WO2014200152A1 - Size-controlled cosb2 nanoparticles and method for preparing same - Google Patents

Size-controlled cosb2 nanoparticles and method for preparing same Download PDF

Info

Publication number
WO2014200152A1
WO2014200152A1 PCT/KR2013/008887 KR2013008887W WO2014200152A1 WO 2014200152 A1 WO2014200152 A1 WO 2014200152A1 KR 2013008887 W KR2013008887 W KR 2013008887W WO 2014200152 A1 WO2014200152 A1 WO 2014200152A1
Authority
WO
WIPO (PCT)
Prior art keywords
cosb
nanoparticles
complex
cobalt
size
Prior art date
Application number
PCT/KR2013/008887
Other languages
French (fr)
Korean (ko)
Inventor
박주석
김경자
김경훈
안종필
김민숙
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2014200152A1 publication Critical patent/WO2014200152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/14Assembling a group of electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a size-controlled CoSb 2 nanoparticles and a method for manufacturing the same, and more particularly, a crystal in which only two metal elements are combined without impurities during a short reaction time, and a size-controlled CoSb 2 nanoparticle having high purity. It relates to particles and a method for producing the same.
  • nanotechnology has been applied to the development of new devices in various fields such as physics, biology, biotechnology, medicine and pharmacy, because nanosize particles exhibit unique physical and chemical properties due to their small size.
  • the characteristics of the metal nanoparticles vary depending on the shape and size, and in the case of uniformly sized particles, the smaller the size, the smaller the gap between the nanoparticles, thereby obtaining an excellent effect according to the characteristics of the metal nanoparticles.
  • Methods of preparing inorganic material nanoparticles can be roughly divided into physical manufacturing and chemical synthesis. Physical manufacturing methods are used only in limited cases due to the disadvantage that they are difficult to obtain particles having low yields or sizes of ⁇ m or smaller.
  • Chemical synthesis is divided into gas phase, liquid phase and solid phase depending on the phase of the medium in which the synthesis proceeds.
  • the gas phase method produces aerosols through gas-gas or gas-liquid reactions, and there is a risk of metal particles exploding during the reaction.
  • the solid phase method is used only when the product is stable because it must cause a chemical reaction between the solid and the solid.
  • the liquid phase method of reacting in solution has the advantage of being easy to control the reaction and requiring little energy input. Therefore, the liquid phase method is most widely used in the preparation of inorganic nanoparticles, and is widely used for co-precipitation, sol-gel, and solvent. Solvothermal and the like.
  • the most representative material of the Co-Sb-based material is CoSb 3 , which is used as a core material of thermoelectric conversion technology for improving energy efficiency.
  • Various methods such as vacuum induction melting are known as the manufacturing method.
  • CoSb 2 only CoSb or CoSb 2 is incidentally produced in the process of manufacturing CoSb 3, and it is difficult to separate CoSb 2 into a single phase, and there is no conventional method of manufacturing CoSb 2 with high crystallinity and high production efficiency. There is a problem.
  • Japanese Patent Application No. 2002-35474 relates to a method for controlling the particle size of an average crystal grain diameter, and discloses a method for controlling the diameter of the final crystal grain to 0.8 ⁇ m or less. It is starting. However, the compound combined with cobalt and antimony is prepared by mixing Sb having the same purity as Co having a purity of 99.99% and dissolving it by high frequency heating, and applying the gas atomizing method. In addition, as a result, a mixture of CoSb, CoSb 2 , and CoSb 3 may be prepared, and the average diameter of the particles is sintered by a discharge plasma or the like at a pressure of 30 MPa at 450 ° C. or higher, preferably 600 ° C. or higher. the CoSb 3 of 0.7 to 0.8 ⁇ m is produced.
  • the present invention has been made to solve the above problems,
  • the first problem to be solved by the present invention is to provide a manufacturing method capable of adjusting the size of the particles to fit the application for a short reaction time without producing mechanical milling, while producing only CoSb 2 in a single phase without a separate classification process will be.
  • the second problem to be solved by the present invention is to provide a CoSb 2 nanoparticles with no impurities, high crystallinity and uniform particle size to minimize the effect of volume change.
  • the third problem to be solved by the present invention is to increase the durability and efficiency of the battery by using the electrode of the size controlled CoSb 2 nanoparticles according to the present invention thermal stability or chemical stability bar durability is a problem.
  • the present invention to solve the first problem described above,
  • the cobalt complex of step (1) may be a compound represented by the following formula (1)
  • R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  • the antimony complex of step (2) may be a compound represented by the following formula (2)
  • R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  • the heating temperature of step (1) may be 270 °C to 330 °C.
  • the step (2) is such that the molar ratio of the cobalt complex and antimony complex is 1: 1: 2 to 5 in the solution containing the solution containing the cobalt complex and the solution containing the antimony complex Can be mixed
  • the reaction time in the step (2) can be maintained within 60 minutes.
  • the surface of the step (2) CoSb 2 complex modified with an ester group may grow the particle size of the complex at a rate of 0.5 nm / min to 2 nm / min depending on the reaction time .
  • XRD pattern value (2 ⁇ ) is 29.8 ⁇ 0.2, 30.5 ⁇ 0.2, 32.3 ⁇ 0.2, 33.8 ⁇ 0.2, 35 ⁇ 0.2, 43 ⁇ 0.2, 45.8 ⁇ 0.2, 50.8 ⁇ 0.2, 51.3 ⁇ 0.2, XRD patterns with peaks at 53.3 ⁇ 0.2 and 54.3 ⁇ 0.2 and no peaks at 28.75 ⁇ 0.2, 31.27 ⁇ 0.2, 37.19 ⁇ 0.2, 40.21 ⁇ 0.2, 41.98 ⁇ 0.2, 44.81 ⁇ 0.2 and 51.68 ⁇ 0.2; It provides a size controlled CoSb 2 nanoparticles that satisfies all.
  • the particles may be substantially free of CoSb and CoSb 3 .
  • the nanoparticles have an average particle diameter of 15 to 40nm, the coefficient of variation (CV,%) calculated by Equation 1 below may be 25.5% or less.
  • the electrode may be an anode.
  • the anode provides an electrochemical device having an electrode comprising CoSb 2 nanoparticles according to the present invention.
  • the electrochemical device may be a lithium secondary battery.
  • CoSb 2 nanoparticles of the present invention and a method of manufacturing the first, CoSb 2 can be produced in a single phase without a separate separation and classification process can have an increased production efficiency, compared to the conventional mechanical milling methods It is possible to produce CoSb 2 nanoparticles having high crystallinity and nanoscale size in a short time.
  • the size of the particles can be adjusted to suit the application. Furthermore, when nanoparticles combined with two metal elements are manufactured through pyrolysis of an organic solvent, problems such as heterogeneous crystal structure and irregular size due to nucleation and growth of individual metal elements, which may occur normally, may be solved. Can be.
  • FIG. 1 shows a DTA graph according to an embodiment of the present invention.
  • FIG. 2 shows a TGA and DSC graph according to an embodiment of the present invention.
  • Figure 3 shows a SEM image of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention
  • Figure 4 shows an SEM image of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention.
  • Figure 5 shows a SEM image of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention.
  • Figure 6 shows the XRD pattern of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention.
  • FIG. 7 is a graph of growth curves of CoSb 2 nanoparticles according to an embodiment of the present invention.
  • alkyl group of C 3 used in the present invention means an alkyl group having 3 carbon atoms.
  • an alkyl group of C 13-21 means an alkyl group having 13 to 21 carbon atoms.
  • the present invention (1) heating a solution containing a cobalt complex containing two or more ester groups in the molecule; (2) mixing a solution containing an antimony complex including three or more ester groups in a molecule to a solution containing the heated cobalt complex to form a CoSb 2 complex having a surface modified with an ester group; And (3) removing the ester groups from the modified CoSb 2 complex;
  • CoSb 2 may be manufactured in a single phase without a separate separation process, and CoSb 2 nanoparticles having a high crystallinity and a nano unit size may be manufactured in a short time.
  • the size of the particles can be adjusted to suit the purpose, and problems such as heterogeneous crystal structure and irregular size due to nucleation and growth of individual metal elements can be eliminated.
  • the step (1) heating the solution containing the cobalt complex containing two or more ester groups in the molecule includes.
  • the cobalt complex may be a compound represented by the following formula (1)
  • R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  • the cobalt complex has two ester groups in the molecule except R, and may include two or more ester groups in consideration of R.
  • Cobalt composites comprising two or more ester groups can provide cobalt (II) in the CoSb 2 nanoparticles desired by the present invention by pyrolysis via heating.
  • the fatty acid including an ester group which binds cobalt in Chemical Formula 1 may affect the thermal decomposition temperature of the cobalt complex and at the same time may be included in factors for preparing particles having a uniform particle size and determining the growth rate of the particles. This is explained in the reaction time of step).
  • the cobalt complex may be prepared by dissolving a cobalt starting material and a metal ion-substituted fatty acid in a solvent and heating the cobalt complex, which may be prepared by the following Scheme 1.
  • X may be any one or more of Cl ⁇ , CH 3 COO ⁇ , Y may be Na + , R-COO ⁇ is a fatty acid, and each R is independently C 13-21 saturated Fatty acids or unsaturated fatty acids that are C 7-23 .
  • the cobalt starting material may be any one or more of cobalt (II) chloride and cobalt acetate, preferably cobalt chloride (II), and even more preferably hydrated cobalt chloride (II) (CoCl 2 ). ⁇ 6H 2 O) it can be.
  • cobalt starting material is not limited to the above description.
  • the fatty acid which may be substituted with metal ions may be used in the case of saturated fatty acids having 14 to 22 carbon atoms and unsaturated fatty acids having 8 to 24 carbon atoms.
  • the solvent may include any one or more selected from the group consisting of distilled water, ethanol and hexane (hexane).
  • the solvent may be a mixed solution of distilled water, ethanol and hexane.
  • the solvent is not limited to the above description, and any solvent may be used as long as it can dissolve the cobalt starting material. More preferably, the solvent may be mixed with distilled water, 95% ethanol and 99% hexane in a volume ratio of 3: 3 to 5: 6 to 8.
  • the cobalt composite may be prepared by mixing the solvent with 2 to 5 volumes of the cobalt starting material and the metal oleic acid in a molar ratio of 1: 2 to 5, and then heating to 50 to 100 ° C.
  • Cobalt ions are formed between the cobalt ions of the cobalt starting material and the metal ions of the oleic acid substituted with metal ions, and the cobalt complex is formed by the binding of the oleic acid from which the cobalt ions and the metal ions are separated.
  • the solution containing the cobalt complex of step (1) may be heated to 270 to 330 °C.
  • the reason for heating the solution containing the cobalt complex is to separate the fatty acids in the cobalt complex by pyrolysis, because the pyrolysis temperature is different from the antimony complex described below, and antimony has higher volatility and lower nucleation temperature than cobalt. Only the solution containing the cobalt complex is first heated.
  • the pyrolysis temperature of the cobalt complex may vary depending on the type of fatty acid, but in consideration of the types of fatty acids that may form the cobalt complex, the heating temperature of the solution containing the cobalt complex is preferably 270 to 330 ° C. have.
  • the heating temperature of the solution containing the cobalt complex may be determined by the thermal decomposition temperature of the cobalt complex and the boiling point of the solvent in which the cobalt complex is dissolved. If the boiling point of the solvent is lower than the pyrolysis temperature of the cobalt complex, the solvent may be vaporized before the cobalt complex is pyrolyzed. If the solvent is close to the pyrolysis temperature of the cobalt complex, the solvent may become unstable, resulting in thermal decomposition of the cobalt complex and the antimony complex described below. It may affect the production of CoSb 2 nanoparticles through the reaction, it is difficult to produce a uniform particle size or may not be able to produce a single crystalline CoSb 2 nanoparticles.
  • the solvent in which the cobalt complex is dissolved may be preferably octadecene (1-octadecene).
  • the kind of the solvent is not limited to the above description, and there is no limitation as long as the solvent has a boiling point higher than the pyrolysis temperature of the cobalt complex without coordinating with the cobalt complex and the antimony complex described below.
  • the solution containing the cobalt complex may be prepared by mixing 10ml to 100ml of the solvent in 2mmol of the cobalt complex.
  • 1 and 2 show the DTA, TGA, and DSC graphs according to the temperature of hydrated cobalt oleate and the antimony complex hydrated antimony oleate according to one embodiment of the present invention.
  • 1 and 2 show a graph for each of the individual materials, not a mixed state of cobalt oleate and antimonoleate.
  • pyrolysis process of cobalt oleate capable of determining the cobalt composite heating temperature among the curves of FIGS. 1 and 2 will be described.
  • the mass of cobalt oleate tends to decrease as shown in the TGA curve of FIG. 2, and the mass width decreases per elevated temperature.
  • the peak of variation was around 300 ° C., which means that the oleate ligand, which was associated with cobalt, was separated and there was growth of cobalt particles. That is, the separation temperature of the oleate ligand in the cobalt oleate is about 300 ° C., and the heating temperature of the cobalt complex may be 260 to 330 ° C. in consideration of the type of fatty acid constituting the complex.
  • the heating temperature is less than 270 °C there is a problem that the separation of fatty acids in the cobalt complex is not made, the nucleation with antimony particles, the cobalt and antimony binding, the CoSb2 can not be produced and the grain growth and crystal growth does not occur properly, If it exceeds 330 °C can not control the particle growth as the solvent of the particles are decomposed there is a problem that can be produced indiscriminate growth of the particles or heterogeneous components.
  • the CoSb 2 complex whose surface is modified with an ester group by mixing the solution containing the cobalt complex heated in the step (1), the solution containing the antimony complex including three or more ester groups in the molecule Forming a; It includes.
  • the antimony complex may be a compound represented by Formula 2 below.
  • R-CO 2 - is a fatty acid
  • each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  • the antimony complex has three ester groups in the molecule except R, and may include three or more ester groups in consideration of R.
  • the antimony complex comprising two or more ester groups may provide antimony in the CoSb 2 nanoparticles to which the present invention is desired by pyrolysis through heating, and the fatty acid including the ester group may affect the pyrolysis temperature of the antimony complex.
  • the antimony complex may be prepared by mixing the antimony starting material with a fatty acid and then heating, and may be prepared by the following Scheme 2.
  • X may be Cl ⁇
  • R—COO ⁇ is a fatty acid
  • each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  • the antimony starting material may be antimony chloride (SbCl 3 ).
  • the antimony starting material is not limited to the above description.
  • the fatty acid can be used as long as the antimony precursor can be dissolved, 14 to 22 carbon atoms in the case of saturated fatty acids, 8 to 24 carbon atoms in the case of unsaturated fatty acids.
  • the antimony complex is prepared by mixing the antimony starting material and the fatty acid in a 1: 2 to 5 molar ratio, and more preferably the antimony starting material and the fatty acid in a molar ratio of 1: 3, and then heating the mixture to 50 to 100 ° C. under a nitrogen atmosphere. can do. When heated to the temperature it can be removed by-products (HCl) produced during the production of antimony complex.
  • HCl by-products
  • the antimony complex which is a composition of the present invention, when the antimony precursor is prepared by ion exchange between an antimony precursor and a metal ion-substituted fatty acid.
  • the antimony complex may be prepared by directly combining the two substances through heating after mixing the antimony starting material and fatty acid.
  • the antimony complex of step (2) may be mixed in a solution containing a heated cobalt complex dissolved in a solvent.
  • the solvent may be preferably 1-octadecene.
  • the kind of the solvent is not limited to the above description, and there is no limitation as long as it does not form a coordination with the cobalt complex and has a boiling point higher than the pyrolysis temperature of the cobalt complex.
  • the solution containing the antimony complex may be prepared by mixing 10 ml to 100 ml of a solvent in an antimony complex 2 mmol.
  • the solution containing the cobalt complex and the antimony complex may be mixed so that the molar ratio of the cobalt complex and the antimony complex is 1: 2 to 5 in the mixed solution.
  • the molar ratio of the cobalt complex in the solution containing the cobalt complex and the antimony complex in the solution containing the antimony complex may be 1: 2. If the ratio of the molar ratio is changed, the synthesis ratio may be changed to synthesize a heterogeneous phase other than CoSb 2 .
  • the solution containing the antimony complex is mixed with the solution containing the cobalt complex in a heated state, because the pyrolysis temperatures of the cobalt complex and the antimony complex are different from each other. If the two composites having different pyrolysis temperatures are mixed together and then heated simultaneously to 270 to 330 ° C., the particle diameter may be overgrown in micrometers ( ⁇ m) and different types of CoSb 2 particles may be produced, which is a minimum. It means that it may have two or more crystal structures, there is a problem that the particle size of the resulting CoSb 2 particles are not uniform and nano-size particles can be produced.
  • FIG. 3A is a SEM photograph of CoSb 2 nanoparticles according to an embodiment of the present invention
  • FIG. 3B is a CoSb 2 particle (Comparative Example 4) prepared by simultaneously heating a cobalt complex and an antimony complex after mixing. SEM picture.
  • the reason for the above result is that when two materials having different pyrolysis temperatures are heated, a material having a lower pyrolysis temperature is first pyrolyzed to start nucleation, and later the pyrolyzed material is bonded to the nucleus surface to grow. As the particles become less uniform with each other, overgrown powders can be synthesized.
  • the pyrolysis temperature of the antimony complex may be separated from the fatty acid of the antimony complex at 262 to 276 ° C. and the remaining fatty acids of the antimony complex may be separated at 296 to 308 ° C. as shown in FIG. 1.
  • the temperature at which antimony can start nucleation is possible at 262 ° C. or higher.
  • the pyrolysis temperature may be about 300 ° C. as described above.
  • the cobalt complex solution must be heated to the temperature at which the cobalt complex is pyrolyzed first, and then the antimony complex solution having a lower pyrolysis temperature than the cobalt complex must be mixed to substantially separate fatty acids from the antimony complex and start nucleation and particle growth to achieve uniform particle size.
  • CoSb 2 nanoparticles having a single crystal phase can be prepared.
  • reaction time of step (2) can be maintained for 10 to 50 minutes.
  • the reaction time may determine the particle size of the CoSb 2 nanoparticles according to the present invention. If the reaction time is long, the particle size of the CoSb 2 nanoparticles may be gradually increased.
  • Figure 4 is a SEM photograph of the CoSb 2 nanoparticles prepared by varying the reaction time. When the reaction time is different from 10 minutes (FIG. 4A), 30 minutes (FIG. 4B), and 60 minutes (FIG. 4C), the particle size of the CoSb 2 nanoparticles may be visually increased as the reaction time increases. If the reaction time is less than 10 minutes, the size of the synthesized particles is small, but there is a problem that the crystallinity may be degraded. If the reaction time is greater than 50 minutes, the particle size is indiscriminately increased and irregular CoSb 2 nanoparticles may be prepared.
  • the ester contained in the fatty acid in the present invention can improve the nucleation of nanopowder, but if the reaction time is longer, large and uneven particle growth may be caused by the degraded ester, so that the reaction time is controlled by uniform particles. It can be important in obtaining.
  • the surface of the step (2) CoSb 2 complex modified with an ester group may grow the particle diameter of the complex at a rate of 0.1 to 2 nm / min depending on the reaction time.
  • Figure 7 is a graph showing the particle size of the CoSb 2 nanoparticles according to the reaction time. More specifically, in a preferred embodiment of the present invention, when the reaction time is 10 minutes, the particle diameter is about 21 nm, when about 30 minutes is about 26 nm, and when about 60 minutes the particle size is about 34 nm.
  • a graph as shown in FIG. 7 was obtained, and the CoSb 2 composite having a surface modified per minute with an ester group was 0.1 to 2 nm / min. It can be seen that the particle size of the complex grows at a rate of.
  • step (3) removing the ester group from the modified CoSb 2 complex as step (3); It includes.
  • the ester group removal may be by a conventional ester group removal method, but there is no limitation. Preferably it can be removed via ester group removal solution. More preferably, the ester removal solution may be a mixed solution of hexane and ethanol, and even more preferably, a mixed solution of hexane, ethanol, and acetone in a volume ratio of 1: 0.5 to 1.5.
  • the ester group may be removed by mixing the CoSb 2 complex having the surface modified with an ester group and the ester group removal solution in a ratio of 1: 4 to 8 by volume. If and when the mixture to remove the ester solution to less than the ratio may not be an ester group is removed to CoSb 2 nanoparticles as the object of the present invention, there is precipitation of CoSb 2 nanoparticles, the ester group is removed may not be smooth. If the ratio is exceeded, it may take a lot of time and cost in the ester removal process.
  • CoSb 2 nanoparticles prepared by the present invention has a single crystal phase;
  • XRD pattern value (2 ⁇ ) is 29.8 ⁇ 0.2, 30.5 ⁇ 0.2, 32.3 ⁇ 0.2, 33.8 ⁇ 0.2, 35 ⁇ 0.2, 43 ⁇ 0.2 , Peaks at 45.8 ⁇ 0.2, 50.8 ⁇ 0.2, 51.3 ⁇ 0.2, 53.3 ⁇ 0.2 and 54.3 ⁇ 0.2, 28.75 ⁇ 0.2, 31.27 ⁇ 0.2, 37.19 ⁇ 0.2, 40.21 ⁇ 0.2, 41.98 ⁇ 0.2, 44.81 ⁇ 0.2 and 51.68 XRD pattern with no peak at ⁇ 0.2; CoSb 2 nanoparticles that meet both the size of the control. And a size control the CoSb 2 nanoparticles that meet.
  • the present invention can obtain CoSb 2 nanoparticles whose size is controlled according to the reaction time of the cobalt complex and antimony complex, when the average particle diameter of CoSb 2 nanoparticles is 21 nm (mixing time 10 minutes) was 4 nm, When the average particle diameter is 26 nm (mixing time 30 minutes), the standard deviation is 6 nm, the average particle diameter may increase at a constant ratio (0.1 to 2 nm / min) according to the reaction time.
  • CoSb 2 nanoparticles have a coefficient of variation calculated by Equation 1 below, may be the average particle diameter of 15 to 40nm is CoSb 2 nanoparticles according to the above-mentioned reaction time (CV,% ) May be less than or equal to 25.5%.
  • the coefficient of variation is a standard deviation divided by an average value, and the standard deviation means a standard deviation with respect to the particle size of the CoSb 2 nanoparticles obtained, and the smaller the coefficient of variation, the smaller the difference in the particle size of the nanoparticles. do.
  • the CoSb 2 nanoparticles have a relatively uniform particle size of 25.5% or less, so that CoSb2 nanoparticles having a uniform particle size can be obtained without a separate classification process. have.
  • the particles may be substantially free of CoSb and CoSb 3 .
  • Figure 6 shows the XRD pattern according to an embodiment of the present invention.
  • CoSb preferably prepared at 320 ° C 2 It can be seen that the nanoparticles have peaks at 29.8, 30.5, 32.3, 33.8, 35, 43, 45.8, 50.8, 51.3, 53.3, 54.3 ⁇ 0.2 2 ⁇ , and the width of the peak is very narrow, so that the crystallinity is excellent. Also 28.75, 31.27, 37.19, 40.21, 41.98, 44.81, 51.68 ⁇ 0.2 2 ⁇ CoSb of the present invention 2 Nanoparticles include CoSb, CoSb 3 May not be substantially included. The meaning of “substantially” means CoSb of the present invention. 2 CoSb, CoSb in Nanoparticles 3 Does not mean that the probability of nonexistence is nonzero, it is actually included.
  • the present invention relates to an electrode comprising CoSb 2 nanoparticles according to the present invention.
  • the electrode may be an anode.
  • the present invention is an anode; cathode; Separator; And electrolytes; In the electrochemical device comprising a CoSb 2 nanoparticles according to the present invention in the positive electrode.
  • the electrochemical device may be a lithium secondary battery.
  • the target material contains antimony.
  • Antimony has a theoretical capacity of 660 mAh / g or 4420 mAh / cm, which is about twice the capacity per weight and about five times the volume per volume of commercially available carbon-based anode materials. The effect of greatly increasing the capacity of the battery can be expected.
  • the conventional micro-sized antimony has been known to have a problem in that the anode is broken or the reliability decreases and the capacity decreases rapidly due to the large volume change caused by the desorption of lithium ions.
  • the nanoparticles having a uniform particle size may be synthesized to reduce breakage due to rapid volume expansion caused by lithium ion adsorption and desorption reactions. It can have excellent durability while increasing the capacity of the lithium secondary battery more stably than the micro-sized antimony particles studied as a conventional carbon-based cathode material or its replacement material.
  • the cobalt oleate (CoOl) contained in the upper organic layer was washed three times with 30 ml of distilled water, and hexane was evaporated to prepare a cobalt oleate (CoOl) in a waxy solid state.
  • CoSb 2 nanoparticles were prepared in the same manner as in Example 3 except that the heating temperature of the cobalt oleate (CoOl) was changed to 300 ° C. instead of 320 ° C.
  • CoSb2 nanoparticles were prepared in the same manner as in Example 3, except that the reaction time was 30 minutes instead of 10 minutes after mixing.
  • CoSb 2 nanoparticles were prepared in the same manner as in Example 3 except that the heating temperature of the cobalt oleate (CoOl) was 250 ° C.
  • CoSb 2 nanoparticles were prepared in the same manner as in Example 3, except that the reaction time after mixing was 60 minutes instead of 10 minutes.
  • Cobalt oleate (CoOl) and antimony oleate (SbOl) prepared in Examples 1 and 2 were subjected to differential thermal analysis (DTA), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) measurements, and DTA The results for the TGA and DSC results are shown in FIG. 2.
  • the mass of cobalt oleate tends to decrease as shown in the TGA curve of FIG. 2, and the mass width decreases per elevated temperature.
  • the peak of variation was around 300 ° C., which means that the oleate ligand, which was associated with cobalt, was separated and there was growth of cobalt particles. That is, the separation temperature of the oleate ligand in the cobalt oleate is about 300 °C, the heating temperature of the cobalt complex may be 260 to 330 °C considering the type of fatty acid constituting the complex.
  • the pyrolysis temperature of the antimony complex may be separated from the fatty acid of the antimony complex at 262 to 276 °C as shown in Figure 1, the remaining fatty acid of the antimony complex can not be separated from 296 to 308 °C bar, antimony
  • the temperature at which this nucleation can be started may be possible at 262 ° C. or higher.
  • Examples 3 to 6 X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) were performed to verify CoSb 2 nanoparticles prepared according to Comparative Examples 1 to 4, and the results are shown in FIG. 3. To 6 are shown.
  • XRD X-ray diffraction
  • FE-SEM Field Emission Scanning Electron Microscope
  • the cobalt composite heating temperature is 250 ° C., 300 ° C., and 320 ° C. in the order of FIGS. 3A, 3B, and 3C, respectively.
  • the CoSb 2 nanoparticles each have a uniform particle size.
  • the peaks hardly appear at 250 ° C., indicating that the CoSb 2 nanoparticles have very low crystallinity.
  • Particle diameters of CoSb 2 nanoparticles prepared according to Examples 3 to 6 and Comparative Examples 1 to 4 were measured by X-ray diffraction line broadening, and linear intercept (Average particle size and standard deviation).
  • linear intercept, ASTM E112-96), and the coefficient of variation (CV) according to the measured value and the following equation was calculated by Equation 1 below, and the results are shown in FIG. 7 and Table 1, and the CV value was Smaller values indicate that uniform particles close to the average particle diameter were obtained.
  • the average particle diameter and standard deviation of the prepared CoSb 2 nanoparticles were 21 nm in Example 3 (heating the cobalt complex at 320 ° C. and reacting with antimony complex for 10 minutes), standard deviation was 4 nm, and Example 5 (cobalt complex at 320 ° C.). Heating, reaction with antimony complexes for 30 minutes), 26 nm, standard deviation was 6 nm, the CV value of the nanoparticles obtained in Examples 3 to 5 it can be seen that the nanoparticles of a relatively uniform size was obtained with 19 to 25%.
  • Comparative Example 2 having a reaction time of 60 minutes, the standard deviation of the average particle diameter was found to be 10 nm, and the CV value was 29.4%, indicating that the particle diameter was more uniform than that of the nanoparticles of Examples 3 to 5,
  • Comparative Example 3 in which the cobalt composite and the antimony complex were mixed and heated from the beginning, the average particle diameter was 80 nm, but the standard deviation was 100 nm, and the CV value was 80%, resulting in very irregular particle diameters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to size-controlled CoSb2 nanoparticles and a method for preparing the same. More specifically, excellent productivity can be achieved while only CoSb2 is prepared in a single phase even without an independent separation procedure, and CoSb2 nanoparticles having high crystallinity and a nano-level size can be produced for a short time. Further, CoSb2 nanoparticles which have a size controllable according to the use thereof and a uniform particle size but have neither problems such as different kinds of crystalline structures and irregular sizes due to nucleation and growth of individual metal elements, nor impurities. Further, the CoSb2 nanoparticles according to the present invention have better durability and higher cell capacitance than a positive electrode material for a lithium secondary cell of the prior art, and thus can be used as an electrode material for a lithium secondary cell or the like.

Description

크기 제어된 CoSb2 나노입자 및 그 제조방법Size-controlled COS2 nanoparticles and preparation method thereof
본 발명은 크기 제어된 CoSb2 나노입자 및 그 제조방법에 관한 것으로, 보다 상세하게는 짧은 반응시간 동안 불순물 없이 두 금속원소가 결합된 결정만 제조되고, 높은 순도를 가지는 크기가 제어된 CoSb2 나노입자 및 그 제조방법에 관한 것이다.The present invention relates to a size-controlled CoSb 2 nanoparticles and a method for manufacturing the same, and more particularly, a crystal in which only two metal elements are combined without impurities during a short reaction time, and a size-controlled CoSb 2 nanoparticle having high purity. It relates to particles and a method for producing the same.
최근에는 나노기술이 물리, 생물, 바이오, 의학 및 약학 등 다양한 분야의 새로운 디바이스를 개발하는데 응용되고 있는데, 이는 나노크기의 입자들은 작은 크기로 인해서 독특한 물리적, 화학적 특성을 나타내기 때문이다. 금속 나노입자의 특성은 모양, 크기에 따라 달라지며 균일한 크기의 입자의 경우 크기가 작을수록 나노입자 사이의 간극이 작아 금속 나노입자의 특성에 따른 우수한 효과를 얻을 수 있다.Recently, nanotechnology has been applied to the development of new devices in various fields such as physics, biology, biotechnology, medicine and pharmacy, because nanosize particles exhibit unique physical and chemical properties due to their small size. The characteristics of the metal nanoparticles vary depending on the shape and size, and in the case of uniformly sized particles, the smaller the size, the smaller the gap between the nanoparticles, thereby obtaining an excellent effect according to the characteristics of the metal nanoparticles.
무기재료 나노입자의 제조방법은 크게 물리적 제조법과 화학적 합성법으로 나눌 수 있다. 물리적 제조법은 수율이 낮거나 μm 단위 이하의 크기를 갖는 입자를 얻기 힘들다는 단점이 있어 제한된 경우에만 사용되고 있다. 화학적 합성법은 합성이 진행되는 매질의 상(Phase)에 따라 다시 기상법, 액상법, 고상법으로 나뉜다. 기상법은 기체-기체간 혹은 기체-액체간의 반응을 통해 에어로졸을 만드는 방법으로, 반응 도중 금속 입자들이 폭발할 수 있는 위험이 있다. 고상법은 고체와 고체 사이의 화학반응을 일으켜야 하기 때문에 생성물이 안정한 경우에만 사용된다. 용액 중에서 반응을 시키는 액상법은 반응을 제어하기 쉽고 에너지 투입이 적게 요구된다는 장점이 있어 무기재료 나노입자 제조에 가장 널리 사용되고 있으며 공침법(co-precipitation), 졸-겔 합성법(sol-gel) 및 용매열 합성법(solvothermal) 등이 여기에 속한다.Methods of preparing inorganic material nanoparticles can be roughly divided into physical manufacturing and chemical synthesis. Physical manufacturing methods are used only in limited cases due to the disadvantage that they are difficult to obtain particles having low yields or sizes of μm or smaller. Chemical synthesis is divided into gas phase, liquid phase and solid phase depending on the phase of the medium in which the synthesis proceeds. The gas phase method produces aerosols through gas-gas or gas-liquid reactions, and there is a risk of metal particles exploding during the reaction. The solid phase method is used only when the product is stable because it must cause a chemical reaction between the solid and the solid. The liquid phase method of reacting in solution has the advantage of being easy to control the reaction and requiring little energy input. Therefore, the liquid phase method is most widely used in the preparation of inorganic nanoparticles, and is widely used for co-precipitation, sol-gel, and solvent. Solvothermal and the like.
한편, Co-Sb 계열의 물질 중 가장 대표적인 물질은 CoSb3로 에너지의 효율을 향상시키기 위한 열전변환 기술의 핵심재료로 사용되는데 그 제조방법으로 진공유도용융법 등 여러 방법이 알려지고 있다. 반면에 CoSb2의 경우 CoSb3를 제조하는 과정에서 CoSb 또는 CoSb2가 부수적으로 제조될 뿐이고, CoSb2를 단일상으로 분리하기 어려우며, 결정도 높고 생산효율이 좋은 CoSb2만의 제조방법은 종래에 없다는 문제점이 있다.Meanwhile, the most representative material of the Co-Sb-based material is CoSb 3 , which is used as a core material of thermoelectric conversion technology for improving energy efficiency. Various methods such as vacuum induction melting are known as the manufacturing method. On the other hand, in the case of CoSb 2 , only CoSb or CoSb 2 is incidentally produced in the process of manufacturing CoSb 3, and it is difficult to separate CoSb 2 into a single phase, and there is no conventional method of manufacturing CoSb 2 with high crystallinity and high production efficiency. There is a problem.
또한, CoSb2 나노입자를 생산하기 위해 Co, Sb 파우더를 기계적 합금하는 방법이 존재하나 30 시간 이상 기계적 밀링의 결과 결정도가 낮은 CoSb2 입자가 생산되고, 크기가 μm 단위 이하의 크기로 제조하기 어렵다는 문제점이 있고, 일반적인 방법에 따른 용매열 합성법에 의할 경우 반응하지 않고 남아있는 Sb가 존재하거나 불순물이 섞일 수 있고 원하는 형태의 입자를 얻기 위해 용매, 시간, 온도, 압력 등의 반응변수를 조절하기 어렵다는 문제점이 있다. 또한, 원하는 크기로 CoSb2 나노입자를 제조하기 어렵거나 나노입자 제조 후에 원하는 크기의 입자를 분리해 내는 별도의 공정을 요구하는 문제점이 있었다. 나아가, 두 가지 금속원소가 결합된 나노입자를 열분해를 통해 제조할 경우 목적하는 두 금속원소가 각각 포함된 물질의 열분해 온도는 대부분 서로 상이하여 두 금속원소가 결합되기 보다는 두 금속원소가 분리되어 핵 생성 및 성장함에 따라 이종(異種)의 결정 구조를 갖거나 입자의 크기가 불규칙한 생성물이 제조될 수 있는 문제점이 있다.In addition, there is a method of mechanically alloying Co and Sb powder to produce CoSb 2 nanoparticles, but as a result of mechanical milling for more than 30 hours, CoSb 2 particles having low crystallinity are produced, and it is difficult to manufacture them in a size of μm or less. There is a problem, and according to the general method of solvent thermal synthesis, Sb remaining without reaction can be present or impurities can be mixed, and the reaction variables such as solvent, time, temperature and pressure can be adjusted to obtain particles of a desired form. There is a problem that is difficult. In addition, there is a problem in that it is difficult to produce CoSb 2 nanoparticles to a desired size or require a separate process for separating the particles of the desired size after the production of nanoparticles. Furthermore, in the case of producing nanoparticles in which two metal elements are bonded by pyrolysis, the thermal decomposition temperatures of materials containing two desired metal elements are different from each other, so that the two metal elements are separated from each other rather than the two metal elements being combined. As a result of the growth and growth, there is a problem that a product having a heterogeneous crystal structure or an irregular particle size can be produced.
일본특허출원 제2002-35474호는 평균 결정 입자 지름의 입경 제어 방법에 관한 것으로, 최종 결정 입자의 지름을 0.8μm이하로 제어할 수 있는 방법을 개시하고 있으며, 제어되는 입자로 코발트와 안티몬 화합물을 개시하고 있다. 다만 코발트와 안티몬이 결합된 화합물은 순도 99.99%의 Co와 동일한 순도의 Sb를 혼합하여 고주파 가열에 의해 용해하고 이를 가스 아토마이징법을 적용해 제조하고 있다. 또한, 제조된 결과 CoSb, CoSb2, CoSb3 의 혼합물이 제조될 수 있고, 이를 450 ℃ 이상, 바람직하게는 600℃ 이상에서 압력을 30 MPa로 하여 방전 플라즈마 등의 방법으로 소결 통해 입자의 평균 지름이 0.7 내지 0.8 μm의 CoSb3를 제조하고 있다.Japanese Patent Application No. 2002-35474 relates to a method for controlling the particle size of an average crystal grain diameter, and discloses a method for controlling the diameter of the final crystal grain to 0.8 μm or less. It is starting. However, the compound combined with cobalt and antimony is prepared by mixing Sb having the same purity as Co having a purity of 99.99% and dissolving it by high frequency heating, and applying the gas atomizing method. In addition, as a result, a mixture of CoSb, CoSb 2 , and CoSb 3 may be prepared, and the average diameter of the particles is sintered by a discharge plasma or the like at a pressure of 30 MPa at 450 ° C. or higher, preferably 600 ° C. or higher. the CoSb 3 of 0.7 to 0.8 μm is produced.
그러나 당해 출원을 통해서는 단일한 결정상을 갖는 CoSb2만을 제조할 수 없고, CoSb2 만을 수득 위해서는 제조된 혼합물 중에서 CoSb2를 별도로 분리해야 하나 이는 실제 어렵다는 문제점이 있다. 또한, 0.8 μm 이하의 평균입자라고 하나 그 보다 더 작은 크기의 입경을 가지는 입자의 제조는 상기의 출원에 개시된 제조방법으로는 어려울 수 있으며, 그러한 작은 입경을 가지는 입자를 제조하기 위해서 고온, 고압의 제조공정이 요구되어 제조단가의 상승 및 제조 시 위험도 증가 등의 문제점이 있다.However, through this application, only CoSb 2 having a single crystal phase cannot be prepared, and in order to obtain only CoSb2, CoSb 2 must be separated separately from the prepared mixture, which is difficult in practice. In addition, the production of particles having an average particle size of 0.8 μm or less but having a smaller size may be difficult with the manufacturing method disclosed in the above application, and in order to produce particles having such small particle diameter, The manufacturing process is required, there is a problem such as an increase in the manufacturing cost and an increase in the risk during manufacturing.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, The present invention has been made to solve the above problems,
본 발명이 해결하려는 첫 번째 과제는 CoSb2만을 별도의 분급과정 없이도 단일상으로 제조하면서 우수한 생산효율을 가지며 기계적 밀링 등 없이 짧은 반응시간동안 용도에 맞게 입자의 크기를 조절할 수 있는 제조방법을 제공하는 것이다. The first problem to be solved by the present invention is to provide a manufacturing method capable of adjusting the size of the particles to fit the application for a short reaction time without producing mechanical milling, while producing only CoSb 2 in a single phase without a separate classification process will be.
본 발명이 해결하려는 두 번째 과제는 불순물이 존재하지 않고 결정도가 높으며 그 입자의 크기가 균일하여 부피변화에 의한 영향이 최소화된 CoSb2 나노입자를 제공하는 것이다. The second problem to be solved by the present invention is to provide a CoSb 2 nanoparticles with no impurities, high crystallinity and uniform particle size to minimize the effect of volume change.
다음으로 본 발명이 해결하려는 세 번째 과제는 본 발명에 의한 크기가 제어된 CoSb2 나노입자가 열적 안정성이나 화학적 안정성이 우수한바 내구성이 문제되는 전극에 이용하여 내구성 및 전지의 효율을 높이기 위한 것이다.Next, the third problem to be solved by the present invention is to increase the durability and efficiency of the battery by using the electrode of the size controlled CoSb 2 nanoparticles according to the present invention thermal stability or chemical stability bar durability is a problem.
상술한 첫 번째 과제를 해결하기 위해 본 발명은, The present invention to solve the first problem described above,
(1) 분자 내 2 이상의 에스테르기를 포함하는 코발트 복합체가 포함된 용액을 가열하는 단계; (2) 상기 가열된 코발트 복합체가 포함된 용액에 분자 내 3 이상의 에스테르기를 포함하는 안티몬 복합체가 포함된 용액을 혼합하여 표면이 에스테르기로 개질된 CoSb2 복합체를 형성하는 단계; 및 (3) 상기 개질된 CoSb2 복합체에서 에스테르기를 제거하는 단계; 를 포함하는 크기 제어된 CoSb2 나노입자 제조방법을 제공한다.(1) heating a solution containing a cobalt complex comprising two or more ester groups in a molecule; (2) mixing a solution containing an antimony complex including three or more ester groups in a molecule to a solution containing the heated cobalt complex to form a CoSb 2 complex having a surface modified with an ester group; And (3) removing the ester groups from the modified CoSb 2 complex; It provides a size controlled CoSb 2 nanoparticles manufacturing method comprising a.
본 발명의 바람직한 일실시예에 따르면, 상기 (1) 단계의 코발트 복합체는 하기 화학식 1로 표시되는 화합물일 수 있다 According to a preferred embodiment of the present invention, the cobalt complex of step (1) may be a compound represented by the following formula (1)
[화학식 1][Formula 1]
Co(O2C-R)2 Co (O 2 CR) 2
단, 상기 R-CO2 -는 지방산(Fatty acid)이며, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.However, R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (2) 단계의 안티몬 복합체는 하기 화학식 2로 표시되는 화합물일 수 있다 According to another preferred embodiment of the present invention, the antimony complex of step (2) may be a compound represented by the following formula (2)
[화학식 2][Formula 2]
Sb(O2C-R)3 Sb (O 2 CR) 3
단, 상기 R-CO2 -는 지방산(Fatty acid)이며, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.However, R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (1) 단계의 가열온도는 270 ℃ 내지 330 ℃일 수 있다.According to another preferred embodiment of the present invention, the heating temperature of step (1) may be 270 ℃ to 330 ℃.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (2) 단계는 코발트 복합체가 포함된 용액과 안티몬 복합체가 포함된 용액이 혼합된 용액에서 코발트복합체와 안티몬복합체의 몰비가 1 : 2 내지 5로 되도록 혼합될 수 있다According to another preferred embodiment of the present invention, the step (2) is such that the molar ratio of the cobalt complex and antimony complex is 1: 1: 2 to 5 in the solution containing the solution containing the cobalt complex and the solution containing the antimony complex Can be mixed
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (2) 단계에서 반응시간은 60분 이내로 유지할 수 있다.According to another preferred embodiment of the present invention, the reaction time in the step (2) can be maintained within 60 minutes.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (2) 단계의 표면이 에스테르기로 개질된 CoSb2 복합체는 반응시간에 따라 0.5 nm/min 내지 2 nm/min의 속도로 복합체의 입경이 성장할 수 있다.According to another preferred embodiment of the present invention, the surface of the step (2) CoSb 2 complex modified with an ester group may grow the particle size of the complex at a rate of 0.5 nm / min to 2 nm / min depending on the reaction time .
또한, 상술한 두 번째 과제를 해결하기 위하여 본 발명은In addition, the present invention to solve the second problem described above
단일한 결정상;을 가지고, XRD 패턴값(2θ)이 29.8± 0.2, 30.5± 0.2, 32.3± 0.2, 33.8± 0.2, 35± 0.2, 43± 0.2, 45.8± 0.2, 50.8± 0.2, 51.3± 0.2, 53.3± 0.2 및 54.3±0.2 에서 피크를 갖고, 28.75± 0.2, 31.27± 0.2, 37.19± 0.2, 40.21± 0.2, 41.98± 0.2, 44.81± 0.2 및 51.68± 0.2 에서 피크를 갖지 않는 XRD 패턴; 을 모두 만족하는 크기 제어된 CoSb2 나노입자를 제공한다.Single crystal phase; XRD pattern value (2θ) is 29.8 ± 0.2, 30.5 ± 0.2, 32.3 ± 0.2, 33.8 ± 0.2, 35 ± 0.2, 43 ± 0.2, 45.8 ± 0.2, 50.8 ± 0.2, 51.3 ± 0.2, XRD patterns with peaks at 53.3 ± 0.2 and 54.3 ± 0.2 and no peaks at 28.75 ± 0.2, 31.27 ± 0.2, 37.19 ± 0.2, 40.21 ± 0.2, 41.98 ± 0.2, 44.81 ± 0.2 and 51.68 ± 0.2; It provides a size controlled CoSb 2 nanoparticles that satisfies all.
본 발명의 바람직한 일실시예에 따르면, 상기 입자에는 CoSb 및 CoSb3가 실질적으로 포함되지 않을 수 있다.According to a preferred embodiment of the present invention, the particles may be substantially free of CoSb and CoSb 3 .
본 발명의 바람직한 다른 일실시예에 따르면, 상기 나노입자는 평균입경이 15 내지 40nm이며, 하기의 수학식 1로 계산되는 변동계수(CV, %)가 25.5% 이하일 수 있다. According to another preferred embodiment of the present invention, the nanoparticles have an average particle diameter of 15 to 40nm, the coefficient of variation (CV,%) calculated by Equation 1 below may be 25.5% or less.
[수학식 1][Equation 1]
Figure PCTKR2013008887-appb-I000001
Figure PCTKR2013008887-appb-I000001
나아가, 상술한 세 번째 과제를 해결하기 위하여 본 발명은 Furthermore, in order to solve the third problem described above,
먼저, 본 발명에 따른 CoSb2 나노입자를 포함하는 전극을 제공한다.First, it provides an electrode comprising CoSb 2 nanoparticles according to the present invention.
본 발명의 바람직한 일실시예에 따르면, 상기 전극은 양극일 수 있다.According to a preferred embodiment of the present invention, the electrode may be an anode.
다음으로 양극; 음극; 분리막; 및 전해질; 을 포함하는 전기화학소자에 있어서, 상기 양극은 본 발명에 따른 CoSb2 나노입자를 포함하는 전극을 가지는 전기화학소자를 제공한다.Next anode; cathode; Separator; And electrolytes; In the electrochemical device comprising a, the anode provides an electrochemical device having an electrode comprising CoSb 2 nanoparticles according to the present invention.
본 발명의 바람직한 일실시예에 따르면, 상기 전기화학소자는 리튬이차전지일 수 있다.According to a preferred embodiment of the present invention, the electrochemical device may be a lithium secondary battery.
본 발명의 크기 제어된 CoSb2 나노입자 및 그의 제조방법은 첫 번째, CoSb2만을 별도의 분리 및 분급 과정 없이도 단일상으로 제조하여 생산효율 증대를 가질 수 있고, 종래의 기계적 밀링 등의 방법에 비해 짧은 시간만으로도 결정도가 높고 나노단위의 크기를 갖는 CoSb2 나노입자를 제조할 수 있다. The size-controlled CoSb 2 nanoparticles of the present invention and a method of manufacturing the first, CoSb 2 can be produced in a single phase without a separate separation and classification process can have an increased production efficiency, compared to the conventional mechanical milling methods It is possible to produce CoSb 2 nanoparticles having high crystallinity and nanoscale size in a short time.
또한, 용도에 맞게 입자의 크기를 조절할 수 있다. 나아가, 두 금속원소가 결합된 나노입자를 유기 용매의 열분해를 통해 제조 할 경우 통상적으로 발생할 수 있는 개별 금속원소의 핵생성 및 성장에 따른 이종(異種)의 결정구조, 불규칙한 크기 등의 문제점을 해결할 수 있다. In addition, the size of the particles can be adjusted to suit the application. Furthermore, when nanoparticles combined with two metal elements are manufactured through pyrolysis of an organic solvent, problems such as heterogeneous crystal structure and irregular size due to nucleation and growth of individual metal elements, which may occur normally, may be solved. Can be.
두 번째 효과로, 불순물이 없고, 입자의 크기가 균일한 CoSb2 나노입자를 제공할 수 있어서 부피변화 등 외부 요인에 의한 부하에 효과적으로 견딜 수 있다.Secondly, it can provide CoSb 2 nanoparticles that are free of impurities and have a uniform particle size, and thus can effectively withstand load caused by external factors such as volume change.
세 번째 효과로, 최근 대용량전지 또는 전기자동차용 전지 등이 폭발적인 수요증가세에 있으나 상기 안티몬계 물질이 사용된 기존의 전지는 종래의 카본계 전극물질에 비해 전지용량은 향상시키나 전극의 내구성 문제를 가지고 있는바, 균일한 입도의 CoSb2 나노입자를 사용함으로써 안티몬계 물질의 사용으로 인한 대용량의 우수한 전지 특성은 보유하면서도 부피변화에 따른 충격이나 파손 문제를 제거하여 전지의 내구성 문제를 해결 할 수 있고, 전지의 효율 향상에 기여할 수 있다.As a third effect, recently, large-capacity batteries or batteries for electric vehicles are exploding in demand, but conventional batteries using the antimony-based materials have improved battery capacity compared to conventional carbon-based electrode materials, but have durability problems. By using CoSb 2 nanoparticles of uniform particle size, it can solve battery durability problems by removing shock or breakage problems due to volume change while retaining excellent battery characteristics due to the use of antimony-based materials. It can contribute to the improvement of the battery efficiency.
도 1은 본 발명의 일실시예에 따른 DTA 그래프를 나타낸 것이다.1 shows a DTA graph according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 TGA 및 DSC 그래프를 나타낸 것이다.2 shows a TGA and DSC graph according to an embodiment of the present invention.
도 3은 본 발명의 일실시예와 일비교예에 따른 CoSb2 나노입자의 SEM 이미지를 나타낸 것이다Figure 3 shows a SEM image of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention
도 4는 본 발명의 일실시예와 일비교예에 따른 CoSb2 나노입자의 SEM 이미지를 나타낸 것이다.Figure 4 shows an SEM image of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention.
도 5는 본 발명의 일실시예와 일비교예에 따른 CoSb2 나노입자의 SEM 이미지를 나타낸 것이다.Figure 5 shows a SEM image of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention.
도 6는 본 발명의 일실시예와 일비교예에 따른 CoSb2 나노입자의 XRD 패턴을 나타낸 것이다.Figure 6 shows the XRD pattern of CoSb 2 nanoparticles according to one embodiment and one comparative example of the present invention.
도 7은 본 발명의 일실시예에 따른 CoSb2 나노입자의 성장곡선 그래프이다.7 is a graph of growth curves of CoSb 2 nanoparticles according to an embodiment of the present invention.
본 발명에서 사용하는 용어인 "C3의 알킬기"는 탄소수 3개인 알킬기를 의미하는 것으로서, 예를 들면, C13-21의 알킬기는 탄소수 13 내지 21을 갖는 알킬기를 의미한다.The term "alkyl group of C 3 " used in the present invention means an alkyl group having 3 carbon atoms. For example, an alkyl group of C 13-21 means an alkyl group having 13 to 21 carbon atoms.
이하, 본 발명을 첨부된 도면을 참고하여 보다 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings the present invention will be described in more detail.
상술한 바와 같이 CoSb3를 제조하는 과정에서 부수적으로 생성될 수 있는 CoSb2를 분리 하기 어려우며, 결정도 높고 생산효율이 좋은 CoSb2만을 제조하기 어려웠다. 또한, CoSb2를 제조하는 종래의 방법들은 원하는 크기로 CoSb2 나노입자를 제조하기 어렵거나 나노입자 제조 후에 원하는 크기의 입자를 분급하는 별도의 공정을 요구하는 문제점이 있었다. 나아가, 두 가지 금속원소가 결합된 나노입자를 열분해를 통해 제조할 경우 목적하는 두 금속원소가 각각 포함된 물질의 열분해 온도는 대부분 서로 상이하여 두 금속원소가 결합되기 보다는 두 금속원소가 분리되어 핵 생성 및 성장함에 따라 이종(異種)의 결정 구조를 갖거나 입자의 크기가 불규칙한 생성물이 제조될 수 있는 문제점이 있다.As described above, it is difficult to separate CoSb 2 which may be incidentally generated in the process of manufacturing CoSb 3 , and it is difficult to manufacture only CoSb 2 having high crystallinity and good production efficiency. In addition, conventional methods of preparing CoSb 2 have a problem in that it is difficult to produce CoSb 2 nanoparticles in a desired size or requires a separate process of classifying particles of a desired size after nanoparticle preparation. Furthermore, in the case of producing nanoparticles in which two metal elements are bonded by pyrolysis, the thermal decomposition temperatures of materials containing two desired metal elements are different from each other, so that the two metal elements are separated from each other rather than the two metal elements being combined. As a result of the growth and growth, there is a problem that a product having a heterogeneous crystal structure or an irregular particle size can be produced.
이에 본 발명에서는 (1) 분자 내 2 이상의 에스테르기를 포함하는 코발트 복합체가 포함된 용액을 가열하는 단계; (2) 상기 가열된 코발트 복합체가 포함된 용액에 분자 내 3 이상의 에스테르기를 포함하는 안티몬 복합체가 포함된 용액을 혼합하여 표면이 에스테르기로 개질된 CoSb2 복합체를 형성하는 단계; 및 (3) 상기 개질된 CoSb2 복합체에서 에스테르기를 제거하는 단계; 를 포함하는 크기 제어된 CoSb2 나노입자 제조방법을 제공함으로서 상술한 문제의 해결을 모색하였다. Therefore, the present invention (1) heating a solution containing a cobalt complex containing two or more ester groups in the molecule; (2) mixing a solution containing an antimony complex including three or more ester groups in a molecule to a solution containing the heated cobalt complex to form a CoSb 2 complex having a surface modified with an ester group; And (3) removing the ester groups from the modified CoSb 2 complex; By providing a method for producing a size-controlled CoSb 2 nanoparticles comprising a sought to solve the above problems.
이를 통해 CoSb2만을 별도의 분리과정 없이도 단일상으로 제조할 수 있고, 짧은 시간만으로도 결정도가 높고 나노단위의 크기를 갖는 CoSb2 나노입자를 제조할 수 있다. 또한, 용도에 맞게 입자의 크기를 조절할 수 있으며 개별 금속원소의 핵생성 및 성장에 따른 이종(異種)의 결정구조, 불규칙한 크기 등의 문제를 제거할 수 있다.Through this process, only CoSb 2 may be manufactured in a single phase without a separate separation process, and CoSb 2 nanoparticles having a high crystallinity and a nano unit size may be manufactured in a short time. In addition, the size of the particles can be adjusted to suit the purpose, and problems such as heterogeneous crystal structure and irregular size due to nucleation and growth of individual metal elements can be eliminated.
먼저, (1) 단계로서 분자 내 2 이상의 에스테르기를 포함하는 코발트 복합체가 포함된 용액을 가열하는 단계;를 포함한다.First, the step (1) heating the solution containing the cobalt complex containing two or more ester groups in the molecule; includes.
바람직하게 상기의 코발트 복합체는 하기의 화학식 1로 표시되는 화합물일 수 있다Preferably the cobalt complex may be a compound represented by the following formula (1)
[화학식 1][Formula 1]
Co(O2C-R)2 Co (O 2 CR) 2
단, 상기 R-CO2 -는 지방산(Fatty acid)이며, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.However, R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
상기 화학식1에서 보는 바와 같이 코발트 복합체는 R을 제외하고 분자 내에 2개의 에스테르기를 가지고 있으며, R을 고려하여 2 이상의 에스테르기를 포함할 수 있다. 2 이상의 에스테르기를 포함하는 코발트 복합체는 가열을 통한 열분해로 본 발명이 목적하는 CoSb2 나노입자에서의 코발트(Ⅱ)를 제공할 수 있다. 또한 상기 화학식 1에서 코발트와 결합하는 에스테르기를 포함하는 지방산은 코발트 복합체의 열분해 온도에 영향을 미치고 동시에 균일한 입경을 가진 입자의 제조 및 입자의 성장속도를 결정하는 요인에 포함될 수 있으며 이는 하기 (2)단계의 반응시간에서 설명한다. As shown in Formula 1, the cobalt complex has two ester groups in the molecule except R, and may include two or more ester groups in consideration of R. Cobalt composites comprising two or more ester groups can provide cobalt (II) in the CoSb 2 nanoparticles desired by the present invention by pyrolysis via heating. In addition, the fatty acid including an ester group which binds cobalt in Chemical Formula 1 may affect the thermal decomposition temperature of the cobalt complex and at the same time may be included in factors for preparing particles having a uniform particle size and determining the growth rate of the particles. This is explained in the reaction time of step).
상기의 코발트 복합체는 더 바람직하게는 코발트 출발물질과 금속이온이 치환된 지방산을 용매에 녹인 후 가열하여 코발트 복합체를 제조할 수 있으며, 하기의 반응식 1에 의해 제조될 수 있다More preferably, the cobalt complex may be prepared by dissolving a cobalt starting material and a metal ion-substituted fatty acid in a solvent and heating the cobalt complex, which may be prepared by the following Scheme 1.
[반응식 1]Scheme 1
CoX2 + 2(R-COOY) → Co(O2C-R)2 + 2XYCoX 2 + 2 (R-COOY) → Co (O 2 CR) 2 + 2XY
바람직하게 상기 X는 Cl- , CH3COO- 중 어느 하나 이상일 수 있으며, Y 는 Na+ 일 수 있고, R-COO-는 지방산(Fatty acid)이며, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.Preferably, X may be any one or more of Cl , CH 3 COO , Y may be Na + , R-COO is a fatty acid, and each R is independently C 13-21 saturated Fatty acids or unsaturated fatty acids that are C 7-23 .
구체적으로, 코발트 출발물질은 염화코발트(Ⅱ) 및 코발트아세테이트로 중 어 어느 하나 이상일 수 있으며, 바람직하게는 염화코발트(Ⅱ)일 수 있고, 보다 더 바람직하게는 수화 염화코발트(Ⅱ)(CoCl2 · 6H2O)일 수 있다. 다만, 코발트 출발물질의 경우 상기의 기재에 한정되는 것은 아니다.Specifically, the cobalt starting material may be any one or more of cobalt (II) chloride and cobalt acetate, preferably cobalt chloride (II), and even more preferably hydrated cobalt chloride (II) (CoCl 2 ). · 6H 2 O) it can be. However, the cobalt starting material is not limited to the above description.
바람직하게 금속이온이 치환될 수 있는 지방산은 포화지방산의 경우 탄소수가 14 내지 22개, 불포화지방산의 경우 탄소수가 8 내지 24개인 경우 어느 것이나 사용될 수 있다.Preferably, the fatty acid which may be substituted with metal ions may be used in the case of saturated fatty acids having 14 to 22 carbon atoms and unsaturated fatty acids having 8 to 24 carbon atoms.
용매의 경우 증류수, 에탄올 및 헥산(hexane)으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 바람직하게는 상기 용매는 증류수, 에탄올 및 헥산(hexane)의 혼합용액일 수 있다. 다만, 용매는 상기의 기재에 한정되는 것이 아니며 코발트 출발물질을 용해시킬 수 있는 용매라면 어느 것이나 사용될 수 있다. 보다 바람직하게는 상기 용매는 증류수, 95% 에탄올 및 99% 헥산(hexane)이 3 : 3 내지 5 : 6 내지 8 부피비로 혼합될 수 있다. The solvent may include any one or more selected from the group consisting of distilled water, ethanol and hexane (hexane). Preferably, the solvent may be a mixed solution of distilled water, ethanol and hexane. However, the solvent is not limited to the above description, and any solvent may be used as long as it can dissolve the cobalt starting material. More preferably, the solvent may be mixed with distilled water, 95% ethanol and 99% hexane in a volume ratio of 3: 3 to 5: 6 to 8.
바람직하게 코발트복합체는 코발트 출발물질과 금속올레산이 1 : 2 내지 5의 몰비로 혼합된 혼합액에 용매를 2 내지 5부피로 혼합한 후, 50 내지 100 ℃로 가열하여 제조할 수 있다. 코발트출발물질의 코발트 이온과 금속이온으로 치환된 올레산의 금속이온 간에 이온교환이 일어나고 코발트이온과 금속이온이 떨어져나간 올레산이 결합하여 코발트 복합체가 형성된다. Preferably, the cobalt composite may be prepared by mixing the solvent with 2 to 5 volumes of the cobalt starting material and the metal oleic acid in a molar ratio of 1: 2 to 5, and then heating to 50 to 100 ° C. Cobalt ions are formed between the cobalt ions of the cobalt starting material and the metal ions of the oleic acid substituted with metal ions, and the cobalt complex is formed by the binding of the oleic acid from which the cobalt ions and the metal ions are separated.
상기 (1)단계의 코발트 복합체가 포함된 용액은 270 내지 330 ℃로 하여 가열 될 수 있다.The solution containing the cobalt complex of step (1) may be heated to 270 to 330 ℃.
코발트 복합체가 포함된 용액을 가열하는 이유는 코발트 복합체 중 지방산을 열분해를 통해 분리하기 위함이며, 하기에 설명될 안티몬 복합체와 열분해 온도가 상이하고 안티몬은 코발트에 비해 휘발성이 높고 핵생성 온도가 낮기 때문에 코발트 복합체가 포함된 용액만을 먼저 가열한다. The reason for heating the solution containing the cobalt complex is to separate the fatty acids in the cobalt complex by pyrolysis, because the pyrolysis temperature is different from the antimony complex described below, and antimony has higher volatility and lower nucleation temperature than cobalt. Only the solution containing the cobalt complex is first heated.
지방산의 종류에 따라 코발트 복합체의 열분해 온도는 서로 달라질 수 있으나 통상적으로 코발트 복합체를 형성할 수 있는 지방산의 종류를 고려하여 바람직하게는 코발트 복합체가 포함된 용액의 가열온도를 270 내지 330 ℃로 할 수 있다.The pyrolysis temperature of the cobalt complex may vary depending on the type of fatty acid, but in consideration of the types of fatty acids that may form the cobalt complex, the heating temperature of the solution containing the cobalt complex is preferably 270 to 330 ° C. have.
코발트 복합체가 포함된 용액의 가열 온도는 코발트 복합체의 열분해 온도와 코발트복합체를 녹인 용매의 끓는점에 의해 결정될 수 있다. 용매의 끓는점이 코발트 복합체의 열분해 온도보다 낮을 경우 코발트 복합체가 열분해 되기 전 용매가 기화될 수 있고, 코발트 복합체의 열분해 온도와 비슷할 경우 용매가 불안정한 상태로 되어 코발트 복합체의 열분해 및 하기의 안티몬 복합체와의 반응을 통한 CoSb2 나노입자의 생성에 영향을 미쳐 균일한 입경의 입자 제조가 어렵거나 단일한 결정상의 CoSb2 나노입자를 제조하지 못할 수 있다. The heating temperature of the solution containing the cobalt complex may be determined by the thermal decomposition temperature of the cobalt complex and the boiling point of the solvent in which the cobalt complex is dissolved. If the boiling point of the solvent is lower than the pyrolysis temperature of the cobalt complex, the solvent may be vaporized before the cobalt complex is pyrolyzed. If the solvent is close to the pyrolysis temperature of the cobalt complex, the solvent may become unstable, resulting in thermal decomposition of the cobalt complex and the antimony complex described below. It may affect the production of CoSb 2 nanoparticles through the reaction, it is difficult to produce a uniform particle size or may not be able to produce a single crystalline CoSb 2 nanoparticles.
상기의 코발트 복합체를 녹인 용매는 바람직하게는 옥타데센(1-octadecene)일 수 있다. 다만 용매의 종류는 상기의 기재에 한정되는 것은 아니며 코발트 복합체 및 하기에 설명될 안티몬 복합체와 배위를 이루지 않으면서 코발트 복합체의 열분해 온도보다 끓는점이 높은 용매라면 그 제한은 없다. The solvent in which the cobalt complex is dissolved may be preferably octadecene (1-octadecene). However, the kind of the solvent is not limited to the above description, and there is no limitation as long as the solvent has a boiling point higher than the pyrolysis temperature of the cobalt complex without coordinating with the cobalt complex and the antimony complex described below.
바람직하게 코발트 복합체가 포함된 용액은 코발트 복합체 2mmol에 용매를 10ml 내지 100ml 혼합하여 제조할 수 있다.Preferably, the solution containing the cobalt complex may be prepared by mixing 10ml to 100ml of the solvent in 2mmol of the cobalt complex.
구체적으로 이하 코발트 복합체의 열분해 과정을 통한 코발트 복합체가 포함된 용액의 가열온도 및 상기 가열온도의 임계적 의의에 대해 살펴본다. Specifically, the heating temperature and the critical significance of the heating temperature of the solution containing the cobalt composite through the pyrolysis process of the cobalt composite will be described.
도 1, 2는 본 발명의 일실시예에 따른 코발트 복합체인 수화된 코발트올레이트와 안티몬 복합체인 비수화된 안티몬올레이트의 온도에 따른 DTA 그래프와 TGA, DSC 그래프를 나타낸다. 상기 도 1, 2는 코발트올레이트와 안티몬올레이트의 혼합 상태가 아닌 개별 물질 각각에 대한 그래프를 나타낸다. 이하 도 1, 도 2의 곡선들 중에서 코발트 복합체 가열온도를 결정할 수 있는 코발트올레이트의 열분해 과정만 설명한다. 1 and 2 show the DTA, TGA, and DSC graphs according to the temperature of hydrated cobalt oleate and the antimony complex hydrated antimony oleate according to one embodiment of the present invention. 1 and 2 show a graph for each of the individual materials, not a mixed state of cobalt oleate and antimonoleate. Hereinafter, only the pyrolysis process of cobalt oleate capable of determining the cobalt composite heating temperature among the curves of FIGS. 1 and 2 will be described.
도 1에서 DTA 곡선이 73 ℃에서 변화가 있음을 확인할 수 있고 이는 코발트올레이트(CoOl)의 제조과정에서 용매 역할을 했던 에탄올이 제거되었기 때문이다. 그러나 코발트올레이트 제조과정상 세척과 건조과정을 거침에 따라 에탄올이 제거되어 실제 코발트올레이트의 질량 감소는 적다는 것을 도 2의 TGA 곡선을 통해 확인할 수 있다. 가열온도가 131 ℃에 이르면 도 1에서 두 번째 변화를 확인할 수 있다. 이는 코발트올레이트에 흡수되었던 물이 제거되기 때문이며 도 2의 TGA 곡선을 통해 미세하지만 코발트올레이트의 질량 변화가 있음을 확인할 수 있다. 이후 계속 온도를 높여 가열하면 도 2의 TGA 곡선에서 보듯이 코발트올레이트의 질량이 감소경향을 보이며 승온 온도당 감소되는 질량 폭은 점점 커짐을 알 수 있다. 도 2의 DSC 곡선에서 보면 300 ℃ 부근에서 변이피크를 보이며, 이는 코발트와 결합했던 올레이트 리간드가 분리되어 코발트입자의 성장이 있었음을 의미한다. 즉 코발트올레이트에서 올레이트 리간드의 분리온도는 300℃ 내외 인바, 코발트 복합체의 가열 온도는 복합체를 이루는 지방산의 종류를 고려하여 260 내지 330 ℃일 수 있다.It can be seen from FIG. 1 that the DTA curve is changed at 73 ° C. because ethanol, which was a solvent in the process of preparing cobalt oleate (CoOl), was removed. However, it can be seen from the TGA curve of FIG. 2 that ethanol is removed as the cobalt oleate manufacturing process is washed and dried to reduce the actual cobalt oleate mass loss. When the heating temperature reaches 131 ° C, a second change can be seen in FIG. 1. This is because the water that was absorbed in the cobalt oleate is removed and it can be seen that there is a fine but cobalt oleate mass change through the TGA curve of FIG. 2. Subsequently, if the heating is continued at a higher temperature, the mass of cobalt oleate tends to decrease as shown in the TGA curve of FIG. 2, and the mass width decreases per elevated temperature. In the DSC curve of FIG. 2, the peak of variation was around 300 ° C., which means that the oleate ligand, which was associated with cobalt, was separated and there was growth of cobalt particles. That is, the separation temperature of the oleate ligand in the cobalt oleate is about 300 ° C., and the heating temperature of the cobalt complex may be 260 to 330 ° C. in consideration of the type of fatty acid constituting the complex.
만일 가열온도가 270 ℃ 미만일 경우 코발트복합체에서 지방산의 분리가 이루어지지 않아 안티몬 입자와의 핵생성, 코발트와 안티몬의 결합 및 입자성장과 결정성장이 제대로 일어나지 않은 CoSb2가 생성될 수 있는 문제점이 있고, 330 ℃를 초과할 경우 입자의 용매가 분해되면서 입자성장을 제어하지 못해 무분별한 입자의 성장이나 이종의 성분이 생성될 수 있는 문제점이 있다.If the heating temperature is less than 270 ℃ there is a problem that the separation of fatty acids in the cobalt complex is not made, the nucleation with antimony particles, the cobalt and antimony binding, the CoSb2 can not be produced and the grain growth and crystal growth does not occur properly, If it exceeds 330 ℃ can not control the particle growth as the solvent of the particles are decomposed there is a problem that can be produced indiscriminate growth of the particles or heterogeneous components.
다음으로, (2) 단계로서 상기 (1) 단계에서 가열된 코발트 복합체가 포함된 용액에, 분자 내 3 이상의 에스테르기를 포함하는 안티몬 복합체가 포함된 용액을 혼합하여 표면이 에스테르기로 개질된 CoSb2 복합체를 형성하는 단계; 를 포함한다.Next, as the step (2), the CoSb 2 complex whose surface is modified with an ester group by mixing the solution containing the cobalt complex heated in the step (1), the solution containing the antimony complex including three or more ester groups in the molecule Forming a; It includes.
상기 안티몬 복합체는 하기 화학식 2로 표시되는 화합물일 수 있다The antimony complex may be a compound represented by Formula 2 below.
[화학식 2][Formula 2]
Sb(O2C-R)3 Sb (O 2 CR) 3
단, 상기 R-CO2 -는 지방산(Fatty acid)이며, R 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.However, R-CO 2 - is a fatty acid, each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
상기 화학식2에서 보는바와 같이 안티몬 복합체는 R을 제외하고 분자 내에 3개의 에스테르기를 가지고 있으며, R을 고려하여 3 이상의 에스테르기를 포함할 수 있다. 2 이상의 에스테르기를 포함하는 안티몬 복합체는 가열을 통한 열분해로 본 발명이 목적하는 CoSb2 나노입자에서의 안티몬을 제공할 수 있으며 에스테르기를 포함하는 지방산은 안티몬 복합체의 열분해 온도에 영향을 미칠 수 있다.As shown in Formula 2, the antimony complex has three ester groups in the molecule except R, and may include three or more ester groups in consideration of R. The antimony complex comprising two or more ester groups may provide antimony in the CoSb 2 nanoparticles to which the present invention is desired by pyrolysis through heating, and the fatty acid including the ester group may affect the pyrolysis temperature of the antimony complex.
상기 안티몬 복합체는 바람직하게는 안티몬 출발물질을 지방산과 혼합한 후 가열하여 제조할 수 있으며, 하기의 반응식 2에 의해 제조될 수 있다The antimony complex may be prepared by mixing the antimony starting material with a fatty acid and then heating, and may be prepared by the following Scheme 2.
[반응식 2] Scheme 2
SbX3 + 3(R-COOH) → Sb(O2C-R)3 + 3HCl SbX3 + 3 (R-COOH) → Sb (O2C-R)3 + 3 HCl
바람직하게 상기 X는 Cl- 일수 있으며, R-COO-는 지방산(Fatty acid)이고, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.Preferably, X may be Cl , R—COO is a fatty acid, and each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
바람직하게 상기 안티몬 출발물질은 염화안티몬(SbCl3)일 수 있다. 다만, 안티몬 출발물질은 상기의 기재에 한정되는 것은 아니다.Preferably the antimony starting material may be antimony chloride (SbCl 3 ). However, the antimony starting material is not limited to the above description.
또한, 상기 지방산은 안티몬 전구체가 용해될 수 있으면서 포화지방산의 경우 탄소수가 14 내지 22 개, 불포화지방산의 경우 탄소수가 8 내지 24 개라면 어느 것이나 사용될 수 있다. In addition, the fatty acid can be used as long as the antimony precursor can be dissolved, 14 to 22 carbon atoms in the case of saturated fatty acids, 8 to 24 carbon atoms in the case of unsaturated fatty acids.
바람직하게 안티몬 복합체는 안티몬 출발물질과 지방산을 1 : 2 내지 5 몰비로, 보다 더 바람직하게는 안티몬 출발물질과 지방산을 1: 3의 몰비로 혼합 후, 50 내지 100 ℃로 질소 분위기하에서 가열하여 제조할 수 있다. 상기 온도로 가열할 경우 안티몬 복합체 제조시 생성되는 부산물(HCl)을 제거할 수 있다. Preferably, the antimony complex is prepared by mixing the antimony starting material and the fatty acid in a 1: 2 to 5 molar ratio, and more preferably the antimony starting material and the fatty acid in a molar ratio of 1: 3, and then heating the mixture to 50 to 100 ° C. under a nitrogen atmosphere. can do. When heated to the temperature it can be removed by-products (HCl) produced during the production of antimony complex.
안티몬 전구체 제조 시 주의할 점은 안티몬 전구체는 물과 접촉하면 수화되기 때문에 통상적인 방법인 안티몬전구체와 금속이온이 치환된 지방산 간의 이온교환을 통해 제조할 경우 본 발명의 조성물인 안티몬 복합체를 형성하기 어려울 수 있는 문제점이 있다. 이에 따라 바람직하게 안티몬 복합체는 안티몬 출발물질과 지방산을 혼합 후 가열을 통해 두 물질을 직접적으로 결합시켜 제조할 수 있다. It is difficult to form the antimony complex, which is a composition of the present invention, when the antimony precursor is prepared by ion exchange between an antimony precursor and a metal ion-substituted fatty acid. There is a problem that can be. Accordingly, the antimony complex may be prepared by directly combining the two substances through heating after mixing the antimony starting material and fatty acid.
상기 (2) 단계의 안티몬 복합체는 용매에 녹여 가열된 코발트 복합체가 포함된 용액에 혼합될 수 있다. 상기 용매는 바람직하게는 옥타데센(1-octadecene)일 수 있다. 다만 용매의 종류는 상기의 기재에 한정되는 것은 아니며 코발트 복합체와 배위를 이루지 않고 코발트 복합체의 열분해 온도보다 끓는점이 높은 용매라면 그 제한은 없다. 보다 바람직하게 상기 안티몬 복합체가 포함된 용액은 안티몬 복합체 2mmol에 용매를 10ml 내지 100ml 혼합하여 제조할 수 있다.The antimony complex of step (2) may be mixed in a solution containing a heated cobalt complex dissolved in a solvent. The solvent may be preferably 1-octadecene. However, the kind of the solvent is not limited to the above description, and there is no limitation as long as it does not form a coordination with the cobalt complex and has a boiling point higher than the pyrolysis temperature of the cobalt complex. More preferably, the solution containing the antimony complex may be prepared by mixing 10 ml to 100 ml of a solvent in an antimony complex 2 mmol.
상기 (2) 단계는 코발트 복합체가 포함된 용액과 안티몬 복합체가 포함된 용액을 혼합하여 혼합된 용액에서 코발트복합체와 안티몬복합체의 몰비가 1 : 2 내지 5가 되도록 혼합할 수 있다. 바람직하게는 코발트 복합체가 포함된 용액에서의 코발트복합체와 안티몬 복합체가 포함된 용액에서의 안티몬복합체의 몰비는 1 : 2 일 수 있다. 만일 상기 몰비의 비율이 변화하면 합성 비율이 달라져 CoSb2가 아닌 다른 이종의 상이 합성될 수 있다.In the step (2), the solution containing the cobalt complex and the antimony complex may be mixed so that the molar ratio of the cobalt complex and the antimony complex is 1: 2 to 5 in the mixed solution. Preferably, the molar ratio of the cobalt complex in the solution containing the cobalt complex and the antimony complex in the solution containing the antimony complex may be 1: 2. If the ratio of the molar ratio is changed, the synthesis ratio may be changed to synthesize a heterogeneous phase other than CoSb 2 .
상기 (2) 단계에서 안티몬 복합체가 포함된 용액을 가열된 상태의 코발트복합체가 포함된 용액에 혼합하는데, 이는 코발트 복합체와 안티몬 복합체의 열분해 온도가 서로 상이하기 때문이다. 만약 열분해 온도가 서로 상이한 상기 두 복합체를 같이 혼합한 후에 동시에 270 내지 330 ℃ 까지 가열할 경우 입경이 마이크로미터(μm) 단위로 과 성장되고 각기 다른 형태의 CoSb2 입자가 생성될 수 있으며, 이는 최소 2개 이상의 결정 구조를 가질 수도 있음을 의미하고 생성된 CoSb2 입자의 입경이 균일하지 않고 나노크기를 벗어나는 입자가 생성될 수 있는 문제점이 있다.In the step (2), the solution containing the antimony complex is mixed with the solution containing the cobalt complex in a heated state, because the pyrolysis temperatures of the cobalt complex and the antimony complex are different from each other. If the two composites having different pyrolysis temperatures are mixed together and then heated simultaneously to 270 to 330 ° C., the particle diameter may be overgrown in micrometers (μm) and different types of CoSb 2 particles may be produced, which is a minimum. It means that it may have two or more crystal structures, there is a problem that the particle size of the resulting CoSb 2 particles are not uniform and nano-size particles can be produced.
구체적으로, 도 3a는 본 발명의 일실시예에 따른 CoSb2 나노입자에 대한 SEM 사진이고, 도 3b는 코발트 복합체와 안티몬 복합체를 혼합 후에 동시에 가열하여 제조한 CoSb2 입자(비교예 4)에 대한 SEM 사진이다.Specifically, FIG. 3A is a SEM photograph of CoSb 2 nanoparticles according to an embodiment of the present invention, and FIG. 3B is a CoSb 2 particle (Comparative Example 4) prepared by simultaneously heating a cobalt complex and an antimony complex after mixing. SEM picture.
도 3a의 경우 도 3b에 비해 작고 구형이며 각 입자의 입경이 균일하다는 것을 볼 수 있다. 이에 반해 도 3b의 경우 입경이 마이크로미터(μm) 단위인 것들을 상당수 포함하고 있으며, 입자들의 입경 분포가 균일하지 않다는 것을 확인할 수 있다. In the case of FIG. 3A, it can be seen that the particle size of each particle is uniform compared to that of FIG. 3B. In contrast, in the case of Figure 3b includes a large number of particles having a micrometer (μm) unit, it can be seen that the particle size distribution of the particles are not uniform.
상기와 같이 결과가 도출된 이유는 열분해 온도가 다른 두 물질이 가열될 경우 낮은 열분해 온도를 갖는 물질이 먼저 열분해 되어 핵생성을 시작하고, 생성된 핵 표면에 나중에 열분해 된 물질이 결합하여 성장을 하게 됨에 따라 서로 입자의 균일성이 떨어지고 과 성장된 분말이 합성될 수 있다. The reason for the above result is that when two materials having different pyrolysis temperatures are heated, a material having a lower pyrolysis temperature is first pyrolyzed to start nucleation, and later the pyrolyzed material is bonded to the nucleus surface to grow. As the particles become less uniform with each other, overgrown powders can be synthesized.
이를 본 발명과 연관시키면, 안티몬 복합체의 열분해 온도는 도 1에서 확인할 수 있듯이 262 내지 276 ℃에서 안티몬 복합체의 지방산이 분리되기 시작하고, 296 내지 308 ℃에서 안티몬 복합체의 분리되지 않았던 나머지 지방산이 분리될 수 있는바, 안티몬이 핵생성을 시작할 수 있는 온도는 262 ℃ 이상이면 가능함을 알 수 있다. 코발트 복합체의 경우 열분해 온도는 상술한 바와 같이 300 ℃ 내외 일 수 있다. In connection with the present invention, the pyrolysis temperature of the antimony complex may be separated from the fatty acid of the antimony complex at 262 to 276 ° C. and the remaining fatty acids of the antimony complex may be separated at 296 to 308 ° C. as shown in FIG. 1. As can be seen, the temperature at which antimony can start nucleation is possible at 262 ° C. or higher. In the case of cobalt composites, the pyrolysis temperature may be about 300 ° C. as described above.
열분해 온도가 상기와 같이 상이한 코발트 복합체와 안티몬 복합체를 혼합하여 동시에 가열할 경우 262 ℃ 이상이 되면서 안티몬은 핵생성을 시작하는데, 안티몬이 핵생성 후 판상으로 성장하고 그 이후 분해온도가 높은 코발트 복합체에서 코발트가 분리되어 이미 성장한 Sb와 반응을 할 수 있다. 상기 반응을 통해 CoSb2 입자가 생성되었기 때문에 입경이 크고 그 형태가 불규칙하며 2 이상의 결정상을 가지는 CoSb2 입자가 제조될 수 있다. When pyrolysis temperature is different and cobalt complex and antimony complex are mixed together and heated at the same time, antimony starts nucleation as it becomes more than 262 ℃, and antimony grows into plate after nucleation and then in cobalt complex with high decomposition temperature Cobalt is separated and can react with the already grown Sb. The large particle size of the shape is irregular because CoSb 2 particles are produced through the reaction, there is CoSb 2 particles having two or more crystal phases can be produced.
따라서 코발트 복합체가 열분해 되는 온도까지 코발트 복합체 용액을 먼저 가열한 후에 코발트 복합체 보다 열분해 온도가 낮은 안티몬 복합체 용액을 혼합해야만 안티몬 복합체에서 지방산이 실질적으로 동시에 분리되고 핵생성 및 입자성장을 시작해 균일한 입경을 가지고 단일한 결정상을 갖는 CoSb2 나노 입자를 제조할 수 있다.Therefore, the cobalt complex solution must be heated to the temperature at which the cobalt complex is pyrolyzed first, and then the antimony complex solution having a lower pyrolysis temperature than the cobalt complex must be mixed to substantially separate fatty acids from the antimony complex and start nucleation and particle growth to achieve uniform particle size. CoSb 2 nanoparticles having a single crystal phase can be prepared.
바람직하게 상기 (2) 단계의 반응시간은 10 내지 50분 유지할 수 있다. Preferably the reaction time of step (2) can be maintained for 10 to 50 minutes.
반응시간은 본 발명에 의한 CoSb2 나노입자의 입경을 결정할 수 있는데, 반응시간이 길면 CoSb2 나노입자의 입경이 점차 증가될 수 있다. 구체적으로 도 4는 반응시간을 달리하여 제조된 CoSb2 나노입자의 SEM 사진이다. 반응시간을 10분(도 4a), 30분(도 4b), 60분(도 4c)으로 달리할 경우 반응시간이 길수록 CoSb2 나노입자의 입경이 증가됨을 육안으로 확인할 수 있다. 만일 반응시간이 10 분 미만일 경우 합성된 입자의 크기는 작지만 결정성이 떨어질 수 있는 문제가 있고, 50분을 초과하는 경우 입경이 무분별하게 커지고 불규칙한 결정상의 CoSb2 나노입자가 제조될 수 있다.The reaction time may determine the particle size of the CoSb 2 nanoparticles according to the present invention. If the reaction time is long, the particle size of the CoSb 2 nanoparticles may be gradually increased. Specifically, Figure 4 is a SEM photograph of the CoSb 2 nanoparticles prepared by varying the reaction time. When the reaction time is different from 10 minutes (FIG. 4A), 30 minutes (FIG. 4B), and 60 minutes (FIG. 4C), the particle size of the CoSb 2 nanoparticles may be visually increased as the reaction time increases. If the reaction time is less than 10 minutes, the size of the synthesized particles is small, but there is a problem that the crystallinity may be degraded. If the reaction time is greater than 50 minutes, the particle size is indiscriminately increased and irregular CoSb 2 nanoparticles may be prepared.
장시간 가열하였을 경우 입경이 커지고 고르지 못한 입자의 형태가 나타나는 이유는 무분별하게 커지는 이유는 장시간 가열하면 핵의 성장이 지속적으로 일어열분해를 통해 분리된 지방산이 장시간 가열로 소결되기 때문이다. When heated for a long time, the particle size becomes large, and the shape of the uneven particles appears because the indiscriminately grows because the growth of nuclei continuously occurs for a long time because the fatty acid separated through pyrolysis is sintered by long time heating.
반응시간이 길어질수록 입자의 크기가 커지고 고르지 못한 형태의 입자가 나타나는 이유는 합성된 CoSb2의 나노입자가 고온에서 에스테르를 분해하는 촉매로 작용하게 되면서 분해된 에스테르로 인하여 큰 사이즈의 불균일한 입자성장이 유도되었기 때문이다. The longer the reaction time, the larger the particle size and the irregular shape of the particles. The reason is that the synthesized CoSb2 nanoparticles act as a catalyst to decompose the ester at high temperature, resulting in uneven growth of large size due to the decomposed ester. It is induced.
따라서 본 발명에서의 지방산이 포함하는 에스테르는 나노분말의 핵생성을 향상시킬 수 있지만 반응시간이 길어지면 분해된 에스테르로 인하여 크고 불균일한 입자 성장이 야기 될 수 있어 반응시간의 조절은 균일한 입자의 수득에 있어 중요할 수 있다.Therefore, the ester contained in the fatty acid in the present invention can improve the nucleation of nanopowder, but if the reaction time is longer, large and uneven particle growth may be caused by the degraded ester, so that the reaction time is controlled by uniform particles. It can be important in obtaining.
바람직하게 상기 (2) 단계의 표면이 에스테르기로 개질된 CoSb2 복합체는 반응시간에 따라 0.1 내지 2 nm/min의 속도로 복합체의 입경이 성장할 수 있다. 구체적으로 도 7은 반응시간에 따른 CoSb2 나노입자의 입경 크기를 나타낸 그래프이다. 더 구체적으로 본 발명의 바람직한 일실시예에서 반응시간이 10분일 때 입경은 21 nm 정도이고, 30분일 때는 26nm 정도이며, 60분일 때의 입경은 34nm 정도이다. 이를 X선 회절 선폭증가(X ray Diffraction Line Broadening)를 통해 입경의 성장속도를 계산해 본 결과 도 7과 같은 그래프를 얻을 수 있었고, 분당 표면이 에스테르기로 개질된 CoSb2 복합체는 0.1 내지 2 nm/min의 속도로 복합체의 입경이 성장함을 확인할 수 있다.Preferably, the surface of the step (2) CoSb 2 complex modified with an ester group may grow the particle diameter of the complex at a rate of 0.1 to 2 nm / min depending on the reaction time. Specifically, Figure 7 is a graph showing the particle size of the CoSb 2 nanoparticles according to the reaction time. More specifically, in a preferred embodiment of the present invention, when the reaction time is 10 minutes, the particle diameter is about 21 nm, when about 30 minutes is about 26 nm, and when about 60 minutes the particle size is about 34 nm. As a result of calculating the growth rate of the particle size through X-ray diffraction line broadening, a graph as shown in FIG. 7 was obtained, and the CoSb 2 composite having a surface modified per minute with an ester group was 0.1 to 2 nm / min. It can be seen that the particle size of the complex grows at a rate of.
다음으로, (3) 단계로서 상기 개질된 CoSb2 복합체에서 에스테르기를 제거하는 단계; 를 포함한다.Next, removing the ester group from the modified CoSb 2 complex as step (3); It includes.
상기의 에스테르기 제거는 통상적인 에스테르기 제거 방법에 의할 수 있으며 그 제한은 없다. 바람직하게는 에스테르기 제거 용액을 통해 제거할 수 있다. 더 바람직하게 상기 에스테르 제거용액은 헥산과 에탄올의 혼합용액일 수 있으며 보다 더 바람직하게는, 헥산과 에탄올, 아세톤이 1 : 0.5 내지 1.5 부피비로 혼합된 혼합용액일 수 있다. The ester group removal may be by a conventional ester group removal method, but there is no limitation. Preferably it can be removed via ester group removal solution. More preferably, the ester removal solution may be a mixed solution of hexane and ethanol, and even more preferably, a mixed solution of hexane, ethanol, and acetone in a volume ratio of 1: 0.5 to 1.5.
바람직하게는 표면이 에스테르기로 개질된 CoSb2 복합체 와 상기의 에스테르기 제거용액을 1 : 4 내지 8 부피비로 혼합하여 에스테르기를 제거할 수 있다. 만약 에스테르 제거용액을 상기 비율 미만으로 혼합할 시에 본 발명이 목적하는 CoSb2 나노입자에 에스테르기가 제거 되지 않을 수 있고, 에스테르기가 제거된 CoSb2 나노입자의 침전이 원활하지 않을 수 있다. 만일 상기 비율을 초과하여 혼합 시에는 에스테르 제거공정에서 많은 시간이 소요되고 비용이 발생 할 수 있다.Preferably, the ester group may be removed by mixing the CoSb 2 complex having the surface modified with an ester group and the ester group removal solution in a ratio of 1: 4 to 8 by volume. If and when the mixture to remove the ester solution to less than the ratio may not be an ester group is removed to CoSb 2 nanoparticles as the object of the present invention, there is precipitation of CoSb 2 nanoparticles, the ester group is removed may not be smooth. If the ratio is exceeded, it may take a lot of time and cost in the ester removal process.
한편, 본 발명에 의해 제조된 CoSb2 나노입자는 단일한 결정상;을 가지고, XRD 패턴값(2θ)이 29.8± 0.2, 30.5± 0.2, 32.3± 0.2, 33.8± 0.2, 35± 0.2, 43± 0.2, 45.8± 0.2, 50.8± 0.2, 51.3± 0.2, 53.3± 0.2 및 54.3±0.2 에서 피크를 갖고, 28.75± 0.2, 31.27± 0.2, 37.19± 0.2, 40.21± 0.2, 41.98± 0.2, 44.81± 0.2 및 51.68± 0.2 에서 피크를 갖지 않는 XRD 패턴; 을 모두 만족하는 크기 제어된 CoSb2 나노입자.만족하는 크기 제어된 CoSb2 나노입자를 포함한다.On the other hand, CoSb 2 nanoparticles prepared by the present invention has a single crystal phase; XRD pattern value (2θ) is 29.8 ± 0.2, 30.5 ± 0.2, 32.3 ± 0.2, 33.8 ± 0.2, 35 ± 0.2, 43 ± 0.2 , Peaks at 45.8 ± 0.2, 50.8 ± 0.2, 51.3 ± 0.2, 53.3 ± 0.2 and 54.3 ± 0.2, 28.75 ± 0.2, 31.27 ± 0.2, 37.19 ± 0.2, 40.21 ± 0.2, 41.98 ± 0.2, 44.81 ± 0.2 and 51.68 XRD pattern with no peak at ± 0.2; CoSb 2 nanoparticles that meet both the size of the control. And a size control the CoSb 2 nanoparticles that meet.
본 발명은 코발트복합체와 안티몬복합체의 반응시간에 따라 크기가 제어된 CoSb2 나노입자를 수득할 수 있는데, CoSb2 나노입자 평균입경이 21 nm일 때(혼합시간 10분) 표준편차가 4nm이었고, 평균입경이 26 nm일 때(혼합시간 30분) 표준편차가 6nm 로 반응시간에 따라 평균입경이 일정비율(0.1 내지 2 nm/min)로 증가할 수 있다.The present invention can obtain CoSb 2 nanoparticles whose size is controlled according to the reaction time of the cobalt complex and antimony complex, when the average particle diameter of CoSb 2 nanoparticles is 21 nm (mixing time 10 minutes) was 4 nm, When the average particle diameter is 26 nm (mixing time 30 minutes), the standard deviation is 6 nm, the average particle diameter may increase at a constant ratio (0.1 to 2 nm / min) according to the reaction time.
본 발명의 바람직한 일실시예에 따르면 CoSb2 나노입자는 상술한 반응시간에 따라 평균입경이 15 내지 40nm인 CoSb2 나노입자일 수 있고, 하기의 수학식 1에 의해 계산된 변동계수(CV, %)값이 25.5% 이하일 수 있다. According to a preferred embodiment of the present invention CoSb 2 nanoparticles have a coefficient of variation calculated by Equation 1 below, may be the average particle diameter of 15 to 40nm is CoSb 2 nanoparticles according to the above-mentioned reaction time (CV,% ) May be less than or equal to 25.5%.
[수학식 1][Equation 1]
Figure PCTKR2013008887-appb-I000002
Figure PCTKR2013008887-appb-I000002
상기 변동계수란 표준편차를 평균값으로 나눈 것으로써, 상기 표준편차는 수득된 CoSb2 나노입자의 입경에 대한 표준편차를 의미하고, 상기 변동계수가 작을수록 상대적으로 나노입자 입경 차이가 적다는 것을 의미한다. 본 발명의 바람직한 일실시예에 따르면, CoSb2 나노입자의 변동계수가 25.5% 이하로 비교적 균일한 입경을 가지며, 이에 따라 별도의 분급과정 없이도 균일한 입경의 CoSb2 나노입자를 수득할 수 있는 이점이 있다.The coefficient of variation is a standard deviation divided by an average value, and the standard deviation means a standard deviation with respect to the particle size of the CoSb 2 nanoparticles obtained, and the smaller the coefficient of variation, the smaller the difference in the particle size of the nanoparticles. do. According to a preferred embodiment of the present invention, the CoSb 2 nanoparticles have a relatively uniform particle size of 25.5% or less, so that CoSb2 nanoparticles having a uniform particle size can be obtained without a separate classification process. have.
바람직하게 상기 입자에는 CoSb 및 CoSb3가 실질적으로 포함되지 않을 수 있다.Preferably, the particles may be substantially free of CoSb and CoSb 3 .
구체적으로 도 6은 본 발명의 일실시예에 따른 XRD 패턴을 나타낸다. 바람직하게 320 ℃에서 제조된 CoSb2 나노입자는 29.8, 30.5, 32.3, 33.8, 35, 43, 45.8, 50.8, 51.3, 53.3, 54.3 ± 0.2 2θ에서 피크를 가지고, 피크의 폭이 매우 좁아 결정성이 우수함을 알 수 있다. 또한 28.75, 31.27, 37.19, 40.21, 41.98, 44.81, 51.68 ± 0.2 2θ 본 발명의 CoSb2 나노입자에는 CoSb, CoSb3가 실질적으로 포함되지 않을 수 있다. 상기 “실질적으로”의 의미는 본 발명의 CoSb2 나노입자 중에 CoSb, CoSb3가 존재하지 않을 확률이 0이 아님을 나타낼 뿐, 실제 포함되어 있다는 것을 의미하지는 않는다. Specifically, Figure 6 shows the XRD pattern according to an embodiment of the present invention. CoSb preferably prepared at 320 ° C2 It can be seen that the nanoparticles have peaks at 29.8, 30.5, 32.3, 33.8, 35, 43, 45.8, 50.8, 51.3, 53.3, 54.3 ± 0.2 2θ, and the width of the peak is very narrow, so that the crystallinity is excellent. Also 28.75, 31.27, 37.19, 40.21, 41.98, 44.81, 51.68 ± 0.2 2θ CoSb of the present invention2 Nanoparticles include CoSb, CoSb3May not be substantially included. The meaning of “substantially” means CoSb of the present invention.2 CoSb, CoSb in Nanoparticles3Does not mean that the probability of nonexistence is nonzero, it is actually included.
한편, 본 발명은 본 발명에 따른 CoSb2 나노입자를 포함하는 전극에 관한 것이다. 바람직하게는 상기 전극은 양극일 수 있다.On the other hand, the present invention relates to an electrode comprising CoSb 2 nanoparticles according to the present invention. Preferably, the electrode may be an anode.
또한, 본 발명은 양극; 음극; 분리막; 및 전해질; 을 포함하는 전기화학소자에 있어서 양극에 본 발명에 따른 CoSb2 나노입자를 포함한다.In addition, the present invention is an anode; cathode; Separator; And electrolytes; In the electrochemical device comprising a CoSb 2 nanoparticles according to the present invention in the positive electrode.
바람직하게는 상기 전기화학소자는 리튬이차전지일 수 있다.Preferably, the electrochemical device may be a lithium secondary battery.
종래의 카본계의 리튬이차전지의 양극물질 대신에 다른 물질의 연구가 진행 중이며 그 대상 물질 중에 안티몬이 포함되어 있다. 안티몬은 이론용량이 660 mAh/g 혹은 4420 mAh/cm 로서 현재 상용화되는 탄소계 양극 물질보다 무게당 용량이 약 2배이고 부피당 용량은 약 5배 정도 크므로 안티몬계 물질을 양극으로 사용하는 경우 리튬이차전지의 용량을 크게 증가시키는 효과를 기대할 수 있다. Instead of the positive electrode material of the conventional carbon-based lithium secondary battery, research on other materials is in progress, and the target material contains antimony. Antimony has a theoretical capacity of 660 mAh / g or 4420 mAh / cm, which is about twice the capacity per weight and about five times the volume per volume of commercially available carbon-based anode materials. The effect of greatly increasing the capacity of the battery can be expected.
반면에 종래의 마이크로크기의 안티몬의 경우 리튬이온의 탈부착에 의한 큰 부피변화로 인하여 양극의 파손이나 신뢰성 저하와 급격게 용량이 감소하는 문제점이 알려지고 있다. On the other hand, the conventional micro-sized antimony has been known to have a problem in that the anode is broken or the reliability decreases and the capacity decreases rapidly due to the large volume change caused by the desorption of lithium ions.
그러나 본 발명에 따른 CoSb2 나노입자의 경우 입경이 균일한 나노크기의 분말을 합성하여 리튬이온의 흡착, 탈착 반응에 의하여 발생하는 급격한 부피 팽창에 의한 파손을 줄여 줄 수 있다. 종래의 카본계열의 양극물질이나 그것의 대체물질로 연구되는 마이크로크기의 안티몬 입자 보다 더 안정적으로 리튬이차전지의 용량을 증가시키면서 우수한 내구성을 가질 수 있다. However, in the case of the CoSb2 nanoparticles according to the present invention, the nanoparticles having a uniform particle size may be synthesized to reduce breakage due to rapid volume expansion caused by lithium ion adsorption and desorption reactions. It can have excellent durability while increasing the capacity of the lithium secondary battery more stably than the micro-sized antimony particles studied as a conventional carbon-based cathode material or its replacement material.
이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the scope of the present invention, which will be construed as to help the understanding of the present invention.
[실시예]EXAMPLE
<실시예 1><Example 1>
염화코발트(CoCl26H2O) 4.758g과 소디움올레이트(NaOl,CH3(CH2)7CH=CH(CH2)7COONa) 12.178g을 95% 에탄올 80ml, 증류수 60ml, 99% 헥산(hexane) 140ml가 섞인 혼합 용매에 녹여 용액을 제조하였다. 상기 용액을 70 ℃로 가열하고 상기 온도에서 4시간 유지하였다. 이후 상층 유기층에 포함되어 있는 코발트올레이트(CoOl)를 30ml 증류수로 3번 세척한 후 헥산을 증발시키고 왁스형의 고체 상태인 코발트올레이트(CoOl)를 제조하였다.4.758 g of cobalt chloride (CoCl 2 6H 2 O) and 12.178 g of sodium oleate (NaOl, CH 3 (CH 2 ) 7 CH = CH (CH 2 ) 7 COONa) were added to 80 ml of 95% ethanol, 60 ml of distilled water, and 99% hexane ( hexane) was dissolved in a mixed solvent of 140ml to prepare a solution. The solution was heated to 70 ° C. and maintained at this temperature for 4 hours. Thereafter, the cobalt oleate (CoOl) contained in the upper organic layer was washed three times with 30 ml of distilled water, and hexane was evaporated to prepare a cobalt oleate (CoOl) in a waxy solid state.
<실시예 2> <Example 2>
염화안티몬(SbCl3) 3.73 g을 올레산(OA, oleic acid) 8.47 g을 혼합하여 80℃로 가열하였다. 혼합물의 색이 약한 갈색으로 변했을 때 가열을 중지하고 상온까지 냉각시켜 안티몬올레이트(SbOl)를 제조하였다.3.73 g of antimony chloride (SbCl 3 ) was mixed with 8.47 g of oleic acid (OA) and heated to 80 ° C. When the color of the mixture changed to light brown, the heating was stopped and cooled to room temperature to prepare antimonolate (SbOl).
<실시예 3> <Example 3>
코발트올레이트(CoOl) 1mmol 을 90% 옥타데센(1-octadecene) 20ml에 녹여 320 ℃로 가열하였다. 안티몬올레이트(SbOl) 2mmol를 가열된 상태의 코발트올레이트(CoOl)에 빠르게 혼합했다. 혼합 후 10분 뒤에 혼합액을 상온으로 식혔다. 상온으로 식힌 혼합액을 99% 헥산(hexane) 5ml에 녹이고 95% 에탄올 10ml을 첨가 후에 14,000 rpm으로 10분간 원심분리하여 상등액은 버렸다. 상기 세척과정을 5회 반복하여 CoSb2 나노입자를 제조하였다.1 mmol of cobalt oleate (CoOl) was dissolved in 20 ml of 90% octadecene (1-octadecene) and heated to 320 ° C. 2 mmol of antimonolate (SbOl) was rapidly mixed with cobalt oleate (CoOl) in the heated state. 10 minutes after mixing, the mixture was cooled to room temperature. The mixed solution cooled to room temperature was dissolved in 5 ml of 99% hexane, and 10 ml of 95% ethanol was added, followed by centrifugation at 14,000 rpm for 10 minutes to discard the supernatant. The washing process was repeated five times to prepare CoSb 2 nanoparticles.
<실시예 4> <Example 4>
코발트올레이트(CoOl)의 가열온도를 320 ℃ 대신에 300 ℃로 한 것을 제외하고 실시에 3과 동일하게 실시하여 CoSb2 나노입자를 제조하였다.CoSb 2 nanoparticles were prepared in the same manner as in Example 3 except that the heating temperature of the cobalt oleate (CoOl) was changed to 300 ° C. instead of 320 ° C.
<실시예 5> Example 5
혼합 후 반응시간을 10분 대신에 30분으로 한 것을 제외하고 실시에 3과 동일하게 실시하여 CoSb2 나노입자를 제조하였다.CoSb2 nanoparticles were prepared in the same manner as in Example 3, except that the reaction time was 30 minutes instead of 10 minutes after mixing.
<비교예 1> Comparative Example 1
코발트올레이트(CoOl)의 가열온도를 250 ℃로 한 것을 제외하고 실시에 3과 동일하게 실시하여 CoSb2 나노입자를 제조하였다.CoSb 2 nanoparticles were prepared in the same manner as in Example 3 except that the heating temperature of the cobalt oleate (CoOl) was 250 ° C.
<비교예 2> Comparative Example 2
혼합 후 반응시간을 10분 대신에 60 분으로 한 것을 제외하고 실시에 3과 동일하게 실시하여 CoSb2 나노입자를 제조하였다.CoSb 2 nanoparticles were prepared in the same manner as in Example 3, except that the reaction time after mixing was 60 minutes instead of 10 minutes.
<비교예 3> Comparative Example 3
코발트올레이트(CoOl) 1mmol, 안티몬올레이트 2mmol을 90% 옥타데센(1-octadecene) 20ml에 녹여 320 ℃로 가열하였다. 혼합 후 10분 뒤에 혼합액을 상온으로 식혔다. 상온으로 식힌 혼합액을 99% 헥산(hexane) 5 ml에 녹이고 95% 에탄올 10ml을 첨가 후에 14,000 rpm으로 10분간 원심분리하여 상등액은 제거했다. 상기 세척과정을 5회 반복하여 CoSb2 나노입자를 제조하였다.1 mmol of cobalt oleate (CoOl) and 2 mmol of antimony oleate were dissolved in 20 ml of 90% octadecene (1-octadecene) and heated to 320 ° C. 10 minutes after mixing, the mixture was cooled to room temperature. The mixed solution cooled to room temperature was dissolved in 5 ml of 99% hexane, and 10 ml of 95% ethanol was added, followed by centrifugation at 14,000 rpm for 10 minutes to remove the supernatant. The washing process was repeated five times to prepare CoSb 2 nanoparticles.
<실험예 1> Experimental Example 1
실시예 1, 2를 통해 제조된 코발트올레이트(CoOl)와 안티몬올레이트(SbOl)에 대해 DTA(differential thermal analysis), TGA(Thermal gravimetric analysis), DSC(differential scanning calorimetry) 측정을 실시하였고, DTA에 대한 결과는 도 1에 TGA 및 DSC에 관한 결과는 도 2에 나타내었다.Cobalt oleate (CoOl) and antimony oleate (SbOl) prepared in Examples 1 and 2 were subjected to differential thermal analysis (DTA), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) measurements, and DTA The results for the TGA and DSC results are shown in FIG. 2.
도 1에서 DTA 곡선이 73 ℃에서 변화가 있음을 확인할 수 있고 이는 코발트올레이트(CoOl)의 제조과정에서 용매 역할을 했던 에탄올이 제거되었기 때문이다. 그러나 코발트올레이트 제조과정상 세척과 건조과정을 거침에 따라 에탄올이 제거되어 실제 코발트올레이트의 질량 감소는 적다는 것을 도 2의 TGA 곡선을 통해 확인할 수 있다. 가열온도가 131 ℃에 이르면 도 1에서 두 번째 변화를 확인할 수 있다. 이는 코발트올레이트에 흡수되었던 물이 제거되기 때문이며 도 2의 TGA 곡선을 통해 미세하지만 코발트올레이트의 질량 변화가 있음을 확인할 수 있다. 이후 계속 온도를 높여 가열하면 도 2의 TGA 곡선에서 보듯이 코발트올레이트의 질량이 감소경향을 보이며 승온 온도당 감소되는 질량 폭은 점점 커짐을 알 수 있다. 도 2의 DSC 곡선에서 보면 300 ℃ 부근에서 변이피크를 보이며, 이는 코발트와 결합했던 올레이트 리간드가 분리되어 코발트입자의 성장이 있었음을 의미한다. 즉 코발트올레이트에서 올레이트 리간드의 분리온도는 300℃ 내외 인바, 코발트 복합체의 가열 온도는 복합체를 이루는 지방산의 종류를 고려하여 260 내지 330 ℃일 수 있다. It can be seen from FIG. 1 that the DTA curve is changed at 73 ° C. because ethanol, which was a solvent in the process of preparing cobalt oleate (CoOl), was removed. However, it can be seen from the TGA curve of FIG. 2 that ethanol is removed as the cobalt oleate manufacturing process is washed and dried to reduce the actual cobalt oleate mass loss. When the heating temperature reaches 131 ° C, a second change can be seen in FIG. This is because the water that was absorbed in the cobalt oleate is removed and it can be seen that there is a fine but cobalt oleate mass change through the TGA curve of FIG. 2. Subsequently, if the heating is continued at a higher temperature, the mass of cobalt oleate tends to decrease as shown in the TGA curve of FIG. 2, and the mass width decreases per elevated temperature. In the DSC curve of FIG. 2, the peak of variation was around 300 ° C., which means that the oleate ligand, which was associated with cobalt, was separated and there was growth of cobalt particles. That is, the separation temperature of the oleate ligand in the cobalt oleate is about 300 ℃, the heating temperature of the cobalt complex may be 260 to 330 ℃ considering the type of fatty acid constituting the complex.
또한, 안티몬 복합체의 열분해 온도는 도 1에서 확인할 수 있듯이 262 내지 276 ℃에서 안티몬 복합체의 지방산이 분리되기 시작하고, 296 내지 308 ℃에서 안티몬 복합체의 분리되지 않았던 나머지 지방산이 분리될 수 있는바, 안티몬이 핵생성을 시작할 수 있는 온도는 262 ℃ 이상이면 가능할 수 있다.In addition, the pyrolysis temperature of the antimony complex may be separated from the fatty acid of the antimony complex at 262 to 276 ℃ as shown in Figure 1, the remaining fatty acid of the antimony complex can not be separated from 296 to 308 ℃ bar, antimony The temperature at which this nucleation can be started may be possible at 262 ° C. or higher.
<실험예 2> Experimental Example 2
실시예3 내지 6, 비교예 1 내지 4에 따라 제조된 CoSb2 나노입자의 증명을 위해 XRD(x-ray diffraction) 및 FE-SEM(Field Emission Scanning Electron Microscope)을 실시하였고, 그 결과를 도 3 내지 6에 나타내었다. Examples 3 to 6, X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) were performed to verify CoSb 2 nanoparticles prepared according to Comparative Examples 1 to 4, and the results are shown in FIG. 3. To 6 are shown.
도 3a의 경우 도 3b에 비해 작고 구형이며 각 입자의 입경이 균일하다는 것을 볼 수 있다. 이에 반해 도 3b의 경우 입경이 μm 단위인 것들을 상당수 포함하고 있으며, 입자들의 입경이 균일하지 않다는 것을 확인할 수 있다. In the case of FIG. 3A, it can be seen that the particle size of each particle is uniform compared to that of FIG. 3B. In contrast, in the case of Figure 3b includes a large number of those having a particle diameter of μm, it can be seen that the particle diameter of the particles are not uniform.
도 4을 통해 반응시간을 10분(도 4a), 30분(도 4b), 60분(도 4c)으로 달리할 경우 반응시간이 길수록 CoSb2 나노입자의 입경이 증가됨을 육안으로 확인할 수 있다.4, when the reaction time is changed to 10 minutes (FIG. 4A), 30 minutes (FIG. 4B), and 60 minutes (FIG. 4C), the particle size of the CoSb 2 nanoparticles can be visually increased as the reaction time increases.
도 5의 경우 코발트 복합체 가열 온도는 도 3a, 도 3b, 도 3c 순으로 각각 250 ℃, 300 ℃, 320 ℃ 인데, SEM 사진 상으로는 각각 균일한 입경을 가지는 CoSb2 나노입자라는 것을 알 수 있다. 5, the cobalt composite heating temperature is 250 ° C., 300 ° C., and 320 ° C. in the order of FIGS. 3A, 3B, and 3C, respectively. On the SEM photograph, it can be seen that the CoSb 2 nanoparticles each have a uniform particle size.
그러나 도 6의 각 온도별 CoSb2 나노입자의 XRD 패턴에서는 250 ℃에서는 피크가 거의 나타나지 않아 결정성이 매우 낮은 CoSb2 나노입자라는 것을 알 수 있고, 바람직하게는 300 ℃에서 제조된 CoSb2 나노입자가, 더 바람직하게는 320 ℃에서 제조된 CoSb2 나노입자의 결정성이 높음을 알 수 있다. However, in the XRD pattern of the CoSb 2 nanoparticles at each temperature of FIG. 6, the peaks hardly appear at 250 ° C., indicating that the CoSb 2 nanoparticles have very low crystallinity. Preferably, the CoSb 2 nanoparticles prepared at 300 ° C. It can be seen that the crystallinity of the CoSb 2 nanoparticles prepared more preferably at 320 ° C. is high.
<실험예 3>Experimental Example 3
실시예3 내지 6, 비교예 1 내지 4에 따라 제조된 CoSb2 나노입자의 입경의 경우 X선 회절 선폭증가(X ray Diffraction Line Broadening)에 의해 측정하였고, 평균입경 및 표준편차의 경우 선형 인터셉트(linear intercept, ASTM E112-96)에 의해 측정하였으며, 측정값 및 하기의 식에 의한 변동계수(CV)를 하기 수학식 1로 계산하여 그 결과를 도 7과 표 1로 나타내었으며, CV값은 그 값이 작을수록 평균입경에 가까운 균일한 입자가 수득되었음을 나타낸다.Particle diameters of CoSb 2 nanoparticles prepared according to Examples 3 to 6 and Comparative Examples 1 to 4 were measured by X-ray diffraction line broadening, and linear intercept (Average particle size and standard deviation). linear intercept, ASTM E112-96), and the coefficient of variation (CV) according to the measured value and the following equation was calculated by Equation 1 below, and the results are shown in FIG. 7 and Table 1, and the CV value was Smaller values indicate that uniform particles close to the average particle diameter were obtained.
수학식 1
Figure PCTKR2013008887-appb-M000001
Equation 1
Figure PCTKR2013008887-appb-M000001
표 1
평균입경(nm) 표준편차 CV(%) 결정성
실시예 3 21 4 19 o
4 20 5 25 o
5 26 6 23 o
비교예 1 10 이하 - - ×
2 34 10 29.4 o
3 80 100 80 o
Table 1
Average particle size (nm) Standard Deviation CV (%) Crystallinity
Example 3 21 4 19 o
4 20 5 25 o
5 26 6 23 o
Comparative example One below 10 - - ×
2 34 10 29.4 o
3 80 100 80 o
제조된 CoSb2 나노입자의 평균입경과 표준편차는 실시예 3(코발트복합체를 320℃에서 가열, 안티몬복합체와 10분간 반응)에서 21nm, 표준편차는 4nm, 실시예 5(코발트복합체를 320℃에서 가열, 안티몬복합체와 30분간 반응)에서 26nm, 표준편차는 6nm로 실시예 3 내지 5에서 수득된 나노입자의 CV값이 19 내지 25%로 비교적 균일한 크기의 나노입자를 수득했음을 알 수 있다. The average particle diameter and standard deviation of the prepared CoSb 2 nanoparticles were 21 nm in Example 3 (heating the cobalt complex at 320 ° C. and reacting with antimony complex for 10 minutes), standard deviation was 4 nm, and Example 5 (cobalt complex at 320 ° C.). Heating, reaction with antimony complexes for 30 minutes), 26 nm, standard deviation was 6 nm, the CV value of the nanoparticles obtained in Examples 3 to 5 it can be seen that the nanoparticles of a relatively uniform size was obtained with 19 to 25%.
이와 상반되게 반응시간을 60분으로 한 비교예 2의 경우 평균입경 대비 표준편차가 10 nm로 나와 CV값이 29.4%로 상기 실시예 3 내지 5의 나노입자 보다 입경이 불균일하다는 것을 알 수 있으며, 처음부터 코발트복합체와 안티몬복합체를 혼합하여 가열한 비교예 3의 경우 평균입경은 80 nm이나 표준편차가 100 nm으로 CV값이 80%나 되어 입자의 직경이 매우 불규칙하였다. On the contrary, in Comparative Example 2 having a reaction time of 60 minutes, the standard deviation of the average particle diameter was found to be 10 nm, and the CV value was 29.4%, indicating that the particle diameter was more uniform than that of the nanoparticles of Examples 3 to 5, In Comparative Example 3, in which the cobalt composite and the antimony complex were mixed and heated from the beginning, the average particle diameter was 80 nm, but the standard deviation was 100 nm, and the CV value was 80%, resulting in very irregular particle diameters.
또한, 실시예 3 내지 5의 경우 결정성을 갖는 입자를 수득할 수 있었으나, 비교예 1의 경우 결정성이 없는 입자가 수득되었다. In addition, in Examples 3 to 5, particles having crystallinity could be obtained, whereas in Comparative Example 1, particles without crystallinity were obtained.

Claims (14)

  1. (1) 분자 내 2 이상의 에스테르기를 포함하는 코발트 복합체가 포함된 용액을 가열하는 단계;(1) heating a solution containing a cobalt complex comprising two or more ester groups in a molecule;
    (2) 상기 가열된 코발트 복합체가 포함된 용액에 분자 내 3 이상의 에스테르기를 포함하는 안티몬 복합체가 포함된 용액을 혼합하여 표면이 에스테르기로 개질된 CoSb2 복합체를 형성하는 단계; 및(2) mixing a solution containing an antimony complex including three or more ester groups in a molecule to a solution containing the heated cobalt complex to form a CoSb 2 complex having a surface modified with an ester group; And
    (3) 상기 개질된 CoSb2 복합체에서 에스테르기를 제거하는 단계; 를 포함하는 크기 제어된 CoSb2 나노입자 제조방법.(3) removing the ester groups from the modified CoSb 2 complex; Size controlled CoSb2 nanoparticles manufacturing method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 (1) 단계의 코발트 복합체는 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 크기 제어된 CoSb2 나노입자 제조방법;The cobalt composite of step (1) is a size-controlled method for producing CoSb2 nanoparticles, characterized in that the compound represented by the formula (1);
    [화학식 1][Formula 1]
    Co(O2C-R)2 Co (O 2 CR) 2
    단, 상기 R-CO2 -는 지방산(Fatty acid)이며, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.However, R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  3. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계의 안티몬 복합체는 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 크기 제어된 CoSb2 나노입자 제조방법.The antimony complex of step (2) is size controlled CoSb 2 nanoparticles manufacturing method, characterized in that the compound represented by the formula (2).
    [화학식 2][Formula 2]
    Sb(O2C-R)3 Sb (O 2 CR) 3
    단, 상기 R-CO2 -는 지방산(Fatty acid)이며, R은 각각 독립적으로 C13-21인 포화지방산 또는 C7-23인 불포화지방산이다.However, R-CO 2 - is a fatty acid (Fatty acid), each R is independently C 13-21 saturated fatty acid or C 7-23 unsaturated fatty acid.
  4. 제1항에 있어서,The method of claim 1,
    상기 (1) 단계의 가열온도는 270℃ 내지 330℃로 하는 것을 특징으로 하는 크기 제어된 CoSb2 나노입자 제조방법.The heating temperature of step (1) is the size controlled CoSb 2 nanoparticles manufacturing method, characterized in that 270 ℃ to 330 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계는 코발트 복합체가 포함된 용액과 안티몬 복합체가 포함된 용액이 혼합된 용액에서 코발트복합체와 안티몬복합체의 몰비가 1 : 2 내지 5로 되도록 혼합되는 것을 특징으로 하는 크기 제어된 CoSb2 나노입자 제조방법.Step (2) is a size controlled CoSb 2 characterized in that the molar ratio of the cobalt complex and antimony complex is mixed so that the solution containing the cobalt complex and the solution containing the antimony complex is 1: 1: 2 to 5 Nanoparticles manufacturing method.
  6. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계에서 반응시간은 10분 내지 50분 동안 유지하는 것을 특징으로 하는 크기 제어된 CoSb2 나노입자 제조방법.Reaction time in the step (2) is size controlled CoSb 2 nanoparticles manufacturing method characterized in that maintained for 10 to 50 minutes.
  7. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계의 표면이 에스테르기로 개질된 CoSb2 복합체는 반응시간에 따라 0.1 내지 2 nm/min의 속도로 복합체의 입경이 성장하는 것을 특징으로 하는 크기 제어된 CoSb2 나노입자 제조방법.The (2) CoSb 2 phase of the composite surface-modified ester groups is size controlled CoSb 2 nanoparticle manufacturing method is characterized in that the particle size of the complex grow at a rate of 0.1 to 2 nm / min, depending on the reaction time.
  8. 단일한 결정상;을 가지고, XRD 패턴값(2θ)이 29.8± 0.2, 30.5± 0.2, 32.3± 0.2, 33.8± 0.2, 35± 0.2, 43± 0.2, 45.8± 0.2, 50.8± 0.2, 51.3± 0.2, 53.3± 0.2 및 54.3±0.2 에서 피크를 갖고, 28.75± 0.2, 31.27± 0.2, 37.19± 0.2, 40.21± 0.2, 41.98± 0.2, 44.81± 0.2 및 51.68± 0.2 에서 피크를 갖지 않는 XRD 패턴; 을 모두 만족하는 크기 제어된 CoSb2 나노입자.Single crystal phase; XRD pattern value (2θ) is 29.8 ± 0.2, 30.5 ± 0.2, 32.3 ± 0.2, 33.8 ± 0.2, 35 ± 0.2, 43 ± 0.2, 45.8 ± 0.2, 50.8 ± 0.2, 51.3 ± 0.2, XRD patterns with peaks at 53.3 ± 0.2 and 54.3 ± 0.2 and no peaks at 28.75 ± 0.2, 31.27 ± 0.2, 37.19 ± 0.2, 40.21 ± 0.2, 41.98 ± 0.2, 44.81 ± 0.2 and 51.68 ± 0.2; Size controlled CoSb 2 nanoparticles that meets all.
  9. 제8항에 있어서,The method of claim 8,
    상기 나노입자에는 CoSb 및 CoSb3가 실질적으로 포함되지 않는 것을 특징으로 하는 크기 제어된 CoSb2 나노입자.Size controlled CoSb 2 nanoparticles, characterized in that the nanoparticles are substantially free of CoSb and CoSb 3 .
  10. 제8항에 있어서,The method of claim 8,
    상기 나노입자는 평균입경이 15 내지 40nm이며, 하기의 수학식 1로 계산되는 변동계수(CV, %)가 25.5% 이하인 것을 특징으로 하는 크기 제어된 CoSb2 나노입자.The nanoparticles have an average particle diameter of 15 to 40nm, the CoSb 2 nanoparticles of size controlled CoSb 2 characterized in that the coefficient of variation (CV,%) calculated by Equation 1 below 25.5% or less.
    [수학식 1][Equation 1]
    Figure PCTKR2013008887-appb-I000003
    Figure PCTKR2013008887-appb-I000003
  11. 제8항에 따른 CoSb2 나노입자를 포함하는 전극.An electrode comprising CoSb 2 nanoparticles according to claim 8.
  12. 제11항에 있어서,The method of claim 11,
    상기 전극은 양극인 것을 특징으로 하는 전극.The electrode is characterized in that the anode.
  13. 양극; 음극; 분리막; 및 전해질; 을 포함하는 전기화학소자에 있어서,anode; cathode; Separator; And electrolytes; In the electrochemical device comprising a,
    상기 양극은 제8항에 따른 CoSb2 나노입자를 포함하는 전극을 포함하는 전기화학소자.The anode comprises an electrode comprising CoSb 2 nanoparticles according to claim 8.
  14. 제13항에 있어서,The method of claim 13,
    상기 전기화학소자는 리튬이차전지인 것을 특징으로 하는 전기화학소자.The electrochemical device is an electrochemical device, characterized in that the lithium secondary battery.
PCT/KR2013/008887 2013-06-10 2013-10-04 Size-controlled cosb2 nanoparticles and method for preparing same WO2014200152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0065952 2013-06-10
KR1020130065952A KR101353924B1 (en) 2013-06-10 2013-06-10 Cosb2 nanoparticles with controlled nanometric dimensions and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2014200152A1 true WO2014200152A1 (en) 2014-12-18

Family

ID=50269396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008887 WO2014200152A1 (en) 2013-06-10 2013-10-04 Size-controlled cosb2 nanoparticles and method for preparing same

Country Status (2)

Country Link
KR (1) KR101353924B1 (en)
WO (1) WO2014200152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933324A (en) * 2022-06-06 2022-08-23 天目湖先进储能技术研究院有限公司 Ce 2 O 2 S @ C core-shell nano-structure composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231903A (en) * 2002-02-13 2003-08-19 Chokoon Zairyo Kenkyusho:Kk Particle size control method for average crystal particle size
JP2005325419A (en) * 2004-05-14 2005-11-24 Dainippon Printing Co Ltd Inorganic nanoparticle and manufacturing method
JP2011184723A (en) * 2010-03-05 2011-09-22 Tohoku Univ Method for synthesizing nanocrystalline alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231903A (en) * 2002-02-13 2003-08-19 Chokoon Zairyo Kenkyusho:Kk Particle size control method for average crystal particle size
JP2005325419A (en) * 2004-05-14 2005-11-24 Dainippon Printing Co Ltd Inorganic nanoparticle and manufacturing method
JP2011184723A (en) * 2010-03-05 2011-09-22 Tohoku Univ Method for synthesizing nanocrystalline alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIE. J. ET AL.: "Electrochemical Performances of Nanosized Intermetallic Compound CoSb2 Prepared by the Solvothermal Route", J. ELECTROCHEM. SOC., vol. 151, no. 11, 2004, pages A1905 - A1910 *
XIE. J. ET AL.: "Solvothermal synthesis of nanosized CoSb2 alloy anode for Li-ion batteries", ELECTROCHIMICA ACTA, vol. 50, 2005, pages 1903 - 1907 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933324A (en) * 2022-06-06 2022-08-23 天目湖先进储能技术研究院有限公司 Ce 2 O 2 S @ C core-shell nano-structure composite material
CN114933324B (en) * 2022-06-06 2023-09-26 天目湖先进储能技术研究院有限公司 Ce (cerium) 2 O 2 S@C core-shell nanostructure composite

Also Published As

Publication number Publication date
KR101353924B1 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2020256395A2 (en) Carbon-silicon composite oxide composite for lithium secondary battery anode material, and preparation method therefor
WO2019139443A1 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2013105779A1 (en) Carbon nanotubes and method for manufacturing same
WO2020222628A1 (en) Silicon oxide composite for lithium secondary battery anode material and method for manufacturing same
WO2013105784A1 (en) Carbon nanotubes and method for manufacturing same
WO2012011760A2 (en) Method for manufacturing anode active material precursor in lithium secondary battery, anode active material precursor in lithium secondary battery manufactured thereby, and method for preparing lithium metal composite oxide using the anode active material precursor and lithium metal composite oxide for anode active material in lithium secondary battery prepared thereby
WO2014104693A1 (en) Graphene, composition for preparing graphene, and method for preparing graphene using same
WO2017213462A1 (en) Positive electrode active material for sodium secondary battery, and method for preparing same
WO2015099462A1 (en) Noncovalent bond-modified carbon structure, and carbon structure/polymer composite comprising same
WO2021125798A1 (en) Mxene fibers and preparation method thereof
WO2022139290A1 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2021132762A1 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode including same
WO2014200152A1 (en) Size-controlled cosb2 nanoparticles and method for preparing same
WO2021210739A1 (en) Apparatus and method for producing silicon oxides, and silicon oxide negative electrode material
WO2024117676A1 (en) Precursor for preparing cathode active material
WO2023080505A1 (en) Novel organometallic compound, method for preparing same, and method for preparing thin film using same
WO2017073956A1 (en) Ink composition for photonic sintering and method for producing same
WO2023106893A1 (en) Fast-charging anode material for lithium secondary battery, and preparing method of lithium secondary battery comprising same
WO2023063672A1 (en) Method for preparing metal-cnt nanocomposite, water-electrolysis catalyst electrode comprising metal-cnt nanocomposite prepared by preparation method, and method for manufacturing water-electrolysis catalyst electrode
WO2022131695A1 (en) Anode material for lithium ion secondary battery, preparation method therefor, and lithium ion secondary battery comprising same
WO2023068432A1 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery including same, and method for producing same
WO2016053004A1 (en) Molybdenum oxide composite and preparation method therefor
WO2015068976A1 (en) Silicon carbide powder and method for preparing silicon carbide
WO2021015335A1 (en) Aluminosilicate structure body having novel structure and skein-shaped morphology, method for preparing same, and hplc column filled with same as static bed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08-04-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 13886912

Country of ref document: EP

Kind code of ref document: A1