WO2014199926A1 - Chromaticity coordinate inspection method for fluorescent-material-dispersed sheet, manufacturing method for fluorescent-material-dispersed sheet, manufacturing method for light conversion member, and manufacturing method for led package - Google Patents

Chromaticity coordinate inspection method for fluorescent-material-dispersed sheet, manufacturing method for fluorescent-material-dispersed sheet, manufacturing method for light conversion member, and manufacturing method for led package Download PDF

Info

Publication number
WO2014199926A1
WO2014199926A1 PCT/JP2014/065131 JP2014065131W WO2014199926A1 WO 2014199926 A1 WO2014199926 A1 WO 2014199926A1 JP 2014065131 W JP2014065131 W JP 2014065131W WO 2014199926 A1 WO2014199926 A1 WO 2014199926A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
chromaticity coordinate
sheet
chromaticity
Prior art date
Application number
PCT/JP2014/065131
Other languages
French (fr)
Japanese (ja)
Inventor
谷田 正道
長嶋 達雄
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014199926A1 publication Critical patent/WO2014199926A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a chromaticity coordinate inspection method of a phosphor dispersion sheet, a method of manufacturing a phosphor dispersion sheet, a method of manufacturing a light conversion member, and a method of manufacturing an LED package, and in particular, individual light conversion members in the phosphor dispersion sheet.
  • the chromaticity coordinate inspection method which makes it possible to evaluate the variation in characteristics from the chromaticity coordinates corresponding to the above, a phosphor dispersion sheet manufacturing method to which the inspection method is applied, a light conversion member manufacturing method, and an LED package manufacturing method.
  • a material in which an inorganic phosphor is dispersed in glass is known (see, for example, Patent Document 1).
  • the light conversion member having such a configuration can utilize the high transmittance of glass, and can efficiently release the heat generated from the LED element to the outside of the light conversion member. Moreover, the damage of the light conversion member (especially phosphor) by light and heat is low, and long-term reliability is obtained.
  • light conversion members having similar chromaticity coordinates are obtained by being assigned to a predetermined class. It can be simple.
  • seat 50 when the intensity
  • the strength of the phosphor dispersion sheet 50 when the strength of the phosphor dispersion sheet 50 is low and it deforms due to its own weight, it is assumed that the frame mold has a transparent holding plate, and the phosphor dispersion sheet 50 is placed on the holding plate. What is necessary is just to make it hold
  • the spectrometer 4 measures the spectral data of the transmitted light emitted from the phosphor dispersion sheet 50 when irradiated with the excitation light from the LED light source 3, and a known spectrometer can be used.
  • spectroscopic instruments examples include TM series mini-spectrometers manufactured by Hamamatsu Photonics Co., Ltd., C10082CA and C10083CA, and multi-channel spectrometers manufactured by Konica Minolta Co., Ltd.
  • “transmitted light” means “transmitted excitation light” in which excitation light is transmitted through the phosphor dispersion sheet 50 without being wavelength-converted, and excitation light is wavelength-converted and emitted from the phosphor dispersion sheet 50.
  • the “converted light” is synthesized and refers to light (synthesized light) actually emitted from the surface of the phosphor dispersion sheet 50. Note that both the transmitted excitation light and the converted light are scattered light that scatters on the surface of the phosphor dispersion sheet 50, and therefore, the synthesized light is also obtained as scattered light.
  • this spectrometer 4 should just be able to measure the transmitted light radiate
  • the chromaticity coordinate calculation unit 5 calculates chromaticity coordinates from the spectral data obtained by the spectrophotometer 4, and the chromaticity coordinates are obtained by performing a predetermined calculation process on the spectral data. Specific contents of the arithmetic processing performed at this time will be described in a chromaticity coordinate inspection method described later.
  • the storage unit 6 stores the chromaticity coordinates calculated by the chromaticity coordinate calculation unit 5 and the measured sections of the phosphor dispersion sheet 50 in association with each other, and includes known storage devices such as a hard disk device and a memory. It is done. In addition, when calculating the chromaticity coordinate of LED mentioned later, the chromaticity coordinate of virtual transmitted light, etc. in this memory
  • excitation light for exciting the phosphor contained therein is emitted from the LED light source 3 to the phosphor dispersion sheet 50.
  • the emitted excitation light is incident from one surface of the phosphor dispersion sheet 50, passes through the phosphor dispersion sheet 50, is scattered, is converted into light, and is emitted from the other surface.
  • the transmitted light (the combined light of the transmitted excitation light and the converted light; the alternate long and short dash line in FIG. 1) is measured by the spectrometer 4 to acquire the spectral data of the transmitted light.
  • the chromaticity coordinate calculation step in this step is the same operation as the spectral measurement of the phosphor-dispersed sheet described in the first embodiment, except that the spectral data is excitation light data obtained by the LED spectral measurement step. Done by the method.
  • the combination optimization process in the present embodiment is based on the chromaticity coordinates obtained in the chromaticity coordinate calculation process of the virtual transmitted light, and the combination that will be the desired transmitted light when actually mounted on the LED chip. It is a step of determining.
  • the LED light source and the light conversion member separated from the phosphor dispersion sheet have variations.

Abstract

A chromaticity coordinate inspection method for a fluorescent-material-dispersed sheet is provided that makes it possible to evaluate even subtle differences in product characteristics in a fluorescent-material-dispersed sheet containing a dispersed fluorescent material. A chromaticity coordinate inspection method for a fluorescent-material-dispersed sheet, which is a glass sheet containing dispersed fluorescent particles, said method having a division setting step for setting divisions having a prescribed size on a flat surface of the fluorescent-material-dispersed sheet, a spectroscopy step for causing excitation light to enter one of the divisions set in the division setting step from one surface of the division and measuring the spectrum of the transmitted light obtained through the irradiation from the fluorescent-material-dispersed sheet caused by the excitation light, a chromaticity coordinate calculation step for calculating chromaticity coordinates from the spectroscopic data obtained in the spectroscopy step, and a mapping step for repeating the spectroscopy step and chromaticity coordinate calculation step for each divisions set in the division setting step and associating and storing divisions and chromaticity coordinates.

Description

蛍光体分散シートの色度座標検査方法、蛍光体分散シートの製造方法、光変換部材の製造方法およびLEDパッケージの製造方法Method for inspecting chromaticity coordinates of phosphor dispersion sheet, method for producing phosphor dispersion sheet, method for producing light conversion member, and method for producing LED package
 本発明は、蛍光体分散シートの色度座標検査方法、蛍光体分散シートの製造方法、光変換部材の製造方法およびLEDパッケージの製造方法に係り、特に、蛍光体分散シートにおける個々の光変換部材に対応する色度座標から、特性のバラつきを評価可能とする色度座標検査方法、その検査方法を応用した蛍光体分散シートの製造方法、光変換部材の製造方法およびLEDパッケージの製造方法に関する。 The present invention relates to a chromaticity coordinate inspection method of a phosphor dispersion sheet, a method of manufacturing a phosphor dispersion sheet, a method of manufacturing a light conversion member, and a method of manufacturing an LED package, and in particular, individual light conversion members in the phosphor dispersion sheet. The chromaticity coordinate inspection method which makes it possible to evaluate the variation in characteristics from the chromaticity coordinates corresponding to the above, a phosphor dispersion sheet manufacturing method to which the inspection method is applied, a light conversion member manufacturing method, and an LED package manufacturing method.
 白色LEDは、微小電力の白色照明光源として利用され、照明用途への応用が期待されている。一般に、白色LEDの白色光は、光源となる青色LED素子から発せられる青色光と、その青色光の一部を蛍光体により光の色(波長)を変換した、黄色、緑色、赤色等の光とを合成して得られる。 White LEDs are used as a low-power white illumination light source, and are expected to be applied to illumination applications. In general, the white light of a white LED is light of yellow, green, red, etc., which is a blue light emitted from a blue LED element serving as a light source and a color (wavelength) of a part of the blue light converted by a phosphor. And is obtained by synthesizing
 このような光源の光の色(波長)を変換する光変換部材としては、ガラス中に無機蛍光体を分散したものが知られている(例えば、特許文献1参照)。このような構成の光変換部材は、ガラスの高い透過率を利用でき、さらに、LED素子から発せられる熱を光変換部材の外部に効率よく放出できる。また、光や熱による光変換部材(特に、蛍光体)の損傷も低く、長期の信頼性が得られる。 As a light conversion member for converting the light color (wavelength) of such a light source, a material in which an inorganic phosphor is dispersed in glass is known (see, for example, Patent Document 1). The light conversion member having such a configuration can utilize the high transmittance of glass, and can efficiently release the heat generated from the LED element to the outside of the light conversion member. Moreover, the damage of the light conversion member (especially phosphor) by light and heat is low, and long-term reliability is obtained.
 また、蛍光体を分散したガラス中に光分散性の粒子を存在させることで光源の光を散乱させて発光効率を向上させようとする光変換部材も知られている(例えば、特許文献2参照)。 There is also known a light conversion member that attempts to improve light emission efficiency by scattering light from a light source by making light-dispersible particles present in a glass in which a phosphor is dispersed (see, for example, Patent Document 2). ).
特開2003-258308号公報JP 2003-258308 A 特開2004-111981号公報JP 2004-111981
 ところで、特許文献1~2等に記載されているようなガラス中へ蛍光体粒子を分散させた光変換部材は、一般に、その製造過程において、ガラス粉末と蛍光体粒子とを混合した原料粉末を、フィルムまたは基板上にシート状に塗膜形成し、これを高温で加熱焼成して蛍光体を分散して含有する蛍光体分散シートを形成し、さらに、この形成された蛍光体分散シートを所望の形状(例えば、マトリックス状)に切断することにより個片化して得られる。 Incidentally, a light conversion member in which phosphor particles are dispersed in glass as described in Patent Documents 1 and 2 or the like is generally obtained by mixing a raw material powder in which glass powder and phosphor particles are mixed in the production process. Then, a coating film is formed on a film or substrate in the form of a sheet, and this is heated and fired at a high temperature to form a phosphor-dispersed sheet containing dispersed phosphors. Further, the phosphor-dispersed sheet thus formed is desired. It is obtained by dividing into pieces by cutting into a shape (for example, a matrix).
 しかしながら、上記のようにシート状の塗膜を形成する過程において、その膜厚は少なからずバラつくため、得られる光変換部材の厚さもそれを反映したものとなり、その光変換特性は厚さにより影響を受ける。さらに、内包泡の存在状態も少なからずバラつくため、同じ膜厚であってもその光変換特性は内包泡により影響を受ける。そのため、同じLED光源を使用し、かつ、同じロットで得られた光変換部材を使用した場合でも、最終的に得られる合成光(照射光)の色合いが所望の色合いとずれる場合があった。 However, in the process of forming a sheet-like coating film as described above, since the film thickness varies not a little, the thickness of the obtained light conversion member also reflects that, and the light conversion characteristics depend on the thickness. to be influenced. Furthermore, since the presence state of the encapsulated bubbles varies considerably, the light conversion characteristics are affected by the encapsulated bubbles even if the film thickness is the same. Therefore, even when the same LED light source is used and the light conversion member obtained in the same lot is used, the hue of the synthesized light (irradiation light) finally obtained may deviate from the desired hue.
 そこで、上記問題に鑑み、本発明は、蛍光体を分散して含有する蛍光体分散シート中における光変換特性の微妙な相違を評価可能とする蛍光体分散シートの色度座標検査方法およびそれを応用したLEDパッケージの製造方法の提供を目的とする。 Therefore, in view of the above problems, the present invention provides a chromaticity coordinate inspection method for a phosphor-dispersed sheet that enables evaluation of subtle differences in light conversion characteristics in a phosphor-dispersed sheet containing dispersed phosphors, and An object is to provide a manufacturing method of an applied LED package.
 本発明に係る蛍光体分散シートの色度座標検査方法は、ガラスシート中に蛍光体粒子を分散して含有する蛍光体分散シートの色度座標検査方法であって、前記蛍光体分散シートの平面において、所定の大きさの区画を設定する区画設定工程と、前記区画設定工程で設定された区画の1つに、一方の面から励起光を入射させ、その励起光により前記蛍光体分散シートの他方の面から出射して得られる透過光を分光測定する分光測定工程と、前記分光測定工程により得られた分光データから色度座標を算出する色度座標算出工程と、前記分光測定工程および前記色度座標算出工程を、前記区画設定工程で設定された区画ごとに繰り返し行い、前記区画と前記色度座標とを関連付けて記憶させるマッピング工程と、を有することを特徴とする。 A chromaticity coordinate inspection method for a phosphor dispersion sheet according to the present invention is a chromaticity coordinate inspection method for a phosphor dispersion sheet containing phosphor particles dispersed in a glass sheet, the plane of the phosphor dispersion sheet. In the above, a section setting step for setting a section of a predetermined size, and one of the sections set in the section setting step is made to enter excitation light from one surface, and the excitation light makes the phosphor dispersion sheet A spectroscopic measurement step of spectroscopically measuring transmitted light obtained from the other surface; a chromaticity coordinate calculation step of calculating chromaticity coordinates from the spectroscopic data obtained by the spectroscopic measurement step; the spectroscopic measurement step; A chromaticity coordinate calculation step is repeatedly performed for each of the sections set in the section setting step, and includes a mapping step of storing the sections and the chromaticity coordinates in association with each other.
 本発明の蛍光体分散シートの製造方法は、ガラスシート中に蛍光体粒子を分散して含有する蛍光体分散シートの製造方法であって、本発明の蛍光体分散シートの色度座標検査方法により、前記蛍光体分散シートに区画と色度座標とを関連付けて記憶されたマッピング情報を付加したことを特徴とする。 The method for producing a phosphor dispersion sheet according to the present invention is a method for producing a phosphor dispersion sheet containing phosphor particles dispersed in a glass sheet, and is based on the chromaticity coordinate inspection method for the phosphor dispersion sheet according to the present invention. The mapping information stored by associating sections and chromaticity coordinates with each other is added to the phosphor dispersion sheet.
 本発明の光変換部材の製造方法は、本発明の蛍光体分散シートの製造方法により得られた蛍光体分散シートを、所定の大きさに個片化する光変換部材の製造方法であって、前記個片化する際に、前記マッピング情報に基づいて前記光変換部材をクラス分けすることを特徴とする。 The method for producing a light conversion member of the present invention is a method for producing a light conversion member for dividing the phosphor dispersion sheet obtained by the method for producing a phosphor dispersion sheet of the present invention into a predetermined size, At the time of the separation, the light conversion members are classified based on the mapping information.
 本発明のLEDパッケージの製造方法は、LED素子に上記色度座標検査方法により色度座標を算出された蛍光体分散シートを個片化して得られる光変換部材を組み合わせ、LED素子から出射される光を前記光変換部材を通して外部へ照射可能とするLEDパッケージの製造方法において、前記LED素子と前記光変換部材とを組み合わせるにあたって、前記LED素子から出射される励起光を分光測定するLED分光測定工程と、前記LED分光測定工程により得られた励起光の分光データから色度座標を算出するLEDの色度座標算出工程と、前記LEDの色度座標算出工程で得られた励起光の色度座標と、前記色度座標検査方法により得られた蛍光体分散シートの色度座標と、から得られる仮想の透過光の色度座標を算出する透過光の色度座標算出工程と、前記透過光の色度座標算出工程で得られた仮想の透過光の色度座標から、所望の透過光となる組み合わせを決定する組み合わせ最適化工程と、を有することを特徴とする。 In the LED package manufacturing method of the present invention, the LED element is combined with a light conversion member obtained by dividing the phosphor dispersion sheet whose chromaticity coordinates are calculated by the chromaticity coordinate inspection method, and emitted from the LED element. In the method of manufacturing an LED package that enables light to be emitted to the outside through the light conversion member, an LED spectroscopic measurement step of performing spectroscopic measurement of excitation light emitted from the LED element when combining the LED element and the light conversion member A chromaticity coordinate calculation step of the LED for calculating chromaticity coordinates from the spectral data of the excitation light obtained by the LED spectroscopic measurement step, and a chromaticity coordinate of the excitation light obtained by the chromaticity coordinate calculation step of the LED And chromaticity coordinates of the phosphor dispersion sheet obtained by the chromaticity coordinate inspection method, and transmission for calculating chromaticity coordinates of virtual transmitted light obtained from the chromaticity coordinates And a combination optimization step of determining a combination of desired transmitted light from the chromaticity coordinates of the virtual transmitted light obtained in the chromaticity coordinate calculation step of the transmitted light. It is characterized by.
 本発明の蛍光体分散シートの色度座標検査方法および蛍光体分散シートの製造方法によれば、蛍光体分散シートにおいて、その区画ごとの色度座標をマッピングして特性をデータ化しているため、例えば、光変換部材として使用する製品毎の微妙な光変換特性の相違を判断することができる。 According to the chromaticity coordinate inspection method and the phosphor dispersion sheet manufacturing method of the phosphor dispersion sheet of the present invention, in the phosphor dispersion sheet, the chromaticity coordinates for each section are mapped and the characteristics are converted into data. For example, a subtle difference in light conversion characteristics for each product used as the light conversion member can be determined.
 また、本発明の光変換部材の製造方法によれば、類似した色度座標を有する光変換部材を所定のクラスに振り分けて得られるため、後述するLEDパッケージの製造方法において、LEDとの組み合わせを簡便なものとできる。 In addition, according to the method for manufacturing a light conversion member of the present invention, light conversion members having similar chromaticity coordinates are obtained by being assigned to a predetermined class. It can be simple.
 また、本発明のLEDパッケージの製造方法によれば、上記の色度座標検査方法により得られた色度座標を適用し、これにLED素子の色度座標を加味することで、所望の色合いの照射光となるLED素子と光変換部材の最適な組み合わせを効率的に決定できる。 Further, according to the LED package manufacturing method of the present invention, the chromaticity coordinates obtained by the chromaticity coordinate inspection method described above are applied, and the chromaticity coordinates of the LED elements are added to the chromaticity coordinates. It is possible to efficiently determine the optimal combination of the LED element that becomes the irradiation light and the light conversion member.
本発明の第1の実施形態に使用する色度座標検査装置の概略構成を示した図である。It is the figure which showed schematic structure of the chromaticity coordinate inspection apparatus used for the 1st Embodiment of this invention. 区画設定工程により付与される区画の一例を示す図である。It is a figure which shows an example of the division provided by a division setting process. 本発明の第2の実施形態に使用する色度座標検査装置の概略構成を示した図である。It is the figure which showed schematic structure of the chromaticity coordinate inspection apparatus used for the 2nd Embodiment of this invention. 比例定数の算出方法を説明するための透過光(合成光)のスペクトル例を示した図である。It is the figure which showed the spectrum example of the transmitted light (combined light) for demonstrating the calculation method of a proportionality constant. 色度座標上、複数のLED光源と複数の光変換部材の組み合わせをランク付けにより決定する一例を示した図である。It is the figure which showed an example which determines the combination of a some LED light source and a some light conversion member by ranking on chromaticity coordinate.
 以下、本発明に係る、色度座標検査方法について図面を参照しながら詳細に説明する。
〔第1の実施形態〕
 まず、本発明の第1の実施形態に係る色度座標検査方法に使用する色度座標検査装置について説明する。図1には、色度座標検査装置の構成の一例を示したが、この色度座標検査装置1は、検査対象となるガラスシート中に蛍光体が分散された蛍光体分散シート50を固定、保持するための固定部2と、蛍光体分散シート50の一方の面に対し励起光を出射するLED光源3と、該LED光源3からの励起光の照射により蛍光体分散シート50から出射される透過光を分光測定する分光測定器4と、該分光測定器4により測定された分光データから色度座標を算出する色度座標算出部5と、色度座標算出部5により算出された色度座標とその測定における蛍光体分散シート50の区画を関連付けて記憶させる記憶部6と、から構成されている。
Hereinafter, a chromaticity coordinate inspection method according to the present invention will be described in detail with reference to the drawings.
[First Embodiment]
First, a chromaticity coordinate inspection apparatus used for the chromaticity coordinate inspection method according to the first embodiment of the present invention will be described. FIG. 1 shows an example of the configuration of the chromaticity coordinate inspection apparatus. The chromaticity coordinate inspection apparatus 1 fixes a phosphor dispersion sheet 50 in which phosphors are dispersed in a glass sheet to be inspected. The fixing unit 2 for holding, the LED light source 3 that emits excitation light to one surface of the phosphor dispersion sheet 50, and the phosphor dispersion sheet 50 that is emitted by irradiation of the excitation light from the LED light source 3. A spectrophotometer 4 that spectroscopically measures transmitted light, a chromaticity coordinate calculator 5 that calculates chromaticity coordinates from spectral data measured by the spectrophotometer 4, and a chromaticity calculated by the chromaticity coordinate calculator 5 The storage unit 6 stores the coordinates and the sections of the phosphor dispersion sheet 50 in the measurement in association with each other.
 ここで、固定部2は、測定対象となる蛍光体分散シート50を所定の位置に固定し、保持できるものであればよく、その材質、形状等は特に限定されるものではない。本発明においては、測定対象がシート状のガラスであるため、このようなシート形状のサンプルを安定して保持できるものであればよい。 Here, the fixing part 2 is not particularly limited as long as it can fix and hold the phosphor dispersion sheet 50 to be measured at a predetermined position. In the present invention, the object to be measured is a sheet-like glass, so any material that can stably hold such a sheet-like sample may be used.
 なお、蛍光体分散シート50の強度が高く容易に変形しない場合には、その端部を保持する枠型だけ有すればよく、その際、中央部分はくりぬいたものとできる。一方、蛍光体分散シート50の強度が低く、自重で変形してしまう場合には、上記枠型に透明の保持板を有するものとし、この保持板の上に蛍光体分散シート50を載置し、水平方向に安定して保持できるようにすればよい。また、ここで用いる透明の保持板は、測定の妨げにならないよう、後述する励起光を透過させる素材で形成するように注意する。 In addition, when the intensity | strength of the fluorescent substance dispersion | distribution sheet | seat 50 is high and does not deform | transform easily, it is sufficient to have only the frame type | mold which hold | maintains the edge part, and it can make the center part hollow. On the other hand, when the strength of the phosphor dispersion sheet 50 is low and it deforms due to its own weight, it is assumed that the frame mold has a transparent holding plate, and the phosphor dispersion sheet 50 is placed on the holding plate. What is necessary is just to make it hold | maintain stably in a horizontal direction. Also, care should be taken that the transparent holding plate used here is made of a material that transmits excitation light, which will be described later, so as not to hinder measurement.
 LED光源3は、測定対象となる蛍光体分散シート50に含有される蛍光体を励起する励起光を出射するものであり、蛍光体分散シート50に対して励起光を垂直に入射させるように配置させる。ここで、LED光源3は測定対象の蛍光体により適宜選択すればよい。例えば、蛍光体がYAl12:Ce3+、(Y、Gd)(Al、Ga)12:Ce3+、TbAl12:Ce3+、CaScSi12;Ce3+、CaSc:Ce3+、LaSi11:Ce3+、のとき、440~480nmの波長を有する光を出射するLED光源を選択すればよく、蛍光体が、(Ca,Sr,Ba)SiO:Ce3+、(Ca,Sr,Ba)SiO:Eu2+、(Ca、Sr)AlSiN:Eu2+、Ca-αSiAlON:Eu2+、(Sr、Ba)SiO:Eu2+、(Ca、Sr)Si:Eu2+、(Ca、Sr、Ba)Si:Eu2+、β-SiAlON;Eu2+、LiSrSiO:Eu3+、BaSi12:Eu2+、(Ca、Sr、Ba)SiS:Eu2+、CaGa:Eu2+などのとき、300~480nmの波長を有する光を出射するLED光源を選択すればよい。 The LED light source 3 emits excitation light for exciting the phosphor contained in the phosphor dispersion sheet 50 to be measured, and is arranged so that the excitation light is incident on the phosphor dispersion sheet 50 vertically. Let Here, the LED light source 3 may be appropriately selected depending on the phosphor to be measured. For example, the phosphor is Y 3 Al 5 O 12 : Ce 3+ , (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ , Tb 3 Al 5 O 12 : Ce 3+ , Ca 3 Sc 3 Si 3 O 12 ; Ce 3+ , CaSc 2 O 4 : Ce 3+ , La 3 Si 6 N 11 : Ce 3+ , an LED light source that emits light having a wavelength of 440 to 480 nm may be selected. Ca, Sr, Ba) 2 SiO 4: Ce 3+, (Ca, Sr, Ba) 2 SiO 4: Eu 2+, (Ca, Sr) AlSiN 3: Eu 2+, Ca-αSiAlON: Eu 2+, (Sr, Ba) 3 SiO 5 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu 2+ , β-SiAlON; Eu 2+ , L Wavelength of 300 to 480 nm when i 2 SrSiO 4 : Eu 3+ , Ba 3 Si 6 O 12 N 2 : Eu 2+ , (Ca, Sr, Ba) 2 SiS 4 : Eu 2+ , CaGa 2 S 4 : Eu 2+, etc. What is necessary is just to select the LED light source which radiate | emits the light which has.
 分光測定器4は、LED光源3からの励起光が照射されることで蛍光体分散シート50から出射される透過光の分光データを測定するものであり、公知の分光測定器が使用できる。ここで使用できる分光測定器としては、例えば、浜松ホトニクス株式会社製TMシリーズミニ分光機、C10082CAやC10083CA、コニカミノルタ株式会社製マルチチャンネル分光機等が挙げられる。なお、本明細書で「透過光」とは、励起光が波長変換されずに蛍光体分散シート50を透過する“透過励起光”と、励起光が波長変換され蛍光体分散シート50から出射される“変換光”と、が合成されてなるもので、実際に蛍光体分散シート50の表面から出射される光(合成光)のことを言う。なお、透過励起光も変換光も蛍光体分散シート50の表面で散乱する散乱光であり、そのため合成光も散乱光として得られる。
 なお、この分光測定器4は、蛍光体分散シート50から出射される透過光を測定可能であればよく、LED光源3における励起光の照射部分から分光測定器4までの測定距離が同じであることが好ましい。この測定距離が異なる場合には、補正して他のデータとの比較、評価を可能とする必要がある。したがって、測定角度が変わった場合にも上記測定距離を等しくして補正等の煩雑な操作を回避するためには、分光測定器4はゴニオ駆動により測定位置を移動可能なものが好ましい。ここで、ゴニオ駆動による測定は、LED光源3からスポット照射される励起光と蛍光体分散シート50の分光測定器4側の表面との交点を中心に、円周上を移動して測定距離を等しく保ったまま分光測定を可能とする測定のことを意味し、例えば、図1の分光測定器4を点線で示した円弧上に駆動させることで達成できる。これにより、任意の散乱角度θでの測定が可能となる。
The spectrometer 4 measures the spectral data of the transmitted light emitted from the phosphor dispersion sheet 50 when irradiated with the excitation light from the LED light source 3, and a known spectrometer can be used. Examples of spectroscopic instruments that can be used here include TM series mini-spectrometers manufactured by Hamamatsu Photonics Co., Ltd., C10082CA and C10083CA, and multi-channel spectrometers manufactured by Konica Minolta Co., Ltd. In this specification, “transmitted light” means “transmitted excitation light” in which excitation light is transmitted through the phosphor dispersion sheet 50 without being wavelength-converted, and excitation light is wavelength-converted and emitted from the phosphor dispersion sheet 50. The “converted light” is synthesized and refers to light (synthesized light) actually emitted from the surface of the phosphor dispersion sheet 50. Note that both the transmitted excitation light and the converted light are scattered light that scatters on the surface of the phosphor dispersion sheet 50, and therefore, the synthesized light is also obtained as scattered light.
In addition, this spectrometer 4 should just be able to measure the transmitted light radiate | emitted from the fluorescent substance dispersion sheet 50, and the measurement distance from the irradiation part of the excitation light in the LED light source 3 to the spectrometer 4 is the same. It is preferable. When the measurement distance is different, it is necessary to correct the measurement distance to enable comparison and evaluation with other data. Therefore, in order to avoid the complicated operation such as correction by making the above measurement distances equal even when the measurement angle changes, it is preferable that the spectrometer 4 can move the measurement position by gonio drive. Here, the measurement by the gonio drive is performed by moving on the circumference around the intersection of the excitation light spot-irradiated from the LED light source 3 and the surface of the phosphor dispersion sheet 50 on the spectroscopic measuring instrument 4 side. This means measurement that enables spectroscopic measurement while maintaining the same, and can be achieved, for example, by driving the spectrophotometer 4 of FIG. 1 on an arc indicated by a dotted line. As a result, measurement at an arbitrary scattering angle θ is possible.
 色度座標算出部5は、分光測定器4で得られた分光データから色度座標を算出するものであり、分光データに対し所定の演算処理を施すことで色度座標が得られる。このとき行う演算処理の具体的な内容は、後述する色度座標検査方法において説明する。 The chromaticity coordinate calculation unit 5 calculates chromaticity coordinates from the spectral data obtained by the spectrophotometer 4, and the chromaticity coordinates are obtained by performing a predetermined calculation process on the spectral data. Specific contents of the arithmetic processing performed at this time will be described in a chromaticity coordinate inspection method described later.
 なお、この色度座標算出部5としては、演算処理ができる公知の演算装置が挙げられ、例えば、CPU、ROM及びRAM等を有して構成される演算装置が例示できる。ここで、CPUはマイクロプロセッサ等からなり、後述する各種演算処理を可能とするものであり、ROMには、各種演算処理を行うためのプログラムが予め記憶されており、RAMは、制御・演算処理の際に各種データを読み書きするために用いられる。 In addition, as this chromaticity coordinate calculation part 5, the well-known arithmetic device which can perform arithmetic processing is mentioned, For example, the arithmetic device comprised with CPU, ROM, RAM, etc. can be illustrated. Here, the CPU is composed of a microprocessor or the like, and enables various arithmetic processing described later. A program for performing various arithmetic processing is stored in advance in the ROM, and the RAM is used for control and arithmetic processing. It is used to read and write various data at the time.
 記憶部6は、色度座標算出部5で算出された色度座標と、測定した蛍光体分散シート50の区画を関連付けて記憶するものであり、ハードディスク装置、メモリ等の公知の記憶装置が挙げられる。なお、この記憶部6には、後述するLEDの色度座標や仮想の透過光の色度座標等を算出する場合には、それらのデータも記憶できる。 The storage unit 6 stores the chromaticity coordinates calculated by the chromaticity coordinate calculation unit 5 and the measured sections of the phosphor dispersion sheet 50 in association with each other, and includes known storage devices such as a hard disk device and a memory. It is done. In addition, when calculating the chromaticity coordinate of LED mentioned later, the chromaticity coordinate of virtual transmitted light, etc. in this memory | storage part 6, those data can also be memorize | stored.
 ここで利用する透過光は、図1に示したように、蛍光体分散シート50から出射される合成光であり、上記の通り、散乱光である。この透過光は、蛍光体分散シート50の表面から半球状に全方向に拡散するため、任意の方向から測定できる。すなわち、蛍光体分散シート50の表面に下した垂線に対する角度θが0度以上90度未満の範囲である透過光を測定に利用でき、このとき角度θが0度超である透過光が好ましい。 As shown in FIG. 1, the transmitted light used here is a synthetic light emitted from the phosphor dispersion sheet 50, and is a scattered light as described above. Since this transmitted light is diffused in all directions from the surface of the phosphor dispersion sheet 50 in a hemispherical shape, it can be measured from any direction. That is, the transmitted light having an angle θ with respect to a perpendicular line on the surface of the phosphor dispersion sheet 50 in the range of 0 ° or more and less than 90 ° can be used for measurement. In this case, the transmitted light having an angle θ of more than 0 ° is preferable.
 なお、この角度θは、透過励起光と変換光との強度比が、実際の製品、すなわち、LED素子に波長変換部材を実装した状態における、透過励起光と変換光との強度比に近くなる角度が好ましい。ただし、励起光の強度を調節することによってもその好ましい角度は変動する。ちなみに、本発明においては、蛍光体分散シートを透過する透過励起光は、実際の製品を透過させる場合よりも散乱性が小さく、集光した平行光に近いものであるため、透過励起光のうち直線透過光強度が実際よりも強く、また、散乱透過光強度が実際よりも弱く出る傾向にある。それに伴って、配向分布が透過励起光は狭く、変換光は相対的に広くなる傾向にある。励起光強度によるが、分光測定に使用する透過光の角度θは、例えば、45±10度が好ましい。 This angle θ is such that the intensity ratio between the transmitted excitation light and the converted light is close to the intensity ratio between the transmitted excitation light and the converted light in a state where the wavelength conversion member is mounted on the actual product, that is, the LED element. Angle is preferred. However, the preferred angle varies also by adjusting the intensity of the excitation light. By the way, in the present invention, the transmitted excitation light transmitted through the phosphor dispersion sheet is less scattered than the case where the actual product is transmitted and is close to the collected parallel light. The linear transmitted light intensity tends to be stronger than the actual one, and the scattered transmitted light intensity tends to be weaker than the actual one. Along with this, the orientation distribution tends to be narrow for transmitted excitation light and relatively wide for converted light. Although it depends on the excitation light intensity, the angle θ of the transmitted light used for the spectroscopic measurement is preferably 45 ± 10 degrees, for example.
 また、実際の製品においては、LED及び光変換部材をマウントした条件によって配光分布が変わってくるため、その配光分布に応じて分光測定に使用する透過光の角度θを決定することが好ましい。例えば、製品の配光分布が狭い場合、透過励起光のうち、直線透過光が強く出る傾向があるため、本実施形態においては、角度θが45度よりも小さいものを採用するのが好ましく、配光分布が広い場合、変換光が強く出る傾向があるため、本実施形態においては、角度θが45度よりも大きいものを採用するのが好ましい。 In an actual product, the light distribution varies depending on the conditions under which the LED and the light conversion member are mounted. Therefore, it is preferable to determine the angle θ of transmitted light used for spectroscopic measurement according to the light distribution. . For example, when the light distribution of the product is narrow, among the transmitted excitation light, there is a tendency that the linearly transmitted light tends to be strong, so in the present embodiment, it is preferable to employ an angle θ smaller than 45 degrees, When the light distribution is wide, the converted light tends to be strongly emitted. Therefore, in the present embodiment, it is preferable to employ one having an angle θ larger than 45 degrees.
 次に、本発明の色度座標検査方法について、図1の色度座標検査装置1を使用した検査方法を例に説明する。この色度座標検査方法は、上記のように、蛍光体分散シートの平面において、所定の大きさの区画を設定する区画設定工程(S1)と、区画設定工程で設定された区画の1つに、一方の面から励起光を入射させ、その励起光により蛍光体分散シートを透過し他方の面から出射して得られる透過光を分光測定する分光測定工程(S2)と、分光測定工程により得られた分光データから色度座標を算出する色度座標算出工程(S3)と、分光測定工程および上記色度座標算出工程(S2~S3)を、区画設定工程で設定された区画ごとに繰り返し行い、区画と色度座標とを関連付けて記憶させるマッピング工程(S4)と、から構成される。以下、各工程について順番に説明する。 Next, the chromaticity coordinate inspection method of the present invention will be described by taking an inspection method using the chromaticity coordinate inspection apparatus 1 of FIG. 1 as an example. In this chromaticity coordinate inspection method, as described above, in the plane of the phosphor dispersion sheet, the section setting step (S1) for setting a section of a predetermined size and one of the sections set in the section setting step are performed. Obtained by the spectroscopic measurement step (S2), in which excitation light is incident from one surface, transmitted through the phosphor dispersion sheet by the excitation light, and transmitted from the other surface is spectroscopically measured (S2). The chromaticity coordinate calculation step (S3) for calculating chromaticity coordinates from the obtained spectral data, the spectroscopic measurement step and the chromaticity coordinate calculation steps (S2 to S3) are repeated for each of the sections set in the section setting step. A mapping step (S4) for storing the sections and chromaticity coordinates in association with each other. Hereinafter, each process is demonstrated in order.
 まず、蛍光体分散シート50の平面において、所定の大きさの区画を設定する区画設定工程(S1)を行う。 First, a section setting step (S1) for setting sections of a predetermined size on the plane of the phosphor dispersion sheet 50 is performed.
 ここでは、製品としての光変換部材を製造するための材料である蛍光体分散シート50について、その平面に対し所定の大きさの区画を設定する。この区画の設定は、例えば、図2の蛍光体分散シート50の平面図に示したように、蛍光体分散シート50に対して破線で示したマトリックス状に設定して、それぞれの区画を区別できるようにしておけばよい。この図2では、X方向において左から順にAから始まるアルファベットを、Y方向において上から順に1から始まる整数を、それぞれ符号として与える例を示した。これにより、一番左上に示されている区画は「A-1」、左から3番目で上から5番目の区画は「C-5」というように、各区画を区別することが可能となる。 Here, for the phosphor dispersion sheet 50, which is a material for manufacturing a light conversion member as a product, a section having a predetermined size is set with respect to the plane. For example, as shown in the plan view of the phosphor dispersion sheet 50 in FIG. 2, the sections can be set in a matrix shape indicated by a broken line to distinguish each section. Just do it. FIG. 2 shows an example in which an alphabet starting from A in the X direction in the X direction and an integer starting from 1 in the Y direction from the top are given as codes. As a result, it is possible to distinguish each section, such as “A-1” in the upper left section, “C-5” in the third section from the left and the fifth section from the top. .
 なお、図2では、8×8の64個の区画を例に説明したが、これは説明のために簡便な構成としたものである。光変換部材を製造する場合には、例えば、100mm角の平面形状を有する蛍光体分散シートを作成し、その蛍光体分散シートに1000μm角の光変換部材をマトリックス状に形成するように、非常に多くの製品が一旦、一つのシートに一体化して形成される。その後、蛍光体分散シートを所望の形状に切断し個片化して製品を得る。上記の場合には、製品個数が100×100の10000個となる。したがって、ここで説明している区画も10000個以上とするのが好ましい。 In FIG. 2, the description has been made by taking 64 partitions of 8 × 8 as an example, but this is a simple configuration for the sake of explanation. When manufacturing a light conversion member, for example, a phosphor dispersion sheet having a 100 mm square planar shape is prepared, and a 1000 μm square light conversion member is formed in a matrix on the phosphor dispersion sheet. Many products are once formed integrally in one sheet. Thereafter, the phosphor-dispersed sheet is cut into a desired shape and singulated to obtain a product. In the above case, the number of products is 10,000 with 100 × 100. Therefore, the number of sections described here is preferably 10,000 or more.
 この区画は、一般には製品(個片化して得られた光変換部材)の大きさに対応した大きさ、形状とすればよく、このようにすれば製品一つ一つについて、その特性を表す色度座標が得られる。ただし、この区画は任意に設定でき、一つの製品に対して2カ所以上の色度座標を得るようにしてもよく、その場合には一つの製品に対するより詳細な特性の情報が得られる。したがって、例えば、色度座標を2カ所以上取得した場合、その得られた色度座標のずれが所定の値を超えて大きくなっている場合には、不合格品との判定をして、製品の品質を保持するために利用することもできる。 In general, this section may have a size and shape corresponding to the size of the product (light conversion member obtained by dividing into individual pieces). In this way, the characteristics of each product are expressed. Chromaticity coordinates are obtained. However, this section can be arbitrarily set, and two or more chromaticity coordinates may be obtained for one product. In that case, more detailed characteristic information for one product can be obtained. Therefore, for example, when two or more chromaticity coordinates are acquired, and the deviation of the obtained chromaticity coordinates is larger than a predetermined value, it is determined as a rejected product, and the product It can also be used to maintain the quality of
 次に、区画設定工程で設定された区画の1つに、一方の面から励起光を入射させ、その励起光により蛍光体分散シートの他方の面から出射して得られる透過光を分光測定する分光測定工程(S2)を行う。 Next, excitation light is incident on one of the sections set in the section setting step from one surface, and the transmitted light obtained by emitting from the other surface of the phosphor dispersion sheet is spectroscopically measured by the excitation light. A spectroscopic measurement process (S2) is performed.
 図1の破線で示したように、LED光源3から蛍光体分散シート50に対し、含有する蛍光体を励起する励起光が出射される。出射された励起光は、蛍光体分散シート50の一方の面から入射され、蛍光体分散シート50中を通り、散乱され、かつ、光変換され他方の面から出射する。そして、この出射する透過光(透過励起光と変換光との合成光;図1中の1点鎖線)を分光測定器4により測定し、透過光の分光データを取得する。この透過光は、蛍光体分散シート50の表面に下した垂線に対する角度θが0度以上90度未満の範囲にある透過光であり、角度θが0度超である透過光が好ましい。 As shown by the broken line in FIG. 1, excitation light for exciting the phosphor contained therein is emitted from the LED light source 3 to the phosphor dispersion sheet 50. The emitted excitation light is incident from one surface of the phosphor dispersion sheet 50, passes through the phosphor dispersion sheet 50, is scattered, is converted into light, and is emitted from the other surface. Then, the transmitted light (the combined light of the transmitted excitation light and the converted light; the alternate long and short dash line in FIG. 1) is measured by the spectrometer 4 to acquire the spectral data of the transmitted light. This transmitted light is transmitted light having an angle θ with respect to a normal line dropped on the surface of the phosphor dispersion sheet 50 in a range of 0 ° or more and less than 90 °, and preferably transmitted light having an angle θ of more than 0 °.
 この透過光の分光データを測定する方法としては、公知の分光データの測定方法によればよく、例えば、顕微分光光度計(例えば、浜松ホトニクス株式会社製C10082CA)を用いて測定することができる。この分光データを測定する条件は、例えば、500μmのスポット径にてリファレンスとなるガラス基板を測定し、平坦な膜厚の領域内を500μmのスポット径で分光スペクトルを測定する。得られる分光データは、例えば、400~800nmで5nm刻みごとの分光透過率(%)のデータ形式であることが、後のデータ処理上好ましい。 As a method of measuring the spectral data of the transmitted light, a known spectral data measuring method may be used, and for example, it can be measured using a microspectrophotometer (for example, C10082CA manufactured by Hamamatsu Photonics Co., Ltd.). Conditions for measuring the spectroscopic data include, for example, measuring a glass substrate serving as a reference with a spot diameter of 500 μm and measuring a spectroscopic spectrum with a spot diameter of 500 μm in a flat film thickness region. For example, the obtained spectral data is preferably in the data format of spectral transmittance (%) in increments of 5 nm from 400 to 800 nm.
 次に、分光測定工程により得られた分光データから色度座標を算出する色度座標算出工程(S3)を行う。 Next, a chromaticity coordinate calculation step (S3) for calculating chromaticity coordinates from the spectral data obtained in the spectroscopic measurement step is performed.
 本実施形態における色度座標算出工程は、上記の分光データ測定工程により得られたデータを用いて、蛍光体分散シート50の測定したエリアの色度座標を求める工程である。 The chromaticity coordinate calculation step in the present embodiment is a step of obtaining chromaticity coordinates of the measured area of the phosphor dispersion sheet 50 using the data obtained by the spectral data measurement step.
 分光データ測定工程により得られるデータから色度座標を求めるには、測定した区画の分光データから、JIS Z8701に準拠する手法にて、例えば、XYZ表色系における、ある光源に対する色度座標(x,y)及び輝度Yを計算する方法が挙げられる。 In order to obtain the chromaticity coordinates from the data obtained by the spectral data measurement process, for example, the chromaticity coordinates (x , Y) and the method of calculating the luminance Y.
 そして、上記のように測定した1つの区画の色度座標が得られたら、分光測定工程および色度座標算出工程(S2~S3)を、区画設定工程で設定された区画ごとに繰り返し行い、区画と色度座標とを関連付けて記憶させるマッピング工程(S4)を行う。 When the chromaticity coordinates of one section measured as described above are obtained, the spectroscopic measurement process and the chromaticity coordinate calculation process (S2 to S3) are repeated for each section set in the section setting step. And a mapping step (S4) for storing chromaticity coordinates in association with each other.
 ここでは、例えば、図2に示したようにA-1の区画の色度座標を算出したら、次にA-2の区画の色度座標、A-3の区画の色度座標、…というように順番にA列の色度座標を算出していき、A列全部の色度座標を算出したら、次に、B列の各区画の色度座標を算出し、B列全部の色度座標を算出したら、次にC列、その次にはD列、…と順番に各区画の色度座標を算出していき、蛍光体分散シート50で付与した区画の全てについて色度座標を算出する。そして、このとき、算出された色度座標は、その区画と関連付けて記憶手段6に記憶させる(マッピング)。 Here, for example, if the chromaticity coordinates of the section A-1 are calculated as shown in FIG. 2, then the chromaticity coordinates of the section A-2, the chromaticity coordinates of the section A-3, and so on. After calculating the chromaticity coordinates of the A column in order, and calculating the chromaticity coordinates of the entire A column, the chromaticity coordinates of each section of the B column are then calculated, and the chromaticity coordinates of the entire B column are calculated. After the calculation, the chromaticity coordinates of each section are calculated in the order of C column, then D column,..., And chromaticity coordinates are calculated for all the sections provided by the phosphor dispersion sheet 50. At this time, the calculated chromaticity coordinates are stored in the storage unit 6 in association with the section (mapping).
 なお、このマッピング工程においては、測定する区画を移動させながら行うが、このとき、固定部2(蛍光体分散シート50)はそのままで、LED光源3および分光測定器4からなる光学系を移動させるか、逆に光学系はそのままで、固定部2(蛍光体分散シート50)を移動させればよい。分光測定を安定して行うために、光学系は移動させずに固定部2(蛍光体分散シート50)を移動させてマッピング工程を行うことが好ましい。また、区画の移動は、分光測定工程が終了した後、次に測定する区画にLED光源3からの励起光が入射されるように行えばよい。ところで、高速で検査するためには、区画の移動は連続的にしておき、1つの区画の測定をその区画の移動時間に収まる所定の時間内でタイミングを合わせて検出を行った方が良い。なお、本実施形態における移動は、蛍光体分散シート50の表面に対してLED3からの励起光を垂直、かつ、等距離で入射できるように移動できれば、その態様は限定されるものではない。しかし、一般には重力の影響を受けるため、蛍光体分散シート50の固定、保持の容易さから図1に示したようにシート表面が水平になるように固定し、上記移動も水平方向に移動させる装置構成とすることが好ましい。 This mapping step is performed while moving the section to be measured. At this time, the fixing unit 2 (phosphor dispersion sheet 50) is left as it is, and the optical system including the LED light source 3 and the spectrometer 4 is moved. On the contrary, the fixing unit 2 (phosphor dispersion sheet 50) may be moved while the optical system is kept as it is. In order to stably perform the spectroscopic measurement, it is preferable to perform the mapping step by moving the fixing unit 2 (phosphor dispersion sheet 50) without moving the optical system. Moreover, what is necessary is just to perform a movement of a division so that the excitation light from LED light source 3 may inject into the division to measure next after a spectroscopic measurement process is complete | finished. By the way, in order to inspect at a high speed, it is better to keep the movement of a section continuous and detect the measurement of one section at the same time within a predetermined time within the movement time of the section. In addition, the movement in this embodiment will not be limited if it can move so that the excitation light from LED3 may enter perpendicularly and equidistantly with respect to the surface of the fluorescent substance dispersion | distribution sheet | seat 50. FIG. However, in general, since it is affected by gravity, the phosphor dispersion sheet 50 is fixed so that the surface of the phosphor dispersion sheet 50 is horizontal as shown in FIG. 1, and the above movement is also moved in the horizontal direction. An apparatus configuration is preferable.
 さらに、本実施形態において、厚さ測定器を設けておき、上記色度座標を算出するのと同時に、その区画のシート厚さを測定することが好ましい。この場合には、色度座標に加え厚さのデータを区画と関連付けて記憶するようにする。 Furthermore, in the present embodiment, it is preferable to provide a thickness measuring device and measure the sheet thickness of the section simultaneously with calculating the chromaticity coordinates. In this case, in addition to the chromaticity coordinates, the thickness data is stored in association with the section.
 このように厚さのデータを取得しておくと、次のように厚さのデータを利用できる。
例えば、光変換部材において、その厚さが厚いと、励起光の拡散が生じやすく、バックスキャッター(後方散乱)や光吸収も生じやすくなるため透過励起光は減少する一方、励起光の光変換を行える機会は増えるため、変換光は増大する。
If the thickness data is acquired in this way, the thickness data can be used as follows.
For example, if the thickness of the light conversion member is large, the excitation light is easily diffused, and backscattering (backscattering) and light absorption are also likely to occur. Since the opportunity to perform this increases, the converted light increases.
 つまり、厚さは透過励起光と変換光のバランスを変動させ、色度を変動させる大きな要因であるため、厚さデータを管理することで特性のバラつきの少ない安定した製品を提供するように利用できる。 In other words, thickness is a major factor that fluctuates the balance between transmitted excitation light and converted light, and changes chromaticity, so it can be used to provide stable products with little variation in characteristics by managing thickness data. it can.
 また、厚さを測定することによる特性判断については、次のような場合にも使用できる。例えば、蛍光体分散シート50において、得られた色度座標のうち、同一の色度座標を有する区画が複数存在する場合がある。しかしながら、色度座標の数値が同じ場合でも、その光変換特性が同一であるとは直ちに判断できるものではない。具体的には、色度座標が所望のものと比較しずれている場合、そのシートの厚さが厚いことに起因するのか、そのシート製造時において内包泡が発生したことに起因するのか、等の原因は判断できない。 Also, the characteristic judgment by measuring the thickness can be used in the following cases. For example, in the phosphor dispersion sheet 50, there may be a plurality of sections having the same chromaticity coordinates among the obtained chromaticity coordinates. However, even if the numerical values of the chromaticity coordinates are the same, it cannot be immediately determined that the light conversion characteristics are the same. Specifically, if the chromaticity coordinates are out of alignment with the desired one, whether it is due to the thick sheet or the inclusion bubbles during the sheet production, etc. The cause of this cannot be determined.
 これに対し、色度座標に加え厚さの情報を取得していれば、上記のような特性のずれが厚さに起因するのか内包泡に起因するのか、その原因を判断する1つの判断材料となる。例えば、上記の場合、厚さが厚くなったことに起因するものであれば、それを製品として適用するのに問題はないが、内包泡に起因するものであれば、バックスキャッター(後方散乱)や多重散乱が大きく、光束量が低下し、光の利用効率が低下してしまう。したがって、そのような場合には、製品としては不合格とする等、不具合の判断をより適正に行うことができ、安定した品質の製品が提供可能となる。 On the other hand, if thickness information is acquired in addition to the chromaticity coordinates, one judgment material for judging whether the above-described characteristic deviation is caused by the thickness or by the included bubbles. It becomes. For example, in the above case, if it is caused by the increased thickness, there is no problem in applying it as a product. ) Or multiple scattering, the amount of light flux decreases, and the light utilization efficiency decreases. Therefore, in such a case, the product can be judged more appropriately, for example, the product is rejected, and a product with stable quality can be provided.
 なお、一般的に、光変換部材における蛍光体分散シートの厚さは100~1000μmであり、この厚さを測定するには、公知の厚さ測定方法によればよい。微小部分を高速で、非接触で測定できる観点からレーザー光を利用する光学測定方式による厚さ測定であることが好ましい。 In general, the thickness of the phosphor dispersion sheet in the light conversion member is 100 to 1000 μm, and this thickness can be measured by a known thickness measuring method. It is preferable that the thickness measurement is performed by an optical measurement method using laser light from the viewpoint that a minute portion can be measured at high speed without contact.
 さらに、上記の色度座標検査方法により、蛍光体分散シートに区画と色度座標とを関連付けたマッピング情報を付加、提供でき、このマッピング情報を付加、提供された蛍光体分散シートとすることで、上記と同様に光変換部材として使用する製品毎の微妙な特性の相違を判断することができる。マッピング情報を付加するとは、対象とする蛍光体分散シートに対する情報を関連付けている状態を表し、対象とする蛍光体分散シートにマッピング情報を物理的に付加していることに限定されない。 Furthermore, by the above chromaticity coordinate inspection method, mapping information in which the sections and chromaticity coordinates are associated can be added and provided to the phosphor dispersion sheet. By adding this mapping information, the provided phosphor dispersion sheet is obtained. Similarly to the above, it is possible to determine a subtle difference in characteristics for each product used as the light conversion member. Adding the mapping information represents a state in which information on the target phosphor dispersion sheet is associated, and is not limited to physically adding the mapping information to the target phosphor dispersion sheet.
 また、このような蛍光体分散シートを、所定の大きさに個片化して光変換部材とする際に、上記マッピング情報に基づいて光変換部材をクラス分けすることで、類似した特性を有する光変換部材を集めて製造できる。これにより後述するLEDとの組み合わせを簡便なものとすることもできる。ここでクラス分けは、上記で算出された色度座標に基づくもので、例えば、後述する図5に示したように任意の色度座標の領域(クラスA~F)を設定し、その領域により光変換部材のクラスを決定すればよい。 In addition, when such a phosphor dispersion sheet is separated into a predetermined size and used as a light conversion member, the light conversion member is classified based on the mapping information, so that light having similar characteristics can be obtained. The conversion members can be collected and manufactured. Thereby, the combination with LED mentioned later can also be made simple. Here, the classification is based on the chromaticity coordinates calculated above. For example, as shown in FIG. 5 to be described later, an arbitrary chromaticity coordinate area (class A to F) is set, and What is necessary is just to determine the class of the light conversion member.
〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。この第2の実施形態で使用する色度座標検査装置の構成の一例を図3に示した。この色度座標検査装置11は、検査対象となる蛍光体分散シート50を固定、保持するための固定部2と、蛍光体分散シート50の一方の面に対し励起光を出射するLED光源3と、該LED光源3からの励起光の照射により蛍光体分散シート50から出射される透過光を分光測定する分光測定器4と、該分光測定器4により測定された分光データから色度座標を算出する色度座標算出部5と、色度座標算出部5により算出された色度座標と、その測定における蛍光体分散シート50の区画を関連付けて記憶させる記憶部6と、を有する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. An example of the configuration of the chromaticity coordinate inspection apparatus used in the second embodiment is shown in FIG. The chromaticity coordinate inspection apparatus 11 includes a fixing unit 2 for fixing and holding the phosphor dispersion sheet 50 to be inspected, and an LED light source 3 that emits excitation light to one surface of the phosphor dispersion sheet 50. The spectrophotometer 4 that spectroscopically measures the transmitted light emitted from the phosphor dispersion sheet 50 by irradiation of the excitation light from the LED light source 3, and the chromaticity coordinates are calculated from the spectroscopic data measured by the spectrophotometer 4 A chromaticity coordinate calculation unit 5 that performs the storage, and a storage unit 6 that stores the chromaticity coordinates calculated by the chromaticity coordinate calculation unit 5 in association with the sections of the phosphor dispersion sheet 50 in the measurement.
 さらに、色度座標検査装置11は、LED光源3からの励起光の照射により蛍光体分散シート50から出射する透過光を複数の測定角度で分光測定器4に入射させる例となっている。この色度座標検査装置11における分光測定器4は、第1の実施形態と同様にゴニオ駆動できる態様が好ましく、このようにするとまず散乱角度θでの透過光の分光データを取得し、次に散乱角度θでの透過光の分光データを取得するというように、複数の散乱角度の透過光の分光データを容易に取得できる。また、測定距離による補正をしなくてもよく、操作が簡便となる。本実施形態においては、このように分光測定する光として複数の透過光の散乱角度毎の光を測定するため、分光測定器4で測定する分光データは、合成光の散乱角度依存性を含むデータとなる。 Further, the chromaticity coordinate inspection apparatus 11 is an example in which the transmitted light emitted from the phosphor dispersion sheet 50 is incident on the spectrometer 4 at a plurality of measurement angles by irradiation of excitation light from the LED light source 3. The spectrophotometer 4 in the chromaticity coordinate inspection apparatus 11 is preferably capable of being gonio-driven as in the first embodiment. In this way, first, spectral data of transmitted light at the scattering angle θ 1 is acquired, and then scattering angle θ as that acquires spectral data of the transmitted light in two, the spectral data of a plurality of scattering angles of the transmitted light can be easily obtained. Further, it is not necessary to perform correction based on the measurement distance, and the operation becomes simple. In the present embodiment, in order to measure the light at each scattering angle of the plurality of transmitted light as the light to be spectrally measured in this way, the spectroscopic data measured by the spectrophotometer 4 is data including the scattering angle dependence of the synthesized light. It becomes.
 上記および図3から明らかなように、色度座標検査装置11は、基本的には図1の色度座標検査装置と同様の構成を有しており、固定部2、LED光源3、分光測定器4、色度座標算出部5および記憶部6は、第1の実施形態と同一のものである。以下、第1の実施形態とは異なる構成について説明する。 As is clear from the above and FIG. 3, the chromaticity coordinate inspection apparatus 11 basically has the same configuration as the chromaticity coordinate inspection apparatus of FIG. 1, and includes a fixing unit 2, an LED light source 3, a spectroscopic measurement. The device 4, the chromaticity coordinate calculation unit 5, and the storage unit 6 are the same as those in the first embodiment. Hereinafter, a configuration different from that of the first embodiment will be described.
 ここで利用する透過光は、蛍光体分散シートの垂線に対する散乱角度θおよびθが0度以上90度未満の範囲であり、θおよびθは異なる角度である2つの透過光である。また、このように複数の散乱角度の透過光を利用する場合には、得られる分光データが偏らず、実際の照明光に近いものとなるように、それら複数の散乱角度の透過光の角度θを平均化((θ+θ)/2)したとき、その平均値が45±10度の範囲とすることが好ましい。 The transmitted light used here is a range in which the scattering angles θ 1 and θ 2 with respect to the normal of the phosphor dispersion sheet are in the range of 0 ° to less than 90 °, and θ 1 and θ 2 are two transmitted lights having different angles. . In addition, when transmitted light having a plurality of scattering angles is used in this way, the transmitted light angles θ of the plurality of scattering angles are not biased and are close to actual illumination light. Is averaged ((θ 1 + θ 2 ) / 2), the average value is preferably in the range of 45 ± 10 degrees.
 なお、図3には、2つの透過光を利用する場合を具体的に記載しているが、これを3以上の透過光を利用するようにしてもよい。このように複数の透過光を利用して分光測定を行うことで、より実際の透過光(合成光)に近いデータが取得でき、光変換部材の特性について、より正確な評価が可能となる。また、3以上の透過光を利用する場合にも、それら複数の透過光の角度θを平均化したとき、その平均値が45±10度の範囲とすることが好ましい。 Note that FIG. 3 specifically illustrates the case where two transmitted lights are used, but three or more transmitted lights may be used. By performing spectroscopic measurement using a plurality of transmitted light in this way, data closer to actual transmitted light (synthetic light) can be acquired, and the characteristics of the light conversion member can be more accurately evaluated. Even when three or more transmitted lights are used, when the angles θ of the plurality of transmitted lights are averaged, the average value is preferably in the range of 45 ± 10 degrees.
〔第3の実施形態〕
 次に、本発明のLEDパッケージの製造方法の一実施形態について説明する。なお、基本的なLEDパッケージの製造は、LED素子に光変換部材を適用し、これを封止等によりパッケージ化する従来公知の方法により製造できる。本発明は、このようなLEDパッケージの製造において、所望の色合いの透過光(合成光)を得るために、LED素子と光変換部材との組み合わせを最適化するためのものである。具体的には、光変換部材は上記した蛍光体分散シートを所望の形状に切断し個片化して得られるが、この実施形態では、その個片化して得られた光変換部材は、上記実施形態で説明した色度座標のマッピング情報から得られる色度座標の情報が判明しているため、適用するLED素子の特性を考慮して、所望の照射光を得るために適した光変換部材の選択を簡便かつ有効に行うことができるものである。
[Third Embodiment]
Next, an embodiment of the LED package manufacturing method of the present invention will be described. The basic LED package can be manufactured by a conventionally known method of applying a light conversion member to an LED element and packaging it by sealing or the like. The present invention is for optimizing the combination of an LED element and a light conversion member in order to obtain a desired color of transmitted light (synthetic light) in the manufacture of such an LED package. Specifically, the light conversion member is obtained by cutting the above-described phosphor dispersion sheet into a desired shape and dividing into individual pieces. In this embodiment, the light conversion member obtained by dividing into pieces is the above-described embodiment. Since the information of the chromaticity coordinates obtained from the mapping information of the chromaticity coordinates described in the embodiment is known, the light conversion member suitable for obtaining the desired irradiation light in consideration of the characteristics of the applied LED element Selection can be performed simply and effectively.
 その目的を達成するために、本発明におけるLEDパッケージの製造方法は、LED素子と光変換部材とを組み合わせるにあたって、LED素子から出射される励起光を分光測定するLED分光測定工程と、LED分光測定工程により得られた励起光の分光データから色度座標を算出するLEDの色度座標算出工程と、LEDの色度座標算出工程で得られた励起光の色度座標と、第1の実施形態または第2の実施形態で説明した蛍光体分散シートの色度座標検査方法により得られた蛍光体分散シートの色度座標と、から得られる推定される透過光の色度座標を算出する“仮想の透過光“の色度座標算出工程と、”仮想の透過光“の色度座標算出工程で得られた色度座標から、所望の透過光となる組み合わせを決定する組み合わせ最適化工程と、を有する。以下、各工程について詳細に説明する。 In order to achieve the object, an LED package manufacturing method according to the present invention includes an LED spectroscopic measurement process for spectroscopically measuring excitation light emitted from an LED element, and an LED spectroscopic measurement when combining the LED element and the light conversion member. LED chromaticity coordinate calculation step for calculating chromaticity coordinates from spectral data of excitation light obtained in the step, chromaticity coordinates of excitation light obtained in the LED chromaticity coordinate calculation step, and the first embodiment Alternatively, the chromaticity coordinates of the phosphor dispersion sheet obtained by the phosphor dispersion sheet chromaticity coordinate inspection method described in the second embodiment and the estimated chromaticity coordinates of transmitted light obtained from the “virtual coordinates” are calculated. Combination optimization step of determining a combination of desired transmitted light from the chromaticity coordinates obtained by the chromaticity coordinate calculation step of “transmitted light” and the chromaticity coordinate calculation step of “virtual transmitted light” It has a. Hereinafter, each step will be described in detail.
 本実施形態におけるLED分光測定工程は、LED素子と、個片化して得られた光変換部材とを組み合わせるにあたって、LED素子から出射される励起光を分光測定する工程である。 The LED spectroscopic measurement step in the present embodiment is a step of spectroscopically measuring the excitation light emitted from the LED element when combining the LED element and the light conversion member obtained by dividing into pieces.
 この工程における分光測定は、測定対象のLED素子が出射する光を、直接測定する以外は第1の実施形態で説明した蛍光体分散シートの分光測定と同様の操作、方法により行われる。 The spectroscopic measurement in this step is performed by the same operation and method as the spectroscopic measurement of the phosphor-dispersed sheet described in the first embodiment except that the light emitted from the LED element to be measured is directly measured.
 本実施形態におけるLEDの色度座標算出工程は、LED分光測定工程により得られた励起光の分光データから色度座標を算出する工程である。 The LED chromaticity coordinate calculation step in the present embodiment is a step of calculating chromaticity coordinates from spectral data of excitation light obtained by the LED spectroscopic measurement step.
 この工程における色度座標算出工程は、分光データがLED分光測定工程により得られた励起光のデータであること以外は、第1の実施形態で説明した蛍光体分散シートの分光測定と同様の操作、方法により行われる。 The chromaticity coordinate calculation step in this step is the same operation as the spectral measurement of the phosphor-dispersed sheet described in the first embodiment, except that the spectral data is excitation light data obtained by the LED spectral measurement step. Done by the method.
 本実施形態における“仮想の透過光”の色度座標算出工程は、LED色度座標算出工程で得られた励起光の色度座標と、蛍光体分散シートの色度座標検査方法により得られた蛍光体分散シートの色度座標と、から得られる“仮想の透過光”の色度座標を算出する工程である。 The “virtual transmitted light” chromaticity coordinate calculation step in this embodiment is obtained by the chromaticity coordinate of the excitation light obtained in the LED chromaticity coordinate calculation step and the chromaticity coordinate inspection method of the phosphor dispersion sheet. This is a step of calculating the chromaticity coordinates of the “virtual transmitted light” obtained from the chromaticity coordinates of the phosphor dispersion sheet.
 この工程では、上記した励起光の色度座標と蛍光体分散シートの色度座標とから、これらを実際に組み合わせてマウントした時、例えばコンピュータ上で演算処理して透過光(合成光)の色度座標がどうなるかを算出するものであり、ここで得られる仮想の透過光の色度座標は計算上推定される色度座標である。 In this step, when the chromaticity coordinates of the excitation light and the chromaticity coordinates of the phosphor dispersion sheet are mounted in actual combination, the color of the transmitted light (synthetic light) is calculated by, for example, processing on a computer. The chromaticity coordinates of the virtual transmitted light obtained here are the chromaticity coordinates estimated from the calculation.
 この演算処理は、具体的には、以下のようにして行う。蛍光体分散シート測定時の分光スペクトルには、励起光がそのまま透過した透過励起光のスペクトルと励起光が蛍光体によって吸収、変換された変換光のスペクトルの双方が含まれる。蛍光体分散シート測定時の分光スペクトルから蛍光体分散シート測定時の励起光の透過光分、つまり、透過励起光を差し引くことにより、ほぼ変換光のみのスペクトルを計算上得ることができる。一方、蛍光体分散シート測定時の透過励起光は実際にLEDチップにマウントした時の透過励起光とは異なる場合が多い。このときは、蛍光体分散シート測定時の透過励起光の分光スペクトル強度に一定の比例定数をかけ、実際にLEDチップにマウントした時の透過励起光の強度に近似させて得ることができる。透過光のスペクトルは上記の計算上得られた変換光と、上記の近似計算した透過励起光と、の合成光で近似できる。実際の組み合わせでのスペクトルと蛍光体分散シート測定時に得られるスペクトルとの相関をとれば比例定数を設定できる。相関は少なくとも1つとればよく、複数のサンプルをとることで比例定数の精度が向上する。近似計算した透過励起光の分光スペクトルと組み合わせるLED光の分光スペクトルの間で相関をとれば、組み合わせるLEDの分光スペクトルから、その相関に従った比例係数をかけて、上記の計算上得られた変換光と合算することにより、透過光(合成光)のスペクトルを近似推測することができる。 This calculation process is specifically performed as follows. The spectrum at the time of measurement of the phosphor dispersion sheet includes both a spectrum of transmitted excitation light through which excitation light is transmitted as it is and a spectrum of converted light in which excitation light is absorbed and converted by the phosphor. By subtracting the transmitted light of the excitation light at the time of measuring the phosphor dispersion sheet, that is, the transmitted excitation light, from the spectral spectrum at the time of measuring the phosphor dispersion sheet, a spectrum of almost only converted light can be calculated. On the other hand, the transmitted excitation light when measuring the phosphor dispersion sheet is often different from the transmitted excitation light when actually mounted on the LED chip. In this case, it can be obtained by multiplying the spectral intensity of the transmitted excitation light at the time of measurement of the phosphor dispersion sheet by a certain proportionality constant and approximating the intensity of the transmitted excitation light when actually mounted on the LED chip. The spectrum of transmitted light can be approximated by the combined light of the converted light obtained in the above calculation and the transmitted excitation light calculated in the above approximation. The proportionality constant can be set by correlating the spectrum in the actual combination with the spectrum obtained at the time of measuring the phosphor dispersion sheet. At least one correlation is sufficient, and taking a plurality of samples improves the accuracy of the proportionality constant. If there is a correlation between the spectral spectrum of the transmitted excitation light and the spectral spectrum of the LED light combined with the approximate calculation, the conversion obtained by the above calculation by multiplying the spectral spectrum of the combined LED by the proportional coefficient according to the correlation. By combining with light, the spectrum of transmitted light (synthetic light) can be approximated.
 なお、比例定数の設定は、例えば、以下のように行うことができる。
 個片化した光変換部材をLEDチップにマウントし、実際に組み合わせたスペクトルデータを積分球により測定し、透過励起光および変換光の放射量を計算する。このとき得られるスペクトルデータが図4のような場合には、透過励起光の放射量ΦEXrは400~500nmの波長の透過励起光に相当する測定強度を積分すればよく、下記(1)式で得られる。
Figure JPOXMLDOC01-appb-M000001
(式中、Φer(λ)は、実際の照明光源から測定される放射光強度の波長による関数を表す)
 また、変換光の放射量ΦEMrは500~800nmの波長の変換光に相当する測定強度を積分すればよく、下記(2)式で得られる。
Figure JPOXMLDOC01-appb-M000002
(式中、Φer(λ)は、実際の照明光源から測定される放射光強度の波長による関数を表す)
 なお、ここでは、放射量を計算すればよく、視感度を計算に入れる必要はない。
The proportionality constant can be set as follows, for example.
The separated light conversion member is mounted on an LED chip, the spectrum data actually combined is measured with an integrating sphere, and the amounts of transmitted excitation light and converted light are calculated. When the spectrum data obtained at this time is as shown in FIG. 4, the radiation intensity ΦEXr of the transmitted excitation light may be integrated with the measured intensity corresponding to the transmitted excitation light having a wavelength of 400 to 500 nm. can get.
Figure JPOXMLDOC01-appb-M000001
(Where Φer (λ) represents a function of the wavelength of the emitted light intensity measured from the actual illumination source)
The radiation amount ΦEMr of the converted light may be obtained by integrating the measured intensity corresponding to the converted light having a wavelength of 500 to 800 nm, and is obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
(Where Φer (λ) represents a function of the wavelength of the emitted light intensity measured from the actual illumination source)
Here, it is only necessary to calculate the radiation amount, and it is not necessary to include the visibility.
 次に、LEDチップにマウントした光変換部材における、第1の実施形態または第2の実施形態で得られている分光スペクトルのデータから、透過励起光および変換光の測定強度を算出する。透過励起光の放射量ΦEXmは400~500nmの波長の測定強度であり、下記(3)式で表せる。
Figure JPOXMLDOC01-appb-M000003
(式中、Φem(λ)は、分光測定工程で測定される放射光強度の波長による関数を表す)
 また、変換光の放射量ΦEMmは500~800nmの波長の測定強度であり、下記(4)式で表せる。
Figure JPOXMLDOC01-appb-M000004
(式中、Φem(λ)は、分光測定工程で測定される放射光強度の波長による関数を表す)
Next, the measured intensities of the transmitted excitation light and the converted light are calculated from the spectral spectrum data obtained in the first embodiment or the second embodiment in the light conversion member mounted on the LED chip. The amount of transmitted excitation light ΦEXm is a measured intensity at a wavelength of 400 to 500 nm and can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
(Where Φem (λ) represents a function of the emitted light intensity measured in the spectroscopic measurement step depending on the wavelength)
The radiation amount ΦEMm of the converted light is a measured intensity at a wavelength of 500 to 800 nm, and can be expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
(Where Φem (λ) represents a function of the emitted light intensity measured in the spectroscopic measurement step depending on the wavelength)
 比例定数は、第1の実施形態または第2の実施形態で得られたスペクトルデータを実際のスペクトルデータに近似させるものであり、具体的には、例えば、透過励起光と変換光とのバランスを近似させるものである。したがって、比例定数Cの算出は、下記(5)式により表され、これを変形して(6)式により計算すればよい。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
(式中、Cは比例定数を表し、ΦEXr、ΦEMr、ΦEXmおよびΦEMmは上記と同一のものである)
The proportionality constant approximates the spectrum data obtained in the first embodiment or the second embodiment to actual spectrum data. Specifically, for example, the balance between the transmitted excitation light and the converted light is adjusted. To approximate. Accordingly, the calculation of the proportionality constant C is expressed by the following formula (5), which may be modified and calculated by the formula (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
(In the formula, C represents a proportionality constant, and ΦEXr, ΦEMr, ΦEXm, and ΦEMm are the same as described above.)
 なお、積分範囲は、対象材料の励起波長と発光波長により適宜選択すればよい。比例定数Cは、一般には、上記実施形態における透過励起光が強く出て、変換光が弱くでる傾向があるため1以下となることが多いが、光学系の選択や、使用する透過光の角度θによっても影響されるため、1を超える場合もある。 Note that the integration range may be appropriately selected depending on the excitation wavelength and emission wavelength of the target material. In general, the proportionality constant C is 1 or less because the transmitted excitation light in the above embodiment tends to be strong and the converted light tends to be weak. Since it is also affected by θ, it may exceed 1.
 これらの操作はさらに簡便には、色度座標を用いて近似することができる。“仮想の透過光“の色度座標は、LED光の色度座標と蛍光体分散シートの変換光の色度座標の中間に位置すると近似できる。そのため、LED光の色度座標に、実際の組み合わせで得られる透過光の色度座標との相関から得られる比例定数で重みづけし、計算することにより、LED光の色度座標と蛍光体分散シートの変換光の色度座標の中間点付近に位置する色度座標を特定、算出することができる。 These operations can be more simply approximated using chromaticity coordinates. The chromaticity coordinates of the “virtual transmitted light” can be approximated to be located between the chromaticity coordinates of the LED light and the chromaticity coordinates of the converted light of the phosphor dispersion sheet. Therefore, the chromaticity coordinates of the LED light and the phosphor dispersion are calculated by weighting and calculating the chromaticity coordinates of the LED light with a proportionality constant obtained from the correlation with the chromaticity coordinates of the transmitted light obtained in an actual combination. It is possible to specify and calculate the chromaticity coordinates located near the midpoint of the chromaticity coordinates of the converted light of the sheet.
 このような演算処理によれば、組み合わせる材料となるLED素子と蛍光体分散シートのそれぞれの色度座標の情報が得られていれば、組み合わせにより想定される透過光(合成光)の色度座標として、容易に多数の結果が得られる。そのため、実際の組み合わせを選択するときの判断材料として有用である。 According to such arithmetic processing, if information on the chromaticity coordinates of the LED element and the phosphor dispersion sheet, which are materials to be combined, is obtained, the chromaticity coordinates of transmitted light (synthetic light) assumed by the combination are obtained. As a result, many results can be easily obtained. Therefore, it is useful as a judgment material when selecting an actual combination.
 すなわち、一つのLED素子に対して、図2に示したような蛍光体分散シートの各区画(例えば、1つの区画が製品としての光変換部材1個に対応する場合)と組み合わせた場合の64通りの仮想の透過光の色度座標を容易に推算することができる。 That is, for one LED element, 64 when combined with each section of the phosphor dispersion sheet as shown in FIG. 2 (for example, when one section corresponds to one light conversion member as a product). It is possible to easily estimate the chromaticity coordinates of the virtual transmitted light on the street.
 この方法によれば、実際に組み合わせて透過光を得る必要がないため、LEDパッケージの製造における時間やコストを大幅に削減できる。 According to this method, since it is not necessary to actually obtain the transmitted light in combination, the time and cost in manufacturing the LED package can be greatly reduced.
 なお、この仮想の透過光の色度座標を算出するにあたって、LED素子も複数個ある場合には、これらの各LED素子について上記の色度座標を算出しておくことが好ましい。例えば、LED素子も、基板上にマトリックス状に複数個のLED素子を形成して製造されるのが一般的であるため、上記した蛍光体分散シート50においてマッピングしたのと同様に、LED素子とその色度座標とを関連付けて記憶させておく(LEDマッピング工程)。そうすれば、複数個のLED素子と複数個の個片化して得られた光変換部材との膨大な数の組み合わせを算出したとしても、どの材料を組み合わせれば良いかがすぐに分かるため好ましい。LED素子のバリエーションが大きく、出射する励起波長が大きく異なる場合は、変換光の強度にも大きな影響を及ぼすため、単純な足し合わせで、実際にLEDチップにマウントした時の透過光に近似させることは困難になってくるが、少なくとも、透過光の色度の傾向は算出することができる。 In calculating the chromaticity coordinates of the virtual transmitted light, when there are a plurality of LED elements, it is preferable to calculate the chromaticity coordinates for each of these LED elements. For example, since the LED element is generally manufactured by forming a plurality of LED elements in a matrix on the substrate, the LED element is similar to that mapped in the phosphor dispersion sheet 50 described above. The chromaticity coordinates are stored in association with each other (LED mapping step). Then, even if a huge number of combinations of a plurality of LED elements and a plurality of light conversion members obtained by singulation are calculated, it is preferable because it is immediately understood which material should be combined. . If there is a large variation in the LED element and the excitation wavelength to be emitted differs greatly, the intensity of the converted light will also be greatly affected, so it should be approximated to the transmitted light when actually mounted on the LED chip by simple addition. However, at least the tendency of chromaticity of transmitted light can be calculated.
 そして、本実施形態における組み合わせ最適化工程は、仮想の透過光の色度座標算出工程で得られた色度座標から、実際にLEDチップにマウントした時に所望の透過光となるであろう組み合わせを決定する工程である。 Then, the combination optimization process in the present embodiment is based on the chromaticity coordinates obtained in the chromaticity coordinate calculation process of the virtual transmitted light, and the combination that will be the desired transmitted light when actually mounted on the LED chip. It is a step of determining.
 この工程は、上記の仮想の透過光の色度座標が所望の色度座標の範囲となる組み合わせを選択可能とするもので、この選択は所望の色度座標の設計範囲に対して実際にLEDチップにマウントした時に想定される仮想の透過光の色度座標をその設計範囲内に入れ込むようにすることである。色度座標は、視感度が考慮されているため、透過光のスペクトルが異なっていても、色度座標が等しければ同色と視認される。そのため、最終的に実際にLEDチップにマウントした時の透過光の色度座標を合わせこんでいくことは重要であるが、ここでは実際にLEDチップにマウントした時の透過光のスペクトルを合わせこんでいくことまでは必要ない。 This step enables selection of a combination in which the chromaticity coordinates of the above-described virtual transmitted light fall within a desired chromaticity coordinate range. This selection is actually performed with respect to the design range of the desired chromaticity coordinates. The chromaticity coordinates of the virtual transmitted light assumed when mounted on the chip are included in the design range. Since the visibility of chromaticity coordinates is taken into consideration, even if the spectrum of transmitted light is different, the same color is visually recognized if the chromaticity coordinates are equal. Therefore, it is important to match the chromaticity coordinates of the transmitted light when it is finally mounted on the LED chip, but here the spectrum of the transmitted light when actually mounted on the LED chip is adjusted. It is not necessary to go.
 この工程においては、まず、色度座標の設計範囲を決定するために、所望の透過光が得られる代表的なLED光源および光変換部材を組み合わせた照明光源を実際にマウントして作製する。このとき、透過光の強度を調節するには、光変換部材中の蛍光体粒子の含有量を増やしたり、光変換部材の厚さを厚くしたり、するなどの手法があり、最も適正な仕様となるように選択して微調整すればよい。その結果、検査測定にあたって、目標の色度座標(u´,v´)を有する透過光を得るための1つの例として、LED光源の目標色度座標(uLtyp´,vLtyp´)と光変換部材の目標色度座標(uStyp´,vStyp´)が決定でき、これにより目標となる透過光の色度座標は(k・uLtyp´+(1-k)・uStyp´,k・vLtyp´+(1-k)vStyp´)と簡易に算出、設定できる。なお、kは0<k<1の条件を満たす比例定数であり、目標の色度座標(u´,v´)とLED光源の目標色度座標(uLtyp´,vLtyp´)と光変換部材の目標色度座標(uStyp´,vStyp´)とから決定できる。 In this step, first, in order to determine the design range of chromaticity coordinates, an illumination light source that combines a typical LED light source and a light conversion member that can obtain desired transmitted light is actually mounted and manufactured. At this time, in order to adjust the intensity of transmitted light, there are methods such as increasing the content of phosphor particles in the light conversion member or increasing the thickness of the light conversion member. It can be selected and fine-tuned to be. As a result, as one example for obtaining transmitted light having target chromaticity coordinates (u T ′, v T ′) in the inspection measurement, target chromaticity coordinates (u Ltyp ′, v Ltyp ′) of the LED light source. the target chromaticity coordinates of the light converting member (u Styp ', v Styp' ) can be determined, the chromaticity coordinates of the transmitted light to be thereby target (k · u Ltyp '+ ( 1-k) · u Styp' , K · v Ltyp '+ (1-k) v Type '). Note that k is a proportional constant that satisfies the condition of 0 <k <1, and the target chromaticity coordinates (u T ′, v T ′) and the target chromaticity coordinates of the LED light source (u Ltyp ′, v Ltyp ′) It can be determined from the target chromaticity coordinates (u Type ', v Type ') of the light conversion member.
 次に、組み合わせを検討する実際のLED光源の色度座標(uLn´、vLn´)と光変換部材の色度座標(uSm´、vSm´)から、上記と同様に仮想の透過光の色度座標を簡易に算出できる。上記色度座標で、nは1、2…、nと、mは1、2…、mとなり、それぞれLED光源の数(n個)、光変換部材の数(m個)だけ種類があることを表す。例えば、LED光源が1つの場合を考えた場合(n=1)、組み合わせは、その色度座標から(k・uL1´+(1-k)・uSm´、k・vL1´+(1-k)・vSm´)となる。これが、上記透過光の色度座標(k・uLtyp´+(1-k)・uStyp´,k・vLtyp´(1-k)・+vStyp´)と近似した範囲(設計範囲)となるように最適な組み合わせを選択する。すなわち、下記(7)式および(8)式を満たすような組み合わせを決定すればよい。

k・uL1´+(1-k)・uSm´ ≒ k・uLtyp´(1-k)・+uStyp´   …(7)
k・vL1´+(1-k)・vSm´ ≒ k・vLtyp´+(1-k)・vStyp´   …(8)
Next, from the chromaticity coordinates (u Ln ′, v Ln ′) of the actual LED light source to be considered for combination and the chromaticity coordinates (u Sm ′, v Sm ′) of the light conversion member, virtual transmission is performed in the same manner as described above. Light chromaticity coordinates can be calculated easily. In the above chromaticity coordinates, n is 1, 2,..., N, m is 1, 2,..., M, and there are as many types as there are LED light sources (n) and light conversion members (m) Represents. For example, when the case of one LED light source is considered (n = 1), the combination is calculated from the chromaticity coordinates (k · u L1 ′ + (1−k) · u Sm ′, k · v L1 ′ + ( 1-k) · v Sm ' ) to become. This is a range (design range) approximated to the chromaticity coordinates (k · u Ltyp '+ (1-k) · u Type ', k · v Ltyp '(1-k) · + v Type ') of the transmitted light. Select the optimal combination so that That is, a combination that satisfies the following expressions (7) and (8) may be determined.

k · u L1 ′ + (1−k) · u Sm ′ ≒ k · u Ltyp ′ (1−k) · + u Type ′ (7)
k · v L1 ′ + (1−k) · v Sm ′ ≈ k · v Ltyp ′ + (1−k) · v Type ′ (8)
 これは、色度座標(u´,v´)上で、設計目標の色度座標をもつLED光源および光変換部材の各色度座標を結んだ線分と実際に組み合わせを検討する任意のLED光源および光変換部材の各色度座標を結んだ線分の交点を算出し、その交点が、目標の透過光の色度座標に、最も近くなるような組み合わせを選択すればよいことを表す。なお、この“目標の透過光の色度座標”は、設計目標の色度座標をもつLED光源および光変換部材の色度座標を結んだ線分の上に位置する。 This is an arbitrary LED light source that considers a combination with an LED light source having a design target chromaticity coordinate on the chromaticity coordinates (u ′, v ′) and a line segment connecting the chromaticity coordinates of the light conversion member. In addition, the intersection of the line segments connecting the chromaticity coordinates of the light conversion member is calculated, and the combination is selected so that the intersection is closest to the chromaticity coordinates of the target transmitted light. This “target transmitted light chromaticity coordinate” is located on a line segment connecting the chromaticity coordinates of the LED light source and the light conversion member having the designed target chromaticity coordinates.
 ところで、LED光源にも蛍光体分散シートから個片化される光変換部材にもばらつきは存在する。上記では、LED光源は1つ(n=1)の場合を例に説明したが、実際には複数個のLED光源を用意し、複数個のLED光源と複数個の個片化して得られた光変換部材の中から最適な組み合わせを選択する。その際、LED光源と光変換部材の各々を色度座標でクラス分けし、所望の色度座標を得られるクラス同士の組みあわせを最適化するように決定することが好ましい。このとき、設計目標の色度座標に最も近い色度座標が得られるようにクラスの組み合わせを決定してもよいが、それよりは、クラスの全ての組み合わせを考慮して、ばらつきが最も少なくなるような組み合わせを決定することが好ましい。これにより、得られる透過光(合成光)について、所望の色度座標を有する透過光(合成光)のばらつきが少ない一群のLED照明光源を得ることができる。 Incidentally, the LED light source and the light conversion member separated from the phosphor dispersion sheet have variations. In the above description, the case where the number of LED light sources is one (n = 1) has been described as an example, but actually, a plurality of LED light sources are prepared and obtained by dividing a plurality of LED light sources and a plurality of pieces. An optimum combination is selected from the light conversion members. At that time, it is preferable to classify each of the LED light source and the light conversion member by chromaticity coordinates and to determine a combination of classes that can obtain desired chromaticity coordinates. At this time, the combination of classes may be determined so that the chromaticity coordinates closest to the design target chromaticity coordinates can be obtained, but the variation is minimized by considering all the combinations of classes. It is preferable to determine such a combination. As a result, it is possible to obtain a group of LED illumination light sources with less variation in transmitted light (synthetic light) having desired chromaticity coordinates with respect to the obtained transmitted light (synthesized light).
 ばらつきが最も少なくなる組み合わせを決定する場合の一例を図6に示したが、この図6は、色度座標によって光変換部材を6クラス(1~6)に、LED光源も6クラス(A~F)にクラス分けしたときに、1-F,2-E、3-D,4-C,5-B,6-Aと組み合わせた例である。このように、組み合わせたLED光源と光変換部材との色度座標の線分を引き、各線分の交点が最も狭い範囲となるようにすると、バラつきの少ない安定した色調のLED照明光源が得られる。 FIG. 6 shows an example in the case of determining the combination that minimizes the variation. FIG. 6 shows that the light conversion member is classified into 6 classes (1 to 6) and the LED light source is classified into 6 classes (A to A) according to chromaticity coordinates. This is an example of combination with 1-F, 2-E, 3-D, 4-C, 5-B, and 6-A when classified into F). In this way, when the line segment of the chromaticity coordinates of the combined LED light source and the light conversion member is drawn so that the intersection of each line segment is in the narrowest range, an LED illumination light source with a stable color tone with little variation can be obtained. .
1…色度座標検査装置、2…固定部、3…LED光源、4…分光測定器、5…色度座標算出部、6…記憶部、11…色度座標検査装置、50…蛍光体分散シート。 DESCRIPTION OF SYMBOLS 1 ... Chromaticity coordinate inspection apparatus, 2 ... Fixed part, 3 ... LED light source, 4 ... Spectrometer, 5 ... Chromaticity coordinate calculation part, 6 ... Memory | storage part, 11 ... Chromaticity coordinate inspection apparatus, 50 ... Phosphor dispersion | distribution Sheet.

Claims (9)

  1.  ガラスシート中に蛍光体粒子を分散して含有する蛍光体分散シートの色度座標検査方法であって、
     前記蛍光体分散シートの平面において、所定の大きさの区画を設定する区画設定工程と、
     前記区画設定工程で設定された区画の1つに、一方の面から励起光を入射させ、その励起光により前記蛍光体分散シートの他方の面から出射して得られる透過光を分光測定する分光測定工程と、
     前記分光測定工程により得られた分光データから色度座標を算出する色度座標算出工程と、
     前記分光測定工程および前記色度座標算出工程を、前記区画設定工程で設定された区画ごとに繰り返し行い、前記区画と前記色度座標とを関連付けて記憶させるマッピング工程と、
    を有することを特徴とする蛍光体分散シートの色度座標検査方法。
    A method for inspecting chromaticity coordinates of a phosphor dispersion sheet containing phosphor particles dispersed in a glass sheet,
    A section setting step for setting a section of a predetermined size in the plane of the phosphor dispersion sheet;
    Spectroscopy in which excitation light is incident on one of the sections set in the section setting step, and transmitted light obtained from the other surface of the phosphor dispersion sheet is spectroscopically measured by the excitation light. Measuring process;
    A chromaticity coordinate calculating step of calculating chromaticity coordinates from the spectral data obtained by the spectroscopic measurement step;
    A mapping step of repeatedly performing the spectroscopic measurement step and the chromaticity coordinate calculation step for each partition set in the partition setting step, and storing the partition and the chromaticity coordinate in association with each other;
    A method for inspecting chromaticity coordinates of a phosphor-dispersed sheet, comprising:
  2.  前記分光測定工程と同時に、その区画における前記蛍光体分散シートの厚さを測定する厚さ測定工程を行い、
     前記マッピング工程において、前記色度座標に加えて前記厚さ測定工程で測定された厚さを前記区画と関連付けて記憶させる請求項1記載の蛍光体分散シートの色度座標検査方法。
    Simultaneously with the spectroscopic measurement step, a thickness measurement step of measuring the thickness of the phosphor dispersion sheet in the section is performed,
    The chromaticity coordinate inspection method for a phosphor-dispersed sheet according to claim 1, wherein, in the mapping step, the thickness measured in the thickness measurement step in addition to the chromaticity coordinate is stored in association with the section.
  3.  前記分光測定工程において、前記透過光として前記蛍光体分散シートの表面から散乱する角度が異なる2以上の透過光を使用する請求項1または2記載の蛍光体分散シートの色度座標検査方法。 The chromaticity coordinate inspection method for a phosphor dispersion sheet according to claim 1 or 2, wherein, in the spectroscopic measurement step, two or more transmitted lights having different angles scattered from the surface of the phosphor dispersion sheet are used as the transmitted light.
  4.  前記分光測定工程が終了した後、次に測定する区画に前記励起光が入射されるように前記蛍光体分散シートを移動させる請求項1~3のいずれか1項に記載の蛍光体分散シートの色度座標検査方法。 The phosphor dispersion sheet according to any one of claims 1 to 3, wherein after the spectroscopic measurement step is completed, the phosphor dispersion sheet is moved so that the excitation light is incident on a section to be measured next. Chromaticity coordinate inspection method.
  5.  ガラスシート中に蛍光体粒子を分散して含有する蛍光体分散シートの製造方法であって、
     請求項1~4のいずれか1項記載の蛍光体分散シートの色度座標検査方法により、前記蛍光体分散シートに区画と色度座標とを関連付けて記憶されたマッピング情報を付加したことを特徴とする蛍光体分散シートの製造方法。
    A method for producing a phosphor dispersion sheet containing phosphor particles dispersed in a glass sheet,
    5. The phosphor dispersion sheet according to claim 1, wherein mapping information stored in association with sections and chromaticity coordinates is added to the phosphor dispersion sheet by the chromaticity coordinate inspection method for the phosphor dispersion sheet according to any one of claims 1 to 4. A method for producing a phosphor-dispersed sheet.
  6.  前記マッピング情報として、さらに区画ごとの厚さのデータを有する請求項5記載の蛍光体分散シートの製造方法。 The method for producing a phosphor-dispersed sheet according to claim 5, further comprising thickness data for each section as the mapping information.
  7.  請求項5又は6記載の蛍光体分散シートの製造方法により得られた蛍光体分散シートを、所定の大きさに個片化する光変換部材の製造方法であって、
     前記個片化する際に、前記マッピング情報に基づいて前記光変換部材をクラス分けすることを特徴とする光変換部材の製造方法。
    A phosphor conversion sheet obtained by the phosphor dispersion sheet manufacturing method according to claim 5 or 6, wherein the phosphor conversion sheet is separated into a predetermined size.
    The method of manufacturing a light conversion member, wherein the light conversion member is classified into classes based on the mapping information when the pieces are separated.
  8.  LED素子に、請求項1~4のいずれか1項記載の色度座標検査方法により色度座標が算出された蛍光体分散シートを個片化して得られる光変換部材を組み合わせ、LED素子から出射される光を、前記光変換部材を通して外部へ照射可能とするLEDパッケージの製造方法において、
     前記LED素子と前記光変換部材とを組み合わせるにあたって、前記LED素子から出射される励起光を分光測定するLED分光測定工程と、
     前記LED分光測定工程により得られた励起光の分光データから色度座標を算出するLEDの色度座標算出工程と、
     前記LEDの色度座標算出工程で得られた励起光の色度座標と、前記色度座標検査方法により得られた蛍光体分散シートの色度座標と、から得られる仮想の透過光の色度座標を算出する透過光の色度座標算出工程と、
     前記透過光の色度座標算出工程で得られた仮想の透過光の色度座標から、所望の透過光となる組み合わせを決定する組み合わせ最適化工程と、
    を有することを特徴とするLEDパッケージの製造方法。
    5. The LED element is combined with a light conversion member obtained by dividing the phosphor dispersion sheet whose chromaticity coordinates are calculated by the chromaticity coordinate inspection method according to any one of claims 1 to 4, and emitted from the LED element. In the manufacturing method of the LED package that enables the light to be emitted to the outside through the light conversion member,
    In combining the LED element and the light conversion member, an LED spectroscopic measurement step of spectroscopically measuring the excitation light emitted from the LED element;
    LED chromaticity coordinate calculation step of calculating chromaticity coordinates from spectral data of excitation light obtained by the LED spectroscopic measurement step;
    The chromaticity of the virtual transmitted light obtained from the chromaticity coordinate of the excitation light obtained in the chromaticity coordinate calculation step of the LED and the chromaticity coordinate of the phosphor dispersion sheet obtained by the chromaticity coordinate inspection method A chromaticity coordinate calculation step of transmitted light for calculating coordinates;
    A combination optimizing step for determining a combination to be a desired transmitted light from the chromaticity coordinates of the virtual transmitted light obtained in the chromaticity coordinate calculating step of the transmitted light;
    A method for manufacturing an LED package, comprising:
  9.  前記LED素子が複数個のLED素子であり、前記LED分光測定工程および前記LEDの色度座標算出工程を、前記複数個のLED素子のそれぞれに対して繰り返し行い、前記LED素子と前記励起光の色度座標とを関連付けて記憶させるLEDマッピング工程を有する請求項8記載のLEDパッケージの製造方法。 The LED element is a plurality of LED elements, and the LED spectroscopic measurement step and the LED chromaticity coordinate calculation step are repeated for each of the plurality of LED elements, and the LED element and the excitation light The LED package manufacturing method according to claim 8, further comprising an LED mapping step of storing the chromaticity coordinates in association with each other.
PCT/JP2014/065131 2013-06-13 2014-06-06 Chromaticity coordinate inspection method for fluorescent-material-dispersed sheet, manufacturing method for fluorescent-material-dispersed sheet, manufacturing method for light conversion member, and manufacturing method for led package WO2014199926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-124621 2013-06-13
JP2013124621 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014199926A1 true WO2014199926A1 (en) 2014-12-18

Family

ID=52022222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065131 WO2014199926A1 (en) 2013-06-13 2014-06-06 Chromaticity coordinate inspection method for fluorescent-material-dispersed sheet, manufacturing method for fluorescent-material-dispersed sheet, manufacturing method for light conversion member, and manufacturing method for led package

Country Status (1)

Country Link
WO (1) WO2014199926A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023425A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
WO2012144030A1 (en) * 2011-04-20 2012-10-26 株式会社エルム Light emitting device and method for manufacturing same
JP2013065644A (en) * 2011-09-16 2013-04-11 Panasonic Corp System and method for manufacturing light emitting element, and system and method for manufacturing light emitting element package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023425A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
WO2012144030A1 (en) * 2011-04-20 2012-10-26 株式会社エルム Light emitting device and method for manufacturing same
JP2013065644A (en) * 2011-09-16 2013-04-11 Panasonic Corp System and method for manufacturing light emitting element, and system and method for manufacturing light emitting element package

Similar Documents

Publication Publication Date Title
Gorrotxategi et al. Optical efficiency characterization of LED phosphors using a double integrating sphere system
Yoshizawa Handbook of optical metrology: Principles and Applications
US8981402B2 (en) White LED lighting device, and optical lens
CN103344613B (en) A kind of material reflection characteristic measurement apparatus and method
JP2015167131A (en) Solid state illumination system with improved color quality
JP2023021247A (en) Spectroscopic measurement method
JP6623711B2 (en) Inspection device
JP2009229239A (en) Particle size measuring device and method
JP6967835B2 (en) Spectral radiation measuring device
JP2017120200A5 (en)
TWI523275B (en) A manufacturing method of a light-emitting element, and a manufacturing apparatus for a light-emitting element
JP2014149194A (en) Measuring device and measuring method
Bois et al. Measuring, simulating and optimizing current LED phosphor systems to enhance the visual quality of lighting
WO2014199926A1 (en) Chromaticity coordinate inspection method for fluorescent-material-dispersed sheet, manufacturing method for fluorescent-material-dispersed sheet, manufacturing method for light conversion member, and manufacturing method for led package
Leyre et al. Experimental determination of the absorption and scattering properties of YAG: Ce phosphor
CN108645803A (en) A kind of optical coupled test device of alternating temperature integrating sphere
JP2012208024A (en) Measuring method of florescence spectrum of fluorescent body and measuring device
Wu et al. Phosphor modeling and characterization
KR20100044217A (en) Device for determining the conversion power
US20170248470A1 (en) Device and method for calibrating display device
Markov et al. Integral measurements of the color of nanodimensional radiators
Wang et al. Modeling and parametric study of light scattering, absorption and emission of phosphor in a white light-emitting diode
Zwinkels Surface fluorescence: the only standardized method of measuring luminescence
CN203337545U (en) Material reflection characteristic measuring device
Zwinkels Metrology of photoluminescent materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP