The upper electrode 3 may not have a function as a shower head. For example, the upper electrode 3 may be a flat metal plate that does not include the gas diffusion space 31 and the gas discharge hole 33. A power supply unit (not shown) to which high-frequency power from the high-frequency power source 7 is supplied is provided on the long side of the upper electrode 3.
 図2に示すように、下部電極5は、全体として矩形をなし、長辺5aと短辺5bとを有している。下部電極5は、処理容器1の側壁部13に固定されている。従って、下部電極5は接地電位となっている。下部電極5の上面、すなわち、上部電極3と対向する面には、基板Sを載置する基板載置面となっている。下部電極5の基板載置面は、矩形の基板Sを載置する矩形の載置領域R1と、基板Sを載置しない非載置領域R2と、を有している。非載置領域R2は、載置領域R1を囲むようにその外側に隣接して設けられている。また、下部電極5は、その基板載置面に対して突没可能な複数の基板支持ピン(図示省略)を有しており、この基板支持ピンを利用して外部の搬送装置との間で基板Sの受け渡しを行うことができる。なお、図2では、非載置領域R2のうち、矩形の載置領域R1の角部の周囲を符号C1、C2、C3、C4で表し、矩形の載置領域R1の短辺もしくは長辺の中央部の周囲を符号E1、E2、E3、E4で表している。 As shown in FIG. 2, the lower electrode 5 has a rectangular shape as a whole, and has a long side 5a and a short side 5b. The lower electrode 5 is fixed to the side wall portion 13 of the processing container 1. Therefore, the lower electrode 5 is at ground potential. The upper surface of the lower electrode 5, that is, the surface facing the upper electrode 3 is a substrate mounting surface on which the substrate S is mounted. The substrate placement surface of the lower electrode 5 has a rectangular placement region R1 on which the rectangular substrate S is placed and a non-placement region R2 on which the substrate S is not placed. The non-mounting region R2 is provided adjacent to the outside so as to surround the mounting region R1. Further, the lower electrode 5 has a plurality of substrate support pins (not shown) that can project and retract with respect to the substrate mounting surface, and use the substrate support pins to communicate with an external transfer device. The delivery of the substrate S can be performed. In FIG. 2, of the non-mounting region R2, the periphery of the corner of the rectangular mounting region R1 is represented by reference numerals C1, C2, C3, and C4, and the short side or the long side of the rectangular mounting region R1 is shown. The periphery of the central portion is represented by reference numerals E1, E2, E3, and E4.
<凸状部>
 本実施の形態のプラズマ成膜装置100では、下部電極5の非載置領域R2のほぼ全体に、凸状部としての補助プレート9が装着されている。本実施の形態では、補助プレート9は、枠状をなし、矩形の載置領域R1の全体を囲むように配置されている。補助プレート9は、下部電極5に着脱可能な板状部材である。なお、補助プレート9は、複数の部分に分割されていてもよく、枠状でなくてもよい。
<Convex part>
In plasma deposition apparatus 100 of the present embodiment, auxiliary plate 9 as a convex portion is attached to almost the entire non-mounting region R2 of lower electrode 5. In the present embodiment, the auxiliary plate 9 has a frame shape and is disposed so as to surround the entire rectangular placement region R1. The auxiliary plate 9 is a plate-like member that can be attached to and detached from the lower electrode 5. In addition, the auxiliary | assistant plate 9 may be divided | segmented into the some part and does not need to be frame shape.
 補助プレート9は、誘電体又は導電体によって構成されている。誘電体としては、例えば、石英、セラミックス、耐熱性の合成樹脂などを挙げることができる。導電体としては、例えば下部電極5と同じ材質、例えば、アルミニウム、アルミニウム合金、ステンレス等の金属材料を挙げることができる。 The auxiliary plate 9 is made of a dielectric or a conductor. Examples of the dielectric include quartz, ceramics, and heat-resistant synthetic resin. Examples of the conductor include the same material as the lower electrode 5, for example, a metal material such as aluminum, an aluminum alloy, and stainless steel.
<プラズマ処理部>
 本実施の形態のプラズマ成膜装置100では、一つの上部電極3と一つの下部電極5とが対をなして一つのプラズマ処理部10を構成している。処理容器1内には、複数のプラズマ処理部10が多段に積層されて配置されている。これにより、プラズマ成膜装置100では、複数枚の基板Sを同時にバッチ処理することが可能になっている。処理容器1内におけるプラズマ処理部10の数は、例えば3~10の範囲内とすることができる。
<Plasma processing section>
In the plasma film forming apparatus 100 of the present embodiment, one upper electrode 3 and one lower electrode 5 form a pair to constitute one plasma processing unit 10. In the processing container 1, a plurality of plasma processing units 10 are stacked in multiple stages. As a result, the plasma film forming apparatus 100 can batch process a plurality of substrates S at the same time. The number of plasma processing units 10 in the processing container 1 can be set in the range of 3 to 10, for example.
<高周波電源>
 上部電極3には、図示しない給電部が設けられており、該給電部に給電線71が接続されている。この給電線71には、整合器73を介してプラズマ形成用の高周波電源7が接続されている。これにより、高周波電源7から例えば11MHzの高周波電力が、各上部電極3に供給される。なお、給電線71は、処理容器1の側壁部13に形成された給電用開口13aを介して処理容器1内に導入されている。なお、給電用開口13aの周囲は図示しないベローズなどの真空保持手段が設けられている。
<High frequency power supply>
The upper electrode 3 is provided with a power supply unit (not shown), and a power supply line 71 is connected to the power supply unit. The power supply line 71 is connected to a high-frequency power source 7 for plasma formation via a matching unit 73. Thereby, for example, high frequency power of 11 MHz is supplied from the high frequency power supply 7 to each upper electrode 3. The power supply line 71 is introduced into the processing container 1 through a power supply opening 13 a formed in the side wall portion 13 of the processing container 1. A vacuum holding means such as a bellows (not shown) is provided around the power supply opening 13a.
 整合器73内には、一端側が例えば同軸ケーブルを介して高周波電源7に接続された整合回路(図示省略)が設けられており、この整合回路の他端側は給電線71を介して上部電極3の長辺の側部に接続されている。整合回路はプラズマのインピーダンスに合わせて負荷(プラズマ)と高周波電源7との間におけるインピーダンス調整(マッチング)を行い、プラズマ成膜装置100の回路内に発生した反射波を減衰させる役割を果たす。 The matching unit 73 is provided with a matching circuit (not shown) having one end connected to the high frequency power supply 7 via a coaxial cable, for example, and the other end of the matching circuit is connected to the upper electrode via the feeder 71. 3 is connected to the side of the long side. The matching circuit performs impedance adjustment (matching) between the load (plasma) and the high-frequency power source 7 in accordance with the impedance of the plasma, and plays a role of attenuating the reflected wave generated in the circuit of the plasma film forming apparatus 100.
<排気機構>
 プラズマ成膜装置100は、さらに、処理容器1内を減圧排気する排気機構20を備えている。排気機構20は、例えば、ドライポンプ等の真空ポンプを有する排気装置21と、この排気装置21と排気口15aとを接続する排気管23とを備えている。排気装置21の真空ポンプを作動させることにより、処理容器1の内部空間が所定の真空度まで減圧排気される。
<Exhaust mechanism>
The plasma film forming apparatus 100 further includes an exhaust mechanism 20 that exhausts the inside of the processing container 1 under reduced pressure. The exhaust mechanism 20 includes, for example, an exhaust device 21 having a vacuum pump such as a dry pump, and an exhaust pipe 23 connecting the exhaust device 21 and the exhaust port 15a. By operating the vacuum pump of the exhaust device 21, the internal space of the processing container 1 is evacuated to a predetermined degree of vacuum.
<ガス供給装置>
 プラズマ成膜装置100は、さらに、処理容器1内にガスを供給するガス供給装置40を備えている。ガス供給装置40は、ガス供給源41と、ガス供給源41に接続され、処理容器1内に処理ガスを導入する複数の配管43(1本のみ図示)と、これら配管43に設けられた複数のバルブ45(2つのみ図示)と、マスフローコントローラ(MFC)47とを備えている。複数の配管43は、処理容器1の側壁部13のガス導入部13bを介して、上部電極3の側部に設けられたガス導入部35に接続されている。従って、ガス供給源41から、配管43、ガス導入部13b、及びガス導入部35を介して、ガス拡散空間31へ処理ガスを供給できるように構成されている。ガス拡散空間31に供給されるガスの種類や、これらのガスの流量等は、マスフローコントローラ47およびバルブ45の開閉によって制御される。なお、ガス供給装置40の代りに、プラズマ成膜装置100の構成には含まれない外部のガス供給装置を使用してもよい
<Gas supply device>
The plasma film forming apparatus 100 further includes a gas supply device 40 that supplies a gas into the processing container 1. The gas supply device 40 is connected to the gas supply source 41, a plurality of pipes 43 (only one is shown) for introducing a processing gas into the processing container 1, and a plurality of pipes 43 provided to these pipes 43. Valve 45 (only two are shown) and a mass flow controller (MFC) 47. The plurality of pipes 43 are connected to a gas introduction part 35 provided on a side part of the upper electrode 3 via a gas introduction part 13 b of the side wall part 13 of the processing container 1. Accordingly, the processing gas can be supplied from the gas supply source 41 to the gas diffusion space 31 via the pipe 43, the gas introduction part 13 b, and the gas introduction part 35. The type of gas supplied to the gas diffusion space 31 and the flow rate of these gases are controlled by opening and closing the mass flow controller 47 and the valve 45. Instead of the gas supply device 40, an external gas supply device not included in the configuration of the plasma film forming apparatus 100 may be used.
<制御部>
 プラズマ成膜装置100の各構成部は、それぞれ制御部60に接続されて、制御部60によって制御される。制御部60は、典型的にはコンピュータである。制御部60は、CPUを備えたコントローラ61と、このコントローラ61に接続されたユーザーインターフェース62および記憶部63とを備えている。
<Control unit>
Each component of the plasma film forming apparatus 100 is connected to the control unit 60 and controlled by the control unit 60. The control unit 60 is typically a computer. The control unit 60 includes a controller 61 having a CPU, and a user interface 62 and a storage unit 63 connected to the controller 61.
 コントローラ61は、プラズマ成膜装置100において、例えば高周波出力、整合器73によるインピーダンス整合、処理容器1内の圧力、ガス流量等のプロセス条件に関係する各構成部(例えば、高周波電源7、整合器73、排気装置21、ガス供給装置40等)を統括して制御する制御手段である。 In the plasma film forming apparatus 100, the controller 61 is a component related to process conditions such as high-frequency output, impedance matching by the matching unit 73, pressure in the processing chamber 1, gas flow rate, etc. (for example, the high-frequency power source 7, matching unit). 73, the exhaust device 21, the gas supply device 40, etc.).
 ユーザーインターフェース62は、工程管理者がプラズマ成膜装置100を管理するためにコマンドの入力操作等を行うキーボードやタッチパネル、プラズマ成膜装置100の稼働状況を可視化して表示するディスプレイ等を有している。 The user interface 62 includes a keyboard and a touch panel on which a process manager manages command input to manage the plasma film forming apparatus 100, a display that visualizes and displays the operating status of the plasma film forming apparatus 100, and the like. Yes.
 記憶部63には、プラズマ成膜装置100で実行される各種処理をコントローラ61の制御によって実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記録されたレシピ等が保存されている。コントローラ61は、ユーザーインターフェース62からの指示等、必要に応じて、任意の制御プログラムやレシピを記憶部63から呼び出して実行する。これにより、コントローラ61による制御下で、プラズマ成膜装置100の処理容器1内において所望の処理が行われる。 The storage unit 63 stores a control program (software) for realizing various processes executed by the plasma film forming apparatus 100 under the control of the controller 61, a recipe in which process condition data, and the like are recorded. . The controller 61 calls and executes an arbitrary control program or recipe from the storage unit 63 as necessary, such as an instruction from the user interface 62. Accordingly, a desired process is performed in the processing container 1 of the plasma film forming apparatus 100 under the control of the controller 61.
 上記の制御プログラムおよびレシピは、例えば、CD-ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ、DVD等のコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用することができる。また、上記のレシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用することも可能である。 The control program and recipe described above can be stored in a computer-readable storage medium such as a CD-ROM, hard disk, flexible disk, flash memory, or DVD. Also, the above recipe can be transmitted from other devices as needed via, for example, a dedicated line and used online.
 ここで、図4~図7を参照しながら、本実施の形態のプラズマ成膜装置100の作用について説明する。図4及び図5は、従来のプラズマ成膜装置における基板S上のガスの流れを説明する模式図である。図4は、基板Sのコーナー部付近の断面を示している。太陽電池用の基板Sは、その厚みTが2mm~4mm程度あり、例えば0.3mm~0.7mm程度の厚みのFPD用ガラス基板に比べて数倍から10倍程度の厚さを有している。そのため、例えば図4に示すように、基板Sの端部と下部電極5の上面との間には、段差80が生じ、上部電極3と下部電極5との間隔が実質的に変化する。 Here, the operation of the plasma film forming apparatus 100 of the present embodiment will be described with reference to FIGS. 4 and 5 are schematic diagrams for explaining the flow of gas on the substrate S in the conventional plasma film forming apparatus. FIG. 4 shows a cross section near the corner of the substrate S. The substrate S for solar cells has a thickness T of about 2 mm to 4 mm, for example, several times to about 10 times the thickness of a glass substrate for FPD having a thickness of about 0.3 mm to 0.7 mm. Yes. Therefore, for example, as shown in FIG. 4, a step 80 is generated between the end portion of the substrate S and the upper surface of the lower electrode 5, and the distance between the upper electrode 3 and the lower electrode 5 changes substantially.
 この段差80は、基板Sの面上から、基板Sの周縁部へ向かうガスGの流れを不均一にする。すなわち、図5に示すように、ガスGの流れは、より流路抵抗が低い段差80の方向へ向かいやすいため、基板Sの中央付近から、最短距離で段差80の方へ向かう流れが強まり、基板Sのコーナー部への流れが小さくなってしまう。図5において、白矢印の太さはガスGの流量を示しており、太いほど流量が大きいことを意味する(図7において同様である)。基板Sのコーナー部は、元々、基板Sの中心からの距離が最も遠いため、ガスGが届きにくい領域であるが、基板Sと下部電極5の上面との段差80によって、基板Sのコーナー部へのガスGの流れがさらに縮小する。その結果、堆積レートが低下したり、また、微結晶シリコンの成膜においては、400Pa以上の圧力領域で成膜が行われるので、ガスの流れが遅くなり、微結晶シリコンの結晶化の進行が低下する傾向が強くなる。 This step 80 makes the flow of the gas G from the surface of the substrate S toward the peripheral edge of the substrate S non-uniform. That is, as shown in FIG. 5, the flow of the gas G tends to go in the direction of the step 80 having a lower flow path resistance, so that the flow from the vicinity of the center of the substrate S toward the step 80 at the shortest distance increases. The flow to the corner portion of the substrate S becomes small. In FIG. 5, the thickness of the white arrow indicates the flow rate of the gas G, and the thicker the flow rate, the greater the flow rate (the same applies in FIG. 7). The corner portion of the substrate S is originally an area where the gas G is difficult to reach because the distance from the center of the substrate S is the longest, but the corner portion of the substrate S is formed by the step 80 between the substrate S and the upper surface of the lower electrode 5. The flow of gas G to the gas further decreases. As a result, the deposition rate is reduced, and in the film formation of microcrystalline silicon, the film is formed in a pressure region of 400 Pa or more, so that the gas flow becomes slow and the crystallization of the microcrystalline silicon proceeds. The tendency to decrease becomes stronger.
 また、基板Sの厚みに起因する段差80は、平行平板電極間に形成されるプラズマPの横方向への拡がりを抑制する。すなわち、基板Sの周縁部では、基板Sもしくは下部電極5から、上部電極3までの距離(ギャップ)が段差80の存在によって大きく変化するため、平行平板電極間のインピーダンスが変化し、プラズマ密度が低下する。その結果、図4に示すように、基板Sの周縁部、特に、基板Sの中心からの距離が最も大きくなるコーナー部にまでプラズマPが拡がらなくなる。その結果、堆積レートが低下したり、微結晶シリコンの成膜においては、400Pa以上の圧力領域で成膜が行われるので、プラズマPがより拡がりにくく、微結晶シリコンの結晶化の進行が低下する傾向が強くなる。 Further, the step 80 caused by the thickness of the substrate S suppresses the spread of the plasma P formed between the parallel plate electrodes in the lateral direction. That is, at the peripheral portion of the substrate S, the distance (gap) from the substrate S or the lower electrode 5 to the upper electrode 3 varies greatly due to the presence of the step 80, so that the impedance between the parallel plate electrodes changes, and the plasma density increases. descend. As a result, as shown in FIG. 4, the plasma P does not spread to the peripheral portion of the substrate S, particularly to the corner portion where the distance from the center of the substrate S is the largest. As a result, the deposition rate is reduced, and in the formation of microcrystalline silicon, the film is formed in a pressure region of 400 Pa or higher, so that the plasma P is less likely to spread and the progress of crystallization of microcrystalline silicon is reduced. The tendency becomes stronger.
 以上のような段差80による堆積レートの低下や微結晶Siの結晶化度の低下は、円形の半導体基板や、厚みが小さいFPD基板を被処理体とする場合には、ほとんど生じなかった問題である。 The decrease in the deposition rate and the decrease in the degree of crystallinity of microcrystalline Si due to the step 80 as described above are problems that have hardly occurred when a circular semiconductor substrate or an FPD substrate having a small thickness is used as an object to be processed. is there.
 図6及び図7は、非載置領域R2に凸状部としての補助プレート9を設けた本実施の形態のプラズマ成膜装置100における基板S上のガスの流れを説明する模式図である。図6は、非載置領域R2に凸状部としての補助プレート9を設けた本実施の形態の下部電極5の断面図である。なお、図6は、図2におけるVI-VI線矢視の断面を示している。補助プレート9によって、基板Sと下部電極5との段差80を縮小もしくは解消することができる。段差80の縮小もしくは解消によって、図7に示したように、ガスGの流れが基板Sのコーナー部へ向かいやすくなる。なお、図7において、白矢印の太さはガスGの流量を示している。また、補助プレート9は、上記段差80を縮小もしくは解消することによって、平行平板電極間でのプラズマPの拡がりを促し、図6に示したように、基板Sのコーナー部の上方にもプラズマPが拡がるように促す作用を有している。 6 and 7 are schematic diagrams for explaining the gas flow on the substrate S in the plasma film forming apparatus 100 of the present embodiment in which the auxiliary plate 9 as a convex portion is provided in the non-mounting region R2. FIG. 6 is a cross-sectional view of the lower electrode 5 of the present embodiment in which an auxiliary plate 9 as a convex portion is provided in the non-mounting region R2. FIG. 6 shows a cross section taken along line VI-VI in FIG. The step 80 between the substrate S and the lower electrode 5 can be reduced or eliminated by the auxiliary plate 9. By reducing or eliminating the step 80, the flow of the gas G is easily directed toward the corner of the substrate S as shown in FIG. In FIG. 7, the thickness of the white arrow indicates the flow rate of the gas G. Further, the auxiliary plate 9 promotes the spread of the plasma P between the parallel plate electrodes by reducing or eliminating the step 80, and the plasma P is also provided above the corner portion of the substrate S as shown in FIG. Has the effect of encouraging the spread.
 以上のように、本実施の形態の補助プレート9による作用は、補助プレート9の材質よりも高さが重要であると考えられる。そのため、本実施の形態の補助プレート9による作用は、従来のプラズマエッチング装置に使用されていたフォーカスリングとは作用機序が異なるものと考えられる。また、本実施の形態のプラズマ成膜装置100は、例えば短辺の長さが1mを超える大型の基板Sの処理に適しており、特に厚みTが2mm~4mmの範囲内の太陽電池用基板の処理に適している。 As described above, it is considered that the height of the action of the auxiliary plate 9 of the present embodiment is more important than the material of the auxiliary plate 9. For this reason, the action of the auxiliary plate 9 of the present embodiment is considered to have a different mechanism of action from the focus ring used in the conventional plasma etching apparatus. In addition, the plasma film forming apparatus 100 of the present embodiment is suitable for processing a large substrate S having a short side exceeding 1 m, for example, and in particular a solar cell substrate having a thickness T in the range of 2 mm to 4 mm. Suitable for processing.
 次に、図6、8及び9を参照しながら、基板Sの厚みと補助プレート9の高さとの関係について説明する。図8及び図9は、プラズマ成膜装置における補助プレートの高さの説明に供する下部電極5の表面付近の要部断面図である。 Next, the relationship between the thickness of the substrate S and the height of the auxiliary plate 9 will be described with reference to FIGS. 8 and 9 are cross-sectional views of the main part near the surface of the lower electrode 5 for explaining the height of the auxiliary plate in the plasma film forming apparatus.
 図6では、補助プレート9の高さH1は、載置領域R1に載置される基板Sの厚みTとほぼ同じである(つまり、H1=T)。この場合、シャワーヘッドとしての機能を有する上部電極3のガス吐出孔33から基板Sの上面に向けて噴射された成膜用のガスGは、図6中に白矢印で示すように、基板Sの中央部側から、周縁部へ向けてスムーズに流れることができる。また、段差80の解消によってプラズマPも横方向に拡大し、基板Sの周縁部に十分に到達する。このように、補助プレート9は、成膜用のガスGとプラズマPが、基板Sの周縁部、特にコーナー部に行き届くように促す作用を有している。しかし、補助プレート9の高さは、基板Sの厚みよりも小さく、あるいは大きく、設定することもできる。 In FIG. 6, the height H1 of the auxiliary plate 9 is substantially the same as the thickness T of the substrate S placed in the placement region R1 (that is, H1 = T). In this case, the film-forming gas G injected from the gas discharge hole 33 of the upper electrode 3 having a function as a shower head toward the upper surface of the substrate S is as shown by the white arrow in FIG. It can flow smoothly from the central part side toward the peripheral part. Further, by eliminating the step 80, the plasma P also expands in the lateral direction and reaches the peripheral edge of the substrate S sufficiently. As described above, the auxiliary plate 9 has an action of urging the deposition gas G and the plasma P to reach the peripheral portion of the substrate S, particularly the corner portion. However, the height of the auxiliary plate 9 can be set smaller than or larger than the thickness of the substrate S.
 図8に示す例では、補助プレート9の高さH2を、載置領域R1に載置される基板Sの厚みTよりも小さく設定している(つまり、H2<T)。この場合、段差80は完全には解消しないが、補助プレート9の高さH2分だけ段差が縮小する。その結果、基板Sの中央付近からコーナー部へ向かわず、最短距離で基板Sの長辺もしくは短辺の段差80の方へ逃げていくガスGの流れは、図4及び図5の場合よりも小さくなる。また、基板Sのコーナー部におけるプラズマPの横方向への拡がりも図4の場合よりは拡大する。ここで、高さH2は、ガスGの流れ及びプラズマPの拡がりを適切に制御する観点から、例えば0.5T≦H2<Tの範囲内とすることが好ましい。 In the example shown in FIG. 8, the height H2 of the auxiliary plate 9 is set smaller than the thickness T of the substrate S placed in the placement region R1 (that is, H2 <T). In this case, the step 80 is not completely eliminated, but the step is reduced by the height H2 of the auxiliary plate 9. As a result, the flow of the gas G that escapes toward the long side or short side step 80 of the substrate S at the shortest distance without going from the vicinity of the center of the substrate S to the corner portion is greater than in the case of FIGS. Get smaller. Further, the spread of the plasma P in the lateral direction at the corner of the substrate S is also larger than in the case of FIG. Here, from the viewpoint of appropriately controlling the flow of the gas G and the spread of the plasma P, the height H2 is preferably set within a range of 0.5T ≦ H2 <T, for example.
 図9に示す例では、補助プレート9の高さH3を載置領域R1に載置される基板Sの厚みTよりも大きく設定している(つまり、H3>T)。この場合、図4とは逆の段差81が生じるが、補助プレート9が堰の役割を果たすため、基板S上にガスGが滞留する結果、ガスGが基板Sの周縁部へも行き渡るものと考えられる。一方、基板Sのコーナー部におけるプラズマPの横方向への拡がりは、基板Sと補助プレート9との段差81によって、若干抑制されるものと考えられる。ここで、高さH3は、ガスGの流れ及びプラズマPの拡がりを適切に制御する観点から、例えばT<H3≦2Tの範囲内とすることが好ましい。 In the example shown in FIG. 9, the height H3 of the auxiliary plate 9 is set to be larger than the thickness T of the substrate S placed on the placement region R1 (that is, H3> T). In this case, a step 81 opposite to that in FIG. 4 occurs, but the auxiliary plate 9 serves as a weir, so that the gas G stays on the substrate S, and as a result, the gas G reaches the peripheral edge of the substrate S. Conceivable. On the other hand, it is considered that the spread of the plasma P in the lateral direction at the corner portion of the substrate S is slightly suppressed by the step 81 between the substrate S and the auxiliary plate 9. Here, from the viewpoint of appropriately controlling the flow of the gas G and the spread of the plasma P, the height H3 is preferably set within a range of T <H3 ≦ 2T, for example.
 以上のように、補助プレート9の高さを変化させることによって、基板S上でのガスGの流れとプラズマPの拡がりを微調整することが可能である。例えば、非載置領域R2のうち、矩形の載置領域R1の角部の周囲C1、C2、C3、C4では補助プレート9の高さを相対的に高く設定し、非載置領域R2のうち、矩形の載置領域R1の短辺もしくは長辺の中央部の周囲E1、E2、E3、E4では低く設定することができる。具体的には、補助プレート9の高さを、載置領域R1の角部の周囲C1、C2、C3、C4では上記H1に設定し(図6参照;ここで、H1=Tである)、載置領域R1の短辺もしくは長辺の中央部分の周囲E1、E2、E3、E4では上記H2に設定する(図8参照;ここで、H2<Tである)。このようにして、補助プレート9の部位に応じて高さを変化させることによって、基板S上でのガスGの流れとプラズマPの拡がりを均一化し、基板Sの面内での成膜処理の均一化を図ることが可能になる。 As described above, the flow of the gas G on the substrate S and the spread of the plasma P can be finely adjusted by changing the height of the auxiliary plate 9. For example, in the non-mounting region R2, the height of the auxiliary plate 9 is set to be relatively high around the corners C1, C2, C3, and C4 of the rectangular mounting region R1, and the non-mounting region R2 Further, it can be set low in the periphery E1, E2, E3, and E4 around the central part of the short side or the long side of the rectangular placement region R1. Specifically, the height of the auxiliary plate 9 is set to the above H1 at the corners C1, C2, C3, and C4 around the corner of the placement region R1 (see FIG. 6; where H1 = T), In the surroundings E1, E2, E3, and E4 around the short side or the long side of the placement region R1, the above H2 is set (see FIG. 8; here, H2 <T). In this way, by changing the height according to the portion of the auxiliary plate 9, the flow of the gas G and the spread of the plasma P on the substrate S are made uniform, and the film forming process in the plane of the substrate S is performed. Uniformity can be achieved.
[処理手順]
 次に、プラズマ成膜装置100によって基板Sに対してプラズマCVD法による成膜処理を施す際の処理手順について説明する。まず、例えばユーザーインターフェース62から、プラズマ成膜装置100において成膜処理を行うように、コントローラ61に指令が入力される。次に、コントローラ61は、この指令を受けて、記憶部63またはコンピュータ読み取り可能な記憶媒体に保存されたレシピを読み出す。次に、レシピに基づく条件によって成膜処理が実行されるように、コントローラ61からプラズマ成膜装置100の各エンドデバイス(例えば、高周波電源7、整合器73、排気装置21、ガス供給装置40等)に制御信号が送出される。
[Processing procedure]
Next, a processing procedure when performing the film forming process by the plasma CVD method on the substrate S by the plasma film forming apparatus 100 will be described. First, for example, a command is input from the user interface 62 to the controller 61 so as to perform a film forming process in the plasma film forming apparatus 100. Next, in response to this command, the controller 61 reads a recipe stored in the storage unit 63 or a computer-readable storage medium. Next, each end device of the plasma film forming apparatus 100 (for example, the high frequency power supply 7, the matching unit 73, the exhaust device 21, the gas supply device 40, etc.) is executed from the controller 61 so that the film forming process is executed according to the conditions based on the recipe. ) Is sent a control signal.
 次に、ゲートバルブ(図示省略)が開状態にされて、外部の搬送装置によって、複数の基板Sが、ゲートバルブおよび側壁部13の開口(図示省略)を通って処理容器1内に搬入される。それぞれの基板Sは、複数の基板支持ピン(図示省略)を介して下部電極5の上に載置される。次に、ゲートバルブが閉状態にされて、排気装置21によって、処理容器1内が減圧排気される。次に、ガス供給装置40によって、所定の流量の処理ガスが上部電極3のガス吐出孔33から基板Sの上面に向けて噴射される。処理容器1の内部空間は、排気量およびガス供給量を調整することによって、所定の圧力に調整される。 Next, the gate valve (not shown) is opened, and a plurality of substrates S are carried into the processing container 1 through the gate valve and the opening (not shown) of the side wall 13 by an external transfer device. The Each substrate S is placed on the lower electrode 5 via a plurality of substrate support pins (not shown). Next, the gate valve is closed, and the inside of the processing container 1 is evacuated by the exhaust device 21. Next, a processing gas having a predetermined flow rate is injected from the gas discharge hole 33 of the upper electrode 3 toward the upper surface of the substrate S by the gas supply device 40. The internal space of the processing container 1 is adjusted to a predetermined pressure by adjusting the exhaust amount and the gas supply amount.
 次に、高周波電源7から各上部電極3へ高周波電力が供給されることによって、各プラズマ処理部10において、平行平板電極をなす上部電極3と下部電極5との間に処理ガスのプラズマが生成される。生成したプラズマによって、基板Sの表面に所定の薄膜が堆積させられる。このプラズマ処理の間は、補助プレート9によって、基板Sの面上でのガスGの流れやプラズマPの拡がりが適切に調節されることから、基板Sにおける面内の成膜処理の均一化を図ることができる。 Next, by supplying high frequency power from the high frequency power supply 7 to each upper electrode 3, plasma of a processing gas is generated between the upper electrode 3 and the lower electrode 5 forming parallel plate electrodes in each plasma processing unit 10. Is done. A predetermined thin film is deposited on the surface of the substrate S by the generated plasma. During this plasma processing, the flow of the gas G on the surface of the substrate S and the spread of the plasma P are appropriately adjusted by the auxiliary plate 9, so that the in-plane film forming processing on the substrate S is made uniform. Can be planned.
 コントローラ61からプラズマ成膜装置100の各エンドデバイスに成膜処理を終了させる制御信号が送出されると、高周波電源7からの高周波の供給が停止されると共に、処理ガスの供給が停止されて、基板Sに対する成膜処理が終了する。次に、ゲートバルブが開状態にされて、基板支持ピンによって各基板Sの高さ位置を調整した後、外部の搬送装置によって、複数の基板Sが処理容器1内から搬出される。 When a control signal for terminating the film forming process is sent from the controller 61 to each end device of the plasma film forming apparatus 100, the supply of the high frequency from the high frequency power supply 7 is stopped and the supply of the processing gas is stopped. The film forming process for the substrate S is completed. Next, after the gate valve is opened and the height position of each substrate S is adjusted by the substrate support pins, the plurality of substrates S are unloaded from the processing container 1 by an external transfer device.
 以上のように、本実施の形態では、下部電極5に補助プレート9を配置することによって、基板Sの面内における成膜処理の均一性を高めることができる。従って、プラズマ成膜装置100は、例えば太陽電池の製造工程において、基板Sに対して成膜処理を行う目的で好ましく利用可能である。 As described above, in the present embodiment, by arranging the auxiliary plate 9 on the lower electrode 5, the uniformity of the film forming process within the surface of the substrate S can be improved. Therefore, the plasma film forming apparatus 100 can be preferably used for the purpose of performing a film forming process on the substrate S, for example, in a solar cell manufacturing process.
[第2の実施の形態]
 次に、図10及び図11を参照しながら、本発明の第2の実施の形態のプラズマ成膜装置について説明する。図10及び図11は、第2の実施の形態における下部電極5上の補助プレート91の配置を示す説明図である。ここでは、第1の実施の形態との相違点について説明する。
[Second Embodiment]
Next, a plasma film forming apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 10 and 11 are explanatory views showing the arrangement of the auxiliary plate 91 on the lower electrode 5 in the second embodiment. Here, differences from the first embodiment will be described.
<凸状部>
 本実施の形態では、凸状部を構成する板状部材としての補助プレート91は、矩形の載置領域R1の角部の周囲に部分的に配置されている。すなわち、下部電極5の非載置領域R2の中で、矩形の載置領域R1の角部の周囲C1、C2、C3、C4にのみ、補助プレート91が配置されている。上記のとおり、基板Sのコーナー部は、基板Sの面内でもっともガスGが到達しにくい部分である。そこで、本実施の形態では、非載置領域R2のうち、矩形の載置領域R1の角部の周囲C1、C2、C3、C4にのみ補助プレート91を配置することによって、基板Sのコーナー部における堆積レートの低下などの成膜不良を改善し、基板Sの面内における成膜処理の均一化を実現できる。
<Convex part>
In the present embodiment, the auxiliary plate 91 as a plate-like member constituting the convex portion is partially arranged around the corner of the rectangular placement region R1. That is, in the non-mounting region R2 of the lower electrode 5, the auxiliary plate 91 is disposed only around the corners C1, C2, C3, and C4 of the rectangular mounting region R1. As described above, the corner portion of the substrate S is the portion where the gas G hardly reaches in the plane of the substrate S. Therefore, in the present embodiment, the auxiliary plate 91 is disposed only around the corners of the rectangular placement region R1 in the non-mounting region R2, so that the corner portion of the substrate S is disposed. It is possible to improve film formation defects such as a decrease in the deposition rate of the film and to achieve uniform film formation processing within the surface of the substrate S.
 本実施の形態において、補助プレート91は、矩形の部分補助プレート91A及び矩形の部分補助プレート91Bによって構成されている。つまり、補助プレート91は、2枚の部分補助プレート91A,91Bの組み合わせを含んでいる。部分補助プレート91A,91Bは、いずれも、下部電極5に着脱可能な板状部材である。なお、各補助プレート91は、例えば平面視L字形の部材で一体に形成されていてもよいし、あるいは、3枚以上の部分プレートによって構成されていてもよい。 In the present embodiment, the auxiliary plate 91 includes a rectangular partial auxiliary plate 91A and a rectangular partial auxiliary plate 91B. That is, the auxiliary plate 91 includes a combination of two partial auxiliary plates 91A and 91B. The partial auxiliary plates 91 </ b> A and 91 </ b> B are plate-like members that can be attached to and detached from the lower electrode 5. In addition, each auxiliary plate 91 may be integrally formed, for example with the planar view L-shaped member, or may be comprised by the 3 or more partial plate.
 本実施の形態のプラズマ成膜装置における他の構成及び効果は、第1の実施の形態のプラズマ成膜装置100と同様であるので説明を省略する。なお、補助プレート91は、非載置領域R2において、載置領域R1の角部の周囲C1、C2、C3、C4の4箇所すべてに設ける必要はなく、任意の箇所に設けることができる。 Other configurations and effects of the plasma film forming apparatus of the present embodiment are the same as those of the plasma film forming apparatus 100 of the first embodiment, and thus description thereof is omitted. The auxiliary plate 91 need not be provided at all four locations C1, C2, C3, and C4 around the corner of the placement region R1 in the non-mounting region R2, but can be provided at any location.
[第3の実施の形態]
 次に、図12を参照しながら、本発明の第3の実施の形態のプラズマ成膜装置について説明する。図12は、第3の実施の形態における下部電極5上の凸状部の配置を示す説明図である。ここでは、第1の実施の形態との相違点について説明する。
[Third Embodiment]
Next, a plasma film forming apparatus according to a third embodiment of the present invention will be described with reference to FIG. FIG. 12 is an explanatory diagram showing the arrangement of convex portions on the lower electrode 5 in the third embodiment. Here, differences from the first embodiment will be described.
<凸状部>
 本実施の形態では、凸状部を構成する板状部材としての補助プレート93は、矩形の載置領域R1の長辺の中央部分の外側に部分的に配置されている。上部電極3には、高周波電源7から高周波電力が供給される。図12では、上部電極3において給電線71が接続される給電部に対応する下部電極5の位置を矢印P1で示す(以下、給電位置P1と表記する)。給電位置P1は、上部電極3において、矩形の長辺をなす側部に設けられている。本実施の形態では、凸状部を構成する板状部材としての補助プレート93は、上部電極3における給電位置P1を考慮して、下部電極5の長辺5aの中央付近の非載置領域R2にのみ配置されている。すなわち、補助プレート93は、非載置領域R2において、給電位置P1と同じ側の載置領域R1の長辺の中央部分の周囲E3、及び、給電位置P1とは反対側の載置領域R1の長辺の中央部分の周囲E4にそれぞれ設けられている。
<Convex part>
In the present embodiment, the auxiliary plate 93 as a plate-like member constituting the convex portion is partially arranged outside the central portion of the long side of the rectangular placement region R1. High frequency power is supplied to the upper electrode 3 from a high frequency power source 7. In FIG. 12, the position of the lower electrode 5 corresponding to the power supply portion to which the power supply line 71 is connected in the upper electrode 3 is indicated by an arrow P <b> 1 (hereinafter referred to as a power supply position P <b> 1). The feeding position P <b> 1 is provided on the side of the upper electrode 3 that forms the long side of the rectangle. In the present embodiment, the auxiliary plate 93 serving as a plate-like member constituting the convex portion takes into consideration the power feeding position P1 in the upper electrode 3, and the non-mounting region R2 near the center of the long side 5a of the lower electrode 5. Is placed only in. That is, in the non-mounting region R2, the auxiliary plate 93 is located in the periphery E3 of the central portion of the long side of the mounting region R1 on the same side as the power feeding position P1 and the mounting region R1 on the opposite side to the power feeding position P1. It is provided in the periphery E4 of the center part of a long side, respectively.
 図12に示したように、上部電極3における給電位置P1が、下部電極5の長辺5aの中央に対向して設けられている場合、平行平板電極間での電界分布に偏りが生じ、給電位置P1に近い領域または給電位置P1の反対側の領域(つまり、基板Sの周縁部のうち、長辺における中央付近)で堆積レートが低下したり、微結晶シリコン膜の場合は結晶化度が低くなったりすることがある。そこで、本実施の形態のプラズマ成膜装置では、給電位置P1と同じ側の載置領域R1の長辺の中央部分の外側、並びに、給電位置P1とは反対側の載置領域R1の長辺の中央部分の外側に、それぞれ補助プレート93を配備した。補助プレート93によって、基板Sの周縁部のうち、長辺における中央付近おけるガスの流れを、局所的に他の部位よりも大きくしたり、局所的にプラズマPの拡大を促したりすることができるので、堆積レートの低下などの成膜不良を改善し、基板Sの面内における成膜処理の均一化を実現できる。 As shown in FIG. 12, when the feeding position P1 in the upper electrode 3 is provided opposite to the center of the long side 5a of the lower electrode 5, the electric field distribution between the parallel plate electrodes is biased, and feeding is performed. The deposition rate decreases in the region close to the position P1 or the region on the opposite side of the power feeding position P1 (that is, near the center of the long side of the peripheral portion of the substrate S), and in the case of a microcrystalline silicon film, the crystallinity is low. May be lower. Therefore, in the plasma film forming apparatus of the present embodiment, the outside of the central portion of the long side of the mounting region R1 on the same side as the power feeding position P1 and the long side of the mounting region R1 on the side opposite to the power feeding position P1. Auxiliary plates 93 were provided on the outside of the central part. The auxiliary plate 93 can locally increase the gas flow in the vicinity of the center of the long side of the peripheral portion of the substrate S more than other parts, or can promote the expansion of the plasma P locally. Therefore, it is possible to improve film formation defects such as a decrease in the deposition rate and make the film formation process uniform in the plane of the substrate S.
 なお、補助プレート93は、給電位置P1と同じ側の載置領域R1の長辺の中央部分の周囲E3、又は、給電位置P1とは反対側の載置領域R1の長辺の中央部分の周囲E4のいずれか片方に設けてもよい。 The auxiliary plate 93 has a periphery E3 around the central portion of the long side of the mounting region R1 on the same side as the power feeding position P1, or a periphery of the central portion of the long side of the mounting region R1 on the side opposite to the power feeding position P1. You may provide in either one of E4.
 本実施の形態のプラズマ成膜装置における他の構成及び効果は、第1の実施の形態のプラズマ成膜装置100と同様であるので説明を省略する。 Other configurations and effects of the plasma film forming apparatus of the present embodiment are the same as those of the plasma film forming apparatus 100 of the first embodiment, and thus description thereof is omitted.
[第4の実施の形態]
 次に、図13を参照しながら、本発明の第4の実施の形態のプラズマ成膜装置について説明する。図13は、第4の実施の形態における下部電極5の断面図である。ここでは、第1の実施の形態との相違点について説明する。
[Fourth Embodiment]
Next, a plasma film forming apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 13 is a cross-sectional view of the lower electrode 5 in the fourth embodiment. Here, differences from the first embodiment will be described.
 本実施の形態では、凸状部95が、下部電極5と一体に設けられている。この場合、平板状の下部電極5に対して、例えば切削加工、研磨加工などの加工を行うことによって、凸状部95を形成することができる。また、平板状の下部電極5に、例えば凸状部95を溶射法によって形成することも可能である。この場合、凸状部95は、例えばプラズマエロージョン耐性を有するセラミックス溶射膜によって形成することもできる。 In the present embodiment, the convex portion 95 is provided integrally with the lower electrode 5. In this case, the convex portion 95 can be formed by performing processing such as cutting or polishing on the flat lower electrode 5. Further, it is possible to form, for example, a convex portion 95 on the flat lower electrode 5 by a thermal spraying method. In this case, the convex portion 95 can also be formed of, for example, a ceramic sprayed film having plasma erosion resistance.
 なお、本実施の形態における凸状部95は、第1の実施の形態と同様に、下部電極5の載置領域R1の全周に亘って設けてもよいし、第2の実施の形態のように、載置領域R1の角部の周囲C1~C4や、第3の実施の形態のように、載置領域R1の長辺の中央部の周囲E3,E4に設けてもよい。また、凸状部95の高さも、基板Sの厚みTを基準にして同等に、又は、厚みTよりも大きく、もしくは小さく設定できる。本実施の形態のプラズマ成膜装置における他の構成及び効果は、第1の実施の形態のプラズマ成膜装置100と同様であるので説明を省略する。 In addition, the convex part 95 in this Embodiment may be provided over the perimeter of mounting area | region R1 of the lower electrode 5 similarly to 1st Embodiment, or 2nd Embodiment. As described above, it may be provided around the corners C1 to C4 of the mounting area R1 or around the centers E3 and E4 of the central part of the long side of the mounting area R1 as in the third embodiment. Further, the height of the convex portion 95 can be set to be equal to or greater than or smaller than the thickness T of the substrate S. Other configurations and effects of the plasma film forming apparatus of the present embodiment are the same as those of the plasma film forming apparatus 100 of the first embodiment, and thus description thereof is omitted.
[実験例]
 次に、図14~図18を参照して、本発明の効果を確認した実験結果について説明する。第2の実施の形態のプラズマ成膜装置と同様の構成のプラズマ成膜装置を用い、基板S上にプラズマCVD法によって微結晶シリコン薄膜を形成する成膜実験を行った。
[Experimental example]
Next, with reference to FIGS. 14 to 18, the experimental results confirming the effect of the present invention will be described. Using a plasma film forming apparatus having the same configuration as the plasma film forming apparatus of the second embodiment, a film forming experiment for forming a microcrystalline silicon thin film on the substrate S by plasma CVD was performed.
(実験例1)
 この実験では、原料ガスとしてSiHおよびHガスを用い、SiHガスの流量[SiH]と、Hガスの流量[H]との比[R]=[H]/[SiH]が50以上になるような流量比で処理容器1内に導入した。成膜圧力は、1400Paとした。そして、高周波電源7から11MHzの高周波電力を上部電極3に供給することによって、上部電極3と下部電極5との間でプラズマを生成させ、基板Sの表面に約1μmの厚さの微結晶シリコン薄膜を成膜した。上部電極3は、長辺1500mm×短辺1160mmの大きさとし、ガラス基板のサイズを1400×1000×4.0mmとした。上部電極3と下部電極5との間隔(ギャップ)は15mmとした。補助プレートとしては、図14に示した補助プレート91と同様のものを用いた。補助プレート91Aは長辺215mm×短辺40mm、補助プレート91Bは長辺165mm×短辺50mmの大きさとした。補助プレート91A,91Bの高さは、いずれも4mmであり、基板Sの厚みと同じものを用いた。また、補助プレート91として、セラミックス製プレートとアルミニウム製プレートについてそれぞれ実験を行った。
(Experimental example 1)
In this experiment, using SiH 4 and H 2 gas as the source gas, the ratio between the flow rate of SiH 4 gas [SiH 4], the flow rate [H 2] of the H 2 gas [R] = [H 2] / [SiH 4 ] was introduced into the processing container 1 at a flow rate ratio such that 50 or more. The film forming pressure was 1400 Pa. Then, by supplying high frequency power of 11 MHz from the high frequency power source 7 to the upper electrode 3, plasma is generated between the upper electrode 3 and the lower electrode 5, and microcrystalline silicon having a thickness of about 1 μm is formed on the surface of the substrate S. A thin film was formed. The upper electrode 3 has a long side of 1500 mm × a short side of 1160 mm, and the size of the glass substrate is 1400 × 1000 × 4.0 mm. The distance (gap) between the upper electrode 3 and the lower electrode 5 was 15 mm. As an auxiliary plate, the thing similar to the auxiliary plate 91 shown in FIG. 14 was used. The auxiliary plate 91A has a long side of 215 mm × short side of 40 mm, and the auxiliary plate 91B has a long side of 165 mm × short side of 50 mm. The heights of the auxiliary plates 91A and 91B were both 4 mm, and the same thickness as that of the substrate S was used. Further, as the auxiliary plate 91, an experiment was performed on a ceramic plate and an aluminum plate.
 実験例1における微結晶シリコン膜の堆積レートと結晶化度を、図14に示すように基板S上の21箇所のポイントで測定した。堆積レートの結果を図15、結晶化度のデータを図16に示した。なお、結晶化度は、ラマン分光光度計によって測定されたアモルファスシリコンピークIa(480cm-1)と微結晶シリコンピークIc(520cm-1)の比Ic/Iaで表した。図15より、セラミックス製の補助プレート91及びアルミニウム製の補助プレート91を設置することによって、基板Sのコーナー部(測定ポイントA0、E0、U0、Y0)の堆積レートが顕著に改善した。一方、図16より、基板Sのコーナー部(測定ポイントA0、E0、U0、Y0)の結晶化度は低下する傾向を示した。 The deposition rate and crystallinity of the microcrystalline silicon film in Experimental Example 1 were measured at 21 points on the substrate S as shown in FIG. The results of the deposition rate are shown in FIG. 15, and the crystallinity data are shown in FIG. The crystallinity was expressed as a ratio Ic / Ia between the amorphous silicon peak Ia (480 cm −1 ) and the microcrystalline silicon peak Ic (520 cm −1 ) measured by a Raman spectrophotometer. From FIG. 15, by installing the ceramic auxiliary plate 91 and the aluminum auxiliary plate 91, the deposition rate of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S was remarkably improved. On the other hand, FIG. 16 shows that the crystallinity of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S tends to decrease.
 図15と図16から、基板Sのコーナー部では、堆積レートは増加したが、結晶化度は低下しており、相反する傾向を示した。一般に、ガスの供給流量が増加すると堆積レートが増加する反面、結晶化度が低下する傾向があり、高周波電力の供給が増加すると堆積レート、結晶化度ともに増加する傾向がある。従って、本実験例では、補助プレート91による作用は、基板Sのコーナー部におけるガスの流れを改善する作用が支配的であり、その結果、コーナー部における堆積レートの改善及び結晶化度の低下が引き起こされたものと考えられる。なお、基板Sのコーナー部における結晶化度の低下は、高周波電源7から上部電極3へ供給する高周波電力を大きくすることによって補正可能である。 15 and 16, from the corner portion of the substrate S, the deposition rate increased, but the crystallinity decreased, indicating a contradictory tendency. In general, when the gas supply flow rate increases, the deposition rate increases, but the crystallinity tends to decrease. When the supply of high-frequency power increases, both the deposition rate and crystallinity tend to increase. Therefore, in the present experimental example, the effect of the auxiliary plate 91 is dominated by the effect of improving the gas flow at the corner portion of the substrate S. As a result, the deposition rate is improved and the crystallinity is lowered at the corner portion. It is thought that it was caused. Note that the decrease in crystallinity at the corner portion of the substrate S can be corrected by increasing the high-frequency power supplied from the high-frequency power source 7 to the upper electrode 3.
(実験例2)
 この実験では、補助プレートとして、アルミニウム製の補助プレート91を用い、高周波電源7から一般にプラズマが拡がりにくいとされる27MHzの高周波電力を上部電極3に供給した以外は、実験例1と同様の条件で行った。堆積レートの測定結果を図17、結晶化度の測定結果を図18に示した。図17より、アルミニウム製の補助プレート91を設置することによって、基板Sのコーナー部(測定ポイントA0、E0、U0、Y0)の堆積レートが顕著に改善した。また、図18より、基板Sのコーナー部(測定ポイントA0、E0、U0、Y0)の結晶化度についても顕著に改善した。
(Experimental example 2)
In this experiment, an aluminum auxiliary plate 91 was used as an auxiliary plate, and the same conditions as in Experimental Example 1 were provided except that high frequency power of 27 MHz, which is generally considered to be difficult for plasma to spread, was supplied from the high frequency power source 7 to the upper electrode 3. I went there. The measurement result of the deposition rate is shown in FIG. 17, and the measurement result of the crystallinity is shown in FIG. From FIG. 17, the deposition rate of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S was remarkably improved by installing the auxiliary plate 91 made of aluminum. In addition, as shown in FIG. 18, the crystallinity of the corner portions (measurement points A0, E0, U0, Y0) of the substrate S was also significantly improved.
 図17と図18から、基板Sのコーナー部では、堆積レート、結晶化度はともに改善される傾向を示した。本実験例では、補助プレート91によって、基板Sのコーナー部におけるガスの流れ及びプラズマが拡がることにより高周波電力の供給が改善されたため、コーナー部における堆積レート及び結晶化度が改善されたものと考えられる。 FIG. 17 and FIG. 18 show that the deposition rate and the crystallinity tend to be improved in the corner portion of the substrate S. In this experimental example, the auxiliary plate 91 improves the supply of high-frequency power by expanding the gas flow and plasma in the corner portion of the substrate S, so that the deposition rate and crystallinity in the corner portion are improved. It is done.
 以上の実験結果から、下部電極5に補助プレート91を配置することによって、基板Sの面内での成膜処理の速度(堆積レート及び結晶化の進行度)をコントロールできること、並びに、基板Sの面内で堆積レート及び結晶化度の均一性が改善されることが確認された。 From the above experimental results, by arranging the auxiliary plate 91 on the lower electrode 5, it is possible to control the film forming process speed (deposition rate and progress of crystallization) in the plane of the substrate S, and It was confirmed that the uniformity of the deposition rate and crystallinity was improved in the plane.
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。例えば、上記実施の形態のプラズマ成膜装置では、上部電極3に高周波電力を供給する構成としたが、一対の平行平板電極の下部電極5をカソード電極として高周波電力を印加してもよい。 As described above, the embodiments of the present invention have been described in detail for the purpose of illustration, but the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in the plasma film forming apparatus of the above embodiment, the high frequency power is supplied to the upper electrode 3. However, the high frequency power may be applied using the lower electrode 5 of the pair of parallel plate electrodes as the cathode electrode.
 また、プラズマ成膜装置は、一対の平行平板電極に対し、周波数が異なる複数の高周波電力を供給する構成でもよい。 Further, the plasma film forming apparatus may be configured to supply a plurality of high frequency powers having different frequencies to the pair of parallel plate electrodes.
 また、上記実施の形態では、複数のプラズマ処理部10を多段に積層したバッチ式の図1のプラズマ成膜装置100を例に挙げたが、本発明は枚葉式のプラズマ成膜装置にも適用可能である。 Further, in the above embodiment, the batch type plasma film forming apparatus 100 of FIG. 1 in which a plurality of plasma processing units 10 are stacked in multiple stages is taken as an example, but the present invention is also applied to a single wafer type plasma film forming apparatus. Applicable.
 本国際出願は、2013年6月21日に出願された日本国特許出願2013-130238号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。 This international application claims priority based on Japanese Patent Application No. 2013-130238 filed on June 21, 2013, the entire contents of which are incorporated herein by reference.

Claims (15)

  1.  真空引き可能な処理容器と、
     前記処理容器内において、互いに対向して配置される上部電極及び下部電極と、
     前記上部電極又は前記下部電極の少なくとも片方に高周波電力を供給する高周波電源と、
    を備え、
     前記下部電極は、矩形の基板を載置する矩形の載置領域と、該載置領域を囲むようにその外側に隣接して設けられ、前記基板を載置しない非載置領域と、を有しており、
     前記非載置領域の一部分又は全体に、凸状部を設けたプラズマ処理装置。
    A processing container capable of being evacuated;
    In the processing container, an upper electrode and a lower electrode disposed to face each other,
    A high frequency power supply for supplying high frequency power to at least one of the upper electrode or the lower electrode;
    With
    The lower electrode has a rectangular placement area on which a rectangular substrate is placed, and a non-placement area that is provided adjacent to the outside so as to surround the placement area and does not place the substrate. And
    The plasma processing apparatus which provided the convex part in the one part or the whole of the said non-mounting area | region.
  2.  前記凸状部は、前記矩形の載置領域の角部の周囲に部分的に設けられている請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the convex portion is provided partially around a corner portion of the rectangular placement region.
  3.  前記上部電極又は前記下部電極は、平面視矩形をなしており、
     前記上部電極又は前記下部電極において、前記高周波電源から高周波電力が供給される給電部位が、前記矩形の長辺をなす側部に設けられており、
     前記凸状部は、前記給電部位と同じ側の前記矩形の載置領域の長辺の外側に部分的に設けられている請求項1に記載のプラズマ処理装置。
    The upper electrode or the lower electrode has a rectangular shape in plan view,
    In the upper electrode or the lower electrode, a feeding portion to which high-frequency power is supplied from the high-frequency power source is provided on a side portion forming the long side of the rectangle,
    The plasma processing apparatus according to claim 1, wherein the convex portion is partially provided outside a long side of the rectangular placement region on the same side as the power feeding portion.
  4.  前記上部電極又は前記下部電極は、平面視矩形をなしており、
     前記上部電極又は前記下部電極において、前記高周波電源から高周波電力が供給される給電部位が、前記矩形の長辺をなす側部に設けられており、
     前記凸状部は、前記給電部位とは反対側の前記矩形の載置領域の長辺の外側に部分的に設けられている請求項1に記載のプラズマ処理装置。
    The upper electrode or the lower electrode has a rectangular shape in plan view,
    In the upper electrode or the lower electrode, a feeding portion to which high-frequency power is supplied from the high-frequency power source is provided on a side portion forming the long side of the rectangle,
    2. The plasma processing apparatus according to claim 1, wherein the convex portion is partially provided outside a long side of the rectangular placement region on the opposite side to the power feeding portion.
  5.  前記凸状部は、前記矩形の載置領域の全体を囲むように設けられている請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the convex portion is provided so as to surround the whole of the rectangular placement region.
  6.  前記凸状部の高さが、前記載置領域に載置される前記基板の厚みと同じである請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the height of the convex portion is the same as the thickness of the substrate placed in the placement area.
  7.  前記凸状部の高さが、前記載置領域に載置される前記基板の厚みよりも小さい請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a height of the convex portion is smaller than a thickness of the substrate placed in the placement area.
  8.  前記凸状部の高さが、相対的に、前記矩形の載置領域の角部の周囲で高く、前記矩形の載置領域の短辺もしくは長辺の中央部分に隣接する部分で低く形成されている請求項5に記載のプラズマ処理装置。 The height of the convex portion is relatively high around the corner of the rectangular placement region, and is low at a portion adjacent to the short side or the central portion of the long side of the rectangular placement region. The plasma processing apparatus according to claim 5.
  9.  前記凸状部は、前記下部電極と一体に設けられている請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the convex portion is provided integrally with the lower electrode.
  10.  前記凸状部は、前記下部電極に着脱可能な板状部材である請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the convex portion is a plate-like member that can be attached to and detached from the lower electrode.
  11.  前記凸状部は、誘電体によって構成されている請求項10に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 10, wherein the convex portion is made of a dielectric.
  12.  前記凸状部は、導電体によって構成されている請求項10に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 10, wherein the convex portion is made of a conductor.
  13.  前記基板が太陽電池用のガラス基板である請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the substrate is a glass substrate for a solar cell.
  14.  真空引き可能な処理容器と、前記処理容器内において、互いに対向して配置される上部電極及び下部電極と、前記上部電極又は前記下部電極の少なくとも片方に高周波電力を供給する高周波電源と、を備え、前記下部電極は、矩形の基板を載置する矩形の載置領域と、該載置領域を囲むようにその外側に隣接して設けられ、前記基板を載置しない非載置領域と、を有しており、前記非載置領域の一部分又は全体に、凸状部を設けたプラズマ処理装置を用い、前記載置領域に前記基板を載置してプラズマ処理を行うプラズマ処理方法。 A processing container capable of being evacuated, an upper electrode and a lower electrode arranged opposite to each other in the processing container, and a high-frequency power source for supplying high-frequency power to at least one of the upper electrode or the lower electrode The lower electrode includes a rectangular placement area for placing a rectangular substrate, and a non-placement area provided adjacent to the outside so as to surround the placement area and not placing the substrate. And a plasma processing method for performing plasma processing by mounting the substrate on the mounting region, using a plasma processing apparatus provided with a convex portion on a part or the whole of the non-mounting region.
  15.  前記基板に対し、プラズマCVD法による成膜処理を行う請求項14に記載のプラズマ処理方法。
     

     
    The plasma processing method according to claim 14, wherein a film forming process is performed on the substrate by a plasma CVD method.


PCT/JP2014/064681 2013-06-21 2014-06-03 Plasma processing apparatus and plasma processing method WO2014203719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-130238 2013-06-21
JP2013130238A JP2015005634A (en) 2013-06-21 2013-06-21 Device and method for plasma processing

Publications (1)

Publication Number Publication Date
WO2014203719A1 true WO2014203719A1 (en) 2014-12-24

Family

ID=52104460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064681 WO2014203719A1 (en) 2013-06-21 2014-06-03 Plasma processing apparatus and plasma processing method

Country Status (2)

Country Link
JP (1) JP2015005634A (en)
WO (1) WO2014203719A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104174A1 (en) * 2019-12-06 2021-06-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives PLASMA-ASSISTED PLASMA-ASSISTED CHEMICAL DEPOSIT PLATFORM FOR EASY CLEANING
WO2022044966A1 (en) * 2020-08-26 2022-03-03 株式会社Kokusai Electric Substrate-processing device, method for manufacturing semiconductor device, program, auxiliary plate, and substrate holder

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274072A (en) * 1995-03-31 1996-10-18 Toshiba Corp Surface treatment device and surface treatment
JP2000195847A (en) * 1998-12-25 2000-07-14 Japan Storage Battery Co Ltd Ozone-processing apparatus
JP2000315676A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Dry etching apparatus and method
JP2003229408A (en) * 2002-02-05 2003-08-15 Tokyo Electron Ltd Plasma processing device
JP2004335861A (en) * 2003-05-09 2004-11-25 Sharp Corp Thin film forming device
JP2006049640A (en) * 2004-08-05 2006-02-16 Sharp Corp Plasma process device and method for manufacturing liquid crystal display apparatus using the same
JP2007266094A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Plasma cvd device and method for forming semiconductor thin-film by same
WO2008139875A1 (en) * 2007-05-08 2008-11-20 Canon Anelva Corporation Vacuum treatment device
JP2009212482A (en) * 2008-02-05 2009-09-17 Tokyo Electron Ltd Treatment apparatus
JP2009302482A (en) * 2008-06-17 2009-12-24 Tokyo Electron Ltd Processing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274072A (en) * 1995-03-31 1996-10-18 Toshiba Corp Surface treatment device and surface treatment
JP2000195847A (en) * 1998-12-25 2000-07-14 Japan Storage Battery Co Ltd Ozone-processing apparatus
JP2000315676A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Dry etching apparatus and method
JP2003229408A (en) * 2002-02-05 2003-08-15 Tokyo Electron Ltd Plasma processing device
JP2004335861A (en) * 2003-05-09 2004-11-25 Sharp Corp Thin film forming device
JP2006049640A (en) * 2004-08-05 2006-02-16 Sharp Corp Plasma process device and method for manufacturing liquid crystal display apparatus using the same
JP2007266094A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Plasma cvd device and method for forming semiconductor thin-film by same
WO2008139875A1 (en) * 2007-05-08 2008-11-20 Canon Anelva Corporation Vacuum treatment device
JP2009212482A (en) * 2008-02-05 2009-09-17 Tokyo Electron Ltd Treatment apparatus
JP2009302482A (en) * 2008-06-17 2009-12-24 Tokyo Electron Ltd Processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104174A1 (en) * 2019-12-06 2021-06-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives PLASMA-ASSISTED PLASMA-ASSISTED CHEMICAL DEPOSIT PLATFORM FOR EASY CLEANING
WO2022044966A1 (en) * 2020-08-26 2022-03-03 株式会社Kokusai Electric Substrate-processing device, method for manufacturing semiconductor device, program, auxiliary plate, and substrate holder
JP7457818B2 (en) 2020-08-26 2024-03-28 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, program, auxiliary plate, and substrate holder

Also Published As

Publication number Publication date
JP2015005634A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
TWI553729B (en) Plasma processing method
TWI376763B (en) Asymmetric grounding of rectangular susceptor
CN102210015B (en) Plasma etching method and plasma etching device
TW200839924A (en) Plasma processing apparatus, plasma processing method and storage medium
KR101336565B1 (en) Antenna unit for inductively coupled plasma and apparatus for inductively coupled plasma processing
JP5141520B2 (en) Plasma processing equipment
JP6063803B2 (en) Vacuum apparatus and valve control method
KR20120049823A (en) Plasma processing apparatus
CN108807124B (en) Substrate processing apparatus
KR20170118663A (en) Plasma processing apparatus, plasma processing method and recording medium
WO2014203719A1 (en) Plasma processing apparatus and plasma processing method
JP4865352B2 (en) Plasma processing apparatus and plasma processing method
WO2014208288A1 (en) Plasma processing device and plasma processing method
JP2011077228A (en) Plasma processing apparatus and slow-wave plate used therefor
JP2007042744A (en) Plasma treatment apparatus
JP5038769B2 (en) Plasma processing equipment
JP2009224455A (en) Flat antenna member and plasma processing device with the same
CN110846636A (en) Coating material for processing chamber
JP5728565B2 (en) Plasma processing apparatus and slow wave plate used therefor
JP7437985B2 (en) Substrate processing equipment and substrate processing method
KR20120090637A (en) A processing chamber of a substrate processing apparatus
JP2010123628A (en) Vacuum processing equipment
WO2011156534A2 (en) Multiple frequency power for plasma chamber electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813376

Country of ref document: EP

Kind code of ref document: A1