WO2014203314A1 - Encoder, motor provided with encoder, and servo system - Google Patents

Encoder, motor provided with encoder, and servo system Download PDF

Info

Publication number
WO2014203314A1
WO2014203314A1 PCT/JP2013/066619 JP2013066619W WO2014203314A1 WO 2014203314 A1 WO2014203314 A1 WO 2014203314A1 JP 2013066619 W JP2013066619 W JP 2013066619W WO 2014203314 A1 WO2014203314 A1 WO 2014203314A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
slit
encoder
receiving element
Prior art date
Application number
PCT/JP2013/066619
Other languages
French (fr)
Japanese (ja)
Inventor
高田 裕司
有永 雄司
次郎 村岡
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2013/066619 priority Critical patent/WO2014203314A1/en
Priority to JP2015522390A priority patent/JPWO2014203314A1/en
Publication of WO2014203314A1 publication Critical patent/WO2014203314A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/366Particular pulse shapes

Definitions

  • the disclosed embodiment relates to an encoder, a motor with an encoder, and a servo system.
  • a light source unit a light receiving array including a plurality of light receiving elements arranged in an array, an optical grating irradiated with light from the light source unit, and a plurality of lights irradiated to the optical grating
  • An encoder includes a lens array configured by collecting a plurality of lenses that focus light directed to each light receiving element of the light receiving element, and a scale that is disposed to be relatively movable with a gap provided therebetween. ing.
  • the light directed to each light receiving element out of the light irradiated to the optical grating is focused by each lens of the lens array.
  • noise is generated when scattered light or stray light incident from an angle different from the focused light is received by the light receiving element. Such noise causes a decrease in the position detection accuracy of the encoder, but was not taken into account in the prior art.
  • An object of the present invention is to provide an encoder, a motor with an encoder, and a servo system that can improve detection accuracy.
  • a slit track having a plurality of first slits arranged along a measurement direction;
  • An optical module capable of moving relative to the slit track in the measurement direction while facing a part of the slit track, The optical module is A light source configured to emit light to opposing portions of the slit track;
  • a light-receiving array having a plurality of light-receiving elements that are arranged along the measurement direction and each receive light subjected to the action of the first slit;
  • a slit array that is disposed between the slit track and the light receiving array and has a plurality of second slits that are arranged along the measurement direction and each transmit light that has been subjected to the action of the first slit.
  • An encoder is provided.
  • a linear motor in which the mover moves with respect to the stator, or a rotary motor in which the rotor rotates with respect to the stator An encoder-equipped motor comprising: the encoder according to any one of claims 1 to 6 that detects at least one of a position and a speed of the mover or the rotor.
  • a linear motor in which a mover moves with respect to a stator, or a rotary motor in which a rotor rotates with respect to a stator, and ,
  • the encoder according to any one of claims 1 to 6, which detects at least one of a position and a speed of the mover or the rotor;
  • a servo system comprising a control device configured to control the linear motor or the rotary motor based on a detection result of the encoder.
  • the servo system S includes a servo motor SM (an example of a motor with an encoder) and a control device CT.
  • the servo motor SM includes a motor M (an example of a rotary motor) and an optical encoder 100.
  • the motor M is an example of a power generation source that does not include the encoder 100.
  • the motor M alone may be referred to as a servo motor, in this embodiment, a configuration including the encoder 100 is referred to as a servo motor SM.
  • a servo motor SM a configuration including the encoder 100
  • the motor with an encoder is a servo motor that is controlled so as to follow a target value such as position and speed
  • the motor with an encoder includes a motor used other than the servo system as long as the encoder is attached, for example, when the output of the encoder is used only for display.
  • the motor M includes a stator m1, a rotor m2 disposed inside the stator m1 and supported rotatably with respect to the stator m1, and a shaft SH coupled to the rotor m2. That is, the motor M is a so-called “inner rotor type” motor in which the rotor m2 is disposed inside the stator m1.
  • the motor M is not limited to an inner rotor type motor.
  • the motor M may be a so-called “outer rotor type” motor in which a rotor is arranged outside the stator, or a so-called “flat rotor type” in which a rotor and a stator are arranged in the direction of the rotation axis. May be used.
  • the motor M is an inner rotor type motor
  • One of the stator m1 and the rotor m2 functions as an armature, and the other functions as a field.
  • the motor M outputs a rotational force by rotating the shaft SH around the rotation axis AX by rotating the rotor m2 relative to the stator m1.
  • the motor M is not particularly limited as long as it is a motor controlled based on data detected by the encoder 100 such as position data described later.
  • the motor M is not limited to an electric motor that uses electricity as a power source.
  • the motor M is a motor using another power source such as a hydraulic motor, an air motor, or a steam motor. There may be. However, for convenience of explanation, a case where the motor M is an electric motor will be described below.
  • the encoder 100 is connected to a shaft SH on the opposite side (also referred to as “anti-load side”) of the motor M on the rotational force output side (also referred to as “load side”).
  • the connection position of the encoder 100 is not particularly limited.
  • the encoder 100 may be connected to the shaft SH on the torque output side of the motor M, or may be connected to the shaft SH or the like via another mechanism such as a speed reducer, a rotation direction changer, or a brake. Good.
  • the encoder 100 detects the position (angle) of the shaft SH, thereby detecting the position of the rotor m2 (also referred to as “rotation angle”), and outputs position data representing the position.
  • the encoder 100 is also referred to as the speed (also referred to as “rotational speed”, “angular speed”, etc.) and acceleration (“rotational acceleration”, “angular acceleration”, etc.) of the rotor m2. .) May be detected.
  • the speed and acceleration of the rotor m2 can be detected, for example, by a process such as differentiating the position by 1st or 2nd order with respect to time or counting the detection signal for a predetermined time.
  • the physical quantity detected by the encoder 100 is a position.
  • the control device CT acquires the position data output from the encoder 100 and controls the driving of the motor M based on the position data. Therefore, in the present embodiment in which an electric motor is used as the motor M, the control device CT controls the driving of the motor M by controlling the current or voltage applied to the motor M based on the position data. Further, the control device CT acquires a higher control signal from the higher control device, and controls the motor M so that a rotational driving force capable of realizing the position or the like represented by the higher control signal is output from the shaft SH. It is also possible. In addition, when the motor M uses other power sources, such as a hydraulic type, an air type, and a steam type, the control apparatus CT controls the drive of the motor M by controlling supply of those power sources. Is possible.
  • the encoder 100 includes a disk-shaped disk 110 that is a detected medium that detects the position of the rotor m2, an optical module 130, and a position data generation unit 190. .
  • the following directions such as up and down are defined as follows. That is, the positive Z-axis direction that is the anti-load side direction in the rotation axis AX is defined as “up”, and the negative Z-axis direction that is the load side direction in the reverse rotation axis AX is defined as “down”.
  • the positional relationship between the components of the encoder 100 is not limited to the concept of up and down.
  • other directions may be used for the directions determined here, or directions other than these may be used while being described as appropriate.
  • the disk 110 is connected to the shaft SH so that the disk center O substantially coincides with the rotation axis AX, and the circumference of the disk 110 is rotated by the rotation of the shaft SH. It rotates in a direction C (in the direction of arrow C in FIG. 3; hereinafter also referred to as “disk circumferential direction C”).
  • the disk circumferential direction C which is the rotation direction of the disk 110, corresponds to an example of the measurement direction.
  • the disk 110 can be made of glass, metal, resin, or the like. In the present embodiment, the disk 110 is described as an example of the detected medium. However, for example, other members such as the end face of the shaft SH can be used as the detected medium.
  • the slit track ST On the upper surface of the disk 110, a ring-shaped slit track ST centered on the disk center O is formed.
  • the slit track ST has a plurality of reflective slits 111 (an example of a first slit) along the radial direction of the disk 110 (in the direction of arrow R in FIG. 3; hereinafter, also referred to as “disk radial direction R”).
  • the slit track ST is configured by arranging a plurality of reflective slits 111 in a track shape at a predetermined pitch P along the disk circumferential direction C.
  • Each reflection slit 111 reflects light emitted from a light source 131 described later.
  • the reflection slit 111 can be formed, for example, by applying a light reflecting material (for example, aluminum or the like) to a portion that reflects light on the upper surface of the disk 110 configured not to reflect light. is there. Further, the reflection slit 111 reduces the reflectivity by making a portion of the upper surface of the disk 110 made of a metal having high reflectivity that does not reflect light rough or by applying a low reflectivity material by sputtering or the like. May be formed.
  • the formation method of the reflective slit 111 is not limited to the above example.
  • the plurality of reflective slits 111 are arranged so as to have an incremental pattern in the disk circumferential direction C.
  • An incremental pattern is a pattern in which the reflective slits 111 are regularly repeated at a predetermined pitch. This incremental pattern represents the position of the rotor m2 for each pitch or within one pitch by the sum of electrical signals from one or more light receiving elements 142 described later.
  • the optical module 130 is formed as a substrate BA.
  • the substrate BA is fixed so as to be substantially parallel to the disk 110 and to face a part of the slit track ST. Accordingly, the optical module 130 moves relative to the slit track ST in the disk circumferential direction C as the disk 110 rotates.
  • the optical module 130 is not necessarily configured in a substrate shape. There is no need.
  • Such an optical module 130 includes a light source 131, a light receiving unit 140, and a translucent member 160.
  • the light source 131 is provided on the lower surface of the substrate BA (on the side facing a part of the slit track ST).
  • the light source 131 is disposed on the lower surface of the substrate BA at a substantially central portion in the X-axis direction and in the negative Y-axis direction.
  • the arrangement position of the light source 131 is not limited to the above position, and may be arranged at a position other than the above.
  • the light source 131 emits light to a part of the slit track ST (hereinafter also referred to as “irradiation region”) that passes through the facing position.
  • the light source 131 is not particularly limited as long as it is a light source that can emit light to the irradiation region.
  • an LED Light Emitting Diode
  • the light source 131 is formed as a point light source in which an optical lens or the like is not particularly disposed, and emits diffused light from the light emitting unit 132.
  • a point light source it is not necessary to be an exact point, and light can be emitted from a finite surface as long as it can be considered that diffuse light is emitted from a substantially point-like position in terms of design and operation principle. Needless to say.
  • the light source 131 emits diffused light to the irradiation area, although there is some influence of a change in the amount of light due to deviation from the optical axis and attenuation due to a difference in optical path length. It is possible to emit light substantially evenly. In addition, since the light is not condensed and diffused by the optical element, an error due to the optical element is hardly generated, and the straightness of the outgoing light to the slit track ST can be improved.
  • the light receiving unit 140 is provided at a position different from the light source 131 on the lower surface of the substrate BA.
  • the light receiving unit 140 is disposed at a position in the positive direction of the Y axis on the lower surface of the substrate BA.
  • the arrangement position of the light receiving unit 140 is not limited to the above position, and may be arranged at a position other than the above.
  • the light receiving unit 140 includes a substrate 141 provided on the lower surface of the substrate BA and a light receiving array PA.
  • the substrate 141 is a chip substrate on which the light receiving array PA is formed. In the present embodiment, the substrate 141 is provided separately from the substrate BA, but may be provided integrally with the substrate BA.
  • the light receiving array PA is provided on the surface of the lower side of the substrate 141 (side facing a part of the slit track ST), and has a plurality of light receiving elements 142 along a direction corresponding to the disk radial direction R.
  • the light receiving array PA is configured by arranging a plurality of light receiving elements 142 in an array at a predetermined pitch along a direction corresponding to the disk circumferential direction C.
  • Each light receiving element 142 emits light from the light source 131 and passes through the opposing position, and is subjected to the action of the reflecting slit 111 of the slit track ST, that is, light reflected by the reflecting slit 111 (hereinafter also referred to as “reflected light”). .) Is received by the light receiving surface 142a. Each light receiving element 142 converts each light signal into an electrical signal corresponding to the amount of light received.
  • the light receiving element 142 is not particularly limited as long as it can receive reflected light by the light receiving surface 142a and convert it into an electrical signal corresponding to the amount of light received, but for example, a photodiode can be used.
  • the encoder 100 is configured as a so-called “reflective” encoder that receives light emitted from the light source 131 and reflected by the reflection slit 111 by the light receiving element 142.
  • the light receiving array PA together with the slit track ST, constitutes a so-called two-grating optical system.
  • a case where a two-grating optical system is used will be described as an example.
  • a two-grating optical system is not necessarily used, and a three-grating optical system may be used.
  • the direction corresponding to the disk circumferential direction C on the substrate 141 is a shape in which the disk circumferential direction C on the disk 110 is projected onto the light receiving array PA.
  • d1 is the optical path distance of the light from the light emission part 132 of the light source 131 to the slit track ST (reflection slit 111).
  • d2 is an optical path distance of light from the slit track ST (reflection slit 111) to the light receiving array PA (light receiving element 142).
  • each including four light receiving elements 142 are arranged in one pitch of the reflective slits 111 arranged so as to have an incremental pattern (one pitch in the image projected on the light receiving array PA, which is the same as the pitch P). It has been.
  • a plurality of sets each including four light receiving elements 142 are arranged at a predetermined pitch ⁇ P along a direction corresponding to the disk circumferential direction C.
  • Each light receiving element 142 generates a periodic signal of one period at one pitch (also referred to as “electrical angle of 360 °”) by the rotation of the disk 110. Accordingly, when four light receiving elements 142 are included in one set corresponding to one pitch, adjacent light receiving elements 142 in one set generate electrical signals having a phase difference of 90 ° from each other.
  • phase signal also referred to as “A + signal”
  • B phase signal signal having a phase difference of 90 ° with respect to the A + signal
  • A-bar phase signal a signal having a phase difference of 180 ° with respect to the A + signal.
  • a ⁇ signal also referred to as “A ⁇ signal”
  • B-bar phase signal a signal having a phase difference of 180 ° with respect to the B + signal.
  • B ⁇ signal also called.
  • the case where four light receiving elements 142 are included in one set corresponding to one pitch of the plurality of reflecting slits 111 arranged so as to have an incremental pattern has been described.
  • the number of light receiving elements 142 in one set is not particularly limited.
  • the translucent member 160 is fixed to the light receiving surfaces 142 a of the plurality of light receiving elements 142 that form the light receiving array PA provided on the lower surface of the substrate 141. Thereby, the light receiving surface 142a of each light receiving element 142 is covered with the light transmitting member 160, respectively.
  • the translucent member 160 is made of a material that has translucency with respect to light emitted from the light source 131 (for example, glass or transparent resin).
  • a slit array SA is formed on the surface of the lower side of the translucent member 160 (the side facing a part of the slit track ST). That is, the slit array SA is disposed between the slit track ST and the light receiving array PA.
  • the slit array SA has a plurality of transmission slits 166 (an example of a second slit) along a direction corresponding to the disk radial direction R.
  • the slit track SA has a light shielding portion 162 in a region other than the transmission slit 166 on the lower surface of the translucent member 160 so that the plurality of transmission slits 166 are arranged in an array along the direction corresponding to the disk circumferential direction C. Is provided.
  • Each transmission slit 166 transmits the reflected light.
  • Each light shielding unit 162 shields (blocks) light.
  • Each of the light shielding portions 162 can be formed by applying a light shielding material (such as chromium oxide) to the lower surface of the light transmitting member 160 configured to transmit light.
  • a light shielding material such as chromium oxide
  • the material and manufacturing method of the translucent member 160 are not particularly limited.
  • each light receiving element 142 receives scattered light or stray light incident from an angle different from the reflected light that should be received, noise is generated. Such noise becomes a factor that reduces the position detection accuracy of the encoder 100.
  • the light source 131 is formed as a point light source that emits diffused light
  • the reflected light is not incident on the light receiving surface 142 of each light receiving element 142 from the vertical direction as in the case of parallel light, but obliquely. It will enter from the direction of.
  • each transmission slit 166 is arranged corresponding to a direction perpendicular to the light receiving surface 142a of each light receiving element 142 (in the disc circumferential direction C between each transmission slit 166 and the light receiving surface 142a of each light receiving element 142).
  • the light receiving element 142 Even if part of the reflected light that has passed through the transmission slit 166 is received by the light receiving element 142 that should be received by the light, the light penetrates through the substrate 141, and an area E (described later) related to the adjacent light receiving element 142. 6), carrier CA (see FIG. 6 described later) may occur.
  • the region E is a region where the generated carrier CA can reach the corresponding light receiving element 142.
  • crosstalk in which an electric signal is generated in the light receiving element 142 occurs. Such crosstalk causes noise.
  • the slit array SA having the plurality of transmission slits 166 that respectively transmit the reflected light is disposed between the slit track ST and the light receiving array PA. Then, as shown in FIG. 6, each transmission slit 166 is incident on the light receiving surface 142a of the light receiving element 142 corresponding to the reflected light (hereinafter also referred to as “reflected light L1”) that each light receiving element 142 should originally receive. As described above, the light receiving element 142 is disposed at a position corresponding to the traveling direction of the reflected light L1. At the same time, the slit array SA is formed by providing a light shielding portion 162 in a region other than the transmission slit 166 on the lower surface of the translucent member 160.
  • each light shielding portion 162 does not block the reflected light L1, but can block scattered light and stray light incident from an angle different from the reflected light L1. And the distance between the adjacent light shielding portion 162 and the adjacent light shielding portion 162 are adjusted.
  • each transmission slit 166 causes the disc circle from a direction perpendicular to the light receiving surface 142a according to the traveling direction of the reflected light L1 so that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. They are arranged at positions offset in a direction corresponding to the circumferential direction C.
  • each transmission slit 166 is not limited to the above position, and the reflected light is reflected on the light receiving element 142 so that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. Any position corresponding to the traveling direction of L1 may be used. Furthermore, the arrangement position of each transmission slit 166 is a position corresponding to the traveling direction of the reflected light L1 with respect to the light receiving element 142 so that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. The position is not limited to this, and any position may be used as long as it is arranged in a direction corresponding to the circumferential direction C of the disk so as to transmit the reflected light L1.
  • the reflected light L1 can be transmitted through the transmission slit 166 and incident on the light receiving surface 142a of the corresponding light receiving element 142. Even if a part of the reflected light L1 received by the light receiving surface 142 of the corresponding light receiving element 142 penetrates the substrate 141, the carrier CA is generated in the region E (or the vicinity thereof) related to the light receiving element 142. It is possible. As a result, the carrier CA is moved to the light receiving element 142, so that the light receiving element 142 can generate an electrical signal.
  • a part of the light that is reflected by the reflected light L1 and incident on the light receiving surface 142a of the corresponding light receiving element 142 and reflected by the light receiving surface 142a may be incident on the light receiving surface 142a again by internal reflection of the translucent member 160. Is possible.
  • the position data generation unit 190 detects four incremental signals (A + signal, A + signal, phase shift from the plurality of light receiving elements 142 of the optical module 130 by 90 ° at the timing of detecting the position of the rotor m2. B + signal, A ⁇ signal, and B ⁇ signal). Then, based on the acquired incremental signal, the position data generation unit 190 calculates the position of the rotor m2 represented by the incremental signal, and outputs position data representing the position to the control device CT. Note that the position data generation method by the position data generation unit 190 is not limited to the case where the position data is generated by calculating the position of the rotor m2 from the incremental signal, and various methods can be used.
  • a slit array SA is disposed between the slit track ST and the light receiving array PA.
  • the slit array SA includes a plurality of transmission slits 166 that are arranged along a direction corresponding to the disk circumferential direction C and each transmit reflected light.
  • Each of the transmission slits 166 allows the reflected light L1 to pass therethrough and blocks scattered light and stray light incident from other different angles. As a result, noise can be reduced and detection accuracy can be improved.
  • each transmission slit 166 is arranged at a position corresponding to the traveling direction of the reflected light L1 with respect to the corresponding light receiving element 142.
  • the light transmitting member 160 is fixed to the light receiving surfaces 142a of the plurality of light receiving elements 142 forming the light receiving array PA.
  • the slit array SA is formed by providing the light shielding portion 162 in a region other than the transmission slit 166 on the lower surface of the light transmitting member 160.
  • each light shielding portion 162 is arranged such that each transmissive slit 166 corresponds to a direction perpendicular to the light receiving surface 142a of each light receiving element 142 (each transmissive slit 166 and The positions in the direction corresponding to the disk circumferential direction C with the light receiving surface 142a of each light receiving element 142 are substantially the same).
  • each transmission slit 166 is disposed at a position corresponding to a direction perpendicular to the light receiving surface 142a of each light receiving element 142.
  • a deflecting member 170 is provided at each of the transmitting slits 166 located below the light receiving surface 142a of each light receiving element 142 in the light transmitting member 160A.
  • Each deflection member 170 is formed by appropriately processing a portion of each transmission slit 166 in the translucent member 160A or a material (for example, glass or transparent resin) having translucency with respect to light emitted from the light source 131. It is comprised by the member (for example, a lens, a prism, etc.) formed by processing using.
  • each deflecting member 170 deflects the reflected light L1 transmitted through the corresponding transmission slit 166, respectively. Specifically, each deflecting member 170 causes the reflected light L1 transmitted through the corresponding transmission slit 166 to be perpendicular to the straight line CL along the traveling direction of the reflected light L1 and the light receiving surface 142a of the corresponding light receiving element 142. Each is deflected in a direction in which the angle ⁇ with the straight line SL decreases. In this example, each deflection member 170 deflects the reflected light L1 transmitted through the corresponding transmission slit 166 in a direction in which the angle ⁇ is approximately 0 °.
  • each deflecting member 170 is configured so that the reflected light L1 transmitted through the corresponding transmission slit 166 is incident on the light receiving surface 142a in a direction substantially perpendicular to the light receiving surface 142a of the corresponding light receiving element 142.
  • Each deflection member 170 is not limited to deflecting the reflected light L1 transmitted through the corresponding transmission slit 166 in a direction in which the angle ⁇ is approximately 0 °, but in a direction in which the angle ⁇ is decreased. Anything to do.
  • each deflecting member 170 is not limited to the one that deflects the reflected light L1 transmitted through the corresponding transmission slit 166 in the direction in which the angle ⁇ decreases, but may simply deflect it.
  • each deflecting member 170 is provided on the translucent member 160A. Therefore, the position corresponding to the direction perpendicular to the light receiving surface 142a of each light receiving element 142 at which each transmission slit 166 is arranged is such that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. It can be said that the position corresponds to the traveling direction of the reflected light L1 with respect to the light receiving element 142.
  • the reflected light L1 is deflected as described above by the deflecting member 170 when passing through the transmissive slit 166.
  • the reflected light L1 transmitted through the corresponding transmission slit 166 can be incident on the light receiving surface 142a in a direction perpendicular to the light receiving surface 142a of the corresponding light receiving element 142.
  • the carrier CA is generated in the region E (or the vicinity thereof) related to the light receiving element 142. It is possible.
  • the light L3 can be incident on the light receiving surface 142a of the corresponding light receiving element 142 in a direction perpendicular to the light receiving surface 142a of the corresponding light receiving element 142.
  • the behavior in the case where the deflection member 170 is not provided is indicated by an imaginary line.
  • a part of the light incident on the light receiving surface 142a of the corresponding light receiving element 142 and reflected by the light receiving surface 142a is reflected again on the light receiving surface 142a by the internal reflection of the light transmitting member 160A or the deflecting member 170. It is possible to make it incident.
  • the translucent member 160 ⁇ / b> A includes a deflecting member 170 configured to deflect the reflected light L ⁇ b> 1 transmitted through the corresponding transmitting slit 166.
  • the deflecting member 170 is configured to deflect the reflected light L1 transmitted through the corresponding transmission slit 166 in a direction in which the angle ⁇ decreases.
  • the encoder 100 can have high resolution.
  • each deflection member 170A condenses the reflected light L1 transmitted through the corresponding transmission slit 166 in the substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142. That is, each deflecting member 170A enters the reflected light L1 transmitted through the corresponding transmission slit 166 into the light receiving surface 142a in a direction toward the substantially central side of the light receiving surface 142a of the corresponding light receiving element 142. , Each is condensed.
  • Each deflecting member 170A is not limited to condensing the reflected light L1 transmitted through the corresponding transmission slit 166 in a substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142, but simply deflects. It may be a thing.
  • the reflected light L1 is deflected as described above by the deflecting member 170A when passing through the transmissive slit 166.
  • the reflected light L1 transmitted through the corresponding transmission slit 166 can be incident on the light receiving surface 142a in a direction toward the substantially central side of the light receiving surface 142a of the corresponding light receiving element 142.
  • the carrier CA is generated in the region E (or the vicinity thereof) related to the light receiving element 142. It is possible.
  • the light blocking portion 162 In addition, if there is no light blocking portion 162, scattered light and stray light incident on the light receiving surface 142a of the light receiving element 142 from other different angles are blocked by the light blocking portion 162 and not incident on the light receiving surface 142a of the light receiving element 142. It is possible. At the same time, if there is no light blocking portion 162, it is possible to block the light that can cause the above-described crosstalk by the light blocking portion 162 so that it does not enter the light receiving surface 142a of the light receiving element 142. Further, if the deflecting member 170A is not provided, the light L4 that can cause the above-described crosstalk is deflected by the deflecting member 170 as described above.
  • the light L4 can be incident on the light receiving surface 142a of the corresponding light receiving element 142 in the direction toward the substantially central side of the light receiving surface 142a of the corresponding light receiving element 142.
  • FIG. 8 for convenience of explanation, the behavior in the case where there is no deflection member 170 ⁇ / b> A is shown by imaginary lines.
  • a part of the light incident on the light receiving surface 142a of the corresponding light receiving element 142 and reflected by the reflected light L1 is again reflected on the light receiving surface 142a by the internal reflection of the light transmitting member 160A or the deflecting member 170A. It is possible to make it incident.
  • the deflecting member 170A is configured to collect the reflected light L1 transmitted through the corresponding transmission slit 166 in a substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142. As a result, when the reflected light L1 passes through each transmission slit 166, the deflecting member 170A can concentrate the light in the substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142 and enter the light receiving surface 142a. Crosstalk can be reliably reduced.
  • the translucent member 160B includes a bubble wall 180 as an example of a scattering portion formed so as to surround each deflection member 170A (excluding the incident surface of the reflected light L1).
  • the bubble wall 180 can scatter the reflected light L1 propagating through the deflection member 170A into the deflection member 170A.
  • the scattering portion is not limited to the bubble wall 180 as long as it is a portion that can scatter the reflected light L1 propagating through the deflection member 170A into the deflection member 170A.
  • a crack, a muddy part, etc. may be sufficient.
  • the plurality of bubbles constituting the bubble wall 180 can be formed by processing the peripheral portion of each deflecting member 170A in the translucent member 160B using an appropriate processing method (for example, three-dimensional processing by laser irradiation). It is. Note that the deflection member 170 described above may be provided instead of the deflection member 170A.
  • a transmissive member 160B in which a bubble wall 180 is formed so as to surround the periphery of the deflecting member 170A is formed. Accordingly, when the reflected light L1 is transmitted through the transmission slit 166 and condensed by the deflecting member 170A as described above and transmitted through the corresponding transmission slit 166, the reflected light L1 is deflected by the bubble wall 180. Scattering to the outside of the deflecting member 170A due to refraction or diffusion by the member 170A can be prevented. As shown in FIG.
  • the translucent member 160B has a bubble wall 180 formed so as to surround the deflection member 170A.
  • the bubble wall 180 can prevent the reflected light L1 from being scattered outside the deflecting member 170A due to refraction or diffusion when the reflected light L1 transmitted through the corresponding transmitting slit 166 is collected by the deflecting member 170A. .
  • the reflected light L1 can be collected more and made incident on the corresponding light receiving element 142, so that the effect of reducing crosstalk can be further enhanced.
  • the slit track ST having the plurality of reflective slits 111 arranged so as to have the incremental pattern is formed on the disk 110, but the embodiment of the present disclosure is not limited to this example.
  • a slit track having a plurality of reflective slits arranged so as to have a serial absolute pattern may be formed on the disk 110 instead of or in addition to the slit track ST.
  • the absolute position of the rotor m2 is provided by providing a light receiving array in which a plurality of light receiving elements for receiving the light emitted from the light source 131 and reflected by the reflection slit are arranged on the substrate BA side of the optical module 130. It is possible to detect (absolute angle).
  • a slit array having a plurality of transmission slits that transmit the light reflected by the reflection slit may be provided between the slit track corresponding to the serial absolute pattern and the light receiving array.
  • the slit track may be, for example, an absolute pattern other than the serial absolute pattern, a PWM modulated pattern, a reflective slit corresponding to a pattern representing the origin position, or the like.
  • the encoder 100 which is a reflective encoder in which both the light source 131 and the light receiving array PA are arranged on the substrate BA side of the optical module 130. It is not limited to examples.
  • a so-called “transmission type” encoder in which a light source 131 and a light receiving array are disposed to face each other with a disk interposed therebetween may be used.
  • a slit track having a plurality of transmission slits (an example of a first slit) that transmits light emitted from the light source 131 may be formed on the disk.
  • each light receiving element forming the light receiving array can receive the light emitted from the light source 131 and transmitted through the transmission slit of the slit track passing through the facing position.
  • a slit array having a plurality of transmission slits (an example of second slits) that respectively transmit the light transmitted through the transmission slits may be provided between the slit track and the light receiving array.
  • the servo system includes the motor M that is a rotary motor, the encoder 100 that detects the position of the rotor m2 of the motor M, and the controller CT that controls the motor M based on the position data from the encoder 100.
  • the case of applying to S has been described as an example.
  • the embodiment of the present disclosure is not limited to this example.
  • a linear motor that moves the mover relative to the stator, an encoder that detects at least one of the position and speed of the mover of the linear motor, and a control that controls the linear motor based on the detection result of the encoder You may apply to a servo system provided with an apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

[Problem] To provide an encoder, a motor provided with an encoder, and a servo system that are capable of enhancing detection accuracy. [Solution] An encoder (100) has a slit track (ST) having a plurality of reflecting slits (111) arranged along the circumferential direction (C) of a disk and has an optical module (130) capable of moving relative to the slit track (ST) in the circumferential direction (C) of the disk while opposing a portion of the slit track (ST). The optical module (130) has a light source (131) for irradiating light onto the opposing portion of the slit track (ST), a light receiving array (PA) having a plurality of light receiving elements (142) that are arranged along the circumferential direction (C) of the disk and receive reflected light reflected by each of the reflecting slits (111), and a slit array (SA) having a plurality of transmitting slits (166) that are disposed between the slit track (ST) and the light receiving array (PA), are arranged along the circumferential direction (C) of the disk, and transmit the reflected light (L1) reflected by each of the reflecting slits (111).

Description

エンコーダ、エンコーダ付きモータ、及びサーボシステムEncoder, motor with encoder, and servo system
 開示の実施形態は、エンコーダ、エンコーダ付きモータ、及びサーボシステムに関する。 The disclosed embodiment relates to an encoder, a motor with an encoder, and a servo system.
 例えば特許文献1には、光源部と、アレイ状に配置された複数の受光素子を含む受光アレイと、光源部からの光が照射される光学格子、光学格子に照射された光のうち複数の受光素子の各受光素子に向かう光を集束させるレンズが複数集まることにより構成されるレンズアレイを含むとともに、受光アレイとギャップを設けて相対移動可能に配置されるスケールと、を備えるエンコーダが記載されている。 For example, in Patent Document 1, a light source unit, a light receiving array including a plurality of light receiving elements arranged in an array, an optical grating irradiated with light from the light source unit, and a plurality of lights irradiated to the optical grating An encoder is described that includes a lens array configured by collecting a plurality of lenses that focus light directed to each light receiving element of the light receiving element, and a scale that is disposed to be relatively movable with a gap provided therebetween. ing.
特開2004-28667号公報JP 2004-28667 A
 上記従来技術では、レンズアレイの各レンズにより、光学格子に照射された光のうち各受光素子に向かう光が集束される。しかしながら、集束された光とは異なる角度から入射された散乱光や迷光が受光素子により受光されると、ノイズが発生する。このようなノイズは、エンコーダの位置検出精度を低下させる要因となるが、上記従来技術では何ら考慮されていなかった。 In the above prior art, the light directed to each light receiving element out of the light irradiated to the optical grating is focused by each lens of the lens array. However, noise is generated when scattered light or stray light incident from an angle different from the focused light is received by the light receiving element. Such noise causes a decrease in the position detection accuracy of the encoder, but was not taken into account in the prior art.
 本発明の目的は、検出精度を向上できる、エンコーダ、エンコーダ付きモータ、及びサーボシステムを提供することにある。 An object of the present invention is to provide an encoder, a motor with an encoder, and a servo system that can improve detection accuracy.
 上記課題を解決するために、本発明のある観点によれば、測定方向に沿って並べられた複数の第1スリットを有するスリットトラックと、
 上記スリットトラックの一部に対向しつつ、該スリットトラックに対して上記測定方向に相対移動可能な光学モジュールと、を有し、
 上記光学モジュールは、
 上記スリットトラックの対向した部分に光を出射するように構成された光源と、
 上記測定方向に沿って並べられ、上記第1スリットの作用を受けた光を各々受光する複数の受光素子を有する受光アレイと、
 上記スリットトラックと上記受光アレイとの間に配置され、上記測定方向に沿って並べられ上記第1スリットの作用を受けた光を各々透過する複数の第2スリットを有するスリットアレイと、を有する、エンコーダが提供される。
In order to solve the above problems, according to one aspect of the present invention, a slit track having a plurality of first slits arranged along a measurement direction;
An optical module capable of moving relative to the slit track in the measurement direction while facing a part of the slit track,
The optical module is
A light source configured to emit light to opposing portions of the slit track;
A light-receiving array having a plurality of light-receiving elements that are arranged along the measurement direction and each receive light subjected to the action of the first slit;
A slit array that is disposed between the slit track and the light receiving array and has a plurality of second slits that are arranged along the measurement direction and each transmit light that has been subjected to the action of the first slit. An encoder is provided.
 また、上記課題を解決するために、本発明の別の観点によれば、可動子が固定子に対して移動するリニアモータ、又は、回転子が固定子に対して回転する回転型モータと、
 上記可動子又は上記回転子の位置及び速度の少なくとも一方を検出する、請求項1~6のいずれか1項に記載のエンコーダと、を備える、エンコーダ付きモータが提供される。
In order to solve the above problem, according to another aspect of the present invention, a linear motor in which the mover moves with respect to the stator, or a rotary motor in which the rotor rotates with respect to the stator,
An encoder-equipped motor comprising: the encoder according to any one of claims 1 to 6 that detects at least one of a position and a speed of the mover or the rotor.
 また、上記課題を解決するために、本発明のさらに別の観点によれば、可動子が固定子に対して移動するリニアモータ、又は、回転子が固定子に対して回転する回転型モータと、
 上記可動子又は上記回転子の位置及び速度の少なくとも一方を検出する、請求項1~6のいずれか1項に記載のエンコーダと、
 上記エンコーダの検出結果に基づいて上記リニアモータ又は上記回転型モータを制御するように構成された制御装置と、を備える、サーボシステムが提供される。
In order to solve the above problems, according to still another aspect of the present invention, a linear motor in which a mover moves with respect to a stator, or a rotary motor in which a rotor rotates with respect to a stator, and ,
The encoder according to any one of claims 1 to 6, which detects at least one of a position and a speed of the mover or the rotor;
There is provided a servo system comprising a control device configured to control the linear motor or the rotary motor based on a detection result of the encoder.
 以上説明したように本発明によれば、検出精度を向上できる。 As described above, according to the present invention, detection accuracy can be improved.
一実施形態に係るサーボシステムの構成の概略について説明するための説明図である。It is explanatory drawing for demonstrating the outline of a structure of the servo system which concerns on one Embodiment. 同実施形態に係るエンコーダの構成について説明するための説明図である。It is explanatory drawing for demonstrating the structure of the encoder which concerns on the same embodiment. 同実施形態に係るディスクについて説明するための説明図である。It is explanatory drawing for demonstrating the disk which concerns on the same embodiment. 同実施形態に係る光学モジュールについて説明するための説明図である。It is explanatory drawing for demonstrating the optical module which concerns on the same embodiment. 同実施形態に係るディスク及び光学モジュールについて説明するための説明図である。It is explanatory drawing for demonstrating the disk and optical module which concern on the same embodiment. 同実施形態に係る受光部及び透光部材について説明するための説明図である。It is explanatory drawing for demonstrating the light-receiving part and translucent member which concern on the embodiment. 透光部材に偏向部材を設ける変形例に係る透光部材及び偏向部材について説明するための説明図である。It is explanatory drawing for demonstrating the translucent member and deflection | deviation member which concern on the modification which provides a deflecting member in a translucent member. 透光部材に偏向部材を設ける変形例に係る透光部材及び偏向部材について説明するための説明図である。It is explanatory drawing for demonstrating the translucent member and deflection | deviation member which concern on the modification which provides a deflecting member in a translucent member. 偏向部材の周囲に気泡壁を形成する変形例に係る透光部材及び偏向部材について説明するための説明図である。It is explanatory drawing for demonstrating the translucent member and deflection | deviation member which concern on the modification which forms a bubble wall around a deflection | deviation member.
 以下、図面を参照しつつ、一実施形態について詳細に説明する。 Hereinafter, an embodiment will be described in detail with reference to the drawings.
 <1.サーボシステム>
 まず、図1を参照しつつ、本実施形態に係るサーボシステムの構成の概略について説明する。
<1. Servo system>
First, an outline of a configuration of a servo system according to the present embodiment will be described with reference to FIG.
 図1に示すように、本実施形態に係るサーボシステムSは、サーボモータSM(エンコーダ付きモータの一例)と、制御装置CTとを有する。サーボモータSMは、モータM(回転型モータの一例)と、光学式のエンコーダ100とを有する。 As shown in FIG. 1, the servo system S according to this embodiment includes a servo motor SM (an example of a motor with an encoder) and a control device CT. The servo motor SM includes a motor M (an example of a rotary motor) and an optical encoder 100.
 モータMは、エンコーダ100を含まない動力発生源の一例である。このモータM単体をサーボモータという場合もあるが、本実施形態では、エンコーダ100を含む構成をサーボモータSMということにする。なお、説明の便宜上、以下では、エンコーダ付きモータが、位置や速度等の目標値に追従するように制御されるサーボモータである場合について説明するが、必ずしもサーボモータに限定されるものではない。エンコーダ付きモータは、例えばエンコーダの出力を表示のみに用いる場合等、エンコーダが付設さえされていれば、サーボシステム以外に用いられるモータをも含むものである。また、モータMは、固定子m1と、固定子m1の内部に配置され固定子m1に対して回転自在に支持された回転子m2と、回転子m2に結合されたシャフトSHとを有する。つまり、モータMは、固定子m1の内部に回転子m2が配置された、いわゆる「インナーロータ型」のモータである。なお、モータMは、インナーロータ型のモータである場合に限定されるものではない。例えば、モータMは、固定子の外部に回転子が配置された、いわゆる「アウターロータ型」のモータや、回転子及び固定子が回転軸心方向に重ねて配置された、いわゆる「フラットロータ型」のモータであってもよい。但し、説明の便宜上、以下ではモータMがインナーロータ型のモータである場合について説明する。固定子m1及び回転子m2は、一方が電機子として機能し、他方が界磁として機能する。そして、モータMは、回転子m2が固定子m1に対して回転することによって、シャフトSHを回転軸心AX周りに回転させることにより、回転力を出力する。 The motor M is an example of a power generation source that does not include the encoder 100. Although the motor M alone may be referred to as a servo motor, in this embodiment, a configuration including the encoder 100 is referred to as a servo motor SM. For convenience of explanation, a case where the motor with an encoder is a servo motor that is controlled so as to follow a target value such as position and speed will be described below, but the motor is not necessarily limited to the servo motor. The motor with an encoder includes a motor used other than the servo system as long as the encoder is attached, for example, when the output of the encoder is used only for display. The motor M includes a stator m1, a rotor m2 disposed inside the stator m1 and supported rotatably with respect to the stator m1, and a shaft SH coupled to the rotor m2. That is, the motor M is a so-called “inner rotor type” motor in which the rotor m2 is disposed inside the stator m1. The motor M is not limited to an inner rotor type motor. For example, the motor M may be a so-called “outer rotor type” motor in which a rotor is arranged outside the stator, or a so-called “flat rotor type” in which a rotor and a stator are arranged in the direction of the rotation axis. May be used. However, for convenience of explanation, a case where the motor M is an inner rotor type motor will be described below. One of the stator m1 and the rotor m2 functions as an armature, and the other functions as a field. The motor M outputs a rotational force by rotating the shaft SH around the rotation axis AX by rotating the rotor m2 relative to the stator m1.
 なお、モータMは、例えば後述する位置データ等のようなエンコーダ100が検出するデータに基づいて制御されるモータであれば特に限定されるものではない。また、モータMは、動力源として電気を使用する電動式モータである場合に限定されるものではなく、例えば油圧式モータ、エア式モータ、蒸気式モータ等の他の動力源を使用したモータであってもよい。但し、説明の便宜上、以下ではモータMが電動式モータである場合について説明する。 The motor M is not particularly limited as long as it is a motor controlled based on data detected by the encoder 100 such as position data described later. The motor M is not limited to an electric motor that uses electricity as a power source. For example, the motor M is a motor using another power source such as a hydraulic motor, an air motor, or a steam motor. There may be. However, for convenience of explanation, a case where the motor M is an electric motor will be described below.
 エンコーダ100は、モータMの回転力出力側(「負荷側」ともいう。)と反対側(「反負荷側」ともいう。)のシャフトSHに連結されている。なお、エンコーダ100の連結位置は特に限定されるものではない。例えば、エンコーダ100は、モータMの回転力出力側のシャフトSHに連結されてもよく、また、減速機や回転方向変換機、ブレーキ等の他の機構を介してシャフトSH等に連結されてもよい。 The encoder 100 is connected to a shaft SH on the opposite side (also referred to as “anti-load side”) of the motor M on the rotational force output side (also referred to as “load side”). The connection position of the encoder 100 is not particularly limited. For example, the encoder 100 may be connected to the shaft SH on the torque output side of the motor M, or may be connected to the shaft SH or the like via another mechanism such as a speed reducer, a rotation direction changer, or a brake. Good.
 このエンコーダ100は、シャフトSHの位置(角度)を検出することにより、回転子m2の位置(「回転角度」ともいう。)を検出し、その位置を表す位置データを出力する。なお、エンコーダ100は、回転子m2の位置に加え又は代え、回転子m2の速度(「回転速度」や「角速度」等ともいう。)及び加速度(「回転加速度」や「角加速度」等ともいう。)の少なくとも一方を検出してもよい。この場合、回転子m2の速度及び加速度は、例えば、位置を時間で1又は2階微分したり検出信号を所定時間カウントする等の処理により、検出することが可能である。但し、説明の便宜上、以下ではエンコーダ100が検出する物理量は位置であるとして説明する。 The encoder 100 detects the position (angle) of the shaft SH, thereby detecting the position of the rotor m2 (also referred to as “rotation angle”), and outputs position data representing the position. In addition to or instead of the position of the rotor m2, the encoder 100 is also referred to as the speed (also referred to as “rotational speed”, “angular speed”, etc.) and acceleration (“rotational acceleration”, “angular acceleration”, etc.) of the rotor m2. .) May be detected. In this case, the speed and acceleration of the rotor m2 can be detected, for example, by a process such as differentiating the position by 1st or 2nd order with respect to time or counting the detection signal for a predetermined time. However, for convenience of explanation, the following description will be made assuming that the physical quantity detected by the encoder 100 is a position.
 制御装置CTは、エンコーダ100から出力される位置データを取得し、該位置データに基づいて、モータMの駆動を制御する。従って、モータMとして電動式モータが使用される本実施形態では、制御装置CTは、位置データに基づいてモータMに印加する電流又は電圧等を制御することにより、モータMの駆動を制御する。更に、制御装置CTは、上位制御装置から上位制御信号を取得し、該上位制御信号に表された位置等を実現可能な回転駆動力がシャフトSHから出力されるように、モータMを制御することも可能である。なお、モータMが、油圧式、エア式、蒸気式等の他の動力源を使用する場合には、制御装置CTは、それらの動力源の供給を制御することにより、モータMの駆動を制御することが可能である。 The control device CT acquires the position data output from the encoder 100 and controls the driving of the motor M based on the position data. Therefore, in the present embodiment in which an electric motor is used as the motor M, the control device CT controls the driving of the motor M by controlling the current or voltage applied to the motor M based on the position data. Further, the control device CT acquires a higher control signal from the higher control device, and controls the motor M so that a rotational driving force capable of realizing the position or the like represented by the higher control signal is output from the shaft SH. It is also possible. In addition, when the motor M uses other power sources, such as a hydraulic type, an air type, and a steam type, the control apparatus CT controls the drive of the motor M by controlling supply of those power sources. Is possible.
 <2.エンコーダ>
 次に、図2~図6を参照しつつ、本実施形態に係るエンコーダ100の構成について説明する。
<2. Encoder>
Next, the configuration of the encoder 100 according to the present embodiment will be described with reference to FIGS.
 図2に示すように、本実施形態に係るエンコーダ100は、回転子m2の位置を検出する被検出媒体となる円板状のディスク110と、光学モジュール130と、位置データ生成部190とを有する。 As shown in FIG. 2, the encoder 100 according to the present embodiment includes a disk-shaped disk 110 that is a detected medium that detects the position of the rotor m2, an optical module 130, and a position data generation unit 190. .
 ここで、エンコーダ100の構成の説明の便宜上、以下では上下等の方向を次のように定める。すなわち、回転軸心AXにおける反負荷側方向であるZ軸正の方向を「上」と定め、逆の回転軸心AXにおける負荷側方向であるZ軸負の方向を「下」と定める。但し、エンコーダ100の各構成の位置関係は、上下等の概念に限定されるものではない。また、説明の便宜に応じて、ここで定めた方向について他の表現等をしたり、これら以外の方向については適宜説明しつつ使用する場合もあることを付言しておく。 Here, for convenience of explanation of the configuration of the encoder 100, the following directions such as up and down are defined as follows. That is, the positive Z-axis direction that is the anti-load side direction in the rotation axis AX is defined as “up”, and the negative Z-axis direction that is the load side direction in the reverse rotation axis AX is defined as “down”. However, the positional relationship between the components of the encoder 100 is not limited to the concept of up and down. In addition, for the convenience of explanation, it is noted that other directions may be used for the directions determined here, or directions other than these may be used while being described as appropriate.
  (2-1.ディスク)
 図2、図3、及び図5に示すように、ディスク110は、ディスク中心Oが回転軸心AXと略一致するようにシャフトSHに連結され、シャフトSHの回転により、当該ディスク110の円周方向C(図3中の矢印C方向。以下では「ディスク円周方向C」ともいう。)に回転する。なお、ディスク110の回転方向であるディスク円周方向Cが、測定方向の一例に相当する。このディスク110の材質は、ガラスや金属、樹脂等を使用することが可能である。なお、本実施形態では、被検出媒体の一例として、ディスク110を挙げて説明するが、例えばシャフトSHの端面等の他の部材を被検出媒体として使用することも可能である。
(2-1. Disc)
As shown in FIGS. 2, 3, and 5, the disk 110 is connected to the shaft SH so that the disk center O substantially coincides with the rotation axis AX, and the circumference of the disk 110 is rotated by the rotation of the shaft SH. It rotates in a direction C (in the direction of arrow C in FIG. 3; hereinafter also referred to as “disk circumferential direction C”). The disk circumferential direction C, which is the rotation direction of the disk 110, corresponds to an example of the measurement direction. The disk 110 can be made of glass, metal, resin, or the like. In the present embodiment, the disk 110 is described as an example of the detected medium. However, for example, other members such as the end face of the shaft SH can be used as the detected medium.
 ディスク110の上面には、ディスク中心Oを中心としたリング状のスリットトラックSTが形成されている。スリットトラックSTは、ディスク110の半径方向(図3中の矢印R方向。以下では「ディスク半径方向R」ともいう。)に沿った複数の反射スリット111(第1スリットの一例)を有する。そして、スリットトラックSTは、複数の反射スリット111が、ディスク円周方向Cに沿って所定のピッチPでトラック状に並べられることにより、構成されている。 On the upper surface of the disk 110, a ring-shaped slit track ST centered on the disk center O is formed. The slit track ST has a plurality of reflective slits 111 (an example of a first slit) along the radial direction of the disk 110 (in the direction of arrow R in FIG. 3; hereinafter, also referred to as “disk radial direction R”). The slit track ST is configured by arranging a plurality of reflective slits 111 in a track shape at a predetermined pitch P along the disk circumferential direction C.
 各反射スリット111は、後述する光源131から出射された光を各々反射する。なお、反射スリット111は、例えば、光を反射しないように構成されたディスク110の上面における光を反射させる部分に、光を反射する材料(例えばアルミニウム等)が塗布されることにより、形成可能である。また、反射スリット111は、反射率の高い金属で構成されたディスク110の上面における光を反射させない部分を、スパッタリング等により粗面としたり反射率の低い材質を塗布して反射率を低下させることにより、形成されてもよい。但し、反射スリット111の形成方法は、上記の例に限定されるものではない。 Each reflection slit 111 reflects light emitted from a light source 131 described later. The reflection slit 111 can be formed, for example, by applying a light reflecting material (for example, aluminum or the like) to a portion that reflects light on the upper surface of the disk 110 configured not to reflect light. is there. Further, the reflection slit 111 reduces the reflectivity by making a portion of the upper surface of the disk 110 made of a metal having high reflectivity that does not reflect light rough or by applying a low reflectivity material by sputtering or the like. May be formed. However, the formation method of the reflective slit 111 is not limited to the above example.
 本実施形態では、複数の反射スリット111は、ディスク円周方向Cでインクリメンタルパターンを有するように配置されている。インクリメンタルパターンとは、反射スリット111が所定のピッチで規則的に繰り返されるパターンである。このインクリメンタルパターンは、1以上の後述する受光素子142からの電気信号の和により、1ピッチ毎又は1ピッチ内の回転子m2の位置を表す。 In the present embodiment, the plurality of reflective slits 111 are arranged so as to have an incremental pattern in the disk circumferential direction C. An incremental pattern is a pattern in which the reflective slits 111 are regularly repeated at a predetermined pitch. This incremental pattern represents the position of the rotor m2 for each pitch or within one pitch by the sum of electrical signals from one or more light receiving elements 142 described later.
  (2-2.光学モジュール)
 図2~図5に示すように、光学モジュール130は、基板BAとして形成されている。基板BAは、ディスク110と略平行となり、かつ、スリットトラックSTの一部に対向するように、固定されている。従って、光学モジュール130は、ディスク110の回転に伴って、スリットトラックSTに対してディスク円周方向Cに相対移動する。なお、本実施形態では、光学モジュール130がエンコーダ100を薄型化したり製造を容易にすることが可能な基板BAとして形成される場合について説明するが、光学モジュール130は、必ずしも基板状に構成される必要はない。このような光学モジュール130は、光源131と、受光部140と、透光部材160とを有する。
(2-2. Optical module)
As shown in FIGS. 2 to 5, the optical module 130 is formed as a substrate BA. The substrate BA is fixed so as to be substantially parallel to the disk 110 and to face a part of the slit track ST. Accordingly, the optical module 130 moves relative to the slit track ST in the disk circumferential direction C as the disk 110 rotates. In the present embodiment, the case where the optical module 130 is formed as a substrate BA capable of reducing the thickness of the encoder 100 or facilitating manufacturing will be described. However, the optical module 130 is not necessarily configured in a substrate shape. There is no need. Such an optical module 130 includes a light source 131, a light receiving unit 140, and a translucent member 160.
   (2-2-1.光源)
 光源131は、基板BAの下側(スリットトラックSTの一部と対向する側)の表面に設けられている。この例では、光源131は、基板BAの下面における、X軸方向略中央部で、かつ、Y軸負の方向となる位置に配置されている。なお、光源131の配置位置は、上記位置に限定されるものでなく、上記以外の位置に配置されてもよい。この光源131は、対向する位置を通過するスリットトラックSTの一部(以下では「照射領域」ともいう。)に光を出射する。
(2-2-1. Light source)
The light source 131 is provided on the lower surface of the substrate BA (on the side facing a part of the slit track ST). In this example, the light source 131 is disposed on the lower surface of the substrate BA at a substantially central portion in the X-axis direction and in the negative Y-axis direction. The arrangement position of the light source 131 is not limited to the above position, and may be arranged at a position other than the above. The light source 131 emits light to a part of the slit track ST (hereinafter also referred to as “irradiation region”) that passes through the facing position.
 光源131としては、照射領域に光を出射可能な光源であれば特に限定されるものではないが、例えばLED(Light Emitting Diode)が使用可能である。本実施形態では、光源131は、特に光学レンズ等が配置されない点光源として形成され、発光部132から拡散光を出射する。なお、点光源という場合、厳密な点である必要はなく、設計上や動作原理上、略点状の位置から拡散光が発せられるものとみなせる光源であれば、有限な面から光が発せられてもよいことは言うまでもない。このように点光源を使用することにより、光源131は、光軸からのズレによる光量変化や光路長の差による減衰等の影響は多少あるにせよ、照射領域に拡散光を出射し、照射領域に略均等に光を出射することが可能である。また、光学素子による集光・拡散を行わないため、光学素子による誤差等が生じにくく、スリットトラックSTへの出射光の直進性を高める事が可能である。 The light source 131 is not particularly limited as long as it is a light source that can emit light to the irradiation region. For example, an LED (Light Emitting Diode) can be used. In the present embodiment, the light source 131 is formed as a point light source in which an optical lens or the like is not particularly disposed, and emits diffused light from the light emitting unit 132. In the case of a point light source, it is not necessary to be an exact point, and light can be emitted from a finite surface as long as it can be considered that diffuse light is emitted from a substantially point-like position in terms of design and operation principle. Needless to say. By using the point light source in this way, the light source 131 emits diffused light to the irradiation area, although there is some influence of a change in the amount of light due to deviation from the optical axis and attenuation due to a difference in optical path length. It is possible to emit light substantially evenly. In addition, since the light is not condensed and diffused by the optical element, an error due to the optical element is hardly generated, and the straightness of the outgoing light to the slit track ST can be improved.
   (2-2-2.受光部)
 受光部140は、基板BAの下面における上記光源131と異なる位置に設けられている。この例では、受光部140は、基板BAの下面におけるY軸正の方向となる位置に配置されている。なお、受光部140の配置位置は、上記位置に限定されるものでなく、上記以外の位置に配置されてもよい。この受光部140は、基板BAの下面に設けられた基板141と、受光アレイPAとを有する。基板141は、受光アレイPAが形成されるチップ基板であり、本実施形態では基板BAと別体で設けられるが、基板BAと一体に設けられてもよい。受光アレイPAは、基板141の下側(スリットトラックSTの一部と対向する側)の表面に設けられており、ディスク半径方向Rに対応する方向に沿った複数の受光素子142を有する。そして、受光アレイPAは、複数の受光素子142が、ディスク円周方向Cに対応する方向に沿って所定のピッチでアレイ状に並べられることにより、構成されている。
(2-2-2. Light receiver)
The light receiving unit 140 is provided at a position different from the light source 131 on the lower surface of the substrate BA. In this example, the light receiving unit 140 is disposed at a position in the positive direction of the Y axis on the lower surface of the substrate BA. The arrangement position of the light receiving unit 140 is not limited to the above position, and may be arranged at a position other than the above. The light receiving unit 140 includes a substrate 141 provided on the lower surface of the substrate BA and a light receiving array PA. The substrate 141 is a chip substrate on which the light receiving array PA is formed. In the present embodiment, the substrate 141 is provided separately from the substrate BA, but may be provided integrally with the substrate BA. The light receiving array PA is provided on the surface of the lower side of the substrate 141 (side facing a part of the slit track ST), and has a plurality of light receiving elements 142 along a direction corresponding to the disk radial direction R. The light receiving array PA is configured by arranging a plurality of light receiving elements 142 in an array at a predetermined pitch along a direction corresponding to the disk circumferential direction C.
 各受光素子142は、光源131から出射され対向する位置を通過するスリットトラックSTの反射スリット111の作用を受けた光、つまり該反射スリット111で反射された光(以下では「反射光」ともいう。)を受光面142aで各々受光する。そして、各受光素子142は、受光量に対応する電気信号に各々変換する。 Each light receiving element 142 emits light from the light source 131 and passes through the opposing position, and is subjected to the action of the reflecting slit 111 of the slit track ST, that is, light reflected by the reflecting slit 111 (hereinafter also referred to as “reflected light”). .) Is received by the light receiving surface 142a. Each light receiving element 142 converts each light signal into an electrical signal corresponding to the amount of light received.
 受光素子142としては、反射光を受光面142aで受光して受光量に対応する電気信号に変換可能なものであれば特に限定されるものではないが、例えばフォトダイオードが使用可能である。 The light receiving element 142 is not particularly limited as long as it can receive reflected light by the light receiving surface 142a and convert it into an electrical signal corresponding to the amount of light received, but for example, a photodiode can be used.
 上記のように、エンコーダ100は、光源131から出射され反射スリット111で反射された光を受光素子142により受光する、いわゆる「反射型」のエンコーダとして構成されている。また、受光アレイPAは、上記スリットトラックSTと合わせて、いわゆる2格子光学系システムを構成している。なお、本実施形態では、2格子光学系とする場合を一例として説明するが、必ずしも2格子光学系とする必要はなく、例えば3格子光学系等としてもよい。 As described above, the encoder 100 is configured as a so-called “reflective” encoder that receives light emitted from the light source 131 and reflected by the reflection slit 111 by the light receiving element 142. The light receiving array PA, together with the slit track ST, constitutes a so-called two-grating optical system. In this embodiment, a case where a two-grating optical system is used will be described as an example. However, a two-grating optical system is not necessarily used, and a three-grating optical system may be used.
 また、基板141におけるディスク円周方向Cに対応する方向は、ディスク110におけるディスク円周方向Cが受光アレイPAに投影された形状となる。同様に、基板141におけるディスク半径方向Rに対応する方向は、ディスク110におけるディスク半径方向Rが受光アレイPAに投影された形状となる。すなわち、光源131から出射される光は拡散光であり、受光アレイPAは反射光を受光する。従って、受光アレイPAに投影される像は、光路長に応じた所定の拡大率ε(ε=(d1+d2)/d1)だけ拡大されたものとなる。つまり、受光アレイPAには、ε倍だけ拡大された像が投影されることになる。なお、d1は、光源131の発光部132からスリットトラックST(反射スリット111)までの光の光路距離である。d2は、スリットトラックST(反射スリット111)から受光アレイPA(受光素子142)までの光の光路距離である。 Further, the direction corresponding to the disk circumferential direction C on the substrate 141 is a shape in which the disk circumferential direction C on the disk 110 is projected onto the light receiving array PA. Similarly, the direction corresponding to the disk radial direction R in the substrate 141 is a shape in which the disk radial direction R in the disk 110 is projected onto the light receiving array PA. That is, the light emitted from the light source 131 is diffused light, and the light receiving array PA receives the reflected light. Therefore, the image projected on the light receiving array PA is enlarged by a predetermined enlargement factor ε (ε = (d1 + d2) / d1) according to the optical path length. That is, an image enlarged by ε times is projected onto the light receiving array PA. In addition, d1 is the optical path distance of the light from the light emission part 132 of the light source 131 to the slit track ST (reflection slit 111). d2 is an optical path distance of light from the slit track ST (reflection slit 111) to the light receiving array PA (light receiving element 142).
 本実施形態では、インクリメンタルパターンを有するように並べられた反射スリット111の1ピッチ(受光アレイPAに投影された像における1ピッチ。ピッチPと同じ。)中に、4個の受光素子142が並べられている。そして、4個の受光素子142を1セットとする複数セットが、ディスク円周方向Cに対応する方向に沿って所定のピッチεPで並べられている。また、各受光素子142は、ディスク110の回転により、1ピッチで1周期(「電気角で360°」ともいう。)の周期信号を各々生成する。従って、1ピッチに相当する1セット中に4個の受光素子142が含まれている場合、1セット内の隣接する受光素子142同士は、相互に90°の位相差を有する電気信号を生成することになる。これら各電気信号を、「インクリメンタル信号」や、その略称である「インクレ信号」とも呼ぶ。また、これら各電気信号を、「A相信号」(「A+信号」ともいう。)、「B相信号」(A+信号に対する位相差が90°の信号。「B+信号」ともいう。)、「Aバー相信号」(A+信号に対する位相差が180°の信号。「A-信号」ともいう。)、「Bバー相信号」(B+信号に対する位相差が180°の信号。「B-信号」ともいう。)とも呼ぶ。 In the present embodiment, four light receiving elements 142 are arranged in one pitch of the reflective slits 111 arranged so as to have an incremental pattern (one pitch in the image projected on the light receiving array PA, which is the same as the pitch P). It has been. A plurality of sets each including four light receiving elements 142 are arranged at a predetermined pitch εP along a direction corresponding to the disk circumferential direction C. Each light receiving element 142 generates a periodic signal of one period at one pitch (also referred to as “electrical angle of 360 °”) by the rotation of the disk 110. Accordingly, when four light receiving elements 142 are included in one set corresponding to one pitch, adjacent light receiving elements 142 in one set generate electrical signals having a phase difference of 90 ° from each other. It will be. These electric signals are also referred to as “incremental signals” or their abbreviated “incremental signals”. Further, these electric signals are referred to as “A phase signal” (also referred to as “A + signal”), “B phase signal” (signal having a phase difference of 90 ° with respect to the A + signal, also referred to as “B + signal”), “ “A-bar phase signal” (a signal having a phase difference of 180 ° with respect to the A + signal. Also referred to as “A− signal”), “B-bar phase signal” (a signal having a phase difference of 180 ° with respect to the B + signal. “B− signal”). Also called.)
 なお、上記では、インクリメンタルパターンを有するように並べられた複数の反射スリット111の1ピッチに相当する1セット中に受光素子142が4個の含まれている場合について説明した。しかしながら、1セット中の受光素子142の数は、特に限定されるものではない。 In the above description, the case where four light receiving elements 142 are included in one set corresponding to one pitch of the plurality of reflecting slits 111 arranged so as to have an incremental pattern has been described. However, the number of light receiving elements 142 in one set is not particularly limited.
   (2-2-3.透光部材)
 透光部材160は、基板141の下面に設けられた受光アレイPAを形成する複数の受光素子142の受光面142aに固定されている。これにより、各受光素子142の受光面142aは、透光部材160により各々覆われている。この透光部材160は、光源131から出射される光に対して透光性を有する材料(例えばガラスや透明樹脂等)で構成されている。
(2-2-3. Translucent member)
The translucent member 160 is fixed to the light receiving surfaces 142 a of the plurality of light receiving elements 142 that form the light receiving array PA provided on the lower surface of the substrate 141. Thereby, the light receiving surface 142a of each light receiving element 142 is covered with the light transmitting member 160, respectively. The translucent member 160 is made of a material that has translucency with respect to light emitted from the light source 131 (for example, glass or transparent resin).
 透光部材160の下側(スリットトラックSTの一部と対向する側)の表面には、スリットアレイSAが形成されている。すなわち、スリットアレイSAは、スリットトラックSTと受光アレイPAとの間に配置されている。このスリットアレイSAは、ディスク半径方向Rに対応する方向に沿った複数の透過スリット166(第2スリットの一例)を有する。そして、スリットトラックSAは、複数の透過スリット166が、ディスク円周方向Cに対応する方向に沿ってアレイ状に並ぶように、透光部材160の下面における透過スリット166以外の領域に遮光部162が設けられることにより、構成されている。 A slit array SA is formed on the surface of the lower side of the translucent member 160 (the side facing a part of the slit track ST). That is, the slit array SA is disposed between the slit track ST and the light receiving array PA. The slit array SA has a plurality of transmission slits 166 (an example of a second slit) along a direction corresponding to the disk radial direction R. The slit track SA has a light shielding portion 162 in a region other than the transmission slit 166 on the lower surface of the translucent member 160 so that the plurality of transmission slits 166 are arranged in an array along the direction corresponding to the disk circumferential direction C. Is provided.
 各透過スリット166は、反射光を各々透過する。各遮光部162は、光を各々遮蔽(遮断)する。これら各遮光部162は、光を透過するように構成された透光部材160の下面に、光を遮蔽する材料(例えば酸化クロム等)が塗布されることにより、形成可能である。なお、各遮光部162を、板状に形成した遮蔽部材を透光部材160の下面に貼り付ける等、塗布以外の方法で形成してもよい。 Each transmission slit 166 transmits the reflected light. Each light shielding unit 162 shields (blocks) light. Each of the light shielding portions 162 can be formed by applying a light shielding material (such as chromium oxide) to the lower surface of the light transmitting member 160 configured to transmit light. In addition, you may form each light-shielding part 162 by methods other than application | coating, such as sticking the shielding member formed in plate shape on the lower surface of the translucent member 160. FIG.
 なお、透光部材160の材質や製造方法等については特に限定されるものではない。 Note that the material and manufacturing method of the translucent member 160 are not particularly limited.
 ここで、各受光素子142が本来受光すべき反射光とは異なる角度から入射される散乱光や迷光を受光した場合、ノイズが発生する。このようなノイズは、エンコーダ100の位置検出精度を低下させる要因となる。また、光源131が拡散光を出射する点光源として形成される本実施形態では、反射光は、各受光素子142の受光面142に、平行光の場合のように垂直方向から入射されず、斜めの方向から入射されることとなる。 Here, when each light receiving element 142 receives scattered light or stray light incident from an angle different from the reflected light that should be received, noise is generated. Such noise becomes a factor that reduces the position detection accuracy of the encoder 100. Further, in the present embodiment in which the light source 131 is formed as a point light source that emits diffused light, the reflected light is not incident on the light receiving surface 142 of each light receiving element 142 from the vertical direction as in the case of parallel light, but obliquely. It will enter from the direction of.
 ここで、各透過スリット166を各受光素子142の受光面142aに垂直な方向に対応させて各々配置した場合(各透過スリット166と各受光素子142の受光面142aとのディスク円周方向Cに対応する方向の位置を各々一致させた場合)を考える。この場合、透過スリット166を透過した反射光の一部が、本来受光されるべき受光素子142と異なる受光素子142により受光されてしまうことがある。また、透過スリット166を透過した反射光の一部が、本来受光されるべき受光素子142により受光されても、その光が基板141中を浸透し、隣接する受光素子142に係る領域E(後述の図6参照)でキャリアCA(後述の図6参照)が発生してしまうことがある。なお、領域Eは、発生したキャリアCAが対応する受光素子142に到達すること可能な領域である。この場合、隣接する受光素子142に係る領域Eで発生したキャリアCAが該受光素子142に移動することにより、該受光素子142で電気信号が発生する、いわゆる「クロストーク」が生じる。このようなクロストークは、ノイズの要因となる。 Here, when each transmission slit 166 is arranged corresponding to a direction perpendicular to the light receiving surface 142a of each light receiving element 142 (in the disc circumferential direction C between each transmission slit 166 and the light receiving surface 142a of each light receiving element 142). Let us consider the case where the positions in the corresponding directions are matched. In this case, part of the reflected light transmitted through the transmission slit 166 may be received by the light receiving element 142 that is different from the light receiving element 142 that should be received. Further, even if part of the reflected light that has passed through the transmission slit 166 is received by the light receiving element 142 that should be received by the light, the light penetrates through the substrate 141, and an area E (described later) related to the adjacent light receiving element 142. 6), carrier CA (see FIG. 6 described later) may occur. The region E is a region where the generated carrier CA can reach the corresponding light receiving element 142. In this case, when the carrier CA generated in the region E related to the adjacent light receiving element 142 moves to the light receiving element 142, so-called “crosstalk” in which an electric signal is generated in the light receiving element 142 occurs. Such crosstalk causes noise.
 本実施形態では、上述したように、スリットトラックSTと受光アレイPAとの間に、反射光を各々透過する複数の透過スリット166を有するスリットアレイSAが配置されている。そして、図6に示すように、各透過スリット166が、各受光素子142が本来受光すべき反射光(以下では「反射光L1」ともいう。)が対応する受光素子142の受光面142aに入射されるように、該受光素子142に対して該反射光L1の進行方向に応じた位置に配置されている。これと共に、スリットアレイSAが、透光部材160の下面の透過スリット166以外の領域に遮光部162を設けることにより、形成されている。具体的には、各遮光部162は、反射光L1を遮断せずに該反射光L1とは異なる角度から入射される散乱光や迷光を遮断することが可能なように、ディスク円周方向Cに対応する方向の寸法及び隣接する遮光部162との間隔が調整されて各々設けられている。これにより、各透過スリット166は、反射光L1が対応する受光素子142の受光面142aに入射されるように、反射光L1の進行方向に応じて、該受光面142aに垂直な方向からディスク円周方向Cに対応する方向にオフセットした位置に、各々配置されている。なお、各透過スリット166の配置位置は、上記位置に限定されるものではなく、反射光L1が対応する受光素子142の受光面142aに入射されるように該受光素子142に対して該反射光L1の進行方向に応じた位置であればよい。更に言えば、各透過スリット166の配置位置は、反射光L1が対応する受光素子142の受光面142aに入射されるように該受光素子142に対して該反射光L1の進行方向に応じた位置にも限定されるものではなく、反射光L1を各々透過するようにディスク円周方向Cに対応する方向に並べられた位置であればよい。 In this embodiment, as described above, the slit array SA having the plurality of transmission slits 166 that respectively transmit the reflected light is disposed between the slit track ST and the light receiving array PA. Then, as shown in FIG. 6, each transmission slit 166 is incident on the light receiving surface 142a of the light receiving element 142 corresponding to the reflected light (hereinafter also referred to as “reflected light L1”) that each light receiving element 142 should originally receive. As described above, the light receiving element 142 is disposed at a position corresponding to the traveling direction of the reflected light L1. At the same time, the slit array SA is formed by providing a light shielding portion 162 in a region other than the transmission slit 166 on the lower surface of the translucent member 160. Specifically, each light shielding portion 162 does not block the reflected light L1, but can block scattered light and stray light incident from an angle different from the reflected light L1. And the distance between the adjacent light shielding portion 162 and the adjacent light shielding portion 162 are adjusted. As a result, each transmission slit 166 causes the disc circle from a direction perpendicular to the light receiving surface 142a according to the traveling direction of the reflected light L1 so that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. They are arranged at positions offset in a direction corresponding to the circumferential direction C. The arrangement position of each transmission slit 166 is not limited to the above position, and the reflected light is reflected on the light receiving element 142 so that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. Any position corresponding to the traveling direction of L1 may be used. Furthermore, the arrangement position of each transmission slit 166 is a position corresponding to the traveling direction of the reflected light L1 with respect to the light receiving element 142 so that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. The position is not limited to this, and any position may be used as long as it is arranged in a direction corresponding to the circumferential direction C of the disk so as to transmit the reflected light L1.
 このように透光部材160を形成することにより、反射光L1を、透過スリット166により透過させて対応する受光素子142の受光面142aに入射させることが可能である。そして、対応する受光素子142の受光面142により受光された反射光L1の一部が基板141中を浸透したとしても、該受光素子142に係る領域E(又はその近傍)でキャリアCAを発生させることが可能である。これにより、そのキャリアCAが該受光素子142に移動されることにより、該受光素子142で電気信号を発生させることが可能である。また、遮光部162がなければ受光素子142の受光面142aに入射されるその他の異なる角度から入射される散乱光や迷光を、遮光部162により遮断させて受光素子142の受光面142aに入射させないことが可能である。これと共に、遮光部162がなければ上記クロストークの要因となり得る光L2を、遮光部162により遮断させて受光素子142の受光面142aに入射させないことが可能である。なお、図6中では、説明の便宜上、遮断部162がない場合の挙動等を想像線で示している。また、反射光L1が対応する受光素子142の受光面142aに入射され該受光面142aで反射された光の一部を、透光部材160の内部反射により再度該受光面142aに入射させることが可能である。 By forming the translucent member 160 in this manner, the reflected light L1 can be transmitted through the transmission slit 166 and incident on the light receiving surface 142a of the corresponding light receiving element 142. Even if a part of the reflected light L1 received by the light receiving surface 142 of the corresponding light receiving element 142 penetrates the substrate 141, the carrier CA is generated in the region E (or the vicinity thereof) related to the light receiving element 142. It is possible. As a result, the carrier CA is moved to the light receiving element 142, so that the light receiving element 142 can generate an electrical signal. In addition, if there is no light blocking portion 162, scattered light and stray light incident on the light receiving surface 142a of the light receiving element 142 from other different angles are blocked by the light blocking portion 162 and not incident on the light receiving surface 142a of the light receiving element 142. It is possible. At the same time, if there is no light blocking portion 162, the light L2 that can cause the crosstalk can be blocked by the light blocking portion 162 and not incident on the light receiving surface 142a of the light receiving element 142. In FIG. 6, for convenience of explanation, the behavior in the case where the blocking part 162 is not provided is indicated by an imaginary line. Further, a part of the light that is reflected by the reflected light L1 and incident on the light receiving surface 142a of the corresponding light receiving element 142 and reflected by the light receiving surface 142a may be incident on the light receiving surface 142a again by internal reflection of the translucent member 160. Is possible.
  (2-3.位置データ生成部)
 図2に示すように、位置データ生成部190は、回転子m2の位置を検出するタイミングにおいて、光学モジュール130の複数の受光素子142から、位相が90°ずつズレる4つのインクレ信号(A+信号、B+信号、A-信号、及びB-信号)を取得する。そして、位置データ生成部190は、取得したインクレ信号に基づいて、該インクレ信号が表す回転子m2の位置を算出し、その位置を表す位置データを制御装置CTに出力する。なお、位置データ生成部190による位置データの生成方法は、インクレ信号から回転子m2の位置を算出し位置データを生成する場合に限定されるものではなく、様々な方法が使用可能である。
(2-3. Position data generator)
As illustrated in FIG. 2, the position data generation unit 190 detects four incremental signals (A + signal, A + signal, phase shift from the plurality of light receiving elements 142 of the optical module 130 by 90 ° at the timing of detecting the position of the rotor m2. B + signal, A− signal, and B− signal). Then, based on the acquired incremental signal, the position data generation unit 190 calculates the position of the rotor m2 represented by the incremental signal, and outputs position data representing the position to the control device CT. Note that the position data generation method by the position data generation unit 190 is not limited to the case where the position data is generated by calculating the position of the rotor m2 from the incremental signal, and various methods can be used.
 <3.本実施形態による効果等の例>
 以上、本実施形態に係るサーボシステムSについて説明した。本実施形態では、スリットトラックSTと受光アレイPAとの間に、スリットアレイSAが配置されている。スリットアレイSAは、ディスク円周方向Cに対応する方向に沿って並べられ反射光を各々透過する複数の透過スリット166を有する。これら各透過スリット166により、反射光L1を透過させ、その他の異なる角度から入射される散乱光や迷光を遮断することができる。その結果、ノイズを低減することができ、検出精度を向上することができる。
<3. Examples of effects, etc. according to this embodiment>
The servo system S according to this embodiment has been described above. In the present embodiment, a slit array SA is disposed between the slit track ST and the light receiving array PA. The slit array SA includes a plurality of transmission slits 166 that are arranged along a direction corresponding to the disk circumferential direction C and each transmit reflected light. Each of the transmission slits 166 allows the reflected light L1 to pass therethrough and blocks scattered light and stray light incident from other different angles. As a result, noise can be reduced and detection accuracy can be improved.
 また、本実施形態では特に、各透過スリット166が、対応する受光素子142に対して、反射光L1の進行方向に応じた位置に、配置されている。これにより、反射光L1が本来受光されるべき受光素子142の受光面142aに入射されるので、光源131が拡散光を出射する点光源として形成される場合でも、検出精度を向上できる。 Further, in the present embodiment, in particular, each transmission slit 166 is arranged at a position corresponding to the traveling direction of the reflected light L1 with respect to the corresponding light receiving element 142. Thereby, since the reflected light L1 is incident on the light receiving surface 142a of the light receiving element 142 that should be received, detection accuracy can be improved even when the light source 131 is formed as a point light source that emits diffused light.
 また、本実施形態では特に、受光アレイPAを形成する複数の受光素子142の受光面142aに、透光部材160が固定されている。透光部材160の下面における透過スリット166以外の領域に遮光部162を設けることにより、スリットアレイSAが形成されている。このような構成とすることにより、受光素子142の受光面142aで反射された光の一部を透光部材160の内部反射により再度該受光面142aに入射させることができる。これにより、受光量を増大することができる。 In this embodiment, in particular, the light transmitting member 160 is fixed to the light receiving surfaces 142a of the plurality of light receiving elements 142 forming the light receiving array PA. The slit array SA is formed by providing the light shielding portion 162 in a region other than the transmission slit 166 on the lower surface of the light transmitting member 160. With such a configuration, part of the light reflected by the light receiving surface 142 a of the light receiving element 142 can be incident again on the light receiving surface 142 a by internal reflection of the light transmitting member 160. Thereby, the amount of received light can be increased.
 なお、以上説明した本実施形態による効果等は、あくまで一例であって、さらなる効果等を奏することは言うまでもない。 In addition, the effect by this embodiment demonstrated above is an example to the last, and it cannot be overemphasized that there exists a further effect.
 <4.変形例等>
 以上、図面を参照しつつ、一実施形態について詳細に説明した。しかしながら、技術的思想の範囲は、ここで説明した実施形態に限定されないことは言うまでもない。実施形態の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、様々な変更や修正、組み合わせ等を行うことに想到できることは明らかである。従って、これらの変更や修正、組み合わせ等の後の技術も、当然に技術的思想の範囲に属するものである。以下、そのような変形例等を順を追って説明する。なお、以下の変形例等では、主として上記実施形態と異なる部分について説明する。また、上記実施形態と実質的に同一の機能を有する構成要素は、原則として同一の符号で表し、これらの構成要素についての重複説明は、適宜省略する。
<4. Modified example>
The embodiment has been described in detail with reference to the drawings. However, it goes without saying that the scope of the technical idea is not limited to the embodiment described here. It is obvious that a person having ordinary knowledge in the technical field to which the embodiment belongs can make various changes, corrections, combinations, and the like within the scope of the technical idea described in the claims. It is. Therefore, the subsequent techniques such as changes, corrections, combinations, and the like naturally belong to the scope of the technical idea. Hereinafter, such modifications will be described in order. In the following modifications and the like, portions different from the above embodiment will be mainly described. In addition, components having substantially the same functions as those of the above-described embodiment are represented by the same reference numerals in principle, and repeated description of these components will be omitted as appropriate.
  (4-1.透光部材に偏向部材を設ける場合(その1))
 本変形例に係るサーボシステムSにおいて、上記実施形態と異なる点等について説明する。
(4-1. When a deflecting member is provided on a translucent member (1))
In the servo system S according to the present modification, differences from the above embodiment will be described.
 図7に示すように、本変形例では、前述の透光部材160に代えて透光部材160Aを設けている。以下、透光部材160Aの、前述の透光部材160との異なる点等について説明する。すなわち、本変形例に係る透光部材160Aでは、各遮光部162は、各透過スリット166が各受光素子142の受光面142aに垂直な方向に対応して各々配置される(各透過スリット166と各受光素子142の受光面142aとのディスク円周方向Cに対応する方向の位置が各々略一致する)ように、各々設けられている。これにより、各透過スリット166は、各受光素子142の受光面142aに垂直な方向に対応する位置に、各々配置されている。 As shown in FIG. 7, in this modification, a light transmissive member 160A is provided instead of the light transmissive member 160 described above. Hereinafter, differences of the translucent member 160A from the above-described translucent member 160 will be described. That is, in the light transmissive member 160A according to the present modification, each light shielding portion 162 is arranged such that each transmissive slit 166 corresponds to a direction perpendicular to the light receiving surface 142a of each light receiving element 142 (each transmissive slit 166 and The positions in the direction corresponding to the disk circumferential direction C with the light receiving surface 142a of each light receiving element 142 are substantially the same). Thus, each transmission slit 166 is disposed at a position corresponding to a direction perpendicular to the light receiving surface 142a of each light receiving element 142.
 そして、透光部材160Aにおける各受光素子142の受光面142aの下側に位置する各透過スリット166の部分には、偏向部材170が各々設けられている。各偏向部材170は、透光部材160Aにおける各透過スリット166の部分、又は、光源131から出射される光に対して透光性を有する材料(例えばガラスや透明樹脂等)を、適宜の加工方法を用いて加工することにより形成した部材(例えばレンズやプリズム等)で構成されている。 Further, a deflecting member 170 is provided at each of the transmitting slits 166 located below the light receiving surface 142a of each light receiving element 142 in the light transmitting member 160A. Each deflection member 170 is formed by appropriately processing a portion of each transmission slit 166 in the translucent member 160A or a material (for example, glass or transparent resin) having translucency with respect to light emitted from the light source 131. It is comprised by the member (for example, a lens, a prism, etc.) formed by processing using.
 これら各偏向部材170は、対応する透過スリット166を透過した反射光L1を各々偏向する。具体的には、各偏向部材170は、対応する透過スリット166を透過した反射光L1を、該反射光L1の進行方向に沿った直線CLと、対応する受光素子142の受光面142aに垂直な直線SLとの間の角度θが減少する方向に各々偏向する。この例では、各偏向部材170は、対応する透過スリット166を透過した反射光L1を、角度θが略0°となる方向に各々偏向する。つまり、各偏向部材170は、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aに略垂直な方向となって該受光面142aに入射されるように、各々偏向する。なお、各偏向部材170は、対応する透過スリット166を透過した反射光L1を、角度θが略0°となる方向に偏向するものに限定されるものではなく、角度θが減少する方向に偏向するものであればよい。更に言えば、各偏向部材170は、対応する透過スリット166を透過した反射光L1を、角度θが減少する方向に偏向するものにも限定されるものではなく、単に偏向するものでもよい。 Each of these deflecting members 170 deflects the reflected light L1 transmitted through the corresponding transmission slit 166, respectively. Specifically, each deflecting member 170 causes the reflected light L1 transmitted through the corresponding transmission slit 166 to be perpendicular to the straight line CL along the traveling direction of the reflected light L1 and the light receiving surface 142a of the corresponding light receiving element 142. Each is deflected in a direction in which the angle θ with the straight line SL decreases. In this example, each deflection member 170 deflects the reflected light L1 transmitted through the corresponding transmission slit 166 in a direction in which the angle θ is approximately 0 °. That is, each deflecting member 170 is configured so that the reflected light L1 transmitted through the corresponding transmission slit 166 is incident on the light receiving surface 142a in a direction substantially perpendicular to the light receiving surface 142a of the corresponding light receiving element 142. To deflect. Each deflection member 170 is not limited to deflecting the reflected light L1 transmitted through the corresponding transmission slit 166 in a direction in which the angle θ is approximately 0 °, but in a direction in which the angle θ is decreased. Anything to do. Furthermore, each deflecting member 170 is not limited to the one that deflects the reflected light L1 transmitted through the corresponding transmission slit 166 in the direction in which the angle θ decreases, but may simply deflect it.
 本変形例では、透光部材160Aに各偏向部材170が各々設けられている。従って、各透過スリット166が各々配置された、各受光素子142の受光面142aに垂直な方向に対応する位置は、反射光L1が対応する受光素子142の受光面142aに入射されるように、該受光素子142に対して反射光L1の進行方向に応じた位置といえる。 In this modification, each deflecting member 170 is provided on the translucent member 160A. Therefore, the position corresponding to the direction perpendicular to the light receiving surface 142a of each light receiving element 142 at which each transmission slit 166 is arranged is such that the reflected light L1 is incident on the light receiving surface 142a of the corresponding light receiving element 142. It can be said that the position corresponds to the traveling direction of the reflected light L1 with respect to the light receiving element 142.
 このように透光部材160Aを形成することにより、反射光L1を、透過スリット166を透過させる際に偏向部材170により上記のように偏向する。これにより、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aに垂直な方向とし、該受光面142aに入射させることが可能である。そして、対応する受光素子142の受光面142により受光された反射光L1の一部が基板141中を浸透したとしても、該受光素子142に係る領域E(又はその近傍)でキャリアCAを発生させることが可能である。また、遮光部162がなければ受光素子142の受光面142aに入射されるその他の異なる角度から入射される散乱光や迷光を、遮光部162により遮断させて受光素子142の受光面142aに入射させないことが可能である。これと共に、遮光部162がなければ前述のクロストークの要因となり得る光を、遮光部162により遮断させて受光素子142の受光面142aに入射させないことが可能である。さらに、偏向部材170がなければ前述のクロストークの要因となり得る光L3を、偏向部材170により上記のように偏向する。これにより、上記光L3を、対応する受光素子142の受光面142aに垂直な方向とし、対応する受光素子142の受光面142aに入射させることが可能である。なお、図7中では、説明の便宜上、偏向部材170がない場合の挙動等を想像線で示している。また、反射光L1が対応する受光素子142の受光面142aに入射され該受光面142aで反射された光の一部を、透光部材160A又は偏向部材170の内部反射により再度該受光面142aに入射させることが可能である。 By forming the translucent member 160A in this way, the reflected light L1 is deflected as described above by the deflecting member 170 when passing through the transmissive slit 166. As a result, the reflected light L1 transmitted through the corresponding transmission slit 166 can be incident on the light receiving surface 142a in a direction perpendicular to the light receiving surface 142a of the corresponding light receiving element 142. Even if a part of the reflected light L1 received by the light receiving surface 142 of the corresponding light receiving element 142 penetrates the substrate 141, the carrier CA is generated in the region E (or the vicinity thereof) related to the light receiving element 142. It is possible. In addition, if there is no light blocking portion 162, scattered light and stray light incident on the light receiving surface 142a of the light receiving element 142 from other different angles are blocked by the light blocking portion 162 and not incident on the light receiving surface 142a of the light receiving element 142. It is possible. At the same time, if there is no light blocking portion 162, it is possible to block the light that can cause the above-described crosstalk by the light blocking portion 162 so that it does not enter the light receiving surface 142a of the light receiving element 142. Further, if there is no deflection member 170, the light L3 that can cause the above-described crosstalk is deflected by the deflection member 170 as described above. Accordingly, the light L3 can be incident on the light receiving surface 142a of the corresponding light receiving element 142 in a direction perpendicular to the light receiving surface 142a of the corresponding light receiving element 142. In FIG. 7, for convenience of explanation, the behavior in the case where the deflection member 170 is not provided is indicated by an imaginary line. Further, a part of the light incident on the light receiving surface 142a of the corresponding light receiving element 142 and reflected by the light receiving surface 142a is reflected again on the light receiving surface 142a by the internal reflection of the light transmitting member 160A or the deflecting member 170. It is possible to make it incident.
 上記以外の構成は、上記実施形態と同様に構成することができるので、説明を省略する。 Since the configuration other than the above can be configured in the same manner as the above embodiment, the description thereof is omitted.
 以上、本変形例に係るサーボシステムSについて説明した。本変形例では、上記実施形態と同様の効果を得ることができる。また、本変形例では、透光部材160Aが、対応する透過スリット166を透過した反射光L1を偏向するように構成された偏向部材170を有する。特に本変形例では、偏向部材170は、対応する透過スリット166を透過した反射光L1を、角度θが減少する方向に偏向するように構成されている。これにより、反射光L1が各透過スリット166を透過する際に、偏向部材170により角度θが減少する方向に偏向して対応する受光素子142の受光面142aに入射させることができるので、クロストークを低減できる。また、クロストークの低減により受光素子142のピッチを小さくすることができるので、エンコーダ100の高分解能化が可能となる。 The servo system S according to this modification has been described above. In this modification, the same effect as that of the above embodiment can be obtained. In this modification, the translucent member 160 </ b> A includes a deflecting member 170 configured to deflect the reflected light L <b> 1 transmitted through the corresponding transmitting slit 166. In particular, in this modification, the deflecting member 170 is configured to deflect the reflected light L1 transmitted through the corresponding transmission slit 166 in a direction in which the angle θ decreases. As a result, when the reflected light L1 passes through each transmission slit 166, it can be deflected in the direction in which the angle θ decreases by the deflecting member 170 and incident on the corresponding light receiving surface 142a of the light receiving element 142. Can be reduced. Moreover, since the pitch of the light receiving elements 142 can be reduced by reducing the crosstalk, the encoder 100 can have high resolution.
  (4-2.透光部材に偏向部材を設ける場合(その2))
 本変形例に係るサーボシステムSにおいて、上記(4-1)の変形例と異なる点等について説明する。
(4-2. When a deflecting member is provided on a translucent member (part 2))
The servo system S according to this modification will be described with respect to differences from the modification (4-1).
 図8に示すように、本変形例では、前述の偏向部材170に代えて偏向部材170Aを設けている。以下、偏向部材170Aの、前述の偏向部材170との異なる点等について説明する。すなわち、本変形例に係る各偏向部材170Aは、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aの略中央方向に各々集光する。つまり、各偏向部材170Aは、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aの略中央側に向かう方向となって該受光面142aに入射されるように、各々集光する。なお、各偏向部材170Aは、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aの略中央方向に集光するものに限定されるものではなく、単に偏向するものでもよい。 As shown in FIG. 8, in this modification, a deflection member 170A is provided in place of the deflection member 170 described above. Hereinafter, differences of the deflection member 170A from the deflection member 170 will be described. That is, each deflection member 170A according to the present modification condenses the reflected light L1 transmitted through the corresponding transmission slit 166 in the substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142. That is, each deflecting member 170A enters the reflected light L1 transmitted through the corresponding transmission slit 166 into the light receiving surface 142a in a direction toward the substantially central side of the light receiving surface 142a of the corresponding light receiving element 142. , Each is condensed. Each deflecting member 170A is not limited to condensing the reflected light L1 transmitted through the corresponding transmission slit 166 in a substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142, but simply deflects. It may be a thing.
 このように透光部材160Aを形成することにより、反射光L1を、透過スリット166を透過させる際に偏向部材170Aにより上記のように偏向する。これにより、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aの略中央側に向かう方向とし、該受光面142aに入射させることが可能である。そして、対応する受光素子142の受光面142により受光された反射光L1の一部が基板141中を浸透したとしても、該受光素子142に係る領域E(又はその近傍)でキャリアCAを発生させることが可能である。また、遮光部162がなければ受光素子142の受光面142aに入射されるその他の異なる角度から入射される散乱光や迷光を、遮光部162により遮断させて受光素子142の受光面142aに入射させないことが可能である。これと共に、遮光部162がなければ前述のクロストークの要因となり得る光を、遮光部162により遮断させて受光素子142の受光面142aに入射させないことが可能である。さらに、偏向部材170Aがなければ前述のクロストークの要因となり得る光L4を、偏向部材170により上記のように偏向する。これにより、上記光L4を、対応する受光素子142の受光面142aの略中央側に向かう方向とし、対応する受光素子142の受光面142aに入射させることが可能である。なお、図8中では、説明の便宜上、偏向部材170Aがない場合の挙動等を想像線で示している。また、反射光L1が対応する受光素子142の受光面142aに入射され該受光面142aで反射された光の一部を、透光部材160A又は偏向部材170Aの内部反射により再度該受光面142aに入射させることが可能である。 By forming the translucent member 160A in this way, the reflected light L1 is deflected as described above by the deflecting member 170A when passing through the transmissive slit 166. As a result, the reflected light L1 transmitted through the corresponding transmission slit 166 can be incident on the light receiving surface 142a in a direction toward the substantially central side of the light receiving surface 142a of the corresponding light receiving element 142. Even if a part of the reflected light L1 received by the light receiving surface 142 of the corresponding light receiving element 142 penetrates the substrate 141, the carrier CA is generated in the region E (or the vicinity thereof) related to the light receiving element 142. It is possible. In addition, if there is no light blocking portion 162, scattered light and stray light incident on the light receiving surface 142a of the light receiving element 142 from other different angles are blocked by the light blocking portion 162 and not incident on the light receiving surface 142a of the light receiving element 142. It is possible. At the same time, if there is no light blocking portion 162, it is possible to block the light that can cause the above-described crosstalk by the light blocking portion 162 so that it does not enter the light receiving surface 142a of the light receiving element 142. Further, if the deflecting member 170A is not provided, the light L4 that can cause the above-described crosstalk is deflected by the deflecting member 170 as described above. Accordingly, the light L4 can be incident on the light receiving surface 142a of the corresponding light receiving element 142 in the direction toward the substantially central side of the light receiving surface 142a of the corresponding light receiving element 142. In FIG. 8, for convenience of explanation, the behavior in the case where there is no deflection member 170 </ b> A is shown by imaginary lines. In addition, a part of the light incident on the light receiving surface 142a of the corresponding light receiving element 142 and reflected by the reflected light L1 is again reflected on the light receiving surface 142a by the internal reflection of the light transmitting member 160A or the deflecting member 170A. It is possible to make it incident.
 上記以外の構成は、上記(4-1)の変形例と同様に構成することができるので、説明を省略する。 Since the configuration other than the above can be configured in the same manner as the modified example of (4-1) above, description thereof will be omitted.
 以上、本変形例に係るサーボシステムSについて説明した。本変形例では、上記(4-1)の変形例と同様の効果を得ることができる。また、本変形例では、偏向部材170Aが、対応する透過スリット166を透過した反射光L1を、対応する受光素子142の受光面142aの略中央方向に集光するように構成されている。これにより、反射光L1が各透過スリット166を透過する際に、偏向部材170Aにより対応する受光素子142の受光面142aの略中央方向に集光して該受光面142aに入射させることができるので、クロストークを確実に低減できる。その結果、振動があった場合でも、対応する透過スリット166を透過した反射光L1が対応する受光素子142の受光面142aに到達しない状況にならないようにすることができるので、受光量を確保することができる。 The servo system S according to this modification has been described above. In the present modification, the same effect as in the modification (4-1) can be obtained. Further, in this modification, the deflecting member 170A is configured to collect the reflected light L1 transmitted through the corresponding transmission slit 166 in a substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142. As a result, when the reflected light L1 passes through each transmission slit 166, the deflecting member 170A can concentrate the light in the substantially central direction of the light receiving surface 142a of the corresponding light receiving element 142 and enter the light receiving surface 142a. Crosstalk can be reliably reduced. As a result, even when there is vibration, it is possible to prevent the reflected light L1 transmitted through the corresponding transmission slit 166 from reaching the light receiving surface 142a of the corresponding light receiving element 142, so that the amount of received light is ensured. be able to.
  (4-3.偏向部材の周囲に気泡壁を形成する場合)
 本変形例に係るサーボシステムSにおいて、上記(4-2)の変形例と異なる点等について説明する。
(4-3. When a bubble wall is formed around the deflection member)
In the servo system S according to the present modification, differences from the modification (4-2) will be described.
 図9に示すように、本変形例では、前述の透光部材160Aに代えて透光部材160Bを設けている。以下、透光部材160Bの、前述の透光部材160Aとの異なる点等について説明する。すなわち、本変形例に係る透光部材160Bは、各偏向部材170Aの周囲(反射光L1の入射面を除く。)を囲むように形成された散乱部の一例としての気泡壁180を有する。気泡壁180は、偏向部材170A中を伝搬する反射光L1を該偏向部材170Aの内部に散乱することが可能である。なお、散乱部は、偏向部材170A中を伝搬する反射光L1を該偏向部材170Aの内部に散乱することが可能な部であれば、気泡壁180である場合に限定されるものではなく、例えばクラックや濁部等であってもよい。但し、説明の便宜上、以下では散乱部が気泡壁180である場合について説明する。気泡壁180を構成する複数の気泡は、透光部材160Bにおける各偏向部材170Aの周囲部分を、適宜の加工方法を用いて加工する(例えばレーザー照射により三次元加工する等)ことにより、形成可能である。なお、偏向部材170Aに代えて前述の偏向部材170を設けてもよい。 As shown in FIG. 9, in this modification, a light transmissive member 160B is provided instead of the light transmissive member 160A described above. Hereinafter, the difference of the translucent member 160B from the above-described translucent member 160A will be described. That is, the translucent member 160B according to the present modification includes a bubble wall 180 as an example of a scattering portion formed so as to surround each deflection member 170A (excluding the incident surface of the reflected light L1). The bubble wall 180 can scatter the reflected light L1 propagating through the deflection member 170A into the deflection member 170A. The scattering portion is not limited to the bubble wall 180 as long as it is a portion that can scatter the reflected light L1 propagating through the deflection member 170A into the deflection member 170A. A crack, a muddy part, etc. may be sufficient. However, for convenience of explanation, a case where the scattering portion is the bubble wall 180 will be described below. The plurality of bubbles constituting the bubble wall 180 can be formed by processing the peripheral portion of each deflecting member 170A in the translucent member 160B using an appropriate processing method (for example, three-dimensional processing by laser irradiation). It is. Note that the deflection member 170 described above may be provided instead of the deflection member 170A.
 本変形例では、偏向部材170Aの周囲を囲むように気泡壁180を形成した透過部材160Bを形成した。従って、反射光L1を、透過スリット166を透過させる際に偏向部材170Aにより前述のように集光しつつ対応する透過スリット166を透過させる際に、気泡壁180により、該反射光L1が該偏向部材170Aによる屈折や拡散等により該偏向部材170Aの外部に散乱することを防止できる。図9に示すように、偏向部材170Aに入射する反射光L1の少なくとも一部は、受光面142aの法線に対して所定の角度で斜めに入射する。このような場合、偏向部材170Aで全ての光を対応する受光素子142に入射させることは難しい。しかしながら、本変形例によれば、気泡壁180が偏向部材170A中を伝搬して相隣接する受光素子142に反射光L1が伝達することを防止できる。従って、クロストークの影響をより一層防ぐことができる。更に、気泡壁180で反射された光の一部を、偏向部材170Aの内部反射により対応する受光素子142の受光面142aに入射させることが可能である。 In this modification, a transmissive member 160B in which a bubble wall 180 is formed so as to surround the periphery of the deflecting member 170A is formed. Accordingly, when the reflected light L1 is transmitted through the transmission slit 166 and condensed by the deflecting member 170A as described above and transmitted through the corresponding transmission slit 166, the reflected light L1 is deflected by the bubble wall 180. Scattering to the outside of the deflecting member 170A due to refraction or diffusion by the member 170A can be prevented. As shown in FIG. 9, at least part of the reflected light L1 incident on the deflecting member 170A is incident obliquely at a predetermined angle with respect to the normal line of the light receiving surface 142a. In such a case, it is difficult for the deflecting member 170A to cause all light to enter the corresponding light receiving element 142. However, according to the present modification, it is possible to prevent the bubble wall 180 from propagating through the deflecting member 170A and transmitting the reflected light L1 to the adjacent light receiving elements 142. Therefore, the influence of crosstalk can be further prevented. Furthermore, a part of the light reflected by the bubble wall 180 can be incident on the light receiving surface 142a of the corresponding light receiving element 142 by internal reflection of the deflecting member 170A.
 上記以外の構成は、上記(4-2)の変形例と同様に構成することができるので、説明を省略する。 Since the configuration other than the above can be configured in the same manner as the modified example of (4-2) above, description thereof will be omitted.
 以上、本変形例に係るサーボシステムSについて説明した。本変形例では、上記(4-2)の変形例と同様の効果を得ることができる。また、本変形例では、透光部材160Bが、偏向部材170Aの周囲を囲むように形成された気泡壁180を有する。この気泡壁180により、対応する透過スリット166を透過する反射光L1を偏向部材170Aで集光する際に屈折や拡散等により該反射光L1が該偏向部材170Aの外部に散乱することを防止できる。その結果、反射光L1をより集光して対応する受光素子142に入射させることができるので、クロストークの低減効果をさらに高めることができる。 The servo system S according to this modification has been described above. In the present modification, the same effect as in the modification (4-2) can be obtained. In this modification, the translucent member 160B has a bubble wall 180 formed so as to surround the deflection member 170A. The bubble wall 180 can prevent the reflected light L1 from being scattered outside the deflecting member 170A due to refraction or diffusion when the reflected light L1 transmitted through the corresponding transmitting slit 166 is collected by the deflecting member 170A. . As a result, the reflected light L1 can be collected more and made incident on the corresponding light receiving element 142, so that the effect of reducing crosstalk can be further enhanced.
  (4-4.その他)
 以上では、ディスク110に、インクリメンタルパターンを有するように並べられた複数の反射スリット111を有するスリットトラックSTを形成したが、本開示の実施形態はこの例に限定されるものではない。例えば、ディスク110に、スリットトラックSTに代え又は加え、シリアルアブソリュートパターンを有するように並べられた複数の反射スリットを有するスリットトラックを形成してもよい。この場合、光学モジュール130の基板BA側に、光源131から出射され上記反射スリットで反射された光を各々受光する複数の受光素子が並べられた受光アレイを設けることにより、回転子m2の絶対位置(絶対角度)を検出することが可能となる。またこの場合、シリアルアブソリュートパターンに対応するスリットトラックと受光アレイとの間に、上記反射スリットで反射された光を各々透過する複数の透過スリットを有するスリットアレイを設ければよい。更に言えば、スリットトラックは、例えば、シリアルアブソリュートパターン以外のアブソリュートパターンやPWM変調したパターン、原点位置を表すパターンに対応した反射スリット等であってもよい。
(4-4. Others)
In the above, the slit track ST having the plurality of reflective slits 111 arranged so as to have the incremental pattern is formed on the disk 110, but the embodiment of the present disclosure is not limited to this example. For example, a slit track having a plurality of reflective slits arranged so as to have a serial absolute pattern may be formed on the disk 110 instead of or in addition to the slit track ST. In this case, the absolute position of the rotor m2 is provided by providing a light receiving array in which a plurality of light receiving elements for receiving the light emitted from the light source 131 and reflected by the reflection slit are arranged on the substrate BA side of the optical module 130. It is possible to detect (absolute angle). In this case, a slit array having a plurality of transmission slits that transmit the light reflected by the reflection slit may be provided between the slit track corresponding to the serial absolute pattern and the light receiving array. Further, the slit track may be, for example, an absolute pattern other than the serial absolute pattern, a PWM modulated pattern, a reflective slit corresponding to a pattern representing the origin position, or the like.
 また、以上では、光学モジュール130の基板BA側に光源131及び受光アレイPAが共に配置された反射型のエンコーダであるエンコーダ100を用いた場合を例にとって説明したが、本開示の実施形態はこの例に限定されるものではない。例えば、ディスクを挟み光源131と受光アレイとが対向して配置された、いわゆる「透過型」のエンコーダを用いてもよい。この場合、ディスクに光源131から出射された光を透過する複数の透過スリット(第1スリットの一例)を有するスリットトラックを形成すればよい。これにより、受光アレイを形成する各受光素子が、光源131から出射され対向する位置を通過する上記スリットトラックの透過スリットを透過した光を各々受光することが可能である。またこの場合、上記スリットトラックと受光アレイとの間に、上記透過スリットを透過した光を各々透過する複数の透過スリット(第2スリットの一例)を有するスリットアレイを設ければよい。 In the above description, the case where the encoder 100, which is a reflective encoder in which both the light source 131 and the light receiving array PA are arranged on the substrate BA side of the optical module 130, has been described as an example. It is not limited to examples. For example, a so-called “transmission type” encoder in which a light source 131 and a light receiving array are disposed to face each other with a disk interposed therebetween may be used. In this case, a slit track having a plurality of transmission slits (an example of a first slit) that transmits light emitted from the light source 131 may be formed on the disk. As a result, each light receiving element forming the light receiving array can receive the light emitted from the light source 131 and transmitted through the transmission slit of the slit track passing through the facing position. In this case, a slit array having a plurality of transmission slits (an example of second slits) that respectively transmit the light transmitted through the transmission slits may be provided between the slit track and the light receiving array.
 また、以上では、回転型モータであるモータM、モータMの回転子m2の位置を検出するエンコーダ100、及び、エンコーダ100からの位置データに基づいてモータMを制御する制御装置CTを備えるサーボシステムSに適用した場合を例にとって説明した。しかしながら、本開示の実施形態はこの例に限定されるものではない。例えば、可動子が固定子に対して移動するリニアモータ、該リニアモータの可動子の位置及び速度の少なくとも一方を検出するエンコーダ、及び、該エンコーダの検出結果に基づいて該リニアモータを制御する制御装置を備えるサーボシステムに適用してもよい。 In the above description, the servo system includes the motor M that is a rotary motor, the encoder 100 that detects the position of the rotor m2 of the motor M, and the controller CT that controls the motor M based on the position data from the encoder 100. The case of applying to S has been described as an example. However, the embodiment of the present disclosure is not limited to this example. For example, a linear motor that moves the mover relative to the stator, an encoder that detects at least one of the position and speed of the mover of the linear motor, and a control that controls the linear motor based on the detection result of the encoder You may apply to a servo system provided with an apparatus.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用してもよい。 In addition to those already described above, the methods according to the above-described embodiment and each modification may be used in appropriate combination.
 その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiment and each modification are implemented with various modifications within a range not departing from the gist thereof.
 100    エンコーダ
 111    反射スリット(第1スリットの一例)
 130    光学モジュール
 131    光源
 142    受光素子
 142a   受光面
 160    透光部材
 160A   透光部材
 160B   透光部材
 162    遮光部
 166    透過スリット(第2スリットの一例)
 170    偏向部材
 170A   偏向部材
 180    気泡壁(散乱部の一例)
 C      回転方向(測定方向の一例)
 CT     制御装置
 M      モータ(回転型モータの一例)
 m1     固定子
 m2     回転子
 PA     受光アレイ
 S      サーボシステム
 SA     スリットアレイ
 SM     サーボモータ(エンコーダ付きモータの一例)
 ST     スリットトラック
100 Encoder 111 Reflective slit (example of first slit)
DESCRIPTION OF SYMBOLS 130 Optical module 131 Light source 142 Light receiving element 142a Light receiving surface 160 Translucent member 160A Translucent member 160B Translucent member 162 Light-shielding part 166 Transmission slit (an example of 2nd slit)
170 Deflection member 170A Deflection member 180 Bubble wall (an example of a scattering part)
C Rotation direction (example of measurement direction)
CT controller M motor (an example of a rotary motor)
m1 Stator m2 Rotor PA Light receiving array S Servo system SA Slit array SM Servo motor (Example of motor with encoder)
ST slit track

Claims (9)

  1.  測定方向に沿って並べられた複数の第1スリットを有するスリットトラックと、
     前記スリットトラックの一部に対向しつつ、該スリットトラックに対して前記測定方向に相対移動可能な光学モジュールと、を有し、
     前記光学モジュールは、
     前記スリットトラックの対向した部分に光を出射するように構成された光源と、
     前記測定方向に沿って並べられ、前記第1スリットの作用を受けた光を各々受光する複数の受光素子を有する受光アレイと、
     前記スリットトラックと前記受光アレイとの間に配置され、前記測定方向に沿って並べられ前記第1スリットの作用を受けた光を各々透過する複数の第2スリットを有するスリットアレイと、を有する、エンコーダ。
    A slit track having a plurality of first slits arranged along the measurement direction;
    An optical module capable of moving relative to the slit track in the measurement direction while facing a part of the slit track,
    The optical module is
    A light source configured to emit light to opposing portions of the slit track;
    A light receiving array having a plurality of light receiving elements which are arranged along the measurement direction and each receive light subjected to the action of the first slit;
    A slit array that is disposed between the slit track and the light receiving array and has a plurality of second slits that are arranged along the measurement direction and each transmit light that has been subjected to the action of the first slit. Encoder.
  2.  前記光源は、
     拡散光を出射する点光源であり、
     前記第2スリットは、
     前記第1スリットの作用を受けた光が対応する前記受光素子に入射されるように、該受光素子に対して前記光の進行方向に応じた位置に配置される、請求項1に記載のエンコーダ。
    The light source is
    A point light source that emits diffused light,
    The second slit is
    2. The encoder according to claim 1, wherein the encoder is disposed at a position corresponding to a traveling direction of the light with respect to the light receiving element so that the light subjected to the action of the first slit is incident on the corresponding light receiving element. .
  3.  前記スリットアレイは、
     前記受光アレイの受光面に固定された透光部材の前記スリットトラック側の表面の前記第2スリット以外の領域に遮光部を設けることで形成される、請求項1又は2に記載のエンコーダ。
    The slit array
    The encoder according to claim 1 or 2, wherein the encoder is formed by providing a light-shielding portion in a region other than the second slit on the surface on the slit track side of the translucent member fixed to the light-receiving surface of the light-receiving array.
  4.  前記透光部材は、
     各前記第2スリットを透過した光を偏向するように構成された偏向部材を有する、請求項3に記載のエンコーダ。
    The translucent member is
    The encoder according to claim 3, further comprising a deflecting member configured to deflect light transmitted through each of the second slits.
  5.  前記透光部材は、
     前記偏向部材の周囲を囲むように形成された散乱部を有する、請求項4に記載のエンコーダ。
    The translucent member is
    The encoder according to claim 4, further comprising a scattering portion formed so as to surround the periphery of the deflection member.
  6.  前記偏向部材は、
     前記各第2スリットを透過した光を、該光の進行方向に沿った直線と、対応する前記受光素子の前記受光面に垂直な直線と、の間の角度が減少する方向に偏向するように構成される、請求項4又は5に記載のエンコーダ。
    The deflection member is
    The light transmitted through each of the second slits is deflected in a direction in which an angle between a straight line along the traveling direction of the light and a straight line perpendicular to the light receiving surface of the corresponding light receiving element decreases. The encoder according to claim 4 or 5, wherein the encoder is configured.
  7.  前記偏向部材は、
     前記各第2スリットを透過した光を、対応する前記受光素子の前記受光面の略中央方向に集光するように構成される、請求項4又は5に記載のエンコーダ。
    The deflection member is
    6. The encoder according to claim 4, wherein light transmitted through each of the second slits is collected in a substantially central direction of the light receiving surface of the corresponding light receiving element.
  8.  可動子が固定子に対して移動するリニアモータ、又は、回転子が固定子に対して回転する回転型モータと、
     前記可動子又は前記回転子の位置及び速度の少なくとも一方を検出する、請求項1~7のいずれか1項に記載のエンコーダと、を備える、エンコーダ付きモータ。
    A linear motor in which the mover moves relative to the stator, or a rotary motor in which the rotor rotates relative to the stator;
    An encoder-equipped motor comprising: the encoder according to any one of claims 1 to 7 that detects at least one of a position and a speed of the mover or the rotor.
  9.  可動子が固定子に対して移動するリニアモータ、又は、回転子が固定子に対して回転する回転型モータと、
     前記可動子又は前記回転子の位置及び速度の少なくとも一方を検出する、請求項1~7のいずれか1項に記載のエンコーダと、
     前記エンコーダの検出結果に基づいて前記リニアモータ又は前記回転型モータを制御するように構成された制御装置と、を備える、サーボシステム。
    A linear motor in which the mover moves relative to the stator, or a rotary motor in which the rotor rotates relative to the stator;
    The encoder according to any one of claims 1 to 7, which detects at least one of a position and a speed of the mover or the rotor;
    And a control device configured to control the linear motor or the rotary motor based on a detection result of the encoder.
PCT/JP2013/066619 2013-06-17 2013-06-17 Encoder, motor provided with encoder, and servo system WO2014203314A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/066619 WO2014203314A1 (en) 2013-06-17 2013-06-17 Encoder, motor provided with encoder, and servo system
JP2015522390A JPWO2014203314A1 (en) 2013-06-17 2013-06-17 Encoder, motor with encoder, and servo system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066619 WO2014203314A1 (en) 2013-06-17 2013-06-17 Encoder, motor provided with encoder, and servo system

Publications (1)

Publication Number Publication Date
WO2014203314A1 true WO2014203314A1 (en) 2014-12-24

Family

ID=52104084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066619 WO2014203314A1 (en) 2013-06-17 2013-06-17 Encoder, motor provided with encoder, and servo system

Country Status (2)

Country Link
JP (1) JPWO2014203314A1 (en)
WO (1) WO2014203314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142536A (en) * 2015-01-29 2016-08-08 ファナック株式会社 Optical encoder for preventing crosstalk

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222719A (en) * 1984-04-20 1985-11-07 Yokogawa Hokushin Electric Corp Displacement converter
JP2004028667A (en) * 2002-06-24 2004-01-29 Mitsutoyo Corp Photoelectric encoder and method of manufacturing scale
JP2007183115A (en) * 2006-01-04 2007-07-19 Fuji Electric Holdings Co Ltd Optical encoder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222719A (en) * 1984-04-20 1985-11-07 Yokogawa Hokushin Electric Corp Displacement converter
JP2004028667A (en) * 2002-06-24 2004-01-29 Mitsutoyo Corp Photoelectric encoder and method of manufacturing scale
JP2007183115A (en) * 2006-01-04 2007-07-19 Fuji Electric Holdings Co Ltd Optical encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142536A (en) * 2015-01-29 2016-08-08 ファナック株式会社 Optical encoder for preventing crosstalk
US9874463B2 (en) 2015-01-29 2018-01-23 Fanuc Corporation Optical encoder for preventing crosstalk

Also Published As

Publication number Publication date
JPWO2014203314A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5527637B2 (en) Encoder, optical module and servo system
JP6263965B2 (en) Encoder, motor with encoder, servo system
US20160164383A1 (en) Encoder and motor with encoder
WO2014141370A1 (en) Encoder, motor with encoder, and servo system
JP5943238B2 (en) Encoder, motor with encoder, servo system
US9335185B2 (en) Encoder, motor with encoder, and servo system
JP5919363B1 (en) Rotary encoder
JP2016118486A (en) Encoder and motor with encoder
JP6098999B2 (en) Encoder and motor with encoder
WO2014203314A1 (en) Encoder, motor provided with encoder, and servo system
JP6004194B2 (en) Encoder, motor with encoder, servo system
JP6037258B2 (en) Encoder and motor with encoder
JP2016109633A (en) Encoder and motor with encoder
US20150123587A1 (en) Encoder, motor with encoder, and servo system
JP6010876B1 (en) Encoder and motor with encoder
JP5999583B2 (en) Encoder, motor with encoder, servo system
JP5792253B2 (en) Transmission optical encoder having a light guide
JP6004193B2 (en) Encoder, motor with encoder, servo system
WO2014013621A1 (en) Optical encoder, motor provided with encoder, and servo system
TWI457542B (en) Optical encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522390

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887496

Country of ref document: EP

Kind code of ref document: A1