WO2014201609A1 - 电极组件、其制造方法和锂二次电池 - Google Patents

电极组件、其制造方法和锂二次电池 Download PDF

Info

Publication number
WO2014201609A1
WO2014201609A1 PCT/CN2013/077332 CN2013077332W WO2014201609A1 WO 2014201609 A1 WO2014201609 A1 WO 2014201609A1 CN 2013077332 W CN2013077332 W CN 2013077332W WO 2014201609 A1 WO2014201609 A1 WO 2014201609A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
plate
active material
electrode assembly
Prior art date
Application number
PCT/CN2013/077332
Other languages
English (en)
French (fr)
Inventor
黄学杰
赵文武
王超
Original Assignee
中国科学院物理研究所
苏州星恒电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所, 苏州星恒电源有限公司 filed Critical 中国科学院物理研究所
Priority to PCT/CN2013/077332 priority Critical patent/WO2014201609A1/zh
Publication of WO2014201609A1 publication Critical patent/WO2014201609A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Electrode assembly method of manufacturing the same, and lithium secondary battery
  • the present invention relates to an electrode assembly, a method of manufacturing the same, and a lithium secondary battery, and belongs to the field of manufacturing energy storage devices such as batteries and capacitors. Background technique
  • lithium secondary batteries have been commercialized and widely used due to their high energy density and voltage, extended cycle life, and low self-discharge rate.
  • the electrode assembly is an important part constituting a lithium secondary battery, and generally has a plurality of sets of cathode plates/isolation layers/anode plates.
  • the wound electrode assembly is manufactured by the following steps: coating a metal foil used as a current collector with an electrode active material; drying and pressing the electrode coated metal foil, that is, a plate; the dried and pressed pole piece The strip was cut into strips having a predetermined width and length to form an anode plate and a cathode plate; the anode plate and the cathode plate were separated by a separator, and spirally wound into an anode plate/separator/cathode plate structure.
  • the wound electrode assembly is not suitable for a battery in which both the positive and negative electrodes are expanded during charging, such as a lithium cobaltate/graphite system battery, because the positive and negative electrodes simultaneously expand during the charge/discharge cycle of the battery.
  • the wound electrode assembly may also be because the electrode active material may be Separation affects electrical properties, and the wound electrode assembly is not suitable for a prismatic battery due to low space utilization.
  • the stacked electrode assembly is formed by sequentially stacking a plurality of full-cell or multi-structured double cells having a cathode plate/isolation layer/anode plate structure, and separating layers are disposed between them.
  • 1 and 2 show a typical stacked electrode assembly structure. As shown in Figs.
  • the stacked electrode assembly 10 is manufactured by the following steps: cutting the cathode plate 1, the anode plate 2, and the separator 5 having a predetermined size, sequentially stacking the cut cathode plate 1, the partition plate 5, and the anode plate 2 to manufacture a double battery 6, A plurality of double cells 6 are wrapped using a separator film 7, and electrode tips 3 and 4 projecting from one end of the cathode plate 1 and the anode plate 3 are electrically connected.
  • the patent CN200780025657.1 discloses an electrode assembly having a laminated structure. As shown in Fig. 3, in this structure, the cathode plate 11 and the anode plate 12 are simultaneously bent into a zigzag shape in a vertical cross section, and the two are adapted to each other with an isolation layer 13 interposed therebetween. It can be seen that the electrode assembly manufactured according to this structure, the anode current collector and the cathode current collector can only apply the active material on one side, the utilization rate of the material is low, the manufacturing and use cost is high, and the winding type and other stacking Compared to the type of electrode assembly, the battery has the same volume at the same capacity. Summary of the invention
  • the present invention provides an electrode assembly for a lithium secondary battery, which has a simple structure, is easy to manufacture, and utilizes materials sufficiently, thereby saving cost.
  • the present invention also provides a method of manufacturing the above electrode assembly, which is simple in process and advantageous for mass production.
  • the present invention also provides a lithium secondary battery comprising the above electrode assembly, wherein the lithium secondary battery has a large energy density and is less prone to short circuit.
  • the present invention provides an electrode assembly for a lithium secondary battery, the electrode assembly comprising an anode plate, a separator layer and a cathode plate, wherein the anode plate is an anode current collector coated on both sides with an anode active material and continuously a continuous anode plate bent into a zigzag shape in a vertical section; the cathode current collector of the cathode plate is coated with a cathode active material on both sides, and is independently located between opposite faces formed by bending the anode plate, so that each The two cathode active material-coated faces of the cathode plates are respectively opposite to the faces formed by bending the anode plates, but the bent outer side of the anode plates does not face the cathode plates; the separator is located at the anode The plates are opposite the faces of the cathode plates; the anode plates and the cathode plates respectively have contact regions for connecting the leads.
  • the selection of the electrode active material and the current collector can be referred to a known technique.
  • the main component of the cathode active material is a lithium intercalation material, and lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, or the like, or a composite oxide thereof, and a cathode current collector material can be used in industrial production.
  • Aluminum foil is generally used, and the cathode material is coated on a cathode current collector to form a cathode plate;
  • the main component of the anode active material is lithium metal or lithium alloy, and a lithium intercalation material such as carbon, petroleum coke, activated carbon, graphite or other carbon.
  • the material of the anode current collector may be a metal foil prepared from copper, iron, nickel, copper alloy or a combination thereof, and copper foil is generally used in industrial production, and the anode active material is coated on the anode current collector to form an anode plate.
  • the "vertical section is Z-shaped" means that the section perpendicular to the bending direction after the continuous bending of the anode plate has a zigzag shape or a continuous zigzag shape (depending on the number of bending of the anode plate).
  • the electrode assembly provided by the present invention, there are various structures for realizing that the anode plates are continuously disposed and the cathode plates are independently provided.
  • the cathode plate is inserted into a separator bag having at least one end portion opened, so that the separator bag covers both sides of the cathode plate to form the separator.
  • one end of the diaphragm bag is provided with an opening or a partial opening, and the opening is sized and arranged so that the positive electrode tab is smoothly inserted into the membrane bag during the manufacturing process.
  • the structure may be configured such that: the spacer layer is disposed on both sides of the anode plate, and is continuously bent along the surface of the anode plate plate into a z-shape with a vertical cross section, and the separator is an anode at this time.
  • the plate is adapted to the continuous film.
  • the bent portion of the anode plate is not coated or thinly coated with the anode active material, so that the bending of the electrode plate can be easily performed, provided that the electrical properties of the anode plate are to be ensured.
  • the bend region can be formed by applying a layer of the active material to the current collector using a pattern coating method.
  • markings for enabling the anode to be easily bent can also be provided on the bending zone, which can be formed in particular on the current collector of the anode (thin coated or uncoated active material).
  • the indicia may include a plurality of holes distributed at appropriate intervals along the bend zone.
  • the "bending zone” refers to an edge region near the crease formed by continuously bending the anode plate into a zigzag of a vertical cross section.
  • the bending zone is formed at a predetermined interval along the direction in which the anode plates are continuously bent, and the distance between the two adjacent bending zones is substantially the width of the electrode assembly.
  • the selection of the isolation layer for isolating the cathode plate from the anode plate can be referred to a known technique, and the present invention is not particularly limited.
  • the separator may be a porous film made of an insulating material, for example, a polypropylene (PP), a polyethylene (PE) single-layer microporous film, a multilayer microporous film composed of PP and PE, and polyethylene terephthalate.
  • a diol ester (PET) a nonwoven fabric or the like, or a composite film formed by coating a ceramic or a polymer material coating on the above porous film.
  • the anode of the anode plate after continuous bending is not coated with the anode active material.
  • the outer side that is, the region near the both ends of the anode plate, is continuously bent and then located on both outer sides, so that the active material is not coated because it does not need to be matched with the cathode plate.
  • the contact area of the cathode plate is formed by the cathode plate current collector extension, and the region is not coated with the cathode active material.
  • the bent outer side of the anode plate is not coated with the anode active material, and the contact area of the anode plate is located at an appropriate area on the outer side.
  • the contact area of the anode plate is formed by an anode plate current collector extension that is not coated with the anode active material.
  • the cathode plate is formed by laser or mechanically cutting an aluminum foil current collector coated with a cathode active material on both sides.
  • the electrode assembly is formed by: performing a laser or mechanical cutting of a cathode current collector coated with a cathode active material on both sides, and placing the double-sided coating in an orientation manner.
  • the anode active material is bent between the continuously bent anode sheets to form a space between the opposing faces, and the opposite faces of the cathode plates and the anode plates are separated by a separator.
  • one end of the cathode and/or the anode extends out of the separator to form a battery assembly portion, and the battery assembly portion is not coated with the active material layer.
  • the present invention also provides a method of manufacturing the above electrode assembly, comprising the following process:
  • the current collector coated with the cathode active material is laser-cut or mechanically cut into a cathode plate, placed between opposite faces formed by bending the anode plate, so that both sides of the cathode plate face the anode plate at the same time, and are separated by the isolation layer .
  • the above manufacturing process can be continuously performed on the production line. That is, the anode current collector and the cathode current collector of the set size are first intercepted, and the active material is coated in the set region; the anode is coated The anode current collector of the active material is continuously bent to form an anode plate having a zigzag shape in a vertical section, and at the same time, a laser or mechanical cutting of the cathode current collector coated with the active material can be simultaneously performed on the production line to form a cathode plate; the cathode plate can be The suction cup is sucked and directly inserted between the opposite faces formed by bending the anode plate, so that both sides of the cathode plate face the anode plate at the same time and are separated by the separation layer; then the pressing process is performed on the electrode assembly to keep the opposite faces Stable contact.
  • the above manufacturing method only cuts the cathode to keep the anode continuous, and can avoid the generation of copper oxide which is harmful to the electrode even when cut at a high temperature, so that it can be manufactured by laser or mechanical cutting, which improves efficiency and is advantageous for large scale.
  • it is not necessary to avoid the formation of nano-alumina into the electrode assembly.
  • the nano-alumina produced by cutting the cathode current collector is not only harmless to the battery, but also can be used as a pole piece or a separator.
  • the layer material is advantageous for improving the performance of the electrode assembly manufactured.
  • the "setting area" is a region where the electrode active material needs to be coated on both sides of the respective current collectors according to the foregoing, that is, a region other than the contact region, the outer side of the anode plate which is bent, and the like.
  • a method of manufacturing the electrode assembly includes the following steps: coating an anode active material in a set region on both sides of an anode current collector, and continuously bending the anode current collector coated with the anode active material, Forming an anode plate having a zigzag shape in a vertical section;
  • the cathode current collector coated with the cathode active material is laser-cut or mechanically cut into a cathode plate, first placed in a diaphragm bag having at least one end opening, and then inserted between opposite faces formed by bending the anode plate to make the cathode plate Both sides face the anode plate at the same time, and the separator bag covers both sides of the cathode plate to become the separation layer.
  • the process of combining the diaphragm bag and the cathode plate may be performed by covering the diaphragm and the edge band in the field to form a bag-shaped pole piece, for example, taking a set size from the large-sized diaphragm and folding it, and clamping the positive electrode piece. And exposing the contact area, suturing or heat sealing the portions of each side except the contact area, so that the diaphragm is formed into a bag shape, the cathode plate is located in the bag, and the contact area protrudes from the opening of the diaphragm bag.
  • This process can be automated using machines.
  • a method of manufacturing the electrode assembly includes the following steps: coating an anode active material in a set region on both sides of an anode current collector, and continuously bending the current collector coated with the anode active material, Forming an anode plate having a zigzag shape in a vertical section;
  • the cathode current collector coated with the cathode active material is laser-cut or mechanically cut into a cathode plate, and a continuous separator is placed on both sides of the anode plate, and the cut cathode plate is driven to insert the separator into the opposite surface formed by bending the anode plate.
  • the separator is bent along the surface of the anode plate to form the separator, so that both sides of the cathode plate face the anode plate and are separated by the separator.
  • the laser cutting technique is used to realize the positioning and cutting of the cathode plate, particularly in the case where the cathode plate is patterned and the laser only cuts the aluminum foil as the cathode current collector, which is advantageous for the industrial scale production of the electrode assembly.
  • the present invention also provides a lithium secondary battery having the above electrode assembly.
  • a lithium secondary battery according to the present invention which is a lithium ion battery, a lithium ion polymer battery or a lithium polymer battery.
  • the lithium secondary battery provided by the present invention may be various prismatic batteries, such as a soft square battery, an aluminum square battery or a stainless steel rectangular battery.
  • the electrode assembly of the present invention can be applied to other fields besides a lithium secondary battery, such as a supercapacitor, a primary battery, a secondary battery, a fuel cell, a sensor, an electrolysis device, or an electrochemical reactor.
  • a lithium secondary battery such as a supercapacitor, a primary battery, a secondary battery, a fuel cell, a sensor, an electrolysis device, or an electrochemical reactor.
  • the electrode assembly is directly assembled after cutting, thereby facilitating mass production and improving the manufacturing efficiency of the electrode assembly;
  • the electrode assembly of the present invention is coated with an active material on both sides of the electrode, which not only improves material utilization, saves manufacturing cost, but also achieves higher battery capacity with a smaller electrode assembly volume;
  • the electrode assembly provided by the present invention has the same shape as that of the quadrangular container, so that there is no unused space in the container, and the energy density is improved compared with the wound electrode assembly, so that it is more suitable. Used in prismatic batteries;
  • the present invention improves the structural design and processing method of the electrode assembly, and becomes an electrode assembly having a novel laminated structure which is not limited by the active material and the type of the battery, and is particularly suitable for a power battery.
  • FIG. 1 and 2 are schematic views showing a manufacturing process of a prior art stacked electrode assembly.
  • Fig. 3 is a schematic view showing the assembly of another prior art stacked electrode assembly.
  • FIG. 4 is a schematic illustration of an electrode assembly prior to assembly in accordance with one embodiment of the present invention.
  • Fig. 5 is a vertical sectional view taken along line A-A of Fig. 1 of the electrode assembly of one embodiment of the present invention after assembly.
  • Figure 6 is a schematic view of a cathode plate of one embodiment of the present invention.
  • FIG 7 and 8 are schematic views of an anode plate according to an embodiment of the present invention.
  • Figure 9 is a schematic view of an electrode assembly of another embodiment of the present invention prior to assembly.
  • Fig. 10 is a vertical sectional view taken along line A-A of Fig. 6 of the electrode assembly of another embodiment of the present invention after assembly. detailed description
  • FIG. 4 is a schematic view of the electrode assembly of the present embodiment before assembly
  • FIG. 5 is a vertical cross-sectional view taken along line AA of FIG. 4 after assembly of the electrode assembly.
  • the cathode plate 110 is a discontinuous independent blade, and the anode plate 120 is continuously bent into a zigzag shape in a vertical cross section.
  • the cathode plate 110 includes a cathode current collector 111, and a cathode active material 112 coated on both sides of the cathode current collector 111.
  • the anode plate 120 includes an anode current collector 121, and an anode active material 122 coated on both sides of the anode current collector 121.
  • Each of the cathode plates 110 is wrapped in a separator bag made of a polypropylene porous film, and the separator bag is open at one end, and both sides of the coated cathode plate 110 serve as the separation layer 130.
  • the diaphragm pockets encasing the cathode plates 110 are independently located on the anode plate 120 Between the opposite faces formed after bending, the faces of the cathode plates 110 coated with the cathode active material 112 are respectively opposed to the faces formed by the bending of the anode plates 120 and are separated by the separator 130.
  • the bent outer side 123 of the anode plate 120 is not coated with the anode active material and does not face the cathode plate 110, and the electrode lead may be connected to the electrode through an appropriate region of the outer side.
  • the current collector 111 of the cathode plate 110 extends outward to form a contact region 113 which is not coated with a cathode active material for connecting the leads.
  • the contact region 123 of the anode plate 120 is also formed by the anode plate current collector 121, as shown in FIG. 7, and in order to make the anode plate 120 more easily bent and to avoid separation of the active material, the bending region 124 may not be coated or Thinly coating the anode active material; a plurality of spaced-apart marking holes 140 may be formed in the bending region 124 to make the anode plate 120 more flexible; and as shown in FIG. 8, the above two means may also be used simultaneously to obtain Better bending effect.
  • LiCo0 2 , carbon black and polyvinylidene fluoride (PVDF) in a weight ratio of 95:2.5:2.5 were dispersed in N-methylpyrrolidone (NMP) to prepare a slurry, and then the slurry was applied to The set area on both sides of the aluminum foil of a predetermined size is sufficiently dried after drying at 130 ° C to prepare a current collector coated with the cathode active material.
  • NMP N-methylpyrrolidone
  • Graphite, acetylene black and PVDF in a weight ratio of 93:1:6 were dispersed in NMP to prepare a slurry, and then the slurry was applied to a set area on both sides of a copper foil of a predetermined size, and dried at 130 ° C, and then flattened.
  • a current collector coated with an anode active material was prepared.
  • the current collector coated with the anode active material is continuously bent so that the interval between the bending regions 124 is a set size (the marking hole may also be opened in the bending region in advance, and the active material of the bending region is coated.
  • the amount of application can also be controlled in advance to form a continuous anode plate 120 having a zigzag cross section.
  • the current collector coated with the cathode active material (which may be a plurality of stacked sheets) is respectively placed at the laser cutting stations on both sides, the anode plate 120 is placed in the middle, and a polypropylene porous film is prepared for preparation.
  • a diaphragm bag (suitably placed between the laser cutting station and the anode plate 120).
  • the sheet, and then the cathode plate 110 covered by the separator bag is inserted between the opposite faces formed by bending the anode plate 120, so that the faces of the cathode plates 110 coated with the cathode active material 112 and the anode, respectively
  • the faces formed by the bending of the plate 120 are opposite, and the diaphragm bag covers the cathode plate 110. Both sides become the isolation layer 130.
  • the electrode assembly provided in this embodiment has less cross-section than the stacked battery pack in the prior art, and has a burr-free section due to the laser cutting method; it is avoided in manufacturing due to the cutting of the anode.
  • the copper oxide is introduced into the electrode assembly, thereby effectively ensuring the yield of the electrode assembly.
  • the electrode assembly provided in the embodiment is coated with active materials on both sides of the electrode, which not only improves the utilization rate of the material, but also saves the manufacturing cost. And when the capacity of the electrode assembly is the same, the volume is reduced.
  • FIG. 9 is a schematic view of the electrode assembly provided in the present embodiment before assembly.
  • Figure 10 is a vertical sectional view taken along line A-A of Figure 9 after assembly of the above electrode assembly.
  • the cathode plate 210 is a discontinuous independent blade, and the anode plate 220 is continuously bent into a zigzag shape in a vertical cross section.
  • the cathode plate 210 includes a cathode current collector 21 1 and a cathode active material 212 coated on both sides of the cathode current collector 21 1
  • the anode plate 220 includes an anode current collector 221 , and an anode active material coated on both sides of the anode current collector 221 222.
  • the arrangement of the contact region 223 and the bending region 224 is the same as that of the first embodiment.
  • the difference from the embodiment 1 is that the spacer layer 230 is a strip-shaped polyethylene porous film having the same shape as the anode 220, and is disposed outside the anode active material layer 222 on both sides of the anode 220, and is continuously bent along the plate surface of the anode plate 220.
  • the vertical section is zigzag.
  • the cathode plates 210 are respectively independently located between the opposite faces formed by the bending of the anode plate 220, so that the faces of the two cathode plates 210 coated with the cathode active material 212 and the faces of the anode plates are respectively bent.
  • the isolation layer 130 is spaced between the anode plate 220 and the face opposite the cathode plate 210.
  • the bent outer side 223 of the anode plate 220 is not coated with the anode active material 222 and does not face the cathode plate 210, and the electrode lead may be connected to the electrode through an appropriate region of the outer side.
  • Example 1 A method of preparing a current collector for coating an active material can be referred to in Example 1.
  • the copper foil current collector coated with the anode active material is continuously bent so that the interval between the bending regions 224 is a set size, and the anode plate 220 having a zigzag shape in a vertical cross section is formed.
  • the aluminum foil current collector (which may be a plurality of stacked sheets) coated with the cathode active material is placed on the laser cutting stations on both sides, the anode plate 220 is placed in the middle, and the separator is placed on both sides of the anode plate. And separating the anode plate from the cathode plate.
  • the aluminum foil coated with the cathode active material is continuously laser cut into the required cathode plate 1 10 according to the set size, and the cut cathode plate 210 is simultaneously cut.
  • This embodiment provides a method of manufacturing a lithium secondary battery using the electrode assembly provided in Embodiment 1 or 2.
  • the specific manufacturing method is as follows: The above electrode assembly is placed in an aluminum foil package, and then the electrolyte is injected and packaged, and the electrolyte includes 1 M LiPF 6 ethylene carbonate and methyl ethyl carbonate (weight ratio 1:2). The mixed solution was prepared into an aluminum shell prismatic battery.
  • the lithium secondary battery container prepared in the present embodiment does not have an unused space, has a large energy density, and is unlikely to be short-circuited.

Abstract

本发明提供一种电极组件、其制造方法和锂二次电池。该电极组件由阳极板、隔离层和阴极板组成,其中,所述阳极板为阳极集流体双面均涂覆有阳极活性材料并连续弯折成垂直截面为Z字形的连续阳极板;所述阴极板的阴极集流体双面均涂覆有阴极活性材料,分别独立地位于阳极板经弯折后形成的相对面之间,使每个阴极板的两个涂覆了阴极活性材料的面分别与所述阳极板弯折形成的面相对,但所述阳极板弯折后的外侧不与所述阴极板面对;所述隔离层位于所述阳极板与阴极板相对的面之间;所述阳极板和阴极板分别还具有用于连接引线的接触区。本发明提供的电极组件易于制造,并充分利用材料,节约了成本,有利于大规模生产。

Description

电极组件、 其制造方法和锂二次电池
技术领域
本发明涉及一种电极组件、 其制造方法和锂二次电池, 属于电池、 电容 器等储能器件制造领域。 背景技术
随着移动设备的日益发展且对移动设备的需求不断增加, 对于作为移动 设备的能量来源的电池需求也急剧增加。 其中, 锂二次电池由于具有高能量 密度和电压、 延长的循环寿命以及低自放电率, 已经商业化并得到广泛的应 用。
电极组件是构成锂二次电池的重要部分, 其通常具有多组阴极板 /隔离层 /阳极板的结构, 目前常见的主要有卷绕型电极组件和堆叠型电极组件。
卷绕型电极组件是通过以下歩骤制造的: 将用作集流体的金属箔涂以电 极活性材料; 干燥并且压制该带电极涂层的金属箔即极板; 将该干燥和压制 的极片切割成具有预定宽度和长度的带形, 制成阳极板和阴极板; 使用隔离 层将阳极板和阴极板分隔开, 并螺旋卷绕成为阳极板 /隔离层 /阴极板结构。然 而卷绕型电极组件并不适合用于充电时正负极片均膨胀的电池, 如钴酸锂 /石 墨体系电池, 这是由于在电池充 /放电循环中, 其正负极会同时产生膨胀和收 縮, 使卷绕结构的弯曲部分容易由于应力而折断或刺破作为隔离层的隔膜, 从而增加短路和縮短电池的使用寿命的风险; 另外, 卷绕型电极组件还因为 电极活性材料可能被分离而影响电性, 并且由于空间利用率低, 卷绕型电极 组件不适用于方形电池。
堆叠型电极组件,采用多个具有阴极板 /隔离层 /阳极板结构的全电池或多 结构的双电池依次堆叠, 他们 间设置隔离层使其彼此 ϋ。 图 1和图 2显 示了一种典型的堆叠型电极组件结构, 如图 1和图 2所示, 堆叠型电极组件 10是通过以下歩骤制造的: 切割阴极板 1、 阳极板 2和隔离层 5使其具有预 定尺寸, 依次堆叠该切割的阴极板 1、 分隔板 5和阳极板 2以制造双电池 6, 使用分隔薄膜 7将多个双电池 6包起来, 以及电连接从阴极板 1和阳极板 3 的一侧末端中突出的电极头 3和 4。 这种结构虽然能够克服上述卷绕型电极 组件的缺点, 但是正负电极片的切割会产生大量的断面, 边缘修整要求高, 制造过程繁琐, 使用精密刀模也使成本提高; 采用激光切割固然能减少毛刺, 但另一方面, 高温切割作为阳极集流体的铜箔时产生的纳米铜氧化物对电池 是致命的 (该杂质在电池内部的存在会导致充放电过程中形成铜枝晶引起电 极间短路) , 需要提供强力的除尘装置, 增加了技术难度和制造费用; 另外 当受到外部冲击力而被挤压时,堆叠型电极组件也很容易因变形而发生短路。
为了解决上述问题,专利 CN200780025657.1公开了一种具有叠层结构的 电极组件。 如图 3所示, 在该结构中, 阴极板 11和阳极板 12同时被弯折成 垂直截面为 Z字形, 且二者相适应, 之间设置一隔离层 13。 可以看到, 按照 这个结构制造的电极组件, 阳极集流体和阴极集流体都只能在单面涂敷活性 材料, 材料的利用率低, 制造和使用成本高, 并且与卷绕型和其他堆叠型电 极组件相比, 相同容量下电池的体积较大。 发明内容
本发明提供一种用于锂二次电池的电极组件, 其结构简单, 易于制造, 并充分利用材料, 节约了成本。
本发明还提供一种上述电极组件的制造方法, 工艺简单, 有利于大规模 生产。
本发明还提供一种锂二次电池, 包括上述电极组件, 所述锂二次电池的 能量密度大, 且不易发生短路。
本发明提供一种用于锂二次电池的电极组件, 该电极组件由阳极板、 隔 离层和阴极板组成, 其中, 所述阳极板为阳极集流体双面均涂覆有阳极活性 材料并连续弯折成垂直截面为 Z字形的连续阳极板; 所述阴极板的阴极集流 体双面均涂覆有阴极活性材料, 分别独立地位于阳极板经弯折后形成的相对 面之间, 使每个阴极板的两个涂覆了阴极活性材料的面分别与所述阳极板弯 折形成的面相对, 但所述阳极板弯折后的外侧不与阴极板面对; 隔离层位于 所述阳极板与阴极板相对的面之间; 所述阳极板和阴极板分别还具有用于连 接引线的接触区。 在本发明中, 电极活性材料和集流体的选择可参照公知技术。 例如, 阴 极活性材料主要成分为锂嵌入材料, 可以使用锂锰氧化物、 锂钴氧化物、 锂 镍氧化物、 锂铁磷酸盐等或其形成的复合氧化物, 阴极集流体的材料在工业 生产中一般使用铝箔, 所述阴极材料涂覆在阴极集流体上形成阴极板; 阳极 活性材料的主要成分为锂金属或锂合金, 以及锂嵌入材料, 例如碳、 石油焦、 活性炭、 石墨或其他碳材料, 阳极集流体的材料可以为铜、 铁、 镍、 铜合金 或其组合物制备的金属箔, 工业生产中一般使用铜箔, 所述阳极活性材料涂 覆在阳极集流体上形成阳极板。
本发明中, 所述 "垂直截面为 Z字形" , 指阳极板经连续弯折后, 垂直 于弯折方向的截面呈 Z字形或连续的 Z字形 (取决于阳极板的弯折次数) 。
根据本发明提供的电极组件, 实现阳极板为连续设置、 阴极板独立设置 的结构可以有多种。
例如, 所述阴极板插设于一至少一端部分开口的隔膜袋中, 使该隔膜袋 包覆阴极板的两面成为所述隔离层。 该具体方案中, 所述隔膜袋的一端设开 口或部分开口, 开口的尺寸和方式以便于正极极片在制造过程中顺利插入隔 膜袋中为宜。
根据本发明提供的电极组件, 还可以构造成这样的结构: 所述隔离层设 于阳极板的两面, 并沿阳极板板面连续弯折成垂直截面为 z字形, 此时隔离 层为与阳极板相适应的连续薄膜, 当阳极板的弯折面之间插入阴极板后, 隔 离层即形成对阴、 阳极板的隔离。
在本发明的一个实施方案中, 所述阳极板的弯折区未涂覆或稀薄涂覆阳 极活性材料, 从而可容易完成电极板的弯曲, 当然, 前提是应该保证阳极板 的电性能。 弯折区可通过使用图案化涂覆的方法将活性材料层涂覆到集流体 而形成的。 除了考虑活性材料的涂覆, 在弯折区上也可设置用于使阳极能够 被容易地弯曲的标记, 这些标记尤其可以形成在阳极的集流体上 (稀薄涂覆 或未涂覆活性材料) , 例如, 这些标记可包括沿弯折区以适当间隔分布的多 个孔。
本发明中, 所述 "弯折区", 是指通过将阳极板连续弯折成垂直截面为 Z 字形后所形成的靠近折痕的边缘区域。 沿着阳极板被连续弯折的方向以预定 间隔形成弯折区, 两个相邻弯折区之间的距离, 基本上即为电极组件的宽度。 在本发明中, 隔离阴极板与阳极板的隔离层的选择可参照公知技术, 本 发明不做特别限定。 隔离层可以是由绝缘材料制成的多孔薄膜, 例如, 聚丙 烯(PP) 、 聚乙烯(PE)单层微孔膜、 由 PP和 PE复合的多层微孔膜、 聚对 苯二甲酸乙二醇酯 (PET) 、 无纺布等, 或者在上述多孔薄膜上涂覆陶瓷或 高分子材料涂层形成的复合膜等。
根据本发明提供的电极组件, 所述阳极板连续弯折后的外侧未涂覆所述 阳极活性材料。 该外侧也即阳极板靠近两端的区域, 经连续弯折后分别位于 两外侧, 因无需与阴极板匹配, 因此不涂覆活性材料。
根据本发明提供的电极组件, 所述阴极板的接触区由阴极板集流体延伸 形成, 该区域未涂覆阴极活性材料。
根据本发明提供的电极组件, 所述阳极板弯折后的外侧未涂覆阳极活性 材料, 且阳极板的接触区位于外侧的适当区域。 例如, 所述阳极板的接触区 由阳极板集流体延伸形成, 该区域未涂覆所述阳极活性材料。
根据本发明提供的电极组件, 所述阴极板为对双面涂覆了阴极活性材料 的铝箔集流体实施激光或机械切割而成。
根据本发明提供的电极组件, 所述电极组件的形成过程为: 将双面涂覆 了阴极活性材料的阴极集流体实施激光或机械切割制成的阴极板, 定向置入 所述双面涂覆了阳极活性材料并经连续弯折的阳极板的经弯折形成后相对面 之间, 并使阴极板与阳极板的向对面之间被隔离层分隔。
根据本发明提供的电极组件, 所述阴极和 /或阳极的一端延伸出隔离层形 成电池组装部, 该电池组装部未涂覆所述活性材料层。
本发明还提供上述的电极组件的制造方法, 包括以下过程:
在阳极集流体双面的设定区域涂覆阳极活性材料, 将该涂覆了阳极活性 材料的集流体连续弯折, 形成垂直截面为 Z字形的阳极板;
在阴极集流体双面的设定区域涂覆阴极活性材料;
将涂覆了阴极活性材料的集流体经激光或机械切割成阴极板, 置入阳极 板经弯折后形成的相对面之间, 使阴极板的两面同时面对阳极板, 并被隔离 层分隔。
在本发明中, 上述制造过程可在生产线上连续完成。 即, 先截取设定尺 寸的阳极集流体和阴极集流体, 在其设定区域涂覆活性材料; 将涂覆了阳极 活性材料的阳极集流体连续弯折, 形成垂直截面为 Z字形的阳极板, 同时, 在生产线上可同时进行对涂覆了活性材料的阴极集流体的激光或机械切割形 成阴极板; 阴极板可以使用吸盘吸附并直接将其插入阳极板经弯折后形成的 相对面之间, 使阴极板的两面同时面对阳极板, 并被隔离层分隔; 然后对电 极组件实施压制过程使各个相对面保持稳定接触。
上述制造方法仅切割阴极而使阳极保持连续, 即使在高温下切割也能够 避免产生对电极有害的铜氧化物, 因此可以使用激光或机械切割两种方式进 行制造, 提高了效率, 有利于大规模生产; 同时在使用激光切割阴极板时, 不需顾忌生成的纳米氧化铝进入电极组件中, 切割阴极集流体产生的纳米氧 化铝不仅对电池无害, 而且通常可作为极片或隔离层的涂层材料, 对提升所 制造的电极组件的使用性能是有利的。
所述"设定区域"为根据前述内容, 在相应集流体两面需要涂覆电极活性 材料的区域, 即除接触区, 阳极板经弯折后的外侧等区域之外的其他区域。
本发明具体实施方案中, 制造所述电极组件的方法包括以下过程: 在阳极集流体双面的设定区域涂覆阳极活性材料, 将该涂覆了阳极活性 材料的阳极集流体连续弯折, 形成垂直截面为 Z字形的阳极板;
在铝箔集流器双面的设定区域涂覆阴极活性材料;
将涂覆了阴极活性材料的阴极集流体经激光或机械切割成阴极板, 先置 于至少一端部分开口的隔膜袋,然后插入阳极板经弯折后形成的相对面之间, 使阴极板的两面同时面对阳极板, 而隔膜袋包覆阴极板的两面成为所述隔离 层。
上述技术方案中, 所述隔膜袋与阴极板结合的工艺可以采用现场覆盖隔 膜和封边, 制成袋装极片, 例如, 从大尺寸隔膜上截取设定尺寸并折合, 夹 入正极极片, 并使接触区露出, 将各边除了接触区以外的部分进行缝合或热 合, 从而使隔膜形成袋状, 阴极板位于袋内, 接触区从隔膜袋开口处伸出。 这种工艺可以利用机器实现自动化生产。
本发明的具体实施方案中, 制造所述电极组件的方法包括以下过程: 在阳极集流体双面的设定区域涂覆阳极活性材料, 将该涂覆了阳极活性 材料的集流体连续弯折, 形成垂直截面为 Z字形的阳极板;
在阴极集流体双面的设定区域涂覆阴极活性材料 ·, 将涂覆了阴极活性材料的阴极集流体经激光或机械切割成阴极板, 在阳 极板两侧放置连续的隔膜, 将切割后的阴极板带动隔膜插入阳极板经弯折后 形成的相对面之间, 隔膜沿阳极板面被弯折成为所述隔离层, 使阴极板的两 面分别面对阳极板, 并被隔离层分隔。
上述制造方法, 采用激光切割技术实现阴极板的定位切割, 特别是在阴 极板采用图形化涂布, 激光仅切割作为阴极集流体的铝箔的情形, 对于该电 极组件的工业化规模生产是有利的。
本发明还提供一种锂二次电池, 具有上述电极组件。
根据本发明提供的锂二次电池, 其为锂离子电池、 锂离子聚合物电池或 锂聚合物电池。
本发明提供的锂二次电池可以为各种方形电池, 例如软包方形电池、 铝 壳方形电池或不锈钢壳方形电池等。
另外, 本发明的电极组件除用于锂二次电池外, 还可应用于其他领域, 例如超级电容器、 一次电池、 二次电池、 燃料电池、 传感器、 电解装置或电 化学反应器等。 本发明方案的实施, 至少具有以下优势:
1、 仅使阴极板(正极板)被切割, 具有较少的断面, 相比于堆叠型电极 组件更易于加工制造和提高良品率;
2、 可以实现激光原位切割、 定位放置阴极板, 保证极板边缘的极高精细
(无毛刺) , 切割后直接进行电极组件的装配, 因而有利于大规模生产, 提 高电极组件的制造效率;
3、本发明的电极组件在电极的两面均涂覆有活性材料, 不仅提高了材料 的利用率, 节约制造成本, 而且能以更小的电极组件体积获得更高的电池容 量;
4、 利用激光切割技术实现大规模工业化生产的同时, 只对阴极板(铝箔 集流体) 切割, 还消除了阳极板 (铜箔) 被切割引入的铜氧化物造成电池短 路的隐患, 在保证电极组件良品率的同时, 更利于提升电池的电性能;
5、 本发明提供的电极组件, 形状与四边形容器的形状一致, 使得容器内 不存在未利用的空间, 与卷绕型电极组件相比, 能量密度提高, 因此更适合 用于棱柱形电池中;
6、本发明改良了电极组件的结构设计和加工方法, 成为具有新颖叠层结 构的电极组件, 其不受活性材料和电池种类的限制, 尤其适用于动力电池。 附图说明
图 1和图 2为一种现有技术的堆叠型电极组件的制造过程示意图。
图 3为另一种现有技术的堆叠型电极组件的装配示意图。
图 4为本发明的一个实施例的电极组件在装配之前的示意图。
图 5本发明的一个实施例的电极组件在装配之后, 沿图 1中的 A-A线所 截取的垂直截面图。
图 6为本发明的一个实施例的阴极板示意图。
图 7和图 8为本发明的一个实施例的阳极板示意图。
图 9为本发明的另一实施例的电极组件在装配之前的示意图。
图 10本发明的另一实施例的电极组件在装配之后, 沿图 6中的 A-A线 所截取的垂直截面图。 具体实施方式
下面结合具体实施方案和实施例对本发明进行进一歩详细阐述, 旨在帮 助阅读者更好地理解本发明的实质内容, 不能理解为对本发明实施范围的任 何限定。 实施例 1
图 4为本实施例的电极组件在装配之前的示意图, 而图 5是在所述电极 组件装配之后,沿图 4中的 A-A线所截取的垂直截面图。如图 4和图 5所示, 在电极组件 100中, 阴极板 110为不连续的独立插片, 阳极板 120被连续弯 折成垂直截面为 Z字形。 阴极板 110包括阴极集流体 111, 以及涂覆在阴极 集流体 111的两面的阴极活性材料 112, 阳极板 120包括阳极集流体 121, 以 及涂覆在阳极集流体 121两面的阳极活性材料 122。 各阴极板 110分别被包 裹在聚丙烯多孔膜制成的隔膜袋中, 该隔膜袋一端开口, 包覆阴极板 110的 两面成为隔离层 130。 包裹阴极板 110 的隔膜袋分别独立地位于阳极板 120 经弯折后形成的相对面之间, 使每个阴极板 110的两个涂覆了阴极活性材料 112的面分别与所述阳极板 120弯折形成的面相对并被隔离层 130隔离。 阳 极板 120弯折后的外侧 123不涂覆阳极活性材料, 也不与阴极板 110面对, 电极引线可通过该外侧的适当区域连接至电极。
如图 6所示, 阴极板 110的集流体 111向外延伸形成接触区 113, 该区 域未涂覆阴极活性材料, 用于连接引线。 阳极板 120的接触区 123也是由阳 极板集流体 121延伸形成, 如图 7所示, 并且为了使阳极板 120更容易弯折, 和避免导致活性材料分离,弯折区 124可以不涂覆或稀薄涂覆阳极活性材料; 还可以在弯折区 124开设若干间隔排布的标记孔 140, 以使得阳极板 120更 易弯曲; 另外如图 8所示, 也可以将上述两种手段同时使用以取得更好的弯 折效果。
以钴酸锂电池为例, 简要介绍本实施例提供的电极组件的制造方法。 将重量比为 95:2.5:2.5的 LiCo02、 碳黑和聚 1,1-二氟乙烯 (PVDF ) 分散 在 N-甲基吡咯垸酮(NMP) 中制备浆液, 然后将该浆液涂布到预定尺寸的铝 箔两面的设定区域, 130°C充分干燥后, 碾平制备出涂覆阴极活性材料的集流 体。
将重量比为 93: 1 :6的石墨、 乙炔黑和 PVDF分散在 NMP中制备浆液, 然后将该浆液涂布到预定尺寸的铜箔两面的设定区域, 130°C充分干燥后, 碾 平制备出涂覆阳极活性材料的集流体。
将上述涂覆阳极活性材料的集流体进行连续弯折, 使得弯折区 124之间 的间隔为设定尺寸 (也可以事先在弯折区开设所述标记孔, 而弯折区的活性 材料涂敷量也可事先加以控制) , 形成垂直截面为 Z字形的连续阳极板 120。
在电极组件生产线上, 涂覆阴极活性材料的集流体(可以是多片叠摞好) 分别置于两侧的激光切割工位, 阳极板 120置于中间, 并准备聚丙烯多孔膜 以备制成隔膜袋用(分别置于激光切割工位与阳极板 120之间的合适工位)。 按照设置好的尺寸对涂覆阴极活性材料的集流体连续激光切割成为需要的阴 极板 110, 同时利用聚丙烯多孔膜将已切割成的阴极板 110通过现场覆盖隔 膜和封边制成袋装极片, 然后被隔膜袋包覆的阴极板 110插入阳极板 120经 弯折后形成的相对面之间,使每个阴极板 110的两个涂覆了阴极活性材料 112 的面分别与所述阳极板 120弯折形成的面相对, 而隔膜袋包覆阴极板 110的 两面成为所述隔离层 130。
本实施例提供的电极组件, 相比于现有技术中的堆叠型电池组件, 具有 较少的断面, 并且由于可使用激光切割法, 其断面无毛刺产生; 制造时避免 了由于切割阳极而在电极组件中引入铜氧化物, 从而有效保证了电极组件制 造时的良品率; 另外本实施例提供的电极组件在电极的两面均涂覆有活性材 料, 不仅提高了材料的利用率, 节约制造成本, 而且电极组件容量相同的情 况下, 体积縮小。
实施例 2
图 9为本实施例提供的电极组件在装配之前的示意图。图 10为上述电极 组件在装配之后, 沿图 9中的 A-A线所截取的垂直截面图。 如图 9和图 10 所示, 在电极组件 200中, 阴极板 210为不连续的独立插片, 阳极板 220被 连续弯折成垂直截面为 Z字形。 阴极板 210包括阴极集流体 21 1, 以及涂覆 在阴极集流体 21 1 的两面的阴极活性材料 212, 阳极板 220包括阳极集流体 221, 以及涂覆在该阳极集流体 221两面的阳极活性材料 222。
接触区 223和弯折区 224的设置与实施例 1相同。与实施例 1不同的是, 隔离层 230为与阳极 220形状相同的条带状聚乙烯多孔膜, 设置在阳极 220 两侧的阳极活性材料层 222的外侧, 并沿阳极板 220板面连续弯折成垂直截 面为 Z字形。 阴极板 210分别独立地位于阳极板 220经弯折后形成的相对面 之间, 使每个阴极板 210的两个涂覆了阴极活性材料 212的面分别与所述阳 极板弯折形成的面相对, 隔离层 130位于阳极板 220与阴极板 210相对的面 之间将其隔离。 阳极板 220弯折后的外侧 223不涂覆阳极活性材料 222, 也 不与阴极板 210面对, 电极引线可通过该外侧的适当区域连接至电极。
以钴酸锂电池为例, 简要介绍本实施例提供的电极组件的制造方法。 涂覆活性材料的集流体的制备方法可参照实施例 1。
将涂覆了阳极活性材料的铜箔集流体连续弯折, 使得弯折区 224之间的 间隔为设定尺寸, 形成垂直截面为 Z字形的阳极板 220。
在电极组件生产线上, 涂覆阴极活性材料的铝箔集流体 (可以是多片叠 摞好) 分别置于两侧的激光切割工位, 阳极板 220置于中间, 隔膜置于阳极 板的两侧, 并将阳极板与阴极板隔开。 按照设置好的尺寸对涂覆阴极活性材 料的铝箔连续激光切割成为需要的阴极板 1 10, 同时将切割后的阴极板 210 向阳极板方向移送 (例如用吸盘) , 带动隔膜插入阳极板 220经弯折后形成 的相对面之间, 使每个阴极板 210的两个涂覆了阴极活性材料 212的面分别 与所述阳极板 220弯折形成的面相对, 而隔膜沿阳极板 220板面被弯折成为 所述隔离层 230, 使阴极板 210的两面分别面对阳极板 220, 并被隔离层 130 分隔。
实施例 3
本实施例提供锂二次电池的制造方法, 利用实施例 1或实施例 2中提供 的电极组件。 具体制造方法为: 将上述电极组件放置在铝薄片包装内, 然后 注入电解液并包装, 所述电解液包括 lM LiPF6的碳酸亚乙酯和碳酸甲基乙基 酯 (重量比为 1:2) 的混合溶液, 制备成铝壳方形电池。
本实施例制备的锂二次电池容器内不存在未利用的空间, 能量密度大, 且不易发生短路。 最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要 求书
1、 一种用于锂二次电池的电极组件, 该电极组件由阳极板、 隔离层和阴 极板组成, 其中, 所述阳极板为阳极集流体双面均涂覆有阳极活性材料并连 续弯折成垂直截面为 z字形的连续阳极板; 所述阴极板的阴极集流体双面均 涂覆有阴极活性材料,并分别独立地位于阳极板经弯折后形成的相对面之间, 使每个阴极板的两个涂覆了阴极活性材料的面分别与所述阳极板弯折形成的 面相对, 但所述阳极板弯折后的外侧不与所述阴极板面对; 所述隔离层位于 所述阳极板与阴极板相对的面之间; 所述阳极板和阴极板分别还具有用于连 接引线的接触区。
2、 根据权利要求 1所述的电极组件, 其中, 所述阴极板插设于一至少一 端部分开口的隔膜袋中, 该隔膜袋包覆阴极板的两面成为所述隔离层。
3、 根据权利要求 1所述的电极组件, 其中, 所述隔离层设于阳极板的两 面, 并沿阳极板板面连续弯折成垂直截面为 Z字形。
4、 根据权利要求 1所述的电极组件, 其中, 所述阳极板的弯折区未涂覆 或稀薄涂覆所述阳极活性材料。
5、 根据权利要求 1所述的电极组件, 其中, 所述阳极板连续弯折后的外 侧未涂覆所述阳极活性材料。
6、 根据权利要求 1-5任一项所述的电极组件, 其中, 所述阴极板的接触 区由所述阴极板集流体延伸形成, 该区域未涂覆所述阴极活性材料。
7、 根据权利要求 1-6任一项所述的电极组件, 其中, 所述阳极板连续弯 折后的外侧未涂覆所述阳极活性材料, 且所述阳极板的接触区位于该外侧的 适当区域。
8、 根据权利要求 1-6任一项所述的电极组件, 其中, 所述阳极板的接触 区由所述阳极板集流体延伸形成, 该区域未涂覆所述阳极活性材料。
9、 根据权利要求 1-8任一项所述的电极组件, 其中, 所述阴极板为对双 面涂覆了阴极活性材料的铝箔集流体实施激光或机械切割而成。
10、 根据权利要求 9所述的电极组件, 其中, 所述电极组件的形成过程 为: 将双面涂覆了阴极活性材料的阴极集流体实施激光或机械切割制成的阴 极板定向置入所述双面涂覆了阳极活性材料并经连续弯折的阳极板的经弯折 后形成的相对面之间, 并使阴极板与阳极板的相对面之间被隔离层分隔。
11、 根据权利要求 1-10任一项所述的电极组件, 其中, 所述阴极和 /或阳 极的一端延伸出隔离层形成电池组装部, 该电池组装部未涂覆活性材料。
12、 一种权利要求 1-11任一项所述的电极组件的制造方法, 包括以下过 程:
在阳极集流体双面的设定区域涂覆阳极活性材料, 将该涂覆了阳极活性 材料的集流体连续弯折, 形成垂直截面为 Z字形的阳极板;
在阴极集流体双面的设定区域涂覆阴极活性材料;
将涂覆了阴极活性材料的集流体经激光或机械切割成阴极板, 置入阳极 板经弯折后形成的相对面之间, 使阴极板的两面同时面对阳极板, 并被隔离 层分隔。
13、 根据权利要求 12所述的制造方法, 包括以下过程:
在阳极集流体双面的设定区域涂覆阳极活性材料, 将该涂覆了阳极活性 材料的阳极集流体连续弯折, 形成垂直截面为 Z字形的阳极板;
在铝箔集流器双面的设定区域涂覆阴极活性材料;
将涂覆了阴极活性材料的阴极集流体经激光或机械切割成阴极板, 先置 于至少一端部分开口的隔膜袋,然后插入阳极板经弯折后形成的相对面之间, 使阴极板的两面同时面对阳极板, 而隔膜袋包覆阴极板的两面成为所述隔离 层。
14、 根据权利要求 12所述的制造方法, 包括以下过程:
在阳极集流体双面的设定区域涂覆阳极活性材料, 将该涂覆了阳极活性 材料的集流体连续弯折, 形成垂直截面为 Z字形的阳极板;
在阴极集流体双面的设定区域涂覆阴极活性材料;
将涂覆了阴极活性材料的阴极集流体经激光或机械切割成阴极板, 在阳 极板两侧设置连续的隔膜, 使切割后的阴极板带动隔膜插入阳极板经弯折后 形成的相对面之间, 隔膜沿阳极板面被弯折成为所述隔离层, 阴极板的两面 分别面对阳极板, 并被隔离层分隔。
15、 一种锂二次电池, 具有如权利要求 1-11任一项所述的电极组件。
16、 根据权利要求 15所述的锂二次电池, 其为锂离子电池、 锂离子聚合 物电池或锂聚合物电池。
PCT/CN2013/077332 2013-06-17 2013-06-17 电极组件、其制造方法和锂二次电池 WO2014201609A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/077332 WO2014201609A1 (zh) 2013-06-17 2013-06-17 电极组件、其制造方法和锂二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/077332 WO2014201609A1 (zh) 2013-06-17 2013-06-17 电极组件、其制造方法和锂二次电池

Publications (1)

Publication Number Publication Date
WO2014201609A1 true WO2014201609A1 (zh) 2014-12-24

Family

ID=52103782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077332 WO2014201609A1 (zh) 2013-06-17 2013-06-17 电极组件、其制造方法和锂二次电池

Country Status (1)

Country Link
WO (1) WO2014201609A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025376A (zh) * 2016-06-13 2016-10-12 合肥国轩高科动力能源有限公司 一种连续性制作卷绕型叠片电池结构单元的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355180A (zh) * 2008-09-09 2009-01-28 吉安市优特利科技有限公司 一种锂离子动力电池的电芯构造
CN101485033A (zh) * 2006-05-15 2009-07-15 株式会社Lg化学 具有新颖叠层结构的用于二次电池的电极组件
CN101656330A (zh) * 2009-09-22 2010-02-24 南京双登科技发展研究院有限公司 一种锂离子电池电芯制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485033A (zh) * 2006-05-15 2009-07-15 株式会社Lg化学 具有新颖叠层结构的用于二次电池的电极组件
CN101355180A (zh) * 2008-09-09 2009-01-28 吉安市优特利科技有限公司 一种锂离子动力电池的电芯构造
CN101656330A (zh) * 2009-09-22 2010-02-24 南京双登科技发展研究院有限公司 一种锂离子电池电芯制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025376A (zh) * 2016-06-13 2016-10-12 合肥国轩高科动力能源有限公司 一种连续性制作卷绕型叠片电池结构单元的方法

Similar Documents

Publication Publication Date Title
KR100907623B1 (ko) 신규한 적층 구조의 이차전지용 전극조립체
KR101590217B1 (ko) 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
JP6572204B2 (ja) 二次電池とその製造方法
KR100515571B1 (ko) 중첩 전기 화학 셀
US20090136834A1 (en) Method of Constructing an Electrode Assembly
JP5697276B2 (ja) 新規な構造を有する電極組立体およびその製造方法
US20120196167A1 (en) Electrode assembly for a battery and method for manufacturing same
JP2002525823A (ja) 電気化学電池の改良された製造方法
WO2011002064A1 (ja) ラミネート形電池
CN103490089A (zh) 电极组件、其制造方法和锂二次电池
CN103109408A (zh) 堆叠二次电池
JP2014022116A (ja) 二次電池用極板及び二次電池用極板の製造方法
WO2020078081A1 (zh) 叠片电芯及其制作方法、锂电池
KR101663351B1 (ko) 전기화학소자용 셀 및 이의 제조 방법
JP2019053862A (ja) 積層電極体及び蓄電素子
JP2013201077A (ja) 非水電解質二次電池
KR101480740B1 (ko) 신규한 구조의 전극조립체의 제조방법
CN110783638A (zh) 一种卷绕堆叠式电芯及其制备方法
KR101767722B1 (ko) 파우치형 이차전지
JP2002270242A (ja) 非水系二次電池及びその製造方法
KR101154883B1 (ko) 향상된 전해액 함침성의 전극조립체를 제조하는 방법
KR101684365B1 (ko) 수직 적층 구조의 전지셀
TWI398031B (zh) 鋰離子電池組
CN219144223U (zh) 电极组件、电池单体、电池及用电装置
CN115461909A (zh) 一种电化学装置及包含该电化学装置的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887411

Country of ref document: EP

Kind code of ref document: A1