WO2014199511A1 - 充電制御装置 - Google Patents

充電制御装置 Download PDF

Info

Publication number
WO2014199511A1
WO2014199511A1 PCT/JP2013/066461 JP2013066461W WO2014199511A1 WO 2014199511 A1 WO2014199511 A1 WO 2014199511A1 JP 2013066461 W JP2013066461 W JP 2013066461W WO 2014199511 A1 WO2014199511 A1 WO 2014199511A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
power storage
charge
charging
Prior art date
Application number
PCT/JP2013/066461
Other languages
English (en)
French (fr)
Inventor
前野 清元
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/066461 priority Critical patent/WO2014199511A1/ja
Publication of WO2014199511A1 publication Critical patent/WO2014199511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a charge control device that controls charging of a battery mounted on a vehicle using an in-vehicle solar cell.
  • the charge voltage of a capacitor (such as an electric double layer capacitor) connected to a solar cell increases, and the power supply voltage After starting up, the control unit starts operating.
  • the activated control unit reads the voltage value of the auxiliary battery and controls switching of the relay so that the solar battery generates power when the remaining capacity of the auxiliary battery is low. The generated power is stored in the auxiliary battery, and when the remaining capacity is sufficient, the generated power is stored in the battery.
  • the auxiliary battery and the capacitor store the electric power generated by the solar battery, and supply the electric power stored in the auxiliary battery and the like to the electric device and the control unit. And these electric devices etc. which were started by supply of this electric power control charge to an auxiliary battery etc. For this reason, when the electric power charged in the auxiliary battery or the like is lower than the electric power required to activate the electric device or the like, the electric device or the like cannot be activated without being able to control charging of the auxiliary battery or the like.
  • the present invention has been made to solve the above problems, and one of its purposes is to provide an improved charge control device so that the electric power generated by the in-vehicle solar cell can be used effectively. There is.
  • a charging control apparatus includes an electric motor that generates driving force for a vehicle, a main power storage unit that stores electric power supplied to the electric motor, and electric power supplied to electric devices of the vehicle.
  • the present invention is applied to a vehicle having a sub power storage unit that stores power and a solar battery.
  • a vehicle an electric vehicle (EV), a hybrid vehicle (HV), or a plug-in hybrid vehicle (PHV) can be adopted.
  • a chargeable / dischargeable secondary battery storage battery
  • an electric double layer capacitor or the like.
  • the charging control device applied to such a vehicle has a charging path so as to supply electric power generated by the solar cell after startup to at least one of the main power storage unit and the sub power storage unit.
  • the charge control part which switches is provided.
  • One of the features of the charge control device according to the present invention is configured such that the charge control unit is activated when all of the electric power generated by the solar battery is supplied via a power line before activation. There is in being.
  • the charge control unit is supplied with all of the electric power generated by the vehicle-mounted solar cell before startup from the solar cell (vehicle-mounted solar cell) mounted on the vehicle via the power line, For example, regardless of the state of charge of the sub power storage unit, the start-up voltage can be quickly raised and started by the supplied power.
  • the activated charge control unit controls charging by switching the charging path to supply power generated by the solar cell directly or indirectly to at least one of the main power storage unit and the sub power storage unit. can do. Therefore, the charge control unit can be reliably activated, and the activated charge control unit controls charging, so that the power generated by the solar cell, in other words, the renewable energy can be effectively discarded without being wasted. Can be used.
  • the charge control unit uses the power generated by the solar battery regardless of the charge state of the main power storage unit.
  • the surplus power obtained by reducing the power consumed by can be supplied to the sub power storage unit.
  • the charging control unit activated as described above uses the surplus power obtained by subtracting the power consumed by the charging control (that is, the power consumed by itself) from the power generated by the solar cell, and the electric power of the vehicle.
  • Charging can be controlled by preferentially supplying power to a sub power storage unit that supplies power to devices (specifically, a plurality of auxiliary machines and a plurality of electronic control devices). Thereby, the electric power (renewable energy) generated by the solar cell can be used effectively.
  • the various on-vehicle systems can be operated. Thereby, for example, even if the power stored in the main power storage unit and the sub power storage unit is significantly reduced due to the occurrence of a disaster or the like, first, the sub power storage unit that is a low-voltage power supply is preferentially charged. As a result, various on-vehicle systems can be restored.
  • the main power storage unit that stores the power to supply high voltage to the electric motor by pumping the power of the sub power storage unit, or the vehicle can be charged with HV or PHV.
  • the power stored in the sub power storage unit can be used to drive an auxiliary machine (specifically, a starter motor or the like) to operate the internal combustion engine to charge the main power storage unit. Therefore, for example, it is possible to drive the vehicle to a nearby support supply location.
  • the main power storage unit includes a main power storage device that supplies power to the electric motor, and a temporary power storage device that temporarily stores the power generated by the solar battery
  • the charge control unit includes: When the charge amount of the sub power storage unit exceeds a predetermined charge amount set in advance for the sub power storage unit, the surplus power is supplied to the main power storage device or the temporary power storage device. The charging path can be switched.
  • the sub-power storage unit that supplies power necessary for operation to a plurality of electronic control devices that can include the charge control unit is preferentially and sufficiently secured to be generated by the solar cell. By storing power (renewable energy) in the main power storage device or the temporary power storage device, it can be used without being wasted.
  • the charge control unit temporarily stores the temporary power storage device when the charge amount of the temporary power storage device exceeds a predetermined charge amount set in advance for the temporary power storage device.
  • the charging path can be switched so as to supply the stored power to the main power storage device.
  • the secondary power storage unit that supplies power necessary for operation to a plurality of electronic control devices that can include the charge control unit is sufficiently charged, and then temporarily stored in the temporary power storage device. By storing the power (renewable energy) generated by the solar cell in the main power storage device, it can be used without being wasted.
  • the main power storage device that supplies electric power to the electric motor is a high-voltage power supply, and in order to ensure reliability and safety, particularly in a running vehicle, for example, high-voltage system management, high-voltage battery control, High-voltage power supply control including switching control and power supply control of a power switch (such as a relay) is executed, and the main power storage device is strictly controlled and managed. Therefore, the predetermined amount of charge set for the temporary power storage device is consumed to switch the charging path so that the power temporarily stored in the temporary power storage device is supplied to the main power storage device. It can be set to be larger than the magnitude of the power to be generated.
  • the frequency of the execution or release of the high-voltage power supply control is promptly executed by charging the main power storage device. Can be appropriately reduced. As a result, wasteful power consumed without being charged in the main power storage device can be significantly suppressed, and power (renewable energy) generated by the solar cell is wasted by storing in the main power storage device. It can be used without being discarded.
  • the charging control unit switches the charging path so that the surplus power or the power stored in the temporary power storage device is supplied to the main power storage device when the vehicle is not running. be able to.
  • the vehicle when the vehicle is not traveling, for example, when the vehicle is parked or stopped, for example, by following the same charge control as in the case of normal EV, HV, PHV, for example, the above-described high pressure system Electric power can be supplied and stored in the main power storage device without executing complicated control for avoiding competition between management, high voltage battery control, open / close control of power switch (relay, etc.) and power supply control. Therefore, the main power storage device can be charged safely.
  • the charging control unit sets the charging path so as to supply the sub power storage unit with the power temporarily stored in the temporary power storage device or the power stored in the main power storage device. Can be switched. Thereby, even if it is a case where a plurality of auxiliary machines and a plurality of electronic control devices which are electric equipments of a vehicle are operated by supplying electric power from a temporary power storage device to a sub power storage unit as needed, the sub power storage unit A sufficient amount of charge can be secured. Therefore, the electric power (renewable energy) generated by the solar cell can be used without being wasted.
  • FIG. 1 is a schematic functional block diagram of a vehicle to which a charge control device using an in-vehicle solar cell is applied according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing the configuration of the power supply unit and the charge controller mounted on the vehicle of FIG.
  • FIG. 3 is a diagram for explaining a case where the charging destination of the electric power generated by the in-vehicle solar cell is a sub power storage unit (sub battery).
  • FIG. 4 is a diagram for explaining a case where the charging destination of the electric power generated by the in-vehicle solar cell is a temporary power storage device (temporary battery).
  • FIG. 1 is a schematic functional block diagram of a vehicle to which a charge control device using an in-vehicle solar cell is applied according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing the configuration of the power supply unit and the charge controller mounted on the vehicle of FIG.
  • FIG. 3 is a diagram for explaining a case where the
  • FIG. 5 is a control for charging the main power storage device (main battery) by pumping the electric power of the temporary power storage device (temporary battery), for explaining the control of charging when the amount of power generated by the in-vehicle solar cell is small
  • FIG. 6 is a control for charging the main power storage device (main battery) by pumping the electric power of the temporary power storage device (temporary battery), for explaining the control of charging when the amount of power generated by the in-vehicle solar cell is large
  • FIG. 7 is a block diagram schematically showing a charge control device that uses an in-vehicle solar cell according to a modification of the present invention.
  • this device a charge control device using an in-vehicle solar cell (hereinafter simply referred to as “this device”) according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a block diagram showing a configuration of a vehicle 100 to which the present apparatus can be applied.
  • the vehicle 100 to which the present apparatus can be applied includes, for example, a motor generator as an electric motor driven by power of a main battery mounted as a main power storage device forming a main power storage unit, and a regenerative power and charging stand.
  • EV that charges the main battery using an external power source supplied from the HV, HV equipped with an engine in addition to the motor generator, and PHV that can charge the main battery using an external power source in addition to the HV can do.
  • a case where the vehicle 100 is a PHV will be described as an example.
  • the vehicle 100 in the present embodiment includes a driving force generation unit 10 and also includes a power supply unit 20 and a charge controller 30.
  • the driving force generator 10 includes an engine 11, a power split mechanism 12, motor generators 13 and 14, a transmission gear 15, a drive shaft 16, a power control unit (PCU) 17, a main battery 18, and a sub battery. 19.
  • the engine 11 outputs power by combustion of hydrocarbon fuel such as gasoline or light oil.
  • the power (kinetic energy) output by the engine 11 drives the transmission gear 15 that transmits power to the drive shaft 16 (axle) via the power split mechanism 12.
  • the power split mechanism 12 is coupled to the engine 11, the motor generator 13 (14), and the transmission gear 15, and distributes the power among them.
  • the power split mechanism 12 can employ, for example, a planetary gear having three rotation shafts of a sun gear, a planetary carrier, and a ring gear.
  • a motor generator 13 is connected to the sun gear, and an engine 11 is connected to the carrier.
  • the axle 16 and the motor generator 14 are connected to the ring gear via the transmission gear 15.
  • the motor generators 13 and 14 are controlled by the PCU 17 and function as an electric motor when electric power is supplied from the main battery 18, and when power (kinetic energy) is transmitted from the outside (for example, the engine 11). Is a three-phase synchronous generator motor that functions as a generator. Specifically, the motor generator 13 functions as a generator when the power (kinetic energy) of the engine 11 divided by the power split mechanism 12 is transmitted, and also functions as a starter motor that can start the engine 11.
  • the motor generator 14 functions as an electric motor (power source) that drives a transmission gear 15 that transmits a driving force to the drive shaft 16 (axle). In this embodiment, the motor generator 13 functions as a generator and the motor generator 14 functions as an electric motor. However, the motor generator 14 functions as a generator and the motor generator 13 functions as an electric motor. Or, it goes without saying that the motor generators 13 and 14 can both function as a generator and function as an electric motor.
  • the main battery 18 as a main power storage device forming the main power storage unit is a so-called high-voltage power supply, and is electrically connected to the motor generators 13 and 14 via the PCU 17.
  • the sub-battery 19 as the sub power storage unit is a so-called auxiliary battery of a low-voltage power source, and is mounted on various electronic control units (a plurality of electronic control devices) including the charge controller 30 mounted on the vehicle 100 or the vehicle 100. It is electrically connected to electric equipment of a vehicle that is a plurality of auxiliary machines.
  • the power supply unit 20 includes an in-vehicle solar cell 21 as a solar cell and a temporary battery 22 as a temporary power storage device forming a main power storage unit.
  • the vehicle-mounted solar cell 21 is provided, for example, on the roof of the vehicle 100 and converts solar energy into electric energy.
  • the power generated by the in-vehicle solar cell 21 is also referred to as “power generated by solar power”.
  • the temporary battery 22 temporarily charges low-voltage power generated by the vehicle-mounted solar cell 21 and outputs power to the main battery 18 and / or the sub-battery 19 as will be described later. For this reason, the temporary battery 22 is electrically connected to the main battery 18, the sub-battery 19, and the vehicle-mounted solar battery 21 via a solar charger 23 described later.
  • the power supply unit 20 includes a solar charger 23 and a plug-in charger 24.
  • the solar charger 23 supplies the electric power generated by the vehicle-mounted solar battery 21 to at least one of the main battery 18, the sub battery 19, and the temporary battery 22, and the electric power temporarily stored in the temporary battery 22. Is supplied to the main battery 18 and / or the sub-battery 19. For this reason, as shown in FIG. 2, the solar charger 23 selectively switches the charging path of the main battery 18, the sub battery 19, and the temporary battery 22 as power supply destinations, and supplies a charge control circuit 23a that supplies power. I have.
  • the charge control circuit 23a pumps (pumps) the power generated by the vehicle-mounted solar cell 21 or the low-voltage power stored in the temporary battery 22 to the main battery 18 and supplies it to the main battery 18.
  • a DC / DC converter for high-voltage charging, and a DC / DC converter for low-voltage charging that supplies electric power generated by the vehicle-mounted solar cell 21 to the sub-battery 19 or the temporary battery 22.
  • the plug-in charger 24 is electrically connected to a charging stand or the like installed in a home or public facility by a cable or non-contact and supplied as an external power source (specifically, a commercial power source). AC power is exchanged for DC power and supplied, and mainly the main battery 18 is charged. For this reason, the plug-in charger 24 is provided with an electric circuit including, for example, a smoothing capacitor, a voltage converter, an inverter circuit, etc., although not shown.
  • the power supply unit 20 includes a system main relay 25 provided on a drive power supply path that connects the main battery 18 and the PCU 17 (more specifically, the motor generators 13 and 14). .
  • the system main relay 25 is provided between the high voltage power supply line PML1 on the main battery 18 side and the high voltage power supply line PML2 on the PCU 17 side, and the PCU 17 (that is, the motor generators 13 and 14) and the main battery 18 are opened and closed. Selectively switch between connection and disconnection.
  • the power supply unit 20 includes a DC / DC converter 26 provided between the high voltage power supply line PML3 connected to the high voltage power supply line PML2 on the PCU 17 side and the sub battery 19. .
  • the DC / DC converter 26 transforms (decreases) the high-voltage power in the high-voltage power supply line PML3 on the upstream side to a low voltage, and supplies the low-voltage power to the sub-battery 19 via the low-voltage power line PTL1 on the downstream side.
  • the solar charger 23 and the sub battery 19 are electrically connected via a low voltage power line PTL2
  • the plug-in charger 24 and the sub battery 19 are connected via a low voltage power line PTL3.
  • the power supply line through which the high voltage power supply is conducted is indicated by a thick solid line
  • the power supply line through which the low voltage power supply is conducted is indicated by a double line.
  • the power supply unit 20 includes a charging relay 27 provided on a charging power supply path connecting the solar charger 23 and the plug-in charger 24 and the main battery 18.
  • the charging relay 27 is provided between the charging power supply line PUL1 on the main battery 18 side and the charging power supply line PUL2 on the plug-in charger 24 (solar charger 23) side.
  • the solar charger 23 is electrically connected to the charging power supply line PUL2 via the charging power supply line PUL3.
  • the plug-in charger 24 is directly connected to the charging power supply line PUL2, while being electrically connected to the charging power supply line PUL3 via the charging power supply line PUL4.
  • the charging power supply line PUL3 is provided with a backflow prevention diode for blocking the flow of current from the charging power supply line PUL2 side to the solar charger 23 side, and the charging power supply line PUL4 is connected to the plug-in charger from the charging power supply line PUL3 side.
  • a backflow prevention diode is provided to block the flow of current to the 24 side.
  • the plug-in charger 24 can supply power (current) to the main battery 18 through the charging power supply line PUL4 and the charging power supply line PUL3 that is electrically connected to the solar charger 23.
  • the power (current) supplied from the external power supply is combined with the power (current) supplied via the charging power supply line PUL3.
  • the main battery 18 can be supplied.
  • the power necessary for charging the main battery 18 can be covered by the power supplied from the external power source and the power generated by solar power generation. That is, of the amount of power required for charging the main battery 18, the amount of power supplied from the plug-in charger 24 is the amount of power obtained by subtracting the amount of power supplied from the solar charger 23. Therefore, when the power from the solar charger 23 is used together in plug-in charging, the power (current) supplied from the external power source for charging the main battery 18 is reduced. As a result, it is possible to save the charging cost borne by the driver of the vehicle 100 by using the external power source (commercial power source).
  • the ratio of the power supplied from the solar charger 23, that is, the power generated by solar power generation that is renewable energy can be positively increased.
  • fuel consumption electric cost
  • the driver of the vehicle 100 can improve the fuel efficiency (electric cost) from the viewpoint of environmental protection. You may be able to receive preferential treatment.
  • the charge controller 30 includes a solar ECU 31 as a charge control unit of the apparatus and a battery ECU 32.
  • the solar ECU 31 is a microcomputer whose main components are a CPU, ROM, RAM, and the like. Power is supplied directly from the in-vehicle solar cell 21 of the power supply unit 20 via the power line, and sub-routines are provided as necessary. Electric power is also supplied from the battery 19 (see FIGS. 1 and 2). Then, the solar ECU 31 switches the charging path by comprehensively controlling the operation of the charging control circuit 23a constituting the solar charger 23, and uses the main battery 18 and the sub battery 19 for the electric power generated by the in-vehicle solar cell 21. In addition, the charging is controlled by supplying to at least one of the temporary battery 22 and the power charged in the temporary battery 22 is supplied to the main battery 18 and / or the sub battery 19 to control the charging.
  • well-known charging sensors 31a and 31b are connected to the solar ECU 31. These charge sensors 31a and 31b are assembled to the sub-battery 19 and the temporary battery 22 respectively, detect the charge amount (SOC: State Of Charge) of the sub-battery 19 and the temporary battery 22, and give a signal representing the SOC. Output to the solar ECU 31.
  • the amount of charge (SOC) represents the ratio of the remaining charge to the charge capacity of the battery (when fully charged).
  • solar ECU31 controls charge based on the charge amount (SOC) of the sub battery 19 and the temporary battery 22 detected by charge sensor 31a, 31b.
  • the battery ECU 32 is also a microcomputer whose main components are a CPU, a ROM, a RAM, and the like.
  • the battery ECU 32 monitors the charging state of the main battery 18, controls the operation of the charging relay 27, and controls the charging of the main battery 18.
  • a known charge sensor 32 a is also connected to the battery ECU 32.
  • the charge sensor 32a is assembled to the main battery 18, detects the SOC that is the charge amount of the main battery 18, and outputs a signal representing the SOC to the battery ECU 32.
  • battery ECU32 controls charge based on the charge amount (SOC) of the main battery 18 detected by the charge sensor 32a.
  • the battery ECU 32 is supplied with electric power from the sub battery 19 (see FIG. 1).
  • the charge controller 30 includes a hybrid ECU 33.
  • the hybrid ECU 33 controls the driving force for causing the vehicle 100 to travel by operating the engine 11 and the motor generators 13 and 14 in cooperation. Therefore, the hybrid ECU 33 is also a microcomputer having CPU, ROM, RAM and the like as main components, and controls the switching operation of the system main relay 25 when the vehicle 100 is running and when the vehicle 100 is charged.
  • the hybrid ECU 33 is also supplied with power from the sub-battery 19 (see FIG. 1).
  • the charge controller 30 also includes a plug-in ECU 34.
  • the plug-in ECU 34 comprehensively controls the operation of the plug-in charger 24.
  • the plug-in ECU 34 is also a microcomputer whose main components are a CPU, a ROM, a RAM, and the like.
  • the plug-in ECU 34 is also supplied with electric power from the sub-battery 19 (see FIG. 1).
  • the hybrid ECU 33 is required for high voltage system management and high voltage battery control related to the main battery 18, opening / closing operation management of the system main relay 25 and the charging relay 27, and traveling of the vehicle 100 by cooperating with at least the battery ECU 32. Strictly execute high-voltage power supply control consisting of power supply control. For this reason, in the vehicle 100, since it is well known, illustration thereof is omitted, but various electromagnetic devices and various electronic control devices are provided around the main battery 18, and the above various management and control are performed by these various electromagnetic devices. This ensures that the reliability and safety of the vehicle 100 equipped with the high-voltage main battery 18 is ensured.
  • the solar ECU 31, the battery ECU 32, the hybrid ECU 33, and the plug-in ECU 34 are provided so as to communicate with each other via a communication line (for example, a CAN communication line) built in the vehicle 100, as shown in FIG. It is done.
  • a communication line for example, a CAN communication line
  • the solar ECU 31 and the hybrid ECU 33 are directly connected via a verification ECU 35 (microcomputer) as shown in FIG.
  • the solar ECU 31 can communicate with the hybrid ECU 33 after being collated by the collation ECU 35, and can directly supply various signals (such as a start signal).
  • the verification ECU 35 is also supplied with power from the sub-battery 19 (see FIG. 1).
  • the operation of the charge controller 30 will be specifically described.
  • the operation during travel of the vehicle 100 will be described.
  • the ignition (I / G) (not shown) is turned on by the driver and the hybrid ECU 33 switches the system main relay 25 to the closed state (connected state)
  • the vehicle 100 travels at least by the driving force of the motor generator 14. Is in a state of being able to perform the so-called “Ready ON” state.
  • the hybrid ECU 33 controls the system main relay 25 to be closed (connected), thereby controlling the vehicle 100. Becomes “Ready ON”.
  • the high voltage power supply line PML 1 on the main battery 18 side and the high voltage power supply line PML 2 on the PCU 17 side are maintained in a state of being connected by various electromagnetic devices including the system main relay 25.
  • hybrid ECU 33 cooperates with battery ECU 32 to supply high-voltage power from main battery 18 to motor generator 14 (13) via PCU 17 in accordance with known power supply control. Therefore, the motor generator 14 (13) generates a predetermined driving force according to the accelerator operation by the driver, for example, and applies the driving force to the driving shaft 16 (wheel) via the transmission gear 15.
  • the hybrid ECU 33 controls the battery ECU 32 to switch the charging relay 27 to the open state (cut-off state).
  • the charging power supply line PUL1 on the main battery 18 side and the charging power supply line PUL2 on the plug-in charger 24 (solar charger 23) side are maintained in a state where they are blocked by various electromagnetic devices including the charging relay 27.
  • the main battery 18 is maintained in a state of being completely (strictly) disconnected from the solar charger 23 and the plug-in charger 24 in accordance with known high voltage system management and high voltage battery management.
  • the hybrid ECU 33 performs regeneration control by the motor generator 13 (14) via the PCU 17, and the vehicle 100 kinetic energy is converted to electrical energy and recovered. That is, when the vehicle 100 decelerates, the kinetic energy transmitted from the drive shaft 16 (wheel) via the reduction gear 15 and the power split mechanism 12 by the motor generator 13 (14) is determined according to the regeneration control by the hybrid ECU 33 and the PCU 17. Convert to electrical energy.
  • the PCU 17 outputs the converted electric energy, in other words, the recovered power to the high-voltage power supply line PML2 as regenerative power.
  • the high voltage power supply line PML2 is connected to the high voltage power supply line PML1 on the main battery 18 side. ing.
  • the regenerative power is boosted and charged to the main battery 18 by various electromagnetic devices (not shown) (specifically, a DC / DC converter or the like).
  • the regenerative power output to the high-voltage power supply line PML3 in accordance with the regenerative control is stepped down by the DC / DC converter 26, output to the low-voltage power supply line PTL1, and charged to the sub battery 19.
  • the solar ECU 31 is directly connected to the vehicle-mounted solar cell 21 via the power line without interposing a power storage device (such as an electric double layer capacitor) that stores power. Therefore, if the vehicle-mounted solar cell 21 can generate power, specifically, if the weather is sunny during the day, the vehicle-mounted solar cell 21 generates electric power by converting solar energy into electrical energy, and generates power. It is possible to supply all the electric power to the solar ECU 31 via the electric power line. As a result, the solar ECU 31 has all of the electric power generated by the vehicle-mounted solar cell 21 before startup having an increase gradient substantially equal to the voltage increase gradient (rise) associated with the power generation of the vehicle-mounted solar cell 21.
  • a power storage device such as an electric double layer capacitor
  • the power generated by solar power generation is defined as the power generation amount P (W)
  • the power required for the solar ECU 31 to start and operate is defined as the power consumption L1 (W).
  • the solar ECU 31 will not start even if all of the power generated by solar power generation is supplied directly via the power line. Can not. In other words, in this case, the solar ECU 31 does not start, so that no electric power from solar power generation is supplied to the main battery 18, the sub battery 19, and the temporary battery 22.
  • the solar ECU 31 when the power generation amount P is such that the solar ECU 31 cannot be activated, solar power generation is caused by, for example, a loss (for example, internal resistance of each battery) when power is supplied to each battery 18, 19, 22. There is a high possibility that the power will be consumed. Therefore, even if the solar ECU 31 is activated by supplying power from the sub-battery 19, it is not possible to secure the power supplied from the in-vehicle solar cell 21 to each of the batteries 18, 19, and 22, rather, the solar ECU 31 is activated. Therefore, the power of the sub-battery 19 is wasted. For this reason, in a situation where the power generation amount P is less than the power consumption L1, the solar ECU 31 does not control the charging of the batteries 18, 19, and 22.
  • a loss for example, internal resistance of each battery
  • the solar ECU 31 After the solar ECU 31 is activated, the amount of power P generated by the in-vehicle solar cell 21 is larger than the power consumption L1 of the solar ECU 31, and the vehicle is mounted on the vehicle 100 and the ignition (I / G) is on.
  • the total power consumption Lall predetermined power
  • the solar ECU 31 consumes power from the power generation amount P accompanying its operation.
  • the surplus power (P-L1) obtained by reducing the power L1 is sequentially supplied according to the following priority order to control charging.
  • the solar ECU 31 a Supply the surplus power (P-L1) to the sub-battery 19 which is below the predetermined SOCs b.
  • the SOC of the sub-battery 19 exceeds predetermined SOCs
  • the SOC of the temporary battery 22 exceeds a predetermined SOCt, it is supplied to the main battery 18 in the order of supply, and charging is controlled.
  • Surplus power (P-L1) is preferentially supplied to the sub-battery 19 below a predetermined SOCs.
  • the solar ECU 31 is in a situation where a power generation amount P larger than its own power consumption L1 is supplied from the in-vehicle solar cell 21.
  • SOC of the sub-battery 19 acquired from the charge sensor 31a is equal to or lower than SOCs that is a predetermined charge amount preset for the sub-battery 19, in other words, when the sub-battery 19 needs to be charged.
  • surplus power (P-L1) is preferentially supplied to the sub-battery 19.
  • the solar ECU 31 selects the charging path via the charging control circuit 23a of the solar charger 23, in other words, the power supply destination to the sub-battery 19, and the surplus power (P ⁇ ) via the low-voltage charging DC / DC converter.
  • L1 is transformed to a predetermined voltage and rectified. Then, the solar ECU 31 supplies surplus power (P-L1) to the sub-battery 19 through the low-voltage power line PTL2 to store it.
  • surplus power (P-L1) is supplied to the temporary battery 22.
  • the solar ECU 31 obtains SOCs in which the SOC of the sub-battery 19 acquired from the charge sensor 31a is a predetermined charge amount. Is exceeded, the surplus power (P-L1) is supplied to the temporary battery 22 as shown in FIG. That is, the solar ECU 31 selects the charging path via the charging control circuit 23a of the solar charger 23, in other words, the power supply destination to the temporary battery 22, and the surplus power (P ⁇ L1) is transformed to a predetermined voltage and rectified. Then, the solar ECU 31 supplies surplus power (P-L1) to the temporary battery 22 to store it.
  • the solar ECU 31 selects the sub battery 19 or the temporary battery 22 as a power supply destination (that is, a charging path). ) And b. ), It is not necessary to significantly boost the surplus power (P-L1), that is, the power generated by photovoltaic power generation, and only a low-voltage power supply is handled.
  • selecting the main battery 18 as a power supply destination (that is, a charging path) c. ) It is necessary to handle a high-voltage power source that significantly boosts the power generated by solar power generation (more specifically, the power stored in the temporary power storage device). And in order to handle such a high-voltage power supply, in order to ensure its reliability and safety, complicated system management and charge control are inevitable.
  • a power supply destination that is, a charging path
  • a charging path first, when the sub battery 19 whose SOC is equal to or lower than the predetermined SOCs is preferentially selected, and then the temporary battery 22 is selected, EV
  • a low-voltage power supply can be handled, and as a result, the system and charging control can be simplified.
  • the solar ECU 31 uses a plurality of auxiliary machines and a plurality of auxiliary equipments, which are electric devices mounted on the vehicle 100, via the charge control circuit 23 a of the solar charger 23 of the power supply unit 20. Supply and consume for the operation of electronic control equipment.
  • the solar ECU 31 is short of the surplus power (P-L1) supplied to the total power consumption Lall consumed by the operation of the plurality of auxiliary machines and the plurality of electronic control devices. It is supplied from the temporary battery 22 of the power supply unit 20. In this case, instead of supplying insufficient power from the temporary battery 22, it is also possible to supply insufficient power from the sub-battery 19.
  • the solar ECU 31 pumps electric power from the temporary battery 22, supplies it to the main battery 18 by so-called pumping, and controls charging.
  • pumping the control of charging the main battery 18 by pumping will be specifically described.
  • the hybrid ECU 33 when the vehicle 100 is parked or stopped based on the detected vehicle speed or the like, the hybrid ECU 33 does not need to supply high voltage power to the motor generator 14, and as shown in FIG. And the system main relay 25 is controlled to be switched to an open state (blocking state). As described above, when the hybrid ECU 33 controls the system main relay 25 to be in the open state (cut-off state), the vehicle 100 is at least in a state where it does not travel by the driving force of the motor generator 14, a so-called “Ready OFF” state. .
  • the battery ECU 32 can switch the charging relay 27 to the closed state (connected state) as shown in FIG.
  • the ignition (I / G) is turned off by the driver and the vehicle 100 is parked or stopped (that is, when the vehicle 100 is not traveling)
  • the solar ECU 31 temporarily stores the temporary battery 22 in the temporary battery 22.
  • the electric power generated by photovoltaic power generation is supplied to the main battery 18 and stored.
  • the charging stand is not electrically connected to the plug-in charger 24, that is, there is no means for supplying power to the main battery 18 other than the solar charger 23. Can do.
  • a plurality of electromagnetic devices including the system main relay 25 and the charging relay 27 are provided around the main battery 18 in order to safely handle the high-voltage power supply.
  • the battery ECU 32 and the hybrid ECU 33 In order to monitor the state of the main battery 18 and switch the charging path to the main battery 18 to control charging, at least the battery ECU 32 and the hybrid ECU 33 must be operated. Electric power is consumed in performing or canceling the operation control of the plurality of electromagnetic devices and the plurality of ECUs (a plurality of electronic control devices), that is, the high-voltage power supply control.
  • the solar ECU 31 supplies the electric power from the solar power generation to the main battery 18 and stores it, the consumption by a plurality of electromagnetic devices that operate the temporary battery 22 in accordance with at least the execution or release of the high-voltage power control.
  • Charge control by pumping is executed when the power more than the electric power is temporarily charged, that is, when the SOC of the temporary battery 22 exceeds the SOCt set based on the power consumption caused by the execution or release of the high-voltage power supply control To do.
  • the main battery 18 can be charged with power generated by solar power generation.
  • the solar ECU 31 determines whether or not the SOC acquired from the charge sensor 31b is larger than the SOCt set based on the power consumption described above.
  • the main battery 18 is charged by charging, and a plurality of the batteries are charged. The frequency at which the electromagnetic device and the plurality of ECUs are activated (activated) can be reduced.
  • the main battery 18 can be efficiently charged with power generated by solar power generation.
  • the solar ECU 31 outputs an activation signal through the verification by the verification ECU 35 as shown in FIG.
  • the hybrid ECU 33 and the battery ECU 32 that operates in cooperation with the ECU 33 are activated.
  • the hybrid ECU 33 activated by the output activation signal maintains the system main relay 25 in the open state (cut-off state).
  • the battery ECU 32 activated by the activation signal switches the charging relay 27 from the open state (blocked state) to the closed state (connected state), and controls the charging power line PUL1 on the main battery 18 side and the solar charger 23 side.
  • the charging power supply line PUL2 is connected.
  • the solar ECU 31 is temporarily connected to the temporary battery 22 by the high-voltage charging DC / DC converter in the charging control circuit 23 a of the solar charger 23.
  • the low-voltage electric power charged is pumped up in a short time (pumped), boosted to a predetermined voltage, rectified, and transformed to a high voltage via the charging power supply line PUL3 and the charging power supply line PUL2. Supply power.
  • battery ECU32 can charge the main battery 18 with the electric power (electric power by solar power generation) supplied from the solar charger 23 (solar ECU31) according to known charging control.
  • the charging time for the main battery 18 is tp
  • the amount of power supplied from the temporary battery 22 is ⁇ SOC
  • the efficiency at the time of supplying power from the temporary battery 22 to the charging control unit circuit 23a is eNi_out, and the charging control is performed.
  • the power consumption of the high-voltage charging DC / DC converter of the sub-circuit 23a is D
  • the efficiency when supplying power to the main battery 18 from the high-voltage charging DC / DC converter of the charging control circuit 23a is eLi_in.
  • the electric power of the sub-battery 19 may be consumed to operate a plurality of electromagnetic devices and a plurality of ECUs.
  • the solar ECU 31 is temporarily charged to the temporary battery 22 by the low-voltage charging DC / DC converter in the charging control circuit 23a of the solar charger 23 only during the pumping (pumping) of the electric power described above.
  • the charge amount of the sub battery 19 can be recovered, and so-called battery rising of the sub battery 19 can be prevented from occurring.
  • the solar ECU 31 pumps and supplies the charged electric power to the temporary battery 22 until the SOCt is exceeded, as in the case of (1), and generates power.
  • Surplus power (P-Lall) obtained by subtracting the total power consumption Lall from the amount P is supplied to the main battery 18.
  • the solar ECU 31 performs c.
  • the hybrid ECU 33 and the battery ECU 32 that operates in cooperation with the ECU 33 are activated.
  • the hybrid ECU 33 maintains the system main relay 25 in the open state (cut-off state), and the battery ECU 32 controls the charging relay 27 to be switched from the open state (cut-off state) to the closed state (connection state).
  • the charging power supply line PUL1 on the battery 18 side is connected to the charging power supply line PUL2 on the solar charger 23 side.
  • the solar ECU 31 includes the low voltage power temporarily charged in the temporary battery 22 by the high voltage charging DC / DC converter in the charging control circuit 23 a of the solar charger 23 of the power supply unit 20, and the in-vehicle solar cell 21.
  • the low-voltage surplus power (P-Lall) supplied from the battery is pumped in a short time to boost the voltage to a predetermined voltage and rectified, and is transformed to a high voltage to the main battery 18 via the charging power supply line PUL3 and the charging power supply line PUL2. Supply power.
  • battery ECU32 can charge the main battery 18 with the electric power (electric power by solar power generation) supplied from the solar charger 23 (solar ECU31) according to known charging control.
  • the solar ECU 31 serving as the charge control unit constituting the charge controller 30 is, for example, from the in-vehicle solar cell 21 of the power supply unit 20 via the power line. It is possible to directly receive all of the electric power generated before the start-up without using a delay element such as an electric double layer capacitor. Thus, for example, regardless of the state of charge of the sub-battery 19 that supplies power to the charge controller 30, the solar ECU 31 can be promptly supplied with all of the power generated by the in-vehicle solar cell 21. Can be activated. Then, the activated solar ECU 31 can control charging to the main battery 18, the sub-battery 19, and the temporary battery 22 by switching the charging path via the charging control circuit 23 a of the solar charger 23.
  • the solar ECU 31 preferentially gives the sub-battery 19 the surplus power (P-L1) obtained by subtracting the power consumption L1 associated with the charging control from the total power generation amount P generated by the in-vehicle solar cell 21. It can be supplied and stored. Thereby, the charge amount (SOC) of the sub-battery 19 can be sufficiently secured, and the battery ECU 32, the hybrid ECU 33, and the like that constitute the charge controller 30 that receives power supply from the sub-battery 19 can be started. Further, the solar ECU 31 can supply and store surplus power (P-L1) to the temporary battery 22 in response to the amount of charge (SOC) of the sub-battery 19 exceeding a predetermined SOCs.
  • the solar ECU 31 pumps up and boosts (ie, pumps) the temporarily stored electric power in response to the amount of charge (SOC) of the temporary battery 22 exceeding a predetermined SOCt. Can be supplied to. Therefore, the electric power generated by the in-vehicle solar cell 21, in other words, the renewable energy can be used effectively without being wasted.
  • the solar charger 23 is the electric power that the in-vehicle solar cell 21 continuously generates, in other words, The renewable energy can be supplied to the solar ECU 31 (and the sub battery 19) or / and the main battery 18. More specifically, when the power generated by the vehicle-mounted solar cell 21, that is, the power generation amount P is less than or equal to the total power consumption Lall, the solar charger 23 is generated from the vehicle-mounted solar cell 21 to the solar ECU 31 (and the sub-battery 19). Power can be supplied.
  • the solar charger 23 can supply the electric power generated from the vehicle-mounted solar cell 21 to the solar ECU 31 (and the sub battery 19) and the main battery 18. Therefore, the electric power generated by the in-vehicle solar cell 21, in other words, the renewable energy can be used effectively without being wasted.
  • the vehicle-mounted solar cell 21 generates power
  • the solar ECU 31 is activated using all of the generated power to execute charging control.
  • a situation in which the in-vehicle solar cell 21 cannot generate power may occur in bad weather, at night, or in a garage.
  • a situation where power generation cannot be performed may occur.
  • the solar ECU 31 may not be activated.
  • the battery ECU 32 or the like constituting the charge controller 30 is in a situation where the SOC is lowered regardless of the charge amount (SOC) of the main battery 18 and / or the temporary battery 22.
  • a switch 50 is provided for the driver to determine and operate the emergency as shown in FIG. 7, and the human intention is reflected by the operation of the switch 50. It is also possible to forcibly supply power from the main battery 18 or the temporary battery 22 to the sub-battery 19. Thus, the reliability of the charging system itself can be improved by reflecting the intention of the person (driver) depending on whether or not the switch 50 is operated.
  • the power supply unit 20 of the vehicle 100 includes the temporary battery 22, and the temporary battery 22 is temporarily charged with the electric power generated by the onboard solar cell 21 and generated by the solar power generation. Implemented. In this case, it is possible to omit physically installing the temporary battery 22 in the vehicle 100 and to temporarily charge the sub-battery 19 with power generated by solar power generation.
  • the sub-battery 19 can temporarily charge the electric power generated by the vehicle-mounted solar cell 21. Therefore, an increase in cost caused by providing the temporary battery 22 can be suppressed, and it is not necessary to secure a space for providing the temporary battery 22, so that space saving can be achieved, and the weight can be reduced. Can be achieved. About the other effect, the effect similar to the said embodiment can be acquired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 充電コントローラ30を構成するソーラECU31は、車載太陽電池21から、起動電圧の立ち上がりを遅らせる遅れ要素を介することなく、直接的に発電された電力の総てを受けて起動する。そして、ソーラECU31は、車載太陽電池21によって発電された電力を優先的にサブバッテリ19に供給して充電制御する。具体的に、ソーラECU31は、サブバッテリ19の充電量が所定の充電量以下であるときには、車載太陽電池21によって発電された電力から自身の消費電力を減じた余剰電力をサブバッテリ19に優先的に供給する。これにより、ソーラECU31が速やかに起動して充電を制御することにより、車載太陽電池21によって発電された電力、言い換えれば、再生可能エネルギーを無駄に廃棄することなく有効に利用することができる。

Description

充電制御装置
 本発明は、車載太陽電池を利用して車両に搭載されたバッテリへの充電を制御する充電制御装置に関する。
 近年、太陽電池(太陽光エネルギー)を利用して車両に搭載されたバッテリの充電を制御する充電制御装置が積極的に提案されている。例えば、下記特許文献1に開示された電気自動車の制御装置では、車両内部の電気機器に電力を供給する補助バッテリに対して、外部に設置された太陽光パネルによって発電された電力が供給される。そして、この従来の制御装置では、補助バッテリの残容量が所定値に到達すると、補助バッテリの電力を昇圧し、すなわち、ポンピングしてモータに電力を供給するメインバッテリを充電する。
 又、この種の充電制御装置として、例えば、下記特許文献2に開示された車両用電源制御装置では、太陽電池に接続された蓄電器(電気二重層キャパシタ等)の充電電圧が上昇し、電源電圧が立ち上がった後に、制御部が動作を開始する。そして、この従来の車両用電源制御装置では、起動した制御部が、補機バッテリの電圧値を読み込んでリレーを切り替え制御することにより、補機バッテリの残容量が低いときには太陽電池によって発電された発電電力を補機バッテリに蓄電し、残容量が十分であるときには発電電力を蓄電器に蓄電するようになっている。
特開2012-75242号公報 特開2011-79399号公報
 ところで、上記従来の制御装置では、補助バッテリ及び蓄電器が太陽電池によって発電された電力を蓄電し、これらの補助バッテリ等に蓄電された電力を電気機器及び制御部に供給する。そして、この電力の供給によって起動したこれらの電気機器等が補助バッテリ等への充電を制御する。このため、補助バッテリ等に充電されている電力が電気機器等を起動させるのに必要な電力を下回ると、補助バッテリ等への充電を制御できずに電気機器等を起動させることができない。又、この場合、仮に、太陽電池から補助バッテリ等に電力を供給して蓄電することができたとしても、補助バッテリ等への充電に伴って電気機器等における起動電圧の立ち上がりに遅れが発生し、電気機器等を速やかに起動させることができない。従って、電気機器等は、補機バッテリ等の充電状態に依存して起動できない、或いは、起動したとしても速やかに起動できない場合があり、その結果、太陽電池によって発電された電力を充電する制御が適切に行われず、太陽電池によって発電された電力を有効に利用できない可能性がある。
 本発明は、上記課題を解決するためになされたものであり、その目的の一つは、車載太陽電池によって発電された電力を有効に活用することができるように改善した充電制御装置を提供することにある。
 上記目的を達成するための、本発明による充電制御装置は、車両の駆動力を発生する電動機と、前記電動機に供給される電力を蓄電する主蓄電部と、車両の電気機器に供給される電力を蓄電する副蓄電部と、太陽電池とを有する車両に適用される。ここで、このような車両としては、電気自動車(EV)やハイブリッド車両(HV)、プラグインハイブリッド車両(PHV)を採用することができる。又、前記主蓄電部及び前記副蓄電部としては、充放電可能な、二次電池(蓄電池)や、電気二重層キャパシタ等を採用することができる。
 そして、このような車両に適用される本発明による充電制御装置は、起動後において前記太陽電池により発電されている電力を前記主蓄電部及び前記副蓄電部の少なくとも一方に供給するように充電経路を切り替える充電制御部を備えている。
 本発明による充電制御装置の特徴の一つは、前記充電制御部が、起動前に前記太陽電池により発電されている電力の総てが電力線を介して供給されることにより起動するように構成されていることにある。
 これによれば、充電制御部は、車両に搭載された太陽電池(車載太陽電池)から、電力線を介して、起動前に車載太陽電池により発電されている電力の総てが供給されるため、例えば、副蓄電部の充電状態の如何に拘わらず、供給された電力によって速やかに起動電圧が立ち上がって起動することができる。これにより、起動した充電制御部は、充電経路を切り替えることによって、太陽電池によって発電された電力を主蓄電部及び副蓄電部の少なくとも一方に対して直接的又は間接的に供給して充電を制御することができる。従って、充電制御部を確実に起動させることができ、起動した充電制御部が充電を制御することにより、太陽電池により発電された電力、言い換えれば、再生可能エネルギーを無駄に廃棄することなく有効に利用することができる。
 又、この場合、前記充電制御部が、前記副蓄電部が充電を必要としている場合には、前記主蓄電部の充電状態に拘わらず、前記太陽電池により発電されている電力から前記充電制御部が消費している電力を減じた余剰電力を前記副蓄電部に供給するように構成することができる。
 これによれば、上述したように起動した充電制御部は、太陽電池によって発電された電力から充電の制御に伴って消費する電力(すなわち自身の消費電力)を減じた余剰電力を、車両の電気機器(具体的には、複数の補機及び複数の電子制御機器)に電力を供給する副蓄電部に優先的に供給して充電を制御することができる。これにより、太陽電池により発電された電力(再生可能エネルギー)を有効に利用することができる。
 すなわち、副蓄電部が優先的に供給される余剰電力を蓄電することにより、この蓄電された電力を利用して車両の電気機器である複数の補機及び複数の電子制御機器から構成される車両の種々の車載システムを作動させることができる。これにより、例えば、災害等の発生により、主蓄電部及び副蓄電部に蓄電された電力が著しく低下している状況であっても、まず、低圧電源である副蓄電部が優先的に充電されることにより、種々の車載システムを復帰させることが可能となる。そして、種々の車載システムの復帰により、例えば、副蓄電部の電力をポンピングして電動機に高圧を供給する電力を蓄電する主蓄電部を充電することが可能となり、或いは、車両がHVやPHVである場合、副蓄電部に蓄電された電力を利用して補機(具体的には、スタータモータ等)を駆動させて内燃機関を作動させて主蓄電部を充電することも可能となる。従って、例えば、近くの支援物資支給場所まで車両を走行させることが可能となる。
 又、この場合、前記主蓄電部は、前記電動機に電力を供給する主蓄電装置と、前記太陽電池により発電された電力を一時的に蓄電する一時蓄電装置とを含み、前記充電制御部は、前記副蓄電部の充電量が予め前記副蓄電部に対して設定されている所定の充電量を超えた場合には、前記余剰電力を前記主蓄電装置又は前記一時蓄電装置に供給するように前記充電経路を切り替えることができる。これにより、充電制御部を含むことができる複数の電子制御機器に対して作動に必要な電力を供給する副蓄電部の充電量を優先的に十分に確保した上で、太陽電池により発電された電力(再生可能エネルギー)を主蓄電装置又は一時蓄電装置に蓄電することによって無駄に廃棄することなく利用することができる。
 又、この場合、前記充電制御部は、前記一時蓄電装置の充電量が予め前記一時蓄電装置に対して設定されている所定の充電量を超えた場合には、前記一時蓄電装置に一時的に蓄電された電力を前記主蓄電装置に供給するように前記充電経路を切り替えることができる。これによっても、充電制御部を含むことができる複数の電子制御機器に対して作動に必要な電力を供給する副蓄電部の充電量を十分に確保した上で、一時蓄電装置に一時的に蓄電されている太陽電池により発電された電力(再生可能エネルギー)を主蓄電装置に蓄電することによって無駄に廃棄することなく利用することができる。
 ここで、電動機に電力を供給する主蓄電装置は高圧電源であり、信頼性と安全性を確実に確保するために、特に、走行中の車両においては、例えば、高圧システム管理、高圧電池制御、電力開閉器(リレー等)の開閉制御及び電源制御等からなる高圧電源制御が実行され、主蓄電装置が厳密に制御されて管理されるようになっている。従って、前記一時蓄電装置に対して設定されている前記所定の充電量を、前記一時蓄電装置に一時的に蓄電された電力を前記主蓄電装置に供給するように前記充電経路を切り替えるために消費される電力の大きさ以上に設定することができる。
 これによれば、厳密に管理される主蓄電装置に充電する際に、高圧電源制御の実行又は解除により消費される電力量以上に一時蓄電装置の充電量が大きいときに、主蓄電装置に電力を供給して蓄電することができる。これにより、主蓄電装置を充電する際に、供給される電力が高圧電源制御の実行又は解除に伴って消費されてしまい主蓄電装置を充電できない状況、或いは、高圧電源制御を実行又は解除するために別途副蓄電部や一時蓄電装置から蓄電されている電力を供給する状況が生じることを防止することができる。又、高圧電源制御の実行又は解除により消費される電力量以上に一時蓄電装置の充電量が大きいときに、主蓄電装置の充電を速やかに実行することにより、高圧電源制御の実行又は解除の頻度を適切に低減することができる。その結果、主蓄電装置に充電されることなく消費される無駄な電力を大幅に抑制することができて、太陽電池によって発電された電力(再生可能エネルギー)を主蓄電装置に蓄電することによって無駄に廃棄することなく利用することができる。
 又、これらの場合、前記充電制御部は、前記車両が走行していないときに、前記余剰電力又は前記一時蓄電装置に蓄電された電力を前記主蓄電装置に供給するように前記充電経路を切り替えることができる。これによれば、車両が走行していないとき、例えば、車両が駐停車しているときには、例えば、通常のEVやHV、PHVの場合と同様の充電制御に従うことによって、例えば、上述した高圧システム管理、高圧電池制御、電力開閉器(リレー等)の開閉制御及び電源制御間の競合等を避けるための複雑な制御を実行することなく主蓄電装置に電力を供給して蓄電することができる。従って、安全に主蓄電装置を充電することができる。
 更に、これらの場合、前記充電制御部は、前記一時蓄電装置に一時的に蓄電されている電力又は前記主蓄電装置に蓄電されている電力を前記副蓄電部に供給するように前記充電経路を切り替えることができる。これにより、必要に応じて、一時蓄電装置から副蓄電部に電力を供給することにより、車両の電気機器である複数の補機及び複数の電子制御機器を作動させる場合であっても副蓄電部の充電量を十分に確保することができる。従って、太陽電池により発電された電力(再生可能エネルギー)を無駄に廃棄することなく利用することができる。
図1は、本発明の実施形態に係り、車載太陽電池を利用する充電制御装置が適用される車両の概略的な機能ブロック図である。 図2は、図1の車両に搭載された電力供給部及び充電コントローラの構成を概略的に示すブロック図である。 図3は、車載太陽電池によって発電された電力の充電先が副蓄電部(サブバッテリ)である場合を説明するための図である。 図4は、車載太陽電池によって発電された電力の充電先が一時蓄電装置(テンポラリバッテリ)である場合を説明するための図である。 図5は、一時蓄電装置(テンポラリバッテリ)の電力をポンピングして主蓄電装置(メインバッテリ)を充電する制御であって、車載太陽電池による発電量が小さい場合における充電の制御を説明するための図である。 図6は、一時蓄電装置(テンポラリバッテリ)の電力をポンピングして主蓄電装置(メインバッテリ)を充電する制御であって、車載太陽電池による発電量が大きい場合における充電の制御を説明するための図である。 図7は、本発明の変形例に係る車載太陽電池を利用する充電制御装置を説明するために概略的に示すブロック図である。
 以下、本発明の一実施形態に係る、車載太陽電池を利用する充電制御装置(以下、単に「本装置」と称呼する。)について図面を参照しながら説明する。
 図1は、本装置の適用可能な車両100の構成を示したブロック図である。ここで、本装置の適用可能な車両100としては、例えば、主蓄電部を形成する主蓄電装置として搭載されたメインバッテリの電力により駆動される電動機としてのモータジェネレータを備えて回生電力及び充電スタンド等から供給される外部電源を用いてメインバッテリを充電するEVや、モータジェネレータに加えてエンジンをも備えたHV、HVに対して更に外部電源をも用いてメインバッテリを充電可能なPHVを採用することができる。尚、本実施形態においては、車両100がPHVである場合を例示して説明する。
 本実施形態における車両100は、図1に示すように、駆動力発生部10を備えるとともに、電力供給部20及び充電コントローラ30を備えている。駆動力発生部10は、エンジン11と、動力分割機構12と、モータジェネレータ13,14と、伝達ギア15と、駆動軸16と、パワーコントロールユニット(PCU)17と、メインバッテリ18と、サブバッテリ19とを含んで構成される。エンジン11は、ガソリンや軽油等の炭化水素系燃料の燃焼により動力を出力する。そして、車両100においては、エンジン11によって出力される動力(運動エネルギー)は、動力分割機構12を介して、駆動軸16(車軸)に動力を伝達する伝達ギア15を駆動する。
 動力分割機構12は、エンジン11、モータジェネレータ13(14)及び伝達ギア15に結合されてこれらの間で動力を分配する。ここで、動力分割機構12は、例えば、サンギア、プラネタリキャリア及びリングギアの3つの回転軸を有する遊星歯車を採用することができ、サンギアにはモータジェネレータ13が接続され、キャリアにはエンジン11が接続され、リングギアには伝達ギア15を介して車軸16及びモータジェネレータ14が接続される。
 モータジェネレータ13,14は、PCU17によって制御されるものであり、メインバッテリ18から電力が供給されるときは電動機として機能し、外部(例えば、エンジン11)から動力(運動エネルギー)が伝達されるときは発電機として機能する三相同期型発電電動機である。具体的に、モータジェネレータ13は、動力分割機構12によって分割されたエンジン11の動力(運動エネルギー)が伝達されて発電機として機能するとともに、エンジン11の始動を行い得るスタータモータとしても機能する。モータジェネレータ14は、駆動軸16(車軸)に駆動力を伝達する伝達ギア15を駆動する電動機(動力源)として機能する。尚、本実施形態においては、モータジェネレータ13が発電機として機能し、モータジェネレータ14が電動機として機能するように実施するが、モータジェネレータ14が発電機として機能しモータジェネレータ13が電動機として機能したり、或いは、モータジェネレータ13,14が共に発電機として機能し又電動機として機能したりするように実施可能であることは言うまでもない。
 主蓄電部を形成する主蓄電装置としてのメインバッテリ18は、所謂、高圧電源であり、モータジェネレータ13,14とPCU17を介して電気的に接続されている。副蓄電部としてのサブバッテリ19は、所謂、低圧電源の補機バッテリであり、車両100に搭載された充電コントローラ30を含む各種電子制御ユニット(複数の電子制御機器)や車両100に搭載された複数の補機である車両の電気機器と電気的に接続されている。
 電力供給部20は、図2に示すように、太陽電池としての車載太陽電池21及び主蓄電部を形成する一時蓄電装置としてのテンポラリバッテリ22を備えている。車載太陽電池21は、例えば、車両100の屋根等に設けられていて、太陽光エネルギーを電気エネルギーに変換するものである。尚、以下の説明においては、車載太陽電池21によって発電された電力を「太陽光発電による電力」とも称呼する。テンポラリバッテリ22は、車載太陽電池21によって発電された低圧の電力を一時的に充電し、後述するように、メインバッテリ18又は/及びサブバッテリ19に電力を出力するものである。このため、テンポラリバッテリ22は、後述するソーラ充電器23を介してメインバッテリ18、サブバッテリ19及び車載太陽電池21に電気的に接続されている。
 又、電力供給部20は、ソーラ充電器23及びプラグイン充電器24を備えている。ソーラ充電器23は、車載太陽電池21によって発電された電力をメインバッテリ18、サブバッテリ19及びテンポラリバッテリ22のうちの少なくとも一つ以上に供給するとともに、テンポラリバッテリ22に一時的に蓄電された電力をメインバッテリ18又は/及びサブバッテリ19に供給するものである。このため、ソーラ充電器23は、図2に示すように、電力供給先としてメインバッテリ18、サブバッテリ19及びテンポラリバッテリ22の充電経路を選択的に切り替えて、電力を供給する充電制御回路23aを備えている。尚、充電制御回路23aは、図示を省略するが、車載太陽電池21によって発電された電力又はテンポラリバッテリ22に蓄電されている低圧の電力を高圧に汲み上げて(ポンピングして)メインバッテリ18に供給する高圧充電用DC/DCコンバータと、車載太陽電池21によって発電された電力をサブバッテリ19又はテンポラリバッテリ22に供給する低圧充電用DC/DCコンバータとを有している。
 プラグイン充電器24は、例えば、自宅や公共施設等に設置されている充電スタンド等にケーブル又は非接触により電気的に接続されて、外部電源(具体的には、商用電源)として供給される交流電力を直流電力に交換して供給し、主に、メインバッテリ18を充電するものである。このため、プラグイン充電器24は、図示を省略するが、例えば、平滑コンデンサや電圧変換機、インバータ回路等からなる電気回路を備えている。
 又、電力供給部20は、図2に示すように、メインバッテリ18とPCU17(より詳しくは、モータジェネレータ13,14)とを結ぶ駆動電力供給経路上に設けられるシステムメインリレー25を備えている。システムメインリレー25は、メインバッテリ18側の高圧電源ラインPML1とPCU17側の高圧電源ラインPML2との間に設けられていて、開閉動作によってPCU17(すなわち、モータジェネレータ13,14)とメインバッテリ18との接続又は遮断を選択的に切り替える。又、電力供給部20は、図2に示すように、PCU17側の高圧電源ラインPML2に接続された高圧電源ラインPML3とサブバッテリ19との間に設けられたDC/DCコンバータ26を備えている。
 DC/DCコンバータ26は、上流側である高圧電源ラインPML3における高圧電源を低圧に変圧(降圧)し、下流側である低圧電源ラインPTL1を介してサブバッテリ19に低圧電源を供給する。ここで、図2に示すように、ソーラ充電器23とサブバッテリ19とは低圧電源ラインPTL2を介して電気的に接続され、プラグイン充電器24とサブバッテリ19とは低圧電源ラインPTL3を介して電気的に接続される。尚、図2においては、高圧電源が導通する電源ラインを太実線により示し、低圧電源が導通する電源ラインを二重線により示す。
 更に、電力供給部20は、図2に示すように、ソーラ充電器23及びプラグイン充電器24とメインバッテリ18とを結ぶ充電電力供給経路上に設けられる充電用リレー27を備えている。充電用リレー27は、メインバッテリ18側の充電電源ラインPUL1と、プラグイン充電器24(ソーラ充電器23)側の充電電源ラインPUL2との間に設けられる。ここで、ソーラ充電器23は、充電電源ラインPUL2に対して充電電源ラインPUL3を介して電気的に接続されている。又、プラグイン充電器24は、充電電源ラインPUL2に直接的に接続される一方で、充電電源ラインPUL3に対して充電電源ラインPUL4を介して電気的に接続されている。尚、充電電源ラインPUL3には充電電源ラインPUL2側からソーラ充電器23側への電流の流れを阻止する逆流防止ダイオードが設けられ、充電電源ラインPUL4には充電電源ラインPUL3側からプラグイン充電器24側への電流の流れを阻止する逆流防止ダイオードが設けられる。
 尚、このように、充電電源ラインPUL4を介してプラグイン充電器24を充電電源ラインPUL3に接続することにより、ソーラ充電器23からメインバッテリ18に電力が供給されている場合には、プラグイン充電器24が充電電源ラインPUL4及びソーラ充電器23に電気的に接続されている充電電源ラインPUL3を介して、メインバッテリ18に電力(電流)を供給することができる。すなわち、ソーラ充電器23から太陽光発電による電力が供給される場合には、充電電源ラインPUL3を経て供給されている電力(電流)に対して外部電源から供給される電力(電流)を合流させて、メインバッテリ18に供給することができる。
 これにより、メインバッテリ18を充電するために必要な電力を外部電源から供給される電力と太陽光発電による電力とによって賄うことができる。すなわち、メインバッテリ18の充電に必要な電力量のうち、プラグイン充電器24から供給する電力量は、ソーラ充電器23から供給される電力量を減算した電力量となる。従って、プラグイン充電においてソーラ充電器23からの電力を併用する場合には、メインバッテリ18を充電するために外部電源から供給される電力(電流)が少なくなる。これにより、車両100のドライバが、外部電源(商用電源)を使用することによって負担する充電コストを節約することができる。
 又、メインバッテリ18に充電される電力に関し、ソーラ充電器23から供給される電力、すなわち、再生可能エネルギーである太陽光発電による電力の比率を積極的に高めることができる。これにより、例えば、車両100が走行する地域によっては太陽光発電による電力の比率に応じた燃費(電費)加算がなされ、車両100のドライバは、燃費(電費)向上に伴って環境保護の観点から優遇措置を受けることができる場合がある。
 充電コントローラ30は、図2に示すように、本装置の充電制御部としてのソーラECU31を備えるとともに、電池ECU32を備えている。
 ソーラECU31は、CPU、ROM、RAM等を主要構成部品とするマイクロコンピュータであり、電力供給部20の車載太陽電池21から電力線を介して直接的に電力が供給されるとともに、必要に応じてサブバッテリ19からも電力が供給される(図1及び図2参照)。そして、ソーラECU31は、ソーラ充電器23を構成する充電制御回路23aの作動を統括的に制御することによって充電経路を切り替えて、車載太陽電池21によって発電された電力をメインバッテリ18、サブバッテリ19及びテンポラリバッテリ22のうちの少なくとも一つ以上に供給して充電を制御するとともに、テンポラリバッテリ22に充電された電力をメインバッテリ18又は/及びサブバッテリ19に供給して充電を制御する。ここで、ソーラECU31には、周知の充電センサ31a,31bが接続される。これらの充電センサ31a,31bは、サブバッテリ19及びテンポラリバッテリ22のそれぞれに組み付けられていて、サブバッテリ19及びテンポラリバッテリ22の充電量(SOC:State Of Charge)を検出し、SOCを表す信号をソーラECU31に出力する。ここで、充電量(SOC)とは、バッテリの充電容量(満充電時)に対する充電残量の比率を表す。これにより、ソーラECU31は、充電センサ31a,31bによって検出されたサブバッテリ19及びテンポラリバッテリ22の充電量(SOC)に基づいて充電を制御する。
 電池ECU32も、CPU、ROM、RAM等を主要構成部品とするマイクロコンピュータであり、メインバッテリ18の充電状態を監視し、充電用リレー27の作動を制御してメインバッテリ18への充電を統括的に制御するものである。ここで、電池ECU32にも、周知の充電センサ32aが接続される。この充電センサ32aは、メインバッテリ18に組み付けられていて、メインバッテリ18の充電量であるSOCを検出し、SOCを表す信号を電池ECU32に出力する。これにより、電池ECU32は、充電センサ32aによって検出されたメインバッテリ18の充電量(SOC)に基づいて充電を制御する。尚、電池ECU32には、サブバッテリ19から電力が供給されるようになっている(図1参照)。
 又、充電コントローラ30には、図2に示すように、ハイブリッドECU33が含まれる。ハイブリッドECU33は、エンジン11及びモータジェネレータ13,14を協働して作動させて、車両100を走行させるための駆動力を制御するものである。このため、ハイブリッドECU33も、CPU、ROM、RAM等を主要構成部品とするマイクロコンピュータであり、車両100の走行時及び車両100の充電時におけるシステムメインリレー25の切り替え作動を制御する。尚、ハイブリッドECU33にも、サブバッテリ19から電力が供給されるようになっている(図1参照)。
 更に、充電コントローラ30には、プラグインECU34も含まれる。プラグインECU34は、プラグイン充電器24の作動を統括的に制御するものである。このため、プラグインECU34も、CPU、ROM、RAM等を主要構成部品とするマイクロコンピュータである。尚、プラグインECU34にも、サブバッテリ19から電力が供給されるようになっている(図1参照)。
 ここで、ハイブリッドECU33は、少なくとも電池ECU32と協働することにより、メインバッテリ18に関わる高圧システム管理や高圧電池制御、システムメインリレー25及び充電用リレー27の開閉作動管理、車両100の走行に必要な電源制御等からなる高圧電源制御を厳密に実行する。このため、車両100においては、周知であるためその図示を省略するが、メインバッテリ18の周辺に各種電磁機器や各種電子制御機器が設けられており、これら各種電磁機器等によって上記各種管理及び制御が実行されることにより、高圧のメインバッテリ18を搭載している車両100の信頼性及び安全性が確実に確保されるようになっている。
 そして、これらのソーラECU31、電池ECU32、ハイブリッドECU33及びプラグインECU34は、図2に示すように、車両100内に構築された通信回線(例えば、CAN通信回線)を介して、互いに通信可能に設けられる。ここで、特に、ソーラECU31とハイブリッドECU33とは、図2に示すように、照合ECU35(マイクロコンピュータ)を介して直接的に接続される。これにより、ソーラECU31は、照合ECU35によって照合された後にハイブリッドECU33と通信することが可能となり、直接的に各種信号(起動信号等)を供給することができるようになっている。尚、照合ECU35にも、サブバッテリ19から電力が供給されるようになっている(図1参照)。
 次に、充電コントローラ30の作動について具体的に説明する。まず、車両100の走行時における作動から説明する。ドライバによって図示しないイグニッション(I/G)がオン状態とされており、ハイブリッドECU33がシステムメインリレー25を閉状態(接続状態)に切り替え制御すると、車両100は、少なくともモータジェネレータ14の駆動力による走行が可能な状態、所謂、「Ready ON」の状態となる。尚、より詳しくは、電池ECU32によって管理されたメインバッテリ18のSOCが所定のSOC以上であるときに、ハイブリッドECU33がシステムメインリレー25を閉状態(接続状態)に切り替え制御することにより、車両100が「Ready ON」の状態となる。
 すなわち、「Ready ON」の状態では、メインバッテリ18側の高圧電源ラインPML1とPCU17側の高圧電源ラインPML2とが、システムメインリレー25を含む各種電磁機器によって接続された状態に維持される。これにより、車両100が走行中であるときには、ハイブリッドECU33は、電池ECU32と協働し、周知の電源制御に従ってメインバッテリ18からPCU17を介してモータジェネレータ14(13)に高圧の電力を供給する。従って、モータジェネレータ14(13)は、例えば、ドライバによるアクセル操作に応じた所定の駆動力を発生し、伝達ギア15を介して駆動軸16(車輪)に駆動力を付与する。
 一方、車両100の走行時、より詳しくは、車両100が「Ready ON」の状態にあるときには、ハイブリッドECU33は、電池ECU32に対して充電用リレー27を開状態(遮断状態)に切り替え制御させる。これにより、メインバッテリ18側の充電電源ラインPUL1と、プラグイン充電器24(ソーラ充電器23)側の充電電源ラインPUL2とが充電用リレー27を含む各種電磁機器によって遮断された状態に維持される。すなわち、車両100が走行中であるときには、周知の高圧システム管理及び高圧電池管理に従って、メインバッテリ18がソーラ充電器23及びプラグイン充電器24から完全に(厳密に)遮断された状態に維持される。
 これにより、車両100が走行中であるときには、ソーラ充電器23から電力が供給されてメインバッテリ18が充電されることを防止する。尚、車両100が走行中であるときには、プラグイン充電器24と車両100の外部に設けられる充電スタンドとの電気的な接続が成立しないため、外部電源を利用してメインバッテリ18が充電されることはない。
 ここで、走行している車両100が減速する状況(例えば、ドライバによるブレーキ操作がなされた状況)では、ハイブリッドECU33は、PCU17を介して、モータジェネレータ13(14)による回生制御を実施し、車両100の運動エネルギーを電気エネルギーに変換して回収する。すなわち、車両100の減速時においては、ハイブリッドECU33及びPCU17による回生制御に従い、モータジェネレータ13(14)が駆動軸16(車輪)から減速ギア15及び動力分割機構12を介して伝達される運動エネルギーを電気エネルギーに変換する。
 そして、PCU17は、この変換された電気エネルギー、言い換えれば、回収された電力を回生電力として高圧電源ラインPML2に出力する。このとき、車両100は「Ready ON」の状態にあってシステムメインリレー25が閉状態(接続状態)に維持されているため、高圧電源ラインPML2はメインバッテリ18側の高圧電源ラインPML1と接続されている。これにより、回生制御に伴って回生電力が出力される場合には、図示しない各種電磁機器(具体的にはDC/DCコンバータ等)によって回生電力が昇圧されて、メインバッテリ18に充電される。或いは、回生制御に伴って高圧電源ラインPML3に出力された回生電力は、DC/DCコンバータ26によって降圧されて低圧電源ラインPTL1に出力されてサブバッテリ19に充電される。
 次に、充電コントローラ30、主として、充電制御部であるソーラECU31による車両100のメインバッテリ18、サブバッテリ19及びテンポラリバッテリ22への充電制御を状況別に説明する。
 上述したように、ソーラECU31は、電力を蓄電する蓄電装置(電気二重層キャパシタ等)を介在させることなく、車載太陽電池21と電力線を介して直接接続されている。従って、車載太陽電池21が発電できる状況、具体的には、昼間に天候が晴れている状況であれば、車載太陽電池21は、太陽光エネルギーを電気エネルギーに変換して電力を発電し、発電した電力の総てを、電力線を介してソーラECU31に電力を供給することができる。これにより、ソーラECU31は、起動前に車載太陽電池21により発電されている電力の総てが、車載太陽電池21の発電に伴う電圧の増加勾配(立ち上がり)とほぼ同等の増加勾配を有する、言い換えれば、車載太陽電池21における電圧の増加勾配に比して遅れが生じないように供給されて、起動することができる。ここで、太陽光発電による電力を発電量P(W)とし、ソーラECU31が起動して作動するために必要な電力を消費電力L1(W)とする。この場合、例えば、天候悪化等により、発電量Pが消費電力L1未満となる状況では、太陽光発電による電力の総てが電力線を介して直接的に供給されてもソーラECU31は起動することはできない。すなわち、この場合には、ソーラECU31が起動しないため、メインバッテリ18、サブバッテリ19及びテンポラリバッテリ22に対して、太陽光発電による電力は供給されない。
 尚、このように、ソーラECU31が起動できない程度の発電量Pでは、例えば、各バッテリ18,19,22に電力を供給する際のロス(例えば、各バッテリの内部抵抗)等によって、太陽光発電による電力が消費されてしまう可能性が高い。従って、仮に、サブバッテリ19からの電力供給によってソーラECU31が起動しても、車載太陽電池21から各バッテリ18,19,22に供給する電力を確保することができず、むしろ、ソーラECU31を起動させるためにサブバッテリ19の電力を無駄に消費することにもなる。このため、発電量Pが消費電力L1未満である状況では、ソーラECU31は各バッテリ18,19,22への充電の制御を実施しない。
(1)L1<P≦Lallの場合
 上述したように、車載太陽電池21とソーラECU31とは電力線を介して直接的に接続されている。このため、車載太陽電池21が発電できる状況下では、図3に示すように、発電されている電力の総てが最初にソーラECU31に供給される。これにより、ソーラECU31の起動前に、車載太陽電池21により発電されている総ての発電量PがソーラECU31の消費電力L1よりも大きくなると、ソーラECU31は車載太陽電池31から供給された電力によって速やかに起動することができる。このように、ソーラECU31が起動した後において、車載太陽電池21による発電量Pが、ソーラECU31の消費電力L1よりも大きく、かつ、車両100に搭載されてイグニッション(I/G)がオン状態であるときに作動する電気機器としての複数の補機及び複数の電子制御機器による全消費電力Lall(所定の電力)以下である場合には、ソーラECU31は、発電量Pから自身の作動に伴う消費電力L1を減じた余剰電力(P-L1)を以下の優先順位に従って順に供給して充電を制御する。
 具体的に、ソーラECU31は、
a.)余剰電力(P-L1)を所定のSOCs以下となっているサブバッテリ19に供給
b.)サブバッテリ19のSOCが所定のSOCsを超えたとき余剰電力(P-L1)をテンポラリバッテリ22に供給
c.)テンポラリバッテリ22のSOCが所定のSOCtを超えたときメインバッテリ18に供給、の順に従って供給して充電を制御する。以下、順に説明していく。
a.)所定のSOCs以下のサブバッテリ19に優先的に余剰電力(P-L1)を供給
 ソーラECU31は、車載太陽電池21から自身の消費電力L1よりも大きな発電量Pが供給されている状況において、充電センサ31aから取得したサブバッテリ19のSOCがサブバッテリ19に対して予め設定された所定の充電量であるSOCs以下となっているとき、言い換えれば、サブバッテリ19が充電を必要としている場合に、図3に示すように、余剰電力(P-L1)を優先的にサブバッテリ19に供給する。すなわち、ソーラECU31は、ソーラ充電器23の充電制御回路23aを介して充電経路、言い換えれば、電力供給先をサブバッテリ19に選択し、低圧充電用DC/DCコンバータを介して余剰電力(P-L1)を所定の電圧に変圧するとともに整流する。そして、ソーラECU31は、低圧電源ラインPTL2を通してサブバッテリ19に余剰電力(P-L1)を供給して蓄電する。
b.)サブバッテリ19のSOCが所定のSOCsを超えたとき余剰電力(P-L1)をテンポラリバッテリ22に供給
 ソーラECU31は、充電センサ31aから取得したサブバッテリ19のSOCが所定の充電量であるSOCsを超えたときには、図4に示すように、余剰電力(P-L1)をテンポラリバッテリ22に供給する。すなわち、ソーラECU31は、ソーラ充電器23の充電制御回路23aを介して充電経路、言い換えれば、電力供給先をテンポラリバッテリ22に選択し、低圧充電用DC/DCコンバータを介して余剰電力(P-L1)を所定の電圧に変圧するとともに整流する。そして、ソーラECU31は、テンポラリバッテリ22に余剰電力(P-L1)を供給して蓄電する。ここで、余剰電力(P-L1)をテンポラリバッテリ22に充電するために必要な充電時間ttは、テンポラリバッテリ22におけるSOCの変化量をΔSOCとし、充電制御部回路23aからテンポラリバッテリ22に電力を供給する際の効率をeNi_inとすると、tt=ΔSOC/eNi_in(P-L1)と表すことができる。
 ここで、ソーラECU31が電力供給先(すなわち充電経路)としてサブバッテリ19又はテンポラリバッテリ22を選択する上記a.)及びb.)の場合には、余剰電力(P-L1)すなわち太陽光発電による電力を大幅に昇圧する必要がなく、低圧電源を扱うのみとなる。言い換えれば、電力供給先(すなわち充電経路)としてメインバッテリ18を選択するc.)の場合には、太陽光発電による電力(より詳しくは、一時蓄電装置に蓄電された電力)を大幅に昇圧した高圧電源を扱う必要がある。そして、このような高圧電源を取り扱うためには、その信頼性と安全性とを確保するためにシステム管理及び充電制御の複雑化が避けられない。これに対して、電力供給先(すなわち充電経路)として、まず、SOCが所定のSOCs以下となっているサブバッテリ19を優先して選択し、次にテンポラリバッテリ22を選択する場合には、EV、HV、PHV等の従来の車両と同様に低圧電源を取り扱うことができ、その結果、システム及び充電制御を簡略化することができる。
c.)テンポラリバッテリ22のSOCが所定のSOCtを超えたときテンポラリバッテリ22の電力をポンピングしてメインバッテリ18に供給
 この場合においては、サブバッテリ19のSOCが所定の充電量であるSOCsを超え、かつ、テンポラリバッテリ22のSOCが所定の充電量であるSOCtを超えた状態にある。このため、ソーラECU31は、余剰電力(P-L1)を、電力供給部20のソーラ充電器23の充電制御回路23aを介して、車両100に搭載された電気機器である複数の補機及び複数の電子制御機器の作動に対して供給して消費する。そして、ソーラECU31は、複数の補機及び複数の電子制御機器の作動に伴って消費される全消費電力Lallに対して供給した余剰電力(P-L1)では不足するため、電力の不足分を電力供給部20のテンポラリバッテリ22から供給する。尚、この場合、テンポラリバッテリ22から不足分の電力を供給することに代えて、サブバッテリ19から不足分の電力を供給することも可能である。
 一方で、ソーラECU31は、テンポラリバッテリ22の充電量がSOCtを超えているため、テンポラリバッテリ22から電力を汲み上げて、所謂、ポンピングしてメインバッテリ18に供給して充電を制御する。以下、具体的にポンピングによるメインバッテリ18への充電の制御を説明する。
 ハイブリッドECU33は、例えば、検出された車速等に基づいて、車両100が駐停車しているときには、モータジェネレータ14に高圧電源を供給する必要がないために、図5に示すように、高圧電源制御を解除して、システムメインリレー25を開状態(遮断状態)に切り替え制御する。このように、ハイブリッドECU33がシステムメインリレー25を開状態(遮断状態)に切り替え制御すると、車両100は、少なくとも、モータジェネレータ14の駆動力によって走行しない状態、所謂、「Ready OFF」の状態となる。
 このように、車両100が「Ready OFF」の状態であるときには、電池ECU32は、図5に示すように、充電用リレー27を閉状態(接続状態)に切り替え制御することができる。これにより、ドライバによってイグニッション(I/G)がオフ状態に操作されて車両100が駐停車しているとき(すなわち、車両100が走行していないとき)に、ソーラECU31は、テンポラリバッテリ22に一時的に充電した太陽光発電による電力をメインバッテリ18に供給して蓄電する。尚、この場合、更に、プラグイン充電器24に充電スタンドが電気的に接続されていない、すなわち、ソーラ充電器23以外にメインバッテリ18に電力を供給する手段が存在しないことを条件とすることができる。
 ここで、上述したように、メインバッテリ18の周辺には、高圧電源を安全に取り扱うためにシステムメインリレー25及び充電用リレー27を含む複数の電磁機器が設けられている。又、メインバッテリ18の状態を監視し、メインバッテリ18への充電経路を切り替えて充電を制御するためには、少なくとも、電池ECU32及びハイブリッドECU33等を作動させる必要がある。そして、これらの複数の電磁機器及び複数のECU(複数の電子制御機器)の作動制御すなわち高圧電源制御の実行又は解除にあたっては、電力が消費される。
 このため、ソーラECU31は、メインバッテリ18に太陽光発電による電力を供給して蓄電する場合には、テンポラリバッテリ22に少なくとも高圧電源制御の実行又は解除に伴って作動させる複数の電磁機器等による消費電力以上の電力が一時的に充電されたとき、すなわち、テンポラリバッテリ22のSOCが高圧電源制御の実行又は解除によって生じる消費電力に基づいて設定されたSOCtを超えるときに、ポンピングによる充電制御を実行する。このように高圧電源制御の実行又は解除に伴う消費電力以上(SOCt以上)となる太陽光発電による電力がテンポラリバッテリ22に蓄電されている状況であれば、高圧電源制御の実行又は解除により複数の電磁機器及びECUが作動して電力が消費されても、太陽光発電による電力をメインバッテリ18に充電することができる。
 具体的に説明すると、ソーラECU31は、充電センサ31bから取得したSOCが上記した消費電力に基づいて設定されたSOCtよりも大きくなっているか否かを判定する。ここで、上述した優先順位に基づいて太陽光発電による電力が供給されてテンポラリバッテリ22のSOCがSOCtよりも大きくなるごとに、ポンピングしてメインバッテリ18への充電を実施することにより、複数の電磁機器及び複数のECUを作動(起動)させる頻度を低減することができる。これにより、複数の電磁機器及び複数のECUを作動(起動)させるごとに消費される電力、言い換えれば、メインバッテリ18の充電に必要な機器を作動させることによる消費電力を低減することができ、太陽光発電による電力を効率良くメインバッテリ18に充電することができる。
 そして、ソーラECU31は、テンポラリバッテリ22のSOCがSOCtを超えるまで太陽光発電による電力が充電されると、図5に示すように、照合ECU35による照合を経て起動信号を出力し、安全にメインバッテリ18を充電するために、ハイブリッドECU33、及び、このECU33と協働して作動する電池ECU32を起動させる。このように、出力された起動信号によって起動したハイブリッドECU33は、システムメインリレー25を開状態(遮断状態)に維持する。又、起動信号によって起動した電池ECU32は、充電用リレー27を開状態(遮断状態)から閉状態(接続状態)に切り替え制御し、メインバッテリ18側の充電電源ラインPUL1とソーラ充電器23側の充電電源ラインPUL2とを接続する。
 そして、特に、電池ECU32によって充電用リレー27が閉状態(接続状態)に切り替えられると、ソーラECU31は、ソーラ充電器23の充電制御回路23aにおける高圧充電用DC/DCコンバータによってテンポラリバッテリ22に一時的に充電されている低圧の電力を短時間で汲み上げて(ポンピングして)所定の電圧まで昇圧するとともに整流し、充電電源ラインPUL3及び充電電源ラインPUL2を経て、メインバッテリ18に高圧に変圧した電力を供給する。これにより、電池ECU32は、周知の充電制御に従って、ソーラ充電器23(ソーラECU31)から供給された電力(太陽光発電による電力)をメインバッテリ18に充電することができる。
 ここで、メインバッテリ18への充電時間をtpとし、テンポラリバッテリ22から供給される電力量をΔSOCとし、テンポラリバッテリ22から充電制御部回路23aに電力を供給する際の効率をeNi_outとし、充電制御部回路23aの高圧充電用DC/DCコンバータによる消費電力をDとし、充電制御部回路23aの高圧充電用DC/DCコンバータからメインバッテリ18に電力を供給する際の効率をeLi_inとし、1回のポンピングあたりのメインバッテリ18への充電量をCとすると、エネルギー保存則に従って、P・tp+ΔSOC・eNi_out=Lall・tp+D・tpが成立する。そして、メインバッテリ18への充電時間tpは、tp=ΔSOC/eNi_out(-P+Lall+D)と表すことができ、1回のポンピングあたりのメインバッテリ18への充電量Cは、C=eDCDC・D・eLi_in・tpと表すことができる。ただし、eDCDCは高圧充電用DC/DCコンバータの効率を表す。
 尚、この場合には、複数の電磁機器及び複数のECUを作動させるためにサブバッテリ19の電力が消費される場合がある。このため、ソーラECU31は、上述した電力の汲み上げ中(ポンピング中)においてのみ、ソーラ充電器23の充電制御回路23aにおける低圧充電用DC/DCコンバータによってテンポラリバッテリ22に一時的に充電されている低圧の電力を整流し、低圧電源ラインPTL2を経てサブバッテリ19に電力を供給することができる。これによりサブバッテリ19の充電量を回復させることができて、サブバッテリ19の、所謂、バッテリあがりが発生することを防止することができる。
(2)Lall<Pの場合
 車載太陽電池21による発電量Pが複数の補機等による全消費電力Lall(所定の電力)よりも大きい場合にも、電力線を介して太陽光発電による電力の総ての供給を受けて起動したソーラECU31は、上述した(1)L1<P≦Lallの場合と同様に、a.)余剰電力(P-L1)を所定のSOCs以下となっているサブバッテリ19に供給、b.)サブバッテリ19のSOCが所定のSOCsを超えたとき余剰電力(P-L1)をテンポラリバッテリ22に供給、c.)テンポラリバッテリ22のSOCが所定のSOCtを超えたときメインバッテリ18に供給の順に従って供給して充電を制御する。ただし、c.)におけるメインバッテリ18への充電の制御のみが異なる。
 すなわち、車載太陽電池21による発電量Pが複数の補機等による全消費電力Lallよりも大きい場合には、太陽光発電による電力によって複数の補機等の作動に必要な電力を全て賄うことができる。従って、この場合には、ソーラECU31は、図6に示すように、上記(1)の場合と同様にしてテンポラリバッテリ22にSOCtを超えるまで充電されている電力をポンピングして供給するとともに、発電量Pから全消費電力Lallを減じた余剰電力(P-Lall)をメインバッテリ18に供給する。
 具体的には、ソーラECU31は、テンポラリバッテリ22のSOCがSOCtを超えるまで太陽光発電による電力が蓄電されると、図6に示すように、上記(1)のc.)の場合と同様にハイブリッドECU33、及び、このECU33と協働して作動する電池ECU32を起動させる。これにより、ハイブリッドECU33はシステムメインリレー25を開状態(遮断状態)に維持するとともに、電池ECU32は、充電用リレー27を開状態(遮断状態)から閉状態(接続状態)に切り替え制御し、メインバッテリ18側の充電電源ラインPUL1とソーラ充電器23側の充電電源ラインPUL2とを接続する。
 そして、ソーラECU31は、電力供給部20のソーラ充電器23の充電制御回路23aにおける高圧充電用DC/DCコンバータによってテンポラリバッテリ22に一時的に充電されている低圧の電力、及び、車載太陽電池21から供給される低圧の余剰電力(P-Lall)を短時間でポンピングして所定の電圧まで昇圧するとともに整流し、充電電源ラインPUL3及び充電電源ラインPUL2を経て、メインバッテリ18に高圧に変圧した電力を供給する。これにより、電池ECU32は、周知の充電制御に従って、ソーラ充電器23(ソーラECU31)から供給された電力(太陽光発電による電力)をメインバッテリ18に充電することができる。
 以上の説明からも理解できるように、上記実施形態によれば、充電コントローラ30を構成する充電制御部としてのソーラECU31は、電力供給部20の車載太陽電池21から、電力線を介して、例えば、電気二重層キャパシタ等の遅れ要素を介することなく、直接的に、起動前に発電されている電力の総てを受けることができる。これにより、例えば、充電コントローラ30に電力を供給するサブバッテリ19の充電状態の如何に拘わらず、ソーラECU31は、車載太陽電池21により発電された電力の総てが供給されることにより、速やかに起動することができる。そして、起動したソーラECU31は、ソーラ充電器23の充電制御回路23aを介して充電経路を切り替えて、メインバッテリ18、サブバッテリ19及びテンポラリバッテリ22への充電を制御することができる。
 すなわち、ソーラECU31は、まず、車載太陽電池21によって発電されている総ての発電量Pから充電の制御に伴う消費電力L1を減じた余剰電力(P-L1)をサブバッテリ19に優先的に供給して蓄電することができる。これにより、サブバッテリ19の充電量(SOC)を十分に確保し、サブバッテリ19から電力の供給を受ける充電コントローラ30を構成する電池ECU32及びハイブリッドECU33等を起動させることができる。又、ソーラECU31は、サブバッテリ19の充電量(SOC)が所定のSOCsを超えたことに応じて、余剰電力(P-L1)をテンポラリバッテリ22に供給して蓄電することができる。そして、ソーラECU31は、テンポラリバッテリ22の充電量(SOC)が所定のSOCtを超えたことに応じて、一時的に蓄電された電力を汲み上げて昇圧して(すなわち、ポンピングして)メインバッテリ18に供給することができる。従って、車載太陽電池21によって発電された電力、言い換えれば、再生可能エネルギーを無駄に廃棄することなく有効に利用することができる。
 又、ソーラECU31がテンポラリバッテリ22の電力をポンピングしてメインバッテリ18の充電を制御している状況においても、ソーラ充電器23は、車載太陽電池21が継続して発電している電力、言い換えれば、再生可能エネルギーを、ソーラECU31(及びサブバッテリ19)又は/及びメインバッテリ18に供給することができる。より具体的には、車載太陽電池21によって発電された電力すなわち発電量Pが全消費電力Lall以下であるときには、ソーラ充電器23は車載太陽電池21からソーラECU31(及びサブバッテリ19)に発電された電力を供給することができる。一方、発電量Pが全消費電力Lallよりも大きいときには、ソーラ充電器23は車載太陽電池21からソーラECU31(及びサブバッテリ19)及びメインバッテリ18に発電された電力を供給することができる。従って、車載太陽電池21によって発電された電力、言い換えれば、再生可能エネルギーを無駄に廃棄することなく有効に利用することができる。
 本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて、種々の変更が可能である。
 例えば、上記実施形態においては、車載太陽電池21が発電し、この発電された電力の総てを用いてソーラECU31が起動して充電の制御を実行するように実施した。この場合、例えば、悪天候又は夜間、或いは、ガレージ内等では、車載太陽電池21が発電できない状況が生じ得る。又、車載太陽電池21に故障が発生した場合にも、発電できない状況が生じ得る。そして、このような場合には、上述したように、ソーラECU31の起動そのものが不能となる可能性がある。このような事態(緊急事態)においては、充電コントローラ30を構成する電池ECU32等が、メインバッテリ18又は/及びテンポラリバッテリ22の充電量(SOC)に拘わらず、たとえSOCが低下している状況であっても、これらバッテリ18,22からサブバッテリ19に強制的に充電を行うように実施することも可能である。このように、緊急事態においてメインバッテリ18又は/及びテンポラリバッテリ22からサブバッテリ19に電力が供給されることにより、ソーラECU31を含む充電コントローラ30を起動させることができ、例えば、HV又はPHVではエンジン11を作動させてメインバッテリ18を充電したりすることが可能となる。
 又、このような緊急事態が生じた場合には、図7に示すように、ドライバが緊急事態を判断して操作するスイッチ50を設けておき、このスイッチ50の操作によって人間の意思を反映させ、サブバッテリ19に対してメインバッテリ18又はテンポラリバッテリ22から強制的に電力の供給を行うように実施することも可能である。このように、スイッチ50の操作有無により、人間(ドライバ)の意思を反映させることにより、充電システム自体の信頼性を向上させることができる。
 更に、上記実施形態においては、車両100の電力供給部20がテンポラリバッテリ22を備えており、このテンポラリバッテリ22に車載太陽電池21によって発電された、太陽光発電による電力を一時的に充電するように実施した。この場合、テンポラリバッテリ22を物理的に車両100に設置することを省略し、サブバッテリ19に太陽光発電による電力を一時的に充電するように実施することも可能である。
 これにより、サブバッテリ19が車載太陽電池21により発電された電力を一時的に充電しておくことができる。従って、テンポラリバッテリ22を設けることによって発生するコストの増大を抑制することができるとともに、テンポラリバッテリ22を設けるスペースを確保する必要がなく、省スペース化を図ることができ、又、軽量化をも達成することができる。その他の効果については、上記実施形態と同様の効果を得ることができる。

Claims (7)

  1.  車両の駆動力を発生する電動機と、前記電動機に供給される電力を蓄電する主蓄電部と、車両の電気機器に供給される電力を蓄電する副蓄電部と、太陽電池とを有する車両に適用され、起動後において前記太陽電池により発電されている電力を前記主蓄電部及び前記副蓄電部の少なくとも一方に供給するように充電経路を切り替える充電制御部を備えた充電制御装置において、
     前記充電制御部は、
     起動前に前記太陽電池により発電されている電力の総てが電力線を介して供給されることにより起動するように構成されている充電制御装置。
  2.  請求項1に記載した充電制御装置において、
     前記充電制御部は、
     前記副蓄電部が充電を必要としている場合には、前記主蓄電部の充電状態に拘わらず、前記太陽電池により発電されている電力から同充電制御部が消費している電力を減じた余剰電力を前記副蓄電部に供給するように構成されている充電制御装置。
  3.  請求項2に記載した充電制御装置において、
     前記主蓄電部は、前記電動機に電力を供給する主蓄電装置と、前記太陽電池により発電された電力を一時的に蓄電する一時蓄電装置とを含み、
     前記充電制御部は、
     前記副蓄電部の充電量が予め前記副蓄電部に対して設定されている所定の充電量を超えた場合には、前記余剰電力を前記主蓄電装置又は前記一時蓄電装置に供給するように前記充電経路を切り替える充電制御装置。
  4.  請求項3に記載した充電制御装置において、
     前記充電制御部は、
     前記一時蓄電装置の充電量が予め前記一時蓄電装置に対して設定されている所定の充電量を超えた場合には、前記一時蓄電装置に一時的に蓄電された電力を前記主蓄電装置に供給するように前記充電経路を切り替える充電制御装置。
  5.  請求項4に記載した充電制御装置において、
     前記一時蓄電装置に対して設定されている前記所定の充電量は、
     前記一時蓄電装置に一時的に蓄電された電力を前記主蓄電装置に供給するように前記充電経路を切り替えるために消費される電力の大きさ以上に設定される充電制御装置。
  6.  請求項3ないし請求項5のうちのいずれか一つに記載した充電制御装置において、
     前記充電制御部は、
     前記車両が走行していないときに、前記余剰電力又は前記一時蓄電装置に一時的に蓄電された電力を前記主蓄電装置に供給するように前記充電経路を切り替える充電制御装置。
  7.  請求項3ないし請求項6のうちのいずれか一つに記載した充電制御装置において、
     前記充電制御部は、
     前記一時蓄電装置に一時的に蓄電されている電力又は前記主蓄電装置に蓄電されている電力を前記副蓄電部に供給するように前記充電経路を切り替える充電制御装置。
PCT/JP2013/066461 2013-06-14 2013-06-14 充電制御装置 WO2014199511A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066461 WO2014199511A1 (ja) 2013-06-14 2013-06-14 充電制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066461 WO2014199511A1 (ja) 2013-06-14 2013-06-14 充電制御装置

Publications (1)

Publication Number Publication Date
WO2014199511A1 true WO2014199511A1 (ja) 2014-12-18

Family

ID=52021841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066461 WO2014199511A1 (ja) 2013-06-14 2013-06-14 充電制御装置

Country Status (1)

Country Link
WO (1) WO2014199511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109572454A (zh) * 2018-10-17 2019-04-05 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站充电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262647A (ja) * 2000-03-23 2001-09-26 Toto Ltd 自動吐水装置
JP2007228753A (ja) * 2006-02-24 2007-09-06 Toyota Motor Corp 電動車両
JP2008189215A (ja) * 2007-02-07 2008-08-21 Takeuchi Seisakusho:Kk 電気駆動式作業車
JP2011501013A (ja) * 2007-10-09 2011-01-06 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー 太陽光充電されるハイブリッドパワーシステム
JP2012075241A (ja) * 2010-09-28 2012-04-12 Honda Motor Co Ltd 電気自動車の制御装置
WO2013030941A1 (ja) * 2011-08-30 2013-03-07 トヨタ自動車株式会社 車両の電源システム
JP2013066365A (ja) * 2011-08-29 2013-04-11 Sharp Corp 車両駆動装置、車両充電システム、及び自動車

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262647A (ja) * 2000-03-23 2001-09-26 Toto Ltd 自動吐水装置
JP2007228753A (ja) * 2006-02-24 2007-09-06 Toyota Motor Corp 電動車両
JP2008189215A (ja) * 2007-02-07 2008-08-21 Takeuchi Seisakusho:Kk 電気駆動式作業車
JP2011501013A (ja) * 2007-10-09 2011-01-06 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー 太陽光充電されるハイブリッドパワーシステム
JP2012075241A (ja) * 2010-09-28 2012-04-12 Honda Motor Co Ltd 電気自動車の制御装置
JP2013066365A (ja) * 2011-08-29 2013-04-11 Sharp Corp 車両駆動装置、車両充電システム、及び自動車
WO2013030941A1 (ja) * 2011-08-30 2013-03-07 トヨタ自動車株式会社 車両の電源システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109572454A (zh) * 2018-10-17 2019-04-05 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站充电系统
CN109572454B (zh) * 2018-10-17 2021-04-06 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站充电系统

Similar Documents

Publication Publication Date Title
JP6269663B2 (ja) 車載太陽電池を利用する充電制御装置
JP6065920B2 (ja) 車載太陽電池を利用する充電制御装置
JP5310959B2 (ja) 車両の充電装置
KR101039679B1 (ko) 마일드 하이브리드 시스템 및 그 제어 방법
US8773065B2 (en) Power supply system for electric powered vehicle, control method thereof, and electric powered vehicle
EP2631105B1 (en) Electric vehicle power supply system, control method thereof, and electric vehicle
US20130038271A1 (en) Control method of hybrid vehicle
US20150149014A1 (en) Method of controlling a mild hybrid electric vehicle
JP2007228753A (ja) 電動車両
WO2012049559A2 (en) Electromotive vehicle
US20100253139A1 (en) Method and apparatus for producing tractive effort with interface to other apparatus
US11884221B2 (en) On-board electrical network of a motor vehicle
JP2014068432A (ja) 車両の電力制御装置
JP2015085707A (ja) ハイブリッド車両の電源システム
WO2015019144A2 (en) Vehicle and method for controlling the vehicle
JP5598216B2 (ja) 車両用電源制御装置
WO2014199511A1 (ja) 充電制御装置
JP7373114B2 (ja) 車両用電源制御装置
KR20200103947A (ko) 차량 탑재 태양전지를 이용한 차량의 전기 제어 시스템
JP2015203323A (ja) 車両用電源装置
EP3930132A1 (en) A connection interface between a high voltage network and a low voltage network of a hybrid electric vehicle
US20090021967A1 (en) Method for controlling a generation of an alternating current in a vehicle
FR3022087A1 (fr) Systeme pour vehicule hybride de recharge de la batterie de traction et d'alimentation d'une prise de courant alternatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP