WO2014202049A1 - Procédé servant à déterminer une vitesse optimale du son dans l'eau, et dispositif servant à mettre en œuvre ledit procédé - Google Patents

Procédé servant à déterminer une vitesse optimale du son dans l'eau, et dispositif servant à mettre en œuvre ledit procédé Download PDF

Info

Publication number
WO2014202049A1
WO2014202049A1 PCT/DE2014/100175 DE2014100175W WO2014202049A1 WO 2014202049 A1 WO2014202049 A1 WO 2014202049A1 DE 2014100175 W DE2014100175 W DE 2014100175W WO 2014202049 A1 WO2014202049 A1 WO 2014202049A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound velocity
sonar
image
subsonic
determining
Prior art date
Application number
PCT/DE2014/100175
Other languages
German (de)
English (en)
Inventor
Johannes Groen
Abdelhak M. ZOUBIR
Stefan Leier
Original Assignee
Atlas Elektronik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik Gmbh filed Critical Atlas Elektronik Gmbh
Publication of WO2014202049A1 publication Critical patent/WO2014202049A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52003Techniques for enhancing spatial resolution of targets

Definitions

  • the invention relates to a method for determining an optimal subsonic sound velocity, to a method for focusing a defocused sonar image and to an apparatus for carrying out the method.
  • Underwater sound velocity is generally determined by parameters measured by sensors in the water. Common parameters are in particular pressure, temperature, salinity and flow. On the basis of the underwater sound velocity, in particular the distance to an object can be determined, which was detected by means of a sonar.
  • the parameters determining sensors are regularly local, for example, on an AUV
  • a disadvantage is that changes in the parameters which are present at a certain distance from the sensor can not be measured by the sensors can be determined.
  • SAS Synthetic Aperture Sonar
  • defocused SAS images are corrected by means of fractional lower-order statistics (FLOS-PGA).
  • FLOS-PGA fractional lower-order statistics
  • An optimal speed of sound is estimated by an optimization problem. This is based on the finding that a false speed of sound leads to a quadratic phase error in the synthetic aperture.
  • the autofocusing takes place, in particular, by manipulating the phases in the frequency domain (Wavenumber domain).
  • a particular disadvantage is that the method assumes that there are a number of point targets in the SAS image for autofocusing.
  • the object of the invention is to improve the state of the art.
  • the object is achieved by a method for determining an optimal subsonic sound velocity, the method comprising the following steps:
  • the present optimal subsonic sound velocity is a good estimate of a true subsonic sound velocity, since changes in parameters such as temperature, pressure or salinity along the propagation are unimportant - especially through "averaging" - and are covered by the optimum subsonic sound velocity obtained.
  • the "underwater sound velocity” includes the propagation velocity of the sound in the medium of water, whereby the water is especially sea or sea water or even fresh water.
  • An “optimal subsonic sound velocity” (hereinafter also referred to as Co) includes a value that takes into account all the influences of the medium: While the underwater sound may have different velocities in its propagation path, the optimum subsonic sound velocity describes an average velocity over the entire course time the sound wave.
  • the "first underwater sound velocity” includes a first suspected or sensor-determined underwater sound velocity Although ideally the first subsonic sound velocity is equal to the optimal underwater sound velocity, but in
  • the first subsonic sound velocity has an Ac error, resulting in a "smeared” sonar image.
  • the "second subsonic sound velocity" has a different value than the first one
  • the second subsonic sound velocity differs by 1m / s to 3m / s, with larger or smaller values may be possible and useful.
  • a "sonar signal” includes any signals from a sonar.
  • Radar data represent in particular any electronic signals and representations of a sonar signal during or after receiving the sonar signal.
  • signals of the hydrophones are included as well as already prepared (eg through sample-and-hold circuits) signals.
  • the delimitation of the raw data is to be seen in particular to sonar image data, which are already processed and their quality measure can be determined.
  • a "sonar image” is generally an electronic representation of a reality under water
  • SAS image is generated in particular on the basis of transmitted and received underwater sound signals.
  • the first sonar image corresponds to a representation of reality using the first subsonic sound velocity and the raw data and the second sonar image representative of the reality using the second subsonic sound velocity and the identical raw data.
  • a "measure of quality” is in particular a (numerical) value, which reflects a statement about the quality of displayed objects.
  • the quality measure is often determined by means of metrics.
  • Point spread function or point spreading function called Point spread function or point spreading function called.
  • Other metrics / quality measures can be found in the article Leier et al. "SEQUENTIAL FOCUS EVALUATION OF SYNTHETIC APERTURE SONAR IMAGES” (IEEE ICASSP Conference Proceedings, May 26-31, 2013, Vancouver, Canada), the content of which is part of the present application, which can measure the quality of the entire sonar image as well be determined only on the basis of subareas of the sonar image.
  • a very primitive measure of quality can be a line-based and / or column-based
  • a contrast can be determined as an intensity transition from one pixel to the next adjacent one.
  • the "first and second quality measure” are the comparable values / functions to the respective sonar images.
  • the “best quality measure” is that which has the highest or correspondingly lowest value - in other words the best sonar image.
  • the reflected signals received by the receiving arrangement (SAS antenna) having the number L u of antenna elements (receiving elements within a receiver array of the sonar antenna) at the airtime index p can be described by Formula (2).
  • the Lauzeitverzögerung is also called two-way runtime of the transmission signal.
  • a u describes the spatial distance between the individual
  • Co is the true speed of sound in the medium.
  • a homogeneous medium is assumed. Assuming exact motion information, such as an AUV and thus the transmit / receive antenna, and replacing the necessary
  • Micronavigation in the form of a DPCA (displaced phase center antenna) algorithm (a micronavigation is performed ⁇ ⁇ ⁇ * -.)
  • a SAS image can be '* directly using, for example, a
  • ⁇ ⁇ is the carrier frequency, the distance-focused reflection signals and ⁇ ( ⁇ ) an indicator function [see in particular Leier et al. "SEQUENTIAL FOCUS EVALUATION OF SYNTHETIC APERTURE SONAR IMAGES” (IEEE ICASSP Conference Proceedings, May 26-31, 2013, Vancouver, Canada)]. The latter describes whether a grid point g k i is transmitted through the transmitter or the receiver "Seen” or “illuminated”. It should be noted,
  • the focusing delay ' '; ⁇ ' ⁇ ⁇ reconstruction in formula (4) is identical to the propagation delay of the formula (3), wherein which can be adopted not necessarily at lattice imperfections, as may arise deviations due to a lattice mismatch despite correct underwater sound speed.
  • phase center approximation a transmitter-receiver pair is replaced by a virtual transceiver, which is located in the (virtual) geometric center between transmitter and receiver.
  • additional sonar images are obtained using the raw data and additional subsonic sound velocity and the associated additional quality measures, and all quality measures are compared.
  • the sonar image can be selected with the best quality measure and thus a better value for the
  • Underwater sound velocity can be determined.
  • Quality measure leads directly to a lower value for the underwater sound velocity can be used. In this example, there is a change of direction.
  • Real time in this case means in particular that in the time interval between the determination of two SAS images, the optimum subsonic sound velocity can be determined.
  • the determination of the quality measures / metrics can be parallelized. The actual comparison of the quality measures can then be processed by a single processor.
  • the process can be carried out online or offline.
  • the sonar images or raw data are processed after the mission or with a time delay to record the data, so that a map with exact distances and proportions can be provided, in particular after measurement using a sonar.
  • the object is achieved by a method for focusing a defocused sonar image, wherein the optimal
  • Underwater sound velocity determined in accordance with a method described above and the associated sonar image to the optimal subsonic sound velocity can be determined.
  • sonar images of higher quality and / or sharper contours can be provided.
  • focused representation is to be understood as an optimal representation of the sonar image.
  • a "defocused” is especially when sonar images show objects that are "out of focus”.
  • the object is achieved by a device which is set up such that one of the methods described above can be carried out.
  • Figure 1 is a highly schematic representation of different sonar images with different quality measures.
  • AUV Autonomous Underwater Vehicle
  • SAS Synthetic Aperture Sonar
  • the SAS determines raw data. Furthermore, the AUV measures water pressure, temperature and salinity using attached sensors. Based on the sensor data, a first "estimate" of the subsonic sound velocity is calculated. Alternatively, the speed of sound is measured directly by means of a sonic velocity sensor.
  • the calculated (measured) value of the subsonic sound velocity is 1500 m / s.
  • a step 1 the first SAS image is determined with this first subsonic sound velocity [see Fig. Id.]].
  • the determined subsonic sound velocity is increased to 1502.5 m / s and also a SAS image (here the second SAS image [see Fig. Le.]]).
  • a possible contrast measurement for an overall image is: [54]
  • PSF metrics are determined.
  • the underwater sound velocity is reduced again in step 3 and set to the value 1495 m / s.
  • the associated SAS image lb.) and the associated contrast value m c are determined and compared with the values for the SAS image lc.). Since the contrast value m c has improved, in step 4 the subsonic sound velocity is set to the value of 1492.5 m / s and the associated SAS image 1 a) and the associated contrast value m c are determined.
  • the contrast value m c has deteriorated from the contrast value m c of the SAS image lb.), so it is assumed that the SAS image lb.) has the best quality and that the best description for the underwater sound velocity is 1495 m / s is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé servant à déterminer une vitesse optimale du son dans l'eau. Ledit procédé comprend les étapes qui suivent consistant à : - déterminer des données brutes d'un signal sonar ; - déterminer une première image sonar en utilisant les données brutes et une première vitesse du son dans l'eau ; - déterminer une deuxième image sonar en utilisant les données brutes et une deuxième vitesse du son dans l'eau ; - déterminer une première mesure de qualité de la première image sonar et une deuxième mesure de qualité de la deuxième image sonar et comparer la première mesure de qualité à la deuxième mesure de qualité ; et - sélectionner la vitesse du son dans l'eau, qui relève de l'image sonar dotée de la meilleure mesure de qualité, ladite vitesse du son dans l'eau sélectionnée correspondant à la vitesse optimale du son dans l'eau.
PCT/DE2014/100175 2013-06-18 2014-05-21 Procédé servant à déterminer une vitesse optimale du son dans l'eau, et dispositif servant à mettre en œuvre ledit procédé WO2014202049A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013106359.4 2013-06-18
DE201310106359 DE102013106359A1 (de) 2013-06-18 2013-06-18 Verfahren zum Bestimmen einer optimalen Unterwasserschallgeschwindigkeit sowie Vorrichtung zum Durchführen des Verfahrens

Publications (1)

Publication Number Publication Date
WO2014202049A1 true WO2014202049A1 (fr) 2014-12-24

Family

ID=51032870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/100175 WO2014202049A1 (fr) 2013-06-18 2014-05-21 Procédé servant à déterminer une vitesse optimale du son dans l'eau, et dispositif servant à mettre en œuvre ledit procédé

Country Status (2)

Country Link
DE (1) DE102013106359A1 (fr)
WO (1) WO2014202049A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526454A (zh) * 2020-10-22 2021-03-19 自然资源部第一海洋研究所 一种顾及表层声速和坐标先验信息的水下控制点定位方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004413B (zh) * 2015-06-11 2018-01-05 华南理工大学 用于水下目标定位的声传播路径综合速度测定方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638820A (en) * 1996-06-25 1997-06-17 Siemens Medical Systems, Inc. Ultrasound system for estimating the speed of sound in body tissue
US20110125017A1 (en) * 2004-09-20 2011-05-26 Innervision Medical Technologies Inc. Systems and Methods for Ultrasound Imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719693B2 (en) * 2002-03-29 2004-04-13 Becs Technology, Inc. Apparatus and system for real-time synthetic focus ultrasonic imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638820A (en) * 1996-06-25 1997-06-17 Siemens Medical Systems, Inc. Ultrasound system for estimating the speed of sound in body tissue
US20110125017A1 (en) * 2004-09-20 2011-05-26 Innervision Medical Technologies Inc. Systems and Methods for Ultrasound Imaging

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BELLETTINI; PINTO: "Theoretical Accuracy of Synthetic Aperture Sonar Micronavigation Using a Displaced Phase-Center Antenna", IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 27, 2002, pages 780 - 789
HANSEN ET AL.: "The effect of sound velocity variations on synthetic aperture sonar", PROC. UNDERWATER ACOUST MEAS. (UAM, 2007
LEIER ET AL.: "SEQUENTIAL FO US EVALUATION OF SYNTHETIC APERTURE SONAR IMAGES", IEEE ICASSP CONFERENCE PROCEEDINGS, 26 May 2013 (2013-05-26)
LEIER ET AL.: "SEQUENTIAL FOCUS EVALUATION OF SYNTHETIC APER URE SONAR IMAGES", IEEE ICASSP CONFERENCE PROCEEDINGS, 26 May 2013 (2013-05-26)
LEIER STEFAN ET AL: "Sequential focus evaluation of synthetic aperture sonar images", ICASSP 91 : 1991 INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, PISCATAWAY, NJ, US, 26 May 2013 (2013-05-26), pages 5969 - 5973, XP032508508, ISSN: 1520-6149, [retrieved on 20131018], DOI: 10.1109/ICASSP.2013.6638810 *
SOUMEKH: "Synthetic Aperture Radar Signal Processing: with MATLAB Algorithms", 1999, WILEY&SONS.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526454A (zh) * 2020-10-22 2021-03-19 自然资源部第一海洋研究所 一种顾及表层声速和坐标先验信息的水下控制点定位方法
CN112526454B (zh) * 2020-10-22 2022-04-26 自然资源部第一海洋研究所 一种顾及表层声速和坐标先验信息的水下控制点定位方法

Also Published As

Publication number Publication date
DE102013106359A1 (de) 2014-12-18

Similar Documents

Publication Publication Date Title
DE2945343C2 (fr)
EP1405100A1 (fr) Procede de correction de donnees relatives a plusieurs capteurs optoelectroniques
DE102010045657A1 (de) Umfeld-Überwachungssystem für ein Fahrzeug
DE102009030076A1 (de) Abbildungsverfahren mittels synthetischer Apertur, Verfahren zur Bestimmung einer Relativgeschwindigkeit zwischen einem wellenbasierten Sensor und einem Objekt bzw. Vorrichtung zur Durchführung der Verfahren
WO2004010093A1 (fr) Procede et dispositif permettant de determiner une plage de valeurs escomptees pour un echo de niveau et un echo parasite
DE102009030075A1 (de) Vorrichtung und Abbildungsverfahren mit synthetischer Apertur zum Bestimmen eines Einfallwinkels und/oder einer Entfernung
WO2011137465A1 (fr) Procédé d'hydrographie au laser
DE102020203796A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Messinformation und LiDAR-Gerät
EP1920269B1 (fr) Procede de production d'une image de sonar
DE102019114723A1 (de) Abschwächen von schwingungen in einem radarsystem auf einer beweglichen plattform
DE102018202864A1 (de) Verfahren und System für Synthetische-Apertur-Radarsignalverarbeitung
WO2022049241A1 (fr) Procédé, système radar et véhicule pour le traitement de signaux radars
WO2014202049A1 (fr) Procédé servant à déterminer une vitesse optimale du son dans l'eau, et dispositif servant à mettre en œuvre ledit procédé
WO2003001233A1 (fr) Procede de determination passive de donnees cibles
DE102007019445A1 (de) Verfahren zum Generieren von zielmarkierenden Peiltracks
DE10352738A1 (de) Verfahren zum passiven Bestimmen von Zieldaten
DE10130297A1 (de) Verfahren zum Bestimmen der Zielposition eines schallabstrahlenden Ziels
EP2699933B1 (fr) Procédé et dispositif de détermination de paramètres d'une cible
DE102015223790B3 (de) Verfahren und Vorrichtung zur Modellauswahl bei der Objektverfolgung mit projizierenden Messungen
DE102009042969A1 (de) Verfahren und Vorrichtung zum Bestimmen der Position eines Wasserfahrzeugs
EP2594958B1 (fr) Procédé et dispositif destinés à la mesure acoustique d'un sol sous-marin
WO2020069922A1 (fr) Procédé de fourniture d'informations d'objet à propos d'objets statiques dans un environnement d'un véhicule
DE102014224911A1 (de) Verfahren und Vorrichtung zum Bestimmen statistischer Eigenschaften von Rohmesswerten
DE102009020636B4 (de) Verfahren zur verbesserten Erkennung von leitungsartigen Objekten
DE102022120258A1 (de) Verfahren und Radareinrichtung zur radarbasierten Größeneinstufung von Objekten und entsprechend eingerichtetes Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14733975

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14733975

Country of ref document: EP

Kind code of ref document: A1