WO2014203591A1 - Solid fuel manufacturing method and manufacturing device - Google Patents

Solid fuel manufacturing method and manufacturing device Download PDF

Info

Publication number
WO2014203591A1
WO2014203591A1 PCT/JP2014/059767 JP2014059767W WO2014203591A1 WO 2014203591 A1 WO2014203591 A1 WO 2014203591A1 JP 2014059767 W JP2014059767 W JP 2014059767W WO 2014203591 A1 WO2014203591 A1 WO 2014203591A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier gas
porous coal
amount
slurry
solid fuel
Prior art date
Application number
PCT/JP2014/059767
Other languages
French (fr)
Japanese (ja)
Inventor
繁 木下
高橋 洋一
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to AU2014282553A priority Critical patent/AU2014282553B2/en
Priority to RU2015154278A priority patent/RU2629935C2/en
Priority to EP14813034.7A priority patent/EP3012313A4/en
Priority to CN201480034105.7A priority patent/CN105308160B/en
Priority to US14/892,151 priority patent/US20160122675A1/en
Publication of WO2014203591A1 publication Critical patent/WO2014203591A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0463Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall
    • F26B11/0477Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for mixing, stirring or conveying the materials to be dried, e.g. mounted to the wall, rotating with the drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process

Definitions

  • the present invention relates to a method and an apparatus for producing a solid fuel using porous coal as a raw material.
  • the present invention relates to a solid fuel manufacturing method and a manufacturing apparatus characterized by stable operation in a drying process in which a carrier gas is supplied and dried while heating and conveying separated modified porous coal.
  • porous coal (raw coal) is pulverized in a pulverization step, and then mixed with a mixed oil containing heavy oil and solvent oil in a mixing step to obtain a raw material slurry.
  • the raw material slurry is preheated and then heated in an evaporation step to dehydrate the porous coal and impregnate the mixed oil into the pores to obtain a dehydrated slurry.
  • the dehydrated slurry is separated into the modified porous coal and the mixed oil in the solid-liquid separation step, and then only the modified porous coal is dried in the drying step.
  • the modified porous charcoal is conveyed and heated in a heating rotary dryer, and dried by flowing the carrier gas.
  • solid fuel is obtained by cooling and shape
  • the mixed oil recovered in the solid-liquid separation process and the drying process is recycled to the mixing process and reused. Further, the carrier gas recovered in the drying step is recirculated into the dryer and reused.
  • the transport amount of porous coal may fluctuate due to fluctuations in operating conditions in each process. For this reason, in the drying process, when the transport amount of the modified porous coal rapidly increases, the amount of evaporated oil may increase and the internal pressure may increase. As a result, the sealing performance (sealing performance) is impaired and gas may leak out.
  • the main component of the carrier gas is nitrogen, but since it contains solids in addition to solvent oil and moisture, the running cost increases due to loss of solvent oil, dust is scattered, and a strange odor is generated. There is concern about adverse effects on the surrounding environment.
  • the transport amount of the modified porous coal when the transport amount of the modified porous coal is suddenly reduced in the drying process, the amount of evaporated oil may be reduced, the internal pressure may be reduced, and negative pressure may be obtained.
  • the ambient atmosphere penetrates into the interior, and as a result of the increase in the oxygen concentration inside, there is a risk that the stability of the modified porous coal at a high temperature is impaired.
  • an object of the present invention is to enable the drying process to be performed in a stable state regardless of the increase or decrease in the transport amount of the porous coal.
  • the present invention provides: A mixing step of mixing a porous charcoal with a mixed oil containing a solvent oil and a heavy component to obtain a raw slurry; Evaporating step of heating the raw slurry to advance dehydration of the porous coal, and impregnating the mixed oil into the pores of the porous coal to obtain a dehydrated slurry; A solid-liquid separation step of separating the modified porous charcoal and the mixed oil from the dewatered slurry; A drying step of drying by supplying a carrier gas while heating and conveying the modified porous charcoal; With The target value of the circulating amount of the carrier gas in the drying step and the target value of the carrier gas pressure are set, and the control output is calculated based on the deviation between each target value and the corresponding measured value.
  • a solid fuel manufacturing method is provided that adjusts the amount of carrier gas supplied based on the smaller value of the control outputs.
  • the supply amount of the carrier gas is adjusted based on the smaller one of the control outputs calculated based on the circulation amount and the pressure of the carrier gas, a significant change occurs.
  • the pressure of the carrier gas in the drying process can be stabilized.
  • the target values are preferably determined based on the supply amount of the modified porous coal to be dried in the drying step and the amount of oil contained in the modified porous coal that has undergone the drying step.
  • the target values are preferably determined so that the pressure of the carrier gas in the drying process is within a preset range.
  • the present invention provides: A mixing tank for obtaining a raw material slurry by mixing porous charcoal with a mixed oil containing a solvent oil and a heavy oil; An evaporator that heats the raw slurry to advance dehydration of the porous coal and impregnates the mixed oil into the pores of the porous coal to obtain a dehydrated slurry; A centrifuge for separating the modified porous charcoal and the mixed oil from the dewatered slurry; A dryer for drying by supplying a carrier gas while heating and conveying the modified porous charcoal; In the dryer, a target value for the circulation amount of the carrier gas and a target value for the pressure of the carrier gas are set, and a control output is calculated based on the deviation between each target value and the corresponding measured value. A control unit that adjusts the supply amount of the carrier gas based on the smaller value of the control outputs, An apparatus for producing a solid fuel comprising:
  • the control unit determines the target values based on the supply amount of the modified porous coal to be dried by the dryer and the amount of oil contained in the modified porous coal that has passed through the dryer. preferable.
  • the control unit preferably determines the target values so that the pressure of the carrier gas in the drying process is within a preset range.
  • the supply amount of the carrier gas is adjusted based on the smaller one of the control outputs calculated based on the circulation amount and the pressure of the carrier gas. For this reason, it is possible to contribute to the stability of the operability in the drying process by quickly leading the circulation amount and pressure of the carrier gas to a stable state.
  • FIG. 1 schematically shows a part of a modified lignite production apparatus (an example of a solid fuel production apparatus) according to this embodiment.
  • this modified lignite production apparatus executes a mixing step in a mixing tank, performs an evaporation step in an evaporator, and executes a solid-liquid separation step in a decanter centrifuge. Moreover, a drying process is performed with the dryer 1 and a modified lignite is obtained.
  • the carrier gas is supplied and dried while heating and transporting the modified porous coal.
  • nitrogen (N 2 ) as a carrier gas prevents ignition of the modified porous coal.
  • the modified porous coal supplied into the dryer 1 is assumed to contain 30 to 40% oil.
  • the dryer 1 is provided with a heater (not shown), and an indirect heating type in which the temperature of the internal carrier gas is adjusted to about 200 ° C. is used.
  • the modified porous charcoal is transported in the dryer 1 by a screw conveyor.
  • the rotating shaft of the screw conveyor is cylindrical, and a plurality of small diameter holes are formed on the outer peripheral surface.
  • the carrier gas can be newly supplied into the dryer 1 via the rotating shaft.
  • a circulation path 2 for collecting the carrier gas and supplying it again into the dryer 1 is connected to the dryer 1.
  • a dust collector 3, a spray tower 4, a blower 5, a flow rate detection sensor 6, a first flow rate adjustment valve 7, and a first pressure detection sensor 8 are provided in order from the outlet side of the dryer 1.
  • An exhaust pipe 9 is connected to the pipe from the spray tower 4 to the blower 5, and a second flow rate adjusting valve 10 is provided there. Further, the pressure in the middle of the pipe connecting the dust collector 3 and the spray tower 4 is detected by the second pressure detection sensor 11.
  • the detection signal from the flow detection sensor 6 is input to an FIC (Flow Indication Controller) 12.
  • a detection signal from the first pressure detection sensor 8 is input to a first PIC (Pressure (Indication Controller) 13.
  • the FIC 12 and the PIC 13 calculate a control output value according to (Equation 1).
  • the control output values calculated by the FIC 12 and the PIC 13 are compared by the LS circuit 14 (Low Select circuit), and the opening degree of the first flow rate adjusting valve 7 is adjusted based on the lower value.
  • the pressure of the carrier gas in the circulation path 2 can be within a predetermined range (for example, 1 to 2 kPa. However, this value depends on the seal design and operating conditions of the conveyor, the dryer 1, etc.
  • the opening degree of the first flow rate adjusting valve 7 is adjusted so as to be maintained.
  • a detection signal from the second pressure detection sensor 11 is input to the second PIC 15. Based on this input signal, the second PIC 15 adjusts the opening of the second flow rate adjusting valve 10 as described later, thereby suppressing an increase in pressure in the circulation path 2.
  • the dust collector 3 is for recovering the dust of the modified porous coal contained in the carrier gas discharged from the dryer 1. From the dryer 1 or the dust collector 3, modified brown coal (UBC: Upgraded Brown Coal) is discharged.
  • the spray tower 4 is for condensing and separating the mixed oil from the carrier gas that has passed through the dust collector 3.
  • the blower 5 is for forming a carrier gas flow from the circulation path 2 to the dryer 1.
  • a modified lignite (an example of a solid fuel) is obtained by a mixing step, an evaporation step, a solid-liquid separation step, and a drying step.
  • the mixing step the porous charcoal is mixed with the mixed oil containing the solvent oil and the heavy component in a mixing tank to obtain a raw material slurry.
  • the evaporation step the raw material slurry obtained in the mixing step is heated with an evaporator to advance dehydration of the porous coal.
  • the mixed oil is impregnated into the pores of the porous coal to obtain a dehydrated slurry.
  • the modified porous charcoal and the mixed oil are separated from the dehydrated slurry by a decanter centrifuge.
  • the drying step the dryer 1 is supplied with a carrier gas while drying and transporting the modified porous coal obtained in the solid-liquid separation step in the dryer 1 to obtain modified lignite.
  • the target of the circulation amount of the carrier gas is determined based on the supply amount of the porous coal supplied into the dryer 1 and the amount of oil contained in the porous coal on the outlet side of the decanter centrifuge.
  • a value and a target value of the pressure of the carrier gas at the inlet of the dryer 1 are set.
  • the carrier is set so that the pressure of the carrier gas in the dryer 1 is within a preset pressure range (set pressure range) with respect to the supply amount of the porous coal and the amount of oil contained therein.
  • a target value for the amount of gas circulation and a target value for pressure are set. These target values may be set in advance through experiments or the like.
  • Equation 1 (hereinafter referred to as the following equation).
  • the value of this control output is referred to as a first control output value).
  • the value of the control output is similarly calculated according to (Equation 1). (Hereinafter, this control output value is referred to as a second control output value).
  • the calculated control output value is compared by Low Select control, and the opening degree of the 1st flow regulating valve 7 is adjusted according to the smaller value.
  • the control output value is calculated based on the flow rate detected by the flow rate detection sensor 6 and the target value, and the first flow rate adjustment valve 7 The opening is adjusted.
  • the flow rate of the carrier gas detected by the flow rate detection sensor 6 when the amount of the oil that evaporates inside increases due to the rapid increase in the amount of the modified porous coal carried into the dryer 1. Does not vary so much, but the pressure detected by the first pressure detection sensor 8 increases.
  • the second control output value calculated in (Equation 1) is smaller than the first control output value. Therefore, the opening degree of the first flow rate adjusting valve 7 is adjusted based on the second control output value. Thereby, the pressure in the dryer 1 can be maintained within a desired range and stabilized by suppressing the flow rate of the carrier gas to be refluxed into the dryer 1.
  • the control output value is calculated according to the above (Equation 1).
  • the opening degree of the 2nd flow regulating valve 10 is adjusted based on the calculated control output value.
  • the discharged carrier gas is guided to an unillustrated off-gas processing apparatus.
  • the carrier gas introduced to the off-gas treatment apparatus is reused by being supplied to the dryer 1 as appropriate.
  • the control output value is calculated according to the above (Equation 1). And the opening degree of the 2nd flow regulating valve 10 is adjusted based on the calculated control output value. In this case, since the detected pressure is greatly reduced, the second flow rate adjustment valve 10 is fully closed, and the carrier gas is not discharged to the outside.
  • the opening degree of the first flow rate adjusting valve 7 is adjusted accordingly.
  • the smaller value of the first control output value and the second control output value is used by the Low / Select control. Therefore, the opening degree of the first flow rate adjusting valve 7 does not change abruptly, and the pressure of the carrier gas in the dryer 1 can be stabilized.
  • the opening degree of the first flow rate adjusting valve 7 is adjusted by PID control (Proportional Integral Derivative Controller), but may be performed by other feedback control.
  • PID control Proportional Integral Derivative Controller
  • the detection signal from the flow rate detection sensor 6 is processed by the FIC 12
  • the detection signal from the first pressure detection sensor 8 is processed by the first PIC 13
  • the detection signal from the second pressure detection sensor 11 is changed to the first signal.
  • the processing is performed by the 2PIC15, these may be collectively controlled by one control unit (microcomputer), or the FIC12 and the first PIC13 may be controlled by one control unit (microcomputer). Good.

Abstract

The present invention performs the drying process stably regardless of fluctuations in the amount of porous coal conveyed. The solid fuel manufacturing method is provided with: a mixing process for mixing the porous coal with a mixed oil containing solvent oil and heavy oil to obtain a raw material slurry; an evaporation process for heating the raw material slurry to promote dehydration of the porous coal and impregnating the mixed oil in the pores of the porous coal to obtain a dehydrated slurry; a solid-liquid separation process for separating the modified porous coal and mixed oil from the dehydrated slurry; and a drying process for drying by heating/conveying the modified porous coal while supplying a carrier gas. The target value for the amount of carrier gas circulated and the target value for the carrier gas pressure in the drying process are set. Control outputs are computed on the basis of the deviation of the measured value corresponding to each target value. The amount of carrier gas supplied is adjusted on the basis of the smaller of the control outputs obtained.

Description

固形燃料の製造方法及び製造装置Method and apparatus for producing solid fuel
 本発明は、多孔質炭を原料とする固形燃料の製造方法及び製造装置に関するものである。特に、分離された改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させる乾燥工程の安定操業に特徴を有する固形燃料の製造方法及び製造装置に関するものである。 The present invention relates to a method and an apparatus for producing a solid fuel using porous coal as a raw material. In particular, the present invention relates to a solid fuel manufacturing method and a manufacturing apparatus characterized by stable operation in a drying process in which a carrier gas is supplied and dried while heating and conveying separated modified porous coal.
 従来、多孔質炭を原料とする固形燃料の製造方法として、例えば、特許文献1に記載される方法がある。この方法では、まず、多孔質炭(原料炭)を粉砕工程で粉砕した後、混合工程で重質油分と溶媒油分を含む混合油と混合して原料スラリーを得る。原料スラリーは、予熱後、蒸発工程で加熱し、多孔質炭を脱水すると共に、その細孔内に混合油を含浸させて脱水スラリーを得る。脱水スラリーは、固液分離工程で、改質多孔質炭と混合油とに分離した後、改質多孔質炭のみを乾燥工程にて乾燥する。乾燥工程では、加熱型回転式乾燥機内で改質多孔質炭を搬送して加熱し、キャリアガスを流動させることにより乾燥する。そして、乾燥した改質多孔質炭を冷却及び成型することにより固形燃料を得る。一方、固液分離工程や乾燥工程で回収した混合油は混合工程へと還流して再利用する。また、乾燥工程で回収したキャリアガスは再び乾燥機内に還流して再利用する。 Conventionally, as a method for producing solid fuel using porous coal as a raw material, for example, there is a method described in Patent Document 1. In this method, first, porous coal (raw coal) is pulverized in a pulverization step, and then mixed with a mixed oil containing heavy oil and solvent oil in a mixing step to obtain a raw material slurry. The raw material slurry is preheated and then heated in an evaporation step to dehydrate the porous coal and impregnate the mixed oil into the pores to obtain a dehydrated slurry. The dehydrated slurry is separated into the modified porous coal and the mixed oil in the solid-liquid separation step, and then only the modified porous coal is dried in the drying step. In the drying step, the modified porous charcoal is conveyed and heated in a heating rotary dryer, and dried by flowing the carrier gas. And solid fuel is obtained by cooling and shape | molding the dry modified porous charcoal. On the other hand, the mixed oil recovered in the solid-liquid separation process and the drying process is recycled to the mixing process and reused. Further, the carrier gas recovered in the drying step is recirculated into the dryer and reused.
 しかしながら、前記各工程における運転状況の変動により、多孔質炭の搬送量は変動することがある。このため、乾燥工程で、改質多孔質炭の搬送量が急増した場合、蒸発油分量が増え、内圧が増大することがある。この結果、シール性(密閉性)が損なわれ、ガスが漏れ出る恐れがある。通常、キャリアガスの主成分は窒素であるが、溶媒油分や水分のほか固形物を含んでいるため、溶媒油分ロスによるランニングコストの増大や、粉塵が飛散したり、異臭を発生させたりすることにより周囲環境への悪影響が懸念される。 However, the transport amount of porous coal may fluctuate due to fluctuations in operating conditions in each process. For this reason, in the drying process, when the transport amount of the modified porous coal rapidly increases, the amount of evaporated oil may increase and the internal pressure may increase. As a result, the sealing performance (sealing performance) is impaired and gas may leak out. Normally, the main component of the carrier gas is nitrogen, but since it contains solids in addition to solvent oil and moisture, the running cost increases due to loss of solvent oil, dust is scattered, and a strange odor is generated. There is concern about adverse effects on the surrounding environment.
 一方、乾燥工程で、改質多孔質炭の搬送量が急減した場合、蒸発油分量が減り、内圧が減少して負圧となることがある。この結果、周囲雰囲気が内部に侵入し、内部での酸素濃度が上昇する結果、高温となった改質多孔質炭の安定性が損なわれる恐れがある。 On the other hand, when the transport amount of the modified porous coal is suddenly reduced in the drying process, the amount of evaporated oil may be reduced, the internal pressure may be reduced, and negative pressure may be obtained. As a result, the ambient atmosphere penetrates into the interior, and as a result of the increase in the oxygen concentration inside, there is a risk that the stability of the modified porous coal at a high temperature is impaired.
特開平7-233383号公報JP 7-233383 A
 そこで、本発明は、多孔質炭の搬送量の増減に拘わらず、乾燥工程を安定した状態で実行することができるようにすることを課題とする。 Therefore, an object of the present invention is to enable the drying process to be performed in a stable state regardless of the increase or decrease in the transport amount of the porous coal.
 本発明は、前記課題を解決するための手段として、
 多孔質炭を溶媒油分及び重質分を含む混合油と混合して原料スラリーを得る混合工程と、
 前記原料スラリーを加熱して多孔質炭の脱水を進めると共に、多孔質炭の細孔内に混合油を含浸させて脱水スラリーを得る蒸発工程と、
 前記脱水スラリーから改質多孔質炭と混合油とを分離する固液分離工程と、
 前記改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させる乾燥工程と、
を備え、
 前記乾燥工程に於けるキャリアガスの循環量の目標値と、キャリアガスの圧力の目標値とを設定し、各目標値と対応する実測値との偏差に基づいて制御出力を演算し、得られた制御出力のうち、小さい方の値に基づいて、キャリアガスの供給量を調整する固形燃料の製造方法を提供する。
As a means for solving the above problems, the present invention provides:
A mixing step of mixing a porous charcoal with a mixed oil containing a solvent oil and a heavy component to obtain a raw slurry;
Evaporating step of heating the raw slurry to advance dehydration of the porous coal, and impregnating the mixed oil into the pores of the porous coal to obtain a dehydrated slurry;
A solid-liquid separation step of separating the modified porous charcoal and the mixed oil from the dewatered slurry;
A drying step of drying by supplying a carrier gas while heating and conveying the modified porous charcoal;
With
The target value of the circulating amount of the carrier gas in the drying step and the target value of the carrier gas pressure are set, and the control output is calculated based on the deviation between each target value and the corresponding measured value. A solid fuel manufacturing method is provided that adjusts the amount of carrier gas supplied based on the smaller value of the control outputs.
 これによれば、キャリアガスの循環量及び圧力のそれぞれに基づいて算出された制御出力のうち、小さい方の値に基づいてキャリアガスの供給量を調整するようにしているので、大幅な変化がなく、乾燥工程でのキャリアガスの圧力を安定させることができる。 According to this, since the supply amount of the carrier gas is adjusted based on the smaller one of the control outputs calculated based on the circulation amount and the pressure of the carrier gas, a significant change occurs. In addition, the pressure of the carrier gas in the drying process can be stabilized.
 前記各目標値は、前記乾燥工程で乾燥させる改質多孔質炭の供給量と、前記乾燥工程を経た改質多孔質炭に含まれる油分量とに基づいて決定するのが好ましい。 The target values are preferably determined based on the supply amount of the modified porous coal to be dried in the drying step and the amount of oil contained in the modified porous coal that has undergone the drying step.
 前記各目標値は、乾燥工程でのキャリアガスの圧力が予め設定した範囲内となるように決定するのが好ましい。 The target values are preferably determined so that the pressure of the carrier gas in the drying process is within a preset range.
 本発明は、前記課題を解決するための手段として、
 多孔質炭を、溶媒油分及び重質分を含む混合油と混合して原料スラリーを得る混合槽と、
 前記原料スラリーを加熱して多孔質炭の脱水を進めると共に、多孔質炭の細孔内に混合油を含浸させて脱水スラリーを得る蒸発器と、
 前記脱水スラリーから改質多孔質炭と混合油とを分離する遠心分離機と、
 前記改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させる乾燥機と、
 前記乾燥機に於ける、キャリアガスの循環量の目標値と、キャリアガスの圧力の目標値とを設定し、各目標値と対応する実測値との偏差に基づいて制御出力を演算し、得られた制御出力のうち、小さい方の値に基づいて、キャリアガスの供給量を調整する制御部と、
を備えた固形燃料の製造装置を提供する。
As a means for solving the above problems, the present invention provides:
A mixing tank for obtaining a raw material slurry by mixing porous charcoal with a mixed oil containing a solvent oil and a heavy oil;
An evaporator that heats the raw slurry to advance dehydration of the porous coal and impregnates the mixed oil into the pores of the porous coal to obtain a dehydrated slurry;
A centrifuge for separating the modified porous charcoal and the mixed oil from the dewatered slurry;
A dryer for drying by supplying a carrier gas while heating and conveying the modified porous charcoal;
In the dryer, a target value for the circulation amount of the carrier gas and a target value for the pressure of the carrier gas are set, and a control output is calculated based on the deviation between each target value and the corresponding measured value. A control unit that adjusts the supply amount of the carrier gas based on the smaller value of the control outputs,
An apparatus for producing a solid fuel comprising:
 前記制御部は、前記各目標値を、前記乾燥機で乾燥させる改質多孔質炭の供給量と、前記乾燥機を経た改質多孔質炭に含まれる油分量とに基づいて決定するのが好ましい。 The control unit determines the target values based on the supply amount of the modified porous coal to be dried by the dryer and the amount of oil contained in the modified porous coal that has passed through the dryer. preferable.
 前記制御部は、前記各目標値を、乾燥工程でのキャリアガスの圧力が予め設定した範囲内となるように決定するのが好ましい。 The control unit preferably determines the target values so that the pressure of the carrier gas in the drying process is within a preset range.
 本発明によれば、キャリアガスの循環量及び圧力のそれぞれに基づいて算出された制御出力のうち、小さい方の値に基づいてキャリアガスの供給量を調整するようにしている。このため、キャリアガスの循環量や圧力を迅速に安定状態へと導くことにより、乾燥工程での操業性の安定に寄与することができる。 According to the present invention, the supply amount of the carrier gas is adjusted based on the smaller one of the control outputs calculated based on the circulation amount and the pressure of the carrier gas. For this reason, it is possible to contribute to the stability of the operability in the drying process by quickly leading the circulation amount and pressure of the carrier gas to a stable state.
本実施形態に係る改質褐炭製造装置の一部を示す概略図である。It is the schematic which shows a part of modified lignite manufacturing apparatus which concerns on this embodiment.
 以下、本発明に係る実施形態を添付図面に従って説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.
 図1は、本実施形態に係る改質褐炭製造装置(固形燃料の製造装置の一例)の一部の概略を示す。この改質褐炭製造装置は、図示しないが、混合槽で混合工程を実行し、蒸発器で蒸発工程を実行し、デカンタ式遠心分離機で固液分離工程を実行する。また、乾燥機1で乾燥工程を実行し、改質褐炭を得る。 FIG. 1 schematically shows a part of a modified lignite production apparatus (an example of a solid fuel production apparatus) according to this embodiment. Although not shown in the drawings, this modified lignite production apparatus executes a mixing step in a mixing tank, performs an evaporation step in an evaporator, and executes a solid-liquid separation step in a decanter centrifuge. Moreover, a drying process is performed with the dryer 1 and a modified lignite is obtained.
 乾燥機1では、改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させる。ここでは、キャリアガスとして窒素(N)を使用することにより、改質多孔質炭の発火を防止するようにしている。また、乾燥機1内に供給する改質多孔質炭には、30~40%の油分を含有するものを想定している。 In the dryer 1, the carrier gas is supplied and dried while heating and transporting the modified porous coal. Here, the use of nitrogen (N 2 ) as a carrier gas prevents ignition of the modified porous coal. The modified porous coal supplied into the dryer 1 is assumed to contain 30 to 40% oil.
 乾燥機1には、図示しないヒータが設けられ、内部のキャリアガスの温度が約200℃に温調される間接加熱型のものが使用されている。乾燥機1内での改質多孔質炭の搬送は、スクリューコンベアによって行われる。スクリューコンベアの回転軸は筒状で、外周面に複数の小径孔が形成されている。そして、この回転軸を介して乾燥機1内に新たにキャリアガスを供給することができるようになっている。 The dryer 1 is provided with a heater (not shown), and an indirect heating type in which the temperature of the internal carrier gas is adjusted to about 200 ° C. is used. The modified porous charcoal is transported in the dryer 1 by a screw conveyor. The rotating shaft of the screw conveyor is cylindrical, and a plurality of small diameter holes are formed on the outer peripheral surface. The carrier gas can be newly supplied into the dryer 1 via the rotating shaft.
 また、乾燥機1には、キャリアガスを回収して再び乾燥機1内に供給するための循環経路2が接続されている。循環経路2の途中には、乾燥機1の出口側から順に、集塵機3、スプレー塔4、ブロワ5、流量検出センサ6、第1流量調整弁7及び第1圧力検出センサ8が設けられている。また、スプレー塔4からブロワ5に至る配管には排気管9が接続され、そこには第2流量調整弁10が設けられている。さらに、集塵機3とスプレー塔4を結ぶ配管の途中の圧力は、第2圧力検出センサ11によって検出されている。 Further, a circulation path 2 for collecting the carrier gas and supplying it again into the dryer 1 is connected to the dryer 1. In the middle of the circulation path 2, a dust collector 3, a spray tower 4, a blower 5, a flow rate detection sensor 6, a first flow rate adjustment valve 7, and a first pressure detection sensor 8 are provided in order from the outlet side of the dryer 1. . An exhaust pipe 9 is connected to the pipe from the spray tower 4 to the blower 5, and a second flow rate adjusting valve 10 is provided there. Further, the pressure in the middle of the pipe connecting the dust collector 3 and the spray tower 4 is detected by the second pressure detection sensor 11.
 流量検出センサ6での検出信号は、FIC(Flow Indication Controller)12に入力される。また、第1圧力検出センサ8での検出信号は、第1PIC(Pressure Indication Controller)13に入力される。FIC12とPIC13では、後述するように、(数1)に従って制御出力値を算出する。FIC12とPIC13で算出された制御出力値は、LS回路14(Low Select回路)で比較され、低い方の値に基づいて第1流量調整弁7の開度が調整される。ここでは、循環経路2内でのキャリアガスの圧力が所定範囲(例えば、1~2kPaとすることができる。但し、この値は、コンベア、乾燥機1等のシール設計や運転条件に依存して変化する。)に維持されるように、第1流量調整弁7の開度が調整されている。また、第2圧力検出センサ11での検出信号は第2PIC15に入力される。第2PIC15は、この入力信号に基づいて、後述するようにして第2流量調整弁10の開度を調整することにより、循環経路2での圧力上昇を抑制する。 The detection signal from the flow detection sensor 6 is input to an FIC (Flow Indication Controller) 12. A detection signal from the first pressure detection sensor 8 is input to a first PIC (Pressure (Indication Controller) 13. As will be described later, the FIC 12 and the PIC 13 calculate a control output value according to (Equation 1). The control output values calculated by the FIC 12 and the PIC 13 are compared by the LS circuit 14 (Low Select circuit), and the opening degree of the first flow rate adjusting valve 7 is adjusted based on the lower value. Here, the pressure of the carrier gas in the circulation path 2 can be within a predetermined range (for example, 1 to 2 kPa. However, this value depends on the seal design and operating conditions of the conveyor, the dryer 1, etc. The opening degree of the first flow rate adjusting valve 7 is adjusted so as to be maintained. A detection signal from the second pressure detection sensor 11 is input to the second PIC 15. Based on this input signal, the second PIC 15 adjusts the opening of the second flow rate adjusting valve 10 as described later, thereby suppressing an increase in pressure in the circulation path 2.
 集塵機3は、乾燥機1から排出されたキャリアガスに含まれる改質多孔質炭の粉塵を回収するためのものである。
 乾燥機1又は集塵機3からは、改質褐炭(UBC:Upgraded Brown Coal)が排出される。
 スプレー塔4は、集塵機3を通過したキャリアガスから混合油を凝縮して分離するためのものである。
 ブロワ5は、循環経路2から乾燥機1へのキャリアガスの流れを形成するためのものである。
The dust collector 3 is for recovering the dust of the modified porous coal contained in the carrier gas discharged from the dryer 1.
From the dryer 1 or the dust collector 3, modified brown coal (UBC: Upgraded Brown Coal) is discharged.
The spray tower 4 is for condensing and separating the mixed oil from the carrier gas that has passed through the dust collector 3.
The blower 5 is for forming a carrier gas flow from the circulation path 2 to the dryer 1.
 次に、前記構成からなる改質褐炭装置の動作について説明する。 Next, the operation of the modified lignite apparatus having the above configuration will be described.
 混合工程、蒸発工程、固液分離工程及び乾燥工程により改質褐炭(固形燃料の一例)を得る。
 混合工程では、混合槽で、多孔質炭を、溶媒油分及び重質分を含む混合油と混合して原料スラリーを得る。
 蒸発工程では、蒸発器で、混合工程で得られた原料スラリーを加熱し、多孔質炭の脱水を進める。また同時に、多孔質炭の細孔内に混合油を含浸させて脱水スラリーを得る。
 固液分離工程では、デカンタ式遠心分離機で、脱水スラリーから改質多孔質炭と混合油とを分離する。
 乾燥工程では、乾燥機1で、固液分離工程で得られた改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させ、改質褐炭を得る。
A modified lignite (an example of a solid fuel) is obtained by a mixing step, an evaporation step, a solid-liquid separation step, and a drying step.
In the mixing step, the porous charcoal is mixed with the mixed oil containing the solvent oil and the heavy component in a mixing tank to obtain a raw material slurry.
In the evaporation step, the raw material slurry obtained in the mixing step is heated with an evaporator to advance dehydration of the porous coal. At the same time, the mixed oil is impregnated into the pores of the porous coal to obtain a dehydrated slurry.
In the solid-liquid separation step, the modified porous charcoal and the mixed oil are separated from the dehydrated slurry by a decanter centrifuge.
In the drying step, the dryer 1 is supplied with a carrier gas while drying and transporting the modified porous coal obtained in the solid-liquid separation step in the dryer 1 to obtain modified lignite.
 以下、本発明の特徴部分である乾燥工程について詳述する。
 乾燥工程では、乾燥機1内に供給される多孔質炭の供給量と、デカンタ式遠心分離機の出口側での多孔質炭に含まれる油分量とに基づいて、キャリアガスの循環量の目標値と、乾燥機1の入口に於けるキャリアガスの圧力の目標値とをそれぞれ設定する。この場合、多孔質炭の供給量と、そこに含まれる油分量とに対して、乾燥機1内のキャリアガスの圧力が予め設定した圧力の範囲(設定圧力範囲)内となるように、キャリアガスの循環量の目標値と、圧力の目標値とを設定する。これら目標値の設定は、予め実験等により求めておけばよい。
Hereinafter, the drying process which is a characteristic part of the present invention will be described in detail.
In the drying step, the target of the circulation amount of the carrier gas is determined based on the supply amount of the porous coal supplied into the dryer 1 and the amount of oil contained in the porous coal on the outlet side of the decanter centrifuge. A value and a target value of the pressure of the carrier gas at the inlet of the dryer 1 are set. In this case, the carrier is set so that the pressure of the carrier gas in the dryer 1 is within a preset pressure range (set pressure range) with respect to the supply amount of the porous coal and the amount of oil contained therein. A target value for the amount of gas circulation and a target value for pressure are set. These target values may be set in advance through experiments or the like.
 そして、設定されたキャリアガスの循環量の目標値と、前記流量検出センサ6によって検出されるキャリアガスの流量の実測値とに基づいて、(数1)に従って制御出力の値を算出する(以下、この制御出力の値を第1制御出力値と記載する。)。また、設定されたキャリアガスの圧力の目標値と、前記第1圧力検出センサ8によって検出されるキャリアガスの圧力の実測値とに基づいて、同様に、(数1)に従って制御出力の値を算出する(以下、この制御出力の値を第2制御出力値と記載する。)。 Then, based on the set target value of the circulating amount of the carrier gas and the actually measured value of the flow rate of the carrier gas detected by the flow rate detection sensor 6, the value of the control output is calculated according to (Equation 1) (hereinafter referred to as the following equation). The value of this control output is referred to as a first control output value). Similarly, based on the set target value of the carrier gas pressure and the actually measured value of the carrier gas pressure detected by the first pressure detection sensor 8, the value of the control output is similarly calculated according to (Equation 1). (Hereinafter, this control output value is referred to as a second control output value).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 続いて、Low Select制御により、算出された制御出力値を比較し、小さい方の値に従って第1流量調整弁7の開度を調整する。
 循環経路2を流動するキャリアガスの流量及び圧力が安定している場合、流量検出センサ6で検出される流量と、目標値とに基づいて制御出力値が算出され、第1流量調整弁7の開度が調整されている。
Then, the calculated control output value is compared by Low Select control, and the opening degree of the 1st flow regulating valve 7 is adjusted according to the smaller value.
When the flow rate and pressure of the carrier gas flowing through the circulation path 2 are stable, the control output value is calculated based on the flow rate detected by the flow rate detection sensor 6 and the target value, and the first flow rate adjustment valve 7 The opening is adjusted.
 ここで、乾燥機1内に搬入される改質多孔質炭の量が一時的に急増することにより、内部で蒸発する油分量が増大した場合、流量検出センサ6で検出されるキャリアガスの流量はそれ程変動しないが、第1圧力検出センサ8で検出される圧力が上昇する。この結果、前記(数1)で算出される第2制御出力値が第1制御出力値よりも小さくなる。そこで、第2制御出力値に基づいて第1流量調整弁7の開度を調整する。これにより、乾燥機1内に還流させるキャリアガスの流量を抑制することにより、乾燥機1内の圧力を所望の範囲内に維持して安定させることができる。 Here, the flow rate of the carrier gas detected by the flow rate detection sensor 6 when the amount of the oil that evaporates inside increases due to the rapid increase in the amount of the modified porous coal carried into the dryer 1. Does not vary so much, but the pressure detected by the first pressure detection sensor 8 increases. As a result, the second control output value calculated in (Equation 1) is smaller than the first control output value. Therefore, the opening degree of the first flow rate adjusting valve 7 is adjusted based on the second control output value. Thereby, the pressure in the dryer 1 can be maintained within a desired range and stabilized by suppressing the flow rate of the carrier gas to be refluxed into the dryer 1.
 このとき、第2圧力検出センサ11で検出される圧力と、予め設定した目標値とに基づいて、前記(数1)に従って制御出力値を算出する。そして、算出された制御出力値に基づいて第2流量調整弁10の開度を調整する。これにより、循環経路2内のキャリアガスによる過剰な圧力上昇が抑えられる。また、排出されたキャリアガスは、図示しないオフガス処理装置へと導かれる。オフガス処理装置に導かれたキャリアガスは、適宜、乾燥機1へと供給されることにより再利用される。 At this time, based on the pressure detected by the second pressure detection sensor 11 and a preset target value, the control output value is calculated according to the above (Equation 1). And the opening degree of the 2nd flow regulating valve 10 is adjusted based on the calculated control output value. Thereby, the excessive pressure rise by the carrier gas in the circulation path 2 is suppressed. Further, the discharged carrier gas is guided to an unillustrated off-gas processing apparatus. The carrier gas introduced to the off-gas treatment apparatus is reused by being supplied to the dryer 1 as appropriate.
 また、乾燥機1内に搬入される改質多孔質炭の量が一時的に急減することにより、内部で発生する油分量が減少した場合、乾燥機1及び循環経路2内での内圧が低下する。そして、流量検出センサ6で検出される流量と、第1圧力検出センサ8で検出される圧力とが共に低下する。これにより、前記(数1)で算出される第1制御出力値及び第2制御出力値が共に大きくなる。通常、流量検出センサ6で検出される流量の変化はそれ程大きくなく、第2制御出力値に比べて第1制御出力値が小さくなる。このため、Low Select制御により第1制御出力値が選択されて、この第1制御出力値に基づいて第1流量調整弁7の開度が調整される。但し、場合によっては、第1制御出力値に比べて第2制御出力値の方が小さくなることもある。この場合には、第2制御出力値に基づいて第1流量調整弁7の開度が調整されることになる。 In addition, when the amount of oil generated inside decreases due to a temporary sudden decrease in the amount of the modified porous coal carried into the dryer 1, the internal pressure in the dryer 1 and the circulation path 2 decreases. To do. Then, the flow rate detected by the flow rate detection sensor 6 and the pressure detected by the first pressure detection sensor 8 both decrease. As a result, both the first control output value and the second control output value calculated in (Equation 1) are increased. Usually, the change in the flow rate detected by the flow rate detection sensor 6 is not so large, and the first control output value is smaller than the second control output value. For this reason, the first control output value is selected by the low selection control, and the opening degree of the first flow rate adjusting valve 7 is adjusted based on the first control output value. However, in some cases, the second control output value may be smaller than the first control output value. In this case, the opening degree of the first flow rate adjusting valve 7 is adjusted based on the second control output value.
 このとき、前記同様にして、第2圧力検出センサ11で検出される圧力と、予め設定した目標値とに基づいて、前記(数1)に従って制御出力値を算出する。そして、算出された制御出力値に基づいて第2流量調整弁10の開度を調整する。この場合、検出圧力が大幅に低下するので、第2流量調整弁10は全閉状態となり、外部にキャリアガスが排出されることはない。 At this time, similarly to the above, based on the pressure detected by the second pressure detection sensor 11 and the preset target value, the control output value is calculated according to the above (Equation 1). And the opening degree of the 2nd flow regulating valve 10 is adjusted based on the calculated control output value. In this case, since the detected pressure is greatly reduced, the second flow rate adjustment valve 10 is fully closed, and the carrier gas is not discharged to the outside.
 このように、乾燥機1内に搬入される改質多孔質炭の量が一時的に増減すれば、それぞれに応じて第1流量調整弁7の開度が調整される。この場合、Low Select制御により、第1制御出力値と第2制御出力値のうち、小さい方の値が使用される。したがって、第1流量調整弁7の開度が急激に変化せず、乾燥機1内でのキャリアガスの圧力を安定させることができる。 Thus, if the amount of the modified porous coal carried into the dryer 1 is temporarily increased or decreased, the opening degree of the first flow rate adjusting valve 7 is adjusted accordingly. In this case, the smaller value of the first control output value and the second control output value is used by the Low / Select control. Therefore, the opening degree of the first flow rate adjusting valve 7 does not change abruptly, and the pressure of the carrier gas in the dryer 1 can be stabilized.
 なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。 In addition, this invention is not limited to the structure described in the said embodiment, A various change is possible.
 例えば、前記実施形態では、第1流量調整弁7の開度の調整をPID制御(Proportional Integral Derivative Controller)により行うようにしたが、他のフィードバック制御により行うことも可能である。 For example, in the above-described embodiment, the opening degree of the first flow rate adjusting valve 7 is adjusted by PID control (Proportional Integral Derivative Controller), but may be performed by other feedback control.
 また、前記実施形態では、流量検出センサ6での検出信号をFIC12で処理し、第1圧力検出センサ8での検出信号を第1PIC13で処理し、第2圧力検出センサ11での検出信号を第2PIC15で処理するようにしたが、これらをまとめて1つの制御部(マイコン)で制御したり、FIC12と第1PIC13を1つの制御部(マイコン)で制御したりする等により対応するようにしてもよい。 In the embodiment, the detection signal from the flow rate detection sensor 6 is processed by the FIC 12, the detection signal from the first pressure detection sensor 8 is processed by the first PIC 13, and the detection signal from the second pressure detection sensor 11 is changed to the first signal. Although the processing is performed by the 2PIC15, these may be collectively controlled by one control unit (microcomputer), or the FIC12 and the first PIC13 may be controlled by one control unit (microcomputer). Good.
 1…乾燥機
 2…循環経路
 3…集塵機
 4…スプレー塔
 5…ブロワ
 6…流量検出センサ
 7…第1流量調整弁
 8…第1圧力検出センサ
 9…排気管
 10…第2流量調整弁
 11…第2圧力検出センサ
 12…FIC
 13…第1PIC
 14…LS回路
 15…第2PIC
DESCRIPTION OF SYMBOLS 1 ... Dryer 2 ... Circulation path | route 3 ... Dust collector 4 ... Spray tower 5 ... Blower 6 ... Flow rate detection sensor 7 ... 1st flow rate adjustment valve 8 ... 1st pressure detection sensor 9 ... Exhaust pipe 10 ... 2nd flow rate adjustment valve 11 ... Second pressure detection sensor 12 ... FIC
13 ... 1st PIC
14 ... LS circuit 15 ... 2nd PIC

Claims (6)

  1.  多孔質炭を溶媒油分及び重質分を含む混合油と混合して原料スラリーを得る混合工程と、
     前記原料スラリーを加熱して多孔質炭の脱水を進めると共に、多孔質炭の細孔内に混合油を含浸させて脱水スラリーを得る蒸発工程と、
     前記脱水スラリーから改質多孔質炭と混合油とを分離する固液分離工程と、
     前記改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させる乾燥工程と、
    を備え、
     前記乾燥工程に於けるキャリアガスの循環量の目標値と、キャリアガスの圧力の目標値とを設定し、各目標値と対応する実測値との偏差に基づいて制御出力を演算し、得られた制御出力のうち、小さい方の値に基づいて、キャリアガスの供給量を調整することを特徴とする固形燃料の製造方法。
    A mixing step of mixing a porous charcoal with a mixed oil containing a solvent oil and a heavy component to obtain a raw slurry;
    Evaporating step of heating the raw slurry to advance dehydration of the porous coal, and impregnating the mixed oil into the pores of the porous coal to obtain a dehydrated slurry;
    A solid-liquid separation step of separating the modified porous charcoal and the mixed oil from the dewatered slurry;
    A drying step of drying by supplying a carrier gas while heating and conveying the modified porous charcoal;
    With
    The target value of the circulating amount of the carrier gas in the drying step and the target value of the carrier gas pressure are set, and the control output is calculated based on the deviation between each target value and the corresponding measured value. A method for producing a solid fuel, wherein the supply amount of the carrier gas is adjusted based on the smaller value of the control outputs.
  2.  前記各目標値は、前記乾燥工程で乾燥させる改質多孔質炭の供給量と、前記乾燥工程を経た改質多孔質炭に含まれる油分量とに基づいて決定することを特徴とする請求項1に記載の固形燃料の製造方法。 Each of the target values is determined based on a supply amount of the modified porous coal to be dried in the drying step and an amount of oil contained in the modified porous coal after the drying step. 2. A method for producing a solid fuel according to 1.
  3.  前記各目標値は、乾燥工程でのキャリアガスの圧力が予め設定した範囲内となるように決定することを特徴とする請求項2に記載の固形燃料の製造方法。 3. The method for producing a solid fuel according to claim 2, wherein each of the target values is determined so that the pressure of the carrier gas in the drying step is within a preset range.
  4.  多孔質炭を、溶媒油分及び重質分を含む混合油と混合して原料スラリーを得る混合槽と、
     前記原料スラリーを加熱して多孔質炭の脱水を進めると共に、多孔質炭の細孔内に混合油を含浸させて脱水スラリーを得る蒸発器と、
     前記脱水スラリーから改質多孔質炭と混合油とを分離する遠心分離機と、
     前記改質多孔質炭を加熱・搬送しながらキャリアガスを供給して乾燥させる乾燥機と、
     前記乾燥機に於ける、キャリアガスの循環量の目標値と、キャリアガスの圧力の目標値とを設定し、各目標値と対応する実測値との偏差に基づいて制御出力を演算し、得られた制御出力のうち、小さい方の値に基づいて、キャリアガスの供給量を調整する制御部と、
    を備えたことを特徴とする固形燃料の製造装置。
    A mixing tank for obtaining a raw material slurry by mixing porous charcoal with a mixed oil containing a solvent oil and a heavy oil;
    An evaporator that heats the raw slurry to advance dehydration of the porous coal and impregnates the mixed oil into the pores of the porous coal to obtain a dehydrated slurry;
    A centrifuge for separating the modified porous charcoal and the mixed oil from the dewatered slurry;
    A dryer for drying by supplying a carrier gas while heating and conveying the modified porous charcoal;
    In the dryer, a target value for the circulation amount of the carrier gas and a target value for the pressure of the carrier gas are set, and a control output is calculated based on the deviation between each target value and the corresponding measured value. A control unit that adjusts the supply amount of the carrier gas based on the smaller value of the control outputs,
    An apparatus for producing solid fuel, comprising:
  5.  前記制御部は、前記各目標値を、前記乾燥機で乾燥させる改質多孔質炭の供給量と、前記乾燥機を経た改質多孔質炭に含まれる油分量とに基づいて決定することを特徴とする請求項4に記載の固形燃料の製造装置。 The control unit determines the target values based on the supply amount of the modified porous coal to be dried by the dryer and the amount of oil contained in the modified porous coal that has passed through the dryer. The solid fuel manufacturing apparatus according to claim 4, wherein the apparatus is a solid fuel manufacturing apparatus.
  6.  前記制御部は、前記各目標値を、乾燥工程でのキャリアガスの圧力が予め設定した範囲内となるように決定することを特徴とする請求項5に記載の固形燃料の製造装置。 6. The solid fuel production apparatus according to claim 5, wherein the control unit determines the target values so that the pressure of the carrier gas in the drying step is within a preset range.
PCT/JP2014/059767 2013-06-19 2014-04-02 Solid fuel manufacturing method and manufacturing device WO2014203591A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2014282553A AU2014282553B2 (en) 2013-06-19 2014-04-02 Solid fuel manufacturing method and manufacturing device
RU2015154278A RU2629935C2 (en) 2013-06-19 2014-04-02 Solid fuel manufacturing method and manufacturing plant
EP14813034.7A EP3012313A4 (en) 2013-06-19 2014-04-02 Solid fuel manufacturing method and manufacturing device
CN201480034105.7A CN105308160B (en) 2013-06-19 2014-04-02 The manufacture method and manufacture device of solid fuel
US14/892,151 US20160122675A1 (en) 2013-06-19 2014-04-02 Solid fuel manufacturing method and manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-128778 2013-06-19
JP2013128778A JP6023665B2 (en) 2013-06-19 2013-06-19 Method and apparatus for producing solid fuel

Publications (1)

Publication Number Publication Date
WO2014203591A1 true WO2014203591A1 (en) 2014-12-24

Family

ID=52104335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059767 WO2014203591A1 (en) 2013-06-19 2014-04-02 Solid fuel manufacturing method and manufacturing device

Country Status (7)

Country Link
US (1) US20160122675A1 (en)
EP (1) EP3012313A4 (en)
JP (1) JP6023665B2 (en)
CN (1) CN105308160B (en)
AU (1) AU2014282553B2 (en)
RU (1) RU2629935C2 (en)
WO (1) WO2014203591A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849104A (en) * 2019-11-20 2020-02-28 攀枝花钢城集团瑞通制冷设备有限公司 Mineral powder drying device
CN111550979B (en) * 2020-05-12 2021-09-21 南京六合高新建设发展有限公司 Vulcanization compression drying device
CN111534353B (en) * 2020-05-14 2021-09-03 太原理工大学 Coking process and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233383A (en) 1993-12-27 1995-09-05 Kobe Steel Ltd Solid fuel using porous coal as raw material, its production and apparatus for production
JP2008144114A (en) * 2006-12-13 2008-06-26 Kobe Steel Ltd Manufacturing method and manufacturing apparatus of solid fuel
JP2009097783A (en) * 2007-10-16 2009-05-07 Kobe Steel Ltd Indirect heating/drying device, indirect heating/drying method for object to be dried, method for manufacturing solid fuel, and its manufacturing device
JP2011214808A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Drying device, drying facility and drying method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2510737A1 (en) * 1975-03-12 1976-09-30 Buettner Schilde Haas Ag PLANT FOR HEATING AND DRYING COAL IN A CIRCUIT UNDER PRESSURE
DE4446401C2 (en) * 1993-12-27 1998-07-02 Kobe Steel Ltd Solid fuel made from porous coal and method and apparatus for producing the same
DE29621313U1 (en) * 1996-12-07 1997-01-30 Digicolor Gmbh Device for drying granules
SE512787C2 (en) * 1997-10-03 2000-05-15 Abb Ab Method, control paradigm and device for controlling and monitoring the process variables for a process gas flowing through a chamber used for drying
JP3783582B2 (en) * 2001-07-05 2006-06-07 ダイキン工業株式会社 Hydraulic circuit device
US7187856B2 (en) * 2001-08-27 2007-03-06 Flexair, Inc. Compact integrated forced air drying system
DE202004012482U1 (en) * 2004-08-07 2004-11-04 Wittmann Robot Systeme Gmbh Device for the optimized heating and drying of bulk goods, especially plastic powder or plastic granules
SE529334C2 (en) * 2005-11-23 2007-07-10 Svensk Roekgasenergi Intressen Drying apparatus for particulate matter
DE102007005782B3 (en) * 2007-02-06 2008-02-14 Uhde Gmbh Procedure for drying dust residue in gasification of fuels e.g. coal, comprises crushing the fuel in grinder, supplying the fuel to filter/separator by conveying- and drying gas, and redirecting the conveying/drying gas into the grinder
US8574329B2 (en) * 2008-12-11 2013-11-05 General Electric Company Method of operating a gasifier
JP2011214810A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Low-grade coal drying system
JP5431382B2 (en) * 2011-02-07 2014-03-05 三菱重工環境・化学エンジニアリング株式会社 Evaporative load control system for dryer
JP5809012B2 (en) * 2011-10-14 2015-11-10 株式会社堀場エステック Diagnosis device and diagnostic program used in a flow control device, a flow measurement mechanism, or a flow control device including the flow measurement mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233383A (en) 1993-12-27 1995-09-05 Kobe Steel Ltd Solid fuel using porous coal as raw material, its production and apparatus for production
JP2008144114A (en) * 2006-12-13 2008-06-26 Kobe Steel Ltd Manufacturing method and manufacturing apparatus of solid fuel
JP2009097783A (en) * 2007-10-16 2009-05-07 Kobe Steel Ltd Indirect heating/drying device, indirect heating/drying method for object to be dried, method for manufacturing solid fuel, and its manufacturing device
JP2011214808A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Drying device, drying facility and drying method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3012313A4 *

Also Published As

Publication number Publication date
CN105308160A (en) 2016-02-03
AU2014282553A1 (en) 2016-01-07
JP6023665B2 (en) 2016-11-09
AU2014282553B2 (en) 2016-07-14
EP3012313A4 (en) 2017-03-01
JP2015003956A (en) 2015-01-08
US20160122675A1 (en) 2016-05-05
RU2015154278A (en) 2017-07-24
CN105308160B (en) 2017-11-14
EP3012313A1 (en) 2016-04-27
RU2629935C2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP6023665B2 (en) Method and apparatus for producing solid fuel
CN102455114B (en) The dewatering of granular material and equipment
JP2007017107A (en) Drying system
US10634429B2 (en) Continuous-flow dryer comprising an exhaust air recirculation device
US10914519B2 (en) Method for producing salts with a reduced water of crystallisation content
JP2023126837A (en) Drying facility, and method of maintaining negative pressure
JP6846920B2 (en) Organic waste treatment method and treatment equipment
JP2006263662A (en) Sludge carbonizing system
JP4848894B2 (en) Sludge supply equipment for carbonization furnace
KR102407456B1 (en) Indirect heat-drying device and method for drying low-grade coal
CN204478750U (en) A kind of rotary kiln drying machine
US10426183B2 (en) Apparatus and a method for recovery of meal
JP6775286B2 (en) Drying device and drying system equipped with it
JP6173953B2 (en) Pyrolysis system and carbonized sludge manufacturing method
JP5618789B2 (en) Vacuum dryer and operation control method
JP2017217622A (en) Production method of magnetic carbonized product and sludge carbonization apparatus
US20180306506A1 (en) Continuous-flow dryer comprising a first and a second section
CN103836904A (en) Feeding system used for vacuum belt type powder continuous drying machine
CN210500943U (en) Miniature split type camera lens desiccator
JPH0688084A (en) Operation of rotating heating drier equipped with steam pipe
JP6399400B2 (en) Drying method of the object to be dried
BR112021001268A2 (en) method for treating lignin.
JPH0734919B2 (en) Drying equipment for water-containing waste
JPH10158659A (en) Method for operating humidity conditioner for coal fed into coke oven
JPH04272993A (en) Method for operating heat-transfer tube dryer for moisture control of coal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034105.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014813034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201508585

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014282553

Country of ref document: AU

Date of ref document: 20140402

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015154278

Country of ref document: RU

Kind code of ref document: A