WO2014203337A1 - Rotation mechanism and robot - Google Patents

Rotation mechanism and robot Download PDF

Info

Publication number
WO2014203337A1
WO2014203337A1 PCT/JP2013/066753 JP2013066753W WO2014203337A1 WO 2014203337 A1 WO2014203337 A1 WO 2014203337A1 JP 2013066753 W JP2013066753 W JP 2013066753W WO 2014203337 A1 WO2014203337 A1 WO 2014203337A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
rotation mechanism
shaft
drive shaft
movable member
Prior art date
Application number
PCT/JP2013/066753
Other languages
French (fr)
Japanese (ja)
Inventor
原田 修
敦 一番ケ瀬
田中 謙太郎
真吾 堤
齋藤 洋
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2013/066753 priority Critical patent/WO2014203337A1/en
Priority to KR1020157033910A priority patent/KR20160003813A/en
Priority to CN201380076545.4A priority patent/CN105229340A/en
Priority to JP2015522406A priority patent/JPWO2014203337A1/en
Publication of WO2014203337A1 publication Critical patent/WO2014203337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1005Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means
    • B25J9/101Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means using limit-switches, -stops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means

Definitions

  • the disclosed embodiment relates to a rotation mechanism and a robot.
  • robots equipped with articulated robot arms are known.
  • a plurality of link bodies are connected via a joint mechanism.
  • the link body rotates around the axis via the joint mechanism, and the rotation range is controlled by software operation control, mechanical operation control, or a combination of both.
  • the joint mechanism which is a rotation mechanism, is generally provided with a stopper mechanism that performs mechanical operation control.
  • a stopper mechanism for example, a fixed-side engaging portion provided on the fixed body and a turning-side engaging portion provided on the swiveling body are provided.
  • the joint is engaged with each other (for example, see Patent Document 1).
  • the conventional mechanical stopper mechanism including Patent Document 1 has a configuration in which the fixed-side engaging portion and the turning-side engaging portion that are located outside the rotating shaft are engaged with each other, or It is the structure which mutually contacts.
  • One aspect of the embodiments has been made in view of the above, and an object thereof is to provide a rotation mechanism and a robot that can be made compact while having a mechanical stopper function.
  • a rotation mechanism includes a drive shaft, a shaft body, a screw portion, a set of fixed members, and a movable member.
  • the drive shaft rotates the driven body.
  • the shaft body is interlocked with the drive shaft, and the screw portion is provided on the shaft body.
  • One set of fixing members is attached to the screw portion at a predetermined interval.
  • the movable member is attached between the pair of fixed members in a state of being prevented from rotating, and advances and retreats on the screw portion as the shaft body rotates, and contacts the fixed member to rotate the drive shaft. To regulate.
  • the rotation mechanism capable of regulating the rotation of the drive shaft can be manufactured at a low cost with a compact configuration.
  • FIG. 2A is a schematic diagram showing an example of the movement of the movable member in the above rotation mechanism.
  • FIG. 2B is a schematic diagram showing an example of the movement of the movable member in the above rotation mechanism.
  • FIG. 3A is a schematic diagram of a rotation mechanism according to a first modification.
  • FIG. 3B is a schematic diagram of a rotation mechanism according to a second modification.
  • FIG. 4 is a perspective view showing an example of a robot having the same rotation mechanism.
  • FIG. 5 is a schematic diagram showing a part of the joint of the above robot cut away.
  • FIG. 6 is a schematic view showing a joint part according to a modification with a part cut away.
  • FIG. 1 is a schematic diagram showing a rotation mechanism 100 according to the embodiment.
  • 2A and 2B are schematic views showing an example of the movement of the movable member 140 in the rotation mechanism 100.
  • the rotation mechanism 100 is provided in a predetermined rotation device 400 as shown in FIG.
  • the rotation device 400 is configured such that the first link body 410 and the second link body 420 as driven bodies are relatively rotatable around the axis 440 by the drive unit.
  • the drive unit includes a motor 210 and a speed reduction mechanism 300 coupled to the motor 210, and the speed reduction mechanism 300 is interposed between the drive shaft 220 of the motor 210 and the first link body 410. Is done. Then, the rotation of the motor 210 is appropriately decelerated by the speed reduction mechanism 300 so that the second link body 420 can be rotated with a predetermined torque with respect to the first link body 410.
  • the rotating mechanism 100 is provided between the first link body 410 and the second link body 420 of the rotating device 400. And while rotating the 1st link body 410 and the 2nd link body 420 relatively, relative rotation of both is controlled mechanically.
  • the rotation mechanism 100 according to the present embodiment the rotation of the first link body 410 relative to the second link body 420 is mechanically restricted.
  • the configuration as the rotation mechanism 100 includes a drive shaft 220 that rotationally drives the second link body 420, a shaft body 110, a screw portion 111, a pair of fixed members 120 and 130, and a movable member 140. Is.
  • the drive shaft 220 is provided in the motor 210, and the shaft body 110 is linked to the drive shaft 220.
  • the shaft body 110 is formed with a threaded portion 111 formed of a threaded male thread portion.
  • the shaft body 110 also serves as a connecting shaft 430 that connects the first link body 410 and the second link body 420 as illustrated. Therefore, the overall configuration can be simplified.
  • the set of fixing members 120 and 130 are attached to the shaft body 110 at a predetermined interval. Note that at least one of the fixing members 120 and 130 is fixed to the first link body 410.
  • the pair of fixing members 120 and 130 are preferably provided on the screw portion 111.
  • the movable member 140 is attached between the pair of fixed members 120 and 130 so as to be prevented from rotating and to advance and retract the screw portion 111.
  • a movable member 140 has a flat portion formed on the outer peripheral surface like a so-called nut, and has a female screw portion formed therein (not shown). That is, as shown in FIGS. 2A and 2B, the movable member 140 is screwed to the screw portion 111 in a state in which the flat portion formed on the outer peripheral surface is in contact with the anti-rotation member 145. With this configuration, the movable member 140 advances and retreats on the screw portion 111 along the rotation preventing member 145 as the shaft body 110 rotates.
  • the anti-rotation member 145 only needs to function as an anti-rotation of the movable member 140, and may be provided with a flat surface that can contact the flat portion of the movable member 140 and guide the advance / retreat of the movable member 140. Further, as the anti-rotation member 145, for example, a cylinder having the same inner peripheral surface as the planar shape of the movable member 140, or a half cylinder thereof can be used.
  • the movable member 140 moves in a first movement direction 510 that is upward in the drawing.
  • the movable member 140 contacts the fixed member 120, and the movement of the movable member 140 is restricted by the frictional force.
  • the movable member 140 cannot move any further, and as a result, the rotation of the drive shaft 220 is restricted and the rotation of the second link body 420 is restricted.
  • the movable member 140 moves in a second movement direction 610 that is downward in the drawing.
  • the movable member 140 abuts on the fixed member 130, and the movement of the movable member 140 is restricted by the frictional force.
  • the movable member 140 cannot move any more, and in this case, as a result, the rotation of the drive shaft 220 is restricted and the rotation of the second link body 420 is restricted.
  • the rotation mechanism 100 for example, the relative rotation amount of the second link body 420 with respect to the first link body 410 of the rotation device 400 exceeds a predetermined range. Even if you try to turn, you can mechanically stop. That is, the rotation mechanism 100 according to the present embodiment has a function of a mechanical stopper.
  • the attachment position of the movable member 140 to the shaft body 110 is an intermediate position between the fixed members 120 and 130 or the vicinity thereof as an initial position.
  • At least one of the set of fixing members 120 and 130 described above can be configured to advance and retract on the screw portion 111.
  • at least one of the fixing members 120 and 130 may be a double nut or a configuration similar to a double nut.
  • one fixing member 120 is composed of a first nut portion 121 and a second nut portion 122
  • the other fixing member 130 is composed of a first nut portion 131 and a second nut portion 132. ing.
  • the first nut portion 121 of one fixing member 120 and the second nut portion 132 of the other fixing member 130 are fixed to the first link body 410.
  • the rotation limit of the second link body 420 can be set such that the distance between the pair of fixed members 120, 130, that is, the distance until the movable member 140 reaches the fixed members 120, 130 is variable. Can be set as appropriate. As described above, according to the rotation mechanism 100 according to the present embodiment, even if the second link body 420 attempts to rotate beyond the set rotation range for some reason, the rotation operation is mechanically forcibly stopped. Can be made.
  • the rotation mechanism 100 even when the rotation range of the second link body 420 is set to be wide enough to allow a plurality of rotations relative to the first link body 410 as the rotation device 400, the rotation mechanism 100 according to the present embodiment has Accordingly, it is possible to easily cope with the set rotation range.
  • the rotation mechanism 100 has a function as a mechanical stopper for the first link body 410 and the second link body 420.
  • the rotation mechanism 100 can be provided coaxially with the connecting shaft 430 that connects the second link body 420 and the drive unit. Therefore, the rotation device 400 can have a compact configuration while including the rotation mechanism 100 having a function as a mechanical stopper.
  • FIG. 3A is a schematic diagram of the rotating mechanism 100 according to the first modification
  • FIG. 3B is a schematic diagram of the rotating mechanism 100 according to the second modification.
  • 3A and 3B the same components as those of the rotation mechanism 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted below.
  • the rotation mechanism 100 according to the first modification differs from the rotation mechanism 100 shown in FIG. 1 in that the shaft body 110 is not on the low speed rotation side via the speed reduction mechanism 300 but on the high speed rotation side as shown in FIG. It is in the point provided in.
  • the shaft body 110 is defined as a rearward extension portion in which the drive shaft 220 of the motor 210 extends in the opposite direction to the speed reduction mechanism 300, that is, the rear side of the main body, which is the front stage side of the motor 210.
  • the back extension part of the drive shaft 220 of the motor 210 and the shaft body 110 are combined here, you may connect another axis
  • the second link body 420 can be driven with a desired high torque and low rotation via the speed reduction mechanism 300, while the rotation mechanism 100 rotates the drive shaft 220 of the motor 210. Can be used directly. Therefore, since the rotation transmitted to the rotation mechanism 100 does not pass through the speed reduction mechanism 300, the torque generated in the rotation mechanism 100 is reduced. Therefore, the rigidity and size of the member can be reduced corresponding to the torque, and the rotation mechanism 100 can be downsized.
  • the shaft body 110 is a separate body from the connection shaft 430 that connects the second link body 420.
  • the shaft body 110 is connected to the connecting shaft 430 through the speed increasing mechanism 3 here.
  • the torque generated in the rotation mechanism 100 can be further reduced as compared with the rotation mechanism 100 according to the first modification. Therefore, the rotation mechanism 100 can be further downsized.
  • the speed increasing mechanism 3 is composed of a set of gears having different numbers of teeth. Specifically, the first spur gear 31 having a predetermined number of teeth attached to the drive shaft 220 of the motor 210 connected to the connecting shaft 430 and the first spur gear 31 attached to one end of the shaft body 110.
  • the speed increasing mechanism 3 is configured by the second spur gear 32 having a smaller number of teeth.
  • the shaft body 110 is connected to the connecting shaft 430 via the speed increasing mechanism 3. That is, the shaft body 110 is disposed in parallel to the drive shaft 220, and the rotation from the drive shaft 220 is via the speed increasing mechanism 3 including the first spur gear 31 and the second spur gear 32. Communicated.
  • the rotation mechanism 100 is provided in the frame constituting the first link body 410 and is configured to restrict the rotation operation of the second link body 420.
  • the rotation mechanism 100 may be provided in a frame constituting the second link body 420 to restrict the rotation operation of the first link body 410.
  • the rotation mechanism 100 can regulate the relative rotation operation of the first link body 410 and the second link body 420, and the arrangement of the rotation mechanism 100 can be set as appropriate.
  • FIG. 4 is a perspective view illustrating an example of the robot 1 including the rotation mechanism 100
  • FIG. 5 is a schematic view illustrating the joint portion of the robot 1 with a part cut away.
  • FIG. 6 is a schematic view showing a joint part according to a modification with a part cut away.
  • the robot 1 is a so-called articulated robot, and as shown in FIG. 4, a trunk portion 12 provided on a base 11, an arm portion 13 coupled to the trunk portion 12, and an arm And a wrist part 14 provided at the tip of the part 13.
  • the base 11 is fixed to the installation surface via a seat 11a.
  • the body 12 is provided so as to be rotatable in the horizontal direction around a vertical axis (not shown).
  • the body 12 rotates horizontally by driving the motor unit 20.
  • the arm portion 13 connected to the trunk portion 12 is configured by a first arm 15 and a second arm 16 as a plurality of link bodies that are rotatably connected to each other via joint portions.
  • the first arm 15 is connected to the trunk portion 12 so as to be swingable in the front-rear direction via the first joint portion 2a.
  • the direction in which the wrist unit 14 is located is the front of the robot 1.
  • the first joint portion 2a that swings the first arm 15 is a first driving source that transmits power to the rotating mechanism 100 described above and the shaft 110 of the rotating mechanism 100.
  • 1 motor 21 is provided. That is, the robot 1 is a rotating mechanism 100, a first motor 21 that transmits power to the shaft 110 of the rotating mechanism 100, and at least one set of link bodies that are rotatably connected via the rotating mechanism 100. A body 12 and a first arm 15 are provided.
  • the second arm 16 is connected to the tip of the first arm 15 so as to be swingable in the vertical direction via the second joint 2b.
  • the second joint portion 2 b that swings the second arm 16 includes a second motor 22.
  • the list unit 14 is configured by a first list 17 and a second list 18, which are also linked bodies, connected to each other via a joint unit so as to be rotatable.
  • the first list 17 is connected to the distal end of the second arm 16 of the arm portion 13 at the base end portion so as to be rotatable around the axis via the third joint portion 2c.
  • the second list 18 is connected to the tip portion of the first list 17 formed in a bifurcated shape so as to be swingable in the vertical direction via the fourth joint portion 2d.
  • the rotation mechanism 100 according to the present embodiment is provided in the first joint portion 2a as described above, and when the swing amount of the first arm 15 exceeds the set range, the swing operation of the first arm 15 is mechanically performed. Can be forcibly stopped.
  • the first joint portion 2a provided in the robot 1 shown in FIG. 4 will be described more specifically with reference to FIG.
  • the first joint portion 2a is provided on the upper side of the trunk portion 12 (see FIG. 4), and connects the first arm 15 of the arm portion 13 in a swingable manner.
  • 1st joint part 2a is provided with the 1st motor 21 and the reduction gear 25 interlockingly connected with this as a drive part. As shown in the figure, the first motor 21 is exposed to the outside, and the attaching / detaching operation of the drive unit to the first joint portion 2a is easily configured.
  • the first arm 15 has a base end connected to the speed reducer 25 via a bolt 51.
  • the rotational force using the first motor 21 as a drive source is transmitted to the first arm 15 at a predetermined rotational speed and torque.
  • the rotation mechanism 100 is disposed in a frame constituting the first arm 15, and is provided on the rear stage side of the speed reducer 25, that is, on the low speed rotation side. As shown in the figure, one end of the shaft body 110 is fixed to the frame inner side surface 13a of the first arm 15, the other end side is passed through the frame, and is fixed by screws 160 on the frame outer side surface 13b. And the movable member 140 which has a plane part on the outer peripheral surface is attached to the screw part 111 of the shaft body 110 so as to be able to advance and retract along the anti-rotation member 145 attached to the body part 12.
  • the frame inner side surface 13a and the nut member 123 attached to the shaft body 110 so as to face the frame inner side surface 13a function as a set of fixing members 120 and 130. That is, if the nut member 123 is rotated and moved, the distance until the movable member 140 reaches the fixed members 120 and 130 can be changed, and the swing limit of the first arm 15 can be set as appropriate. .
  • the arm portion 13 of the robot 1 has a compact configuration while having a function as a mechanical stopper. be able to.
  • the rotation mechanism 100 is provided on the rear stage side of the speed reducer 25, that is, on the low speed rotation side.
  • the first joint portion 2 a according to the modification is provided on the front stage side of the speed reducer 25, that is, on the high speed rotation side.
  • the drive shaft 23 of the motor 21 is connected to a speed reducer 25 connected to the first arm 15, and the rotational force from the motor 21 is transmitted at a predetermined rotational speed and torque via the speed reducer 25. It is transmitted to the first arm 15.
  • the rotation mechanism 100 is arranged next to the motor 21 and interlocked with the drive shaft 23 of the motor 21 via a pair of gears 310 and 320.
  • the connecting shaft 330 which is connected to the shaft body 110 of the rotating mechanism 100 and is attached with the second spur gear 320 in the middle, is disposed in parallel with the drive shaft 23 of the motor 21 via the bearing 150.
  • a first spur gear 310 is attached in the middle of the drive shaft 23.
  • the first spur gear 310 attached to the drive shaft 23 and the second spur gear 320 attached to the connecting shaft 330 are engaged with each other.
  • the shaft body 110 and the movable member 140 of the rotation mechanism 100 are provided in the cover 101 attached to the casing of the motor 21.
  • the cover body 101 functions as a rotation preventing member for the movable member 140.
  • the rotation mechanism 100 transmits the rotation of the drive shaft 23 of the motor 21 via the pair of gears 310 and 320 without passing through the speed reducer 25. That is, a rotational force with a relatively low speed and a low torque is transmitted to the rotation mechanism 100. Therefore, the diameter of the shaft body 110 can be reduced, and as a result, the fixed members 120 and 130 and the movable member 140 can also be reduced. Therefore, it is possible to reduce the size of the rotating mechanism 100 shown in FIG.
  • the fixing member 120 has a double nut structure including the first nut portion 121 and the second nut portion 122. Yes. Therefore, when the distance until the movable member 140 reaches the fixed members 120 and 130 is changed, the distance between the fixed members 120 and 130 can be changed using the fixed member 120 here. Further, although the cover body 101 is attached to the casing of the motor 21, the cover body 101 may be attached to the outer surface of the body portion 12.
  • the rotation mechanism 100 is provided in the first joint portion 2a.
  • the arrangement target of the rotation mechanism 100 is not limited to the first joint portion 2a. Even other joints can be provided as appropriate.
  • the rotation mechanism 100 having the following configuration is realized. That is, the rotating mechanism 100 includes a drive shaft 220, a shaft body 110, a screw portion 111, a pair of fixed members 120 and 130, and a movable member 140.
  • the drive shaft 220 is provided in a drive source such as the motor 210 and rotationally drives a driven body such as a link body (for example, the first link body 410 and the second link body 420).
  • the shaft body 110 is interlocked with the drive shaft 220, and the screw portion 111 is provided on the shaft body 110.
  • the pair of fixing members 120 and 130 are attached to the screw portion 111 with a predetermined interval.
  • the movable member 140 is attached between the pair of fixed portions 120 and 130, and advances and retreats on the screw portion 111 as the shaft body 110 rotates.
  • the movable member 140 abuts on one of the fixed members 120 and 130 and restricts the rotation of the drive shaft 220.
  • the entire mechanism can be configured in a compact configuration while being provided with a function as a mechanical stopper capable of forcibly restricting the rotation of the drive shaft 220, and provided at low cost. Is possible.
  • the rotation mechanism 100 having the above configuration can change the distance between the pair of fixing members 120 and 130.
  • At least one of the pair of fixing members 120 and 130 is configured to be able to advance and retract on the screw portion 111.
  • An example of such a configuration is a double nut structure, but there is no limitation as long as the distance between the fixing members 120 and 130 is variable.
  • the rotation mechanism 100 having the above-described configuration can be configured such that the speed reduction mechanism 300 is interposed between the drive shaft 220 and the driven body. With this configuration, the driven body can be driven to rotate with a desired high torque and low rotation.
  • the rotation mechanism 100 having the above-described configuration can be configured such that the shaft body 110 is connected to the drive shaft 220 via the speed increasing mechanism 3. With such a configuration, it is only necessary to cope with a smaller torque, so that the rotation mechanism 100 can be further downsized.
  • the movable range of the driven body can be limited to an arbitrary range exceeding 360 degrees, for example. Therefore, the rotation range required for the driven body can be freely determined, and can be used for various purposes.
  • the robot 1 having the following configuration is realized. That is, the robot 1 including the rotation mechanism 100 described above, a drive source that transmits power to the shaft body 110 of the rotation mechanism 100, and at least one set of link bodies that are rotatably connected via the rotation mechanism 100. It is.
  • the set of link bodies is the body 12 and the first arm 15, the first arm 15 and the second arm 16, the second arm 16 and the first list 17, A first list 17 and a second list 18.
  • the degree of freedom of setting the rotation range preset in the link body is increased, and the rotation limit range corresponding to the set rotation range can be easily set. Therefore, when the rotation amount of the link body exceeds the set range, the rotation operation of the link body can be mechanically forcibly stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

Provided are: a rotation mechanism which is provided with a mechanical stopper mechanism and which is compact; and a robot. A rotation mechanism is provided with a drive shaft, a shaft body, a screw section, a set of stationary members, and a movable member. The drive shaft rotates and drives a body to be driven. The shaft body is associated with the drive shaft, and the screw section is provided to the shaft body. The set of stationary members is mounted to the screw section at a predetermined distance from each other. The movable member is mounted between the set of stationary members so as to be prevented from rotating, moves forward and backward on the screw section as the shaft body rotates, and restricts the rotation of the drive shaft by coming into contact with the stationary members.

Description

回転機構およびロボットRotating mechanism and robot
 開示の実施形態は、回転機構およびロボットに関する。 The disclosed embodiment relates to a rotation mechanism and a robot.
 従来、多関節のロボットアームを備えたロボットが知られている。ロボットアームは、複数のリンク体が関節機構を介して接続される。リンク体は、関節機構を介して軸周りに回動するが、その回動範囲は、ソフトウェアによる動作制御、メカニカル的な動作制御、あるいは両方を組み合わせて動作制御される。 Conventionally, robots equipped with articulated robot arms are known. In the robot arm, a plurality of link bodies are connected via a joint mechanism. The link body rotates around the axis via the joint mechanism, and the rotation range is controlled by software operation control, mechanical operation control, or a combination of both.
 回転機構である関節機構には、メカニカル的な動作制御を行うストッパ機構が設けられることが一般的になっている。ストッパ機構としては、例えば、固定体に設けた固定側係合部と、旋回体に設けた旋回側係合部とを備え、旋回体が旋回することにより、固定側係合部と旋回側係合部とが互いに係合するようにしたものがある(例えば、特許文献1を参照)。 The joint mechanism, which is a rotation mechanism, is generally provided with a stopper mechanism that performs mechanical operation control. As the stopper mechanism, for example, a fixed-side engaging portion provided on the fixed body and a turning-side engaging portion provided on the swiveling body are provided. There is one in which the joint is engaged with each other (for example, see Patent Document 1).
再表97/10933号公報No. 97/10933
 しかしながら、特許文献1をはじめとする従来のメカニカル的なストッパ機構は、上述したように、回転軸の外側に位置する固定側係合部と旋回側係合部とが互いに係合する構成、あるいは互いに当接する構成となっている。 However, as described above, the conventional mechanical stopper mechanism including Patent Document 1 has a configuration in which the fixed-side engaging portion and the turning-side engaging portion that are located outside the rotating shaft are engaged with each other, or It is the structure which mutually contacts.
 このように、固定側係合部と旋回側係合部とが必要であるため、省スペース化が難しく、ストッパ機構をコンパクト化することが難しかった。したがって、メカニカル的なストッパ機構を備える回転機構、これを関節機構として備えるロボットのコンパクト化も難しくしている。 Thus, since the fixed-side engaging portion and the turning-side engaging portion are necessary, it is difficult to save space and it is difficult to make the stopper mechanism compact. Therefore, it is difficult to make the rotating mechanism including a mechanical stopper mechanism compact and the robot including the rotation mechanism as a joint mechanism.
 実施形態の一態様は、上記に鑑みてなされたものであって、メカニカル的なストッパ機能を備えながら、コンパクト化を図ることのできる回転機構およびロボットを提供することを目的とする。 One aspect of the embodiments has been made in view of the above, and an object thereof is to provide a rotation mechanism and a robot that can be made compact while having a mechanical stopper function.
 実施形態の一態様に係る回転機構は、駆動軸と、軸体と、ネジ部と、1組の固定部材と、可動部材とを備える。駆動軸は、被駆動体を回転駆動する。軸体は、駆動軸と連動し、ネジ部は、当該軸体に設けられる。1組の固定部材は、前記ネジ部に所定間隔をあけて取り付けられる。可動部材は、前記1組の固定部材間に、回り止めされた状態で取り付けられ、前記軸体の回転に伴って前記ネジ部上を進退し、前記固定部材に当接して前記駆動軸の回転を規制する。 A rotation mechanism according to an aspect of the embodiment includes a drive shaft, a shaft body, a screw portion, a set of fixed members, and a movable member. The drive shaft rotates the driven body. The shaft body is interlocked with the drive shaft, and the screw portion is provided on the shaft body. One set of fixing members is attached to the screw portion at a predetermined interval. The movable member is attached between the pair of fixed members in a state of being prevented from rotating, and advances and retreats on the screw portion as the shaft body rotates, and contacts the fixed member to rotate the drive shaft. To regulate.
 実施形態の一態様によれば、駆動軸の回転を規制することのできる回転機構を、コンパクトな構成で、かつ安価に製造することができる。 According to one aspect of the embodiment, the rotation mechanism capable of regulating the rotation of the drive shaft can be manufactured at a low cost with a compact configuration.
図1は、実施形態に係る回転機構を示す模式図である。 Drawing 1 is a mimetic diagram showing the rotation mechanism concerning an embodiment. 図2Aは、同上の回転機構における可動部材の動きの一例を示す模式図である。FIG. 2A is a schematic diagram showing an example of the movement of the movable member in the above rotation mechanism. 図2Bは、同上の回転機構における可動部材の動きの一例を示す模式図である。FIG. 2B is a schematic diagram showing an example of the movement of the movable member in the above rotation mechanism. 図3Aは、第1の変形例に係る回転機構の模式図である。FIG. 3A is a schematic diagram of a rotation mechanism according to a first modification. 図3Bは、第2の変形例に係る回転機構の模式図である。FIG. 3B is a schematic diagram of a rotation mechanism according to a second modification. 図4は、同上の回転機構を備えるロボットの一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a robot having the same rotation mechanism. 図5は、同上のロボットの関節部を一部切欠して示す模式図である。FIG. 5 is a schematic diagram showing a part of the joint of the above robot cut away. 図6は、変形例に係る関節部を一部切欠して示す模式図である。FIG. 6 is a schematic view showing a joint part according to a modification with a part cut away.
 以下、添付図面を参照して、本願の開示する回転機構およびロボットの実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a rotating mechanism and a robot disclosed in the present application will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
 図1は、実施形態に係る回転機構100を示す模式図である。図2Aおよび図2Bは、回転機構100における可動部材140の動きの一例を示す模式図である。先ず、本実施形態に係る回転機構100の概要について、図1を用いて説明する。 FIG. 1 is a schematic diagram showing a rotation mechanism 100 according to the embodiment. 2A and 2B are schematic views showing an example of the movement of the movable member 140 in the rotation mechanism 100. FIG. First, the outline | summary of the rotation mechanism 100 which concerns on this embodiment is demonstrated using FIG.
 本実施形態に係る回転機構100は、図1に示すように、所定の回動装置400に設けられる。回動装置400は、駆動部により、被駆動体としての第1のリンク体410と第2のリンク体420とが軸心440周りに相対的に回転可能に構成される。 The rotation mechanism 100 according to the present embodiment is provided in a predetermined rotation device 400 as shown in FIG. The rotation device 400 is configured such that the first link body 410 and the second link body 420 as driven bodies are relatively rotatable around the axis 440 by the drive unit.
 本実施形態では、駆動部は、モータ210およびモータ210に連結された減速機構300を備えており、減速機構300は、モータ210の駆動軸220と第1のリンク体410との間に介設される。そして、減速機構300によりモータ210の回転を適宜減速し、第2のリンク体420を、第1のリンク体410に対して所定のトルクで回転可能としている。 In the present embodiment, the drive unit includes a motor 210 and a speed reduction mechanism 300 coupled to the motor 210, and the speed reduction mechanism 300 is interposed between the drive shaft 220 of the motor 210 and the first link body 410. Is done. Then, the rotation of the motor 210 is appropriately decelerated by the speed reduction mechanism 300 so that the second link body 420 can be rotated with a predetermined torque with respect to the first link body 410.
 図示するように、回転機構100は、回動装置400の第1のリンク体410と第2のリンク体420との間に設けられる。そして、第1のリンク体410と第2のリンク体420とを相対的に回転させるとともに、両者の相対的な回動をメカニカル的に規制する。本実施形態に係る回転機構100では、第1のリンク体410の第2のリンク体420に対する回動をメカニカル的に規制する。 As shown in the figure, the rotating mechanism 100 is provided between the first link body 410 and the second link body 420 of the rotating device 400. And while rotating the 1st link body 410 and the 2nd link body 420 relatively, relative rotation of both is controlled mechanically. In the rotation mechanism 100 according to the present embodiment, the rotation of the first link body 410 relative to the second link body 420 is mechanically restricted.
 かかる回転機構100としての構成は、第2のリンク体420を回転駆動する駆動軸220と、軸体110と、ネジ部111と、1組の固定部材120,130と、可動部材140とを備えるものである。 The configuration as the rotation mechanism 100 includes a drive shaft 220 that rotationally drives the second link body 420, a shaft body 110, a screw portion 111, a pair of fixed members 120 and 130, and a movable member 140. Is.
 駆動軸220は、モータ210に設けられており、かかる駆動軸220に軸体110が連動する。そして、軸体110には、ネジ加工された雄ネジ部分からなるネジ部111が形成される。 The drive shaft 220 is provided in the motor 210, and the shaft body 110 is linked to the drive shaft 220. The shaft body 110 is formed with a threaded portion 111 formed of a threaded male thread portion.
 また、本実施形態に係る軸体110は、図示するように、第1のリンク体410と第2のリンク体420とを連結する連結軸430を兼ねている。したがって、全体構成をシンプルにすることができる。 Moreover, the shaft body 110 according to the present embodiment also serves as a connecting shaft 430 that connects the first link body 410 and the second link body 420 as illustrated. Therefore, the overall configuration can be simplified.
 1組の固定部材120,130は、軸体110に所定間隔をあけて取り付けられる。なお、固定部材120,130は、その少なくとも一方は第1のリンク体410に固定される。なお、1組の固定部材120,130は、好ましくはネジ部111に設ける。 The set of fixing members 120 and 130 are attached to the shaft body 110 at a predetermined interval. Note that at least one of the fixing members 120 and 130 is fixed to the first link body 410. The pair of fixing members 120 and 130 are preferably provided on the screw portion 111.
 可動部材140は、回り止めされ、かつネジ部111を進退するように、1組の固定部材120,130間に取り付けられる。かかる可動部材140は、いわゆるナットのように外周面に平面部が形成され、内部には雌ネジ部が形成されている(図示せず)。すなわち、図2Aおよび図2Bに示すように、可動部材140は、回り止め部材145に外周面に形成された平面部が当接した状態でネジ部111に螺着している。かかる構成により、可動部材140は、軸体110の回転に伴い、回り止め部材145に沿ってネジ部111上を進退する。そして、ネジ部111上を進退した結果、可動部材140は、固定部材120,130に当接して進退を規制される。なお、回り止め部材145は、可動部材140の回り止めとして機能すればよく、可動部材140の平面部と当接し、可動部材140の進退をガイド可能な平面を備えていればよい。また、回り止め部材145としては、たとえば、可動部材140の平面形状と同じ内周面を有する筒体、あるいはその半割り筒体とすることもできる。 The movable member 140 is attached between the pair of fixed members 120 and 130 so as to be prevented from rotating and to advance and retract the screw portion 111. Such a movable member 140 has a flat portion formed on the outer peripheral surface like a so-called nut, and has a female screw portion formed therein (not shown). That is, as shown in FIGS. 2A and 2B, the movable member 140 is screwed to the screw portion 111 in a state in which the flat portion formed on the outer peripheral surface is in contact with the anti-rotation member 145. With this configuration, the movable member 140 advances and retreats on the screw portion 111 along the rotation preventing member 145 as the shaft body 110 rotates. Then, as a result of advancing and retreating on the screw portion 111, the movable member 140 is brought into contact with the fixed members 120 and 130 to be restricted from advancing and retracting. The anti-rotation member 145 only needs to function as an anti-rotation of the movable member 140, and may be provided with a flat surface that can contact the flat portion of the movable member 140 and guide the advance / retreat of the movable member 140. Further, as the anti-rotation member 145, for example, a cylinder having the same inner peripheral surface as the planar shape of the movable member 140, or a half cylinder thereof can be used.
 図2Aに示すように、例えば、軸体110が、矢印500で示すように反時計回りに回転すると、可動部材140は、図面上、上向きである第1の移動方向510へ移動する。そして、可動部材140は、固定部材120に当接し、摩擦力によって可動部材140の移動が規制される。可動部材140は、これ以上の移動が不可となり、結果的に駆動軸220の回転が規制され、第2のリンク体420の回転を規制する。 2A, for example, when the shaft body 110 rotates counterclockwise as indicated by an arrow 500, the movable member 140 moves in a first movement direction 510 that is upward in the drawing. The movable member 140 contacts the fixed member 120, and the movement of the movable member 140 is restricted by the frictional force. The movable member 140 cannot move any further, and as a result, the rotation of the drive shaft 220 is restricted and the rotation of the second link body 420 is restricted.
 また、図2Bに示すように、例えば、軸体110が、矢印600で示すように時計回りに回転すると、可動部材140は、図面上、下向きである第2の移動方向610へ移動する。可動部材140は、固定部材130に当接し、摩擦力によって可動部材140の移動が規制される。可動部材140は、これ以上の移動が不可となり、この場合も、結果的に駆動軸220の回転が規制され、第2のリンク体420の回転を規制する。 2B, for example, when the shaft body 110 rotates clockwise as indicated by an arrow 600, the movable member 140 moves in a second movement direction 610 that is downward in the drawing. The movable member 140 abuts on the fixed member 130, and the movement of the movable member 140 is restricted by the frictional force. The movable member 140 cannot move any more, and in this case, as a result, the rotation of the drive shaft 220 is restricted and the rotation of the second link body 420 is restricted.
 このように、本実施形態にかかる回転機構100によれば、例えば、回動装置400の、第1のリンク体410に対する第2のリンク体420の相対的な回動量が、所定の範囲を超えて旋回しようとしても、メカニカル的に強制停止させることができる。すなわち、本実施形態に係る回転機構100は、メカニカルストッパの機能を有する。なお、可動部材140の軸体110への取付位置は、固定部材120,130間の中間、あるいはその近傍を初期位置とすることが好ましい。 Thus, according to the rotation mechanism 100 according to the present embodiment, for example, the relative rotation amount of the second link body 420 with respect to the first link body 410 of the rotation device 400 exceeds a predetermined range. Even if you try to turn, you can mechanically stop. That is, the rotation mechanism 100 according to the present embodiment has a function of a mechanical stopper. In addition, it is preferable that the attachment position of the movable member 140 to the shaft body 110 is an intermediate position between the fixed members 120 and 130 or the vicinity thereof as an initial position.
 ところで、上述した1組の固定部材120,130のうち、少なくとも一方は、ネジ部111上を進退可能に構成することができる。具体的には、図1に示すように、固定部材120,130のうち、少なくとも一方をダブルナット、若しくはダブルナットと同様な構成とするとよい。 By the way, at least one of the set of fixing members 120 and 130 described above can be configured to advance and retract on the screw portion 111. Specifically, as shown in FIG. 1, at least one of the fixing members 120 and 130 may be a double nut or a configuration similar to a double nut.
 図1に示した例では、一方の固定部材120を第1ナット部121および第2ナット部122で構成するとともに、他方の固定部材130を第1ナット部131および第2ナット部132で構成している。そして、一方の固定部材120の第1ナット部121と、他方の固定部材130の第2ナット部132を、第1のリンク体410に固定している。 In the example shown in FIG. 1, one fixing member 120 is composed of a first nut portion 121 and a second nut portion 122, and the other fixing member 130 is composed of a first nut portion 131 and a second nut portion 132. ing. The first nut portion 121 of one fixing member 120 and the second nut portion 132 of the other fixing member 130 are fixed to the first link body 410.
 かかる構成とすることにより、1組の固定部材120,130間の距離、すなわち、可動部材140が固定部材120,130へ到達するまでの距離を可変として、第2のリンク体420の回動限界を適宜設定することができる。このように、本実施形態に係る回転機構100によれば、何らかの原因により、設定された回動範囲を超えて第2のリンク体420が回転しようとしても、その回転動作をメカニカル的に強制停止させることができる。 By adopting such a configuration, the rotation limit of the second link body 420 can be set such that the distance between the pair of fixed members 120, 130, that is, the distance until the movable member 140 reaches the fixed members 120, 130 is variable. Can be set as appropriate. As described above, according to the rotation mechanism 100 according to the present embodiment, even if the second link body 420 attempts to rotate beyond the set rotation range for some reason, the rotation operation is mechanically forcibly stopped. Can be made.
 また、回動装置400として、第2のリンク体420の回動範囲が、第1のリンク体410に対して複数回転できるほど広く設定されている場合でも、本実施形態に係る回転機構100によれば、設定された回動範囲に容易に対応することができる。 Further, even when the rotation range of the second link body 420 is set to be wide enough to allow a plurality of rotations relative to the first link body 410 as the rotation device 400, the rotation mechanism 100 according to the present embodiment has Accordingly, it is possible to easily cope with the set rotation range.
 上述してきたように、回転機構100は、第1のリンク体410や第2のリンク体420のメカニカルストッパとしての機能を有する。そして、回転機構100は、第2のリンク体420と駆動部を連結する連結軸430と同軸に設けることができる。したがって、回動装置400は、メカニカルストッパとしての機能を有する回転機構100を備えながらも、その構成をコンパクトにすることが可能となる。 As described above, the rotation mechanism 100 has a function as a mechanical stopper for the first link body 410 and the second link body 420. The rotation mechanism 100 can be provided coaxially with the connecting shaft 430 that connects the second link body 420 and the drive unit. Therefore, the rotation device 400 can have a compact configuration while including the rotation mechanism 100 having a function as a mechanical stopper.
 ここで、回転機構100の変形例について説明する。図3Aは、第1の変形例に係る回転機構100の模式図であり、図3Bは、第2の変形例に係る回転機構100の模式図である。なお、図3Aおよび図3Bにおいて、図1に示した回転機構100と同一の構成要素については同一の符号を付して、細かな説明を以下では省略する。 Here, a modified example of the rotation mechanism 100 will be described. FIG. 3A is a schematic diagram of the rotating mechanism 100 according to the first modification, and FIG. 3B is a schematic diagram of the rotating mechanism 100 according to the second modification. 3A and 3B, the same components as those of the rotation mechanism 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted below.
 (第1変形例)
 第1変形例に係る回転機構100が図1に示した回転機構100と異なる点は、図3Aに示すように、軸体110が、減速機構300を介した低速回転側ではなく、高速回転側に設けられている点にある。ここでは、モータ210の駆動軸220を、減速機構300とは逆方向、すなわち、モータ210の前段側である本体後方に延在させた後方延在部分を軸体110としている。なお、ここでは、モータ210の駆動軸220の後方延在部分と軸体110とを兼用しているが、別軸同士を連結してもよい。
(First modification)
The rotation mechanism 100 according to the first modification differs from the rotation mechanism 100 shown in FIG. 1 in that the shaft body 110 is not on the low speed rotation side via the speed reduction mechanism 300 but on the high speed rotation side as shown in FIG. It is in the point provided in. Here, the shaft body 110 is defined as a rearward extension portion in which the drive shaft 220 of the motor 210 extends in the opposite direction to the speed reduction mechanism 300, that is, the rear side of the main body, which is the front stage side of the motor 210. In addition, although the back extension part of the drive shaft 220 of the motor 210 and the shaft body 110 are combined here, you may connect another axis | shafts.
 かかる構成とすれば、第2のリンク体420は、減速機構300を介して、所望する高トルクかつ低回転で駆動させることができる一方、回転機構100は、モータ210の駆動軸220の回転を直接利用することができる。したがって、回転機構100へ伝達される回転は、減速機構300を介さないため、回転機構100に発生するトルクは低減する。したがって、部材の剛性やサイズなどもトルクに対応させて小さくすることができ、回転機構100としての小型化が可能となる。 With this configuration, the second link body 420 can be driven with a desired high torque and low rotation via the speed reduction mechanism 300, while the rotation mechanism 100 rotates the drive shaft 220 of the motor 210. Can be used directly. Therefore, since the rotation transmitted to the rotation mechanism 100 does not pass through the speed reduction mechanism 300, the torque generated in the rotation mechanism 100 is reduced. Therefore, the rigidity and size of the member can be reduced corresponding to the torque, and the rotation mechanism 100 can be downsized.
 (第2変形例)
 図3Bに示す第2変形例に係る回転機構100は、軸体110が、第2のリンク体420を連結する連結軸430とは別体となっている。しかも、ここでは、軸体110は、連結軸430に、増速機構3を介して接続されている。
(Second modification)
In the rotation mechanism 100 according to the second modification shown in FIG. 3B, the shaft body 110 is a separate body from the connection shaft 430 that connects the second link body 420. In addition, the shaft body 110 is connected to the connecting shaft 430 through the speed increasing mechanism 3 here.
 すなわち、第2変形例に係る回転機構100では、第1変形例に係る回転機構100よりも、当該回転機構100に発生するトルクをさらに低減することができる。したがって、回転機構100を、より小型化することが可能となる。 That is, in the rotation mechanism 100 according to the second modification, the torque generated in the rotation mechanism 100 can be further reduced as compared with the rotation mechanism 100 according to the first modification. Therefore, the rotation mechanism 100 can be further downsized.
 本実施形態に係る増速機構3は、歯数の異なる1組の歯車により構成される。具体的には、連結軸430に連結されるモータ210の駆動軸220に取付けられた所定数の歯数からなる第1平歯車31と、軸体110の一端に取り付けられ、第1平歯車31よりも歯数の少ない第2平歯車32とにより増速機構3が構成される。 The speed increasing mechanism 3 according to the present embodiment is composed of a set of gears having different numbers of teeth. Specifically, the first spur gear 31 having a predetermined number of teeth attached to the drive shaft 220 of the motor 210 connected to the connecting shaft 430 and the first spur gear 31 attached to one end of the shaft body 110. The speed increasing mechanism 3 is configured by the second spur gear 32 having a smaller number of teeth.
 このように、第2変形例に係る回転機構100は、軸体110が、連結軸430に対して増速機構3を介して接続される。すなわち、軸体110が、駆動軸220に対して平行に配設されており、駆動軸220からの回転は、第1平歯車31と第2平歯車32とを備える増速機構3を介して伝達される。 Thus, in the rotation mechanism 100 according to the second modification, the shaft body 110 is connected to the connecting shaft 430 via the speed increasing mechanism 3. That is, the shaft body 110 is disposed in parallel to the drive shaft 220, and the rotation from the drive shaft 220 is via the speed increasing mechanism 3 including the first spur gear 31 and the second spur gear 32. Communicated.
 上述してきた実施形態に係る回転機構100は、第1のリンク体410を構成するフレーム内に設けられ、第2のリンク体420の回転動作を規制する構成とした。逆に、回転機構100を第2のリンク体420を構成するフレーム内に設け、第1のリンク体410の回転動作を規制する構成とすることもできる。このように、回転機構100は、第1のリンク体410と第2のリンク体420との相対的な回転動作を規制可能であり、回転機構100の配置などは適宜設定することができる。 The rotation mechanism 100 according to the embodiment described above is provided in the frame constituting the first link body 410 and is configured to restrict the rotation operation of the second link body 420. On the contrary, the rotation mechanism 100 may be provided in a frame constituting the second link body 420 to restrict the rotation operation of the first link body 410. Thus, the rotation mechanism 100 can regulate the relative rotation operation of the first link body 410 and the second link body 420, and the arrangement of the rotation mechanism 100 can be set as appropriate.
 次に、回転機構100をロボット1に設けた場合について、図4~図6を参照して説明する。図4は、回転機構100を備えるロボット1の一例を示す斜視図であり、図5は、ロボット1の関節部を一部切欠して示す模式図である。また、図6は、変形例に係る関節部を一部切欠して示す模式図である。 Next, the case where the rotation mechanism 100 is provided in the robot 1 will be described with reference to FIGS. FIG. 4 is a perspective view illustrating an example of the robot 1 including the rotation mechanism 100, and FIG. 5 is a schematic view illustrating the joint portion of the robot 1 with a part cut away. FIG. 6 is a schematic view showing a joint part according to a modification with a part cut away.
 本実施形態に係るロボット1は、いわゆる多関節ロボットであり、図4に示すように、基台11上に設けられた胴部12と、この胴部12に連結されたアーム部13と、アーム部13の先端に設けられたリスト部14とを備える。 The robot 1 according to the present embodiment is a so-called articulated robot, and as shown in FIG. 4, a trunk portion 12 provided on a base 11, an arm portion 13 coupled to the trunk portion 12, and an arm And a wrist part 14 provided at the tip of the part 13.
 基台11は、設置面に座部11aを介して固定される。かかる基台11上に、胴部12は垂直軸(不図示)の周りに水平方向へ回動自在に設けられる。なお、この胴部12は、モータ部20の駆動により水平回転する。 The base 11 is fixed to the installation surface via a seat 11a. On the base 11, the body 12 is provided so as to be rotatable in the horizontal direction around a vertical axis (not shown). The body 12 rotates horizontally by driving the motor unit 20.
 かかる胴部12に連結されたアーム部13は、複数のリンク体としての第1アーム15と第2アーム16とが、それぞれ、関節部を介して回動自在に連結されて構成される。 The arm portion 13 connected to the trunk portion 12 is configured by a first arm 15 and a second arm 16 as a plurality of link bodies that are rotatably connected to each other via joint portions.
 すなわち、第1アーム15は、胴部12上に、第1関節部2aを介して前後方向に揺動自在に連結される。ここで、リスト部14が位置する方向をロボット1の前方とする。 That is, the first arm 15 is connected to the trunk portion 12 so as to be swingable in the front-rear direction via the first joint portion 2a. Here, the direction in which the wrist unit 14 is located is the front of the robot 1.
 本実施形態に係るロボット1は、第1アーム15を揺動させる第1関節部2aに、先に説明した回転機構100と、回転機構100の軸体110に動力を伝達する駆動源としての第1モータ21とが設けられる。すなわち、ロボット1は、回転機構100と、回転機構100の軸体110に動力を伝達する第1モータ21と、回転機構100を介して回動自在に連結された少なくとも1組のリンク体としての胴部12および第1アーム15を備える。 In the robot 1 according to the present embodiment, the first joint portion 2a that swings the first arm 15 is a first driving source that transmits power to the rotating mechanism 100 described above and the shaft 110 of the rotating mechanism 100. 1 motor 21 is provided. That is, the robot 1 is a rotating mechanism 100, a first motor 21 that transmits power to the shaft 110 of the rotating mechanism 100, and at least one set of link bodies that are rotatably connected via the rotating mechanism 100. A body 12 and a first arm 15 are provided.
 また、第2アーム16は、第1アーム15の先端部に、第2関節部2bを介して上下方向に揺動自在に連結される。第2アーム16を揺動させる第2関節部2bは、第2モータ22を備えている。 The second arm 16 is connected to the tip of the first arm 15 so as to be swingable in the vertical direction via the second joint 2b. The second joint portion 2 b that swings the second arm 16 includes a second motor 22.
 リスト部14は、これもリンク体としての第1リスト17と第2リスト18とが、それぞれ、関節部を介して回動自在に連結されて構成される。第1リスト17は、基端部がアーム部13の第2アーム16の先端に、第3関節部2cを介して軸周りに回動自在に連結される。一方、第2リスト18は、二又状に形成された第1リスト17の先端部に、第4関節部2dを介して上下方向に揺動自在に連結される。 The list unit 14 is configured by a first list 17 and a second list 18, which are also linked bodies, connected to each other via a joint unit so as to be rotatable. The first list 17 is connected to the distal end of the second arm 16 of the arm portion 13 at the base end portion so as to be rotatable around the axis via the third joint portion 2c. On the other hand, the second list 18 is connected to the tip portion of the first list 17 formed in a bifurcated shape so as to be swingable in the vertical direction via the fourth joint portion 2d.
 本実施形態に係る回転機構100は、上述したように第1関節部2aに設けられており、第1アーム15の揺動量が設定範囲を超えた場合、第1アーム15の揺動動作をメカニカル的に強制停止することができる。 The rotation mechanism 100 according to the present embodiment is provided in the first joint portion 2a as described above, and when the swing amount of the first arm 15 exceeds the set range, the swing operation of the first arm 15 is mechanically performed. Can be forcibly stopped.
 ここで、図4に示したロボット1に設けられた第1関節部2aについて、図5を参照しつつ、より具体的に説明する。第1関節部2aは、胴部12の上部側に設けられており(図4を参照)、アーム部13の第1アーム15を揺動自在に連結している。 Here, the first joint portion 2a provided in the robot 1 shown in FIG. 4 will be described more specifically with reference to FIG. The first joint portion 2a is provided on the upper side of the trunk portion 12 (see FIG. 4), and connects the first arm 15 of the arm portion 13 in a swingable manner.
 第1関節部2aは、第1モータ21と、これに連動連結する減速機25とを駆動部として備える。そして、図示するように、第1モータ21が外部に露出しており、駆動部の第1関節部2aへの着脱作業が容易に構成される。 1st joint part 2a is provided with the 1st motor 21 and the reduction gear 25 interlockingly connected with this as a drive part. As shown in the figure, the first motor 21 is exposed to the outside, and the attaching / detaching operation of the drive unit to the first joint portion 2a is easily configured.
 図5に示すように、第1アーム15は、その基端が減速機25にボルト51を介して連結されている。かかる構成により、第1モータ21を駆動源とする回転力が、第1アーム15に対し、所定の回転速度とトルクで伝達される。 As shown in FIG. 5, the first arm 15 has a base end connected to the speed reducer 25 via a bolt 51. With this configuration, the rotational force using the first motor 21 as a drive source is transmitted to the first arm 15 at a predetermined rotational speed and torque.
 回転機構100は、第1アーム15を構成するフレーム内に配設されており、減速機25の後段側、すなわち低速回転側に設けられる。図示するように、軸体110の一端を、第1アーム15のフレーム内側面13aに固定し、他端側をフレームを貫通させて、フレーム外側面13bでネジ160により固定している。そして、軸体110のネジ部111に、外周面に平面部を有する可動部材140を、胴部12に取付けられた回り止め部材145に沿って進退自在に取付けている。 The rotation mechanism 100 is disposed in a frame constituting the first arm 15, and is provided on the rear stage side of the speed reducer 25, that is, on the low speed rotation side. As shown in the figure, one end of the shaft body 110 is fixed to the frame inner side surface 13a of the first arm 15, the other end side is passed through the frame, and is fixed by screws 160 on the frame outer side surface 13b. And the movable member 140 which has a plane part on the outer peripheral surface is attached to the screw part 111 of the shaft body 110 so as to be able to advance and retract along the anti-rotation member 145 attached to the body part 12.
 ところで、この例では、フレーム内側面13aと、このフレーム内側面13aと対向して軸体110に取付けられたナット部材123が1組の固定部材120,130として機能する。すなわち、ナット部材123を回転して移動させれば、可動部材140が固定部材120,130へ到達するまでの距離を変えることができ、第1アーム15の揺動限界を適宜設定することができる。 By the way, in this example, the frame inner side surface 13a and the nut member 123 attached to the shaft body 110 so as to face the frame inner side surface 13a function as a set of fixing members 120 and 130. That is, if the nut member 123 is rotated and moved, the distance until the movable member 140 reaches the fixed members 120 and 130 can be changed, and the swing limit of the first arm 15 can be set as appropriate. .
 上記構成により、ロボット1における第1アーム15が、第1アーム15と胴部12との間で予め設定された相対的な揺動範囲を超えて揺動しようとしても、メカニカル的に強制停止させることができる。 With the above configuration, even if the first arm 15 of the robot 1 tries to swing beyond the relative swing range set in advance between the first arm 15 and the trunk portion 12, it is forcibly stopped mechanically. be able to.
 また、回転機構100は、その軸体110が第1モータ21の駆動軸と同軸的に設けられるため、ロボット1のアーム部13は、メカニカルストッパとしての機能を有しながら、コンパクトな構成とすることができる。 In addition, since the shaft body 110 of the rotation mechanism 100 is provided coaxially with the drive shaft of the first motor 21, the arm portion 13 of the robot 1 has a compact configuration while having a function as a mechanical stopper. be able to.
 次に、第1関節部2aの変形例について、図6を参照しながら説明する。図5で示した第1関節部2aでは、回転機構100が減速機25の後段側、すなわち低速回転側に設けられていた。変形例に係る第1関節部2aは、図6に示すように、減速機25の前段側、すなわち高速回転側に設けられている。 Next, a modified example of the first joint portion 2a will be described with reference to FIG. In the first joint portion 2a shown in FIG. 5, the rotation mechanism 100 is provided on the rear stage side of the speed reducer 25, that is, on the low speed rotation side. As shown in FIG. 6, the first joint portion 2 a according to the modification is provided on the front stage side of the speed reducer 25, that is, on the high speed rotation side.
 図示するように、モータ21の駆動軸23は、第1アーム15と連結する減速機25に接続しており、モータ21からの回転力は、減速機25を介して所定の回転速度とトルクで第1アーム15に伝達される。 As shown in the figure, the drive shaft 23 of the motor 21 is connected to a speed reducer 25 connected to the first arm 15, and the rotational force from the motor 21 is transmitted at a predetermined rotational speed and torque via the speed reducer 25. It is transmitted to the first arm 15.
 他方、回転機構100は、モータ21の隣に並設し、モータ21の駆動軸23と、一対の歯車310,320を介して連動させている。すなわち、回転機構100の軸体110と連結するとともに、中途に第2平歯車320を取付けた連結軸330を、モータ21の駆動軸23と平行に、軸受150を介して配設している。一方、駆動軸23の中途には第1平歯車310を取付けている。 On the other hand, the rotation mechanism 100 is arranged next to the motor 21 and interlocked with the drive shaft 23 of the motor 21 via a pair of gears 310 and 320. In other words, the connecting shaft 330, which is connected to the shaft body 110 of the rotating mechanism 100 and is attached with the second spur gear 320 in the middle, is disposed in parallel with the drive shaft 23 of the motor 21 via the bearing 150. On the other hand, a first spur gear 310 is attached in the middle of the drive shaft 23.
 そして、この駆動軸23に取付けられた第1平歯車310と、連結軸330に取付けられた第2平歯車320とを互いに噛合させている。なお、ここでは、回転機構100の軸体110と可動部材140とは、モータ21のケーシングに取付けたカバー101内に設けられている。なお、ここでは、カバー体101を、可動部材140の回り止め部材として機能させている。 The first spur gear 310 attached to the drive shaft 23 and the second spur gear 320 attached to the connecting shaft 330 are engaged with each other. Here, the shaft body 110 and the movable member 140 of the rotation mechanism 100 are provided in the cover 101 attached to the casing of the motor 21. Here, the cover body 101 functions as a rotation preventing member for the movable member 140.
 かかる構成により、回転機構100は、モータ21の駆動軸23の回転が、減速機25を介さずに、一対の歯車310,320を介して伝達される。すなわち、回転機構100へは比較的に高速で低トルクの回転力が伝達されることになる。したがって、軸体110の径を小さくすることができ、その結果、固定部材120,130や可動部材140も小さくすることができる。そのため、図5に示した回転機構100よりも小型化することが可能となる。 With this configuration, the rotation mechanism 100 transmits the rotation of the drive shaft 23 of the motor 21 via the pair of gears 310 and 320 without passing through the speed reducer 25. That is, a rotational force with a relatively low speed and a low torque is transmitted to the rotation mechanism 100. Therefore, the diameter of the shaft body 110 can be reduced, and as a result, the fixed members 120 and 130 and the movable member 140 can also be reduced. Therefore, it is possible to reduce the size of the rotating mechanism 100 shown in FIG.
 なお、図6に示した変形例に係る第1関節部2aでは、1組の固定部材120,130のうち、固定部材120を、第1ナット部121および第2ナット部122によるダブルナット構造としている。したがって、可動部材140が固定部材120,130へ到達するまでの距離を変える場合、ここでは、固定部材120,130間の距離を固定部材120を用いて変更することができる。また、カバー体101を、モータ21のケーシングに取付けた構成としたが、胴部12の外面に取付けた構成であっても構わない。 In the first joint portion 2 a according to the modification shown in FIG. 6, of the pair of fixing members 120, 130, the fixing member 120 has a double nut structure including the first nut portion 121 and the second nut portion 122. Yes. Therefore, when the distance until the movable member 140 reaches the fixed members 120 and 130 is changed, the distance between the fixed members 120 and 130 can be changed using the fixed member 120 here. Further, although the cover body 101 is attached to the casing of the motor 21, the cover body 101 may be attached to the outer surface of the body portion 12.
 ところで、本実施形態に係るロボット1は、回転機構100が第1関節部2aに設けられたものとした。しかし、回転機構100の配設対象としては、第1関節部2aに限定されるものではない。他の関節部であっても適宜設けることができる。 By the way, in the robot 1 according to the present embodiment, the rotation mechanism 100 is provided in the first joint portion 2a. However, the arrangement target of the rotation mechanism 100 is not limited to the first joint portion 2a. Even other joints can be provided as appropriate.
 上述してきた本実施形態によれば、以下に示す構成の回転機構100が実現される。すなわち、駆動軸220と、軸体110と、ネジ部111と、1組の固定部材120,130と、可動部材140とを備える回転機構100である。 According to the present embodiment described above, the rotation mechanism 100 having the following configuration is realized. That is, the rotating mechanism 100 includes a drive shaft 220, a shaft body 110, a screw portion 111, a pair of fixed members 120 and 130, and a movable member 140.
 かかる構成において、駆動軸220は、モータ210などの駆動源に設けられており、リンク体などの被駆動体(例えば、第1のリンク体410と第2のリンク体420)を回転駆動する。軸体110は、駆動軸220と連動し、ネジ部111は、軸体110に設けられる。また、1組の固定部材120,130は、ネジ部111に所定間隔をあけて取り付けられる。また、可動部材140は、1組の固定部120,130間に取り付けられ、軸体110の回転に伴ってネジ部111上を進退する。そして、可動部材140は、固定部材120,130のいずれかに当接して駆動軸220の回転を規制する。 In such a configuration, the drive shaft 220 is provided in a drive source such as the motor 210 and rotationally drives a driven body such as a link body (for example, the first link body 410 and the second link body 420). The shaft body 110 is interlocked with the drive shaft 220, and the screw portion 111 is provided on the shaft body 110. The pair of fixing members 120 and 130 are attached to the screw portion 111 with a predetermined interval. The movable member 140 is attached between the pair of fixed portions 120 and 130, and advances and retreats on the screw portion 111 as the shaft body 110 rotates. The movable member 140 abuts on one of the fixed members 120 and 130 and restricts the rotation of the drive shaft 220.
 かかる構成の回転機構100であれば、駆動軸220の回転を強制的に規制することのできるメカニカルストッパとしての機能を備えつつ、機構全体をコンパクトな構成とすることができ、しかも、安価に提供することが可能である。 With the rotation mechanism 100 having such a configuration, the entire mechanism can be configured in a compact configuration while being provided with a function as a mechanical stopper capable of forcibly restricting the rotation of the drive shaft 220, and provided at low cost. Is possible.
 また、上記構成の回転機構100は、1組の固定部材120,130間の距離を可変とすることができる。 Further, the rotation mechanism 100 having the above configuration can change the distance between the pair of fixing members 120 and 130.
 具体的には、1組の固定部材120,130のうち、少なくとも一方はネジ部111上を進退可能な構成とするものである。かかる構成の一例としては、ダブルナット構造があるが、固定部材120,130間の距離を可変とする構成であれば何ら限定されない。 Specifically, at least one of the pair of fixing members 120 and 130 is configured to be able to advance and retract on the screw portion 111. An example of such a configuration is a double nut structure, but there is no limitation as long as the distance between the fixing members 120 and 130 is variable.
 かかる構成により、被駆動体に予め設定された設定回動範囲に対応した回動限界範囲を容易に設定することが可能となる。 With this configuration, it is possible to easily set a rotation limit range corresponding to a preset rotation range preset for the driven body.
 また、上記構成の回転機構100は、駆動軸220と被駆動体との間に減速機構300が介設された構成とすることができる。かかる構成により、被駆動体を、所望する高トルクかつ低回転で回転駆動させることができる。 Further, the rotation mechanism 100 having the above-described configuration can be configured such that the speed reduction mechanism 300 is interposed between the drive shaft 220 and the driven body. With this configuration, the driven body can be driven to rotate with a desired high torque and low rotation.
 また、上記構成の回転機構100は、軸体110が駆動軸220に増速機構3を介して接続される構成とすることができる。かかる構成により、より小さいトルクに対応すればよいので、回転機構100を、より小型化することが可能となる。 Further, the rotation mechanism 100 having the above-described configuration can be configured such that the shaft body 110 is connected to the drive shaft 220 via the speed increasing mechanism 3. With such a configuration, it is only necessary to cope with a smaller torque, so that the rotation mechanism 100 can be further downsized.
 以上、説明してきたように、本実施形態に係る回転機構100によれば、被駆動体の可動範囲を、例えば360度を超える任意の範囲で制限することができる。したがって、被駆動体に求められる回動範囲を自由に定めることが可能となり、さまざまな用途に用いることができる。 As described above, according to the rotation mechanism 100 according to the present embodiment, the movable range of the driven body can be limited to an arbitrary range exceeding 360 degrees, for example. Therefore, the rotation range required for the driven body can be freely determined, and can be used for various purposes.
 また、本実施形態によれば、以下に示す構成のロボット1が実現される。すなわち、上述してきた回転機構100と、回転機構100の軸体110に動力を伝達する駆動源と、回転機構100を介して回動自在に連結された少なくとも1組のリンク体とを備えるロボット1である。ここで1組のリンク体は、たとえば、図4に示すロボット1であれば、胴部12と第1アーム15、第1アーム15と第2アーム16、第2アーム16と第1リスト17、第1リスト17と第2リスト18である。 Further, according to the present embodiment, the robot 1 having the following configuration is realized. That is, the robot 1 including the rotation mechanism 100 described above, a drive source that transmits power to the shaft body 110 of the rotation mechanism 100, and at least one set of link bodies that are rotatably connected via the rotation mechanism 100. It is. Here, for example, in the case of the robot 1 shown in FIG. 4, the set of link bodies is the body 12 and the first arm 15, the first arm 15 and the second arm 16, the second arm 16 and the first list 17, A first list 17 and a second list 18.
 かかる構成のロボット1であれば、リンク体に予め設定される回動範囲の設定自由度が高まるとともに、設定回動範囲に対応する回動限界範囲を容易に設定することができる。したがって、リンク体の回動量が設定範囲を超えた場合、リンク体の回動動作をメカニカル的に強制停止することができる。 With the robot 1 having such a configuration, the degree of freedom of setting the rotation range preset in the link body is increased, and the rotation limit range corresponding to the set rotation range can be easily set. Therefore, when the rotation amount of the link body exceeds the set range, the rotation operation of the link body can be mechanically forcibly stopped.
 また、かかるロボット1であれば、リンク体の可動範囲を、360度を超える任意の範囲とすることで、リンク体の動作速度が安定した状態で、例えば、塗装や溶接などの各種作業を行わせることができる。そのため、作業ムラなどを可及的に減少させることができる。 Further, in the case of such a robot 1, by setting the movable range of the link body to an arbitrary range exceeding 360 degrees, for example, various operations such as painting and welding are performed in a state where the operation speed of the link body is stable. Can be made. Therefore, work unevenness and the like can be reduced as much as possible.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1  ロボット
 2a  第1関節部
 2b  第2関節部
 2c  第3関節部
 2d  第4関節部
 12  胴部(リンク体)
 15  第1アーム(リンク体)
 21  第1モータ(駆動源)
 100  回転機構
 110  軸体
 111  ネジ部
 120,130  固定部材
 140  可動部材
 210  モータ(駆動源)
 220  駆動軸
 410  第1のリンク体
 420  第2のリンク体
 430  連結軸
DESCRIPTION OF SYMBOLS 1 Robot 2a 1st joint part 2b 2nd joint part 2c 3rd joint part 2d 4th joint part 12 trunk | drum (link body)
15 First arm (link body)
21 First motor (drive source)
DESCRIPTION OF SYMBOLS 100 Rotation mechanism 110 Shaft body 111 Screw part 120,130 Fixed member 140 Movable member 210 Motor (drive source)
220 Drive shaft 410 First link body 420 Second link body 430 Connection shaft

Claims (6)

  1.  被駆動体を回転駆動する駆動軸と、
     当該駆動軸に連動する軸体と、
     当該軸体に設けられたネジ部と、
     当該ネジ部に所定間隔をあけて取り付けられた1組の固定部材と、
     前記1組の固定部材間に、回り止めされた状態で取り付けられ、前記軸体の回転に伴って前記ネジ部上を進退し、前記固定部材に当接して前記駆動軸の回転を規制する可動部材と、
     を備えることを特徴とする回転機構。
    A drive shaft for rotationally driving the driven body;
    A shaft coupled to the drive shaft;
    A screw portion provided on the shaft body;
    A set of fixing members attached to the threaded portion at a predetermined interval;
    Mounted between the pair of fixed members in a locked state, moves forward and backward on the screw portion as the shaft rotates, and contacts the fixed member to restrict rotation of the drive shaft. A member,
    A rotation mechanism comprising:
  2.  前記1組の固定部材間の距離を可変とした
     ことを特徴とする請求項1に記載の回転機構。
    The rotation mechanism according to claim 1, wherein a distance between the set of fixing members is variable.
  3.  前記1組の固定部材のうち、少なくとも一方は前記ネジ部上を進退可能である
     ことを特徴とする請求項1に記載の回転機構。
    The rotation mechanism according to claim 1, wherein at least one of the set of fixing members is capable of moving back and forth on the screw portion.
  4.  前記駆動軸と前記被駆動体との間に減速機が介設される
     ことを特徴とする請求項1~3のいずれか1つに記載の回転機構。
    The rotation mechanism according to any one of claims 1 to 3, wherein a speed reducer is interposed between the drive shaft and the driven body.
  5.  前記軸体は、前記駆動軸に増速機構を介して接続される
     ことを特徴とする請求項1~3のいずれか1つに記載の回転機構。
    The rotation mechanism according to any one of claims 1 to 3, wherein the shaft body is connected to the drive shaft via a speed increasing mechanism.
  6.  請求項1に記載の回転機構と、
     当該回転機構の軸体に動力を伝達する駆動源と、
     前記回転機構を介して回動自在に連結された少なくとも1組のリンク体と、
     を備えることを特徴とするロボット。
    A rotating mechanism according to claim 1;
    A drive source for transmitting power to the shaft of the rotating mechanism;
    At least one set of link bodies rotatably connected via the rotation mechanism;
    A robot characterized by comprising:
PCT/JP2013/066753 2013-06-18 2013-06-18 Rotation mechanism and robot WO2014203337A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/066753 WO2014203337A1 (en) 2013-06-18 2013-06-18 Rotation mechanism and robot
KR1020157033910A KR20160003813A (en) 2013-06-18 2013-06-18 Rotation mechanism and robot
CN201380076545.4A CN105229340A (en) 2013-06-18 2013-06-18 Rotating machinery and robot
JP2015522406A JPWO2014203337A1 (en) 2013-06-18 2013-06-18 Rotating mechanism and robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066753 WO2014203337A1 (en) 2013-06-18 2013-06-18 Rotation mechanism and robot

Publications (1)

Publication Number Publication Date
WO2014203337A1 true WO2014203337A1 (en) 2014-12-24

Family

ID=52104103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066753 WO2014203337A1 (en) 2013-06-18 2013-06-18 Rotation mechanism and robot

Country Status (4)

Country Link
JP (1) JPWO2014203337A1 (en)
KR (1) KR20160003813A (en)
CN (1) CN105229340A (en)
WO (1) WO2014203337A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958806B1 (en) * 2017-09-04 2019-03-18 주식회사 만도 Feed screw device
JP7069273B1 (en) * 2020-11-02 2022-05-17 株式会社バンダイ Movable shaft locking mechanism, movable shaft, and doll toys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312562A (en) * 1987-06-12 1988-12-21 Matsushita Electric Ind Co Ltd Speed change gear
JP2010143284A (en) * 2008-12-16 2010-07-01 Jtekt Corp Electric power steering device
JP2010149770A (en) * 2008-12-26 2010-07-08 Thk Co Ltd Electric power steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433402B2 (en) 1995-08-03 2003-08-04 出光興産株式会社 Oil composition for impregnated bearings
JP5094812B2 (en) * 2009-10-28 2012-12-12 三菱電機株式会社 Linear / rotating mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312562A (en) * 1987-06-12 1988-12-21 Matsushita Electric Ind Co Ltd Speed change gear
JP2010143284A (en) * 2008-12-16 2010-07-01 Jtekt Corp Electric power steering device
JP2010149770A (en) * 2008-12-26 2010-07-08 Thk Co Ltd Electric power steering device

Also Published As

Publication number Publication date
JPWO2014203337A1 (en) 2017-02-23
CN105229340A (en) 2016-01-06
KR20160003813A (en) 2016-01-11

Similar Documents

Publication Publication Date Title
JP4614878B2 (en) Finger unit of robot hand and assembling method
JP5418704B1 (en) robot
US8820189B2 (en) Articulated robot wrist
CN105026673B (en) Actuator for a furniture flap
US20120193882A1 (en) Device for adjusting camber and/or toe of the wheels of a wheel suspension
WO2015076201A1 (en) Link actuation device
CN102275168B (en) Arm component for robots and robot
JP2006026807A (en) Joint mechanism of robot hand or the like
JP5655877B2 (en) Joint mechanism and robot
JP7319645B2 (en) robot arm
CN111246982B (en) Robot joint device
JP2006026806A (en) Joint mechanism of robot hand or the like
JP2012121080A (en) Articulated robot and robot joint structure
WO2014203337A1 (en) Rotation mechanism and robot
CN111604874A (en) Force feedback master hand of master-slave manipulator
JPWO2017217415A1 (en) Joint unit
JP2005279856A (en) Robot
JP5904008B2 (en) Gear device
WO2016133105A1 (en) Industrial robot
WO2014207846A1 (en) Stopper mechanism, joint mechanism, and robot
KR101454851B1 (en) Driving device and robot having the same
JP4730670B2 (en) Robot with backlash adjustment mechanism
JP2008019990A (en) Backlash adjusting structure for gear device, and robot using the same
KR101306766B1 (en) Linear actuator type joint module and robot arm thereof
US20120216649A1 (en) Articulated robot wrist

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076545.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522406

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157033910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887511

Country of ref document: EP

Kind code of ref document: A1