WO2014203291A1 - 通信システムおよびプログラム - Google Patents
通信システムおよびプログラム Download PDFInfo
- Publication number
- WO2014203291A1 WO2014203291A1 PCT/JP2013/003826 JP2013003826W WO2014203291A1 WO 2014203291 A1 WO2014203291 A1 WO 2014203291A1 JP 2013003826 W JP2013003826 W JP 2013003826W WO 2014203291 A1 WO2014203291 A1 WO 2014203291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packet
- identification information
- tunnel
- address
- gateway
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/22—Parsing or analysis of headers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/16—Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
- H04L69/167—Adaptation for transition between two IP versions, e.g. between IPv4 and IPv6
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/16—Gateway arrangements
Definitions
- the present invention relates to a communication system and a program.
- Patent Document 1 discloses transmission of user data by reselecting a PGW (Packet Data Network Gateway) and re-establishing a default bearer in accordance with movement of a user apparatus (UE) in EPC (Evolved Packet Core). A system is described that achieves delay improvement and efficiency of network resources within an EPC.
- a communication system is a communication system that controls routing by a physical gateway that connects a mobile station and a communication network, and a communication establishment sequence between a virtual gateway corresponding to the physical gateway and the mobile station.
- the communication setting information acquisition part which acquires the communication setting information between a virtual gateway and a mobile station by performing, and the routing control part which controls the routing by a physical gateway based on communication setting information are provided.
- the communication setting information acquisition unit includes, as communication setting information, network identification information that identifies a communication network, base station identification information that identifies a base station that accommodates a mobile station, and virtual gateway identification that identifies a virtual gateway
- the information may be acquired, and the routing control unit may update route information that the physical gateway refers to control routing based on the network identification information, the base station identification information, and the virtual gateway identification information.
- the communication setting information acquisition unit includes, as base station identification information, a first corresponding to a base station for identifying a tunnel that is virtually formed between the virtual gateway and the base station by a communication establishment sequence.
- Tunnel identification information is acquired
- second tunnel identification information corresponding to a virtual gateway for identifying a tunnel is acquired as virtual gateway identification information
- the routing control unit includes network identification information, first tunnel identification information, and second tunnel identification information. Based on the tunnel identification information, route information referred to by the physical gateway for controlling routing may be updated.
- the communication setting information acquisition unit acquires, as the first tunnel identification information, an IP address of the base station and a first tunnel identification code generated by the base station that identifies the tunnel, and second tunnel identification information
- the route information is the next hop indicating the destination IP address and the next relay point for the destination IP address
- the routing control unit generates a destination path corresponding to the mobile station based on the network identification information and the second tunnel identification code, and generates an IP address of the base station and the first tunnel identification code.
- route information that associates the generated IP address and generated next hop address of the destination that is registered in the routing table may update the routing information.
- the base station when the base station receives a first packet having an IPv4 header from the mobile station, the base station encapsulates the first packet with the second tunnel identification information and transfers the encapsulated first packet to the physical gateway.
- the physical gateway decapsulates the encapsulated first packet, and then recapsulates the first packet with an IPv6 header including the network identification information, the second tunnel identification code, and the IP address of the mobile station as a source address.
- the re-encapsulated first packet may be sent out to the communication network.
- the physical gateway when the physical gateway receives the second packet having the IPv4 header encapsulated by the IPv6 header directed to the mobile station, the destination of the IPv6 header of the second packet is referred to with the path information.
- the first tunnel identification information is specified as the next hop address corresponding to the network identification information and the second tunnel identification code indicated in the address, and the second packet is re-encapsulated by the specified first tunnel identification information, and re-encapsulated.
- the converted second packet may be transferred to the base station.
- the base station when the base station receives a third packet having an IPv6 header including network identification information and a second tunnel identification code in a source address from the mobile station, the base station encapsulates the third packet with the second tunnel identification information.
- the encapsulated third packet may be transferred to the physical gateway, and the physical gateway may decapsulate the encapsulated third packet and then send the third packet toward the communication network.
- the physical gateway when the physical gateway receives the fourth packet including the network identification information and the second tunnel identification code as the IPv6 header as the destination address, the physical gateway refers to the path information and refers to the destination of the IPv6 header of the fourth packet.
- the first tunnel identification information is specified as the next hop address corresponding to the network identification information and the second tunnel identification code included in the nation address, and the fourth packet is encapsulated by the specified first tunnel identification information, and encapsulated.
- the transmitted fourth packet may be transferred to the base station.
- the communication setting information acquisition unit and the routing control unit may be arranged on the cloud.
- the communication system may further include a virtual gateway arranged on the cloud.
- the communication system may further include a physical gateway.
- FIG. 1 is a diagram illustrating an example of a network configuration of a communication system according to the present embodiment.
- the communication system includes a virtual service device 100, an eNodeB (base station) 200, an EPCE (EPC Edge) router 210, a V4V6 conversion gateway 220, an IPv6 router 230, and a mobile station (UE) 300.
- eNodeB base station
- EPCE EPC Edge
- V4V6 conversion gateway 220 an IPv6 router 230
- IPv6 router 230 IPv6 router 230
- UE mobile station
- the eNodeB 200 accommodates the mobile station 300 existing in its own cell.
- the eNodeB 200 communicates with the EPCE router 210 via the E-UTRAN / EPC 10.
- the E-UTRAN / EPC 10 is communicatively connected to the cloud 20.
- the EPCE router 210 is a gateway that connects the E-UTRAN / EPC 10 and the IPv6 carrier network 30 for communication.
- the EPCE router 210 communicates with the V4V6 conversion gateway 220 or the IPv6 router 230 via the IPv6 carrier network 30.
- the V4V6 conversion gateway 220 is a gateway that connects the IPv6 carrier network 30 and the IPv4 Internet 40 for communication.
- the IPv6 router 230 is a gateway for communication connection between the IPv6 carrier network 30 and the IPv6 Internet 50.
- the EPCE router 210 is an example of a physical gateway that connects the mobile station 300 to the IPv4 Internet 40 or the IPv6 Internet 50 that is a communication network.
- the virtual service apparatus 100 establishes communication between the virtual service apparatus 100 and the mobile station 300 via the eNodeB 200 that accommodates the mobile station 300 by transmitting and receiving control data in the control plane with the mobile station 300 via the eNodeB 200. Run the sequence.
- the virtual service device 100 virtually forms a tunnel between the virtual service device 100 and the eNodeB 200 by executing a communication establishment sequence.
- the virtual service apparatus 100 executes a communication establishment sequence between the virtual service apparatus 100 and the mobile station 300 via the handover destination eNodeB 200 that accommodates the mobile station 300. Then, a virtual new tunnel is formed between the virtual service device 100 and the handover destination eNodeB 200.
- the EPCE router 210 transfers user data received from the mobile station 300 via the eNodeB 200 toward the IPv6 carrier network 30 in the user plane.
- the EPCE router 210 transfers user data for the mobile station 300 received from the IPv6 carrier network 30 in the user plane to the mobile station 300 via the eNodeB 200.
- the EPCE router 210 may hold route information referred to for controlling routing.
- the route information is, for example, a routing table including a destination IP address and a next hop address indicating a next relay point for the destination IP address in association with each other.
- the EPCE router 210 refers to the path information, determines the transfer destination of the packet, and transfers the packet to the determined transfer destination.
- the virtual service device 100 uses the EPCE router 210 based on communication setting information obtained by a communication establishment sequence executed with the mobile station 300 when the mobile station 300 is activated or when the mobile station 300 is handed over. Update route information for.
- the V4V6 conversion gateway 220 is a gateway that connects the IPv6 carrier network 30 and the IPv4 Internet 40 for communication.
- the V4V6 translation gateway 220 decapsulates and then transmits the IPv4 packet as an IPv4 packet toward the IPv4 Internet 40 by AFTR (defined by RFC 6333).
- Address-Family Translation Router) device or a 464XLAT device defined in RFC6877, which is a conversion method using NAT64 that converts received IPv6 packets into IPv4 packets and reversely converts them. It may be.
- the V4V6 conversion gateway 220 encapsulates the IPv4 packet received from the IPv4 Internet 40 using the IPv6 header or converts the IPv6 packet to the EPCE router 210.
- the IPv6 router 230 is a gateway for communication connection between the IPv6 carrier network 30 and the IPv6 Internet 50.
- the eNodeB 200 communicates control data in the control plane with the virtual service device 100.
- the eNodeB 200 communicates user data in the user plane with the EPCE router 210.
- the virtual service device 100 is arranged on the cloud and may be configured by a plurality of devices. Therefore, even when a large amount of control data is exchanged with a large number of mobile stations 300 at a time, the control data processing can be distributed using a plurality of devices, for example. Moreover, even if user data increases, the influence on communication of control data between the mobile station 300 and the virtual service apparatus 100 can be suppressed.
- FIG. 2 is a diagram illustrating an example of functional blocks of the virtual service device 100.
- the virtual service device 100 includes a mobility management entity (MME) 110 and a route information distribution system 120.
- MME mobility management entity
- the virtual service device 100 further includes a first virtual gateway 130 and a second virtual gateway 140 as virtual gateways.
- the MME 110 performs mobility management of the mobile station 300 and authentication of the mobile station 300 in cooperation with HSS (Home Subscriber Server).
- HSS Home Subscriber Server
- the first virtual gateway 130 virtually functions as an SGW (Serving Gateway).
- the virtual service device 100 may include at least one first virtual gateway 130 for at least one eNodeB 200.
- the second virtual gateway 140 virtually functions as a PGW (Packet Data Network Gateway).
- the virtual service device 100 may include at least one second virtual gateway 140 for at least one first virtual gateway 130.
- the MME 110 includes a communication setting information acquisition unit 112.
- the communication setting information acquisition unit 112 virtually executes communication establishment sequence between the virtual gateway corresponding to the EPCE router 210 and the mobile station 300, thereby obtaining communication setting information between the virtual gateway and the mobile station 300. get.
- each first virtual gateway 130 may have the communication setting information acquisition unit 112 and acquire the communication setting information.
- the route information distribution system 120 manages route information of the EPCE router 210.
- the route information distribution system 120 includes a routing control unit 122.
- the routing control unit 122 controls routing by the EPCE router 210 based on the communication setting information.
- the communication setting information acquisition unit 112 includes, as communication setting information, network identification information (APN) that identifies a communication network to which the mobile station 300 is connected, base station identification information that identifies the eNodeB 200 that houses the mobile station 300, and a virtual gateway Virtual gateway identification information for identifying
- the routing control unit 122 may update route information that the EPCE router 210 refers to in order to control routing based on the network identification information, the base station identification information, and the virtual gateway identification information.
- the communication setting information acquisition unit 112 uses, as base station identification information, a first corresponding to the eNodeB 200 for identifying a tunnel that is virtually formed between the virtual gateway and the eNodeB 200 that accommodates the mobile station 300 by the communication establishment sequence. Tunnel identification information may be acquired.
- the communication setting information acquisition unit 112 may acquire the second tunnel identification information corresponding to the virtual gateway for identifying the tunnel virtually formed between the virtual gateway and the eNodeB 200 as the virtual gateway identification information. .
- the routing control unit 122 may update route information that the physical gateway refers to control routing based on the network identification information, the first tunnel identification information, and the second tunnel identification information.
- the communication setting information acquisition unit 112 uses the IP address of the eNodeB 200 for identifying the eNB-SGW tunnel virtually formed between the eNodeB 200 and the first virtual gateway 130 by the communication establishment sequence as the first tunnel identification information. (ENB S1-U Address) and the first tunnel identification code (eNB TEID) generated by the eNodeB 200 may be acquired.
- the communication setting information acquisition unit 112 is generated as the second tunnel identification information by the first virtual gateway 130 and the IP address (SGW S1-U Address) of the first virtual gateway 130 for identifying the eNB-SGW tunnel.
- the second tunnel identification code (SGW TEID) may be acquired.
- the routing control unit 122 may generate destination IPv6 route information corresponding to the mobile station 300 based on the network identification information (APN) and the second tunnel identification code (SGW TEID).
- the routing control unit 122 uses the IPv4 address (UE Address) of the mobile station 300 generated by the second virtual gateway 140 and the network identification.
- IPv6 route information of the destination corresponding to the mobile station 300 may be generated based on the information (APN) and the second tunnel identification code (SGW TEID).
- the routing control unit 122 generates a next hop address corresponding to the route information of the destination of the mobile station 300 based on the first tunnel identification information (eNB S1-U Address, eNB TEID), and the generated route information and
- the route table may be updated by associating the generated next hop address and registering it in the route table.
- the eNodeB 200 When the eNodeB 200 receives the first packet having the IPv4 header from the mobile station 300, the eNodeB 200 encapsulates the first packet with the second tunnel identification code (SGW TEID) and transfers the encapsulated first packet to the EPCE router 210. To do. After decapsulating the encapsulated first packet, the EPCE router 210 includes the network identification information (APN), the second tunnel identification code (SGW TEID), and the IP address (UE Address) of the mobile station 300 as the source address. The first packet is re-encapsulated by the IPv6 header, and the re-encapsulated first packet is transmitted to the IPv4 Internet 40 which is a communication network to which the mobile station 300 is connected.
- APN network identification information
- SGW TEID the second tunnel identification code
- UE Address IP address
- the EPCE router 210 When the EPCE router 210 receives the second packet having the IPv4 header encapsulated by the IPv6 header, the EPCE router 210 refers to the path information and identifies the network identification information (APN) indicated in the destination address of the IPv6 header of the second packet.
- the first tunnel identification information (eNB S1-U Address, eNB TEID) is specified as the next hop address corresponding to the second tunnel identification code (SGW TEID).
- the EPCE router 210 re-encapsulates the second packet using the IP address (eNB S1-U Address) and the first tunnel identification code (eNB TEID) of the eNodeB 200 included in the identified first tunnel identification information, and re-encapsulates the second packet.
- the converted second packet is transferred to the eNodeB 200.
- the eNodeB 200 When the eNodeB 200 receives the third packet having the IPv6 header including the network identification information (APN) and the second tunnel identification code (SGW TEID) as the source address from the mobile station 300, the eNodeB 200 uses the second tunnel identification code to receive the third packet. And the encapsulated third packet is transferred to the EPCE router 210. The EPCE router 210 decapsulates the encapsulated third packet and then sends the third packet toward the IPv6 Internet 50.
- API network identification information
- SGW TEID second tunnel identification code
- the EPCE router 210 When the EPCE router 210 receives the fourth packet including the network identification information (APN) and the second tunnel identification code (SGW TEID) as the destination address of the IPv6 header, the EPCE router 210 refers to the path information and determines the IPv6 of the fourth packet.
- the first tunnel identification information (eNB S1-U Address, eNB TEID) is specified as the next hop address corresponding to the network identification information and the second tunnel identification code included in the destination address of the header.
- the EPCE router 210 encapsulates the fourth packet by the IP address (eNB S1-U Address) of the eNodeB 200 and the first tunnel identification code (eNB TEID) included in the identified first tunnel identification information.
- the fourth packet is transferred to the eNodeB 200.
- FIG. 3 shows an example of route information held by the EPCE router 210.
- the route information includes “IPv6 Prefix” corresponding to the destination IP address, the egress interface “Inreface” corresponding to the next hop address, and the next hop address “next_hop (eNB S1-U address, TEID)”.
- the prefix (subnet number) used in the APN to which the mobile station 300 is connected is “2001: db8”, and the eNB-SGW tunnel formed between the first virtual gateway 130 corresponding to the mobile station 300 and the eNodeB 200.
- the EPCE router 210 When the second tunnel identification code generated by the first virtual gateway 130 for identifying “0x0a0b0c0d” is used, the EPCE router 210, for example, http://tools.ietf.org/html/draft-savolainen-stateless -32 bits of the second tunnel identification code (SGW TEID) generated by the first virtual gateway 130 for identifying the tunnel between eNB and SGW following the APN Prefix using the method indicated by -pd-01 Is added to the destination IPv6 prefix corresponding to the mobile station 300.
- SGW TEID second tunnel identification code
- the routing control unit 122 when the IP address of the eNodeB 200 is “1.1.1.1” and the first tunnel identification code generated by the eNodeB 200 for identifying the tunnel between the eNB and the SGW is “0x1a1b1c1d”, the routing control unit 122 Then, “eNB S1-U ⁇ 1.1.1.1, TEID ⁇ 0x1a1b1c1d / 32” is generated as the next hop address.
- the next hop address including TEID is defined in RFC 5512 so that, for example, RFC 5512 that defines the next hop address as a tunnel can be extended, GTP is specified as a tunnel type, and the next hop address including TEID can be expressed. May be extended.
- the mobile station 300 may perform voice packet communication while connected to the Internet.
- the mobile station 300 establishes a GTP tunnel for Internet service and a GTP tunnel for VoLTE service with the EPCE router 210.
- the mobile station 300 virtually establishes a plurality of tunnels corresponding to the GTP tunnel for the Internet service and the GTP tunnel for the VoLTE service with the virtual service device 100.
- a plurality of tunnels established between the eNodeB 200 corresponding to the mobile station 300 and the EPCE router 210 with respect to the IP address of the eNodeB 200 corresponding to the mobile station 300 as the next hop address for the mobile station 300.
- Route information associated with an endpoint identifier (TEID) may be generated. In this way, by associating a plurality of TEIDs with a single destination IP address, even when a plurality of tunnels are established for one mobile station 300, the EPCE router 210 can Multiple packets can be routed appropriately through each tunnel.
- TEID endpoint identifier
- the mobile station 300 Since the mobile station 300 is connected to a plurality of services at the same time, when a plurality of eNB-SGW tunnels are virtually formed between the eNodeB 200 and the first virtual gateway 130, the first virtual gateway 130 is connected to the mobile station 300.
- the range of the SGW TEID generated from “0x0a0b0c00” to “0x0a0b0cff” 256 tunnels can be expressed by only one IPv6 route “2001: db8: 0a0b: 0c00 :: / 56”.
- the eNodeB 200 also sets the range of the eNB TEID corresponding to the SGW TEID from “0x1a1b1c00” to “0x1a1b1cff”, so that the next hop address corresponding to the IPv6 route “2001: db8: 0a0b: 0c00 :: / 56” As "eNB S1-U-> 1.1.1.1, TEID-> 0x1a1b1c00 / 24".
- FIG. 4 is a diagram illustrating an example of a communication establishment sequence executed between the mobile station 300 and the virtual service device 100 when the mobile station 300 is activated.
- the mobile station 300 When the mobile station 300 is activated, the mobile station 300 transmits an attach request signal including the APN for identifying the communication network to be connected and the IP address type of the communication network to be connected to the MME 110 via the eNodeB 200 (S100).
- the IP address type indicates either IPv4, IPv6, or IPv4v6 as the IP address type to be assigned to the mobile station 300.
- IPv4v6 When the IP address type assigned to the mobile station 300 is IPv4v6, it indicates that the IP address to be assigned to the mobile station 300 is both an IPv4 address and an IPv6 address.
- the MME 110 that has received the attach request signal communicates with the HSS to authenticate the mobile station 300, and then acquires contract information necessary for bearer setting from the HSS.
- the MME 110 sets the first virtual gateway (SGW) 130 and the second virtual gateway 140 (PGW) as bearer setting destinations by DNS (Domain Name System) based on the APN notified from the mobile station 300 by the attach request signal.
- a bearer setting request signal is transmitted to the selected first virtual gateway 130 so as to virtually form an SGW-PGW tunnel between the first virtual gateway 130 and the second virtual gateway 140.
- the first virtual gateway 130 includes a third tunnel identification code generated by the first virtual gateway 130 for identifying the SGW-PGW tunnel and the IP address of the first virtual gateway 130 according to the bearer setting request signal.
- the tunnel identification information (FTEID of SGW) is notified to the second virtual gateway 140.
- the first virtual gateway 130 virtually executes bearer setting processing on the second virtual gateway 140 indicated in the bearer setting request signal (S104). By executing the bearer setting process, an SGW-PGW tunnel is virtually formed between the first virtual gateway 130 and the second virtual gateway 140.
- the second virtual gateway 140 includes a fourth tunnel identification code generated by the second virtual gateway 140 for identifying the SGW-PGW tunnel and the IP address of the second virtual gateway 140 in the bearer setting process. Identification information (FTEID of PGW) is notified to the first virtual gateway 130.
- the first virtual gateway 130 When the bearer setting is completed, that is, when the SGW-PGW tunnel is virtually formed, the first virtual gateway 130 virtually forms an eNB-SGW tunnel between the first virtual gateway 130 and the eNodeB 200. Therefore, a bearer setting response signal is transmitted to the MME 110 (S106).
- the first virtual gateway 130 uses the bearer setup response signal to generate a second tunnel identification code (SGW TEID) generated by the first virtual gateway 130 for identifying the eNB-SGW tunnel and the eNodeB 200 side of the first virtual gateway 130.
- the second tunnel identification information (SGW FTEID: SGW S1-U Address, SGW TEID) including the IP address (SGW S1-U Address) is notified to the MME 110.
- the MME 110 When receiving the bearer setup response signal, the MME 110 notifies the eNodeB 200 of the second tunnel identification information (SGW FTEID) indicated in the bearer setup response signal as a radio bearer setup request signal (S108).
- the radio bearer setting request signal includes an attach acceptance signal to the mobile station 300.
- the eNodeB 200 When the eNodeB 200 receives the radio bearer setting request signal, the eNodeB 200 transmits an attach acceptance signal to the mobile station 300 when establishing a radio bearer with the mobile station 300. Next, the eNodeB 200 receives the radio bearer setup response signal from the mobile station 300, and uses the first tunnel identification code generated by the eNodeB 200 for identifying the eNB-SGW tunnel as transmission information for the first virtual gateway 130 ( The first tunnel identification information (eNB FTEID: eNB S1-U Address, eNB TEID) including the IP address of the eNodeB 200 and the eNodeB 200 is notified to the MME 110 (S110).
- the first tunnel identification information eNB FTEID: eNB S1-U Address, eNB TEID
- the MME 110 notifies the first virtual gateway 130 of the first tunnel identification information received from the eNodeB 200 by transmitting a bearer update request signal to the first virtual gateway 130 (S112). Based on the received first tunnel identification information, the first virtual gateway 130 virtually forms an eNB-SGW tunnel with the eNodeB 200, and transmits a bearer update response signal to the MME 110 (S114).
- the communication setting information acquisition unit 112 of the MME 110 the network identification information (APN) acquired in the communication establishment sequence, the first tunnel identification information (eNB FTEID: eNB S1 -Route information update request signal including U Address, eNB TEID) and second tunnel identification information (SGW FTEID: SGW SI-U Address, SGW TEID) is notified to the route information distribution system 120 (S116).
- the first tunnel identification information eNB FTEID: eNB S1 -Route information update request signal including U Address, eNB TEID
- SGW FTEID SGW SI-U Address, SGW TEID
- the routing control unit 122 of the route information distribution system 120 receives the route of the destination corresponding to the mobile station 300 based on the network identification information (APN) and the second tunnel identification code (SGW TEID). Is generated. In addition, the routing control unit 122 generates a next hop address corresponding to the destination route of the mobile station 300 based on the first tunnel identification information (eNB S1-U Address, eNB TEID).
- APN network identification information
- SGW TEID second tunnel identification code
- the route information distribution system 120 transmits to the EPCE router 210 a route information update signal including route information including the generated destination route and the generated next hop address (S118).
- the EPCE router 210 registers the route information indicated by the route information update signal in the route table, and updates the route table.
- the route information distribution system 120 advertises to all the EPCE routers 210 related to the route information generated by the routing control unit 122 (S120).
- a route information distribution system that distributes route information to a plurality of EPCE routers may use a route reflector (RR) method device defined by RFC4456 that distributes route information using BGP (Border Gateway Protocol). Alternatively, XMPP or other PubSub systems may be used.
- RR route reflector
- the EPCE router 210 Based on the routing table updated by the routing information update signal, the EPCE router 210 transmits the user data in the user plane to the eNodeB 200 via the GTP tunnel as if there is an eNB-SGW tunnel with the eNodeB 200. Via the mobile station 300.
- the virtual service device 100 arranged on the cloud 20 transmits and receives control data in the control plane to and from the eNodeB 200, thereby executing a communication establishment sequence with the mobile station 300 via the eNodeB 200.
- the communication setting information acquisition unit 112 acquires network identification information, base station identification information, and virtual gateway identification information as communication setting information.
- the routing control unit 122 updates route information that the EPCE router 210 refers to in order to control routing.
- the eNodeB 200 transmits / receives control data in the control plane to / from the virtual service device 100, and transmits / receives user data in the user plane to / from the EPCE router 210.
- the virtual service device 100 may be configured by a plurality of devices arranged on the cloud. Therefore, even when a large amount of control data is exchanged with a large number of mobile stations 300 at a time, control data processing can be distributed using a plurality of devices functioning as the virtual service device 100. Even if the processing of user data increases, the device that processes the control data and the device that processes the user data are physically separated, so that adverse effects on the processing of the control data can be suppressed.
- FIG. 5 shows a sequence in which the mobile station 300 transmits an IPv4 packet to the IPv4 Internet 40, and a sequence in which the mobile station 300 receives an IPv4 packet from the IPv4 Internet 40.
- the mobile station 300 transmits a packet P1 having an IPv4 header to the eNodeB 200 (S200).
- the eNodeB 200 encapsulates the packet P1 with the IP header having the SGW S1-U IP address as the destination address and the GTP header including the second tunnel identification code (SGW TEID), and the encapsulated packet P1 is the EPCE router 210.
- SGW TEID second tunnel identification code
- the E-UTRAN / EPC 10 which is a network for transferring the packet P 1, is configured to send a packet having the SGW S1-U IP address as the destination address to the EPCE router 210.
- the EPCE router 210 decapsulates the packet P1, and then refers to the IPv4 header of the packet P1 to identify the APN and the IP address (UE Address) of the mobile station 300.
- the EPCE router 210 uses the IPv6 header including the network identification information (APN), the second tunnel identification code (SGW TEID), and the IP address (UE Address) of the mobile station 300 as a source address in the decapsulated packet P1. Is re-encapsulated or converted to IPv6, and the packet P1 converted to IPv6 is transmitted to the IPv6 carrier network toward the V4V6 conversion gateway 220 (S204).
- the V4V6 conversion gateway 220 decapsulates the received packet P1, removes the IPv6 header or performs IPv4 conversion, and sends the packet P1 to the IPv4 Internet 40, which is a communication network to which the mobile station 300 is connected (S206).
- the V4V6 translation gateway 220 When the V4V6 translation gateway 220 receives the packet P2 destined for the mobile station 300 having the IPv4 header (S210), the V4V6 translation gateway 220 receives the IP address (UE Address) of the destination mobile station 300 indicated by the IPv4 destination address. From the IPv6 header, the IPv6 address including the network identification information (APN), the second tunnel identification code (SGW TEID) and the IP address (UE Address) of the mobile station 300 is specified, and the specified IPv6 address is the destination address. The packet P2 is encapsulated or IPv6 converted, and the IPv6 packet P2 is transmitted to the EPCE router 210 (S212).
- the EPCE router 210 When receiving the packet P2, the EPCE router 210 refers to the route information, and sets the first hop address corresponding to the network identification information (APN) and the second tunnel identification code (SGW TEID) indicated in the IPv6 destination address. After identifying the tunnel identification information (eNB S1-U Address, eNB TEID), the packet P2 is decapsulated or converted to IPv4.
- APN network identification information
- SGW TEID second tunnel identification code
- the EPCE router 210 uses the IP header having the destination address to be the eNB S1-U Address of the eNodeB 200 included in the specified first tunnel identification information, and the GTP header including the first tunnel identification code (eNB TEID) to generate the packet P2 Is re-encapsulated, and the re-encapsulated packet P2 is transferred to the eNodeB 200 (S214).
- eNB TEID first tunnel identification code
- the eNodeB 200 decapsulates the received packet P2, and then transmits the packet P2 to the mobile station 300 having a radio bearer corresponding to the eNB TEID indicated in the GTP header (S216).
- FIG. 6 shows a sequence in which the mobile station 300 transmits an IPv6 packet to the IPv6 Internet 50, and a sequence in which the mobile station 300 receives an IPv6 packet from the IPv6 Internet 50.
- the mobile station 300 transmits an IPv6 packet P3 having an IPv6 header including network identification information (APN) and a second tunnel identification code (SGW TEID) as a source address to the eNodeB 200 (S300).
- APN network identification information
- SGW TEID second tunnel identification code
- the eNodeB 200 encapsulates the received packet P3 with the GTP header including the IP header having the SGW S1-U IP address as the destination address and the second tunnel identification code (SGW TEID), and transmits the result to the EPCE router 210 (S302). ).
- the E-UTRAN / EPC 10 which is a network for transferring the packet P 1, is configured to send a packet having the SGW S1-U IP address as the destination address to the EPCE router 210.
- the EPCE router 210 decapsulates the packet P3, and then transmits the packet P3 to the IPv6 carrier network 30 based on the routing result and the routing result based on the IPv6 destination address of the packet P3.
- the IPv6 router 230 receives the packet P3 (S304).
- the IPv6 router 230 transmits the received packet P3 toward the IPv6 Internet 50 (S306).
- the IPv6 router 230 When the IPv6 router 230 receives the IPv6 packet P4 having the IPv6 header including the network identification information (APN) and the second tunnel identification code (SGW TEID) as the destination address (S310), the IPv6 router 230 EPCPs the packet P4. Transfer to the IPv6 carrier network 30 toward the router 210 (S312).
- the IPv6 carrier network 30 is configured to send an IPv6 packet including the network identification information (APN) and the second tunnel identification code (SGW TEID) as the destination address to the EPCE router 210.
- the EPCE router 210 When receiving the packet P4, the EPCE router 210 refers to the route information, and the first tunnel identification information (as the next hop address corresponding to the network identification information and the second tunnel identification code included in the IPv6 destination address of the packet P4) eNB S1-U Address, eNB TEID) is specified.
- the EPCE router 210 includes an IP header that uses the IP address (eNB S1-U Address) of the eNodeB 200 included in the identified first tunnel identification information as a destination address, and a GTP header that includes a first tunnel identification code (eNB TEID).
- the packet P4 is encapsulated, and the encapsulated packet P4 is transferred to the eNodeB 200 (S314).
- the eNodeB 200 decapsulates the packet P4 and transmits the packet P4 to the mobile station 300 having a radio bearer corresponding to the eNB TEID indicated in the GTP header of the packet P4 (S316).
- the virtual service device 100 that processes control data communicated on the control plane and the EPCE router 210 that processes user data communicated on the user plane are physically separated. Has been. Thereby, even when the processing load of control data or user data increases with the increase in the number of mobile stations 300, the system can be flexibly changed individually in accordance with the processing load.
- Each unit included in the virtual service device 100 installs a program recorded on a computer-readable recording medium that performs various processes related to a communication establishment sequence and routing, and causes the computer to execute the program. It may be configured. That is, even if the virtual service device 100 is configured by causing the computer to function as each unit included in the virtual service device 100 by causing the computer to execute programs for performing various processes related to the communication establishment sequence and routing of the virtual service device 100. Good.
- the computer has various memories such as a CPU, ROM, RAM, and EEPROM (registered trademark), a communication bus, and an interface.
- the CPU reads and sequentially executes a processing program stored in the ROM as firmware in advance, thereby enabling a virtual service device. It functions as 100.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
通信システムは、移動局と通信ネットワークとを接続する物理ゲートウェイによるルーティングを制御する。通信システムは、通信設定情報取得部およびルーティング制御部を備える。通信設定情報取得部は、物理ゲートウェイに対応する仮想ゲートウェイと移動局との間で通信確立シーケンスを実行することにより、仮想ゲートウェイと移動局との間の通信設定情報を取得する。ルーティング制御部は、通信設定情報に基づいて、物理ゲートウェイによるルーティングを制御する。
Description
本発明は、通信システムおよびプログラムに関する。
特許文献1には、EPC(Evolved Packet Core)において、ユーザ装置(UE)の移動に合わせて、PGW(Packet Data Network Gateway)を再選択し、デフォルトベアラを再確立することにより、ユーザデータの伝送遅延改善およびEPC内のネットワークリソースの効率化を実現するシステムが記載されている。
特許文献1 特開2011-217397
特許文献1 特開2011-217397
EPCのような通信システムにおいて、より柔軟にシステム変更を可能にすることが望まれている。
本発明の一態様に係る通信システムは、移動局と通信ネットワークとを接続する物理ゲートウェイによるルーティングを制御する通信システムであって、物理ゲートウェイに対応する仮想ゲートウェイと移動局との間で通信確立シーケンスを実行することにより、仮想ゲートウェイと移動局との間の通信設定情報を取得する通信設定情報取得部と、通信設定情報に基づいて、物理ゲートウェイによるルーティングを制御するルーティング制御部とを備える。
上記通信システムにおいて、通信設定情報取得部は、通信設定情報として、通信ネットワークを識別するネットワーク識別情報、移動局を収容する基地局を識別する基地局識別情報、および仮想ゲートウェイを識別する仮想ゲートウェイ識別情報を取得し、ルーティング制御部は、ネットワーク識別情報、基地局識別情報および仮想ゲートウェイ識別情報に基づいて、物理ゲートウェイがルーティングを制御するために参照する経路情報を更新してもよい。
上記通信システムにおいて、通信設定情報取得部は、基地局識別情報として、通信確立シーケンスによって仮想ゲートウェイと基地局との間に仮想的に形成されるトンネルを識別するための基地局に対応する第1トンネル識別情報を取得し、仮想ゲートウェイ識別情報として、トンネルを識別するための仮想ゲートウェイに対応する第2トンネル識別情報を取得し、ルーティング制御部は、ネットワーク識別情報、第1トンネル識別情報および第2トンネル識別情報に基づいて、物理ゲートウェイがルーティングを制御するために参照する経路情報を更新してもよい。
上記通信システムにおいて、通信設定情報取得部は、第1トンネル識別情報として、基地局のIPアドレス、およびトンネルを識別する基地局により生成される第1トンネル識別符号を取得し、第2トンネル識別情報として、仮想ゲートウェイのIPアドレス、およびトンネルを識別する仮想ゲートウェイにより生成される第2トンネル識別符号を取得し、経路情報は、宛先のIPアドレスと、宛先のIPアドレスに対する次中継点を示すネクストホップアドレスとを対応付けて含み、ルーティング制御部は、ネットワーク識別情報と第2トンネル識別符号とに基づいて移動局に対応する宛先の経路を生成し、基地局のIPアドレスおよび第1トンネル識別符号に基づいて移動局の宛先のIPアドレスに対応するネクストホップアドレスを生成し、生成された宛先のIPアドレスおよび生成されたネクストホップアドレスを対応付けた経路情報を経路表に登録することで、経路情報を更新してもよい。
上記通信システムにおいて、基地局は、移動局からIPv4ヘッダを有する第1パケットを受信した場合、第2トンネル識別情報により第1パケットをカプセル化して、カプセル化された第1パケットを物理ゲートウェイに転送し、物理ゲートウェイは、カプセル化された第1パケットをデカプセル化した後、ネットワーク識別情報、第2トンネル識別符号および移動局のIPアドレスをソースアドレスとして含むIPv6ヘッダにより第1パケットを再カプセル化して、再カプセル化された第1パケットを通信ネットワークに向けて送出してもよい。
上記通信システムにおいて、物理ゲートウェイは、移動局に向けたIPv6ヘッダによりカプセル化されたIPv4ヘッダを有する第2パケットを受信した場合、経路情報を参照して、第2パケットの前記IPv6ヘッダのデスティネーションアドレスに示されるネットワーク識別情報および第2トンネル識別符号に対応するネクストホップアドレスとして第1トンネル識別情報を特定し、特定された第1トンネル識別情報により、第2パケットを再カプセル化して、再カプセル化された第2パケットを基地局に転送してもよい。
上記通信システムにおいて、基地局は、移動局から、ネットワーク識別情報および第2トンネル識別符号をソースアドレスに含むIPv6ヘッダを有する第3パケットを受信した場合、第2トンネル識別情報により第3パケットをカプセル化して、カプセル化された第3パケットを物理ゲートウェイに転送し、物理ゲートウェイは、カプセル化された第3パケットをデカプセル化した後、第3パケットを通信ネットワークに向けて送出してもよい。
上記通信システムにおいて、物理ゲートウェイは、IPv6ヘッダとしてネットワーク識別情報および第2トンネル識別符号をデスティネーションアドレスとして含む第4パケットを受信した場合、経路情報を参照して、第4パケットのIPv6ヘッダのデスティネーションアドレスに含まれるネットワーク識別情報および第2トンネル識別符号に対応するネクストホップアドレスとして第1トンネル識別情報を特定し、特定された第1トンネル識別情報により、第4パケットをカプセル化して、カプセル化された第4パケットを基地局に転送してもよい。
上記通信システムにおいて、通信設定情報取得部およびルーティング制御部は、クラウド上に配置されてもよい。上記通信システムは、クラウド上に配置された仮想ゲートウェイをさらに備えてもよい。上記通信システムは、物理ゲートウェイをさらに備えてもよい。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係る通信システムのネットワーク構成の一例を示す図である。通信システムは、仮想サービス装置100、eNodeB(基地局)200、EPCE(EPC Edge)ルータ210、V4V6変換ゲートウェイ220、IPv6ルータ230、および移動局(UE)300を備える。
eNodeB200は、自己のセル内に存在する移動局300を収容する。eNodeB200は、E-UTRAN/EPC10を介してEPCEルータ210と通信する。E-UTRAN/EPC10は、クラウド20に通信接続されている。クラウド20上には、仮想サービス装置100が配置されている。
EPCEルータ210は、E-UTRAN/EPC10とIPv6キャリアネットワーク30とを通信接続するゲートウェイである。EPCEルータ210は、IPv6キャリアネットワーク30を介してV4V6変換ゲートウェイ220またはIPv6ルータ230と通信する。
V4V6変換ゲートウェイ220は、IPv6キャリアネットワーク30とIPv4インターネット40とを通信接続するゲートウェイである。IPv6ルータ230は、IPv6キャリアネットワーク30とIPv6インターネット50とを通信接続するゲートウェイである。
EPCEルータ210は、移動局300と通信ネットワークであるIPv4インターネット40またはIPv6インターネット50とを接続する物理ゲートウェイの一例である。
仮想サービス装置100は、eNodeB200を介して移動局300と制御プレーンにおいて制御データを送受信することで、仮想サービス装置100と移動局300との間で、移動局300を収容するeNodeB200を介して通信確立シーケンスを実行する。仮想サービス装置100は、通信確立シーケンスを実行することにより、仮想サービス装置100とeNodeB200との間に仮想的にトンネルを形成する。移動局300がeNodeB200間をハンドオーバーすると、仮想サービス装置100は、仮想サービス装置100と移動局300との間で、移動局300を収容するハンドオーバー先のeNodeB200を介して通信確立シーケンスを実行し、仮想サービス装置100とハンドオーバー先のeNodeB200との間に仮想的に新たなトンネルを形成する。
EPCEルータ210は、ユーザプレーンにおいて移動局300からeNodeB200を介して受信したユーザデータをIPv6キャリアネットワーク30に向けて転送する。EPCEルータ210は、ユーザプレーンにおいてIPv6キャリアネットワーク30から受信した移動局300向けのユーザデータを、eNodeB200を介して移動局300に転送する。
EPCEルータ210は、ルーティングを制御するために参照する経路情報を保持してもよい。経路情報は、例えば、宛先のIPアドレスと、宛先のIPアドレスに対する次中継点を示すネクストホップアドレスとを対応付けて含むルーティングテーブルである。EPCEルータ210は、パケットを受信すると、経路情報を参照して、そのパケットの転送先を決定し、決定した転送先にそのパケットを転送する。
仮想サービス装置100は、移動局300の起動時、または移動局300のハンドオーバー時などに、移動局300との間で実行される通信確立シーケンスにより得られる通信設定情報に基づいて、EPCEルータ210の経路情報を更新する。
V4V6変換ゲートウェイ220は、IPv6キャリアネットワーク30とIPv4インターネット40とを通信接続するゲートウェイである。V4V6変換ゲートウェイ220は、IPv6ヘッダでカプセル化されたIPv4パケットをIPv6キャリアネットワーク30を介して受信すると、デカプセル化した後、IPv4パケットとして、IPv4インターネット40に向けて送信するRFC6333で定義されるAFTR(Address-Family Translation Router)方式の機器であってもよいし、受信したIPv6パケットをIPv4パケットに変換し、またその逆変換を行うNAT64を利用した変換方式であるRFC6877で定義された464XLAT方式の機器であってもよい。V4V6変換ゲートウェイ220は、IPv4インターネット40から受信したIPv4パケットをIPv6ヘッダでカプセル化、またはIPv6変換した後、EPCEルータ210に転送する。
IPv6ルータ230は、IPv6キャリアネットワーク30とIPv6インターネット50とを通信接続するゲートウェイである。
上記のように構成された通信システムによれば、eNodeB200は、制御プレーンにおける制御データを仮想サービス装置100と通信する。また、eNodeB200は、ユーザプレーンにおけるユーザデータをEPCEルータ210と通信する。仮想サービス装置100は、クラウド上に配置されており、複数の装置により構成してもよい。よって、多数の移動局300との間で一度に大量の制御データをやり取りする場合でも、制御データの処理を例えば複数の装置を用いて分散処理できる。また、ユーザデータが増大しても、移動局300と仮想サービス装置100との間の制御データの通信への影響を抑制できる。
図2は、仮想サービス装置100の機能ブロックの一例を示す図である。仮想サービス装置100は、モビティティ管理エンティティ(MME)110、および経路情報配信システム120を備える。仮想サービス装置100は、仮想ゲートウェイとして第1仮想ゲートウェイ130、および第2仮想ゲートウェイ140をさらに備える。
MME110は、移動局300の移動管理、およびHSS(Home Subscriber Server)と連携して移動局300の認証などを行う。第1仮想ゲートウェイ130は、仮想的にSGW(Serving Gateway)として機能する。仮想サービス装置100は、少なくとも1つのeNodeB200に対して少なくとも1つの第1仮想ゲートウェイ130を備えてもよい。
第2仮想ゲートウェイ140は、仮想的にPGW(Packet Data Network Gateway)として機能する。仮想サービス装置100は、少なくとも1つの第1仮想ゲートウェイ130に対して少なくとも1つの第2仮想ゲートウェイ140を備えてもよい。
MME110は、通信設定情報取得部112を有する。通信設定情報取得部112は、EPCEルータ210に対応する仮想ゲートウェイと移動局300との間で仮想的に通信確立シーケンスを実行することにより、仮想ゲートウェイと移動局300との間の通信設定情報を取得する。MME110が通信設定情報取得部を持たない場合、それぞれの第1仮想ゲートウェイ130が通信設定情報取得部112を有し、通信設定情報を取得する構成としてもよい。
経路情報配信システム120は、EPCEルータ210の経路情報を管理する。経路情報配信システム120は、ルーティング制御部122を有する。ルーティング制御部122は、通信設定情報に基づいて、EPCEルータ210によるルーティングを制御する。
通信設定情報取得部112は、通信設定情報として、移動局300の接続先の通信ネットワークを識別するネットワーク識別情報(APN)、移動局300を収容するeNodeB200を識別する基地局識別情報、および仮想ゲートウェイを識別する仮想ゲートウェイ識別情報を取得してもよい。ルーティング制御部122は、ネットワーク識別情報、基地局識別情報および仮想ゲートウェイ識別情報に基づいて、EPCEルータ210がルーティングを制御するために参照する経路情報を更新してもよい。
通信設定情報取得部112は、基地局識別情報として、通信確立シーケンスによって仮想ゲートウェイと移動局300を収容するeNodeB200との間に仮想的に形成されるトンネルを識別するためのeNodeB200に対応する第1トンネル識別情報を取得してもよい。通信設定情報取得部112は、仮想ゲートウェイ識別情報として、仮想ゲートウェイとeNodeB200との間に仮想的に形成されるトンネルを識別するための仮想ゲートウェイに対応する第2トンネル識別情報を取得してもよい。ルーティング制御部122は、ネットワーク識別情報、第1トンネル識別情報および第2トンネル識別情報に基づいて、物理ゲートウェイがルーティングを制御するために参照する経路情報を更新してもよい。
通信設定情報取得部112は、第1トンネル識別情報として、通信確立シーケンスによってeNodeB200と第1仮想ゲートウェイ130との間に仮想的に形成されるeNB-SGW間トンネルを識別するためのeNodeB200のIPアドレス(eNB S1-U Address)、およびeNodeB200によって生成される第1トンネル識別符号(eNB TEID)を取得してもよい。通信設定情報取得部112は、第2トンネル識別情報として、eNB-SGW間トンネルを識別するための第1仮想ゲートウェイ130のIPアドレス(SGW S1-U Address)、および第1仮想ゲートウェイ130によって生成される第2トンネル識別符号(SGW TEID)を取得してもよい。
ルーティング制御部122は、ネットワーク識別情報(APN)と第2トンネル識別符号(SGW TEID)とに基づいて移動局300に対応する宛先のIPv6経路情報を生成してもよい。ルーティング制御部122は、移動局300のIPv4アドレスに対応する経路情報を生成する場合、ルーティング制御部122は、第2仮想ゲートウェイ140が生成した移動局300のIPv4アドレス(UE Address)と、ネットワーク識別情報(APN)と第2トンネル識別符号(SGW TEID)とに基づいて移動局300に対応する宛先のIPv6経路情報を生成してもよい。また、ルーティング制御部122は、第1トンネル識別情報(eNB S1-U Address,eNB TEID)に基づいて移動局300の宛先の経路情報に対応するネクストホップアドレスを生成し、生成された経路情報および生成されたネクストホップアドレスを対応付けて経路表に登録することで、経路表を更新してもよい。
eNodeB200は、移動局300からIPv4ヘッダを有する第1パケットを受信した場合、第2トンネル識別符号(SGW TEID)により第1パケットをカプセル化して、カプセル化された第1パケットをEPCEルータ210に転送する。EPCEルータ210は、カプセル化された第1パケットをデカプセル化した後、ネットワーク識別情報(APN)、第2トンネル識別符号(SGW TEID)および移動局300のIPアドレス(UE Address)をソースアドレスとして含むIPv6ヘッダにより第1パケットを再カプセル化して、再カプセル化された第1パケットを、移動局300の接続先の通信ネットワークであるIPv4インターネット40に向けて送出する。
EPCEルータ210は、IPv6ヘッダによりカプセル化されたIPv4ヘッダを有する第2パケットを受信した場合、経路情報を参照して、第2パケットのIPv6ヘッダのデスティネーションアドレスに示されるネットワーク識別情報(APN)および第2トンネル識別符号(SGW TEID)に対応するネクストホップアドレスとして第1トンネル識別情報(eNB S1-U Address, eNB TEID)を特定する。EPCEルータ210は、特定された第1トンネル識別情報に含まれるeNodeB200のIPアドレス(eNB S1-U Address)および第1トンネル識別符号(eNB TEID)により、第2パケットを再カプセル化して、再カプセル化された第2パケットをeNodeB200に転送する。
eNodeB200は、移動局300から、ネットワーク識別情報(APN)および第2トンネル識別符号(SGW TEID)をソースアドレスとして含むIPv6ヘッダを有する第3パケットを受信した場合、第2トンネル識別符号により第3パケットをカプセル化して、カプセル化された第3パケットをEPCEルータ210に転送する。EPCEルータ210は、カプセル化された第3パケットをデカプセル化した後、第3パケットをIPv6インターネット50に向けて送出する。
EPCEルータ210は、IPv6ヘッダのデスティネーションアドレスとしてネットワーク識別情報(APN)および第2トンネル識別符号(SGW TEID)を含む第4パケットを受信した場合、経路情報を参照して、第4パケットのIPv6ヘッダのデスティネーションアドレスに含まれるネットワーク識別情報および第2トンネル識別符号に対応するネクストホップアドレスとして第1トンネル識別情報(eNB S1-U Address, eNB TEID)を特定する。EPCEルータ210は、特定された第1トンネル識別情報に含まれるeNodeB200のIPアドレス(eNB S1-U Address)および第1トンネル識別符号(eNB TEID)により、第4パケットをカプセル化して、カプセル化された第4パケットをeNodeB200に転送する。
図3は、EPCEルータ210が保持する経路情報の一例を示す。経路情報は、宛先のIPアドレスに対応する「IPv6 Prefix」、ネクストホップアドレスに対応する出口のインタフェース「Inreface」、およびネクストホップアドレス「next_hop(eNB S1-U address,TEID)」を含む。
ここで、移動局300が接続するAPNにおいて利用するPrefix(サブネット番号)が「2001:db8」、移動局300に対応する第1仮想ゲートウェイ130とeNodeB200との間に形成されるeNB-SGW間トンネルを識別するための第1仮想ゲートウェイ130によって生成される第2トンネル識別符号が「0x0a0b0c0d」の場合、EPCEルータ210は、例えば、http://tools.ietf.org/html/draft-savolainen-stateless-pd-01で示される手法を利用して、APN Prefixに続いて、eNB-SGW間トンネルを識別するための第1仮想ゲートウェイ130によって生成される第2トンネル識別符号(SGW TEID)の32ビットを付加することで、移動局300に対応する宛先のIPv6プレフィクスとして、「2001:db8:0a0b:0c0d::/64」を生成し、生成されたIPv6プレフィックスを通常のIPv6アドレス生成手続きに従い移動局300に通知する。移動局300は、通知されたIPv6プレフィクスを用いてIPv6アドレスを自動生成する。
また、eNodeB200のIPアドレスが「1.1.1.1」で、eNB-SGW間トンネルを識別するためのeNodeB200によって生成される第1トンネル識別符号が「0x1a1b1c1d」の場合、ルーティング制御部122は、ネクストホップアドレスとして、「eNB S1-U->1.1.1.1,TEID->0x1a1b1c1d/32」を生成する。なお、TEIDを含むネクストホップアドレスは、例えば、ネクストホップアドレスをトンネルとして定義するRFC5512を拡張し、トンネルタイプとしてGTPを指定し、かつTEIDを含むネクストホップアドレスを表現できるように、RFC5512で定義された方式を拡張してもよい。
移動局300は、例えば、インターネットに接続しながら、音声パケット通信をする場合がある。この場合、移動局300は、EPCEルータ210との間に、インターネットサービス用のGTPトンネルおよびVoLTEサービス用のGTPトンネルを確立する。移動局300は、仮想サービス装置100との間に、インターネットサービス用のGTPトンネルおよびVoLTEサービス用のGTPトンネルに対応する複数のトンネルを仮想的に確立する。このような場合に、移動局300に対するネクストホップアドレスとして、移動局300に対応するeNodeB200のIPアドレスに対して、移動局300に対応するeNodeB200とEPCEルータ210との間に確立される複数のトンネル端点識別子(TEID)を対応付けた経路情報を生成してもよい。このように、一つの宛先のIPアドレスに対して、複数のTEIDを対応付けることにより、一つの移動局300に対して複数のトンネルが確立されている場合でも、EPCEルータ210は、複数のトンネルに対する複数のパケットをそれぞれのトンネルを通じて適切にルーティングできる。
移動局300が同時に複数のサービスに接続するため、複数のeNB-SGW間トンネルをeNodeB200と第1仮想ゲートウェイ130との間に仮想的に形成する場合において、第1仮想ゲートウェイ130は移動局300に対して生成するSGW TEIDの範囲を「0x0a0b0c00」から「0x0a0b0cff」とすることで、1つのIPv6経路「2001:db8:0a0b:0c00::/56」のみで、256本のトンネルを表現できる。同様に、eNodeB200も上記SGW TEIDに対応するeNB TEIDの範囲を「0x1a1b1c00」から「0x1a1b1cff」とすることで、上記IPv6経路「2001:db8:0a0b:0c00::/56」に対応するネクストホップアドレスとして、「eNB S1-U->1.1.1.1,TEID->0x1a1b1c00/24」として表現してもよい。
図4は、移動局300が起動した場合に、移動局300と仮想サービス装置100との間で実行される通信確立シーケンスの一例を示す図である。
移動局300が起動すると、移動局300は、接続先の通信ネットワークを識別するAPN、および接続先の通信ネットワークのIPアドレスタイプを含むアタッチ要求信号をeNodeB200を介してMME110に送信する(S100)。IPアドレスタイプは、移動局300に割り当てるべきIPアドレスのタイプとして、IPv4、IPv6、またはIPv4v6のいずれかを示す。なお、移動局300に割り当てるIPアドレスのタイプが、IPv4v6の場合には、移動局300に割り当てるべきIPアドレスが、IPv4アドレスおよびIPv6アドレスの両方であることを示す。
アタッチ要求信号を受信したMME110は、HSSと通信して移動局300の認証を行った後、HSSからベアラ設定に必要な契約情報を取得する。そして、MME110は、アタッチ要求信号により移動局300から通知されたAPNに基づいて、DNS(Domain Name System)によりベアラ設定先の第1仮想ゲートウェイ(SGW)130および第2仮想ゲートウェイ140(PGW)を選択し、選択された第1仮想ゲートウェイ130に対して、第1仮想ゲートウェイ130と第2仮想ゲートウェイ140との間に仮想的にSGW-PGW間トンネルを形成すべく、ベアラ設定要求信号を送信する(S102)。第1仮想ゲートウェイ130は、ベアラ設定要求信号により、SGW-PGW間トンネルを識別するための第1仮想ゲートウェイ130によって生成される第3トンネル識別符号および第1仮想ゲートウェイ130のIPアドレスを含む第3トンネル識別情報(FTEID of SGW)を第2仮想ゲートウェイ140に通知する。
第1仮想ゲートウェイ130は、ベアラ設定要求信号に示される第2仮想ゲートウェイ140に対して仮想的にベアラ設定処理を実行する(S104)。ベアラ設定処理の実行により、第1仮想ゲートウェイ130と第2仮想ゲートウェイ140との間に仮想的にSGW-PGW間トンネルが形成される。第2仮想ゲートウェイ140は、ベアラ設定処理において、SGW-PGW間トンネルを識別するための第2仮想ゲートウェイ140によって生成される第4トンネル識別符号および第2仮想ゲートウェイ140のIPアドレスを含む第4トンネル識別情報(FTEID of PGW)を第1仮想ゲートウェイ130に通知する。
ベアラ設定が完了すると、つまり仮想的にSGW-PGW間トンネルが形成されると、第1仮想ゲートウェイ130は、第1仮想ゲートウェイ130とeNodeB200との間に仮想的にeNB-SGW間トンネルを形成すべく、MME110にベアラ設定応答信号を送信する(S106)。第1仮想ゲートウェイ130は、ベアラ設定応答信号により、eNB-SGW間トンネルを識別するための第1仮想ゲートウェイ130によって生成される第2トンネル識別符号(SGW TEID)および第1仮想ゲートウェイ130のeNodeB200側のIPアドレス(SGW S1-U Address)を含む第2トンネル識別情報(SGW FTEID:SGW S1-U Address,SGW TEID)をMME110に通知する。
ベアラ設定応答信号を受信すると、MME110は、ベアラ設定応答信号に示される第2トンネル識別情報(SGW FTEID)をeNodeB200へ無線ベアラ設定要求信号として通知する(S108)。無線ベアラ設定要求信号には、移動局300へのアタッチ受け入れ信号も含まれる。
eNodeB200は、無線ベアラ設定要求信号を受信すると、移動局300との間で無線ベアラを確立すると当時に、アタッチ受け入れ信号を移動局300へ送信する。次いで、eNodeB200は、移動局300から無線ベアラ設定応答信号を受信し、第1仮想ゲートウェイ130向けの伝達情報として、eNB-SGW間トンネルを識別するためのeNodeB200によって生成された第1トンネル識別符号(eNB TEID)およびeNodeB200のIPアドレスを含む第1トンネル識別情報(eNB FTEID:eNB S1-U Address,eNB TEID)をMME110に通知する(S110)。
次いで、MME110は、第1仮想ゲートウェイ130にベアラ更新要求信号を送信することで、eNodeB200から受信した第1トンネル識別情報を第1仮想ゲートウェイ130に通知する(S112)。第1仮想ゲートウェイ130は、受信した第1トンネル識別情報に基づいて、eNodeB200との間に、仮想的にeNB-SGW間トンネルを形成して、MME110にベアラ更新応答信号を送信する(S114)。
eNB-SGW間トンネルが仮想的に形成されると、MME110の通信設定情報取得部112は、上記の通信確立シーケンスにおいて取得したネットワーク識別情報(APN)、第1トンネル識別情報(eNB FTEID:eNB S1-U Address,eNB TEID)および第2トンネル識別情報(SGW FTEID:SGW SI-U Address,SGW TEID)を含む経路情報更新要求信号を、経路情報配信システム120に通知する(S116)。
経路情報更新要求信号を受信すると、経路情報配信システム120のルーティング制御部122は、ネットワーク識別情報(APN)と第2トンネル識別符号(SGW TEID)とに基づいて移動局300に対応する宛先の経路を生成する。また、ルーティング制御部122は、第1トンネル識別情報(eNB S1-U Address,eNB TEID)に基づいて移動局300の宛先の経路に対応するネクストホップアドレスを生成する。
次いで、経路情報配信システム120は、生成された宛先の経路および生成されたネクストホップアドレスから成る経路情報を含む経路情報更新信号をEPCEルータ210に送信する(S118)。経路情報更新信号を受信すると、EPCEルータ210は、経路情報更新信号に示される経路情報を経路表に登録し、経路表を更新する。経路情報配信システム120は、ルーティング制御部122が生成した経路情報に関わるすべてのEPCEルータ210に広告する(S120)。複数のEPCEルータに経路情報を配信する経路情報配信システムは、BGP(Border Gateway Protocol)を用いて経路情報を配信するRFC4456で定義されるルートリフレクタ(Route Reflector:RR)方式の機器を用いてもよいし、XMPPやその他のPubSubシステムを用いてもよい。
EPCEルータ210は、経路情報更新信号により更新された経路表に基づいて、eNodeB200との間にあたかもeNB-SGW間トンネルがあるかのように、GTPトンネルを介してユーザプレーンにおけるユーザデータをeNodeB200を介して移動局300との間で送受信する。
以上の通り、クラウド20上に配置された仮想サービス装置100が、制御プレーンにおける制御データをeNodeB200との間で送受信することで、eNodeB200を介して移動局300と通信確立シーケンスを実行する。仮想サービス装置100が通信確立シーケンスを実行することにより、通信設定情報取得部112が、通信設定情報として、ネットワーク識別情報、基地局識別情報および仮想ゲートウェイ識別情報を取得する。ルーティング制御部122は、ネットワーク識別情報、基地局識別情報および仮想ゲートウェイ識別情報に基づいて、EPCEルータ210がルーティングを制御するために参照する経路情報を更新する。
eNodeB200は、制御プレーンにおける制御データを仮想サービス装置100との間で送受信し、ユーザプレーンにおけるユーザデータをEPCEルータ210との間で送受信する。仮想サービス装置100は、クラウド上に配置される複数の装置により構成してもよい。したがって、多数の移動局300との間で一度に大量の制御データをやり取りする場合でも、制御データの処理を仮想サービス装置100として機能する複数の装置を用いて分散処理できる。また、ユーザデータの処理が増大しても、制御データを処理する装置とユーザデータを処理する装置とが物理的に分離されているので、制御データの処理への悪影響を抑制できる。
図5は、移動局300がIPv4パケットをIPv4インターネット40に送信するシーケンス、および移動局300がIPv4パケットをIPv4インターネット40から受信するシーケンスを示す。
移動局300は、IPv4ヘッダを有するパケットP1をeNodeB200に送信する(S200)。eNodeB200は、SGW S1-U IPアドレスをデスティネーションアドレスとするIPヘッダ、および第2トンネル識別符号(SGW TEID)を含むGTPヘッダによりパケットP1をカプセル化して、カプセル化されたパケットP1をEPCEルータ210に転送する(S202)。ここで、パケットP1を転送するネットワークであるE-UTRAN/EPC10は、SGW S1-U IPアドレスをデスティネーションアドレスとするパケットを、EPCEルータ210へ向かわせるように構成されている。
EPCEルータ210は、パケットP1をデカプセル化した後、パケットP1のIPv4ヘッダを参照して、APNおよび移動局300のIPアドレス(UE Address)を特定する。EPCEルータ210は、デカプセル化されたパケットP1に、ネットワーク識別情報(APN)、第2トンネル識別符号(SGW TEID)および移動局300のIPアドレス(UE Address)をソースアドレスとして含むIPv6ヘッダによりパケットP1を再カプセル化、またはIPv6変換して、IPv6化されたパケットP1を、V4V6変換ゲートウェイ220に向けてIPv6キャリアネットワークに送信する(S204)。V4V6変換ゲートウェイ220は、受信したパケットP1をデカプセル化して、IPv6ヘッダを取り除いて、またはIPv4変換して、移動局300の接続先の通信ネットワークであるIPv4インターネット40に向けて送出する(S206)。
V4V6変換ゲートウェイ220は、IPv4ヘッダを有する移動局300に向けたパケットP2を受信すると(S210)、V4V6変換ゲートウェイ220は、IPv4デスティネーションアドレスに示される宛先の移動局300のIPアドレス(UE Address)から、ネットワーク識別情報(APN)、第2トンネル識別符号(SGW TEID)および移動局300のIPアドレス(UE Address)を含むIPv6アドレスを特定し、特定したIPv6アドレスをデスティネーションアドレスとするIPv6ヘッダによりパケットP2をカプセル化、またはIPv6変換して、IPv6化されたパケットP2をEPCEルータ210に送信する(S212)。
EPCEルータ210は、パケットP2を受信すると、経路情報を参照して、IPv6デスティネーションアドレスに示されるネットワーク識別情報(APN)および第2トンネル識別符号(SGW TEID)に対応するネクストホップアドレスとして第1トンネル識別情報(eNB S1-U Address,eNB TEID)を特定した後、パケットP2をデカプセル化、またはIPv4変換する。EPCEルータ210は、特定された第1トンネル識別情報に含まれるeNodeB200のeNB S1-U AddressをデスティネーションアドレスとするIPヘッダ、および第1トンネル識別符号(eNB TEID)を含むGTPヘッダにより、パケットP2を再カプセル化して、再カプセル化されたパケットP2をeNodeB200に転送する(S214)。
eNodeB200は、受信したパケットP2をデカプセル化した後、GTPヘッダに示されるeNB TEIDに対応するラジオベアラを有する移動局300に、パケットP2を送信する(S216)。
図6は、移動局300がIPv6パケットをIPv6インターネット50に送信するシーケンス、および移動局300がIPv6パケットをIPv6インターネット50から受信するシーケンスを示す。
移動局300は、ネットワーク識別情報(APN)、第2トンネル識別符号(SGW TEID)をソースアドレスとして含むIPv6ヘッダを有するIPv6パケットP3をeNodeB200に送信する(S300)。
eNodeB200は、受信したパケットP3をSGW S1-U IPアドレスをデスティネーションアドレスとするIPヘッダ、および第2トンネル識別符号(SGW TEID)を含むGTPヘッダでカプセル化して、EPCEルータ210に送信する(S302)。ここで、パケットP1を転送するネットワークであるE-UTRAN/EPC10は、SGW S1-U IPアドレスをデスティネーションアドレスとするパケットを、EPCEルータ210へ向かわせるように構成されている。EPCEルータ210は、パケットP3をデカプセル化した後、経路表とパケットP3のIPv6デスティネーションアドレスに基づいてルーティングした結果により、パケットP3をIPv6キャリアネットワーク30に送信する。パケットP3がIPv6インターネット50に向かうとき、IPv6ルータ230はパケットP3を受信する(S304)。IPv6ルータ230は、受信したパケットP3をIPv6インターネット50に向けて送信する(S306)。
IPv6ルータ230は、ネットワーク識別情報(APN)、第2トンネル識別符号(SGW TEID)をデスティネーションアドレスとして含むIPv6ヘッダを有するIPv6パケットP4を受信すると(S310)、IPv6ルータ230は、パケットP4をEPCEルータ210に向けて、IPv6キャリアネットワーク30に転送する(S312)。ここでIPv6キャリアネットワーク30は、ネットワーク識別情報(APN)、第2トンネル識別符号(SGW TEID)をデスティネーションアドレスとして含むIPv6パケットを、EPCEルータ210へ向かわせるように構成されている。
EPCEルータ210は、パケットP4を受信すると、経路情報を参照して、パケットP4のIPv6デスティネーションアドレスに含まれるネットワーク識別情報および第2トンネル識別符号に対応するネクストホップアドレスとして第1トンネル識別情報(eNB S1-U Address,eNB TEID)を特定する。EPCEルータ210は、特定された第1トンネル識別情報に含まれるeNodeB200のIPアドレス(eNB S1-U Address)をデスティネーションアドレスとするIPヘッダ、および第1トンネル識別符号(eNB TEID)を含むGTPヘッダにより、パケットP4をカプセル化して、カプセル化されたパケットP4をeNodeB200に転送する(S314)。eNodeB200は、パケットP4をデカプセル化して、パケットP4のGTPヘッダに示されるeNB TEIDに対応するラジオベアラを有する移動局300に、パケットP4を送信する(S316)。
以上の通り、本実施形態によれば、制御プレーン上で通信される制御データを処理する仮想サービス装置100と、ユーザプレーン上で通信されるユーザデータを処理するEPCEルータ210とが物理的に分離されている。これにより、移動局300の増加に伴い、制御データまたはユーザデータの処理の負担が増加した場合でも、それぞれの処理の負担に応じて、個別にシステムを柔軟に変更することができる。
また、クラウド上に配置した仮想サービス装置100により制御データの処理を実行させることで、たとえ移動局300の増加に伴い制御データの処理の負担が増大した場合でも、仮想サービス装置100として機能させる装置の増設などにより、容易にシステムを変更できる。
なお、本実施形態に係る仮想サービス装置100が備える各部は、通信確立シーケンスおよびルーティングに関する各種処理を行う、コンピュータ読み取り可能な記録媒体に記録されたプログラムをインストールし、このプログラムをコンピュータに実行させることで、構成してもよい。つまり、コンピュータに仮想サービス装置100の通信確立シーケンスよびルーティングに関する各種処理を行うプログラムを実行させることにより、仮想サービス装置100が備える各部としてコンピュータを機能させることで、仮想サービス装置100を構成してもよい。
コンピュータはCPU、ROM、RAM、EEPROM(登録商標)等の各種メモリ、通信バス及びインタフェースを有し、予めファームウェアとしてROMに格納された処理プログラムをCPUが読み出して順次実行することで、仮想サービス装置100として機能する。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 E-UTRAN/EPC
20 クラウド
30 キャリアネットワーク
40 IPv4インターネット
50 IPv6インターネット
100 仮想サービス装置
112 通信設定情報取得部
120 経路情報配信システム
122 ルーティング制御部
130 第1仮想ゲートウェイ
140 第2仮想ゲートウェイ
210 EPCEルータ
220 V4V6変換ゲートウェイ
230 IPv6ルータ
300 移動局
20 クラウド
30 キャリアネットワーク
40 IPv4インターネット
50 IPv6インターネット
100 仮想サービス装置
112 通信設定情報取得部
120 経路情報配信システム
122 ルーティング制御部
130 第1仮想ゲートウェイ
140 第2仮想ゲートウェイ
210 EPCEルータ
220 V4V6変換ゲートウェイ
230 IPv6ルータ
300 移動局
Claims (12)
- 移動局と通信ネットワークとを接続する物理ゲートウェイによるルーティングを制御する通信システムであって、
前記物理ゲートウェイに対応する仮想ゲートウェイと前記移動局との間で通信確立シーケンスを実行することにより、前記仮想ゲートウェイと前記移動局との間の通信設定情報を取得する通信設定情報取得部と、
前記通信設定情報に基づいて、前記物理ゲートウェイによるルーティングを制御するルーティング制御部と
を備える通信システム。 - 前記通信設定情報取得部は、前記通信設定情報として、前記通信ネットワークを識別するネットワーク識別情報、前記移動局を収容する基地局を識別する基地局識別情報、および前記仮想ゲートウェイを識別する仮想ゲートウェイ識別情報を取得し、
前記ルーティング制御部は、前記ネットワーク識別情報、前記基地局識別情報および前記仮想ゲートウェイ識別情報に基づいて、前記物理ゲートウェイがルーティングを制御するために参照する経路情報を更新する、請求項1に記載の通信システム。 - 前記通信設定情報取得部は、前記基地局識別情報として、前記通信確立シーケンスによって前記仮想ゲートウェイと前記基地局との間に仮想的に形成されるトンネルを識別するための前記基地局に対応する第1トンネル識別情報を取得し、前記仮想ゲートウェイ識別情報として、前記トンネルを識別するための前記仮想ゲートウェイに対応する第2トンネル識別情報を取得し、
前記ルーティング制御部は、前記ネットワーク識別情報、前記第1トンネル識別情報および前記第2トンネル識別情報に基づいて、前記物理ゲートウェイがルーティングを制御するために参照する経路情報を更新する、請求項2に記載の通信システム。 - 前記通信設定情報取得部は、前記第1トンネル識別情報として、前記基地局のIPアドレス、および前記トンネルを識別する前記基地局により生成される第1トンネル識別符号を取得し、前記第2トンネル識別情報として、前記仮想ゲートウェイのIPアドレス、および前記トンネルを識別する前記仮想ゲートウェイにより生成される第2トンネル識別符号を取得し、
前記経路情報は、宛先のIPアドレスを含む経路と、前記経路に対する次中継点を示すネクストホップアドレスとを対応付けて含み、
前記ルーティング制御部は、前記ネットワーク識別情報と前記第2トンネル識別符号とに基づいて前記移動局に対応する宛先の経路を生成し、前記基地局のIPアドレスおよび前記第1トンネル識別符号に基づいて前記移動局の前記宛先の経路に対応するネクストホップアドレスを生成し、生成された前記宛先の経路および生成された前記ネクストホップアドレスを対応付けた前記経路情報を経路表に登録することで、前記経路情報を更新する、請求項3記載の通信システム。 - 前記基地局は、前記移動局からIPv4ヘッダを有する第1パケットを受信した場合、前記第2トンネル識別情報により前記第1パケットをカプセル化して、カプセル化された前記第1パケットを前記物理ゲートウェイに転送し、
前記物理ゲートウェイは、前記カプセル化された前記第1パケットをデカプセル化した後、前記ネットワーク識別情報、前記第2トンネル識別符号および前記移動局のIPアドレスをソースアドレスとして含むIPv6ヘッダにより前記第1パケットを再カプセル化して、再カプセル化された前記第1パケットを前記通信ネットワークに向けて送出する、請求項4に記載の通信システム。 - 前記物理ゲートウェイは、前記移動局に向けたIPv6ヘッダによりカプセル化されたIPv4ヘッダを有する第2パケットを受信した場合、前記経路情報を参照して、前記第2パケットの前記IPv6ヘッダのデスティネーションアドレスに示される前記ネットワーク識別情報および前記第2トンネル識別情報に対応するネクストホップアドレスとして前記第1トンネル識別情報を特定し、前記特定された前記第1トンネル識別情報により、前記第2パケットを再カプセル化して、再カプセル化された前記第2パケットを前記基地局に転送する、請求項4または請求項5に記載の通信システム。
- 前記基地局は、前記移動局から、前記ネットワーク識別情報および前記第2トンネル識別符号をソースアドレスとして含むIPv6ヘッダを有する第3パケットを受信した場合、前記第2トンネル識別情報により前記第3パケットをカプセル化して、カプセル化された前記第3パケットを前記物理ゲートウェイに転送し、
前記物理ゲートウェイは、前記カプセル化された前記第3パケットをデカプセル化した後、前記第3パケットを前記通信ネットワークに向けて送出する、請求項4から請求項6のいずれか1つに記載の通信システム。 - 前記物理ゲートウェイは、IPv6ヘッダとして前記ネットワーク識別情報および前記第2トンネル識別符号をデスティネーションアドレスとして含む第4パケットを受信した場合、前記経路情報を参照して、前記第4パケットの前記IPv6ヘッダに含まれるデスティネーションアドレスの前記ネットワーク識別情報および前記第2トンネル識別符号に対応するネクストホップアドレスとして前記第1トンネル識別情報を特定し、前記特定された前記第1トンネル識別情報により、前記第4パケットをカプセル化して、カプセル化された前記第4パケットを前記基地局に転送する、請求項4から請求項7のいずれか1つに記載の通信システム。
- 前記通信設定情報取得部および前記ルーティング制御部は、クラウド上に配置されている、請求項1から請求項8のいずれか1つに記載の通信システム。
- クラウド上に配置された前記仮想ゲートウェイをさらに備える、請求項1から請求項9のいずれか1つに記載の通信システム。
- 請求項1から請求項10のいずれか1つに記載の通信システムとしてコンピュータを機能させるためのプログラム。
- 前記物理ゲートウェイをさらに備える、請求項1から請求項9のいずれか1つに記載の通信システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014555438A JP5724046B1 (ja) | 2013-06-19 | 2013-06-19 | 通信システムおよびプログラム |
PCT/JP2013/003826 WO2014203291A1 (ja) | 2013-06-19 | 2013-06-19 | 通信システムおよびプログラム |
US14/572,791 US9398513B2 (en) | 2013-06-19 | 2014-12-17 | Communication system and computer-readable recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/003826 WO2014203291A1 (ja) | 2013-06-19 | 2013-06-19 | 通信システムおよびプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/572,791 Continuation US9398513B2 (en) | 2013-06-19 | 2014-12-17 | Communication system and computer-readable recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014203291A1 true WO2014203291A1 (ja) | 2014-12-24 |
Family
ID=52104063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003826 WO2014203291A1 (ja) | 2013-06-19 | 2013-06-19 | 通信システムおよびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US9398513B2 (ja) |
JP (1) | JP5724046B1 (ja) |
WO (1) | WO2014203291A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043204A1 (ja) * | 2015-09-11 | 2017-03-16 | ソニー株式会社 | 装置、方法及びプログラム |
CN107231296A (zh) * | 2017-05-11 | 2017-10-03 | 京信通信系统(中国)有限公司 | 一种网关装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11483254B2 (en) * | 2014-01-09 | 2022-10-25 | Nokia Solutions And Networks Oy | Allocating virtual machines in a gateway coupled to a software-defined switch |
US9825777B2 (en) * | 2015-06-23 | 2017-11-21 | Cisco Technology, Inc. | Virtual private network forwarding and nexthop to transport mapping scheme |
WO2018057077A1 (en) * | 2016-09-21 | 2018-03-29 | Mavenir Systems, Inc. | Method and system for session resilience in packet gateways |
US10225353B2 (en) * | 2016-10-14 | 2019-03-05 | Genband Us Llc | Shared bearer node resources for control nodes for distributed telecommunication systems |
US10397184B2 (en) * | 2017-10-24 | 2019-08-27 | Verizon Patent And Licensing Inc. | Mobility management using identifier-locator addressing (ILA) |
KR102525428B1 (ko) * | 2018-08-07 | 2023-04-26 | 삼성전자 주식회사 | 무선 통신 시스템에서 하향링크 데이터 전송 방법 및 장치 |
US11792088B1 (en) * | 2022-09-02 | 2023-10-17 | Microsoft Technology Licensing, Llc | Network management engine for a cloud computing system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011129273A1 (ja) * | 2010-04-14 | 2011-10-20 | シャープ株式会社 | 位置管理装置、パケットゲートウェイ装置、移動通信システム、移動局装置及び移動通信方法 |
EP2448346A1 (en) * | 2009-07-30 | 2012-05-02 | ZTE Corporation | Method and apparatus for notifying connection attributes for local internet protocol (ip) access |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1665838B1 (en) * | 2003-08-13 | 2010-03-10 | Roamware, Inc. | Signaling gateway with multiple imsi with multiple msisdn (mimm) service in a single sim for multiple roaming partners |
US20060072592A1 (en) * | 2004-10-04 | 2006-04-06 | Graves David A | Method and a system for verifying network routing information |
JP4285420B2 (ja) * | 2005-02-22 | 2009-06-24 | 株式会社日立製作所 | センサネット管理システム |
WO2006116920A1 (fr) * | 2005-04-30 | 2006-11-09 | Huawei Technologies Co., Ltd. | Système et procédé de communication assurant une interconnexion à travers les domaines ip par le biais d’une passerelle de supports marginale |
US8954551B2 (en) * | 2008-03-17 | 2015-02-10 | Microsoft Corporation | Virtualization of groups of devices |
CN101783736B (zh) * | 2009-01-15 | 2016-09-07 | 华为终端有限公司 | 一种终端接受多服务器管理的方法、装置及通信系统 |
US8867507B2 (en) * | 2009-05-14 | 2014-10-21 | Avaya Inc. | Split-plane wireless network architecture |
US8559392B2 (en) * | 2009-07-30 | 2013-10-15 | Cisco Technology, Inc. | Inter-technology handovers for wireless networks |
EP2487959B1 (en) | 2009-09-18 | 2015-05-27 | NEC Corporation | Communication system and communication controlling method |
US8848508B2 (en) * | 2009-11-16 | 2014-09-30 | Cisco Technology, Inc. | Method for the provision of gateway anycast virtual MAC reachability in extended subnets |
KR101042860B1 (ko) * | 2009-11-23 | 2011-06-20 | 주식회사 잉카인터넷 | 가상사설망 환경에서 라우팅노드의 아이피 주소 탐색방법 |
JP5356331B2 (ja) * | 2010-08-04 | 2013-12-04 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信方法及び優先度制御ノード |
US8873398B2 (en) * | 2011-05-23 | 2014-10-28 | Telefonaktiebolaget L M Ericsson (Publ) | Implementing EPC in a cloud computer with openflow data plane |
US20120303828A1 (en) * | 2011-05-26 | 2012-11-29 | Digi International Inc. | Cloud enabled virtual gateway |
US8762501B2 (en) * | 2011-08-29 | 2014-06-24 | Telefonaktiebolaget L M Ericsson (Publ) | Implementing a 3G packet core in a cloud computer with openflow data and control planes |
-
2013
- 2013-06-19 JP JP2014555438A patent/JP5724046B1/ja active Active
- 2013-06-19 WO PCT/JP2013/003826 patent/WO2014203291A1/ja active Application Filing
-
2014
- 2014-12-17 US US14/572,791 patent/US9398513B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2448346A1 (en) * | 2009-07-30 | 2012-05-02 | ZTE Corporation | Method and apparatus for notifying connection attributes for local internet protocol (ip) access |
WO2011129273A1 (ja) * | 2010-04-14 | 2011-10-20 | シャープ株式会社 | 位置管理装置、パケットゲートウェイ装置、移動通信システム、移動局装置及び移動通信方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043204A1 (ja) * | 2015-09-11 | 2017-03-16 | ソニー株式会社 | 装置、方法及びプログラム |
CN107231296A (zh) * | 2017-05-11 | 2017-10-03 | 京信通信系统(中国)有限公司 | 一种网关装置 |
CN107231296B (zh) * | 2017-05-11 | 2020-04-14 | 京信通信系统(中国)有限公司 | 一种网关装置 |
Also Published As
Publication number | Publication date |
---|---|
US20150103746A1 (en) | 2015-04-16 |
US9398513B2 (en) | 2016-07-19 |
JP5724046B1 (ja) | 2015-05-27 |
JPWO2014203291A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5724046B1 (ja) | 通信システムおよびプログラム | |
US10965615B2 (en) | Centralized IP address management for distributed gateways | |
US10390259B2 (en) | Data forwarding in a mobile communications network system with centralized gateway apparatus controlling distributed gateway elements | |
US9191856B2 (en) | Network system, offload device, and offload traffic control method | |
US8995335B2 (en) | Scalable deployment of network nodes | |
US9853937B1 (en) | Internal packet steering within a wireless access gateway | |
US9781590B2 (en) | Per-host locator to enable mobility gateway relocation in distributed mobility management | |
JP2015136142A (ja) | アクセスポイントへのユーザ機器のマルチパケットデータ接続を設定する方法及びノード | |
CN112997576A (zh) | Iab系统中的ipv6地址管理 | |
EP2166735A1 (en) | Method and device for data processing and communication system comprising such device | |
JP6012080B2 (ja) | 通信システム及びそのハンドオーバ方法 | |
CN109152096B (zh) | Eps架构的报文传输方法及计算机可读存储介质 | |
US9439127B2 (en) | Method for data transmission and local network entity | |
KR20140117987A (ko) | 이동 통신 네트워크 및 이를 이용한 통신 방법 | |
EP3454588B1 (en) | Method and device for transmitting messages | |
US20170078942A1 (en) | Method and network node for routing ip packets | |
JP7173461B2 (ja) | ゲートウェイ装置 | |
WO2020187398A1 (en) | Tunnel endpoint encoding for mobile network architecture | |
KR101956656B1 (ko) | 데이터 전송 방법, 포워딩 정보 업데이트 방법, 통신 장치, 및 제어기 | |
WO2019101332A1 (en) | Mapping of identifiers of control plane and user plane | |
JP5225300B2 (ja) | プライベートネットワークを介したモバイルipの経路制御方法、モバイルルータ及びプログラム | |
WO2024200623A1 (en) | Radio network node, network node, and methods performed therein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014555438 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13887101 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13887101 Country of ref document: EP Kind code of ref document: A1 |