WO2014199627A1 - Drum-type washing machine - Google Patents

Drum-type washing machine Download PDF

Info

Publication number
WO2014199627A1
WO2014199627A1 PCT/JP2014/003079 JP2014003079W WO2014199627A1 WO 2014199627 A1 WO2014199627 A1 WO 2014199627A1 JP 2014003079 W JP2014003079 W JP 2014003079W WO 2014199627 A1 WO2014199627 A1 WO 2014199627A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
vibration
temperature
vibration displacement
unbalance
Prior art date
Application number
PCT/JP2014/003079
Other languages
French (fr)
Japanese (ja)
Inventor
友弘 藤井
明宏 細川
健 蒲生
内山 亘
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112014002821.5T priority Critical patent/DE112014002821T5/en
Priority to JP2015522540A priority patent/JP6064148B2/en
Priority to CN201480033560.5A priority patent/CN105308229B/en
Publication of WO2014199627A1 publication Critical patent/WO2014199627A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • D06F37/225Damping vibrations by displacing, supplying or ejecting a material, e.g. liquid, into or from counterbalancing pockets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/48Preventing or reducing imbalance or noise
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters

Definitions

  • the present invention relates to a drum type washing machine provided with a rotating body control device (ball balancer).
  • the present invention relates to a drum-type washing machine that grasps an unbalanced state due to a bias in a drum such as laundry clothes, shifts to a dehydration step by an activation method corresponding to the grasped state, and suppresses vibration at the time of activation.
  • the conventional drum type washing machine is provided with a rotating body control device (ball balancer).
  • a rotating body control device ball balancer
  • the ball in the ball balancer moves to a position opposite to the clothing bias.
  • the ball in the ball balancer moves in the direction opposite to the bias of the clothing in the drum, and the unbalanced state due to the clothing is eliminated.
  • the ball in the ball balancer when the drum rotates at a low speed, the ball in the ball balancer is located at the bottom of the ball balancer and does not move upward due to gravity.
  • the rotational speed of the drum reaches a constant rotational speed that adds rotational acceleration exceeding the gravity of the ball, the ball in the ball balancer moves upward. That is, by controlling the movement of the ball in the ball balancer and arranging the ball at an appropriate position with respect to the bias of the clothing, the drum vibration generated in the unbalanced state is suppressed.
  • fluid such as silicone oil is enclosed in the ball balancer. This prevents ball collision noise and stabilizes the movement of the ball in the ball balancer.
  • Patent Document 1 As an example of a conventional drum-type washing machine, a washing machine described in Patent Document 1 will be described with reference to FIGS. 11 and 12.
  • FIG. 11 is a configuration diagram of a conventional drum-type washing machine.
  • FIG. 12 is a control block diagram of a conventional drum type washing machine.
  • a washing tub 20A is elastically fixed to a drum type washing machine body 10A.
  • the washing tub 20A accommodates the drum 30A, and a motor 40A for driving the drum 30A is provided at a position on the back surface of the washing tub 20A.
  • a door 70 ⁇ / b> A provided at a clothing input port is disposed.
  • the washing tub 20A is supported by a damper 220 from the bottom of the drum type washing machine main body 10A, and is supported by suspension springs 180 and 190 disposed on the top of the drum type washing machine main body 10A.
  • a vibration detection unit 50A configured from an acceleration sensor 501 or the like is provided on the bottom of the rear part of the washing tub 20A and detects vibration of the washing tub 20A.
  • Control device 60A controls the driving of drum 30A based on the detection signal of vibration detection unit 50A.
  • the control device 60A includes at least a microcomputer 503, a motor control circuit 504, a display panel circuit 505, a power supply circuit 507, and the like.
  • the microcomputer 503 further includes an unbalance amount detection unit 508, an unbalance position detection unit 509, and the like that calculate clothing bias and the like.
  • the microcomputer 503 calculates the signal from the vibration detection unit 50A that detects the vibration of the washing tub 20A by taking only the signal component through the filter circuit 502. At this time, the unbalance amount detector 508 calculates the unbalance amount, and the unbalance position detector 509 calculates the unbalance position.
  • the motor control circuit 504 drives and controls the motor 40A based on the vibration displacement detected by the vibration detector 50A. Thereby, the rotation of the drum 30A is controlled so as to eliminate the unbalanced state of the uneven clothing and the like.
  • the vibration detection unit 50A detects the vibration displacement while maintaining the rotation speed of the drum 30A at 300 rpm. Then, the ratio of each signal value is calculated
  • the vibration detection unit 50A detects the unbalance position and the unbalance amount due to the bias of the laundry in the drum 30A while maintaining the rotation speed of the drum 30A at 300 rpm. It is detected from vibration displacement.
  • the resonance rotational speed of a drum type washing machine is usually about 200 rpm to 400 rpm. Therefore, when the dehydration step is started, vibration of the drum 30A is detected in the vicinity of the resonance point (resonance rotation speed).
  • the drum 30A may not be able to start rotating because the vibration of the drum 30A at the resonance point increases. Therefore, the unbalance amount and unbalance position may not be specified.
  • the vibration displacement can be detected if the vibration displacement of the drum 30A at the resonance point is not more than a certain value.
  • the vibration displacement of the drum 30A at the resonance point is not always below a certain level. Therefore, there is a problem that it cannot be accurately detected whether or not the dehydration step can be started.
  • the dehydration step if the unbalance amount and the unbalance position cannot be specified in an attempt to increase the number of rotations to 300 rpm, the rotation of the drum 30A is temporarily stopped and the dehydration step is started again. It was supported by restarting the startup.
  • the capacity of the clothes is, for example, 1 kg, 3 kg, 6 kg, 9 kg, etc.
  • re-startup can occur. That is, the weight at the time of rotation of drum 30A changes by changing the capacity of clothes. For this reason, there is a problem that even in the same unbalanced state, the degree of vibration changes and reactivation is generated.
  • the present invention provides a drum-type washing machine that can reduce the occurrence of re-starting of the dewatering step by suppressing the vibration of the drum and smoothly starting when dehydration is started.
  • the drum type washing machine of the present invention includes a housing, a washing tub supported inside the housing, a rotating tub rotatably accommodated in the washing tub, and a drive unit that rotationally drives the rotating tub.
  • the rotating body control device provided in the rotating tub, the vibration detecting unit provided in the washing tub, the cloth amount detecting unit for calculating the amount of cloth in the rotating tub, and the drive unit based on the output from the vibration detecting unit A control unit.
  • the control unit has a configuration for controlling the rotating body control device at the start of dehydration based on the vibration displacement detected by the vibration detection unit and the cloth amount detected by the cloth amount detection unit.
  • the cloth amount and the vibration detection unit Measure the vibration with, and accurately grasp the unbalanced state before the resonance speed.
  • the vibration of a washing tub can be suppressed by controlling a rotating body control apparatus according to the imbalance state (unbalance amount and unbalance position) of clothing. As a result, it is possible to effectively prevent the occurrence of an operation that repeats the restarting of the activation, and a stable operation at the time of dehydration activation can be achieved.
  • FIG. 1 is a configuration diagram of a drum-type washing machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a control block diagram of the drum type washing machine.
  • FIG. 3A is a front view showing an unbalanced state of the laundry in the circumferential direction of the rotating tub of the drum type washing machine.
  • FIG. 3B is a side view showing an unbalanced state on the front side in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3C is a side view showing an unbalanced state of the rear side in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3D is a side view showing an unbalanced state on the center side in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3A is a front view showing an unbalanced state of the laundry in the circumferential direction of the rotating tub of the drum type washing machine.
  • FIG. 3B is a side view showing an unbalanced state on the front
  • FIG. 3E is a side view showing a diagonally unbalanced state in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 4 is a diagram illustrating a change in the current value of the motor when the laundry in the drum type washing machine is in an unbalanced state.
  • FIG. 5 is a correlation diagram showing the relationship between the unbalance amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit, using the clothing capacity as a parameter.
  • FIG. 6 is a correlation diagram showing the relationship between the unbalance position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter.
  • FIG. 7A is a diagram showing an output waveform of left-right vibration displacement when a drum of a drum type washing machine provided with a conventional fluid balancer is rotated.
  • FIG. 7B is a diagram illustrating an output waveform of the left-right vibration displacement when the drum of the drum type washing machine equipped with the rotating body control device (ball balancer) according to the embodiment of the present invention is rotated.
  • FIG. 8 is a control block diagram of the drum type washing machine in the second embodiment of the present invention.
  • FIG. 9 is a correlation diagram showing the relationship between the unbalanced amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit using temperature as a parameter.
  • FIG. 10 is a correlation diagram showing the relationship between the unbalanced position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter.
  • FIG. 11 is a configuration diagram of a conventional drum-type washing machine.
  • FIG. 12 is a control block diagram of a conventional drum type washing machine.
  • Embodiment 1 (Embodiment 1) Below, the drum type washing machine in Embodiment 1 of this invention is demonstrated using FIG. 1 and FIG.
  • FIG. 1 is a configuration diagram of a drum-type washing machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a control block diagram of the drum type washing machine.
  • the drum type washing machine of the present embodiment includes at least a drum type washing machine body 1 constituting a housing, a washing tub 22 accommodated in the drum type washing machine body 1, It comprises a drum 3, which constitutes a rotating tub, a motor 12, a ball balancer 8 which constitutes a rotating body control device, a vibration detection unit 10 comprising a vibration sensor, a control unit 13, and the like.
  • the washing tub 22 accommodates the drum 3 constituting the rotating tub inside, and is supported by the drum type washing machine main body 1 constituting the housing by the damper 19.
  • the drum 3 stores the laundry 18.
  • a baffle 7 composed of three pieces is provided, and the laundry 18 is lifted and stirred when the drum 3 rotates.
  • the drum 3 has, for example, a horizontal axis or an inclined rotation axis and is rotatably accommodated in the washing tub 22.
  • the ball balancer 8 constituting the rotating body control device is provided on the laundry input side on the front side of the drum 3.
  • the ball balancer 8 contains therein a plurality of balls 9 (for example, iron balls) and oil of a predetermined viscosity (for example, silicone oil) having a temperature characteristic of, for example, a viscosity of 100 cs.
  • the ball balancer 8 rotates together with the drum 3, and the ball balancer 8 has a configuration in which, for example, the balls 9 arranged in a row can freely move in the rotation direction due to the viscosity of the internal oil.
  • the vibration detection unit 10 is provided on the front side (front side) upper portion of the washing tub 22 and detects vibrations in multi-axis directions such as three axes. Specifically, the vibration detection unit 10 detects the vibration displacement in the left-right direction (left-right vibration displacement), the vibration displacement in the front-rear direction (front-rear vibration displacement), and the vibration displacement in the vertical direction (vertical vibration displacement) in the upper part of the washing tub 22. Detect. Based on the magnitude of the vibration displacement in each direction detected by the vibration detector 10, the controller 13 determines whether to increase, stop, or maintain the rotational speed of the drum 3.
  • a drum pulley 4 provided on the same axis as the drum 3 is provided on the back side of the drum 3.
  • the drum 3 rotates when the drive of the motor 12 is transmitted from the motor pulley 5 to the drum pulley 4 via the belt 6.
  • the motor 12 includes a rotor position detector 15 that detects the rotor position of the motor 12.
  • the rotor position detector 15 detects the rotor position of the motor 12 and transmits a signal to the rotation controller 132 of the controller 13.
  • the rotation control unit 132 controls the rotation drive of the motor 12 via the drive unit 133 based on the rotor position signal.
  • the motor 12 is comprised with a permanent magnet synchronous motor, for example. Then, the rotor position of the motor 12 is detected by the rotor position detector 15 and input to the rotation controller 132 of the controller 13. Thus, the rotation of the motor 12 is controlled without stepping out.
  • the control part 13 which performs drive control of the drum-type washing machine main body 1 has the starting determination part 131, the rotation control part 132 mentioned above, etc.
  • the activation determination unit 131 includes a current detection unit 101, a cloth amount detection unit 102, a rotational position detection unit 103, a cloth amount correction unit 104, an unbalance position calculation unit 30, an unbalance amount calculation unit 31, and the like.
  • the current detection unit 101 detects a current flowing through the motor 12.
  • the rotation position detection unit 103 detects an unbalance position in the circumferential direction in the drum 3 due to the bias of the laundry 18 from the change in current detected by the current detection unit 101.
  • the unbalance amount calculation unit 31 detects the unbalance amount of the laundry 18 in the drum 3 from the left and right vibration displacement detected by the vibration detection unit 10.
  • the unbalance position calculation unit 30 calculates the unbalance position of the laundry 18 in the depth direction of the drum 3 from the longitudinal vibration displacement detected by the vibration detection unit 10 based on the unbalance amount calculated by the unbalance amount calculation unit 31.
  • the cloth amount detection unit 102 detects the amount of cloth such as the capacity of the laundry 18 in the drum 3.
  • the cloth amount correction unit 104 corrects the value of the vibration displacement detected by the vibration detection unit 10 from the cloth amount detected by the cloth amount detection unit 102.
  • the rotation control part 132 of the control part 13 is provided with the drive part 133 which drives the motor 12 inside as mentioned above.
  • the drive unit 133 drives the motor 12 in synchronization with the rotor position signal of the motor 12 detected by the rotor position detection unit 15.
  • the motor 12 rotates the drum 3 via the motor pulley 5, the belt 6 and the drum pulley 4 that constitute the speed reduction mechanism shown in FIG.
  • the vibration detector 10 detects the vibration displacement of the washing tub 22 generated by the rotation of the drum 3.
  • FIG. 3A is a front view showing an unbalanced state of the laundry in the circumferential direction of the rotating tub of the drum type washing machine.
  • FIG. 3B is a side view showing an unbalanced state on the front side in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3C is a side view showing an unbalanced state of the rear side in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3D is a side view showing an unbalanced state on the center side in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3E is a side view showing a diagonally unbalanced state in the depth direction of the rotating tub of the drum type washing machine.
  • FIG. 3A is a front view showing a state where the unbalanced position A is generated with the laundry 18 sticking to the inner wall of the drum 3.
  • FIG. 3B shows a state in which the unbalance position A of the laundry 18 is generated on the front side (front side).
  • FIG. 3C shows a state in which the unbalance position A of the laundry 18 has occurred on the rear side.
  • FIG. 3D shows a state in which the unbalance position A of the laundry 18 occurs on the center side of the drum 3.
  • FIG. 3E shows a state in which the unbalance position A of the laundry 18 is generated at the diagonal of the drum.
  • FIG. 4 is a diagram showing a change in the current value of the motor when the laundry in the drum type washing machine is in an unbalanced state. Specifically, when the unbalance position A is in the lower side in the rotating drum 3, it is lifted upward against the unbalanced weight. Therefore, a large amount of current is consumed, and the current value detected by the current detection unit 101 increases. On the contrary, when the unbalance position A is at the upper part of the drum 3, the current consumption is minimized because the unbalance weight is taken downward according to gravity. Therefore, the current value detected by the current detection unit 101 decreases. Thus, when the drum 3 is unbalanced, the current value of the motor 12 fluctuates, and the current change is linked to the rotation of the unbalance position A. Further, the current value increases in proportion to the amount of unbalance.
  • FIG. 4 shows a change in the current value of the motor 12 in the rotating state. This is a state in which the drum 3 is rotating at a rotational speed equal to or higher than the minimum rotational speed at which the laundry 18 sticks to the inner wall of the drum 3 and below the maximum rotational speed at which the ball 9 in the ball balancer 8 does not rotate with the rotation of the drum 3. Show.
  • the minimum rotational speed is, for example, about 60 rpm to 70 rpm, and corresponds to the rotational speed at which the gravity applied to the laundry 18 and the centrifugal force of the drum 3 are balanced.
  • the maximum rotation speed usually depends on the viscosity of the oil and the weight of the ball 9, but the ball 9 is biased toward the bottom by the oil having a predetermined viscosity contained in the ball balancer 8, for example, the rotation speed of about 80 rpm. It corresponds to. Therefore, in the above state, when the drum 3 rotates at 80 rpm or more, the ball 9 rotates and moves in the ball balancer 8 with a delay from the rotation of the drum 3.
  • the current detection unit 101 sets the current value of the motor 12 as shown in FIG. Detected as a change. That is, in FIG. 4, when the unbalanced position A of the laundry 18 moves from the bottom to the top of the drum 3, the current value for driving the motor 12 is changed from the minimum current value b in synchronization with the rotation period of the drum 3. It shows that it can be detected as a change to the maximum current value a (current difference d). As a result, while the drum 3 is being driven at the same rotation speed, the current detection unit 101 detects the change in the current value of the motor 12 at a repetition period c synchronized with the rotation speed.
  • the unbalance position A varies in a complex manner depending on the actual position of the laundry 18. Specifically, as shown in FIG. 3B to FIG. 3E, it can be roughly classified into four. For example, when the unbalance position A is in front of the drum 3 in the depth direction (front-rear direction) of the drum 3 as shown in FIG. 3B, or when the unbalance position A is at the rear side as shown in FIG. 3C. and so on. 3D, when the unbalance position A is on the center side (intermediate position) of the drum 3, or as shown in FIG. 3E, the unbalance position A is a diagonal position between the front side and the rear side of the drum 3. (For example, 180 degrees).
  • the vibration detection unit 10 detects and controls various unbalanced states such as an unbalanced position and an unbalanced amount due to a change in clothing capacity.
  • various unbalanced states such as an unbalanced position and an unbalanced amount due to a change in clothing capacity.
  • the relationship between the vibration displacement due to the change in clothing capacity and the unbalanced state is experimentally measured as shown in FIGS.
  • the unbalanced state is detected and controlled more accurately according to the clothing capacity during actual driving.
  • FIG. 5 is a correlation diagram showing the relationship between the unbalanced amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit, using the clothing capacity as a parameter.
  • S1 in the figure indicates the relationship between the unbalance amount and the lateral vibration displacement when the clothing capacity is small.
  • S2 shows the relationship when the clothing capacity is medium
  • S3 shows the relationship when the clothing capacity is large.
  • the small capacity is 20% of the large capacity
  • the medium capacity is 60% of the large capacity
  • the large capacity is the rated capacity.
  • the capacity classification is not limited to three, and the more the classification, the more accurately the unbalanced state can be grasped.
  • S11 in the figure indicates the left-right vibration displacement on S1 when the unbalance amount is 500 g and the clothing capacity is small.
  • S21 indicates the left-right vibration displacement on S2 and S3 when the clothing capacity is medium, and S31 indicates when the clothing capacity is large.
  • FIG. 6 is a correlation diagram showing the relationship between the unbalance position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter.
  • Z1 to Z7 in the figure indicate the respective unbalance amounts corresponding to 100 g to 2000 g when the clothing capacity is small.
  • C1 in the figure indicates the relationship between the unbalance position and the longitudinal vibration displacement when the unbalance amount is 500 g when the clothing capacity is small.
  • C2 indicates the relationship between the unbalanced position and the longitudinal vibration displacement when the unbalanced amount is 500 g when the clothing capacity is medium, and C3 when the clothing capacity is large.
  • the correlation diagram other than the case where the clothing capacity is medium capacity and large capacity and the unbalance amount is 500 g is not shown.
  • C11 in the figure indicates the longitudinal vibration displacement on C1 when the unbalance amount is 500 g, the clothing capacity is small, and the unbalance position is “front middle”.
  • C21 indicates the longitudinal vibration displacement when the unbalanced position on C2 and C3 is “front middle” when the clothing capacity is medium, and C31 is when the clothing capacity is large.
  • FIG. 5 shows that the relationship between the left and right vibration displacement detected by the vibration detector 10 and the unbalance amount is the position shown in FIGS. 3B to 3E when the drum 3 is driven under the following conditions. It shows that there is a correlation regardless of the relationship.
  • the condition is a case where the left-right vibration displacement and the unbalance amount are detected in a state in which the rotation speed of the drum 3 rotating without the ball 9 of the ball balancer 8 being fixed to the bottom is maintained within a range of 90 rpm to 150 rpm, for example. .
  • This rotational speed is lower than the resonant rotational speed of the drum 3, which is convenient for detecting an unbalanced state.
  • FIG. 5 shows the result of experimental measurement of the relationship between the left-right vibration displacement and the unbalance amount for each clothing capacity with the rotation speed maintained at 120 rpm.
  • FIG. 6 shows the results of experimental measurement of the relationship between the longitudinal vibration displacement and the unbalance position for each unbalance amount with the clothing capacity being small and the rotation speed maintained at 120 rpm.
  • weights corresponding to clothing capacities are evenly arranged on the inner wall surface of the drum 3.
  • the drum 3 is rotationally driven in a state where a weight (for example, 500 g) corresponding to the unbalance amount is disposed at a predetermined unbalance position.
  • a weight for example, 500 g
  • the left-right vibration displacement and the front-back vibration displacement generated when the drum 3 is rotated in the above state are detected and plotted in FIG. 5 and FIG.
  • the rotating shaft of the drum 3 is supported and fixed with the back side of the washing tub 22 as a shaft, and the vibration detecting unit 10 is provided at the upper part on the front side at a distance away from the shaft. Therefore, although the longitudinal vibration displacement and the vertical vibration displacement are affected by the unbalanced position of the drum 3 in the depth direction, the influence on the lateral vibration displacement is small. That is, the left / right vibration displacement is not affected by the unbalanced position in the depth direction. Thereby, the relationship between the unbalance amount and the left-right vibration displacement can be obtained with high accuracy.
  • the left-right vibration displacement is affected by the increase or decrease of the clothing capacity accommodated in the drum 3 as described above. That is, when the weight of the entire drum 3 increases due to an increase in the clothing capacity, inertia due to the weight acts in a direction to suppress the vibration at the beginning of the vibration. Therefore, in FIG. 5, the relationship between the left and right vibration displacement and the unbalance amount at the time of a small capacity is shown by S1 from the clothing capacity detected before washing (for example, before supplying washing water) by the cloth amount detection unit 102. Similarly, the relationship at medium capacity is indicated by S2, and the relationship at large capacity is indicated by S3.
  • the unbalance amount is 500 g from S11 on S1.
  • the left-right vibration displacement is as small as 1.0 mm from S21 on S2 in the middle capacity, and left and right from S31 on S3 in the large capacity.
  • the vibration displacement is further reduced to 0.8 mm. Therefore, if the clothing capacity is a small capacity, when the left-right vibration displacement is 1.0 mm, the unbalance amount is 400 g from S1. Furthermore, when the left-right vibration displacement is 0.8 mm, the unbalance amount is 300 g from S1.
  • the activation determination unit 131 of the control unit 13 illustrated in FIG. 2 may erroneously determine the unbalance amount and may erroneously activate the activation method.
  • the unbalance position in the depth direction of the drum 3 can be calculated using the characteristics for each unbalance amount indicated by Z1 to Z7 in the figure. it can.
  • the relationship between the longitudinal vibration displacement of the washing tub 22 and the unbalance position for each unbalance amount shown in FIG. 6 is data obtained experimentally as described above.
  • the longitudinal displacement of the vibration detection unit 10 can be detected as the longitudinal vibration displacement from the unbalance position in the depth direction of the drum 3 for each unbalance amount.
  • the condition is that the drum 3 is rotated while maintaining the number of rotations of the drum 3 without the ball 9 of the ball balancer 8 being fixed to the bottom, for example, a range of 90 rpm to 150 rpm.
  • the relationship between the longitudinal vibration displacement and the unbalance position is experimentally measured with the rotation speed maintained at 120 rpm.
  • the unbalance amount is Except for the case of 500 g, only the case where the clothing capacity is small is shown.
  • the reason why the longitudinal vibration displacement can be detected is that the rotating shaft of the drum 3 is first supported with the rear part of the washing tub 22 as an axis, and the vibration detecting unit 10 is provided at the front upper position away from the axis. Thereby, the left-right vibration indicating the unbalance amount appears clearly.
  • the longitudinal vibration indicating the difference in the unbalance position is small when the unbalance position is on the shaft side in the drum 3, and is large when the unbalance position is on the front side. Therefore, a characteristic indicating the unbalance position in the depth direction of the drum 3 appears in the longitudinal vibration displacement detected by the vibration detection unit 10. That is, the unbalance position in the depth direction of the drum 3 can be determined using FIG. 6 obtained from the experimental results.
  • the unbalance amount from S11 in FIG. can be read as 500 g. Then, by applying the read unbalance amount to C11 in FIG. 6, it is possible to detect that the unbalance position is “front middle”.
  • the front-rear unbalance position is C21 from C2 indicating the characteristics at medium capacity. Indicated. Furthermore, when the clothing capacity is large, when the longitudinal vibration displacement is measured as 0.8 mm, the front and rear unbalanced position from C3 indicating the characteristic at the time of large capacity is represented as C31. That is, even if the clothing capacity and the value of the longitudinal vibration displacement change, the unbalance position can be determined to be “in front”.
  • the cloth amount correction unit 104 grasped by the cloth amount correction unit 104 as a correction expression (approximate expression) from values obtained by experiments.
  • the unbalance amount and the unbalance position are accurately calculated from the clothing volume detected by the cloth amount detection unit 102, the left and right vibration displacements and the front and rear vibration displacements detected by the vibration detection unit 10, and appropriate activation is performed. Control can be performed. It should be noted that detailed values not obtained in the experiment of the fabric capacity and the unbalance amount can be complemented by the correction formula of the fabric amount correction unit 104 and calculated.
  • the cloth amount correction unit 104 may perform correction based on the cloth amount on the basis of the correlation diagram of the small capacity.
  • the reference clothing capacity is not particularly limited.
  • FIG. 6 is a correlation diagram in which an experiment is performed only when the capacity is small is shown.
  • the unbalance amount from S31 in FIG. can be read as 500 g.
  • the read unbalance amount is applied to Z4 (500 g) as the unbalance amount of the small-capacity clothing in FIG.
  • Z4 500 g
  • the correction value is determined so as to be C3 indicating the characteristic at the time of large capacity from related experimental values.
  • the front and rear unbalanced position from C3 indicating the characteristic at the time of large capacity is represented as C31.
  • the unbalanced position can be determined to be “front middle”. it can.
  • the characteristic that suppresses vibration as the clothing capacity increases appears similarly in accordance with the amount of unbalance of each clothing.
  • the ball balancer which is a rotating body control device used in the drum type washing machine of the present embodiment, and the conventional fluid balancer will be described in comparison with FIG. 7A and FIG. 7B.
  • FIG. 7A is a diagram showing an output waveform of left-right vibration displacement when a drum of a drum type washing machine provided with a conventional fluid balancer is rotated.
  • FIG. 7B is a diagram illustrating an output waveform of the left-right vibration displacement when the drum of the drum type washing machine equipped with the rotating body control device (ball balancer) according to the embodiment of the present invention is rotated.
  • TH1 and TH2 shown in the figure indicate the time for which the drum 3 rotating at 120 rpm rotates four times.
  • a conventional drum-type washing machine uses a fluid balancer (with a liquid enclosed in the balancer) provided on the circumference in front of the drum as a balancer function.
  • a fluid balancer with a liquid enclosed in the balancer
  • the liquid in the fluid balancer always moves and causes diffusion and bias with time. Therefore, the left and right vibration displacement detected by the vibration detection unit is not constant with respect to the rotation of the drum and the bias is not constant, as shown by the waveform H1, and the left and right vibration displacement rises non-constantly, and the left and right vibration displacement always changes.
  • the left and right vibration displacement is not always determined in the same state, and the left and right vibration displacement is detected in a state where the fluctuation range and the degree of change cannot be determined. As a result, it is difficult for the control unit to calculate the true left-right vibration displacement of the washing tub.
  • the drum type washing machine of the present embodiment is equipped with a ball balancer 8.
  • the left-right vibration displacement of the vibration detection unit 10 provided in the upper front portion of the washing tub 22 has a predetermined viscosity when the drum 3 is rotated at a rotation speed of 120 rpm (for example, within a range of 90 rpm to 150 rpm).
  • the ball 9 in the ball balancer 8 is biased to a substantially constant position.
  • the ball 9 in the ball balancer 8 rotates at a rotational speed that is substantially constant behind the rotational speed of the drum 3. Therefore, as shown by the waveform H2 in FIG. 7B, the left-right vibration displacement fluctuates in synchronization with the rotation period of the drum 3 within a certain amplitude range.
  • the vibration detection unit 10 can easily detect the value of the left-right vibration displacement from the range of the constant vibration period and the constant amplitude fluctuation.
  • the amplitude value of the left-right vibration displacement is small at the time of large capacity and large at the time of small capacity because of the characteristic of suppressing the vibration due to the inertia of the clothing.
  • the repeated operation of the left-right vibration displacement shows the same operation as described above. That is, it is possible to accurately detect the left-right vibration displacement even when the clothing capacity changes.
  • the left-right vibration displacement is calculated by, for example, averaging the difference between the maximum displacement and the minimum displacement.
  • the vibration displacement becomes larger, and when moved to a position opposite to the unbalanced circumferential position, the vibration displacement is further increased. It works to make it smaller. Therefore, the influence of the ball 9 on the difference between the maximum displacement and the minimum displacement is offset and there is no problem.
  • the average value of the left and right vibration displacement detected during the rotation period of the drum 3 rotating at 120 rpm is calculated to calculate the true value of the left and right vibration displacement. This rotational speed is not a problem as long as it is within the range of 90 rpm to 150 rpm away from the resonant rotational speed. In particular, in the vicinity of 120 rpm, the behavior of the ball 9 in the ball balancer 8 is more stable, and the detection accuracy of the lateral vibration displacement can be improved.
  • a vibration sensor that detects vibration displacement in multi-axis directions such as three axes has been described as an example of the vibration detection unit 10, but is not limited thereto.
  • you may comprise with an acceleration sensor. That is, even when the displacement is calculated from the acceleration, the left-right vibration displacement can be detected in the same manner.
  • the acceleration sensor may be a semiconductor acceleration sensor, a piezoelectric acceleration sensor, or the like. Further, in addition to the triaxial sensor, it is also possible to detect by combining a biaxial sensor or a uniaxial sensor.
  • the drum type washing machine of the present embodiment is configured.
  • the drum-type washing machine main body 1 operates the drum 3 before the washing step, for example, before supplying the washing water, and distributes the amount of the laundry 18 accommodated in the drum 3.
  • the amount detection unit 102 makes the determination.
  • the control unit 13 calculates and displays the washing time and the detergent amount based on the measured cloth amount.
  • the unbalanced state (unbalance amount and unbalance position) of the laundry 18 is grasped.
  • the grasped unbalanced state is used for correction in clothing capacity.
  • the washing water in the washing tub 22 is drained.
  • the dehydration step which dehydrates the laundry 18 is performed.
  • the laundry 18 is rarely located in a uniform state inside the drum 3. That is, the laundry 18 is arranged in an almost unbalanced state, for example, biased toward the bottom of the drum 3.
  • the drum 3 is slowly rotated after draining the washing water. Thereby, the unbalanced state of the laundry 18 is loosened as much as possible. However, even if the loosening operation is performed, the laundry 18 containing moisture always tends to be biased toward the bottom of the drum 3 due to gravity. Therefore, the dehydration step is started with the unbalanced state remaining.
  • the washing tub 22 of the drum-type washing machine main body 1 vibrates greatly when the drum 3 passes the resonance rotation speed (for example, between 200 rpm and 400 rpm), and exceeds a predetermined vibration displacement.
  • the control unit 13 stops the rotation of the drum 3.
  • the control unit 13 performs the loosening step of the laundry 18 by rotating the drum 3 slowly in order to eliminate the unevenness of the laundry 18 again.
  • the control unit 13 activates the dehydration step again.
  • the washing tub 22 since the drum 3 is normally in a state other than at least zero (no load) due to the bias (unbalanced state) of the laundry 18 at the resonance rotational speed of the drum 3, the washing tub 22 always vibrates. .
  • the drum 3 in order to suppress the vibration and succeed in the dehydration start, first, the drum 3 is rotated at a rotational speed lower than the resonant rotational speed (for example, 120 rpm).
  • the vibration detection unit 10 provided in the washing tub 22 at the upper front of the drum 3 measures the left-right vibration displacement and the front-back vibration displacement.
  • the unbalance amount of the laundry 18 and the unbalance position in the depth direction are determined from each detected vibration displacement. Further, based on the determined unbalance amount and the unbalanced state of the unbalance position, a method for starting up the drum 3 up to the resonance rotational speed is determined, and the ball balancer 8 is controlled. Thereby, the ball 9 is disposed at an optimal position in the ball balancer 8 to suppress vibration when the drum 3 passes through the resonance rotational speed.
  • the optimal arrangement of the balls 9 in the ball balancer 8 is, for example, when the unbalanced amount in the unbalanced state is large or when the laundry 18 is positioned in front of the drum 3. It is set as the opposing state arrange
  • the unbalance amount is small or the laundry 18 is positioned behind the drum 3, the number of rotations and acceleration of the drum 3 are increased or decreased, and the balls 9 are substantially even in the circumferential direction of the ball balancer 8. (Including equality) is a dispersion state in which the balls 9 are arranged with a small bias corresponding to a small unbalance amount.
  • the balls 9 in the ball balancer 8 are optimally arranged against the bias of the laundry 18 in the drum 3. And the vibration which generate
  • the rotational speed of the drum 3 is reduced from 120 rpm to 70 rpm, and the current value of the motor 12 at that time is confirmed.
  • the current value fluctuates regularly as shown in FIG. Accordingly, the rotation speed of the drum 3 is increased at a stroke and the resonance rotation speed is allowed to pass by looking for the minimum value of the current that causes the ball 9 to face the unbalanced position.
  • the optimal timing is determined by experiment.
  • the balls 9 are non-uniformly moved and dispersed.
  • the change in the rotational speed may be determined by experiment, or may be controlled while checking the change in the current value of the motor 12. Then, while confirming that the current value does not increase, the rotational speed of the drum 3 is increased and the resonant rotational speed is passed.
  • the control unit 13 applies a drive voltage to the motor 12 via the drive unit 133 according to a command from the rotation control unit 132. Thereby, the motor 12 is gradually operated from the low speed rotation to the high speed rotation, and the rotation speed of the drum 3 is gradually increased.
  • the rotation control unit 132 of the control unit 13 controls the motor 12 so that the number of rotations of the drum 3 is about 120 rpm, and maintains that state.
  • the vibration detection unit 10 provided in the washing tub 22 at the upper front of the drum 3 detects the left-right vibration displacement and the front-back vibration displacement of the washing tub 22.
  • the rotation speed of the drum 3 is equal to or less than the resonance rotation speed, it can be detected with stable vibration displacement.
  • the ball 9 inside the ball balancer 8 rotates in a state where it is biased to one place due to the viscosity of the oil, asynchronously with the rotational speed of the drum 3 and delayed by a constant rotational speed.
  • the left-right vibration displacement is detected with a constant vibration period and a constant amplitude fluctuation as shown by the waveform H2 in FIG. 7B.
  • the activation determination unit 131 of the control unit 13 can easily calculate the true value of the lateral vibration displacement by averaging the lateral vibration displacement values of the washing tub 22.
  • the vibration displacement detected by the vibration detection unit 10 is affected by the clothing capacity accommodated in the drum 3. Specifically, as shown in FIGS. 5 and 6, when the clothing capacity is large, the vibration displacement exhibits the characteristics of S3 and C3. Further, the vibration displacement is affected by the characteristics of S2 and C2 when the capacity is medium, and the vibration displacement is affected by the characteristics of S1 and C1 when the capacity is small.
  • the activation determination unit 131 of the control unit 13 detects the capacity of the laundry 18 before the start of the washing step (before water supply) by the cloth amount detection unit 102, and based on the detected capacity.
  • the cloth amount correction unit 104 corrects, for example, vibration displacement.
  • the cloth amount correction unit 104 grasps the relationship shown in FIG. 5 and FIG. 6 as a correction formula (approximation formula) from values obtained by experiments, detects the vibration displacement detected by the vibration detection unit 10.
  • the vibration value at the time of small capacity (S1 in FIG. 5 and C1 in FIG. 6) is corrected from S3 and C3 at the time of large capacity and S2 and C2 at the time of medium capacity.
  • the activation determination unit 131 detects the unbalanced state of the clothing using the unbalance amount calculation unit 31 and the unbalance position calculation unit 30. It is assumed that the correction by the cloth amount correction unit 104 for the capacities other than the small capacity, the large capacity, and the medium capacity is proportional, for example, from the values of the vibration displacement at the small capacity, the large capacity, and the medium capacity obtained from the experimental values. Using the corrected equation, the calculation is complemented. Thereby, the workability can be improved by reducing the number of experimental values to be measured.
  • a correlation diagram between the left and right vibration displacement and the unbalance amount shown in FIG. 5 (specifically, S1 indicating a small capacity obtained from an experimental value).
  • the unbalance amount is calculated using S2 indicating medium capacity and S3 indicating large capacity.
  • S1 indicating a small capacity obtained from an experimental value
  • S3 indicating large capacity.
  • the unbalance amount at that time is 500 g.
  • the left-right vibration displacement is 10 mm
  • the unbalance amount can be calculated to be 1000 g.
  • the unbalance amount is calculated by the above method, but a method of calculating the unbalance amount by the vibration displacement value itself is also possible.
  • the unbalance amount when the amount of cloth changes, if the unbalance amount is determined only by the lateral vibration displacement, the unbalance amount is erroneously determined. As a result, there is a possibility that the drum 3 is rotated by an erroneous dehydration start method.
  • the unbalance amount can be accurately determined by correcting the S1 at the time of small capacity, S3 at the time of large capacity, or S2 at the time of medium capacity according to the clothing capacity detected by the cloth amount detection unit 102. Can be determined.
  • the unbalance amount calculation unit 31 can easily calculate the unbalance amount from the value of the left-right vibration displacement.
  • the vibration detection unit 10 detects the longitudinal vibration displacement and the vertical vibration displacement in addition to the left and right vibration displacement at the front upper part of the washing tub 22. Then, the detected longitudinal vibration displacement is input to the unbalance position calculation unit 30. As a result, the unbalance position calculation unit 30 is based on the unbalance amount calculated by the unbalance amount calculation unit 31 based on the correlation diagram between the longitudinal vibration displacement and the unbalance position for each unbalance amount shown in FIG. Calculate the position.
  • the unbalance amount calculation unit 31 calculates the unbalance amount to be 500 g
  • the unbalance position calculation unit 30 selects Z4 (when the clothing capacity is a small capacity) shown in FIG.
  • the unbalance position shown on the horizontal axis in FIG. 6 is specified depending on where the longitudinal vibration displacement is located in Z4.
  • an unbalance position is calculated.
  • the clothing volume is small
  • the unbalance amount is 500 g
  • the longitudinal vibration displacement is detected to be 1.0 mm
  • the unbalance position is located in the “front middle” between the front and the middle from FIG. Can be calculated.
  • the clothing amount of the cloth amount detection unit 102 is corrected by the cloth amount correction unit 104 from C3 indicating a large capacity or C2 indicating a medium capacity to C1 indicating a small capacity.
  • the correction is not performed, and the determination is made with C1 indicating the small capacity characteristics.
  • the correction is not performed and the determination is made based on the small capacity characteristic C1. That is, in the case of a certain value or less, the left and right vibration displacement and the front and rear vibration displacement detected by the vibration detection unit 10 are hardly affected by the clothing capacity. Therefore, when the clothing capacity is equal to or less than a certain value (small capacity), correction is performed with C1 of the small capacity characteristic. As a result, the number of experimental values obtained for each capacity can be reduced, and productivity and workability can be improved.
  • the cloth amount correction unit 104 uses the cloth amount of the cloth amount detection unit 102. Correction is performed to C1 indicating the small capacity. In other words, based on the clothing capacity detected by the cloth amount detection unit 102, the cloth amount correction unit 104 corrects to C1 indicating a small capacity. This prevents erroneous unbalance position determination. As a result, no erroneous determination is made at the start of dehydration.
  • the unbalanced state calculation unit 31 and the unbalance position calculation unit 30 of the activation determination unit 131 of the control unit 13 rotate the laundry 18 in an unbalanced state lower than the resonance rotational speed of the drum 3. It can be specified by a number (in this embodiment, about 120 rpm).
  • the correlation diagram between the left and right vibration displacement and the front and rear vibration displacement, the unbalance amount and the unbalance position shown in FIGS. 5 and 6 is a diagram obtained from experimental values when the drum 3 is rotated at about 120 rpm. is there. Therefore, when the number of rotations of the drum 3 is changed, the correlation changes.
  • the correlation also changes when the depth size and diameter of the drum 3 and the method for supporting the washing tub 22 in the drum-type washing machine body 1 are changed. Even in this case, it is possible to easily cope with this by obtaining a correlation experimentally below the resonance rotational speed.
  • a method for starting up the drum 3 up to the resonance rotational speed is determined, and the ball 9 in the ball balancer 8 is controlled.
  • the details of the control will be described later.
  • the unbalance position in the depth direction of the drum 3 is the front side, the ball 9 is activated in the facing state, and if it is on the shaft side, the ball 9 is dispersed and activated. I do.
  • the resonance rotational speed of the drum 3 can be passed in an optimal unbalanced state between the ball 9 and the clothing.
  • the vibration at the resonance rotational speed of the drum 3 can be minimized and activated.
  • the drum 3 is rotated at about 120 rpm, the vibration detection unit 10 detects the unbalance amount and the unbalance position, and grasps the unbalanced state of the laundry 18 in the drum 3.
  • the drum 3 is operated at a rotational speed lower than the rotational speed at which the vibration detection unit 10 detects the vibration displacement. That is, the ball 9 in the ball balancer 8 is operated at a rotation speed in a state where the ball 9 is not rotated while the ball 9 is biased toward the bottom with respect to the rotation of the drum 3.
  • the rotation speed is the rotation speed at which the drum 3 rotates under the condition that the gravity of the ball 9 is larger than the centrifugal force caused by the rotation. Therefore, since it is also influenced by the viscosity of the oil inside the ball balancer 8, in this embodiment, the rotational speed is determined by an experimental value.
  • the drum 3 when the drum 3 is at a rotational speed lower than about 120 rpm and the ball 9 in the ball balancer 8 is at the position shown in FIG. 3A where the unbalanced amount is greater than a certain value (for example, 100 g). Detects the unbalance position in the circumferential direction by the following method. That is, first, when the drum 3 is rotated, the current detection unit 101 detects the current value flowing from the drive unit 133 driving the motor 12. At this time, the unbalanced position A of the laundry 18 in the drum 3 can be grasped by the change in the current value shown in FIG.
  • a certain value for example, 100 g
  • the activation method may be determined based on the magnitude of the current value instead of the change in the current value. For example, in the case of an amplitude fluctuation that is equal to or less than a certain current value, since the amount of unbalance is small, it is determined that the ball 9 is activated due to the dispersed state, and the ball 9 is activated. On the other hand, in the case of amplitude fluctuations of a certain current value or more, since the amount of unbalance is large, it is determined that the ball 9 is activated due to the opposing state of the ball 9 and is activated. Thereby, you may determine the starting method from the magnitude
  • the current value for driving the motor 12 is at the position of current b shown in FIG. Then, as the unbalance position A moves clockwise and moves upward, the current value changes from the current b to the current a1. Thereafter, as the current value rotates, the unbalanced position A returns to the bottom, and the current value also decreases. That is, when the above state is repeatedly detected by the current detection unit 101, the unbalance position A in the circumferential direction of the drum 3 can be easily grasped.
  • the clothing capacity of the cloth amount detection unit 102 in a state before water supply in the washing step.
  • an accurate cloth amount can be determined, and the cloth amount can be accurately corrected at the start of dehydration.
  • the correction of the cloth amount correction unit 104 is always performed in a state immediately before the unbalance amount calculation unit 31 and the unbalance position calculation unit 30 calculate the unbalance state.
  • the clothing capacity can be corrected with the highest accuracy. That is, the clothing capacity is corrected immediately before the start of dehydration or immediately before dehydration at the time of rinsing after the washing step. Thereby, the clothing capacity can be corrected with high accuracy.
  • the drum 3 can be arranged in such a manner that the position of the ball 9 of the ball balancer 8 and the relative position of the unbalance position A in the circumferential direction are arranged for each condition of the calculated unbalance position and unbalance amount. It has been obtained from experimental results whether vibration can be suppressed most when the resonance rotational speed is passed. Specifically, for example, when the unbalanced position in the depth direction of the drum 3 is equal to or greater than a certain value (for example, 300 g) on the front side or the shaft side, the opposite activation is performed. Start.
  • a certain value for example, 300 g
  • the activation determination unit 131 of the control unit 13 increases the rotational speed of the drum 3 in a state where the ball 9 is biased toward the bottom to the resonance rotational speed within a predetermined time under the above conditions. Then, the activation determination unit 131 further controls the motor 12 so as to rotate the drum 3 to, for example, about 500 rpm.
  • the drum 3 can be started with the vibration displacement of the washing tub 22 at the resonance rotational speed of the drum 3 being minimized.
  • the ball balancer 8 is disposed on the laundry inlet side of the drum 3, and the relative position between the ball 9 and the unbalanced position A of the laundry 18 when dehydration is started is approximately the same as in FIG. 3B or FIG. 3D.
  • FIG. 3C the example in which the balls 9 are arranged almost uniformly (including evenly) in the ball balancer 8 has been described as a basic arrangement in FIG. 3C, but this is not restrictive.
  • the arrangement of the balls 9 may be further divided and arranged according to the size of the unbalance amount.
  • the ball 9 can be optimally arranged in the ball balancer 8 according to a complicated unbalance position. As a result, it is possible to further suppress the vibration of the drum 3 that occurs when passing through the resonance rotational speed at the time of dehydration activation.
  • the example has been described in which the unbalance position A is generated at the diagonal positions of the front side and the rear side, but the present invention is not limited thereto.
  • the placement of the balls 9 in the ball balancer 8 may be further divided and controlled. Thereby, according to the unbalance position, the ball 9 can be optimally arranged in the ball balancer 8, and vibration can be further reduced.
  • the left and right vibrations and the longitudinal vibration displacement of the vibration detection unit 10 are accurately detected in a state where the drum 3 is rotated at a rotation speed of about 120 rpm. Then, based on the detected vibration displacement, an unbalance amount and an unbalance position are determined. Thereby, the arrangement of the balls 9 in the ball balancer 8 and the relative position of the unbalance position A can be grasped in advance from the condition of the unbalanced state so that the vibration at the resonance rotational speed of the drum 3 can be minimized. As a result, the ball 9 can be optimally arranged corresponding to the unbalanced position A, the drum 3 can be driven, and stable dehydration activation can be performed.
  • the vibration displacement is detected by the vibration detection unit 10 while the drum 3 is rotated at about 120 rpm. Therefore, the vibration displacement can be detected with a certain size or more. At this time, the balls 9 in the ball balancer 8 are rotated in a stable arrangement without being repeatedly moved and dispersed due to the viscosity of the oil. As a result, the vibration detection unit 10 can accurately detect the left-right vibration displacement and the front-rear vibration displacement, and can accurately detect the unbalance amount and the unbalance position.
  • the conventional fluid balancer is viscous only with water, so that it moves frequently even when the vibration displacement is below a certain level. Therefore, the relative arrangement of the water in the fluid balancer and the unbalanced position A always changes, and it is difficult to detect an accurate vibration displacement.
  • the configuration of the ball balancer of the present embodiment can accurately detect the vibration displacement and start the dehydration step stably.
  • Embodiment 2 Below, the structure of the drum type washing machine in Embodiment 2 of this invention is demonstrated using FIG. 8, referring FIG.
  • FIG. 8 is a control block diagram of the drum type washing machine in the second embodiment of the present invention.
  • the drum type washing machine of the present embodiment is provided with a temperature detection unit 23 that detects the temperature in the vicinity of the ball balancer 8 that constitutes the rotating body control device, and a temperature correction unit 106.
  • a temperature detection unit 23 that detects the temperature in the vicinity of the ball balancer 8 that constitutes the rotating body control device
  • a temperature correction unit 106 This is different from the first embodiment. Based on the vibration displacement detected by the vibration detection unit 10 described in the first embodiment, the cloth amount detected by the cloth amount detection unit 102, and the temperature detected by the temperature detection unit 23, the ball balancer is activated at the time of dehydration activation. 8 is controlled.
  • the drum type washing machine of the present embodiment includes at least a drum type washing machine body 1 constituting a housing and a washing tub accommodated in the drum type washing machine body 1. 22, the drum 3 constituting the rotating tub, the motor 12, the ball balancer 8 constituting the rotating body control device, the vibration detecting unit 10 including a vibration sensor, the control unit 13, the temperature detecting unit 23, and the like. . Since the configuration and operation other than the temperature detection unit 23 shown below are basically the same as those in the first embodiment, detailed description thereof is omitted.
  • the temperature detection unit 23 is composed of a temperature sensor such as a thermistor, for example, and is provided in a lower part of the washing tub 22 near the ball balancer 8. The temperature detector 23 detects the temperature in the vicinity of the ball balancer 8.
  • a temperature detection unit 23 is provided below the washing tub 22 in the vicinity of the ball balancer 8. This arrangement also has an effect that the temperature in the vicinity of the ball balancer 8 can be accurately detected by mitigating the influence of the temperature that changes due to the washing water in the washing tub 22 or the laundry 18.
  • the temperature detector 23 may be provided on the front surface of the washing tub 22 in addition to the lower portion of the washing tub 22 and may be disposed at any position as long as the temperature in the vicinity of the ball balancer 8 can be accurately detected. May be.
  • the control unit 13 of the drum type washing machine includes an activation determination unit 131, a rotation control unit 132, and the like as in the first embodiment.
  • the activation determination unit 131 includes a current detection unit 101, a cloth amount detection unit 102, a rotational position detection unit 103, a cloth amount correction unit 104, a temperature correction unit 106, an unbalance position calculation unit 30, and an unbalance amount. It is comprised from the calculation part 31 grade
  • the current detection unit 101 detects a current flowing through the motor 12.
  • the rotation position detection unit 103 detects an unbalance position in the circumferential direction in the drum 3 due to the bias of the laundry 18 from the change in current detected by the current detection unit 101.
  • the unbalance amount calculation unit 31 detects the unbalance amount of the laundry 18 in the drum 3 from the left and right vibration displacement of the vibration detection unit 10.
  • the unbalance position calculation unit 30 calculates the unbalance position of the laundry 18 in the depth direction of the drum 3 from the longitudinal vibration displacement of the vibration detection unit 10 based on the unbalance amount calculated by the unbalance amount calculation unit 31.
  • the cloth amount detection unit 102 detects the capacity (clothing capacity) of the laundry 18 in the drum 3.
  • the cloth amount correcting unit 104 corrects the value of the vibration displacement detected by the vibration detecting unit 10 from the clothing capacity detected by the cloth amount detecting unit 102.
  • the temperature correction unit 106 calculates a correction value for correcting the temperature of the vibration displacement value detected by the vibration detection unit 10 from the temperature value detected by the temperature detection unit 23.
  • Embodiment 1 as described with reference to FIGS. 3A to 4, when dehydration is started, the unbalanced state (unbalance amount and unbalance position) of the laundry 18 changes according to the clothing capacity. Therefore, in the first embodiment, the unbalanced state is obtained from the left / right vibration displacement and the front / rear vibration displacement detected by the vibration detection unit 10 in consideration of the clothing capacity, and the ball 9 of the ball balancer 8 corresponds to the unbalanced state. And controlled to suppress vibration.
  • the viscosity of the oil in the ball balancer 8 has a temperature characteristic. That is, the viscous resistance of oil varies greatly with temperature, and is small at high temperatures and large at low temperatures. Such a temperature change may occur due to a change in the outside air temperature due to a change in season, use of hot water for washing water in the washing step or the rinsing step, and the like. As a result, the operation of the ball 9 in the ball balancer 8 also changes greatly.
  • the operation of the ball 9 in the ball balancer 8 moves faster than at normal temperature due to a decrease in the viscous resistance of the oil at high temperature.
  • the oil moves more slowly than at normal temperatures due to an increase in the viscous resistance of the oil. Therefore, as will be described later with reference to FIGS. 9 and 10, the vibration displacement detected by the vibration detection unit 10 provided in the washing tub 22 is larger at the high temperature than at the normal temperature. On the other hand, at a low temperature, it becomes smaller than at a normal temperature.
  • the vibration detection unit 10 detects various unbalanced states such as an unbalanced position and an unbalanced amount in addition to a change in clothing capacity and a temperature change. Then, based on the detected vibration displacement, the ball balancer 8 is controlled to suppress vibrations generated at the time of dehydration activation.
  • FIG. 9 is a correlation diagram showing the relationship between the unbalanced amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit using temperature as a parameter.
  • SS1 in the figure indicates the relationship between the unbalance amount and the left-right vibration displacement when the temperature is normal temperature (for example, about 25 ° C.).
  • SS2 indicates a relationship when the temperature is low (for example, about 5 ° C)
  • SS3 indicates a relationship when the temperature is high (for example, about 60 ° C).
  • SS11 in the figure indicates the left-right vibration displacement on SS1 when the temperature is room temperature when the unbalance amount is 500 g.
  • SS21 indicates the left-right vibration displacement on SS2 and SS3 when the temperature is low
  • SS31 indicates when the temperature is high.
  • FIG. 10 is a correlation diagram showing the relationship between the unbalance position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter.
  • ZZ1 to ZZ7 in the figure indicate the respective unbalance amounts corresponding to 100 g to 2000 g when the temperature is normal temperature.
  • CC1 in the figure indicates the relationship between the unbalance position and the longitudinal vibration displacement when the unbalance amount is 500 g when the temperature is normal temperature.
  • CC2 shows the relationship between the unbalance amount and the longitudinal vibration displacement when the temperature is low and CC3 when the temperature is high and the unbalance amount is 500 g.
  • the correlation diagram except when the temperature is low and high and the unbalance amount is 500 g is not shown.
  • CC11 in the figure indicates the longitudinal vibration displacement on CC1 when the unbalance amount is 500 g, the temperature is normal temperature, and the unbalance position is “front middle”.
  • CC21 indicates the longitudinal vibration displacement when the unbalanced position on CC2 and CC3 is “front middle” when the temperature is low and CC31 is high.
  • FIG. 9 shows that the relationship between the left and right vibration displacement detected by the vibration detection unit 10 and the unbalance amount is driven on the drum 3 under the following conditions.
  • the unbalanced position A is correlated regardless of the positional relationships shown in FIGS. 3B to 3E.
  • the condition is a case where the left-right vibration displacement and the unbalance amount are detected in a state in which the rotation speed of the drum 3 rotating without the ball 9 of the ball balancer 8 being fixed to the bottom is maintained within a range of 90 rpm to 150 rpm, for example. .
  • This rotational speed is lower than the resonant rotational speed of the drum 3, which is convenient for detecting an unbalanced state.
  • the relationship between the left-right vibration displacement and the unbalance amount is experimentally measured by the method described in the first embodiment for each temperature change with the rotation speed of the drum 3 maintained at 120 rpm.
  • the results are shown in FIG.
  • FIG. 10 shows the result of experimentally measuring the relationship between the longitudinal vibration displacement and the unbalance position for each unbalance amount at a normal temperature while maintaining the rotation speed at 120 rpm.
  • FIGS. 9 and 10 a specific measurement method for obtaining FIGS. 9 and 10 will be described.
  • corresponding weights are evenly arranged on the inner wall surface of the drum 3 according to the settings of the large capacity, medium capacity, and small capacity.
  • the ball balancer 8 is maintained at a predetermined temperature such as normal temperature, low temperature and high temperature in a state where a weight (for example, 500 g) corresponding to the unbalance amount is disposed at a predetermined unbalance position, and the drum 3 is driven to rotate.
  • a weight for example, 500 g
  • the rotating shaft of the drum 3 is supported and fixed with the back side of the washing tub 22 as a shaft, and the vibration detecting unit 10 is provided at the upper part on the front side at a distance away from the shaft. Therefore, although the longitudinal vibration displacement and the vertical vibration displacement are affected by the unbalanced position of the drum 3 in the depth direction, the influence on the lateral vibration displacement is small. That is, the left-right vibration displacement is not affected by the position of the unbalanced position in the depth direction. Thereby, the relationship between the unbalance amount and the left-right vibration displacement can be obtained with high accuracy.
  • the left-right vibration displacement is influenced by the temperature change of the viscosity of the oil in the ball balancer 8 together with the clothing capacity described in the first embodiment.
  • FIG. 9 shows the ball balancer detected by the temperature detector 23.
  • SS1 the relationship between the left and right vibration displacement at the normal temperature and the unbalance amount
  • SS3 the relationship at the high temperature
  • SS2 the relationship at the low temperature
  • the unbalance amount is 500 g from SS11 on SS1.
  • the lateral vibration displacement is as small as 0.8 mm from SS21 on SS2.
  • the unbalance amount is indicated as 400 g from SS1.
  • the lateral vibration displacement increases, and when the unbalance amount is 500 g, 2.0 mm is indicated.
  • the unbalance amount is indicated as 600 g from SS1. That is, even when the unbalance amount is the same, the left-right vibration displacement changes due to the temperature change. As a result, if the unbalance amount is determined only by the left and right vibration displacement, the activation determination unit 131 of the control unit 13 illustrated in FIG.
  • the unbalance position in the depth direction of the drum 3 is calculated using the characteristics for each unbalance amount indicated by ZZ1 to ZZ7 in the figure. Can do.
  • the relationship between the longitudinal vibration displacement of the washing tub 22 and the unbalance position for each unbalance amount shown in FIG. 10 is experimentally obtained data.
  • the longitudinal displacement of the vibration detection unit 10 can be detected as the longitudinal vibration displacement from the unbalance position in the depth direction of the drum 3 for each unbalance amount.
  • the condition is that the drum 3 is rotated while maintaining the number of rotations of the drum 3 without the ball 9 of the ball balancer 8 being fixed to the bottom, for example, a range of 90 rpm to 150 rpm.
  • the relationship between the longitudinal vibration displacement and the unbalance position is experimentally measured with the rotation speed maintained at 120 rpm.
  • the unbalance amount is Except for the case of 500 g, only the case where the temperature is normal temperature is shown.
  • the reason why the longitudinal vibration displacement can be detected is that the rotation axis of the drum 3 is first supported by the rear part of the washing tub 22 as an axis, and the vibration detection part 10 is provided at the front upper position away from the axis. Thereby, the left-right vibration indicating the unbalance amount appears clearly.
  • the longitudinal vibration indicating the difference in the unbalance position is small when the unbalance position is on the shaft side in the drum 3, and is large when the unbalance position is on the front side. Therefore, a characteristic indicating the unbalance position in the depth direction of the drum 3 appears in the longitudinal vibration displacement detected by the vibration detection unit 10. That is, the unbalance position in the depth direction of the drum 3 can be determined using FIG. 10 obtained from the experimental results.
  • FIG. 10 shows, for example, when the clothing imbalance amount is 500 g, the longitudinal vibration displacement indicates CC1 when the temperature in the vicinity of the ball balancer 8 is normal temperature, CC3 when the temperature is high, and CC2 when the temperature is low.
  • the unbalance position from CC11 on CC1 to the front and back. Is determined to be “previous”.
  • the longitudinal vibration displacement indicates 0.8 mm when the temperature is low
  • the front / rear unbalanced position from CC 21 on CC 2 is determined as “front middle”.
  • the front / rear unbalanced position from CC31 on CC3 is determined as “front middle”.
  • the longitudinal vibration displacement changes due to temperature change. For this reason, even in the same unbalanced position, the longitudinal vibration displacement varies depending on the temperature change. Therefore, when temperature correction is not performed, there is a possibility that the unbalanced position before and after is erroneously determined and the activation method is incorrect. As a result, for example, when the unbalance position is positioned forward from the “front middle” position, the ball balancer 8 is activated oppositely. However, erroneous determination causes the ball balancer 8 to be erroneously activated at low temperatures. There is a possibility of judging.
  • the drum type washing machine of the present embodiment is equipped with the ball balancer 8.
  • the ball 9 in the ball balancer 8 rotates with the drum 3 maintained at a rotational speed of 120 rpm (for example, in the range of 90 to 150 rpm)
  • the ball 9 is biased to a substantially constant position by oil having a predetermined viscosity. It becomes.
  • the ball 9 in the ball balancer 8 rotates at a rotational speed that is substantially constant behind the rotational speed of the drum 3. Therefore, as shown by the waveform H2 in FIG. 7B, the left-right vibration displacement fluctuates in synchronization with the rotation period of the drum 3 within a certain amplitude range.
  • the vibration detection unit 10 can easily calculate the value of the left-right vibration displacement from the range of the constant vibration period and the constant amplitude fluctuation.
  • the left-right vibration displacement is calculated by averaging the difference between the maximum displacement and the minimum displacement, for example, as in the first embodiment. At this time, when the ball 9 in the ball balancer 8 moves to a position overlapping the unbalanced circumferential position, the vibration displacement becomes larger, and when moved to a position opposite to the unbalanced circumferential position, the vibration displacement is further increased.
  • the true value of the left-right vibration displacement may be calculated by calculating the average of the left-right vibration displacement detected during the rotation period of the drum 3 rotating at 120 rpm. Thereby, the detection accuracy of the left-right vibration displacement can be improved.
  • the drum type washing machine of the present embodiment is configured.
  • the ball 9 is arranged at an optimum position in the ball balancer 8 with respect to the bias of the laundry 18, and the rotation of the drum 3 passes the resonance rotational speed.
  • the startup method described below is realized.
  • the control unit 13 applies a drive voltage to the motor 12 via the drive unit 133 according to a command from the rotation control unit 132.
  • the motor 12 is gradually operated from the low speed rotation to the high speed rotation, and the rotation speed of the drum 3 is gradually increased.
  • the rotation control unit 132 of the control unit 13 controls the motor 12 so that the number of rotations of the drum 3 is about 120 rpm, and maintains that state.
  • the vibration detection unit 10 provided in the washing tub 22 at the upper front of the drum 3 detects the left-right vibration displacement and the front-back vibration displacement of the washing tub 22.
  • the rotation speed of the drum 3 is equal to or less than the resonance rotation speed, it can be detected with stable vibration displacement.
  • the ball 9 inside the ball balancer 8 rotates in a state where it is biased to one place due to the viscosity of the oil, asynchronously with the rotational speed of the drum 3 and delayed by a constant rotational speed.
  • the left-right vibration displacement is detected with a constant vibration period and a constant amplitude fluctuation as shown by the waveform H2 in FIG. 7B.
  • the activation determination unit 131 of the control unit 13 can easily calculate the true value by averaging the values of the left and right vibration displacements of the washing tub 22.
  • the viscosity of the oil in the ball balancer 8 changes due to the influence of the ambient temperature.
  • the movement such as the moving speed of the ball 9 inside the ball balancer 8 changes, and the vibration displacement detected by the vibration detector 10 is affected.
  • the vibration displacement is large when the temperature is high, and the characteristics of SS3 are exhibited.
  • the vibration displacement is affected by the SS1 characteristic at normal temperature and the SS2 characteristic at low temperature.
  • the temperature detection unit 23 provided in the washing tub 22 detects the temperature in the vicinity of the ball balancer 8, and the temperature correction unit 106 corrects, for example, vibration displacement based on the detected temperature.
  • the temperature correction unit 106 detects the vibration displacement detected by the vibration detection unit 10.
  • the vibration value at normal temperature (SS1 in FIG. 9) is corrected from SS2 at low temperature and SS3 at high temperature.
  • the activation determination unit 131 detects the unbalanced state of the clothing using the unbalance amount calculation unit 31 and the unbalance position calculation unit 30.
  • the correction by the temperature correction unit 106 for temperatures other than normal temperature, low temperature, and high temperature is, for example, from the values of vibration displacement at normal temperature, low temperature, and high temperature obtained as experimental values, using a correction formula that is assumed to be proportional, for example, Complementary calculation. This reduces the number of experimental values to measure. Workability can be improved.
  • a correlation diagram between the left and right vibration displacement and the unbalance amount shown in FIG. 9 (specifically, SS1 indicating normal temperature obtained from experimental values, The unbalance amount is calculated using SS2 indicating low temperature and SS3) indicating high temperature.
  • SS1 indicating normal temperature obtained from experimental values
  • the unbalance amount is calculated using SS2 indicating low temperature and SS3 indicating high temperature.
  • the unbalance amount at that time is 500 g.
  • the unbalance amount can be calculated to be 1000 g.
  • the unbalance amount is calculated by the above method, but a method of calculating the unbalance amount by the vibration displacement value itself is also possible.
  • the unbalance amount is accurately determined by correcting the temperature correction unit 106 to SS1 at normal temperature, SS3 at high temperature, or SS2 at high temperature based on the temperature value detected by the temperature detection unit 23. be able to.
  • the unbalance amount can be obtained even when the unbalance position A of the laundry 18 is in an unbalanced state before, after, in the middle, and diagonally, as shown in FIGS. 3B to 3E. It has been found from experimental results that the left-right vibration displacement exhibits the same characteristics if the unbalance amount is the same regardless of where it is generated. That is, the relationship between the left and right vibration displacement and the unbalance amount is maintained as shown in FIG. Therefore, the unbalance amount calculation unit 31 can easily calculate the unbalance amount from the value of the left-right vibration displacement.
  • the vibration detection unit 10 detects the longitudinal vibration displacement and the vertical vibration displacement in addition to the left and right vibration displacement at the front upper part of the washing tub 22. Then, the detected longitudinal vibration displacement is input to the unbalance position calculation unit 30. Thereby, the unbalance position calculation unit 30 is based on the unbalance amount calculated by the unbalance amount calculation unit 31 from the correlation diagram between the longitudinal vibration displacement and the unbalance position for each unbalance amount shown in FIG. Calculate the position.
  • the unbalance amount calculation unit 31 calculates the unbalance amount as 500 g
  • the unbalance position calculation unit 30 selects ZZ4 (at room temperature, for example, 25 ° C.) shown in FIG.
  • the unbalance position shown on the horizontal axis in FIG. 10 is specified depending on where the longitudinal vibration displacement is located in ZZ4.
  • an unbalance position is calculated.
  • the unbalance amount is 500 g and the longitudinal vibration displacement is detected as 1.0 mm, it is calculated from FIG. 10 that the unbalance position is located in the “front middle” between the front and the middle. it can.
  • the vibration detection characteristic is indicated by CC3 indicating the high temperature characteristic at high temperature and CC2 indicating the low temperature characteristic at low temperature. It is. Therefore, the temperature correction unit 106 corrects from the temperature value detected by the temperature detection unit 23 to CC1 indicating normal temperature characteristics from CC3 indicating high temperature characteristics or CC2 indicating low temperature characteristics at low temperatures. On the other hand, when the detected temperature is normal temperature, the correction is not performed and the determination is performed based on CC1 indicating the normal temperature characteristic.
  • the temperature correction unit 106 shows normal temperature characteristics from the temperature value detected by the temperature detection unit 23. Correction to CC1. That is, even when there is a temperature change, it is corrected to CC1 indicating normal temperature characteristics. This prevents erroneous unbalance position determination. As a result, no erroneous determination is made at the start of dehydration.
  • the unbalanced state calculation unit 31 and the unbalance position calculation unit 30 of the activation determination unit 131 of the control unit 13 rotate the laundry 18 in an unbalanced state lower than the resonance rotational speed of the drum 3. It can be specified by a number (in this embodiment, about 120 rpm).
  • the correlation diagram between the left and right vibration displacement and the front and rear vibration displacement, the unbalance amount and the unbalance position shown in FIGS. 9 and 10 is a diagram obtained from experimental values when the drum 3 is rotated at about 120 rpm. is there. Therefore, when the rotation speed of the drum 3 is changed, the correlation changes. The correlation also changes when the depth size and diameter of the drum 3 and the method for supporting the washing tub 22 in the drum-type washing machine body 1 are changed. Even in this case, it is possible to easily cope with this by obtaining a correlation experimentally below the resonance rotational speed.
  • the ball 9 in the ball balancer 8 is controlled based on the detected unbalanced state. Specifically, for example, when the unbalanced position in the depth direction of the drum 3 is equal to or greater than a certain value (for example, 300 g) on the front side or the shaft side, the opposite activation is performed. Start. As a result, the resonance rotational speed of the drum 3 can be passed in an optimal unbalanced state between the ball 9 and the clothing. As a result, the vibration at the resonance rotational speed of the drum 3 can be minimized and activated.
  • a certain value for example, 300 g
  • the method of correcting the temperature by the temperature correction unit 106 when the number of rotations of the drum 3 is maintained at 120 rpm is described as an example, but the present invention is not limited to this.
  • the rotation speed of the drum 3 may be changed. That is, the number of rotations of the drum 3 is set according to the temperature change of the viscosity of the oil so that the vibration displacement detected by the vibration detection unit 10 becomes the same value as that at normal temperature based on the temperature value detected by the temperature detection unit 23. It may be changed.
  • the temperature measurement of the temperature detection unit 23 and the correction of the temperature correction unit 106 are always the states immediately before the unbalance amount calculation unit 31 and the unbalance position calculation unit 30 calculate the unbalance state. Is preferably performed. Thereby, temperature correction can be performed with the highest accuracy. That is, temperature correction is performed immediately before the start of dehydration or immediately before dehydration at the time of rinsing after the washing step. Thereby, temperature correction can be performed accurately.
  • the temperature detection unit 23 has been described as an example provided in the lower part of the washing tub 22 near the ball balancer 8, but the present invention is not limited thereto.
  • a temperature sensor provided at a position where temperature detection is necessary may be used as the temperature detection unit 23.
  • the temperature of the ball balancer 8 may not be accurately measured.
  • the drum type washing machine of the present invention includes a housing, a washing tub supported inside the housing, a rotating tub rotatably accommodated in the washing tub, and a rotating tub.
  • the rotating body control device provided in the rotating tub
  • the vibration detecting unit provided in the washing tub
  • the cloth amount detecting unit for calculating the cloth amount in the rotating tub
  • the vibration detecting unit And a control unit for controlling the drive unit.
  • the control unit may control the rotating body control device at the time of dehydration activation based on the vibration displacement detected by the vibration detection unit and the cloth amount detected by the cloth amount detection unit.
  • the cloth amount detecting unit can be measured by the amount and vibration detection unit, and the unbalanced state can be accurately grasped before the resonance rotational speed. And the vibration of a washing tub can be suppressed by controlling a rotating body control apparatus based on the imbalance state (unbalance amount and unbalance position) of clothing. As a result, it is possible to effectively prevent the occurrence of an operation that repeats the restarting of the activation, and a stable operation at the time of dehydration activation can be achieved.
  • the rotating body control device is provided in accordance with the circumference of the rotating tub, and is configured by a ball balancer having a plurality of balls inside. Then, the control unit grasps the unbalanced state including the unbalance amount of the rotating tub and the unbalanced position in the circumferential direction from the vibration displacement detected by the vibration detecting unit, and the ball is unbalanced based on the unbalanced state. You may control so that it may be the opposite starting which deviates to the position which opposes a position, or the dispersion
  • the control unit keeps the rotating tub at a predetermined rotation speed equal to or lower than the resonance rotation speed, and the vibration of the rotation tank is detected at the resonance rotation speed from the vibration displacement detected by the vibration detection section.
  • An activation determination unit that controls the rotating body control device so as to suppress, and a cloth amount correction unit that corrects and converts the value of the vibration displacement detected by the vibration detection unit from the cloth amount detected by the cloth amount detection unit. .
  • the activation determination unit of the control unit first maintains the rotational speed of the rotating tub at a predetermined rotational speed that is equal to or lower than the resonant rotational speed.
  • the cloth amount correction unit detects the vibration displacement in an arbitrary uniaxial output direction (left-right direction) detected by the vibration detection unit that detects an unbalanced state from the laundry cloth amount detected by the cloth amount detection unit before the washing step. Correct the value. Then, based on the unbalance amount calculated according to the cloth amount, the vibration amount value in another arbitrary one-axis output direction (front-rear direction) detected by the vibration detection unit is further corrected by the cloth amount correction unit. .
  • the rotating body control device (ball balancer) is set so as to be in an opposing state (the ball is biased to one position) or in a dispersed state (the balls are evenly arranged in the rotating body control device). ) Control the position of the ball.
  • the rotating body control device ball balancer
  • the rotating body control device is set so as to be in an opposing state (the ball is biased to one position) or in a dispersed state (the balls are evenly arranged in the rotating body control device).
  • the cloth amount correction unit may perform control so that the cloth amount correction unit does not perform correction when the amount of cloth in the rotating tub is equal to or less than a predetermined value.
  • the cloth amount correction unit may perform control so that the cloth amount correction unit does not perform correction when the amount of cloth in the rotating tub is equal to or less than a predetermined value.
  • the cloth amount correction unit may correct the cloth amount with the amount of cloth that has been put in a state before water supply in the washing step. Therefore, when determining the amount of cloth in the water supply state before the dehydration step, it is not necessary to determine the amount of cloth in consideration of the amount of water contained in the cloth during the washing step. As a result, an accurate cloth amount can be determined, and the cloth amount can be accurately corrected at the start of dehydration.
  • the drum type washing machine of the present invention further includes a temperature detection unit that measures the temperature in the vicinity of the rotating body control device, and the control unit detects the vibration displacement detected by the vibration detection unit and the cloth detected by the cloth amount detection unit. It is good also as a structure which controls a rotary body control apparatus at the time of dehydration starting based on quantity and the temperature detected by the temperature detection part.
  • the cloth amount detected by the cloth amount detecting unit and the vicinity of the washing tub are measured. Accurately grasp by temperature. Then, the rotation control device is controlled according to the grasped unbalanced state. Thereby, at the time of spin-drying
  • the control unit keeps the rotating tub at a predetermined rotation speed equal to or lower than the resonance rotation speed, and the vibration of the rotation tank is detected at the resonance rotation speed from the vibration displacement detected by the vibration detection section.
  • the activation determination unit of the control unit first maintains the rotational speed of the rotating tub at a predetermined rotational speed that is equal to or lower than the resonant rotational speed.
  • the temperature correction unit corrects the vibration displacement value in any one-axis output direction (left-right direction) detected by the vibration detection unit that detects the unbalanced state from the temperature in the vicinity of the rotating body control device measured by the temperature detection unit. Do. Then, based on the unbalance amount calculated according to the temperature, another arbitrary uniaxial output direction (front-rear direction) vibration displacement value is further corrected by the temperature correction unit. Thereby, based on the detected temperature, an unbalance position can be calculated accurately and the biased state of the laundry in the rotating tub can be accurately grasped.
  • the rotating body control device (the ball is biased to one position) or the dispersed state (the balls are dispersed and arranged in the rotating body control device)
  • the ball position of the ball balancer is controlled.
  • the drum type washing machine of the present invention may further include a temperature complementing unit that estimates the temperature of the rotating body control unit device from the temperature value detected by the temperature detection unit by the temperature correction unit.
  • a temperature detection part can be installed in arbitrary positions. Further, it is not necessary to provide a temperature detection unit that directly detects the temperature of the rotating body control device. As a result, the number of parts can be reduced and the configuration can be simplified.
  • the temperature correction unit may measure the temperature before the dehydration step, and correct the measured temperature value.
  • the temperature in the vicinity of the washing tub is measured in consideration of the temperature rise before the dehydration step even when the washing machine is operated several times in the state before the dehydration step or when it is operated for the first time. be able to.
  • accurate temperature correction can be performed according to the state of the dehydration step.
  • the vibration detection unit may be provided in the upper front part of the washing tub.
  • a vibration detection part can be provided in the position with the largest vibration at the time of an unbalanced state generating in front of a rotation tank. As a result, it becomes easier to detect the value of the vibration displacement, so that the detection accuracy can be improved.
  • the present invention is a drum-type washing machine and a drum-type washing and drying machine for home use and business use that require a stable drive by greatly suppressing vibration when the drum passes the resonance rotational speed at the start of dehydration. Useful for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

A drum-type washing machine has a configuration such that, by detecting any biaxial displacement of a vibration detector (10) provided in the top front of a washing machine tub (22) while a rotating tub (3) operates at or below the resonance frequency, and correcting the vibrational displacement in accordance with the clothing volume from a clothing volume detector, the amount of unbalance and the unbalance position (in the front-rear direction) of the clothing being washed (18) are precisely identified and a rotational body controlling device (8) is driven under optimized conditions when starting spin-dry. Thus, a drum-type washing machine can be achieved that keeps vibrations generated when the rotational frequency of the rotating tub (3) passes the resonance frequency to a minimum.

Description

ドラム式洗濯機Drum washing machine
 本発明は、回転体制御装置(ボールバランサ)を備えたドラム式洗濯機に関する。特に、洗濯衣類などのドラム内での偏りによるアンバランス状態を把握し、把握した状態に応じた起動方法で脱水ステップに移行して、起動時の振動抑制を行うドラム式洗濯機に関する。 The present invention relates to a drum type washing machine provided with a rotating body control device (ball balancer). In particular, the present invention relates to a drum-type washing machine that grasps an unbalanced state due to a bias in a drum such as laundry clothes, shifts to a dehydration step by an activation method corresponding to the grasped state, and suppresses vibration at the time of activation.
 従来、この種のドラム式洗濯機は、濡れた衣類をドラム内に収容した状態では、ドラム内に衣類が不均一に分布している。そのため、ドラムを水平軸を中心に高速回転した場合、ドラム内の衣類がアンバランス状態で回転する。通常、ドラムの回転数は、起動から約200rpmから400rpmぐらいまでの間に最大の共振点を有する。これにより、振動や騒音、および振動による消費電力の増加などが発生する。そのため、ドラムを、容易に高速回転させることができない。 Conventionally, in this type of drum type washing machine, when wet clothes are stored in the drum, the clothes are unevenly distributed in the drum. Therefore, when the drum is rotated at high speed around the horizontal axis, the clothes in the drum rotate in an unbalanced state. Usually, the rotation speed of the drum has a maximum resonance point from about 200 rpm to about 400 rpm from the start. As a result, vibration, noise, and increase in power consumption due to vibration occur. Therefore, the drum cannot be easily rotated at a high speed.
 そこで、従来のドラム式洗濯機は、回転体制御装置(ボールバランサ)を備えている。そして、ドラムの回転速度が、ドラムの固有振動数よりも高い回転速度になると、ボールバランサ内のボールが衣類の偏りの反対位置に移動する。この作用により、ボールバランサ内のボールが、ドラム内の衣類の偏りの反対方向に移動して、衣類などによるアンバランス状態を解消している。 Therefore, the conventional drum type washing machine is provided with a rotating body control device (ball balancer). When the rotational speed of the drum reaches a rotational speed higher than the natural frequency of the drum, the ball in the ball balancer moves to a position opposite to the clothing bias. By this action, the ball in the ball balancer moves in the direction opposite to the bias of the clothing in the drum, and the unbalanced state due to the clothing is eliminated.
 一般的に、ドラムが低速で回転する場合、ボールバランサ内のボールは、重力により、ボールバランサ内の底部に位置して上方向へ移動しない。一方、ドラムの回転速度が、ボールの重力を超える回転加速度が加わるような一定回転速度となった場合には、ボールバランサ内のボールは上方向へ移動する。つまり、ボールバランサ内のボールの動作を制御して、衣類の偏りに対してボールを適切な位置に配置することにより、アンバランス状態で発生するドラムの振動の抑制を行っている。 Generally, when the drum rotates at a low speed, the ball in the ball balancer is located at the bottom of the ball balancer and does not move upward due to gravity. On the other hand, when the rotational speed of the drum reaches a constant rotational speed that adds rotational acceleration exceeding the gravity of the ball, the ball in the ball balancer moves upward. That is, by controlling the movement of the ball in the ball balancer and arranging the ball at an appropriate position with respect to the bias of the clothing, the drum vibration generated in the unbalanced state is suppressed.
 また、ボールバランサ内には、ボール以外に、例えばシリコーンオイルなどの流体が封入されている。これにより、ボールの衝突音の防止や、ボールバランサ内のボールの移動の安定化を図っている。 In addition to the balls, fluid such as silicone oil is enclosed in the ball balancer. This prevents ball collision noise and stabilizes the movement of the ball in the ball balancer.
 しかしながら、洗濯衣類などがドラム内でどのように偏っているのかを把握できない限り、その偏りに応じてボールを最適な位置に配置することができない。そこで、洗濯槽に設けた振動検知部で振動変位を検知して、衣類の偏りを把握する方法が開示されている(例えば、特許文献1参照)。 However, unless it is possible to grasp how the laundry clothes are biased in the drum, it is not possible to place the ball at an optimal position according to the bias. In view of this, a method of detecting the vibration displacement by the vibration detection unit provided in the washing tub and grasping the bias of the clothing is disclosed (for example, see Patent Document 1).
 以下に、従来のドラム式洗濯機の一例として、特許文献1に記載された洗濯機について、図11および図12を用いて、説明する。 Hereinafter, as an example of a conventional drum-type washing machine, a washing machine described in Patent Document 1 will be described with reference to FIGS. 11 and 12.
 図11は、従来のドラム式洗濯機の構成図である。図12は、従来のドラム式洗濯機の制御ブロック図である。 FIG. 11 is a configuration diagram of a conventional drum-type washing machine. FIG. 12 is a control block diagram of a conventional drum type washing machine.
 図11および図12に示すように、従来のドラム式洗濯機は、ドラム式洗濯機本体10Aに、洗濯槽20Aが弾性的に固定して配設されている。洗濯槽20Aは、ドラム30Aを収納し、ドラム30Aを駆動するモータ40Aが洗濯槽20Aの背面の位置に設けられている。ドラム30Aの前面には、衣類投入口に設けた扉70Aが配置されている。また、洗濯槽20Aは、ドラム式洗濯機本体10Aの底部からダンパ220で支えられるとともに、ドラム式洗濯機本体10Aの上部に配置された吊バネ180、190により支えられている。 11 and 12, in the conventional drum type washing machine, a washing tub 20A is elastically fixed to a drum type washing machine body 10A. The washing tub 20A accommodates the drum 30A, and a motor 40A for driving the drum 30A is provided at a position on the back surface of the washing tub 20A. On the front surface of the drum 30 </ b> A, a door 70 </ b> A provided at a clothing input port is disposed. The washing tub 20A is supported by a damper 220 from the bottom of the drum type washing machine main body 10A, and is supported by suspension springs 180 and 190 disposed on the top of the drum type washing machine main body 10A.
 また、例えば加速度センサ501などから構成された振動検知部50Aは、洗濯槽20Aの後部底面に設けられ、洗濯槽20Aの振動を検知する。 Further, for example, a vibration detection unit 50A configured from an acceleration sensor 501 or the like is provided on the bottom of the rear part of the washing tub 20A and detects vibration of the washing tub 20A.
 制御装置60Aは、振動検知部50Aの検知信号に基づいて、ドラム30Aの駆動などを制御する。 Control device 60A controls the driving of drum 30A based on the detection signal of vibration detection unit 50A.
 そして、制御装置60Aは、図12に示すように、少なくともマイクロコンピュータ503、モータ制御回路504、表示パネル回路505、電源回路507などから構成されている。マイクロコンピュータ503は、さらに、衣類の偏りなどを算出する、アンバランス量検知部508と、アンバランス位置検知部509などを備えている。マイクロコンピュータ503は、洗濯槽20Aの振動を検知する振動検知部50Aからの信号をフィルタ回路502を介して信号成分のみを取り込んで演算する。このとき、アンバランス量検知部508でアンバランス量を算出し、アンバランス位置検知部509でアンバランス位置の算出を行う。モータ制御回路504は、振動検知部50Aで検知した振動変位に基づいて、モータ40Aを駆動制御する。これにより、偏った衣類などのアンバランス状態を解消するように、ドラム30Aの回転を制御している。 As shown in FIG. 12, the control device 60A includes at least a microcomputer 503, a motor control circuit 504, a display panel circuit 505, a power supply circuit 507, and the like. The microcomputer 503 further includes an unbalance amount detection unit 508, an unbalance position detection unit 509, and the like that calculate clothing bias and the like. The microcomputer 503 calculates the signal from the vibration detection unit 50A that detects the vibration of the washing tub 20A by taking only the signal component through the filter circuit 502. At this time, the unbalance amount detector 508 calculates the unbalance amount, and the unbalance position detector 509 calculates the unbalance position. The motor control circuit 504 drives and controls the motor 40A based on the vibration displacement detected by the vibration detector 50A. Thereby, the rotation of the drum 30A is controlled so as to eliminate the unbalanced state of the uneven clothing and the like.
 より詳しくは、従来のドラム式洗濯機は、ドラム30Aの回転数を300rpmに維持した状態で、振動検知部50Aで振動変位を検出する。その後、検知した3軸方向の検知信号に対して、それぞれの信号値の比率を求める。そして、求めた比率とその順位から、アンバランス位置検知部509でアンバランス位置を特定する。さらに、アンバランス位置毎のアンバランス量から、アンバランス量検知部508で、アンバランス量を算出する。これにより、制御装置60Aは、モータ40Aの回転を制御して、衣類のアンバランス状態を解消している。 More specifically, in the conventional drum type washing machine, the vibration detection unit 50A detects the vibration displacement while maintaining the rotation speed of the drum 30A at 300 rpm. Then, the ratio of each signal value is calculated | required with respect to the detected detection signal of 3 axial directions. Then, an unbalance position is specified by the unbalance position detection unit 509 from the obtained ratio and its rank. Further, the unbalance amount detection unit 508 calculates the unbalance amount from the unbalance amount for each unbalance position. Thereby, 60 A of control apparatuses control rotation of the motor 40A, and cancel the clothing unbalanced state.
 しかしながら、従来のドラム式洗濯機の構成では、ドラム30A内の洗濯物の偏りによるアンバランス位置およびアンバランス量を、ドラム30Aの回転数を300rpmに維持した状態で、振動検知部50Aで検知した振動変位から検出している。上述したように、通常、ドラム式洗濯機の共振回転数は、200rpmから400rpm程度である。そのため、脱水ステップの起動時においては、共振点(共振回転数)近傍でドラム30Aの振動を検出することになる。 However, in the configuration of the conventional drum type washing machine, the vibration detection unit 50A detects the unbalance position and the unbalance amount due to the bias of the laundry in the drum 30A while maintaining the rotation speed of the drum 30A at 300 rpm. It is detected from vibration displacement. As described above, the resonance rotational speed of a drum type washing machine is usually about 200 rpm to 400 rpm. Therefore, when the dehydration step is started, vibration of the drum 30A is detected in the vicinity of the resonance point (resonance rotation speed).
 従って、脱水ステップの起動時には、共振点でのドラム30Aの振動が大きくなるため、ドラム30Aを回転起動できないことがある。そのため、アンバランス量およびアンバランス位置を特定できない場合がある。このとき、ドラム30Aの回転起動時において、共振点でのドラム30Aの振動変位が一定以下の条件の場合であれば、振動変位の検出が可能である。しかし、常に、共振点でのドラム30Aの振動変位が一定以下であるとは限らない。そのため、脱水ステップの起動が可能かどうかを、正確に検出できないという課題がある。そこで、脱水ステップにおいて、回転数を300rpmまで上昇させようとして、アンバランス量およびアンバランス位置が特定できない場合には、一旦、ドラム30Aの回転を停止して、再び脱水ステップの起動を繰り返すなど、起動のやり直しなどにより対応していた。 Therefore, when the dehydration step is started, the drum 30A may not be able to start rotating because the vibration of the drum 30A at the resonance point increases. Therefore, the unbalance amount and unbalance position may not be specified. At this time, when the drum 30A starts rotating, the vibration displacement can be detected if the vibration displacement of the drum 30A at the resonance point is not more than a certain value. However, the vibration displacement of the drum 30A at the resonance point is not always below a certain level. Therefore, there is a problem that it cannot be accurately detected whether or not the dehydration step can be started. Therefore, in the dehydration step, if the unbalance amount and the unbalance position cannot be specified in an attempt to increase the number of rotations to 300 rpm, the rotation of the drum 30A is temporarily stopped and the dehydration step is started again. It was supported by restarting the startup.
 また、従来のドラム式洗濯機では、衣類のアンバランス状態において、例えばアンバランス量が同じ400gの場合でも、衣類の容量が、例えば1kg、3kg、6kg、9kgなど、どのような容量であっても、起動のやり直しが起こりうる。つまり、衣類の容量が変わることにより、ドラム30Aの回転時における重量が変わる。そのため、同じアンバランス状態でも、振動の度合いが変化し、起動のやり直しが発生するという課題もある。 Further, in the conventional drum type washing machine, even if the amount of unbalance is 400 g, for example, in the unbalanced state of the clothes, the capacity of the clothes is, for example, 1 kg, 3 kg, 6 kg, 9 kg, etc. However, re-startup can occur. That is, the weight at the time of rotation of drum 30A changes by changing the capacity of clothes. For this reason, there is a problem that even in the same unbalanced state, the degree of vibration changes and reactivation is generated.
特開2011-030972号公報JP 2011-030972 A
 本発明は、脱水起動時に、ドラムの振動を抑制して、起動をスムーズに行うことにより、脱水ステップの起動のやり直しの発生を低減できるドラム式洗濯機を提供する。 The present invention provides a drum-type washing machine that can reduce the occurrence of re-starting of the dewatering step by suppressing the vibration of the drum and smoothly starting when dehydration is started.
 そこで、本発明のドラム式洗濯機は、筐体と、筐体の内部に支持された洗濯槽と、洗濯槽内に回転可能に収納された回転槽と、回転槽を回転駆動する駆動部と、回転槽に設けた回転体制御装置と、洗濯槽に設けた振動検知部と、回転槽内の布量を算出する布量検知部と、振動検知部からの出力に基づいて駆動部を制御する制御部と、を備える。制御部は、振動検知部で検知した振動変位と布量検知部で検知した布量とに基づいて、脱水起動時に回転体制御装置を制御する構成を有する。 Therefore, the drum type washing machine of the present invention includes a housing, a washing tub supported inside the housing, a rotating tub rotatably accommodated in the washing tub, and a drive unit that rotationally drives the rotating tub. The rotating body control device provided in the rotating tub, the vibration detecting unit provided in the washing tub, the cloth amount detecting unit for calculating the amount of cloth in the rotating tub, and the drive unit based on the output from the vibration detecting unit A control unit. The control unit has a configuration for controlling the rotating body control device at the start of dehydration based on the vibration displacement detected by the vibration detection unit and the cloth amount detected by the cloth amount detection unit.
 これにより、回転槽を構成するドラム内の洗濯物のアンバランス状態(アンバランス位置およびアンバランス量など)が同じ状態で、かつ回転槽内の布量が異なる場合でも、布量と振動検知部で振動を計測して、アンバランス状態を共振回転数前に正確に把握する。そして、衣類のアンバランス状態(アンバランス量とアンバランス位置)に応じて回転体制御装置を制御することにより、洗濯槽の振動を抑制できる。その結果、起動の再立ち上げなどを繰り返す動作の発生を効果的に防止でき、脱水起動時の安定した動作ができる。 As a result, even if the unbalanced state (unbalanced position and unbalance amount, etc.) of the laundry in the drum constituting the rotating tub is the same and the cloth amount in the rotating tub is different, the cloth amount and the vibration detection unit Measure the vibration with, and accurately grasp the unbalanced state before the resonance speed. And the vibration of a washing tub can be suppressed by controlling a rotating body control apparatus according to the imbalance state (unbalance amount and unbalance position) of clothing. As a result, it is possible to effectively prevent the occurrence of an operation that repeats the restarting of the activation, and a stable operation at the time of dehydration activation can be achieved.
図1は、本発明の実施の形態1におけるドラム式洗濯機の構成図である。FIG. 1 is a configuration diagram of a drum-type washing machine according to Embodiment 1 of the present invention. 図2は、同ドラム式洗濯機の制御ブロック図である。FIG. 2 is a control block diagram of the drum type washing machine. 図3Aは、同ドラム式洗濯機の回転槽の円周方向の洗濯物のアンバランス状態を示す正面図である。FIG. 3A is a front view showing an unbalanced state of the laundry in the circumferential direction of the rotating tub of the drum type washing machine. 図3Bは、同ドラム式洗濯機の回転槽の奥行き方向における前側のアンバランス状態を示す側面図である。FIG. 3B is a side view showing an unbalanced state on the front side in the depth direction of the rotating tub of the drum type washing machine. 図3Cは、同ドラム式洗濯機の回転槽の奥行き方向における後側のアンバランス状態を示す側面図である。FIG. 3C is a side view showing an unbalanced state of the rear side in the depth direction of the rotating tub of the drum type washing machine. 図3Dは、同ドラム式洗濯機の回転槽の奥行き方向における中央側のアンバランス状態を示す側面図である。FIG. 3D is a side view showing an unbalanced state on the center side in the depth direction of the rotating tub of the drum type washing machine. 図3Eは、同ドラム式洗濯機の回転槽の奥行き方向における対角のアンバランス状態を示す側面図である。FIG. 3E is a side view showing a diagonally unbalanced state in the depth direction of the rotating tub of the drum type washing machine. 図4は、同ドラム式洗濯機における洗濯物がアンバランス状態にあるときのモータの電流値の変化を示す図である。FIG. 4 is a diagram illustrating a change in the current value of the motor when the laundry in the drum type washing machine is in an unbalanced state. 図5は、同ドラム式洗濯機のアンバランス量と振動検知部で検知した左右振動変位との関係を、衣類容量をパラメータとして示す相関図である。FIG. 5 is a correlation diagram showing the relationship between the unbalance amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit, using the clothing capacity as a parameter. 図6は、同ドラム式洗濯機のアンバランス位置と振動検知部で検知した前後振動変位との関係を、アンバランス量をパラメータとして示す相関図である。FIG. 6 is a correlation diagram showing the relationship between the unbalance position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter. 図7Aは、従来の流体バランサを設けたドラム式洗濯機のドラムを回転した場合の左右振動変位の出力波形を示す図である。FIG. 7A is a diagram showing an output waveform of left-right vibration displacement when a drum of a drum type washing machine provided with a conventional fluid balancer is rotated. 図7Bは、本発明の実施の形態の回転体制御装置(ボールバランサ)を搭載したドラム式洗濯機のドラムを回転した場合の左右振動変位の出力波形を示す図である。FIG. 7B is a diagram illustrating an output waveform of the left-right vibration displacement when the drum of the drum type washing machine equipped with the rotating body control device (ball balancer) according to the embodiment of the present invention is rotated. 図8は、本発明の実施の形態2におけるドラム式洗濯機の制御ブロック図である。FIG. 8 is a control block diagram of the drum type washing machine in the second embodiment of the present invention. 図9は、同ドラム式洗濯機のアンバランス量と振動検知部で検知した左右振動変位との関係を、温度をパラメータとして示す相関図である。FIG. 9 is a correlation diagram showing the relationship between the unbalanced amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit using temperature as a parameter. 図10は、同ドラム式洗濯機のアンバランス位置と振動検知部で検知した前後振動変位との関係を、アンバランス量をパラメータとして示す相関図である。FIG. 10 is a correlation diagram showing the relationship between the unbalanced position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter. 図11は、従来のドラム式洗濯機の構成図である。FIG. 11 is a configuration diagram of a conventional drum-type washing machine. 図12は、従来のドラム式洗濯機の制御ブロック図である。FIG. 12 is a control block diagram of a conventional drum type washing machine.
 以下に、本発明の実施の形態について、図面を参照しながら説明する。なお、実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 以下に、本発明の実施の形態1におけるドラム式洗濯機について、図1および図2を用いて説明する。
(Embodiment 1)
Below, the drum type washing machine in Embodiment 1 of this invention is demonstrated using FIG. 1 and FIG.
 図1は、本発明の実施の形態1におけるドラム式洗濯機の構成図である。図2は、同ドラム式洗濯機の制御ブロック図である。 FIG. 1 is a configuration diagram of a drum-type washing machine according to Embodiment 1 of the present invention. FIG. 2 is a control block diagram of the drum type washing machine.
 図1および図2に示すように、本実施の形態のドラム式洗濯機は、少なくとも筐体を構成するドラム式洗濯機本体1と、ドラム式洗濯機本体1内に収容される洗濯槽22、回転槽を構成するドラム3、モータ12、回転体制御装置を構成するボールバランサ8、振動センサなどで構成される振動検知部10、制御部13などから構成されている。 As shown in FIGS. 1 and 2, the drum type washing machine of the present embodiment includes at least a drum type washing machine body 1 constituting a housing, a washing tub 22 accommodated in the drum type washing machine body 1, It comprises a drum 3, which constitutes a rotating tub, a motor 12, a ball balancer 8 which constitutes a rotating body control device, a vibration detection unit 10 comprising a vibration sensor, a control unit 13, and the like.
 洗濯槽22は、内部に回転槽を構成するドラム3を収容し、ダンパ19で、筐体を構成するドラム式洗濯機本体1に支えられている。ドラム3は、洗濯物18を収納する。ドラム3の内周壁には、例えば3枚で構成されるバッフル7が設けられ、ドラム3の回転時に洗濯物18を持ち上げて撹拌をする。なお、ドラム3は、例えば水平軸または傾斜回転軸を備え、洗濯槽22内に回転可能に収容されている。 The washing tub 22 accommodates the drum 3 constituting the rotating tub inside, and is supported by the drum type washing machine main body 1 constituting the housing by the damper 19. The drum 3 stores the laundry 18. On the inner peripheral wall of the drum 3, for example, a baffle 7 composed of three pieces is provided, and the laundry 18 is lifted and stirred when the drum 3 rotates. The drum 3 has, for example, a horizontal axis or an inclined rotation axis and is rotatably accommodated in the washing tub 22.
 また、回転体制御装置を構成するボールバランサ8は、ドラム3の正面側の洗濯物投入口側に設けられている。ボールバランサ8は、内部に複数のボール9(例えば、鉄玉)および、例えば粘性100csで温度特性を有する所定の粘性のオイル(例えば、シリコーンオイル)が封じ込められている。そして、ボールバランサ8は、ドラム3と一緒に回転し、ボールバランサ8内に、例えば一列に並んだボール9が内部のオイルの粘性により自由に回転方向に移動できる構成を備えている。 Also, the ball balancer 8 constituting the rotating body control device is provided on the laundry input side on the front side of the drum 3. The ball balancer 8 contains therein a plurality of balls 9 (for example, iron balls) and oil of a predetermined viscosity (for example, silicone oil) having a temperature characteristic of, for example, a viscosity of 100 cs. The ball balancer 8 rotates together with the drum 3, and the ball balancer 8 has a configuration in which, for example, the balls 9 arranged in a row can freely move in the rotation direction due to the viscosity of the internal oil.
 また、振動検知部10は、洗濯槽22の正面側(前面側)上部に設けられ、例えば3軸などの多軸方向の振動を検知する。具体的には、振動検知部10は、洗濯槽22の上部の左右方向の振動変位(左右振動変位)、前後方向の振動変位(前後振動変位)、上下方向の振動変位(上下振動変位)を検知する。そして、制御部13は、振動検知部10で検知した各方向の振動変位の大きさに基づいて、ドラム3の回転数を上昇または停止、維持などを判断して制御する。 Further, the vibration detection unit 10 is provided on the front side (front side) upper portion of the washing tub 22 and detects vibrations in multi-axis directions such as three axes. Specifically, the vibration detection unit 10 detects the vibration displacement in the left-right direction (left-right vibration displacement), the vibration displacement in the front-rear direction (front-rear vibration displacement), and the vibration displacement in the vertical direction (vertical vibration displacement) in the upper part of the washing tub 22. Detect. Based on the magnitude of the vibration displacement in each direction detected by the vibration detector 10, the controller 13 determines whether to increase, stop, or maintain the rotational speed of the drum 3.
 また、ドラム3の背面側には、ドラム3と同一軸に設けたドラムプーリ4が設けられている。そして、ドラム3は、モータプーリ5からベルト6を介してドラムプーリ4にモータ12の駆動が伝達されて回転する。 Further, a drum pulley 4 provided on the same axis as the drum 3 is provided on the back side of the drum 3. The drum 3 rotates when the drive of the motor 12 is transmitted from the motor pulley 5 to the drum pulley 4 via the belt 6.
 また、モータ12は、モータ12のロータ位置を検出するロータ位置検出部15を備えている。ロータ位置検出部15は、モータ12のロータ位置を検出して、制御部13の回転制御部132に信号を伝達する。回転制御部132は、ロータ位置の信号に基づいて、駆動部133を介してモータ12の回転駆動を制御する。なお、モータ12は、例えば永久磁石同期モータで構成される。そして、モータ12のロータ位置をロータ位置検出部15で検出して、制御部13の回転制御部132に入力する。これにより、モータ12が脱調することなく回転制御される。 The motor 12 includes a rotor position detector 15 that detects the rotor position of the motor 12. The rotor position detector 15 detects the rotor position of the motor 12 and transmits a signal to the rotation controller 132 of the controller 13. The rotation control unit 132 controls the rotation drive of the motor 12 via the drive unit 133 based on the rotor position signal. In addition, the motor 12 is comprised with a permanent magnet synchronous motor, for example. Then, the rotor position of the motor 12 is detected by the rotor position detector 15 and input to the rotation controller 132 of the controller 13. Thus, the rotation of the motor 12 is controlled without stepping out.
 また、図2に示すように、ドラム式洗濯機本体1の駆動制御を行う制御部13は、起動判定部131と、上述した回転制御部132などを有している。起動判定部131は、電流検知部101と、布量検知部102と、回転位置検知部103と、布量補正部104と、アンバランス位置算出部30と、アンバランス量算出部31などから構成されている。電流検知部101は、モータ12に流れる電流を検出する。回転位置検知部103は、電流検知部101で検知する電流の変化から洗濯物18の偏りによるドラム3内の円周方向のアンバランス位置を検出する。アンバランス量算出部31は、振動検知部10で検知する左右振動変位からドラム3内の洗濯物18のアンバランス量を検知する。アンバランス位置算出部30は、アンバランス量算出部31で算出したアンバランス量に基づいて、振動検知部10で検知する前後振動変位からドラム3の奥行き方向における洗濯物18のアンバランス位置を算出する。布量検知部102は、ドラム3内の洗濯物18の容量などの布量を検知する。布量補正部104は、布量検知部102で検知した布量から、振動検知部10で検知した振動変位の値を補正する。 Moreover, as shown in FIG. 2, the control part 13 which performs drive control of the drum-type washing machine main body 1 has the starting determination part 131, the rotation control part 132 mentioned above, etc. The activation determination unit 131 includes a current detection unit 101, a cloth amount detection unit 102, a rotational position detection unit 103, a cloth amount correction unit 104, an unbalance position calculation unit 30, an unbalance amount calculation unit 31, and the like. Has been. The current detection unit 101 detects a current flowing through the motor 12. The rotation position detection unit 103 detects an unbalance position in the circumferential direction in the drum 3 due to the bias of the laundry 18 from the change in current detected by the current detection unit 101. The unbalance amount calculation unit 31 detects the unbalance amount of the laundry 18 in the drum 3 from the left and right vibration displacement detected by the vibration detection unit 10. The unbalance position calculation unit 30 calculates the unbalance position of the laundry 18 in the depth direction of the drum 3 from the longitudinal vibration displacement detected by the vibration detection unit 10 based on the unbalance amount calculated by the unbalance amount calculation unit 31. To do. The cloth amount detection unit 102 detects the amount of cloth such as the capacity of the laundry 18 in the drum 3. The cloth amount correction unit 104 corrects the value of the vibration displacement detected by the vibration detection unit 10 from the cloth amount detected by the cloth amount detection unit 102.
 また、制御部13の回転制御部132は、上述したように、内部にモータ12を駆動する駆動部133を備えている。駆動部133は、ロータ位置検出部15で検出したモータ12のロータ位置の信号に同期させて、モータ12を駆動する。 Moreover, the rotation control part 132 of the control part 13 is provided with the drive part 133 which drives the motor 12 inside as mentioned above. The drive unit 133 drives the motor 12 in synchronization with the rotor position signal of the motor 12 detected by the rotor position detection unit 15.
 そして、モータ12は、図1に示す減速機構を構成するモータプーリ5、ベルト6およびドラムプーリ4を介して、ドラム3を回転させる。このとき、ドラム3の回転により発生する洗濯槽22の振動変位を振動検知部10で検知する。 The motor 12 rotates the drum 3 via the motor pulley 5, the belt 6 and the drum pulley 4 that constitute the speed reduction mechanism shown in FIG. At this time, the vibration detector 10 detects the vibration displacement of the washing tub 22 generated by the rotation of the drum 3.
 以下に、本実施の形態のドラム式洗濯機において、ドラム3の回転にともなって発生する洗濯物18のアンバランス状態について、図3Aから図4を用いて具体的に説明する。 Hereinafter, the unbalanced state of the laundry 18 generated as the drum 3 rotates in the drum type washing machine of the present embodiment will be specifically described with reference to FIGS. 3A to 4.
 図3Aは、同ドラム式洗濯機の回転槽の円周方向の洗濯物のアンバランス状態を示す正面図である。図3Bは、同ドラム式洗濯機の回転槽の奥行き方向における前側のアンバランス状態を示す側面図である。図3Cは、同ドラム式洗濯機の回転槽の奥行き方向における後側のアンバランス状態を示す側面図である。図3Dは、同ドラム式洗濯機の回転槽の奥行き方向における中央側のアンバランス状態を示す側面図である。図3Eは、同ドラム式洗濯機の回転槽の奥行き方向における対角のアンバランス状態を示す側面図である。 FIG. 3A is a front view showing an unbalanced state of the laundry in the circumferential direction of the rotating tub of the drum type washing machine. FIG. 3B is a side view showing an unbalanced state on the front side in the depth direction of the rotating tub of the drum type washing machine. FIG. 3C is a side view showing an unbalanced state of the rear side in the depth direction of the rotating tub of the drum type washing machine. FIG. 3D is a side view showing an unbalanced state on the center side in the depth direction of the rotating tub of the drum type washing machine. FIG. 3E is a side view showing a diagonally unbalanced state in the depth direction of the rotating tub of the drum type washing machine.
 なお、図3Aは、洗濯物18がドラム3の内壁に張り付いた状態でアンバランス位置Aが発生している状態を正面から見た図で示している。図3Bは、洗濯物18のアンバランス位置Aが前側(正面側)で発生した状態を示している。図3Cは、洗濯物18のアンバランス位置Aが後側で発生した状態を示している。図3Dは、洗濯物18のアンバランス位置Aがドラム3の中央側で発生した状態を示している。図3Eは、洗濯物18のアンバランス位置Aがドラムの対角で発生している状態を示している。 FIG. 3A is a front view showing a state where the unbalanced position A is generated with the laundry 18 sticking to the inner wall of the drum 3. FIG. 3B shows a state in which the unbalance position A of the laundry 18 is generated on the front side (front side). FIG. 3C shows a state in which the unbalance position A of the laundry 18 has occurred on the rear side. FIG. 3D shows a state in which the unbalance position A of the laundry 18 occurs on the center side of the drum 3. FIG. 3E shows a state in which the unbalance position A of the laundry 18 is generated at the diagonal of the drum.
 図4は、同ドラム式洗濯機における洗濯物がアンバランス状態にあるときのモータの電流値の変化を示す図である。具体的には、回転するドラム3内でアンバランス位置Aが下方にあるときは、アンバランスの重量に逆らって上方に持ち上げることになる。そのため、電流を多く消費し、電流検知部101が検知する電流値は増加する。逆に、アンバランス位置Aがドラム3の上部にあるときは、アンバランスの重量を重力にしたがって下方に持っていくために最少の電流消費となる。そのため、電流検知部101が検知する電流値は減少する。このように、ドラム3にアンバランスがあるときは、モータ12の電流値は変動し、電流変化はアンバランス位置Aの回転とリンクする。また、電流値はアンバランスの量に比例して大きくなる。 FIG. 4 is a diagram showing a change in the current value of the motor when the laundry in the drum type washing machine is in an unbalanced state. Specifically, when the unbalance position A is in the lower side in the rotating drum 3, it is lifted upward against the unbalanced weight. Therefore, a large amount of current is consumed, and the current value detected by the current detection unit 101 increases. On the contrary, when the unbalance position A is at the upper part of the drum 3, the current consumption is minimized because the unbalance weight is taken downward according to gravity. Therefore, the current value detected by the current detection unit 101 decreases. Thus, when the drum 3 is unbalanced, the current value of the motor 12 fluctuates, and the current change is linked to the rotation of the unbalance position A. Further, the current value increases in proportion to the amount of unbalance.
 まず、図3Aは、洗濯物18のアンバランス位置Aが、矢印で示すドラム3の円周方向に回転し、ドラム3の外周に設けられた回転体制御装置を構成するボールバランサ8内のボール9が底部に偏っている状態を示している。図4は、その回転状態でのモータ12の電流値の変化を示している。これは、洗濯物18がドラム3の内壁に張り付く最低回転数以上で、かつボールバランサ8内のボール9がドラム3の回転とともに回転しない最大回転数以下で、ドラム3が回転している状態を示している。具体的には、最低回転数は、例えば約60rpmから70rpmで、洗濯物18にかかる重力とドラム3の遠心力が均衡する回転数に相当する。一方、最大回転数は、通常、オイルの粘性とボール9の重量に依存するが、ボールバランサ8内に封じ込められた所定の粘性を有するオイルによりボール9が底部に偏る、例えば約80rpmの回転数に相当する。そのため、上記状態の場合、80rpm以上でドラム3が回転すると、ドラム3の回転より遅れて、ボール9が、ボールバランサ8内を回転移動することになる。 3A, the unbalanced position A of the laundry 18 rotates in the circumferential direction of the drum 3 indicated by the arrow, and the balls in the ball balancer 8 constituting the rotating body control device provided on the outer periphery of the drum 3 are shown. 9 has shown the state biased to the bottom part. FIG. 4 shows a change in the current value of the motor 12 in the rotating state. This is a state in which the drum 3 is rotating at a rotational speed equal to or higher than the minimum rotational speed at which the laundry 18 sticks to the inner wall of the drum 3 and below the maximum rotational speed at which the ball 9 in the ball balancer 8 does not rotate with the rotation of the drum 3. Show. Specifically, the minimum rotational speed is, for example, about 60 rpm to 70 rpm, and corresponds to the rotational speed at which the gravity applied to the laundry 18 and the centrifugal force of the drum 3 are balanced. On the other hand, the maximum rotation speed usually depends on the viscosity of the oil and the weight of the ball 9, but the ball 9 is biased toward the bottom by the oil having a predetermined viscosity contained in the ball balancer 8, for example, the rotation speed of about 80 rpm. It corresponds to. Therefore, in the above state, when the drum 3 rotates at 80 rpm or more, the ball 9 rotates and moves in the ball balancer 8 with a delay from the rotation of the drum 3.
 そして、図3Aに示す状態において、ドラム3内の洗濯物18が回転した場合、アンバランス位置Aのみがアンバランス状態として、電流検知部101により、図4に示すようなモータ12の電流値の変化として検出される。つまり、図4は、洗濯物18のアンバランス位置Aがドラム3の最底部から最上部へ移動すると、モータ12を駆動する電流値が、ドラム3の回転周期に同期して最小電流値bから最大電流値aへの変化(電流差分d)として検出できることを示している。これにより、同じ回転数でドラム3を駆動する間中、回転数に同期した繰り返し周期cで、電流検知部101により、モータ12の電流値の変化として検出される。 In the state shown in FIG. 3A, when the laundry 18 in the drum 3 rotates, only the unbalanced position A is set to the unbalanced state, and the current detection unit 101 sets the current value of the motor 12 as shown in FIG. Detected as a change. That is, in FIG. 4, when the unbalanced position A of the laundry 18 moves from the bottom to the top of the drum 3, the current value for driving the motor 12 is changed from the minimum current value b in synchronization with the rotation period of the drum 3. It shows that it can be detected as a change to the maximum current value a (current difference d). As a result, while the drum 3 is being driven at the same rotation speed, the current detection unit 101 detects the change in the current value of the motor 12 at a repetition period c synchronized with the rotation speed.
 しかし、通常、実際の洗濯物18の位置により、アンバランス位置Aは複雑に変化する。具体的には、図3Bから図3Eに示すように、大きく4つに分類できる。例えば、図3Bのように、ドラム3の奥行き方向(前後方向)において、アンバランス位置Aがドラム3の前方にある場合や、図3Cに示すように、アンバランス位置Aが後側にある場合などがある。また、図3Dのように、アンバランス位置Aがドラム3の中央側(中間位置)にある場合や、図3Eに示すように、アンバランス位置Aがドラム3の前側と後側の対角位置(例えば、180度)にある場合がある。 However, normally, the unbalance position A varies in a complex manner depending on the actual position of the laundry 18. Specifically, as shown in FIG. 3B to FIG. 3E, it can be roughly classified into four. For example, when the unbalance position A is in front of the drum 3 in the depth direction (front-rear direction) of the drum 3 as shown in FIG. 3B, or when the unbalance position A is at the rear side as shown in FIG. 3C. and so on. 3D, when the unbalance position A is on the center side (intermediate position) of the drum 3, or as shown in FIG. 3E, the unbalance position A is a diagonal position between the front side and the rear side of the drum 3. (For example, 180 degrees).
 なお、図3Aに示す状態において、ドラム3内の衣類容量(布量)が変化する場合、以下のことが実験値から得られている。例えば、衣類容量が増加すると、ドラム3の質量の増加により慣性が大きくなるため、ドラム3の振動変位の値が安定する。一方、衣類容量が少なくなるに従って、ドラム3の質量が小さくなるため、ドラム3の振動変位の値が大きくなる。つまり、衣類容量により、ドラム3の回転にともなって発生する振動変位が変化することが実験値から示されている。 In addition, in the state shown in FIG. 3A, when the clothing capacity (cloth amount) in the drum 3 changes, the following is obtained from the experimental values. For example, when the clothing capacity increases, the inertia increases due to the increase in the mass of the drum 3, so that the vibration displacement value of the drum 3 is stabilized. On the other hand, since the mass of the drum 3 decreases as the clothing capacity decreases, the vibration displacement value of the drum 3 increases. That is, the experimental value indicates that the vibration displacement generated with the rotation of the drum 3 changes depending on the clothing capacity.
 そのため、図4で説明したモータ12を駆動する電流値の変化だけでは、衣類容量の変化によるアンバランス位置やアンバランス量などの多様なアンバランス状態を、正確に把握して、制御することが困難である。 Therefore, it is possible to accurately grasp and control various unbalanced states such as an unbalanced position and an unbalanced amount due to a change in clothing capacity only by changing the current value for driving the motor 12 described in FIG. Have difficulty.
 そこで、本実施の形態では、衣類容量の変化によるアンバランス位置およびアンバランス量などの多様なアンバランス状態を、振動検知部10で検知して、制御している。この制御においては、まず、衣類容量の変化による振動変位とアンバランス状態(アンバランス量およびアンバランス位置)との関係を図5と図6のように実験的に測定する。そして、実験的に測定された結果を利用して、実際の運転時の衣類容量に応じてアンバランス状態をより正確に検知して制御している。 Therefore, in this embodiment, the vibration detection unit 10 detects and controls various unbalanced states such as an unbalanced position and an unbalanced amount due to a change in clothing capacity. In this control, first, the relationship between the vibration displacement due to the change in clothing capacity and the unbalanced state (unbalance amount and unbalance position) is experimentally measured as shown in FIGS. Then, using an experimentally measured result, the unbalanced state is detected and controlled more accurately according to the clothing capacity during actual driving.
 以下に、本実施の形態のドラム式洗濯機において、アンバランス状態を検知する方法について、図5および図6を用いて、説明する。 Hereinafter, a method for detecting an unbalanced state in the drum type washing machine of the present embodiment will be described with reference to FIGS. 5 and 6.
 図5は、同ドラム式洗濯機のアンバランス量と振動検知部で検知した左右振動変位との関係を、衣類容量をパラメータとして示す相関図である。詳細には、図中のS1は、衣類容量が小容量の場合における、アンバランス量と左右振動変位との関係を示している。同様に、S2は衣類容量が中容量の場合、S3は衣類容量が大容量の場合の関係を示している。なお、特に限定するものではないが、本実施の形態では、小容量は大容量の20%、中容量は大容量の60%、大容量は定格容量、の衣類容量としている。また、容量の区分は3つに限られるものではなく、区分が多いほどアンバランス状態を正確に把握できる。 FIG. 5 is a correlation diagram showing the relationship between the unbalanced amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit, using the clothing capacity as a parameter. Specifically, S1 in the figure indicates the relationship between the unbalance amount and the lateral vibration displacement when the clothing capacity is small. Similarly, S2 shows the relationship when the clothing capacity is medium, and S3 shows the relationship when the clothing capacity is large. Although not particularly limited, in the present embodiment, the small capacity is 20% of the large capacity, the medium capacity is 60% of the large capacity, and the large capacity is the rated capacity. Further, the capacity classification is not limited to three, and the more the classification, the more accurately the unbalanced state can be grasped.
 さらに、図中のS11は、アンバランス量が500gにおける、衣類容量が小容量の場合のS1上の左右振動変位を示している。同様に、S21は衣類容量が中容量の場合、S31は衣類容量が大容量の場合の、S2およびS3上の左右振動変位を示している。 Furthermore, S11 in the figure indicates the left-right vibration displacement on S1 when the unbalance amount is 500 g and the clothing capacity is small. Similarly, S21 indicates the left-right vibration displacement on S2 and S3 when the clothing capacity is medium, and S31 indicates when the clothing capacity is large.
 また、図6は、同ドラム式洗濯機のアンバランス位置と振動検知部で検知した前後振動変位との関係を、アンバランス量をパラメータとして示す相関図である。詳細には、図中のZ1からZ7は、衣類容量が小容量の場合の100gから2000gに相当する各アンバランス量を示している。そして、図中のC1は、衣類容量が小容量の場合のアンバランス量が500gにおける、アンバランス位置と前後振動変位との関係を示している。同様に、C2は衣類容量が中容量の場合、C3は衣類容量が大容量の場合の、アンバランス量が500gにおける、アンバランス位置と前後振動変位との関係を示している。なお、衣類容量が中容量と大容量で、アンバランス量が500gの場合以外の相関図は記載していない。 FIG. 6 is a correlation diagram showing the relationship between the unbalance position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter. Specifically, Z1 to Z7 in the figure indicate the respective unbalance amounts corresponding to 100 g to 2000 g when the clothing capacity is small. C1 in the figure indicates the relationship between the unbalance position and the longitudinal vibration displacement when the unbalance amount is 500 g when the clothing capacity is small. Similarly, C2 indicates the relationship between the unbalanced position and the longitudinal vibration displacement when the unbalanced amount is 500 g when the clothing capacity is medium, and C3 when the clothing capacity is large. In addition, the correlation diagram other than the case where the clothing capacity is medium capacity and large capacity and the unbalance amount is 500 g is not shown.
 さらに、図中のC11は、アンバランス量が500gにおいて、衣類容量が小容量でアンバランス位置が「前中」の場合の、C1上の前後振動変位を示している。同様に、C21は衣類容量が中容量の場合、C31は衣類容量が大容量の場合の、C2およびC3上のアンバランス位置が「前中」における前後振動変位を示している。 Furthermore, C11 in the figure indicates the longitudinal vibration displacement on C1 when the unbalance amount is 500 g, the clothing capacity is small, and the unbalance position is “front middle”. Similarly, C21 indicates the longitudinal vibration displacement when the unbalanced position on C2 and C3 is “front middle” when the clothing capacity is medium, and C31 is when the clothing capacity is large.
 このとき、図5は、振動検知部10で検知した左右振動変位とアンバランス量との関係が、以下の条件でドラム3を駆動した場合、アンバランス位置Aが図3Bから図3Eに示す位置関係に関わらず、相関関係にあることを示している。条件は、ドラム3をボールバランサ8のボール9が底部に固定されずに回転する回転数を、例えば90rpmから150rpmの範囲で維持した状態で、左右振動変位とアンバランス量を検知した場合である。この回転数は、ドラム3の共振回転数より低く、アンバランス状態の検知に都合が良い。 At this time, FIG. 5 shows that the relationship between the left and right vibration displacement detected by the vibration detector 10 and the unbalance amount is the position shown in FIGS. 3B to 3E when the drum 3 is driven under the following conditions. It shows that there is a correlation regardless of the relationship. The condition is a case where the left-right vibration displacement and the unbalance amount are detected in a state in which the rotation speed of the drum 3 rotating without the ball 9 of the ball balancer 8 being fixed to the bottom is maintained within a range of 90 rpm to 150 rpm, for example. . This rotational speed is lower than the resonant rotational speed of the drum 3, which is convenient for detecting an unbalanced state.
 なお、本実施の形態では、回転数を120rpmで維持した状態で、衣類容量毎に左右振動変位とアンバランス量の関係を実験的に測定した結果を、図5に示している。同様に、回転数を120rpmで維持した状態で、衣類容量が小容量においてアンバランス量毎に前後振動変位とアンバランス位置の関係を実験的に測定した結果を、図6に示している。 In the present embodiment, FIG. 5 shows the result of experimental measurement of the relationship between the left-right vibration displacement and the unbalance amount for each clothing capacity with the rotation speed maintained at 120 rpm. Similarly, FIG. 6 shows the results of experimental measurement of the relationship between the longitudinal vibration displacement and the unbalance position for each unbalance amount with the clothing capacity being small and the rotation speed maintained at 120 rpm.
 ここで、図5と図6を得る具体的な測定方法について説明する。まず、例えばドラム3の内壁面に、衣類容量に相当する重りを均等に配置する。つぎに、アンバランス量に相当する重り(例えば、500gなど)を、所定のアンバランス位置に配置した状態で、ドラム3を回転駆動する。そして、上記状態でドラム3を回転させたときに発生する左右振動変位や前後振動変位を検知し、図5や図6にプロットしている。 Here, a specific measurement method for obtaining FIGS. 5 and 6 will be described. First, for example, weights corresponding to clothing capacities are evenly arranged on the inner wall surface of the drum 3. Next, the drum 3 is rotationally driven in a state where a weight (for example, 500 g) corresponding to the unbalance amount is disposed at a predetermined unbalance position. And the left-right vibration displacement and the front-back vibration displacement generated when the drum 3 is rotated in the above state are detected and plotted in FIG. 5 and FIG.
 以下に、図5において、左右振動変位とアンバランス量との関係が、アンバランス位置Aが図3Bから図3Eに示す奥行き方向の位置関係に関わらず、相関関係にある理由について説明する。 Hereinafter, the reason why the relationship between the left and right vibration displacement and the unbalance amount in FIG. 5 is correlated regardless of the unbalance position A regardless of the positional relationship in the depth direction shown in FIGS. 3B to 3E will be described.
 まず、ドラム3の回転軸が洗濯槽22の背面側を軸に支持固定され、振動検知部10を軸から離れた距離にある前側の上部に設けている。そのため、ドラム3の奥行き方向のアンバランス位置に前後振動変位および上下振動変位は影響されるが、左右振動変位への影響は小さい。つまり、奥行き方向のアンバランス位置に、左右振動変位は、影響されない。これにより、アンバランス量と左右振動変位との関係を、精度よく得ることができる。 First, the rotating shaft of the drum 3 is supported and fixed with the back side of the washing tub 22 as a shaft, and the vibration detecting unit 10 is provided at the upper part on the front side at a distance away from the shaft. Therefore, although the longitudinal vibration displacement and the vertical vibration displacement are affected by the unbalanced position of the drum 3 in the depth direction, the influence on the lateral vibration displacement is small. That is, the left / right vibration displacement is not affected by the unbalanced position in the depth direction. Thereby, the relationship between the unbalance amount and the left-right vibration displacement can be obtained with high accuracy.
 一方、左右振動変位は、上述したように、ドラム3の内部に収容される衣類容量の増減により影響を受ける。つまり、衣類容量の増加によりドラム3全体の重量が増加すると、振動の始まりには重量による慣性が振動を抑制する方向に働く。そこで、図5には、布量検知部102で洗濯前(例えば、洗濯水を供給する前)に検知した衣類容量から、小容量時の左右振動変位とアンバランス量との関係をS1で示し、同様に、中容量時の関係をS2で、大容量時の関係をS3で示している。 On the other hand, the left-right vibration displacement is affected by the increase or decrease of the clothing capacity accommodated in the drum 3 as described above. That is, when the weight of the entire drum 3 increases due to an increase in the clothing capacity, inertia due to the weight acts in a direction to suppress the vibration at the beginning of the vibration. Therefore, in FIG. 5, the relationship between the left and right vibration displacement and the unbalance amount at the time of a small capacity is shown by S1 from the clothing capacity detected before washing (for example, before supplying washing water) by the cloth amount detection unit 102. Similarly, the relationship at medium capacity is indicated by S2, and the relationship at large capacity is indicated by S3.
 具体的には、例えば衣類容量が小容量時において、振動検知部10で検知した左右振動変位が3.0mmの場合、S1上のS11から、アンバランス量が500gであることを示している。これに対して、アンバランス量が500gで同じであれば、中容量時においては、S2上のS21から左右振動変位が1.0mmと小さくなり、大容量時においては、S3上のS31から左右振動変位が0.8mmとさらに小さくなる。従って、衣類容量を小容量とすると、左右振動変位が1.0mmの場合、S1からアンバランス量が400gであると示される。さらに、左右振動変位が0.8mmの場合、S1からアンバランス量が300gであると示される。つまり、アンバランス量が同じ場合でも、上述したように、衣類容量により左右振動変位が異なる。その結果、左右振動変位だけでアンバランス量を判断すると、図2に示す制御部13の起動判定部131は、アンバランス量を誤判定し、起動方法を誤る可能性がある。 Specifically, for example, when the clothing capacity is small and the left-right vibration displacement detected by the vibration detection unit 10 is 3.0 mm, the unbalance amount is 500 g from S11 on S1. On the other hand, if the unbalance amount is the same at 500 g, the left-right vibration displacement is as small as 1.0 mm from S21 on S2 in the middle capacity, and left and right from S31 on S3 in the large capacity. The vibration displacement is further reduced to 0.8 mm. Therefore, if the clothing capacity is a small capacity, when the left-right vibration displacement is 1.0 mm, the unbalance amount is 400 g from S1. Furthermore, when the left-right vibration displacement is 0.8 mm, the unbalance amount is 300 g from S1. That is, even when the unbalance amount is the same, as described above, the left-right vibration displacement differs depending on the clothing capacity. As a result, if the unbalance amount is determined only by the left-right vibration displacement, the activation determination unit 131 of the control unit 13 illustrated in FIG. 2 may erroneously determine the unbalance amount and may erroneously activate the activation method.
 また、図6に示す前後振動変位とアンバランス位置との関係から、図中にZ1からZ7で示すアンバランス量毎の特性を用いて、ドラム3の奥行き方向におけるアンバランス位置を算出することができる。なお、図6に示す、洗濯槽22の前後振動変位と、アンバランス量毎のアンバランス位置を示す関係は、上述したように実験的に得られたデータである。 Further, from the relationship between the longitudinal vibration displacement and the unbalance position shown in FIG. 6, the unbalance position in the depth direction of the drum 3 can be calculated using the characteristics for each unbalance amount indicated by Z1 to Z7 in the figure. it can. The relationship between the longitudinal vibration displacement of the washing tub 22 and the unbalance position for each unbalance amount shown in FIG. 6 is data obtained experimentally as described above.
 つまり、振動検知部10の前後変位は、以下の条件でドラム3を駆動した場合、アンバランス量毎にドラム3の奥行き方向のアンバランス位置により前後振動変位として検出できる。条件は、ドラム3をボールバランサ8のボール9が底部に固定されずに回転する回転数、例えば90rpmから150rpmの範囲を維持した状態で、ドラム3を回転させる場合である。なお、本実施の形態では、回転数を120rpmで維持した状態で、前後振動変位とアンバランス位置との関係を実験的に測定しており、図6では、上述したように、アンバランス量が500gの場合を除いて、衣類容量が小容量の場合のみを示している。 That is, when the drum 3 is driven under the following conditions, the longitudinal displacement of the vibration detection unit 10 can be detected as the longitudinal vibration displacement from the unbalance position in the depth direction of the drum 3 for each unbalance amount. The condition is that the drum 3 is rotated while maintaining the number of rotations of the drum 3 without the ball 9 of the ball balancer 8 being fixed to the bottom, for example, a range of 90 rpm to 150 rpm. In this embodiment, the relationship between the longitudinal vibration displacement and the unbalance position is experimentally measured with the rotation speed maintained at 120 rpm. In FIG. 6, as described above, the unbalance amount is Except for the case of 500 g, only the case where the clothing capacity is small is shown.
 ここで、前後振動変位を検出できる理由は、まず、ドラム3の回転軸が洗濯槽22の後方部を軸として支持され、軸から離れた前方上部の位置に振動検知部10を設けている。これにより、アンバランス量を示す左右振動は明確に現れる。そして、アンバランス位置の違いを示す前後振動は、アンバランス位置がドラム3内の軸側にある場合は小さく、前側にある場合は大きくなる。そのため、振動検知部10で検知される前後振動変位に、ドラム3の奥行き方向のアンバランス位置を示す特性が表れる。つまり、ドラム3の奥行き方向のアンバランス位置を、実験結果から得られた図6を用いて判定できる。 Here, the reason why the longitudinal vibration displacement can be detected is that the rotating shaft of the drum 3 is first supported with the rear part of the washing tub 22 as an axis, and the vibration detecting unit 10 is provided at the front upper position away from the axis. Thereby, the left-right vibration indicating the unbalance amount appears clearly. The longitudinal vibration indicating the difference in the unbalance position is small when the unbalance position is on the shaft side in the drum 3, and is large when the unbalance position is on the front side. Therefore, a characteristic indicating the unbalance position in the depth direction of the drum 3 appears in the longitudinal vibration displacement detected by the vibration detection unit 10. That is, the unbalance position in the depth direction of the drum 3 can be determined using FIG. 6 obtained from the experimental results.
 具体的には、例えば布量検知部102で検知した衣類容量が小容量の場合、左右振動変位が3.0mmで、前後振動変位が1.0mmであれば、図5のS11からアンバランス量は500gと読み取れる。そして、読み取ったアンバランス量を図6のC11に当てはめることにより、アンバランス位置が「前中」にあることを検知できる。 Specifically, for example, when the clothing volume detected by the cloth amount detection unit 102 is a small volume, if the lateral vibration displacement is 3.0 mm and the longitudinal vibration displacement is 1.0 mm, the unbalance amount from S11 in FIG. Can be read as 500 g. Then, by applying the read unbalance amount to C11 in FIG. 6, it is possible to detect that the unbalance position is “front middle”.
 このようにして、例えばアンバランス量は500gとして、衣類容量が中容量の場合、前後変位が0.9mmと計測されると、中容量時の特性を示すC2から前後のアンバランス位置がC21と示される。さらに、衣類容量が大容量の場合、前後振動変位が0.8mmと計測されると、大容量時の特性を示すC3から前後のアンバランス位置がC31と示される。つまり、衣類容量と前後振動変位の値が変化しても、いずれもアンバランス位置を、「前中」と判定することができる。 Thus, for example, when the amount of unbalance is 500 g and the clothing capacity is medium capacity, when the front-rear displacement is measured as 0.9 mm, the front-rear unbalance position is C21 from C2 indicating the characteristics at medium capacity. Indicated. Furthermore, when the clothing capacity is large, when the longitudinal vibration displacement is measured as 0.8 mm, the front and rear unbalanced position from C3 indicating the characteristic at the time of large capacity is represented as C31. That is, even if the clothing capacity and the value of the longitudinal vibration displacement change, the unbalance position can be determined to be “in front”.
 このように、図5と図6のような関係を実験により得られた値から補正式(近似式)として布量補正部104で把握しておく。これにより、布量検知部102で検知した衣類容量と、振動検知部10で検知される左右振動変位と前後振動変位とから、アンバランス量とアンバランス位置を正確に算出して、適切な起動制御を行うことができる。なお、布類容量やアンバランス量の実験では得られていない詳細な値に対しても、布量補正部104の補正式により補完して算出することが可能である。 Thus, the relationship as shown in FIG. 5 and FIG. 6 is grasped by the cloth amount correction unit 104 as a correction expression (approximate expression) from values obtained by experiments. As a result, the unbalance amount and the unbalance position are accurately calculated from the clothing volume detected by the cloth amount detection unit 102, the left and right vibration displacements and the front and rear vibration displacements detected by the vibration detection unit 10, and appropriate activation is performed. Control can be performed. It should be noted that detailed values not obtained in the experiment of the fabric capacity and the unbalance amount can be complemented by the correction formula of the fabric amount correction unit 104 and calculated.
 また、図5および図6を得る場合において、例えば衣類容量が小容量の場合のみ実験を行って相関図を把握する。そして、中容量や大容量については、小容量の相関図を基準にして、布量による補正を布量補正部104で行うようにしてもよい。もちろん、基準とする衣類容量は、特に限定されるものではない。ここで、図6が小容量の場合のみ実験を行った相関図である場合を示す。 Also, in the case of obtaining FIG. 5 and FIG. 6, for example, an experiment is performed only when the clothing capacity is a small capacity to grasp the correlation diagram. For medium capacity and large capacity, the cloth amount correction unit 104 may perform correction based on the cloth amount on the basis of the correlation diagram of the small capacity. Of course, the reference clothing capacity is not particularly limited. Here, a case where FIG. 6 is a correlation diagram in which an experiment is performed only when the capacity is small is shown.
 例えば、布量検知部102で検知した衣類容量が大容量の場合、左右振動変位が0.8mmで、前後振動変位が1.0mmであれば、図5の大容量のS31からアンバランス量は500gと読み取れる。そして、読み取ったアンバランス量を図6の小容量の衣類のアンバランス量がZ4(500g)に当てはめる。この場合、そのままではアンバランス位置が「前中」にあることを検知できるが、これは小容量の実験値を基に検知した結果である。そこで、例えば関連する実験値などから、大容量時の特性を示すC3となるように補正値を決めておくとする。このC3で前後振動変位が1.0mmとなるのはC32に示され、アンバランス位置がほぼ「前」にあることを検知できる。しかし、上記と同様の条件において、衣類容量の補正を行わない場合、衣類容量を振動検知部10の振動変位の値通りに小容量で判定すると、図6のC1からアンバランス位置を判定することになる。その結果、アンバランス位置を誤ってしまうこととなる。 For example, when the clothing capacity detected by the cloth amount detection unit 102 is large, if the lateral vibration displacement is 0.8 mm and the longitudinal vibration displacement is 1.0 mm, the unbalance amount from S31 in FIG. It can be read as 500 g. Then, the read unbalance amount is applied to Z4 (500 g) as the unbalance amount of the small-capacity clothing in FIG. In this case, it is possible to detect that the unbalanced position is “front / middle” as it is, but this is a result of detection based on an experimental value of a small capacity. Therefore, for example, it is assumed that the correction value is determined so as to be C3 indicating the characteristic at the time of large capacity from related experimental values. The fact that the longitudinal vibration displacement is 1.0 mm at C3 is indicated by C32, and it can be detected that the unbalance position is substantially “front”. However, under the same conditions as described above, when the garment capacity is not corrected, if the garment capacity is determined with a small capacity according to the vibration displacement value of the vibration detection unit 10, the unbalance position is determined from C1 in FIG. become. As a result, the unbalance position is erroneous.
 このようにして、本実施の形態では、布量検知部102で検知した衣類容量毎に、例えばZ4に示すアンバランス量500gの場合のC1を、図6に示すC2およびC3のように布量補正部104で補正を行う。これにより、例えば衣類容量が小容量の場合、振動検知部10で前後振動変位が1.0mmと計測されると、小容量時の特性を示すC1から前後位置がC11と示される。また、衣類容量が中容量の場合、前後変位が0.9mmと計測されると、中容量時の特性を示すC2から前後のアンバランス位置がC21と示される。さらに、衣類容量が大容量の場合、前後振動変位が0.8mmと計測されると、大容量時の特性を示すC3から前後のアンバランス位置がC31と示される。つまり、衣類容量を布量補正部104で補正することにより、振動検知部10で検知した前後振動変位の値が変化しても、いずれもアンバランス位置を、「前中」と判定することができる。なお、衣類容量が増加すると振動を抑制する方向になる特性が、それぞれの衣類のアンバランス量に応じて、同様に表れることは実験値から確認している。 In this way, in the present embodiment, for each clothing capacity detected by the cloth amount detection unit 102, for example, C1 in the case of an unbalance amount 500g shown in Z4 is changed to cloth amounts like C2 and C3 shown in FIG. Correction is performed by the correction unit 104. Thereby, for example, when the clothing capacity is a small capacity, when the vibration detecting unit 10 measures the longitudinal vibration displacement as 1.0 mm, the front-rear position is indicated as C11 from C1 indicating the characteristics at the time of the small capacity. Further, when the clothing capacity is medium capacity and the longitudinal displacement is measured as 0.9 mm, the front and rear unbalanced position from C2 indicating the characteristic at the time of middle capacity is represented as C21. Furthermore, when the clothing capacity is large, when the longitudinal vibration displacement is measured as 0.8 mm, the front and rear unbalanced position from C3 indicating the characteristic at the time of large capacity is represented as C31. In other words, by correcting the clothing capacity by the cloth amount correcting unit 104, even if the value of the longitudinal vibration displacement detected by the vibration detecting unit 10 is changed, the unbalanced position can be determined to be “front middle”. it can. In addition, it has been confirmed from experimental values that the characteristic that suppresses vibration as the clothing capacity increases appears similarly in accordance with the amount of unbalance of each clothing.
 以下に、本実施の形態のドラム式洗濯機に用いる回転体制御装置であるボールバランサと従来の流体バランサの特性を、図7Aおよび図7Bを用いて、比較して説明する。 Hereinafter, the characteristics of the ball balancer, which is a rotating body control device used in the drum type washing machine of the present embodiment, and the conventional fluid balancer will be described in comparison with FIG. 7A and FIG. 7B.
 図7Aは、従来の流体バランサを設けたドラム式洗濯機のドラムを回転した場合の左右振動変位の出力波形を示す図である。図7Bは、本発明の実施の形態の回転体制御装置(ボールバランサ)を搭載したドラム式洗濯機のドラムを回転した場合の左右振動変位の出力波形を示す図である。なお、図中に示すTH1およびTH2は、120rpmで回転するドラム3が4回転する時間を示している。 FIG. 7A is a diagram showing an output waveform of left-right vibration displacement when a drum of a drum type washing machine provided with a conventional fluid balancer is rotated. FIG. 7B is a diagram illustrating an output waveform of the left-right vibration displacement when the drum of the drum type washing machine equipped with the rotating body control device (ball balancer) according to the embodiment of the present invention is rotated. Note that TH1 and TH2 shown in the figure indicate the time for which the drum 3 rotating at 120 rpm rotates four times.
 まず、図7Aに示すように、従来のドラム式洗濯機は、バランサ機能としてドラムの前方の円周上に設けた流体バランサ(バランサ内部に液体を封入)を用いている。このとき、ドラムを回転数120rpm(例えば、90rpmから150rpmの範囲内)に維持した状態で回転した場合、流体バランサ内の液体は、常に移動し、時間とともに拡散や偏りを生じる。そのため、振動検知部で検知される左右振動変位は、波形H1に示すように、ドラムの回転に非同期かつ偏りが一定でないために左右振動変位が一定でなく上昇し、左右振動変位が常に変わる状態を示す。つまり、従来の流体バランサでは、常に同じ状態の左右振動変位にならず、変動幅や変化の度合いが決められない状態で左右振動変位が検出される。その結果、制御部は、洗濯槽の本当の左右振動変位を算出することが難しい。 First, as shown in FIG. 7A, a conventional drum-type washing machine uses a fluid balancer (with a liquid enclosed in the balancer) provided on the circumference in front of the drum as a balancer function. At this time, when the drum is rotated in a state where the rotation speed is maintained at 120 rpm (for example, in the range of 90 rpm to 150 rpm), the liquid in the fluid balancer always moves and causes diffusion and bias with time. Therefore, the left and right vibration displacement detected by the vibration detection unit is not constant with respect to the rotation of the drum and the bias is not constant, as shown by the waveform H1, and the left and right vibration displacement rises non-constantly, and the left and right vibration displacement always changes. Indicates. That is, in the conventional fluid balancer, the left and right vibration displacement is not always determined in the same state, and the left and right vibration displacement is detected in a state where the fluctuation range and the degree of change cannot be determined. As a result, it is difficult for the control unit to calculate the true left-right vibration displacement of the washing tub.
 一方、図7Bに示すように、本実施の形態のドラム式洗濯機は、ボールバランサ8を搭載している。この場合、洗濯槽22の前方上部に設けた振動検知部10の左右振動変位は、ドラム3を回転数120rpm(例えば、90rpmから150rpmの範囲内)に維持した状態で回転した場合、所定の粘性を持ったオイルにより、ボールバランサ8内のボール9は、ほぼ一定の位置に偏る状態となる。これにより、ボールバランサ8内のボール9は、ドラム3の回転数より、ほぼ一定回転数遅れた回転数で回転する。そのため、図7Bの波形H2に示すように、左右振動変位は、一定の振幅範囲でドラム3の回転周期に同期して変動する。 On the other hand, as shown in FIG. 7B, the drum type washing machine of the present embodiment is equipped with a ball balancer 8. In this case, the left-right vibration displacement of the vibration detection unit 10 provided in the upper front portion of the washing tub 22 has a predetermined viscosity when the drum 3 is rotated at a rotation speed of 120 rpm (for example, within a range of 90 rpm to 150 rpm). With the oil having the, the ball 9 in the ball balancer 8 is biased to a substantially constant position. As a result, the ball 9 in the ball balancer 8 rotates at a rotational speed that is substantially constant behind the rotational speed of the drum 3. Therefore, as shown by the waveform H2 in FIG. 7B, the left-right vibration displacement fluctuates in synchronization with the rotation period of the drum 3 within a certain amplitude range.
 従って、ボールバランサ8を用いた場合、ドラム3の回転数とボール9の回転数が一定の回転数遅れた状態で回転する。そのため、洗濯槽22の左右振動変位は、洗濯物18のアンバランス位置Aとボール9の偏りとが打ち消しあう状態や重なり合う状態を、一定周期で繰り返す。これにより、洗濯槽22の左右振動変位は、一定の変動周期と一定の振幅変動で検出される。その結果、ボールバランサ8を用いた場合、振動検知部10は、一定の振動周期と一定の振幅変動の範囲から、左右振動変位の値を容易に検知できる。 Therefore, when the ball balancer 8 is used, the rotation speed of the drum 3 and the rotation speed of the ball 9 are rotated in a state of being delayed by a certain rotation speed. Therefore, the horizontal vibration displacement of the washing tub 22 repeats the state where the unbalance position A of the laundry 18 and the bias of the balls 9 cancel each other and the state where they overlap each other at a constant cycle. Thereby, the left-right vibration displacement of the washing tub 22 is detected with a constant fluctuation cycle and a constant amplitude fluctuation. As a result, when the ball balancer 8 is used, the vibration detection unit 10 can easily detect the value of the left-right vibration displacement from the range of the constant vibration period and the constant amplitude fluctuation.
 このとき、上述したように、衣類容量が増加すると、衣類の慣性により振動を抑制する方向になる特性から、左右振動変位の振幅値は大容量時に小さく、小容量時に大きくなる。しかし、左右振動変位の繰り返し動作は、上記と同様の動作を示す。つまり、衣類容量が変化する場合でも、正確に左右振動変位を検出することが可能となる。ここで、一般的に、左右振動変位は、例えば最大変位と最小変位との差分を平均することにより算出される。このとき、ボールバランサ8内のボール9は、アンバランスの円周方向位置と重なる位置に移動すると振動変位をより大きくし、アンバランスの円周方向位置と対向する位置に移動すると振動変位をより小さくするように作用する。従って、最大変位と最小変位との差分に対するボール9の影響は、相殺されて問題ない。なお、本実施の形態では、120rpmで回転するドラム3の回転期間で検出する左右振動変位の平均を算出して、左右振動変位の真値を算出している。この回転数は、共振回転数から離れた90rpmから150rpmの範囲内であれば問題ない。特に、120rpm近傍ではボールバランサ8内のボール9の挙動がより安定しており、左右振動変位の検出精度を向上できる。 At this time, as described above, when the clothing capacity is increased, the amplitude value of the left-right vibration displacement is small at the time of large capacity and large at the time of small capacity because of the characteristic of suppressing the vibration due to the inertia of the clothing. However, the repeated operation of the left-right vibration displacement shows the same operation as described above. That is, it is possible to accurately detect the left-right vibration displacement even when the clothing capacity changes. Here, generally, the left-right vibration displacement is calculated by, for example, averaging the difference between the maximum displacement and the minimum displacement. At this time, when the ball 9 in the ball balancer 8 moves to a position overlapping the unbalanced circumferential position, the vibration displacement becomes larger, and when moved to a position opposite to the unbalanced circumferential position, the vibration displacement is further increased. It works to make it smaller. Therefore, the influence of the ball 9 on the difference between the maximum displacement and the minimum displacement is offset and there is no problem. In the present embodiment, the average value of the left and right vibration displacement detected during the rotation period of the drum 3 rotating at 120 rpm is calculated to calculate the true value of the left and right vibration displacement. This rotational speed is not a problem as long as it is within the range of 90 rpm to 150 rpm away from the resonant rotational speed. In particular, in the vicinity of 120 rpm, the behavior of the ball 9 in the ball balancer 8 is more stable, and the detection accuracy of the lateral vibration displacement can be improved.
 なお、本実施の形態では、振動検知部10として、3軸などの多軸方向の振動変位を検知する振動センサを例に説明したが、これに限られない。例えば、加速度センサで構成してもよい。つまり、加速度から演算により変位を算出する場合でも、同様に、左右振動変位を検出できる。加速度センサは、半導体加速度センサ、圧電型加速度センサなどのいずれでもよい。また、3軸方向のセンサ以外に、2軸のセンサや、1軸のセンサを組み合わせて検出することも可能である。 In the present embodiment, a vibration sensor that detects vibration displacement in multi-axis directions such as three axes has been described as an example of the vibration detection unit 10, but is not limited thereto. For example, you may comprise with an acceleration sensor. That is, even when the displacement is calculated from the acceleration, the left-right vibration displacement can be detected in the same manner. The acceleration sensor may be a semiconductor acceleration sensor, a piezoelectric acceleration sensor, or the like. Further, in addition to the triaxial sensor, it is also possible to detect by combining a biaxial sensor or a uniaxial sensor.
 以上のように、本実施の形態のドラム式洗濯機が構成されている。 As described above, the drum type washing machine of the present embodiment is configured.
 以下に、本実施の形態におけるドラム式洗濯機の動作および作用について、図1から図7Bを参照しながら説明する。 Hereinafter, the operation and action of the drum type washing machine in the present embodiment will be described with reference to FIGS. 1 to 7B.
 まず、本実施の形態のドラム式洗濯機本体1は、洗濯ステップ前、例えば洗濯水を給水する前に、ドラム3を動作させて、ドラム3内に収容されている洗濯物18の量を布量検知部102で判定する。これにより、制御部13は、測定された布量に基づいて、洗濯時間や洗剤量を算出して表示する。同時に、脱水ステップ前に、洗濯物18のアンバランス状態(アンバランス量およびアンバランス位置)を把握する。なお、把握したアンバランス状態は、衣類容量における補正に利用する。 First, the drum-type washing machine main body 1 according to the present embodiment operates the drum 3 before the washing step, for example, before supplying the washing water, and distributes the amount of the laundry 18 accommodated in the drum 3. The amount detection unit 102 makes the determination. Accordingly, the control unit 13 calculates and displays the washing time and the detergent amount based on the measured cloth amount. At the same time, before the dehydration step, the unbalanced state (unbalance amount and unbalance position) of the laundry 18 is grasped. The grasped unbalanced state is used for correction in clothing capacity.
 つぎに、洗いステップおよびすすぎステップが終了後、洗濯槽22内部の洗濯水を排水する。そして、洗濯物18を脱水する脱水ステップを行う。しかし、脱水ステップを行う場合、洗濯物18がドラム3内部に均一の状態に位置していることは、ほとんどない。つまり、洗濯物18は、例えばドラム3の底部に偏るなど、ほとんどアンバランス状態で配置されている。 Next, after the washing step and the rinsing step are completed, the washing water in the washing tub 22 is drained. And the dehydration step which dehydrates the laundry 18 is performed. However, when performing the dehydration step, the laundry 18 is rarely located in a uniform state inside the drum 3. That is, the laundry 18 is arranged in an almost unbalanced state, for example, biased toward the bottom of the drum 3.
 そこで、通常、上記アンバランス状態を解消するため、洗濯水を排水後に、ドラム3をゆっくり回転させる。これにより、偏った洗濯物18の塊をほぐして、アンバランス状態をできる限り解消している。しかし、ほぐし動作を行っても、水分を含んだ洗濯物18は、重力により、必ずドラム3内の底部に偏る傾向がある。そのため、アンバランス状態が残った状態で、脱水ステップを開始することになる。 Therefore, usually, in order to eliminate the unbalanced state, the drum 3 is slowly rotated after draining the washing water. Thereby, the unbalanced state of the laundry 18 is loosened as much as possible. However, even if the loosening operation is performed, the laundry 18 containing moisture always tends to be biased toward the bottom of the drum 3 due to gravity. Therefore, the dehydration step is started with the unbalanced state remaining.
 そして、脱水ステップにおいて、ドラム式洗濯機本体1の洗濯槽22が、ドラム3が共振回転数(例えば、200rpmから400rpmの間)を通過する際に大きく振動して、規定の振動変位を超える場合には、制御部13はドラム3の回転を停止する。その後、制御部13は、再度、洗濯物18の偏りを解消するために、ドラム3をゆっくり回転させて、洗濯物18のほぐしステップを行う。そして、制御部13は、再度、脱水ステップの起動を行う。 In the dehydration step, the washing tub 22 of the drum-type washing machine main body 1 vibrates greatly when the drum 3 passes the resonance rotation speed (for example, between 200 rpm and 400 rpm), and exceeds a predetermined vibration displacement. First, the control unit 13 stops the rotation of the drum 3. Thereafter, the control unit 13 performs the loosening step of the laundry 18 by rotating the drum 3 slowly in order to eliminate the unevenness of the laundry 18 again. Then, the control unit 13 activates the dehydration step again.
 しかし、通常、ドラム3の共振回転数時には、洗濯物18の偏り(アンバランス状態)により、ドラム3は、少なくともゼロ(無負荷)以外の状態にあるため、必ず洗濯槽22に振動が発生する。 However, since the drum 3 is normally in a state other than at least zero (no load) due to the bias (unbalanced state) of the laundry 18 at the resonance rotational speed of the drum 3, the washing tub 22 always vibrates. .
 そこで、本実施の形態では、振動を抑制して脱水起動を成功させるために、まず、ドラム3を共振回転数より低い回転数(例えば、120rpm)で回転させる。その状態で、ドラム3の前方上部の洗濯槽22に設けた振動検知部10で、左右振動変位や前後振動変位などを測定する。そして、検知した各振動変位から洗濯物18のアンバランス量および奥行き方向のアンバランス位置を判定する。さらに、判定したアンバランス量およびアンバランス位置のアンバランス状態に基づいて、共振回転数までのドラム3の立ち上げ方法を決定し、ボールバランサ8を制御する。これにより、ボールバランサ8内の最適な位置にボール9を配置して、ドラム3が共振回転数を通過するときの振動を抑制する。 Therefore, in the present embodiment, in order to suppress the vibration and succeed in the dehydration start, first, the drum 3 is rotated at a rotational speed lower than the resonant rotational speed (for example, 120 rpm). In this state, the vibration detection unit 10 provided in the washing tub 22 at the upper front of the drum 3 measures the left-right vibration displacement and the front-back vibration displacement. Then, the unbalance amount of the laundry 18 and the unbalance position in the depth direction are determined from each detected vibration displacement. Further, based on the determined unbalance amount and the unbalanced state of the unbalance position, a method for starting up the drum 3 up to the resonance rotational speed is determined, and the ball balancer 8 is controlled. Thereby, the ball 9 is disposed at an optimal position in the ball balancer 8 to suppress vibration when the drum 3 passes through the resonance rotational speed.
 ここで、上記のボールバランサ8内での最適なボール9の配置とは、例えばアンバランス状態のアンバランス量が大きい場合やドラム3の前方に洗濯物18が位置している場合、アンバランス状態に対向する位置にボール9を偏るように配置する対向状態とすることである。あるいは、アンバランス量が小さい場合やドラム3の後方に洗濯物18が位置している場合には、ドラム3の回転数や加速度を増減させ、ボール9をボールバランサ8の円周方向にほぼ均等(均等を含む)に配置して、小さいアンバランス量に見合ったボール9の偏りが小さい状態で配置する分散状態とすることである。これらにより、ドラム3内の洗濯物18の偏りに対して、ボールバランサ8内のボール9の最適配置を行う。そして、ドラム3が共振回転数を通過する場合に発生する振動を抑制して、安定した起動動作を実現している。 Here, the optimal arrangement of the balls 9 in the ball balancer 8 is, for example, when the unbalanced amount in the unbalanced state is large or when the laundry 18 is positioned in front of the drum 3. It is set as the opposing state arrange | positioned so that the ball | bowl 9 may be biased in the position which opposes. Alternatively, when the unbalance amount is small or the laundry 18 is positioned behind the drum 3, the number of rotations and acceleration of the drum 3 are increased or decreased, and the balls 9 are substantially even in the circumferential direction of the ball balancer 8. (Including equality) is a dispersion state in which the balls 9 are arranged with a small bias corresponding to a small unbalance amount. As a result, the balls 9 in the ball balancer 8 are optimally arranged against the bias of the laundry 18 in the drum 3. And the vibration which generate | occur | produces when the drum 3 passes resonant rotation speed is suppressed, and the stable starting operation | movement is implement | achieved.
 さらに、対向状態に制御する対向起動と、分散状態に制御する分散起動について、ドラム3の回転数の立ち上げ方の一例について、以下で説明する。 Further, an example of how to increase the number of revolutions of the drum 3 will be described below for the opposite activation for controlling the opposite state and the distributed activation for controlling the dispersion state.
 対向起動を行うときには、例えばドラム3の回転数を120rpmから70rpmに低下させ、そのときのモータ12の電流値を確認する。この場合、電流値は、図4で示すように規則的に変動している。そこで、ボール9がアンバランス位置と対向状態となる電流の最小値を見計らって、ドラム3の回転数を一気に増加させ、共振回転数を通過させる。なお、一気に増加させるタイミングは、条件により異なるので、実験により最適なタイミングを決定する。 When the opposite activation is performed, for example, the rotational speed of the drum 3 is reduced from 120 rpm to 70 rpm, and the current value of the motor 12 at that time is confirmed. In this case, the current value fluctuates regularly as shown in FIG. Accordingly, the rotation speed of the drum 3 is increased at a stroke and the resonance rotation speed is allowed to pass by looking for the minimum value of the current that causes the ball 9 to face the unbalanced position. In addition, since the timing to increase at a time changes with conditions, the optimal timing is determined by experiment.
 また、分散起動を行うときには、例えば、120rpmと90rpmを一定時間で繰り返す。または、その回転数の範囲で加速と減速を繰り返す。これにより、ボール9は移動度合いが不均一になり、分散する。なお、回転数の変化については、実験で決定してもよいし、モータ12の電流値の変化を確認しながら制御してもよい。そして、電流値が大きくならないことを確認しながら、ドラム3の回転数を増加させ、共振回転数を通過させる。 Also, when performing distributed startup, for example, 120 rpm and 90 rpm are repeated for a fixed time. Or, acceleration and deceleration are repeated within the range of the rotation speed. As a result, the balls 9 are non-uniformly moved and dispersed. The change in the rotational speed may be determined by experiment, or may be controlled while checking the change in the current value of the motor 12. Then, while confirming that the current value does not increase, the rotational speed of the drum 3 is increased and the resonant rotational speed is passed.
 以下に、本実施の形態におけるドラム3が共振回転数を通過する際に発生する振動を抑制する、脱水時の起動動作について、説明する。 Hereinafter, the starting operation at the time of dehydration for suppressing the vibration generated when the drum 3 in the present embodiment passes the resonance rotational speed will be described.
 脱水ステップでは、制御部13は、回転制御部132の指令により、駆動部133を介してモータ12に駆動電圧を印加する。これにより、モータ12を徐々に低速回転から高速回転に動作させ、ドラム3の回転速度を徐々に上昇させる。 In the dehydration step, the control unit 13 applies a drive voltage to the motor 12 via the drive unit 133 according to a command from the rotation control unit 132. Thereby, the motor 12 is gradually operated from the low speed rotation to the high speed rotation, and the rotation speed of the drum 3 is gradually increased.
 つぎに、制御部13の回転制御部132は、ドラム3の回転数が約120rpmとなるように、モータ12を制御し、その状態を維持する。そして、ドラム3が約120rpmで回転する状態で、ドラム3の前方上部の洗濯槽22に設けた振動検知部10で、洗濯槽22の左右振動変位および前後振動変位を検出する。このとき、ドラム3の回転数は、共振回転数以下であるため、安定した振動変位で検出できる。また、ボールバランサ8の内部のボール9は、オイルの粘性により一ヶ所に偏った状態で、ドラム3の回転数と非同期で、かつ一定回転数遅れた状態で回転する。これにより、図7Bの波形H2に示すような、一定の振動周期と一定の振幅変動で左右振動変位が検出される。その結果、制御部13の起動判定部131は、洗濯槽22の左右振動変位の値を平均することにより、左右振動変位の真値を容易に算出できる。 Next, the rotation control unit 132 of the control unit 13 controls the motor 12 so that the number of rotations of the drum 3 is about 120 rpm, and maintains that state. In the state where the drum 3 rotates at about 120 rpm, the vibration detection unit 10 provided in the washing tub 22 at the upper front of the drum 3 detects the left-right vibration displacement and the front-back vibration displacement of the washing tub 22. At this time, since the rotation speed of the drum 3 is equal to or less than the resonance rotation speed, it can be detected with stable vibration displacement. Further, the ball 9 inside the ball balancer 8 rotates in a state where it is biased to one place due to the viscosity of the oil, asynchronously with the rotational speed of the drum 3 and delayed by a constant rotational speed. As a result, the left-right vibration displacement is detected with a constant vibration period and a constant amplitude fluctuation as shown by the waveform H2 in FIG. 7B. As a result, the activation determination unit 131 of the control unit 13 can easily calculate the true value of the lateral vibration displacement by averaging the lateral vibration displacement values of the washing tub 22.
 しかし、上記で説明したように、ドラム3内に収容される衣類容量に、振動検知部10で検知する振動変位は、影響を受ける。具体的には、図5および図6に示すように、衣類容量が大容量時には、振動変位はS3およびC3の特性を示す。また、中容量時には振動変位は、S2およびC2の特性を示し、小容量時には振動変位はS1およびC1の特性を示すように影響を受ける。 However, as described above, the vibration displacement detected by the vibration detection unit 10 is affected by the clothing capacity accommodated in the drum 3. Specifically, as shown in FIGS. 5 and 6, when the clothing capacity is large, the vibration displacement exhibits the characteristics of S3 and C3. Further, the vibration displacement is affected by the characteristics of S2 and C2 when the capacity is medium, and the vibration displacement is affected by the characteristics of S1 and C1 when the capacity is small.
 そこで、本実施の形態では、まず、制御部13の起動判定部131は、布量検知部102により、洗濯物18の容量を洗濯ステップ開始前(給水前)に検出し、検出した容量に基づいて、布量補正部104で、例えば振動変位を補正する。具体的には、図5と図6のような関係を実験により得られた値から補正式(近似式)として把握している布量補正部104は、振動検知部10で検知した振動変位を小容量時の振動の値(図5のS1および図6のC1)に、大容量時のS3およびC3、および中容量時のS2およびC2から補正を行う。そして、起動判定部131は、アンバランス量算出部31およびアンバランス位置算出部30で衣類のアンバランス状態を検出する。なお、小容量、大容量および中容量以外の容量に対する布量補正部104による補正は、実験値で求めた小容量、大容量および中容量時における振動変位の値から、例えば比例にあると仮定した補正式を用いて、補完して算出する。これにより、測定する実験値の数を削減して、作業性を向上できる。 Therefore, in the present embodiment, first, the activation determination unit 131 of the control unit 13 detects the capacity of the laundry 18 before the start of the washing step (before water supply) by the cloth amount detection unit 102, and based on the detected capacity. The cloth amount correction unit 104 corrects, for example, vibration displacement. Specifically, the cloth amount correction unit 104 that grasps the relationship shown in FIG. 5 and FIG. 6 as a correction formula (approximation formula) from values obtained by experiments, detects the vibration displacement detected by the vibration detection unit 10. The vibration value at the time of small capacity (S1 in FIG. 5 and C1 in FIG. 6) is corrected from S3 and C3 at the time of large capacity and S2 and C2 at the time of medium capacity. Then, the activation determination unit 131 detects the unbalanced state of the clothing using the unbalance amount calculation unit 31 and the unbalance position calculation unit 30. It is assumed that the correction by the cloth amount correction unit 104 for the capacities other than the small capacity, the large capacity, and the medium capacity is proportional, for example, from the values of the vibration displacement at the small capacity, the large capacity, and the medium capacity obtained from the experimental values. Using the corrected equation, the calculation is complemented. Thereby, the workability can be improved by reducing the number of experimental values to be measured.
 つぎに、振動検知部10で検知した左右振動変位の真値から、図5に示す左右振動変位とアンバランス量の相関図(具体的には、実験値より得られた小容量時を示すS1、中容量時を示すS2、大容量時を示すS3)を用いて、アンバランス量を算出する。例えば、衣類容量が中容量の場合、左右振動変位の真値が1.0mmであれば、その時のアンバランス量は500gである。また、左右振動変位が10mmであれば、アンバランス量は1000gであると算出できる。なお、本実施の形態では、上記の方法によりアンバランス量を算出しているが、振動変位の値そのもので、アンバランス量を算出する方法でも可能である。 Next, from the true value of the left and right vibration displacement detected by the vibration detection unit 10, a correlation diagram between the left and right vibration displacement and the unbalance amount shown in FIG. 5 (specifically, S1 indicating a small capacity obtained from an experimental value). The unbalance amount is calculated using S2 indicating medium capacity and S3 indicating large capacity. For example, when the clothing capacity is medium capacity and the true value of the left-right vibration displacement is 1.0 mm, the unbalance amount at that time is 500 g. Moreover, if the left-right vibration displacement is 10 mm, the unbalance amount can be calculated to be 1000 g. In the present embodiment, the unbalance amount is calculated by the above method, but a method of calculating the unbalance amount by the vibration displacement value itself is also possible.
 上述したように、布量が変化する場合、左右振動変位だけでアンバランス量を判定すると、アンバランス量を誤って判定する。その結果、誤った脱水起動の方法でドラム3を回転させる可能性がある。しかし、布量検知部102で検知した衣類容量により、布量補正部104で小容量時のS1、または大容量時のS3、または中容量時のS2に補正することでアンバランス量を正確に判定することができる。 As described above, when the amount of cloth changes, if the unbalance amount is determined only by the lateral vibration displacement, the unbalance amount is erroneously determined. As a result, there is a possibility that the drum 3 is rotated by an erroneous dehydration start method. However, the unbalance amount can be accurately determined by correcting the S1 at the time of small capacity, S3 at the time of large capacity, or S2 at the time of medium capacity according to the clothing capacity detected by the cloth amount detection unit 102. Can be determined.
 なお、上述したように、アンバランス量は、洗濯物18のアンバランス位置Aが、図3Bから図3Eに示す前、後、中央、対角のアンバランス状態であっても、発生する場所に関係なく、アンバランス量が同じであれば、左右振動変位は同じ特性を示すことが実験結果から判明している。つまり、左右振動変位とアンバランス量の関係は、図5に示す関係が維持される。そのため、アンバランス量算出部31で、左右振動変位の値からアンバランス量を容易に算出することができる。 As described above, the amount of unbalance is generated at the place where the unbalance position A of the laundry 18 is generated even before, after, in the center, diagonally unbalanced state shown in FIGS. 3B to 3E. Regardless, it has been found from experimental results that the left-right vibration displacement exhibits the same characteristics if the unbalance amount is the same. That is, the relationship between the left and right vibration displacement and the unbalance amount is maintained as shown in FIG. Therefore, the unbalance amount calculation unit 31 can easily calculate the unbalance amount from the value of the left-right vibration displacement.
 つぎに、同じ120rpmでドラム3の回転を維持している際、振動検知部10は、洗濯槽22の前方上部の左右振動変位以外に、前後振動変位や上下振動変位を検出している。そして、検知した前後振動変位をアンバランス位置算出部30に入力する。これにより、アンバランス位置算出部30は、アンバランス量算出部31で算出したアンバランス量に基づいて、図6に示すアンバランス量毎の前後振動変位とアンバランス位置との相関図からアンバランス位置を算出する。 Next, when the rotation of the drum 3 is maintained at the same 120 rpm, the vibration detection unit 10 detects the longitudinal vibration displacement and the vertical vibration displacement in addition to the left and right vibration displacement at the front upper part of the washing tub 22. Then, the detected longitudinal vibration displacement is input to the unbalance position calculation unit 30. As a result, the unbalance position calculation unit 30 is based on the unbalance amount calculated by the unbalance amount calculation unit 31 based on the correlation diagram between the longitudinal vibration displacement and the unbalance position for each unbalance amount shown in FIG. Calculate the position.
 例えば、アンバランス量算出部31で、アンバランス量が500gと算出された場合、まず、アンバランス位置算出部30は、図6に示すZ4(衣類容量が小容量の場合)を選択する。そして、前後振動変位が、Z4のどこに位置するかにより、図6の横軸に示すアンバランス位置を特定する。その結果、アンバランス位置が算出される。具体的には、衣類容量が小容量において、アンバランス量が500gで、前後振動変位が1.0mmを検知した場合、図6からアンバランス位置が、前と中の間の「前中」に位置していると算出できる。 For example, when the unbalance amount calculation unit 31 calculates the unbalance amount to be 500 g, first, the unbalance position calculation unit 30 selects Z4 (when the clothing capacity is a small capacity) shown in FIG. Then, the unbalance position shown on the horizontal axis in FIG. 6 is specified depending on where the longitudinal vibration displacement is located in Z4. As a result, an unbalance position is calculated. Specifically, when the clothing volume is small, the unbalance amount is 500 g, and the longitudinal vibration displacement is detected to be 1.0 mm, the unbalance position is located in the “front middle” between the front and the middle from FIG. Can be calculated.
 このとき、図6に示すように、例えばアンバランス量が500gの場合、衣類容量が大容量の場合には大容量を示すC3、中容量時の場合には中容量特性を示すC2で、振動検知の特性が示される。そのため、布量検知部102の衣類容量から布量補正部104で、大容量を示すC3または中容量を示すC2から、小容量を示すC1に補正を行う。一方、衣類容量が小容量の場合は、補正を行わず、小容量特性を示すC1で判定を行う。さらに、一定値である小容量以下の場合も、同様に、補正を行わず、小容量特性のC1で判定を行う。つまり、一定値以下の場合、振動検知部10で検知される左右振動変位や前後振動変位は、衣類の容量による影響がほとんどない。そこで、衣類容量が一定値(小容量)以下の場合は、小容量特性のC1で補正を行う。これにより、容量毎に求める実験値の回数を低減して、生産性や作業性を向上できる。 At this time, as shown in FIG. 6, for example, when the unbalance amount is 500 g, when the clothing capacity is large, the vibration is C3 indicating a large capacity, and when the clothes capacity is medium, the vibration is C2 indicating the medium capacity characteristic. Detection characteristics are indicated. For this reason, the clothing amount of the cloth amount detection unit 102 is corrected by the cloth amount correction unit 104 from C3 indicating a large capacity or C2 indicating a medium capacity to C1 indicating a small capacity. On the other hand, when the clothing capacity is a small capacity, the correction is not performed, and the determination is made with C1 indicating the small capacity characteristics. Further, even in the case of a small value or less which is a constant value, similarly, the correction is not performed and the determination is made based on the small capacity characteristic C1. That is, in the case of a certain value or less, the left and right vibration displacement and the front and rear vibration displacement detected by the vibration detection unit 10 are hardly affected by the clothing capacity. Therefore, when the clothing capacity is equal to or less than a certain value (small capacity), correction is performed with C1 of the small capacity characteristic. As a result, the number of experimental values obtained for each capacity can be reduced, and productivity and workability can be improved.
 具体的に例示すれば、振動検知部10で検知した前後振動変位が、大容量時に0.8mm、中容量時に0.9mmの場合、布量検知部102の布量から布量補正部104で小容量時を示すC1へ補正を行う。つまり、布量検知部102で検出した衣類容量に基づいて、布量補正部104は小容量を示すC1に補正する。これにより、誤ったアンバランス位置の判定を防止する。その結果、脱水起動時において、誤判定することがない。 Specifically, when the longitudinal vibration displacement detected by the vibration detection unit 10 is 0.8 mm for a large capacity and 0.9 mm for a medium capacity, the cloth amount correction unit 104 uses the cloth amount of the cloth amount detection unit 102. Correction is performed to C1 indicating the small capacity. In other words, based on the clothing capacity detected by the cloth amount detection unit 102, the cloth amount correction unit 104 corrects to C1 indicating a small capacity. This prevents erroneous unbalance position determination. As a result, no erroneous determination is made at the start of dehydration.
 つまり、上述した方法により、制御部13の起動判定部131のアンバランス量算出部31とアンバランス位置算出部30で、洗濯物18のアンバランス状態を、ドラム3の共振回転数よりも低い回転数(本実施の形態では、約120rpm)で特定することができる。 That is, by the above-described method, the unbalanced state calculation unit 31 and the unbalance position calculation unit 30 of the activation determination unit 131 of the control unit 13 rotate the laundry 18 in an unbalanced state lower than the resonance rotational speed of the drum 3. It can be specified by a number (in this embodiment, about 120 rpm).
 なお、図5および図6に示す左右振動変位および前後振動変位と、アンバランス量およびアンバランス位置との相関図は、約120rpmでドラム3を回転させたときの実験値から得られた図である。そのため、ドラム3の回転数を変更した場合には、相関関係は変化する。また、ドラム3の奥行きサイズ、径、ドラム式洗濯機本体1内の洗濯槽22の支持方法などが変化した場合にも相関関係が変化する。その場合でも、共振回転数以下で実験的に相関関係を得ることにより、容易に対応することができる。 The correlation diagram between the left and right vibration displacement and the front and rear vibration displacement, the unbalance amount and the unbalance position shown in FIGS. 5 and 6 is a diagram obtained from experimental values when the drum 3 is rotated at about 120 rpm. is there. Therefore, when the number of rotations of the drum 3 is changed, the correlation changes. The correlation also changes when the depth size and diameter of the drum 3 and the method for supporting the washing tub 22 in the drum-type washing machine body 1 are changed. Even in this case, it is possible to easily cope with this by obtaining a correlation experimentally below the resonance rotational speed.
 つぎに、検知したアンバランス状態に基づいて、共振回転数までのドラム3の立ち上げ方法を決定し、ボールバランサ8内のボール9を制御する。なお、制御の詳細は後述するが、例えばドラム3の奥行き方向のアンバランス位置が前側であれば、ボール9を対向状態にして起動、軸側であれば、ボール9を分散状態にして起動制御を行う。これにより、ボール9と、衣類とのアンバランス状態を最適な状態で、ドラム3の共振回転数を通過させることができる。その結果、ドラム3の共振回転数での振動を最小限に抑制して、起動することができる。 Next, on the basis of the detected unbalanced state, a method for starting up the drum 3 up to the resonance rotational speed is determined, and the ball 9 in the ball balancer 8 is controlled. The details of the control will be described later. For example, if the unbalance position in the depth direction of the drum 3 is the front side, the ball 9 is activated in the facing state, and if it is on the shaft side, the ball 9 is dispersed and activated. I do. As a result, the resonance rotational speed of the drum 3 can be passed in an optimal unbalanced state between the ball 9 and the clothing. As a result, the vibration at the resonance rotational speed of the drum 3 can be minimized and activated.
 以下に、ドラム3の共振回転数での振動を最小限に抑制する動作について、詳細に説明する。 Hereinafter, the operation for minimizing the vibration at the resonance speed of the drum 3 will be described in detail.
 まず、ドラム3を、約120rpmで回転して、振動検知部10でアンバランス量およびアンバランス位置を検出し、ドラム3内の洗濯物18のアンバランス状態を把握する。 First, the drum 3 is rotated at about 120 rpm, the vibration detection unit 10 detects the unbalance amount and the unbalance position, and grasps the unbalanced state of the laundry 18 in the drum 3.
 つぎに、ドラム3の回転数を、振動検知部10で振動変位を検知した回転数より低い回転数で運転する。つまり、ボールバランサ8内のボール9がドラム3の回転に対して底部に偏った状態で、ボール9が回転しない状態の回転数で動作させる。なお、上記回転数は、ボール9の重力が回転による遠心力よりも大きい条件でドラム3が回転している回転数である。そのため、ボールバランサ8の内部のオイルの粘性にも影響されるので、本実施の形態では、実験値で回転数を決めている。 Next, the drum 3 is operated at a rotational speed lower than the rotational speed at which the vibration detection unit 10 detects the vibration displacement. That is, the ball 9 in the ball balancer 8 is operated at a rotation speed in a state where the ball 9 is not rotated while the ball 9 is biased toward the bottom with respect to the rotation of the drum 3. The rotation speed is the rotation speed at which the drum 3 rotates under the condition that the gravity of the ball 9 is larger than the centrifugal force caused by the rotation. Therefore, since it is also influenced by the viscosity of the oil inside the ball balancer 8, in this embodiment, the rotational speed is determined by an experimental value.
 また、ドラム3が120rpmで回転している場合において、ボール9が回転するか、ボールバランサ8の底部で偏り状態になっているかは、図7Bに示すような一定の振動周期および一定の振幅変動の値が、振動検知部10の左右振動変位で検出されることにより判断できる。一方、ボールバランサ8の底部にボール9が偏っている場合、左右振動変位が周期的に変動せず、一定の値で安定している状態から、容易に確認して判断できる。 In addition, when the drum 3 is rotating at 120 rpm, whether the ball 9 rotates or is biased at the bottom of the ball balancer 8 depends on a constant vibration cycle and a constant amplitude fluctuation as shown in FIG. 7B. Is detected by the left and right vibration displacement of the vibration detection unit 10. On the other hand, when the ball 9 is biased toward the bottom of the ball balancer 8, the left-right vibration displacement does not fluctuate periodically and can be easily confirmed and determined from a state where it is stable at a constant value.
 一方、ドラム3が約120rpmよりも低い回転数で、ボールバランサ8内のボール9が回転しない図3Aに示す位置にある場合において、一定値以上(例えば、100g)のアンバランス量がある場合には、以下の方法により円周方向のアンバランス位置を検出する。つまり、まず、ドラム3を回転させる場合に、モータ12を駆動している駆動部133から流れる電流値を電流検知部101で検知する。このとき、図4に示す電流値の変化により、ドラム3内の洗濯物18のアンバランス位置Aを把握することができる。 On the other hand, when the drum 3 is at a rotational speed lower than about 120 rpm and the ball 9 in the ball balancer 8 is at the position shown in FIG. 3A where the unbalanced amount is greater than a certain value (for example, 100 g). Detects the unbalance position in the circumferential direction by the following method. That is, first, when the drum 3 is rotated, the current detection unit 101 detects the current value flowing from the drive unit 133 driving the motor 12. At this time, the unbalanced position A of the laundry 18 in the drum 3 can be grasped by the change in the current value shown in FIG.
 しかし、アンバランス量が一定値以下の場合には、図4に示す電流値の変化が小さくなるので、電流値の変化ではなく、電流値の大きさにより、起動方法を判定してもよい。例えば、一定電流値以下の振幅変動の場合は、アンバランス量が少ないため、ボール9の分散状態による起動と判定して起動する。一方、一定電流値以上の振幅変動の場合は、アンバランス量が多いため、ボール9の対向状態による起動と判定して起動する。これにより、モータ12を駆動する電流値の大きさから、起動方法を判定してもよい。 However, when the unbalance amount is equal to or less than a certain value, the change in the current value shown in FIG. 4 is small. Therefore, the activation method may be determined based on the magnitude of the current value instead of the change in the current value. For example, in the case of an amplitude fluctuation that is equal to or less than a certain current value, since the amount of unbalance is small, it is determined that the ball 9 is activated due to the dispersed state, and the ball 9 is activated. On the other hand, in the case of amplitude fluctuations of a certain current value or more, since the amount of unbalance is large, it is determined that the ball 9 is activated due to the opposing state of the ball 9 and is activated. Thereby, you may determine the starting method from the magnitude | size of the electric current value which drives the motor 12. FIG.
 また、図3Aに示すように、アンバランス位置Aがドラム式洗濯機本体1の正面から見て底部にある場合、モータ12を駆動する電流値は、図4に示す電流bの位置にある。そして、アンバランス位置Aが右回転で上部へ移動するにしたがって、電流値は電流bから電流a1に変化する。その後、電流値は回転とともにアンバランス位置Aが底部に戻るとともに、電流値も減少する。つまり、上記の状態が繰り返して電流検知部101で検出されることにより、ドラム3の円周方向におけるアンバランス位置Aを容易に把握できる。 Further, as shown in FIG. 3A, when the unbalanced position A is at the bottom as viewed from the front of the drum type washing machine body 1, the current value for driving the motor 12 is at the position of current b shown in FIG. Then, as the unbalance position A moves clockwise and moves upward, the current value changes from the current b to the current a1. Thereafter, as the current value rotates, the unbalanced position A returns to the bottom, and the current value also decreases. That is, when the above state is repeatedly detected by the current detection unit 101, the unbalance position A in the circumferential direction of the drum 3 can be easily grasped.
 なお、布量検知部102の衣類容量の計測は、洗濯ステップの給水前の状態で行うことが、好ましい。これにより、脱水ステップ前の給水状態で布量を判定する場合において、洗濯ステップ時、布に含まれる水分量を考慮して布量を判定する必要がない。その結果、正確な布量が判定でき、脱水起動時の布量の補正を正確に行うことができる。また、これに限定されるものではなく、布に含まれる水分量を考慮して布量を判定することも可能である。 In addition, it is preferable to measure the clothing capacity of the cloth amount detection unit 102 in a state before water supply in the washing step. Thereby, when determining the amount of cloth in the water supply state before the dehydration step, it is not necessary to determine the amount of cloth in consideration of the amount of water contained in the cloth during the washing step. As a result, an accurate cloth amount can be determined, and the cloth amount can be accurately corrected at the start of dehydration. Moreover, it is not limited to this, It is also possible to determine the amount of cloth in consideration of the amount of moisture contained in the cloth.
 さらに、布量補正部104の補正は、必ずアンバランス量算出部31およびアンバランス位置算出部30でアンバランス状態を算出する直前の状態で行うことが、好ましい。これにより、最も精度よく衣類容量を補正できる。つまり、洗濯ステップ終了後の、脱水起動の直前や、すすぎ時の脱水時の直前に衣類容量の補正を行う。これにより、精度よく、衣類容量の補正を行うことができる。 Furthermore, it is preferable that the correction of the cloth amount correction unit 104 is always performed in a state immediately before the unbalance amount calculation unit 31 and the unbalance position calculation unit 30 calculate the unbalance state. Thereby, the clothing capacity can be corrected with the highest accuracy. That is, the clothing capacity is corrected immediately before the start of dehydration or immediately before dehydration at the time of rinsing after the washing step. Thereby, the clothing capacity can be corrected with high accuracy.
 そして、上述したように、ドラム3を約120rpmで回転させた状態において、振動検知部10で検知した振動変位に基づいて、アンバランス量算出部31とアンバランス位置算出部30から、ドラム3の奥行き方向におけるアンバランス位置とアンバランス量が算出される。そのため、算出されたアンバランス位置とアンバランス量のそれぞれ条件毎に、ボールバランサ8のボール9の位置と、円周方向におけるアンバランス位置Aの相対位置とを、どのように配置すればドラム3の共振回転数を通過させる際に、最も振動を抑制できるかについては、実験結果から得られている。具体的には、例えば、ドラム3の奥行き方向のアンバランス位置が前側、または軸側で一定値(例えば、300g)以上であれば、対向起動とし、軸側で一定値未満であれば、分散起動とする。 Then, as described above, in the state where the drum 3 is rotated at about 120 rpm, based on the vibration displacement detected by the vibration detection unit 10, the unbalance amount calculation unit 31 and the unbalance position calculation unit 30 An unbalance position and an unbalance amount in the depth direction are calculated. For this reason, the drum 3 can be arranged in such a manner that the position of the ball 9 of the ball balancer 8 and the relative position of the unbalance position A in the circumferential direction are arranged for each condition of the calculated unbalance position and unbalance amount. It has been obtained from experimental results whether vibration can be suppressed most when the resonance rotational speed is passed. Specifically, for example, when the unbalanced position in the depth direction of the drum 3 is equal to or greater than a certain value (for example, 300 g) on the front side or the shaft side, the opposite activation is performed. Start.
 そこで、制御部13の起動判定部131は、上記条件で、ボール9が底部に偏っている状態のドラム3の回転数から、所定の時間内に共振回転数まで上昇させる。そして、起動判定部131は、さらに、例えば約500rpmの回転数までドラム3を回転させるように、モータ12を制御する。 Therefore, the activation determination unit 131 of the control unit 13 increases the rotational speed of the drum 3 in a state where the ball 9 is biased toward the bottom to the resonance rotational speed within a predetermined time under the above conditions. Then, the activation determination unit 131 further controls the motor 12 so as to rotate the drum 3 to, for example, about 500 rpm.
 以上により、ドラム3の共振回転数における洗濯槽22の振動変位を最小限に抑制して、ドラム3を起動できる。 As described above, the drum 3 can be started with the vibration displacement of the washing tub 22 at the resonance rotational speed of the drum 3 being minimized.
 なお、本実施の形態では、ボールバランサ8をドラム3の洗濯物投入口側に配置し、脱水起動時にボール9と洗濯物18のアンバランス位置Aとの相対位置が図3Bまたは図3Dでは約180度、図3Cではボール9がボールバランサ8内にほぼ均等(均等を含む)に配置した例を基本の配置として説明したが、これに限られない。例えば、アンバランス量の大きさによって、ボール9の配置をさらに区分けして配置するように制御してもよい。これにより、複雑なアンバランス位置に応じて、よりボールバランサ8内でボール9を最適に配置できる。その結果、脱水起動時において、共振回転数を通過する際に発生するドラム3の振動を、さらに抑制できる。 In the present embodiment, the ball balancer 8 is disposed on the laundry inlet side of the drum 3, and the relative position between the ball 9 and the unbalanced position A of the laundry 18 when dehydration is started is approximately the same as in FIG. 3B or FIG. 3D. In FIG. 3C, the example in which the balls 9 are arranged almost uniformly (including evenly) in the ball balancer 8 has been described as a basic arrangement in FIG. 3C, but this is not restrictive. For example, the arrangement of the balls 9 may be further divided and arranged according to the size of the unbalance amount. Thereby, the ball 9 can be optimally arranged in the ball balancer 8 according to a complicated unbalance position. As a result, it is possible to further suppress the vibration of the drum 3 that occurs when passing through the resonance rotational speed at the time of dehydration activation.
 また、本実施の形態では、図3Eで示したように、前側と後側の対角位置にアンバランス位置Aが発生する例で説明したが、これに限られない。例えば、アンバランス位置Aの重心位置が前側または後側の位置に偏って配置されている場合、ボールバランサ8内のボール9の配置を、さらに区分けして配置して制御してもよい。これにより、アンバランス位置に応じて、ボールバランサ8内でボール9を最適に配置して、さらに振動を低減できる。 Further, in the present embodiment, as illustrated in FIG. 3E, the example has been described in which the unbalance position A is generated at the diagonal positions of the front side and the rear side, but the present invention is not limited thereto. For example, when the center of gravity position of the unbalance position A is biased toward the front side or the rear side, the placement of the balls 9 in the ball balancer 8 may be further divided and controlled. Thereby, according to the unbalance position, the ball 9 can be optimally arranged in the ball balancer 8, and vibration can be further reduced.
 以上のように、本実施の形態によれば、振動検知部10の左右振動および前後振動の変位を、ドラム3を約120rpmの回転数で回転させた状態で正確に検知する。そして、検知した振動変位に基づいて、アンバランス量およびアンバランス位置を判定する。これにより、ドラム3の共振回転数における振動を最小化できるように、予めアンバランス状態の条件からボールバランサ8内のボール9の配置とアンバランス位置Aの相対位置を把握することができる。その結果、ボール9をアンバランス位置Aに対応して最適に配置して、ドラム3を駆動し、安定した脱水起動を行うことができる。 As described above, according to the present embodiment, the left and right vibrations and the longitudinal vibration displacement of the vibration detection unit 10 are accurately detected in a state where the drum 3 is rotated at a rotation speed of about 120 rpm. Then, based on the detected vibration displacement, an unbalance amount and an unbalance position are determined. Thereby, the arrangement of the balls 9 in the ball balancer 8 and the relative position of the unbalance position A can be grasped in advance from the condition of the unbalanced state so that the vibration at the resonance rotational speed of the drum 3 can be minimized. As a result, the ball 9 can be optimally arranged corresponding to the unbalanced position A, the drum 3 can be driven, and stable dehydration activation can be performed.
 また、本実施の形態によれば、ドラム3を約120rpmで回転した状態で、振動検知部10で振動変位を検知する。そのため、一定以上の大きさで振動変位を検出できる。このとき、ボールバランサ8内のボール9は、オイルの粘性により、分散や偏りを繰り返すような移動を行わず、安定した配置で回転している。これにより、振動検知部10で正確な左右振動変位および前後振動変位を検出して、正確にアンバランス量およびアンバランス位置の検出ができる。 Further, according to the present embodiment, the vibration displacement is detected by the vibration detection unit 10 while the drum 3 is rotated at about 120 rpm. Therefore, the vibration displacement can be detected with a certain size or more. At this time, the balls 9 in the ball balancer 8 are rotated in a stable arrangement without being repeatedly moved and dispersed due to the viscosity of the oil. As a result, the vibration detection unit 10 can accurately detect the left-right vibration displacement and the front-rear vibration displacement, and can accurately detect the unbalance amount and the unbalance position.
 つまり、従来の流体バランサでは、水のみの粘性であるために、振動変位が一定以下の大きさの場合でも、頻繁に移動を繰り返す。そのため、流体バランサ内の水と、アンバランス位置Aとの相対的な配置が常に変化し、正確な振動変位を検出することが困難であった。しかし、本実施の形態のボールバランサの構成により、正確に振動変位を検知し、安定して脱水ステップを起動できる。 In other words, the conventional fluid balancer is viscous only with water, so that it moves frequently even when the vibration displacement is below a certain level. Therefore, the relative arrangement of the water in the fluid balancer and the unbalanced position A always changes, and it is difficult to detect an accurate vibration displacement. However, the configuration of the ball balancer of the present embodiment can accurately detect the vibration displacement and start the dehydration step stably.
 (実施の形態2)
 以下に、本発明の実施の形態2におけるドラム式洗濯機の構成について、図1を参照しながら、図8を用いて説明する。
(Embodiment 2)
Below, the structure of the drum type washing machine in Embodiment 2 of this invention is demonstrated using FIG. 8, referring FIG.
 図8は、本発明の実施の形態2におけるドラム式洗濯機の制御ブロック図である。 FIG. 8 is a control block diagram of the drum type washing machine in the second embodiment of the present invention.
 図8に示すように、本実施の形態のドラム式洗濯機は、回転体制御装置を構成するボールバランサ8近傍の温度を検知する温度検知部23と、温度補正部106を設けた点で、実施の形態1とは異なる。そして、実施の形態1で説明した振動検知部10で検知した振動変位と、布量検知部102で検知した布量に、さらに温度検知部23で検知した温度に基づいて、脱水起動時にボールバランサ8を制御する。 As shown in FIG. 8, the drum type washing machine of the present embodiment is provided with a temperature detection unit 23 that detects the temperature in the vicinity of the ball balancer 8 that constitutes the rotating body control device, and a temperature correction unit 106. This is different from the first embodiment. Based on the vibration displacement detected by the vibration detection unit 10 described in the first embodiment, the cloth amount detected by the cloth amount detection unit 102, and the temperature detected by the temperature detection unit 23, the ball balancer is activated at the time of dehydration activation. 8 is controlled.
 つまり、図1および図8に示すように、本実施の形態のドラム式洗濯機は、少なくとも筐体を構成するドラム式洗濯機本体1と、ドラム式洗濯機本体1内に収容される洗濯槽22、回転槽を構成するドラム3、モータ12、回転体制御装置を構成するボールバランサ8、振動センサなどで構成される振動検知部10、制御部13、温度検知部23などから構成されている。なお、基本的に、以下に示す温度検知部23以外の構成や動作は、実施の形態1と同様であるので、詳細な説明は省略する。 That is, as shown in FIGS. 1 and 8, the drum type washing machine of the present embodiment includes at least a drum type washing machine body 1 constituting a housing and a washing tub accommodated in the drum type washing machine body 1. 22, the drum 3 constituting the rotating tub, the motor 12, the ball balancer 8 constituting the rotating body control device, the vibration detecting unit 10 including a vibration sensor, the control unit 13, the temperature detecting unit 23, and the like. . Since the configuration and operation other than the temperature detection unit 23 shown below are basically the same as those in the first embodiment, detailed description thereof is omitted.
 温度検知部23は、例えばサーミスタなどの温度センサで構成され、ボールバランサ8近傍の洗濯槽22の下部などに設けられている。そして、温度検知部23は、ボールバランサ8近傍の温度を検知する。 The temperature detection unit 23 is composed of a temperature sensor such as a thermistor, for example, and is provided in a lower part of the washing tub 22 near the ball balancer 8. The temperature detector 23 detects the temperature in the vicinity of the ball balancer 8.
 一般的に、ボールバランサ8内のオイルの粘性は、温度の変化により変わる。そのため、ボールバランサ8内のボール9の動きなどが、オイルの粘性の変化により影響される。そこで、オイルの温度をより正確に検知するために、温度検知部23をボールバランサ8近傍の洗濯槽22の下部に設けている。この配置は、洗濯槽22内の洗濯水や洗濯物18などで変化する温度の影響を緩和して、精度よくボールバランサ8近傍の温度を検知できる効果もある。なお、温度検知部23は、洗濯槽22の下部以外に、洗濯槽22の正面部などに設けてもよく、ボールバランサ8近傍の温度を精度よく検出できる位置であれば、任意の位置に配置してもよい。 Generally, the viscosity of the oil in the ball balancer 8 changes with changes in temperature. Therefore, the movement of the ball 9 in the ball balancer 8 is influenced by the change in the viscosity of the oil. Therefore, in order to detect the temperature of the oil more accurately, a temperature detection unit 23 is provided below the washing tub 22 in the vicinity of the ball balancer 8. This arrangement also has an effect that the temperature in the vicinity of the ball balancer 8 can be accurately detected by mitigating the influence of the temperature that changes due to the washing water in the washing tub 22 or the laundry 18. The temperature detector 23 may be provided on the front surface of the washing tub 22 in addition to the lower portion of the washing tub 22 and may be disposed at any position as long as the temperature in the vicinity of the ball balancer 8 can be accurately detected. May be.
 また、図2に示すように、本実施の形態のドラム式洗濯機の制御部13は、実施の形態1と同様に、起動判定部131と回転制御部132などを有している。起動判定部131は、電流検知部101と、布量検知部102と、回転位置検知部103と、布量補正部104と、温度補正部106と、アンバランス位置算出部30と、アンバランス量算出部31などから構成されている。電流検知部101は、モータ12に流れる電流を検出する。回転位置検知部103は、電流検知部101で検知する電流の変化から洗濯物18の偏りによるドラム3内の円周方向のアンバランス位置を検出する。アンバランス量算出部31は、振動検知部10の左右振動変位からドラム3内の洗濯物18のアンバランス量を検知する。アンバランス位置算出部30は、アンバランス量算出部31で算出したアンバランス量に基づいて、振動検知部10の前後振動変位からドラム3の奥行き方向における洗濯物18のアンバランス位置を算出する。布量検知部102は、ドラム3内の洗濯物18の容量(衣類容量)を検知する。布量補正部104は、布量検知部102で検知した衣類容量から振動検知部10で検知した振動変位の値を補正する。温度補正部106は、温度検知部23で検知した温度の値から振動検知部10で検知した振動変位の値を温度補正する補正値を算出する。 Further, as shown in FIG. 2, the control unit 13 of the drum type washing machine according to the present embodiment includes an activation determination unit 131, a rotation control unit 132, and the like as in the first embodiment. The activation determination unit 131 includes a current detection unit 101, a cloth amount detection unit 102, a rotational position detection unit 103, a cloth amount correction unit 104, a temperature correction unit 106, an unbalance position calculation unit 30, and an unbalance amount. It is comprised from the calculation part 31 grade | etc.,. The current detection unit 101 detects a current flowing through the motor 12. The rotation position detection unit 103 detects an unbalance position in the circumferential direction in the drum 3 due to the bias of the laundry 18 from the change in current detected by the current detection unit 101. The unbalance amount calculation unit 31 detects the unbalance amount of the laundry 18 in the drum 3 from the left and right vibration displacement of the vibration detection unit 10. The unbalance position calculation unit 30 calculates the unbalance position of the laundry 18 in the depth direction of the drum 3 from the longitudinal vibration displacement of the vibration detection unit 10 based on the unbalance amount calculated by the unbalance amount calculation unit 31. The cloth amount detection unit 102 detects the capacity (clothing capacity) of the laundry 18 in the drum 3. The cloth amount correcting unit 104 corrects the value of the vibration displacement detected by the vibration detecting unit 10 from the clothing capacity detected by the cloth amount detecting unit 102. The temperature correction unit 106 calculates a correction value for correcting the temperature of the vibration displacement value detected by the vibration detection unit 10 from the temperature value detected by the temperature detection unit 23.
 また、実施の形態1において、図3Aから図4を用いて説明したように、脱水起動時には、洗濯物18のアンバランス状態(アンバランス量およびアンバランス位置)が衣類容量に応じて変化する。そこで、実施の形態1では、衣類容量を考慮して、アンバランス状態を、振動検知部10で検出した左右振動変位や前後振動変位から求めて、ボールバランサ8のボール9をアンバランス状態に対応して制御し、振動を抑制していた。 In Embodiment 1, as described with reference to FIGS. 3A to 4, when dehydration is started, the unbalanced state (unbalance amount and unbalance position) of the laundry 18 changes according to the clothing capacity. Therefore, in the first embodiment, the unbalanced state is obtained from the left / right vibration displacement and the front / rear vibration displacement detected by the vibration detection unit 10 in consideration of the clothing capacity, and the ball 9 of the ball balancer 8 corresponds to the unbalanced state. And controlled to suppress vibration.
 しかし、実施の形態1でも述べたように、ボールバランサ8内のオイルの粘性は、温度特性を有する。つまり、オイルの粘性抵抗は、温度により大きく変化し、高温では小さく、低温では大きくなる。このような温度変化は、季節の変化による外気温の変化や、洗いステップやすすぎステップの洗濯水にお湯を使用することなどにより起こり得る。これにより、ボールバランサ8内のボール9の動作も大きく変化する。 However, as described in the first embodiment, the viscosity of the oil in the ball balancer 8 has a temperature characteristic. That is, the viscous resistance of oil varies greatly with temperature, and is small at high temperatures and large at low temperatures. Such a temperature change may occur due to a change in the outside air temperature due to a change in season, use of hot water for washing water in the washing step or the rinsing step, and the like. As a result, the operation of the ball 9 in the ball balancer 8 also changes greatly.
 具体的には、ボールバランサ8内のボール9の動作は、高温時において、オイルの粘性抵抗の低下により、常温時より速く移動する。一方、低温時においては、オイルの粘性抵抗の増加により、常温時より遅く移動する。そのため、図9および図10を用いて後述するように、洗濯槽22に設けている振動検知部10で検知する振動変位は、高温時において、常温時より大きくなる。一方、低温時においては、常温時より小さくなる。 Specifically, the operation of the ball 9 in the ball balancer 8 moves faster than at normal temperature due to a decrease in the viscous resistance of the oil at high temperature. On the other hand, at low temperatures, the oil moves more slowly than at normal temperatures due to an increase in the viscous resistance of the oil. Therefore, as will be described later with reference to FIGS. 9 and 10, the vibration displacement detected by the vibration detection unit 10 provided in the washing tub 22 is larger at the high temperature than at the normal temperature. On the other hand, at a low temperature, it becomes smaller than at a normal temperature.
 そこで、本実施の形態では、衣類容量の変化に加えて、さらに温度変化を考慮して、アンバランス位置およびアンバランス量などの多様なアンバランス状態を、振動検知部10で検知する。そして、検知した振動変位に基づいて、ボールバランサ8を制御し、脱水起動時に発生する振動を抑制している。 Therefore, in the present embodiment, the vibration detection unit 10 detects various unbalanced states such as an unbalanced position and an unbalanced amount in addition to a change in clothing capacity and a temperature change. Then, based on the detected vibration displacement, the ball balancer 8 is controlled to suppress vibrations generated at the time of dehydration activation.
 以下に、本実施の形態のドラム式洗濯機において、温度変化を考慮して、アンバランス状態を検知する方法について、図9および図10を用いて、説明する。 Hereinafter, a method for detecting an unbalanced state in consideration of a temperature change in the drum type washing machine of the present embodiment will be described with reference to FIGS. 9 and 10.
 図9は、同ドラム式洗濯機のアンバランス量と振動検知部で検知した左右振動変位との関係を、温度をパラメータとして示す相関図である。詳細には、図中のSS1は、温度が常温(例えば、25°C程度)の場合における、アンバランス量と左右振動変位との関係を示している。同様に、SS2は温度が低温(例えば、5°C程度)の場合、SS3は温度が高温(例えば、60°C程度)の場合の関係を示している。さらに、図中のSS11は、アンバランス量が500gにおける、温度が常温の場合のSS1上の左右振動変位を示している。同様に、SS21は温度が低温の場合、SS31は温度が高温の場合の、SS2およびSS3上の左右振動変位を示している。 FIG. 9 is a correlation diagram showing the relationship between the unbalanced amount of the drum type washing machine and the left and right vibration displacement detected by the vibration detection unit using temperature as a parameter. Specifically, SS1 in the figure indicates the relationship between the unbalance amount and the left-right vibration displacement when the temperature is normal temperature (for example, about 25 ° C.). Similarly, SS2 indicates a relationship when the temperature is low (for example, about 5 ° C), and SS3 indicates a relationship when the temperature is high (for example, about 60 ° C). Furthermore, SS11 in the figure indicates the left-right vibration displacement on SS1 when the temperature is room temperature when the unbalance amount is 500 g. Similarly, SS21 indicates the left-right vibration displacement on SS2 and SS3 when the temperature is low, and SS31 indicates when the temperature is high.
 また、図10は、同ドラム式洗濯機のアンバランス位置と振動検知部で検知した前後振動変位との関係を、アンバランス量をパラメータとして示す相関図である。詳細には、図中のZZ1からZZ7は、温度が常温の場合の100gから2000gに相当する各アンバランス量を示している。そして、図中のCC1は、温度が常温の場合のアンバランス量が500gにおける、アンバランス位置と前後振動変位との関係を示している。同様に、CC2は温度が低温の場合、CC3は温度が高温の場合の、アンバランス量が500gにおける、アンバランス量と前後振動変位との関係を示している。なお、温度が低温と高温で、アンバランス量が500gの場合以外の相関図は記載していない。 FIG. 10 is a correlation diagram showing the relationship between the unbalance position of the drum type washing machine and the longitudinal vibration displacement detected by the vibration detection unit, using the unbalance amount as a parameter. Specifically, ZZ1 to ZZ7 in the figure indicate the respective unbalance amounts corresponding to 100 g to 2000 g when the temperature is normal temperature. CC1 in the figure indicates the relationship between the unbalance position and the longitudinal vibration displacement when the unbalance amount is 500 g when the temperature is normal temperature. Similarly, CC2 shows the relationship between the unbalance amount and the longitudinal vibration displacement when the temperature is low and CC3 when the temperature is high and the unbalance amount is 500 g. In addition, the correlation diagram except when the temperature is low and high and the unbalance amount is 500 g is not shown.
 さらに、図中のCC11は、アンバランス量が500gにおける、温度が常温でアンバランス位置が「前中」の場合の、CC1上の前後振動変位を示している。同様に、CC21は温度が低温の場合、CC31は温度が高温の場合の、CC2およびCC3上のアンバランス位置が「前中」における前後振動変位を示している。 Furthermore, CC11 in the figure indicates the longitudinal vibration displacement on CC1 when the unbalance amount is 500 g, the temperature is normal temperature, and the unbalance position is “front middle”. Similarly, CC21 indicates the longitudinal vibration displacement when the unbalanced position on CC2 and CC3 is “front middle” when the temperature is low and CC31 is high.
 このとき、図9は、実施の形態1で図5を用いて説明したように、振動検知部10で検知した左右振動変位とアンバランス量との関係が、以下の条件でドラム3を駆動した場合、アンバランス位置Aが図3Bから図3Eに示す位置関係に関わらず、相関関係にあることを示している。条件は、ドラム3をボールバランサ8のボール9が底部に固定されずに回転する回転数を、例えば90rpmから150rpmの範囲で維持した状態で、左右振動変位とアンバランス量を検知した場合である。この回転数は、ドラム3の共振回転数より低く、アンバランス状態の検知に都合が良い。 At this time, as described with reference to FIG. 5 in the first embodiment, FIG. 9 shows that the relationship between the left and right vibration displacement detected by the vibration detection unit 10 and the unbalance amount is driven on the drum 3 under the following conditions. In this case, the unbalanced position A is correlated regardless of the positional relationships shown in FIGS. 3B to 3E. The condition is a case where the left-right vibration displacement and the unbalance amount are detected in a state in which the rotation speed of the drum 3 rotating without the ball 9 of the ball balancer 8 being fixed to the bottom is maintained within a range of 90 rpm to 150 rpm, for example. . This rotational speed is lower than the resonant rotational speed of the drum 3, which is convenient for detecting an unbalanced state.
 なお、本実施の形態では、ドラム3の回転数を120rpmで維持した状態で、温度変化毎に左右振動変位とアンバランス量の関係を、実施の形態1で説明した方法により実験的に測定した結果を、図9に示している。同様に、回転数を120rpmで維持した状態で、温度が常温においてアンバランス量毎に前後振動変位とアンバランス位置の関係を実験的に測定した結果を、図10に示している。 In the present embodiment, the relationship between the left-right vibration displacement and the unbalance amount is experimentally measured by the method described in the first embodiment for each temperature change with the rotation speed of the drum 3 maintained at 120 rpm. The results are shown in FIG. Similarly, FIG. 10 shows the result of experimentally measuring the relationship between the longitudinal vibration displacement and the unbalance position for each unbalance amount at a normal temperature while maintaining the rotation speed at 120 rpm.
 ここで、図9と図10を得る具体的な測定方法について説明する。まず、例えばドラム3の内壁面に、大容量、中容量および小容量のそれぞれの設定に応じて、相当する重りを均等に配置する。つぎに、アンバランス量に相当する重り(例えば、500gなど)を、所定のアンバランス位置に配置した状態で、ボールバランサ8を、常温、低温および高温などの所定の温度に維持して、ドラム3を回転駆動する。そして、上記状態でドラム3を回転させたときに発生する左右振動変位や前後振動変位を検知し、図9や図10にプロットしている。 Here, a specific measurement method for obtaining FIGS. 9 and 10 will be described. First, for example, corresponding weights are evenly arranged on the inner wall surface of the drum 3 according to the settings of the large capacity, medium capacity, and small capacity. Next, the ball balancer 8 is maintained at a predetermined temperature such as normal temperature, low temperature and high temperature in a state where a weight (for example, 500 g) corresponding to the unbalance amount is disposed at a predetermined unbalance position, and the drum 3 is driven to rotate. And the left-right vibration displacement and the front-back vibration displacement generated when the drum 3 is rotated in the above state are detected and plotted in FIG. 9 and FIG.
 以下に、図9において、左右振動変位とアンバランス量との関係が、アンバランス位置Aが図3Bから図3Eに示す奥行き方向の位置関係に関わらず、相関関係にある理由について説明する。 Hereinafter, the reason why the relationship between the left-right vibration displacement and the unbalance amount in FIG. 9 is correlated regardless of the unbalance position A in the depth direction shown in FIGS. 3B to 3E will be described.
 まず、ドラム3の回転軸が洗濯槽22の背面側を軸に支持固定され、振動検知部10を軸から離れた距離にある前側の上部に設けている。そのため、ドラム3の奥行き方向のアンバランス位置に前後振動変位および上下振動変位は影響されるが、左右振動変位への影響が小さい。つまり、アンバランス位置の奥行き方向の位置に、左右振動変位は、影響されない。これにより、アンバランス量と左右振動変位との関係を、精度よく得ることができる。 First, the rotating shaft of the drum 3 is supported and fixed with the back side of the washing tub 22 as a shaft, and the vibration detecting unit 10 is provided at the upper part on the front side at a distance away from the shaft. Therefore, although the longitudinal vibration displacement and the vertical vibration displacement are affected by the unbalanced position of the drum 3 in the depth direction, the influence on the lateral vibration displacement is small. That is, the left-right vibration displacement is not affected by the position of the unbalanced position in the depth direction. Thereby, the relationship between the unbalance amount and the left-right vibration displacement can be obtained with high accuracy.
 一方、左右振動変位は、実施の形態1で説明した衣類容量とともに、ボールバランサ8内部のオイルの粘性の温度変化により影響を受ける、そこで、図9には、温度検知部23で検知したボールバランサ8近傍の温度が、常温時の左右振動変位とアンバランス量との関係をSS1で示し、同様に、高温時の関係をSS3で、低温時の関係をSS2で示している。 On the other hand, the left-right vibration displacement is influenced by the temperature change of the viscosity of the oil in the ball balancer 8 together with the clothing capacity described in the first embodiment. FIG. 9 shows the ball balancer detected by the temperature detector 23. For the temperature in the vicinity of 8, the relationship between the left and right vibration displacement at the normal temperature and the unbalance amount is indicated by SS1, and similarly, the relationship at the high temperature is indicated by SS3 and the relationship at the low temperature is indicated by SS2.
 具体的には、例えば温度が常温時において、振動検知部10で検知した左右振動変位が1.0mmの場合、SS1上のSS11から、アンバランス量が500gであることを示している。これに対して、アンバランス量が500gで同じであれば、温度が低温時においては、SS2上のSS21から左右振動変位が0.8mmと小さくなる。このとき、温度を常温と判定すると、SS1からアンバランス量が400gと示される。また、温度が高温時においては、SS3に示すように左右振動変位が大きくなり、アンバランス量が500gの場合、2.0mmを示す。このとき、温度を常温と判定すると、SS1からアンバランス量が600gと示される。つまり、アンバランス量が同じ場合でも、温度変化により、左右振動変位が変化する。その結果、左右振動変位だけでアンバランス量を判断すると、図8に示す制御部13の起動判定部131は、アンバランス量を誤判定し、起動方法を誤る可能性がある。 Specifically, for example, when the temperature is normal temperature and the left and right vibration displacement detected by the vibration detection unit 10 is 1.0 mm, the unbalance amount is 500 g from SS11 on SS1. On the other hand, if the unbalance amount is the same at 500 g, when the temperature is low, the lateral vibration displacement is as small as 0.8 mm from SS21 on SS2. At this time, if the temperature is determined to be normal temperature, the unbalance amount is indicated as 400 g from SS1. Further, when the temperature is high, as shown in SS3, the lateral vibration displacement increases, and when the unbalance amount is 500 g, 2.0 mm is indicated. At this time, if the temperature is determined to be normal temperature, the unbalance amount is indicated as 600 g from SS1. That is, even when the unbalance amount is the same, the left-right vibration displacement changes due to the temperature change. As a result, if the unbalance amount is determined only by the left and right vibration displacement, the activation determination unit 131 of the control unit 13 illustrated in FIG.
 また、図10に示す前後振動変位とアンバランス位置との関係から、図中にZZ1からZZ7などで示すアンバランス量毎の特性を用いて、ドラム3の奥行き方向におけるアンバランス位置を算出することができる。なお、図10に示す、洗濯槽22の前後振動変位と、アンバランス量毎のアンバランス位置を示す関係は、実験的に得られたデータである。 Further, from the relationship between the longitudinal vibration displacement and the unbalance position shown in FIG. 10, the unbalance position in the depth direction of the drum 3 is calculated using the characteristics for each unbalance amount indicated by ZZ1 to ZZ7 in the figure. Can do. The relationship between the longitudinal vibration displacement of the washing tub 22 and the unbalance position for each unbalance amount shown in FIG. 10 is experimentally obtained data.
 つまり、振動検知部10の前後変位は、以下の条件でドラム3を駆動した場合、アンバランス量毎にドラム3の奥行き方向のアンバランス位置により前後振動変位として検出できる。条件は、ドラム3をボールバランサ8のボール9が底部に固定されずに回転する回転数、例えば90rpmから150rpmの範囲を維持した状態で、ドラム3を回転させる。なお、本実施の形態では、回転数を120rpmで維持した状態で、前後振動変位とアンバランス位置との関係を実験的に測定しており、図10では、上述したように、アンバランス量が500gの場合を除いて、温度が常温の場合のみを示している。 That is, when the drum 3 is driven under the following conditions, the longitudinal displacement of the vibration detection unit 10 can be detected as the longitudinal vibration displacement from the unbalance position in the depth direction of the drum 3 for each unbalance amount. The condition is that the drum 3 is rotated while maintaining the number of rotations of the drum 3 without the ball 9 of the ball balancer 8 being fixed to the bottom, for example, a range of 90 rpm to 150 rpm. In this embodiment, the relationship between the longitudinal vibration displacement and the unbalance position is experimentally measured with the rotation speed maintained at 120 rpm. In FIG. 10, as described above, the unbalance amount is Except for the case of 500 g, only the case where the temperature is normal temperature is shown.
 ここで、前後振動変位を検出できる理由は、まず、ドラム3の回転軸を洗濯槽22の後方部を軸として支持され、軸から離れた前方上部の位置に振動検知部10を設けている。これにより、アンバランス量を示す左右振動は明確に現れる。そして、アンバランス位置の違いを示す前後振動は、アンバランス位置がドラム3内の軸側にある場合は小さく、前側にある場合は大きくなる。そのため、振動検知部10で検知される前後振動変位に、ドラム3の奥行き方向のアンバランス位置を示す特性が表れる。つまり、ドラム3の奥行き方向のアンバランス位置を、実験結果から得られた図10を用いて判定できる。 Here, the reason why the longitudinal vibration displacement can be detected is that the rotation axis of the drum 3 is first supported by the rear part of the washing tub 22 as an axis, and the vibration detection part 10 is provided at the front upper position away from the axis. Thereby, the left-right vibration indicating the unbalance amount appears clearly. The longitudinal vibration indicating the difference in the unbalance position is small when the unbalance position is on the shaft side in the drum 3, and is large when the unbalance position is on the front side. Therefore, a characteristic indicating the unbalance position in the depth direction of the drum 3 appears in the longitudinal vibration displacement detected by the vibration detection unit 10. That is, the unbalance position in the depth direction of the drum 3 can be determined using FIG. 10 obtained from the experimental results.
 具体的には、図10は、例えば衣類のアンバランス量が500gの場合、ボールバランサ8近傍の温度が常温時には、前後振動変位はCC1を示し、高温時にはCC3、低温時にはCC2を示す。 Specifically, FIG. 10 shows, for example, when the clothing imbalance amount is 500 g, the longitudinal vibration displacement indicates CC1 when the temperature in the vicinity of the ball balancer 8 is normal temperature, CC3 when the temperature is high, and CC2 when the temperature is low.
 なお、温度特性が、それぞれの衣類のアンバランス量に応じて、同じ特性であることは、実験値から確認している。 In addition, it has been confirmed from experimental values that the temperature characteristics are the same according to the unbalance amount of each clothing.
 つまり、図10に示すように、例えばアンバランス量は500gで、温度が常温時において、振動検知部10が検知した前後振動変位が1.0mmの場合、CC1上のCC11から前後のアンバランス位置が「前中」と判定される。そして、温度が低温時において、前後振動変位が0.8mmを示す場合、CC2上のCC21から前後のアンバランス位置が「前中」と判定される。また、温度が高温時において、前後振動が1.1mmを示す場合、CC3上のCC31から前後のアンバランス位置が「前中」と判定される。 That is, as shown in FIG. 10, for example, when the unbalance amount is 500 g and the temperature is normal temperature and the longitudinal vibration displacement detected by the vibration detection unit 10 is 1.0 mm, the unbalance position from CC11 on CC1 to the front and back. Is determined to be “previous”. When the longitudinal vibration displacement indicates 0.8 mm when the temperature is low, the front / rear unbalanced position from CC 21 on CC 2 is determined as “front middle”. Further, when the temperature is high and the longitudinal vibration indicates 1.1 mm, the front / rear unbalanced position from CC31 on CC3 is determined as “front middle”.
 このように、図9と図10のような関係を実験により得られた値から補正式(近似式)として把握しておく。これにより、温度検知部23で検知した温度と、振動検知部10で検知される左右振動変位と前後振動変位とから、アンバランス量とアンバランス位置を正確に算出して、適切な起動制御を行うことができる。 Thus, the relationship as shown in FIG. 9 and FIG. 10 is grasped as a correction formula (approximation formula) from the values obtained by experiments. As a result, the unbalance amount and the unbalance position are accurately calculated from the temperature detected by the temperature detector 23, the left and right vibration displacement and the longitudinal vibration displacement detected by the vibration detector 10, and appropriate start-up control is performed. It can be carried out.
 また、図9および図10を得る場合において、例えば温度が常温の場合のみ実験を行って相関図を把握する。そして、低温や高温については、常温の相関図を基準にして、温度による補正を温度補正部106で行うようにしてもよい。もちろん、基準とする温度は、特に限定されるものではない。 Also, in the case of obtaining FIG. 9 and FIG. 10, for example, an experiment is performed only when the temperature is room temperature to grasp the correlation diagram. And about low temperature and high temperature, you may make it perform the correction | amendment by temperature with the temperature correction part 106 on the basis of the correlation diagram of normal temperature. Of course, the reference temperature is not particularly limited.
 つまり、温度変化により前後振動変位が変化する。そのため、同じアンバランス位置でも、温度変化により前後振動変位が異なるので、温度補正を行わない場合、前後のアンバランス位置を誤判定し、起動方法を誤る可能性がある。これにより、例えばアンバランス位置が「前中」位置より前方方向に位置する場合、ボールバランサ8を対向起動とするが、誤判定により、低温時において、誤ってボールバランサ8を分散起動を行うように判定する可能性がある。 That is, the longitudinal vibration displacement changes due to temperature change. For this reason, even in the same unbalanced position, the longitudinal vibration displacement varies depending on the temperature change. Therefore, when temperature correction is not performed, there is a possibility that the unbalanced position before and after is erroneously determined and the activation method is incorrect. As a result, for example, when the unbalance position is positioned forward from the “front middle” position, the ball balancer 8 is activated oppositely. However, erroneous determination causes the ball balancer 8 to be erroneously activated at low temperatures. There is a possibility of judging.
 また、実施の形態1で図7Bを用いて説明したように、本実施の形態のドラム式洗濯機は、ボールバランサ8を搭載している。ボールバランサ8内のボール9は、ドラム3を回転数120rpm(例えば、90から150rpmの範囲内)に維持した状態で回転した場合、所定の粘性を持ったオイルにより、ほぼ一定の位置に偏る状態となる。これにより、ボールバランサ8内のボール9は、ドラム3の回転数より、ほぼ一定回転数遅れた回転数で回転する。そのため、図7Bの波形H2に示すように、左右振動変位は、一定の振幅範囲でドラム3の回転周期に同期して変動する。 Further, as described with reference to FIG. 7B in the first embodiment, the drum type washing machine of the present embodiment is equipped with the ball balancer 8. When the ball 9 in the ball balancer 8 rotates with the drum 3 maintained at a rotational speed of 120 rpm (for example, in the range of 90 to 150 rpm), the ball 9 is biased to a substantially constant position by oil having a predetermined viscosity. It becomes. As a result, the ball 9 in the ball balancer 8 rotates at a rotational speed that is substantially constant behind the rotational speed of the drum 3. Therefore, as shown by the waveform H2 in FIG. 7B, the left-right vibration displacement fluctuates in synchronization with the rotation period of the drum 3 within a certain amplitude range.
 従って、ボールバランサ8を用いた場合、ドラム3の回転数とボール9の回転数が一定の回転数遅れた状態で回転する。そのため、洗濯槽22の左右振動変位は、洗濯物18のアンバランス位置Aとボール9の偏りとが打ち消しあう状態や重なり合う状態を、一定周期で繰り返す。これにより、洗濯槽22の左右振動変位は、一定の変動周期と一定の振幅変動で検出される。その結果、ボールバランサ8を用いた場合、振動検知部10は、一定の振動周期と一定の振幅変動の範囲から、左右振動変位の値を容易に算出できる。 Therefore, when the ball balancer 8 is used, the rotation speed of the drum 3 and the rotation speed of the ball 9 are rotated in a state of being delayed by a certain rotation speed. Therefore, the horizontal vibration displacement of the washing tub 22 repeats the state where the unbalance position A of the laundry 18 and the bias of the balls 9 cancel each other and the state where they overlap each other at a constant cycle. Thereby, the left-right vibration displacement of the washing tub 22 is detected with a constant fluctuation cycle and a constant amplitude fluctuation. As a result, when the ball balancer 8 is used, the vibration detection unit 10 can easily calculate the value of the left-right vibration displacement from the range of the constant vibration period and the constant amplitude fluctuation.
 このとき、オイルの粘性が温度特性により変化する場合、左右振動変位の振幅値は高温時に大きく、低温時に小さくなる。しかし、左右振動変位の繰り返し動作は、上記と同様の動作を示す。つまり、温度変化があった場合でも、正確に左右振動変位を検出することが可能となる。ここで、左右振動変位は、実施の形態1と同様に、例えば最大変位と最小変位の差分を平均することにより算出される。このとき、ボールバランサ8内のボール9は、アンバランスの円周方向位置と重なる位置に移動すると振動変位をより大きくし、アンバランスの円周方向位置と対向する位置に移動すると振動変位をより小さくするように作用する。従って、最大変位と最小変位との差分に対するボール9の影響は、相殺されて問題ない。なお、120rpmで回転するドラム3の回転期間で検出する左右振動変位の平均を算出して、左右振動変位の真値を算出してもよい。これにより、左右振動変位の検出精度を向上できる。 At this time, if the viscosity of the oil changes depending on the temperature characteristics, the amplitude value of the left-right vibration displacement is large at high temperature and small at low temperature. However, the repeated operation of the left-right vibration displacement shows the same operation as described above. That is, even when there is a temperature change, it is possible to accurately detect the left-right vibration displacement. Here, the left-right vibration displacement is calculated by averaging the difference between the maximum displacement and the minimum displacement, for example, as in the first embodiment. At this time, when the ball 9 in the ball balancer 8 moves to a position overlapping the unbalanced circumferential position, the vibration displacement becomes larger, and when moved to a position opposite to the unbalanced circumferential position, the vibration displacement is further increased. It works to make it smaller. Therefore, the influence of the ball 9 on the difference between the maximum displacement and the minimum displacement is offset and there is no problem. The true value of the left-right vibration displacement may be calculated by calculating the average of the left-right vibration displacement detected during the rotation period of the drum 3 rotating at 120 rpm. Thereby, the detection accuracy of the left-right vibration displacement can be improved.
 以上のように、本実施の形態のドラム式洗濯機が構成されている。 As described above, the drum type washing machine of the present embodiment is configured.
 なお、本実施の形態におけるドラム式洗濯機の動作および作用は、実施の形態1と同様であるので、説明を省略する。 Note that the operation and action of the drum-type washing machine in the present embodiment are the same as those in the first embodiment, and thus description thereof is omitted.
 つぎに、本実施の形態におけるドラム3が共振回転数を通過する際に発生する振動を抑制する、脱水時の起動動作について、説明する。 Next, a start-up operation during dehydration that suppresses vibrations that occur when the drum 3 in the present embodiment passes through the resonance rotational speed will be described.
 このとき、実施の形態1で説明したように、洗濯物18の偏りに対して、ボールバランサ8内でボール9を最適な位置に配置して、ドラム3の回転が、共振回転数を通過するように、以下で述べる起動方法を実現している。 At this time, as described in the first embodiment, the ball 9 is arranged at an optimum position in the ball balancer 8 with respect to the bias of the laundry 18, and the rotation of the drum 3 passes the resonance rotational speed. As described above, the startup method described below is realized.
 つまり、脱水ステップでは、制御部13は、回転制御部132の指令により、駆動部133を介してモータ12に駆動電圧を印加する。これにより、モータ12を徐々に低速回転から高速回転に動作させ、ドラム3の回転速度を徐々に上昇させる。 That is, in the dehydration step, the control unit 13 applies a drive voltage to the motor 12 via the drive unit 133 according to a command from the rotation control unit 132. Thereby, the motor 12 is gradually operated from the low speed rotation to the high speed rotation, and the rotation speed of the drum 3 is gradually increased.
 つぎに、制御部13の回転制御部132は、ドラム3の回転数が約120rpmとなるように、モータ12を制御し、その状態を維持する。そして、ドラム3が約120rpmで回転する状態で、ドラム3の前方上部の洗濯槽22に設けた振動検知部10で、洗濯槽22の左右振動変位および前後振動変位を検出する。このとき、ドラム3の回転数は、共振回転数以下であるため、安定した振動変位で検出できる。また、ボールバランサ8の内部のボール9は、オイルの粘性により一ヶ所に偏った状態で、ドラム3の回転数と非同期で、かつ一定回転数遅れた状態で回転する。これにより、図7Bの波形H2に示すような、一定の振動周期と一定の振幅変動で左右振動変位が検出される。その結果、制御部13の起動判定部131は、洗濯槽22の左右振動変位の値を平均することにより、真値を容易に算出できる。 Next, the rotation control unit 132 of the control unit 13 controls the motor 12 so that the number of rotations of the drum 3 is about 120 rpm, and maintains that state. In the state where the drum 3 rotates at about 120 rpm, the vibration detection unit 10 provided in the washing tub 22 at the upper front of the drum 3 detects the left-right vibration displacement and the front-back vibration displacement of the washing tub 22. At this time, since the rotation speed of the drum 3 is equal to or less than the resonance rotation speed, it can be detected with stable vibration displacement. Further, the ball 9 inside the ball balancer 8 rotates in a state where it is biased to one place due to the viscosity of the oil, asynchronously with the rotational speed of the drum 3 and delayed by a constant rotational speed. As a result, the left-right vibration displacement is detected with a constant vibration period and a constant amplitude fluctuation as shown by the waveform H2 in FIG. 7B. As a result, the activation determination unit 131 of the control unit 13 can easily calculate the true value by averaging the values of the left and right vibration displacements of the washing tub 22.
 しかし、上記で説明したように、ボールバランサ8内のオイルの粘性は、周囲温度の影響により変化する。これにより、ボールバランサ8内部のボール9の移動速度などの動作が変化し、振動検知部10で検出する振動変位が影響を受ける。具体的には、図9に示すように、温度が高温時には振動変位が大きく、SS3の特性を示す。また、同様に、常温時には振動変位は、SS1の特性を示し、低温時には振動変位はSS2の特性を示すように影響を受ける。 However, as explained above, the viscosity of the oil in the ball balancer 8 changes due to the influence of the ambient temperature. As a result, the movement such as the moving speed of the ball 9 inside the ball balancer 8 changes, and the vibration displacement detected by the vibration detector 10 is affected. Specifically, as shown in FIG. 9, the vibration displacement is large when the temperature is high, and the characteristics of SS3 are exhibited. Similarly, the vibration displacement is affected by the SS1 characteristic at normal temperature and the SS2 characteristic at low temperature.
 そこで、本実施の形態では、まず、洗濯槽22に設けた温度検知部23により、ボールバランサ8近傍の温度を検知し、検知した温度に基づいて、温度補正部106で、例えば振動変位を補正する。具体的には、図9と図10のような関係を実験により得られた値から補正式(近似式)として把握することにより、温度補正部106は、振動検知部10で検知した振動変位を常温時の振動の値(図9では、SS1)に、低温時のSS2および高温時のSS3から補正を行う。そして、起動判定部131は、アンバランス量算出部31およびアンバランス位置算出部30で衣類のアンバランス状態を検出する。なお、常温、低温および高温以外の温度に対する温度補正部106による補正は、実験値に求めた常温、低温および高温時における振動変位の値から、例えば比例にあると想定した補正式を用いて、補完して算出する。これにより、測定する実験値の数を削減して。作業性を向上できる。 Therefore, in the present embodiment, first, the temperature detection unit 23 provided in the washing tub 22 detects the temperature in the vicinity of the ball balancer 8, and the temperature correction unit 106 corrects, for example, vibration displacement based on the detected temperature. To do. Specifically, by grasping the relationship as shown in FIG. 9 and FIG. 10 as a correction equation (approximate equation) from values obtained by experiments, the temperature correction unit 106 detects the vibration displacement detected by the vibration detection unit 10. The vibration value at normal temperature (SS1 in FIG. 9) is corrected from SS2 at low temperature and SS3 at high temperature. Then, the activation determination unit 131 detects the unbalanced state of the clothing using the unbalance amount calculation unit 31 and the unbalance position calculation unit 30. The correction by the temperature correction unit 106 for temperatures other than normal temperature, low temperature, and high temperature is, for example, from the values of vibration displacement at normal temperature, low temperature, and high temperature obtained as experimental values, using a correction formula that is assumed to be proportional, for example, Complementary calculation. This reduces the number of experimental values to measure. Workability can be improved.
 つぎに、振動検知部10で検知した左右振動変位の真値から、図9に示す左右振動変位とアンバランス量の相関図(具体的には、実験値より得られた常温時を示すSS1、低温時を示すSS2、高温時を示すSS3)を用いて、アンバランス量を算出する。例えば、温度が常温の場合、左右振動変位の真値が1.0mmであれば、その時のアンバランス量は500gである。また、左右振動変位が10mmであれば、アンバランス量は1000gであると算出できる。なお、本実施の形態では、上記の方法により、アンバランス量を算出しているが、振動変位の値そのもので、アンバランス量を算出する方法でも可能である。 Next, from the true value of the left and right vibration displacement detected by the vibration detection unit 10, a correlation diagram between the left and right vibration displacement and the unbalance amount shown in FIG. 9 (specifically, SS1 indicating normal temperature obtained from experimental values, The unbalance amount is calculated using SS2 indicating low temperature and SS3) indicating high temperature. For example, when the temperature is normal temperature and the true value of the left and right vibration displacement is 1.0 mm, the unbalance amount at that time is 500 g. Moreover, if the left-right vibration displacement is 10 mm, the unbalance amount can be calculated to be 1000 g. In the present embodiment, the unbalance amount is calculated by the above method, but a method of calculating the unbalance amount by the vibration displacement value itself is also possible.
 上述したように、温度が変化する場合、左右振動変位だけでアンバランス量を判定すると、アンバランス量を誤って判定する。その結果、誤った脱水起動の方法でドラム3を回転させる可能性がある。しかし、温度検知部23で検知した温度の値により、温度補正部106で常温時のSS1、または、高温時のSS3、または、低温時のSS2に補正することでアンバランス量を正確に判定することができる。 As described above, when the temperature changes, if the unbalance amount is determined only by the lateral vibration displacement, the unbalance amount is erroneously determined. As a result, there is a possibility that the drum 3 is rotated by an erroneous dehydration start method. However, the unbalance amount is accurately determined by correcting the temperature correction unit 106 to SS1 at normal temperature, SS3 at high temperature, or SS2 at high temperature based on the temperature value detected by the temperature detection unit 23. be able to.
 なお、実施の形態1で説明したように、アンバランス量は、洗濯物18のアンバランス位置Aが、図3Bから図3Eに示す前、後、中央、対角のアンバランス状態であっても、発生する場所に関係なく、アンバランス量が同じであれば、左右振動変位は同じ特性を示すことが実験結果から判明している。つまり、左右振動変位とアンバランス量の関係は、図9に示すような関係が維持される。そのため、アンバランス量算出部31で、左右振動変位の値からアンバランス量を、容易に算出することができる。 Note that, as described in the first embodiment, the unbalance amount can be obtained even when the unbalance position A of the laundry 18 is in an unbalanced state before, after, in the middle, and diagonally, as shown in FIGS. 3B to 3E. It has been found from experimental results that the left-right vibration displacement exhibits the same characteristics if the unbalance amount is the same regardless of where it is generated. That is, the relationship between the left and right vibration displacement and the unbalance amount is maintained as shown in FIG. Therefore, the unbalance amount calculation unit 31 can easily calculate the unbalance amount from the value of the left-right vibration displacement.
 つぎに、同じ120rpmでドラム3の回転を維持している際、振動検知部10は、洗濯槽22の前方上部の左右振動変位以外に、前後振動変位や上下振動変位を検出している。そして、検知した前後振動変位をアンバランス位置算出部30に入力する。これにより、アンバランス位置算出部30は、アンバランス量算出部31で算出したアンバランス量に基づいて、図10に示すアンバランス量毎の前後振動変位とアンバランス位置との相関図からアンバランス位置を算出する。 Next, when the rotation of the drum 3 is maintained at the same 120 rpm, the vibration detection unit 10 detects the longitudinal vibration displacement and the vertical vibration displacement in addition to the left and right vibration displacement at the front upper part of the washing tub 22. Then, the detected longitudinal vibration displacement is input to the unbalance position calculation unit 30. Thereby, the unbalance position calculation unit 30 is based on the unbalance amount calculated by the unbalance amount calculation unit 31 from the correlation diagram between the longitudinal vibration displacement and the unbalance position for each unbalance amount shown in FIG. Calculate the position.
 例えば、アンバランス量算出部31で、アンバランス量が500gと算出された場合、まず、アンバランス位置算出部30は、図10に示すZZ4(常温時、例えば25℃の場合)を選択する。そして、前後振動変位が、ZZ4のどこに位置するかにより、図10の横軸に示すアンバランス位置を特定する。その結果、アンバランス位置が算出される。具体的には、常温において、アンバランス量が500gで、前後振動変位が1.0mmを検知した場合、図10からアンバランス位置が、前と中の間の「前中」に位置していると算出できる。 For example, when the unbalance amount calculation unit 31 calculates the unbalance amount as 500 g, first, the unbalance position calculation unit 30 selects ZZ4 (at room temperature, for example, 25 ° C.) shown in FIG. Then, the unbalance position shown on the horizontal axis in FIG. 10 is specified depending on where the longitudinal vibration displacement is located in ZZ4. As a result, an unbalance position is calculated. Specifically, at room temperature, when the unbalance amount is 500 g and the longitudinal vibration displacement is detected as 1.0 mm, it is calculated from FIG. 10 that the unbalance position is located in the “front middle” between the front and the middle. it can.
 このとき、図10に示すように、例えばアンバランス量が500gの場合、高温時の場合には高温特性を示すCC3、低温時の場合には低温特性を示すCC2で、振動検知の特性が示される。そのため、温度検知部23で検知した温度の値から温度補正部106で、高温特性を示すCC3、または低温時の場合には低温特性を示すCC2から、常温時特性を示すCC1に補正を行う。一方、検知した温度が常温時の場合は、補正を行わず、常温特性を示すCC1で判定を行う。 At this time, as shown in FIG. 10, for example, when the unbalance amount is 500 g, the vibration detection characteristic is indicated by CC3 indicating the high temperature characteristic at high temperature and CC2 indicating the low temperature characteristic at low temperature. It is. Therefore, the temperature correction unit 106 corrects from the temperature value detected by the temperature detection unit 23 to CC1 indicating normal temperature characteristics from CC3 indicating high temperature characteristics or CC2 indicating low temperature characteristics at low temperatures. On the other hand, when the detected temperature is normal temperature, the correction is not performed and the determination is performed based on CC1 indicating the normal temperature characteristic.
 例えば、振動検知部10で検知した前後振動変位が、低温時に0.8mm、高温時に1.1mmを検出した場合、温度検知部23で検知した温度の値から温度補正部106で常温特性を示すCC1へ補正を行う。つまり、温度変化があった場合でも、常温特性を示すCC1に補正する。これにより、誤ったアンバランス位置の判定を防止する。その結果、脱水起動時において、誤判定することがない。 For example, when the longitudinal vibration displacement detected by the vibration detection unit 10 detects 0.8 mm at a low temperature and 1.1 mm at a high temperature, the temperature correction unit 106 shows normal temperature characteristics from the temperature value detected by the temperature detection unit 23. Correction to CC1. That is, even when there is a temperature change, it is corrected to CC1 indicating normal temperature characteristics. This prevents erroneous unbalance position determination. As a result, no erroneous determination is made at the start of dehydration.
 つまり、上述した方法により、制御部13の起動判定部131のアンバランス量算出部31とアンバランス位置算出部30で、洗濯物18のアンバランス状態を、ドラム3の共振回転数よりも低い回転数(本実施の形態では、約120rpm)で特定することができる。 That is, by the above-described method, the unbalanced state calculation unit 31 and the unbalance position calculation unit 30 of the activation determination unit 131 of the control unit 13 rotate the laundry 18 in an unbalanced state lower than the resonance rotational speed of the drum 3. It can be specified by a number (in this embodiment, about 120 rpm).
 なお、図9および図10に示す左右振動変位および前後振動変位と、アンバランス量およびアンバランス位置との相関図は、約120rpmでドラム3を回転させたときの実験値から得られた図である。そのため、ドラム3の回転数を変更した場合には、相関関係が変化する。また、ドラム3の奥行きサイズ、径、ドラム式洗濯機本体1内の洗濯槽22の支持方法などが変化した場合にも相関関係が変化する。その場合でも、共振回転数以下で実験的に相関関係を得ることにより、容易に対応することができる。 Note that the correlation diagram between the left and right vibration displacement and the front and rear vibration displacement, the unbalance amount and the unbalance position shown in FIGS. 9 and 10 is a diagram obtained from experimental values when the drum 3 is rotated at about 120 rpm. is there. Therefore, when the rotation speed of the drum 3 is changed, the correlation changes. The correlation also changes when the depth size and diameter of the drum 3 and the method for supporting the washing tub 22 in the drum-type washing machine body 1 are changed. Even in this case, it is possible to easily cope with this by obtaining a correlation experimentally below the resonance rotational speed.
 つぎに、検知したアンバランス状態に基づいて、ボールバランサ8内のボール9を制御する。具体的には、例えば、ドラム3の奥行き方向のアンバランス位置が前側、または軸側で一定値(例えば、300g)以上であれば、対向起動とし、軸側で一定値未満であれば、分散起動とする。これにより、ボール9と、衣類とのアンバランス状態を最適な状態で、ドラム3の共振回転数を通過させることができる。その結果、ドラム3の共振回転数での振動を最小限に抑制して、起動することができる。 Next, the ball 9 in the ball balancer 8 is controlled based on the detected unbalanced state. Specifically, for example, when the unbalanced position in the depth direction of the drum 3 is equal to or greater than a certain value (for example, 300 g) on the front side or the shaft side, the opposite activation is performed. Start. As a result, the resonance rotational speed of the drum 3 can be passed in an optimal unbalanced state between the ball 9 and the clothing. As a result, the vibration at the resonance rotational speed of the drum 3 can be minimized and activated.
 なお、本実施の形態では、ドラム3の回転数を120rpmに維持した場合に、温度補正部106で温度補正をする方法を例に説明したが、これに限られない。例えば、オイルの粘性が変化した場合に、ドラム3の回転数を変更してもよい。つまり、温度検知部23で検知した温度の値により、振動検知部10で検知する振動変位が常温時と同じ値になるように、オイルの粘性の温度変化に応じて、ドラム3の回転数を変更してもよい。 In the present embodiment, the method of correcting the temperature by the temperature correction unit 106 when the number of rotations of the drum 3 is maintained at 120 rpm is described as an example, but the present invention is not limited to this. For example, when the oil viscosity changes, the rotation speed of the drum 3 may be changed. That is, the number of rotations of the drum 3 is set according to the temperature change of the viscosity of the oil so that the vibration displacement detected by the vibration detection unit 10 becomes the same value as that at normal temperature based on the temperature value detected by the temperature detection unit 23. It may be changed.
 また、本実施の形態では、温度検知部23の温度の計測と、温度補正部106の補正は、必ずアンバランス量算出部31およびアンバランス位置算出部30でアンバランス状態を算出する直前の状態で行うことが、好ましい。これにより、最も精度よく温度補正ができる。つまり、洗濯ステップ終了後の、脱水起動の直前や、すすぎ時の脱水時の直前に温度補正を行う。これにより、精度よく、温度補正を行うことができる。 In the present embodiment, the temperature measurement of the temperature detection unit 23 and the correction of the temperature correction unit 106 are always the states immediately before the unbalance amount calculation unit 31 and the unbalance position calculation unit 30 calculate the unbalance state. Is preferably performed. Thereby, temperature correction can be performed with the highest accuracy. That is, temperature correction is performed immediately before the start of dehydration or immediately before dehydration at the time of rinsing after the washing step. Thereby, temperature correction can be performed accurately.
 また、本実施の形態では、温度検知部23をボールバランサ8近傍の洗濯槽22の下部に設けた例で説明したが、これに限られない。例えば、ドラム式洗濯機において、温度検知が必要な位置の設けられた温度センサを、温度検知部23として兼用してもよい。このとき、ボールバランサ8の温度を正確に測定できない場合がある。その場合、温度補正部に、検知された温度センサの温度から、ボールバランサの温度を推測する温度補完部を設けることが好ましい。これにより、温度検知部23の設置位置に関わらず、ボールバランサ8の温度を推測して、アンバランス状態を判定できる。 Further, in the present embodiment, the temperature detection unit 23 has been described as an example provided in the lower part of the washing tub 22 near the ball balancer 8, but the present invention is not limited thereto. For example, in a drum-type washing machine, a temperature sensor provided at a position where temperature detection is necessary may be used as the temperature detection unit 23. At this time, the temperature of the ball balancer 8 may not be accurately measured. In that case, it is preferable to provide the temperature correction unit with a temperature complement unit that estimates the temperature of the ball balancer from the detected temperature sensor temperature. Thereby, irrespective of the installation position of the temperature detection part 23, the temperature of the ball balancer 8 can be estimated and an unbalanced state can be determined.
 以上で説明したように、本発明のドラム式洗濯機は、筐体と、筐体の内部に支持された洗濯槽と、洗濯槽内に回転可能に収納された回転槽と、回転槽を回転駆動する駆動部と、回転槽に設けた回転体制御装置と、洗濯槽に設けた振動検知部と、回転槽内の布量を算出する布量検知部と、振動検知部からの出力に基づいて駆動部を制御する制御部とを備える。制御部は、振動検知部で検知した振動変位と布量検知部で検知した布量とに基づき、脱水起動時に回転体制御装置を制御してもよい。 As described above, the drum type washing machine of the present invention includes a housing, a washing tub supported inside the housing, a rotating tub rotatably accommodated in the washing tub, and a rotating tub. Based on the output from the drive unit, the rotating body control device provided in the rotating tub, the vibration detecting unit provided in the washing tub, the cloth amount detecting unit for calculating the cloth amount in the rotating tub, and the vibration detecting unit And a control unit for controlling the drive unit. The control unit may control the rotating body control device at the time of dehydration activation based on the vibration displacement detected by the vibration detection unit and the cloth amount detected by the cloth amount detection unit.
 これにより、回転槽を構成するドラム内の洗濯物のアンバランス状態(アンバランス位置およびアンバランス量など)が同じ状態で、かつ回転槽内の布量が異なる場合でも、布量検知部で布量、振動検知部で振動を計測して、アンバランス状態を共振回転数前に正確に把握できる。そして、衣類のアンバランス状態(アンバランス量とアンバランス位置)に基づいて回転体制御装置を制御することにより、洗濯槽の振動を抑制できる。その結果、起動の再立ち上げなどを繰り返す動作の発生を効果的に防止でき、脱水起動時の安定した動作ができる。 As a result, even when the unbalanced state (unbalanced position and unbalance amount, etc.) of the laundry in the drum constituting the rotating tub is the same and the amount of cloth in the rotating tub is different, the cloth amount detecting unit The vibration can be measured by the amount and vibration detection unit, and the unbalanced state can be accurately grasped before the resonance rotational speed. And the vibration of a washing tub can be suppressed by controlling a rotating body control apparatus based on the imbalance state (unbalance amount and unbalance position) of clothing. As a result, it is possible to effectively prevent the occurrence of an operation that repeats the restarting of the activation, and a stable operation at the time of dehydration activation can be achieved.
 また、本発明のドラム式洗濯機は、回転体制御装置が、回転槽の円周に合わせて設けられ、内部に複数のボールを有するボールバランサで構成される。そして、制御部は、振動検知部で検知した振動変位から回転槽のアンバランス量と円周方向のアンバランス位置とを含むアンバランス状態を把握し、アンバランス状態に基づいて、ボールがアンバランス位置に対向する位置に偏る対向起動、または、ボールがボールバランス内に分散する分散起動となるように制御してもよい。 Further, in the drum type washing machine of the present invention, the rotating body control device is provided in accordance with the circumference of the rotating tub, and is configured by a ball balancer having a plurality of balls inside. Then, the control unit grasps the unbalanced state including the unbalance amount of the rotating tub and the unbalanced position in the circumferential direction from the vibration displacement detected by the vibration detecting unit, and the ball is unbalanced based on the unbalanced state. You may control so that it may be the opposite starting which deviates to the position which opposes a position, or the dispersion | distribution starting which a ball disperses in a ball balance.
 これにより、ボールバランサ内の最適な位置にボールを配置して、ドラムが共振回転数を通過するときの振動を抑制することができる。 This makes it possible to suppress the vibration when the drum passes through the resonance rotational speed by arranging the ball at an optimum position in the ball balancer.
 また、本発明のドラム式洗濯機は、制御部が、回転槽を共振回転数以下の所定回転数に維持した状態で、振動検知部で検知した振動変位から共振回転数時に回転槽の振動を抑制するように回転体制御装置を制御する起動判定部と、布量検知部で検知した布量から振動検知部で検知した振動変位の値を補正換算する布量補正部とを備えてもよい。 In the drum type washing machine of the present invention, the control unit keeps the rotating tub at a predetermined rotation speed equal to or lower than the resonance rotation speed, and the vibration of the rotation tank is detected at the resonance rotation speed from the vibration displacement detected by the vibration detection section. An activation determination unit that controls the rotating body control device so as to suppress, and a cloth amount correction unit that corrects and converts the value of the vibration displacement detected by the vibration detection unit from the cloth amount detected by the cloth amount detection unit. .
 この構成によれば、制御部の起動判定部は、まず、回転槽の回転数を共振回転数以下の所定回転数に維持する。布量補正部は、洗濯ステップ前に布量検知部で検知した洗濯物の布量から、アンバランス状態を検出する振動検知部で検知した任意の1軸出力方向(左右方向)の振動変位の値の補正を行う。そして、布量に応じて算出したアンバランス量に基づいて、振動検知部で検知した別の任意の1軸出力方向(前後方向)の振動変位の値を、さらに布量補正部で補正を行う。これにより、布量に基づいて、アンバランス位置を正確に算出して、回転槽内の洗濯物の偏り状況を正確に把握することができる。そして、偏り状況に応じて、対向(ボールをひとつの位置に偏らせる)状態、または分散(ボールを回転体制御装置内で均等に配置する)状態とするように、回転体制御装置(ボールバランサ)のボールの位置を制御する。その結果、ドラムの回転が共振回転数を通過する際の、洗濯槽の振動を、効果的に抑制することができる。 According to this configuration, the activation determination unit of the control unit first maintains the rotational speed of the rotating tub at a predetermined rotational speed that is equal to or lower than the resonant rotational speed. The cloth amount correction unit detects the vibration displacement in an arbitrary uniaxial output direction (left-right direction) detected by the vibration detection unit that detects an unbalanced state from the laundry cloth amount detected by the cloth amount detection unit before the washing step. Correct the value. Then, based on the unbalance amount calculated according to the cloth amount, the vibration amount value in another arbitrary one-axis output direction (front-rear direction) detected by the vibration detection unit is further corrected by the cloth amount correction unit. . Thereby, based on the amount of cloth, it is possible to accurately calculate the unbalanced position and accurately grasp the unbalanced state of the laundry in the rotating tub. Then, depending on the bias situation, the rotating body control device (ball balancer) is set so as to be in an opposing state (the ball is biased to one position) or in a dispersed state (the balls are evenly arranged in the rotating body control device). ) Control the position of the ball. As a result, it is possible to effectively suppress the vibration of the washing tub when the rotation of the drum passes the resonance rotational speed.
 また、本発明のドラム式洗濯機は、布量補正部が、回転槽内の布量が一定値以下の場合に、布量補正部の補正を行わないように制御してもよい。これにより、一定値に相当する布量が小容量以下では、小容量の振動変位を利用して、アンバランス量やアンバランス位置を判定できる。その結果、振動変位を、予め実験的に求める必要がないため、生産性や作業性が向上する。 Further, in the drum type washing machine of the present invention, the cloth amount correction unit may perform control so that the cloth amount correction unit does not perform correction when the amount of cloth in the rotating tub is equal to or less than a predetermined value. As a result, when the amount of cloth corresponding to a certain value is less than or equal to the small capacity, the unbalance amount and the unbalance position can be determined using the small volume of vibration displacement. As a result, since it is not necessary to experimentally obtain the vibration displacement in advance, productivity and workability are improved.
 また、本発明のドラム式洗濯機は、布量補正部が、洗濯ステップの給水前の状態に行った布量で補正してもよい。これにより、脱水ステップ前の給水状態で布量を判定する場合において、洗濯ステップ時、布に含まれる水分量を考慮して布量を判定する必要がない。その結果、正確な布量が判定でき、脱水起動時の布量の補正を正確に行うことができる。 Further, in the drum type washing machine of the present invention, the cloth amount correction unit may correct the cloth amount with the amount of cloth that has been put in a state before water supply in the washing step. Thereby, when determining the amount of cloth in the water supply state before the dehydration step, it is not necessary to determine the amount of cloth in consideration of the amount of water contained in the cloth during the washing step. As a result, an accurate cloth amount can be determined, and the cloth amount can be accurately corrected at the start of dehydration.
 また、本発明のドラム式洗濯機は、回転体制御装置近傍の温度計測を行う温度検知部を、さらに備え、制御部は、振動検知部で検知した振動変位と布量検知部で検知した布量と温度検知部で検知した温度とに基づいて、脱水起動時に回転体制御装置を制御する構成としてもよい。 The drum type washing machine of the present invention further includes a temperature detection unit that measures the temperature in the vicinity of the rotating body control device, and the control unit detects the vibration displacement detected by the vibration detection unit and the cloth detected by the cloth amount detection unit. It is good also as a structure which controls a rotary body control apparatus at the time of dehydration starting based on quantity and the temperature detected by the temperature detection part.
 この構成によれば、回転槽内の衣類のアンバランス状態を、振動検知部で検知した振動変位の値から判断する際に、布量検知部で検知した布量と、洗濯槽近傍で計測した温度により、正確に把握する。そして、把握したアンバランス状態に応じて、回転制御装置を制御する。これにより、脱水時において、適正な起動方法を選定して、回転槽の振動の発生を効果的に抑制できる。 According to this configuration, when the unbalanced state of the clothes in the rotating tub is determined from the value of the vibration displacement detected by the vibration detecting unit, the cloth amount detected by the cloth amount detecting unit and the vicinity of the washing tub are measured. Accurately grasp by temperature. Then, the rotation control device is controlled according to the grasped unbalanced state. Thereby, at the time of spin-drying | dehydration, a suitable starting method can be selected and generation | occurrence | production of a vibration of a rotary tank can be suppressed effectively.
 また、本発明のドラム式洗濯機は、制御部が、回転槽を共振回転数以下の所定回転数に維持した状態で、振動検知部で検知した振動変位から共振回転数時に回転槽の振動を抑制するように回転体制御装置を制御する起動判定部と、温度検知部で検知した温度から振動検知部で検知した振動変位の値を補正換算する温度補正部とを備えてもよい。 In the drum type washing machine of the present invention, the control unit keeps the rotating tub at a predetermined rotation speed equal to or lower than the resonance rotation speed, and the vibration of the rotation tank is detected at the resonance rotation speed from the vibration displacement detected by the vibration detection section. You may provide the starting determination part which controls a rotary body control apparatus so that it may suppress, and the temperature correction part which carries out correction conversion of the value of the vibration displacement detected by the vibration detection part from the temperature detected by the temperature detection part.
 この構成によれば、制御部の起動判定部は、まず、回転槽の回転数を共振回転数以下の所定回転数に維持する。温度補正部は、温度検知部で計測した回転体制御装置近傍の温度から、アンバランス状態を検出する振動検知部で検知した任意の1軸出力方向(左右方向)の振動変位の値に補正を行う。そして、温度に応じて算出したアンバランス量に基づいて、別の任意の1軸出力方向(前後方向)の振動変位の値を、さらに温度補正部で補正を行う。これにより、検知された温度に基づいて、アンバランス位置を正確に算出して、回転槽内の洗濯物の偏り状況を正確に把握することができる。そして、偏りの状況に応じて、対向(ボールを1つの位置に偏らせる)状態、または分散(ボールを回転体制御装置内で分散させて配置する)状態とするように、回転体制御装置(ボールバランサ)のボール位置を制御する。その結果、ドラムの回転が共振回転数を通過する際の、洗濯槽の振動を、さらに効果的に抑制することができる。 According to this configuration, the activation determination unit of the control unit first maintains the rotational speed of the rotating tub at a predetermined rotational speed that is equal to or lower than the resonant rotational speed. The temperature correction unit corrects the vibration displacement value in any one-axis output direction (left-right direction) detected by the vibration detection unit that detects the unbalanced state from the temperature in the vicinity of the rotating body control device measured by the temperature detection unit. Do. Then, based on the unbalance amount calculated according to the temperature, another arbitrary uniaxial output direction (front-rear direction) vibration displacement value is further corrected by the temperature correction unit. Thereby, based on the detected temperature, an unbalance position can be calculated accurately and the biased state of the laundry in the rotating tub can be accurately grasped. Then, depending on the situation of the bias, the rotating body control device (the ball is biased to one position) or the dispersed state (the balls are dispersed and arranged in the rotating body control device) The ball position of the ball balancer is controlled. As a result, it is possible to more effectively suppress the vibration of the washing tub when the rotation of the drum passes the resonance rotational speed.
 また、本発明のドラム式洗濯機は、温度補正部が、温度検知部で検知した温度値から、回転体制御部装置の温度を推測する温度補完部をさらに備えてもよい。これにより、温度検知部を任意の位置に設置することができる。また、回転体制御装置の温度を直接検知する温度検知部を、特に設ける必要がない。その結果、部品点数を削減して、構成を簡略化できる。 Further, the drum type washing machine of the present invention may further include a temperature complementing unit that estimates the temperature of the rotating body control unit device from the temperature value detected by the temperature detection unit by the temperature correction unit. Thereby, a temperature detection part can be installed in arbitrary positions. Further, it is not necessary to provide a temperature detection unit that directly detects the temperature of the rotating body control device. As a result, the number of parts can be reduced and the configuration can be simplified.
 また、本発明のドラム式洗濯機は、温度補正部が、脱水ステップ前に温度計測を行い、測定された温度計測値から補正を行ってもよい。これにより、脱水ステップ前の状態で、複数回、洗濯機を動作させている場合でも、またはじめて動作させた場合でも、脱水ステップ前の温度上昇を考慮して、洗濯槽近傍の温度を計測することができる。その結果、脱水ステップの状況に応じて、正確な温度補正を行うことができる。 Also, in the drum type washing machine of the present invention, the temperature correction unit may measure the temperature before the dehydration step, and correct the measured temperature value. As a result, the temperature in the vicinity of the washing tub is measured in consideration of the temperature rise before the dehydration step even when the washing machine is operated several times in the state before the dehydration step or when it is operated for the first time. be able to. As a result, accurate temperature correction can be performed according to the state of the dehydration step.
 また、本発明のドラム式洗濯機は、振動検知部を、洗濯槽の前方上部に設けてもよい。これにより、振動検知部を回転槽の前方でアンバランス状態が発生する際の振動が最も大きい位置に設けることができる。その結果、振動変位の値をより検出しやすくなるため、検知精度を向上できる。 In the drum type washing machine of the present invention, the vibration detection unit may be provided in the upper front part of the washing tub. Thereby, a vibration detection part can be provided in the position with the largest vibration at the time of an unbalanced state generating in front of a rotation tank. As a result, it becomes easier to detect the value of the vibration displacement, so that the detection accuracy can be improved.
 本発明は、脱水起動時において、ドラムが共振回転数を通過する際の振動を大幅に抑制して、安定な駆動が要望される家庭用および業務用のドラム式洗濯機やドラム式洗濯乾燥機に有用である。 The present invention is a drum-type washing machine and a drum-type washing and drying machine for home use and business use that require a stable drive by greatly suppressing vibration when the drum passes the resonance rotational speed at the start of dehydration. Useful for.
 1,10A  ドラム式洗濯機本体(筐体)
 3,30A  ドラム(回転槽)
 4  ドラムプーリ
 5  モータプーリ
 6  ベルト
 7  バッフル
 8  ボールバランサ(回転体制御装置)
 9  ボール
 10,50A  振動検知部
 12,40A  モータ
 13  制御部
 15  ロータ位置検出部
 18  洗濯物
 19,220  ダンパ
 20A,22  洗濯槽
 23  温度検知部(温度センサ)
 30  アンバランス位置算出部
 31  アンバランス量算出部
 60A  制御装置
 70A  扉
 101  電流検知部
 102  布量検知部
 103  回転位置検知部
 104  布量補正部
 106  温度補正部
 131  起動判定部
 132  回転制御部
 133  駆動部
 180  吊バネ
 501  加速度センサ
 502  フィルタ回路
 503  マイクロコンピュータ
 504  モータ制御回路
 505  表示パネル回路
 507  電源回路
 508  アンバランス量検知部
 509  アンバランス位置検知部
 A  アンバランス位置
1,10A Drum-type washing machine (housing)
3,30A drum (rotating tank)
4 Drum pulley 5 Motor pulley 6 Belt 7 Baffle 8 Ball balancer (Rotating body control device)
9 ball 10, 50A vibration detection unit 12, 40A motor 13 control unit 15 rotor position detection unit 18 laundry 19, 220 damper 20A, 22 washing tub 23 temperature detection unit (temperature sensor)
30 unbalance position calculation unit 31 unbalance amount calculation unit 60A control device 70A door 101 current detection unit 102 cloth amount detection unit 103 rotational position detection unit 104 cloth amount correction unit 106 temperature correction unit 131 activation determination unit 132 rotation control unit 133 drive Unit 180 suspension spring 501 acceleration sensor 502 filter circuit 503 microcomputer 504 motor control circuit 505 display panel circuit 507 power supply circuit 508 unbalance amount detection unit 509 unbalance position detection unit A unbalance position

Claims (10)

  1. 筐体と、
    前記筐体の内部に支持された洗濯槽と、
    前記洗濯槽内に回転可能に収納された回転槽と、
    前記回転槽を回転駆動する駆動部と、
    前記回転槽に設けた回転体制御装置と、
    前記洗濯槽に設けた振動検知部と、
    前記回転槽内の布量を算出する布量検知部と、
    前記振動検知部からの出力に基づいて前記駆動部を制御する制御部と、を備え、
    前記制御部は、前記振動検知部で検知した振動変位と前記布量検知部で検知した布量とに基づいて、脱水起動時に前記回転体制御装置を制御するドラム式洗濯機。
    A housing,
    A washing tub supported within the housing;
    A rotating tub rotatably accommodated in the washing tub;
    A drive unit for rotationally driving the rotary tank;
    A rotating body control device provided in the rotating tank;
    A vibration detector provided in the washing tub;
    A cloth amount detector for calculating the amount of cloth in the rotating tub;
    A control unit that controls the drive unit based on an output from the vibration detection unit,
    The said control part is a drum type washing machine which controls the said rotary body control apparatus at the time of dehydration starting based on the vibration displacement detected by the said vibration detection part, and the cloth amount detected by the said cloth amount detection part.
  2. 前記回転体制御装置は、前記回転槽の円周に合わせて設けられ、内部に複数のボールを有するボールバランサで構成され、
    前記制御部は、前記振動検知部で検知した振動変位から前記回転槽のアンバランス量と円周方向のアンバランス位置とを含むアンバランス状態を把握し、前記アンバランス状態に基づいて、前記ボールが前記アンバランス位置に対向する位置に偏る対向起動、または、前記ボールが前記ボールバランス内に分散する分散起動となるように制御する請求項1に記載のドラム式洗濯機。
    The rotating body control device is provided in accordance with the circumference of the rotating tank, and includes a ball balancer having a plurality of balls inside,
    The control unit grasps an unbalanced state including an unbalanced amount of the rotating tub and an unbalanced position in a circumferential direction from the vibration displacement detected by the vibration detecting unit, and based on the unbalanced state, the ball 2. The drum type washing machine according to claim 1, wherein control is performed so as to be opposed activation that is biased toward a position that opposes the unbalanced position, or distributed activation in which the balls are dispersed in the ball balance.
  3. 前記制御部は、
    前記回転槽を共振回転数以下の所定回転数に維持した状態で、前記振動検知部で検知した振動変位から前記共振回転数時に前記回転槽の振動を抑制するように前記回転体制御装置を制御する起動判定部と、
    前記布量検知部で検知した布量から前記振動検知部で検知した振動変位の値を補正換算する布量補正部とを備える請求項1に記載のドラム式洗濯機。
    The controller is
    The rotating body control device is controlled so as to suppress the vibration of the rotating tub at the resonance rotational speed from the vibration displacement detected by the vibration detecting unit while maintaining the rotating tub at a predetermined rotational speed equal to or lower than the resonance rotational speed. An activation determination unit to perform,
    The drum-type washing machine according to claim 1, further comprising: a cloth amount correcting unit that corrects and converts a value of vibration displacement detected by the vibration detecting unit from a cloth amount detected by the cloth amount detecting unit.
  4. 前記布量補正部は、前記回転槽内の布量が一定値以下の場合に、前記布量補正部の補正を行わない請求項3に記載のドラム式洗濯機。 The drum-type washing machine according to claim 3, wherein the cloth amount correction unit does not perform correction of the cloth amount correction unit when the amount of cloth in the rotating tub is equal to or less than a predetermined value.
  5. 前記布量補正部は、洗濯ステップの給水前の状態に行った布量で補正する請求項3または請求項4のいずれか1項に記載のドラム式洗濯機。 The drum-type washing machine according to any one of claims 3 and 4, wherein the cloth amount correcting unit corrects the cloth amount using a cloth amount that is in a state before water supply in a washing step.
  6. 前記回転体制御装置近傍の温度計測を行う温度検知部を、さらに備え、
    前記制御部は、前記振動検知部で検知した振動変位と前記布量検知部で検知した布量と前記温度検知部で検知した温度とに基づいて、脱水起動時に前記回転体制御装置を制御する請求項1に記載のドラム式洗濯機。
    A temperature detector for measuring the temperature in the vicinity of the rotating body control device,
    The control unit controls the rotating body control device at the start of dehydration based on the vibration displacement detected by the vibration detection unit, the cloth amount detected by the cloth amount detection unit, and the temperature detected by the temperature detection unit. The drum type washing machine according to claim 1.
  7. 前記制御部は、
    前記回転槽を共振回転数以下の所定回転数に維持した状態で、前記振動検知部で検知した振動変位から共振回転数時に前記回転槽の振動を抑制するように前記回転体制御装置を制御する起動判定部と、
    前記温度検知部で検知した温度から前記振動検知部で検知した振動変位の値を補正換算する温度補正部とを備える請求項6に記載のドラム式洗濯機。
    The controller is
    The rotating body control device is controlled so as to suppress the vibration of the rotating tub at the resonance rotational speed from the vibration displacement detected by the vibration detecting unit in a state where the rotating tub is maintained at a predetermined rotational speed equal to or lower than the resonance rotational speed. An activation determination unit;
    The drum type washing machine according to claim 6, further comprising: a temperature correction unit that corrects and converts a vibration displacement value detected by the vibration detection unit from a temperature detected by the temperature detection unit.
  8. 前記温度補正部は、前記温度検知部で検知した温度値から、前記回転体制御装置の温度を推測する温度補完部を、さらに有する請求項7に記載のドラム式洗濯機。 The drum type washing machine according to claim 7, wherein the temperature correction unit further includes a temperature complement unit that estimates a temperature of the rotating body control device from a temperature value detected by the temperature detection unit.
  9. 前記温度補正部は、脱水ステップ前に温度計測を行い、測定された温度計測値から補正を行う請求項7または請求項8のいずれか1項に記載のドラム式洗濯機。 The drum type washing machine according to any one of claims 7 and 8, wherein the temperature correction unit performs temperature measurement before the dehydration step, and performs correction from the measured temperature measurement value.
  10. 前記振動検知部は、前記洗濯槽の前方上部に設けられている請求項1に記載のドラム式洗濯機。 The drum-type washing machine according to claim 1, wherein the vibration detection unit is provided at an upper front portion of the washing tub.
PCT/JP2014/003079 2013-06-12 2014-06-10 Drum-type washing machine WO2014199627A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014002821.5T DE112014002821T5 (en) 2013-06-12 2014-06-10 drum washing machine
JP2015522540A JP6064148B2 (en) 2013-06-12 2014-06-10 Drum washing machine
CN201480033560.5A CN105308229B (en) 2013-06-12 2014-06-10 Drum-type washing machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013123490 2013-06-12
JP2013-123490 2013-06-12
JP2013-123489 2013-06-12
JP2013123489 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014199627A1 true WO2014199627A1 (en) 2014-12-18

Family

ID=52021940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003079 WO2014199627A1 (en) 2013-06-12 2014-06-10 Drum-type washing machine

Country Status (4)

Country Link
JP (1) JP6064148B2 (en)
CN (1) CN105308229B (en)
DE (1) DE112014002821T5 (en)
WO (1) WO2014199627A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123860A (en) * 2014-12-26 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. Vibration reduction method in dewatering of washing machine
CN106480642A (en) * 2015-08-28 2017-03-08 苏州三星电子有限公司 A kind of vibration control method of roller washing machine and device
CN106795680A (en) * 2015-04-09 2017-05-31 松下知识产权经营株式会社 Tumbling-box washing machine
JP2019092706A (en) * 2017-11-21 2019-06-20 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Drum type washing machine
US11021825B2 (en) 2018-04-11 2021-06-01 Haier Us Appliance Solutions, Inc. Washing machine appliance with location detection of imbalanced loads
CN114855420A (en) * 2022-04-29 2022-08-05 无锡飞翎电子有限公司 Dehydration control method, system, device and storage medium for clothes processing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219081A1 (en) * 2017-10-25 2019-04-25 BSH Hausgeräte GmbH Method for operating a domestic appliance for the care of laundry items with detection of an imbalance based on two input channels and household appliance
JP7100839B2 (en) * 2017-11-21 2022-07-14 青島海爾洗衣机有限公司 Drum type washing machine
JP2019154481A (en) * 2018-03-07 2019-09-19 パナソニックIpマネジメント株式会社 Control method for controlling washing machine, control device and program
KR20200119567A (en) 2019-04-10 2020-10-20 엘지전자 주식회사 Laundry Treating Apparatus
CN113463332B (en) * 2021-08-02 2022-04-26 珠海格力电器股份有限公司 Washing machine control method and washing machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043637A (en) * 2006-08-21 2008-02-28 Samsung Electronics Co Ltd Rotary body control device and washing machine equipped with the same
JP2012120687A (en) * 2010-12-08 2012-06-28 Samsung Yokohama Research Institute Co Ltd Rotating device having ball balancer
JP2012122576A (en) * 2010-12-10 2012-06-28 Samsung Yokohama Research Institute Co Ltd Washing machine with ball balancer
JP2013081543A (en) * 2011-10-06 2013-05-09 Samsung Yokohama Research Institute Co Ltd Vertical type washer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0183903B1 (en) * 1996-07-25 1999-05-15 삼성전자주식회사 Method and circuit for vibration control of a washing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043637A (en) * 2006-08-21 2008-02-28 Samsung Electronics Co Ltd Rotary body control device and washing machine equipped with the same
JP2012120687A (en) * 2010-12-08 2012-06-28 Samsung Yokohama Research Institute Co Ltd Rotating device having ball balancer
JP2012122576A (en) * 2010-12-10 2012-06-28 Samsung Yokohama Research Institute Co Ltd Washing machine with ball balancer
JP2013081543A (en) * 2011-10-06 2013-05-09 Samsung Yokohama Research Institute Co Ltd Vertical type washer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123860A (en) * 2014-12-26 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. Vibration reduction method in dewatering of washing machine
CN106795680A (en) * 2015-04-09 2017-05-31 松下知识产权经营株式会社 Tumbling-box washing machine
CN106795680B (en) * 2015-04-09 2019-08-02 松下知识产权经营株式会社 Tumbling-box washing machine
CN106480642A (en) * 2015-08-28 2017-03-08 苏州三星电子有限公司 A kind of vibration control method of roller washing machine and device
JP2019092706A (en) * 2017-11-21 2019-06-20 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Drum type washing machine
JP7178651B2 (en) 2017-11-21 2022-11-28 青島海爾洗衣机有限公司 drum washing machine
US11021825B2 (en) 2018-04-11 2021-06-01 Haier Us Appliance Solutions, Inc. Washing machine appliance with location detection of imbalanced loads
CN114855420A (en) * 2022-04-29 2022-08-05 无锡飞翎电子有限公司 Dehydration control method, system, device and storage medium for clothes processing device

Also Published As

Publication number Publication date
DE112014002821T5 (en) 2016-03-10
JP6064148B2 (en) 2017-01-25
CN105308229A (en) 2016-02-03
JPWO2014199627A1 (en) 2017-02-23
CN105308229B (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6064148B2 (en) Drum washing machine
JP4943772B2 (en) Washing machine and cloth amount calculation method
EP2260136B1 (en) A method for processing laundry, and a laundry processing device
US8621893B2 (en) Washing machine and method of controlling the same
JP2003534078A (en) Low speed pre-balancing of washing machine
JP2010057822A (en) Drum washing machine
JP2010207316A (en) Washing machine
US9809916B2 (en) Washing machine with balancer and control method thereof
JP4941319B2 (en) Washing machine, drum rotation speed control method and program
JP5768209B2 (en) Drum washing machine
JP5209558B2 (en) Washing machine
JP5446489B2 (en) Washing machine
JP2014079487A (en) Drum type washing machine
JP2010082424A5 (en)
JP2018102646A (en) Drum type washing machine
KR100672604B1 (en) Method for controlling drum type wahing machine for dewatering the laundry and apparatus thereof
JPH0739675A (en) Drum type washing machine
JP4983579B2 (en) Drum washing machine
JP2009165683A (en) Drum-type washing machine
JP5612066B2 (en) Washing machine
JP2013223621A (en) Drum type washing machine
EP2470706B1 (en) Control method of laundry machine
JP4858557B2 (en) Washing machine
CN111621958B (en) Household appliance with ball balancer and fluid viscosity control
JP2010194216A (en) Washing machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033560.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522540

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014002821

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810274

Country of ref document: EP

Kind code of ref document: A1