WO2014198750A1 - Oiling-arme beschichtete polycarbonat-folien - Google Patents

Oiling-arme beschichtete polycarbonat-folien Download PDF

Info

Publication number
WO2014198750A1
WO2014198750A1 PCT/EP2014/062085 EP2014062085W WO2014198750A1 WO 2014198750 A1 WO2014198750 A1 WO 2014198750A1 EP 2014062085 W EP2014062085 W EP 2014062085W WO 2014198750 A1 WO2014198750 A1 WO 2014198750A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
polymethyl methacrylate
weight
content
polycarbonate film
Prior art date
Application number
PCT/EP2014/062085
Other languages
English (en)
French (fr)
Inventor
Serguei Kostromine
Joachim Petzoldt
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to CN201480033128.6A priority Critical patent/CN105324443B/zh
Priority to KR1020157035014A priority patent/KR20160020428A/ko
Priority to US14/897,707 priority patent/US20160311991A1/en
Priority to EP14729336.9A priority patent/EP3008136B1/de
Publication of WO2014198750A1 publication Critical patent/WO2014198750A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a polycarbonate film coated with at least one polymethylmethacrylate-containing layer, the surface of which has improved properties with regard to scratch resistance, solvent resistance and anti-oiling behavior, and to a production method for such a film. Furthermore, the present invention relates to SD plastic parts, comprising the film according to the invention and the use of the films according to the invention for the production of plastic parts in film insert molding process.
  • the film insert molding technology has become established. It provides that the front surface of a part is first prefabricated from a coated film two- or three-dimensional and then filled or back-injected with a plastic melt from the back.
  • the front side is sufficiently protected against chemical and mechanical effects. This is often achieved in the prior art by a corresponding coating or coating of the surface.
  • a coating or coating should already be applied to the film, which then passes through the film with all further forming steps and then finally cured, such as by UV exposure ,
  • the "oiling" effect results from the interference of two beams of light reflected in one direction, reflecting one beam at the air-coating interface, while the other beam is reflected at the underlying coating-substrate film interface, the more light reflects from both surfaces
  • the glossy finishes of glossy substrates are a prerequisite for strong oiling, and this is precisely what happens when, for example, a smooth polycarbonate film is covered with a glossy clear coat.
  • thermally deformable and then UV-curable coated polycarbonate films with particular resistance to scratching and solvents can be realized in a particularly efficient manner even "oiling" -arm, when the polycarbonate substrate is covered with at least one polymethylmethacrylate-containing layer, wherein the total thickness of the layer or of the layers together is at least 10 ⁇ and this layer or each of these layers comprises at least 40% by weight of polymethyl methacrylate and a coating agent for the entire layer or for the uppermost layer of the PMMA-containing coating comprises at least one polymethyl methacrylate polymer or polymethyl methacrylate copolymer having a weight-average molecular weight of at least 100,000 g / mol, contains at least one UV-curable reactive diluent, at least one photoinitiator and at least one solvent.
  • a coated polycarbonate film comprising a polycarbonate film and thereon at least one polymethyl methacrylate-containing layer having a polymethyl methacrylate content of at least 40% by weight, characterized in that the total layer thickness of the at least one polymethylmethacrylate at least 10 ⁇ m, the uppermost layer of the at least one polymethyl methacrylate-containing layer is obtainable by coating with a coating composition comprising (a) at least one polymethyl methacrylate polymer or polymethyl methacrylate
  • Copolymer having an average molecular weight Mw of at least 100,000 g / mol in a content of at least 40% by weight of the solid content of the coating agent;
  • the PMMA-containing coating can thus be homogeneous and applied in one layer. It can also consist of several PMMA-containing layers, which were applied successively. As described above, the PMMA-containing layers of the at least one PMMA-containing layer may have different compositions. The prerequisites for this include the minimum proportion of the PMMA of 40% by weight for each layer, the particular composition of the coating composition for the uppermost layer and the total layer thickness of PMMA-containing layers of the at least one PMMA-containing layer of at least 10 ⁇ m. If only one PMMA-containing layer is provided, then there is the PMMA layer with a Layer thickness of at least 10 ⁇ from a coating which is obtainable by coating with the coating composition of the invention.
  • the coated polycarbonate film according to the present invention therefore, in the simplest embodiment, consists of a polycarbonate film and a coating obtained by coating the film with the coating agent according to the invention. In this way, it is possible to achieve a highly efficient polycarbonate film according to the invention having an oil-poor, scratch-resistant and solvent-resistant surface.
  • the coated polycarbonate film of the present invention comprises two polymethylmethacrylate-containing layers.
  • the film according to the invention comprises a polycarbonate / polymethyl methacrylate film obtainable by coextrusion and a coating obtainable by coating with the coating agent according to the present invention on the polymethyl methacrylate layer of the film.
  • Polycarbonate / polymethyl methacrylate co-extruded films with different strength polymethyl methacrylate layer are known in the art and commercially available in many different ways, such as from Bayer Material Science AG under the trade names Makrofol® SR 253, Makrofol® SR 906, Makrofol® SR 280. Films This type can be used to produce the films according to the invention by being coated with the coating composition according to the invention on the polymethyl methacrylate side in such a way that the total layer thickness containing PMMA is at least 10 ⁇ m.
  • the number of total PMMA-containing layers is thus at least 1 and may be 1, 2, 3 or 4 in total.
  • the layer thickness of the PMMA-containing layers according to the invention is at least 10 ⁇ .
  • the uppermost PMMA layer obtainable by coating with the coating composition of the invention may be containing layer at least 2 ⁇ , preferably at least 5 ⁇ and more preferably at least 10 ⁇ thick.
  • the thickness of the above-mentioned coextreated PMMA layer of a coextrad convinced PC / PMMA film can be at least 10 ⁇ , preferably at least 15 ⁇ and more preferably at least 20 ⁇ amount.
  • the thickness of the PMMA layer of a coextruded PC / PMMA film can be at least 10 ⁇ m and the thickness of the layer obtainable from the coating composition according to the invention can be at least 5 ⁇ m thereon.
  • the coating agent of the present invention can be easily and efficiently obtained.
  • coatings obtainable on many surfaces, in particular for the films insert molding process in question are sufficiently block-resistant, but can then be thermally deformed together with the coated substrate and given a surface after curing, for example by UV radiation with advantageous properties in terms of scratch resistance, solvent resistance and an at least reduced oiling effect.
  • the determination of the scratch resistance can be determined, for example, on the basis of the pencil hardness, which can be measured on the basis of ASTM D 3363.
  • An evaluation of the solvent resistance can be made in accordance with EN ISO 2812-3: 2007. It is noteworthy that the surface of the molded article obtained by coating the film with the coating agent according to the invention and finally curing by UV radiation itself has good resistance to the solvent acetone, which is otherwise very harmful for polycarbonate surfaces.
  • the measure of the rainbow effect defining the oiling is the number of Newton rings determined from reflection spectra. It is calculated from the maximum amplitude in the reflection spectrum between 400 nm and 650 nm. Reflection (R) and maximum amplitude (MA) are taken from the spectrum in percent. To eliminate the unit, MA is divided by R at the same wavelength. To avoid decimal places, the determined value is multiplied by 1000. The values thus determined are below 20 for coatings according to the invention, while comparative films with obvious oiling show values above 30 and also far above.
  • the coating agent according to the present invention comprises
  • Polymethyl methacrylate is understood as meaning polymethyl methacrylate homopolymers and copolymers based on methyl methacrylate, preferably with a methyl methacrylate content of more than 70% by weight.
  • PMMA polymers and PMMA copolymers are known, for example, under the trade names Degalan®, Degacryl®, Plexyglas®, Acrylite® (manufacturer Evonik), Altuglas, Oroglas (manufacturer Arkema), Elvacite®, Colacryl®, Lucite® (manufacturer Lucite) and commercially available.
  • PMMA homopolymers and copolymers of 70 wt .-% to 99.5 wt .-% of methyl methacrylate and 0.5 wt .-% to 30 wt .-% of methyl acrylate, particularly preferably from 90 wt .-% to 99.5 Wt .-% of methyl methacrylate and 0.5 wt .-% to 10 wt .-% of methyl acrylate.
  • the Vicat softening temperatures VET according to ISO 306 are preferably at least 95 ° C, and more preferably in the range of 100 ° C to 115 ° C.
  • the average molecular weight M w of the PMMA homopolymers and copolymers to be used according to the invention in the coating composition is at least 100,000 g / mol, preferably at least 150,000 g / mol and more preferably at least 200,000 g / mol.
  • the molecular weight Mw can be determined, for example, by gel permeation chromatography or by scattered light method (see, for example, H.F. Mark et al., Encyclopedia of Polymer Science and Engineering, 2nd Edition, Vol. 10, pages 1 et seq., J. Wiley, 1989).
  • the PMMA homopolymer or copolymer is an essential part of the coating composition of the invention and of the coating according to the invention.
  • the proportion of the PMMA homopolymer or copolymer is in the solid content of the coating agent at least 40% by weight, preferably at least 45% by weight and particularly preferably at least 50% by weight.
  • bifunctional, trifunctional, tetrafunctional, pentafunctional or hexafunctional acrylic and / or methacrylic monomers may preferably be used as reactive diluents. These are preferably ester functions, in particular acrylic ester functions.
  • Suitable polyfunctional acrylic and / or methacrylic acid esters are derived from aliphatic polyhydroxy compounds having at least 2, preferably at least 3 and more preferably at least 4 hydroxy groups and preferably from 2 to 12 carbon atoms.
  • aliphatic polyhydroxy compounds examples include ethylene glycol, propylene glycol, diethanol-1,4, hexanediol-1,6, diethylene glycol, triethylene glycol, glycerol, trimethylolpropane, pentaerythritol, dipentaerythritol, tetramethylolethane and sorbitan.
  • esters of said polyhydroxy compounds are glycol diacrylate and - dimethacrylate, butanediol diacrylate or dimethacrylate, Dimethylolpropandiacrylat or - dimethacrylate, diethylene glycol diacrylate or dimethacrylate, divinylbenzene, trimethylolpropane triacrylate or trimethacrylate, glycerol triacrylate or trimethacrylate, pentaerythritol tetraacrylate or tetramethacrylate, dipentaerythritol penta / hexaacrylate (DPHA), 1,2,3,4-butanetetraetetraacrylate or tetramethacrylate, tetramethylolethanetetraacrylate or tetramethacrylate, 2,2-dihydroxy-1,3-propan
  • alkoxylated di-, tri-, tetra-, penta- and hexacrylates or - methacrylates can be used.
  • alkoxylated diacrylates or methacrylates are alkoxylated, preferably ethoxylated methanediol diacrylate, methanediol dimethacrylate, glycerol diacrylate, glycerol dimethacrylate, neopentyl glycol diacrylate,
  • alkoxylated triacrylates or methacrylates are alkoxylated, preferably ethoxylated pentaerythritol triacrylate, pentaerythritol trimethacrylate, glycerol triacrylate, glycerol trimethacrylate, 1,2,4-butanetriol triacrylate, 1,2,4-butanetriol trimethacrylate, trimethylolpropane triacrylate,
  • Trimethylolpropantrimethacrylat Tricyclodecandimethanoldiacrylat, Tricyclodecandimethanoldimethacrylat, Ditrimethylolpropantetraacrylat or
  • alkoxylated tetra-, penta- or hexaacrylates are alkoxylated, preferably ethoxylated pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate dipentaerythritol hexaacrylate, pentaerythritol tetramethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol penta methacrylate or dipentaerythritol hexamethacrylate.
  • alkoxylated diacrylates or methacrylates triacrylates or methacrylates, tetraacrylates or methacrylates, pentaacrylates or methacrylates and / or alkoxylated hexaacrylates or methacrylates of component b)
  • all acrylate groups or Methacrylate groups or only a part of the acrylate groups or methacrylate groups in the respective monomer be bound via alkylene oxide groups to the corresponding radical. It is also possible to use any desired mixtures of such fully or partially alkoxylated di-, tri-, tetra-, penta- or hexaacrylates or -methacrylates.
  • the acrylate or methacrylate group (s) are bonded to the aliphatic, cycloaliphatic or aromatic radical of the monomer via a plurality of successive alkylene oxide groups, preferably ethylene oxide groups.
  • the average number of alkylene oxide or ethylene oxide groups in the monomer is indicated by the degree of alkoxylation or degree of ethoxylation.
  • the degree of alkoxylation or degree of ethoxylation may preferably be from 2 to 25, with particular preference being given to degrees of alkoxylation or degrees of ethoxylation of from 2 to 15, very particularly preferably from 3 to 9.
  • oligomers which belong to the class of aliphatic urethane acrylates or polyester acrylates or polyacrylacrylates. Their use as paint binders is known and is described in Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, Vol.
  • aliphatic urethane acrylates such as Ebecryl® 4858, Ebecryl® 284, Ebecryl® 265, Ebecryl® 264, Ebecryl® 8465, Ebecryl® 8402 (manufacturer Cytec Surface Specialties), Craynor® 925 from Cray Valley, Viaktin® 6160 from Vianova Resin, Desmolux VP LS 2265 from Bayer MaterialScience AG, Photomer 6891 from Cognis or aliphatic urethane acrylates dissolved in reactive diluents such as Laromer® 8987 (70%).
  • the reactive diluent (b) comprises alkoxylated diacrylates and / or dimethacrylates, alkoxylated triacrylates and / or trimethacrylates, alkoxylated tetraacrylates and / or tetramethacrylates, alkoxylated pentaacrylates and / or pentamethacrylates, alkoxylated hexaacrylates and / or hexamethacrylates, aliphatic urethane acrylates, polyester acrylates , Polyacrylacrylates and mixtures thereof.
  • the reactive diluent (b) of the coating composition according to the invention comprises dipentaerythritol penta / hexaacrylate.
  • mixtures of the above-mentioned crosslinking multifunctional monomers with monofunctional monomers such as in particular methyl methacrylate are also according to the invention.
  • the proportion of the multifunctional monomers in such a mixture is preferably at least 20 wt .-%.
  • the reactive diluent is an essential part of the coating composition according to the invention and of the coating according to the invention.
  • the proportion of the at least one reactive diluent overall in the solid fraction of the coating composition is at least 30% by weight, preferably at least 40% by weight, particularly preferably at least 45% by weight.
  • the coating composition of the invention contains a content of ethylenically unsaturated groups of at least 3.0 moles per kg solids content of the coating composition, preferably at least 3.5 moles per kg, more preferably at least 4.0 moles per kg solids content of the coating composition.
  • This content of ethylenically unsaturated groups is also well known to the person skilled in the art under the term double bond density.
  • the term of the at least one photoinitiator of the coating composition according to the invention comprises the common, known to the expert, commercially available compounds such.
  • Hydroxycyclohexylphenylketone isoamyl-p-dimethylaminobenzoate, methyl-4-dimethylaminobenzoate, methyl-o-benzoylbenzoate, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2
  • UV photoinitiators which can be used are BASF's IRGACURE® grades such as IRGACURE® 184, IRGACURE® 500, IRGACURE® 1173, IRGACURE®2959, IRGACURE® 745, IRGACURE® 651, IRGACURE® 369, IRGACURE® 907, IRGACURE® 1000, IRGACURE® 1300, IRGACURE® 819, IRGACURE® 819DW, IRGACURE® 2022, IRGACURE® 2100, IRGACURE® 784, IRGACURE® 250, and the DAROCUR® grades from BASF, such as the grades, can be used DAROCUR® MBF, D ARO CUR® 1173, DAROCUR® TPO, DAROCUR® 4265.
  • Another example of a UV photoinitiator which can be used in the coating composition according to the invention is available under the trade name Esacure One from the manufacturer Lamberti.
  • Photoinitiators are included in the coating agent in the range of> 0.1 to ⁇ 10 parts by weight of the solids content of the coating agent.
  • the coating composition should contain one or more organic solvents beyond the 100 parts by weight of components (a), (b) and (c).
  • solvents are those which do not attack polycarbonate polymers.
  • Such solvents are preferably alcohols.
  • the solvent (d) is selected from 1-methoxy-2-propanol, diacetone alcohol, 2,2,3,3-tetrafluoropropanol and mixtures thereof. Very particular preference is 1-methoxy-2-propanol.
  • the coating composition thus preferably contains in addition to the 100 parts by weight of components (a), (b) and (c) 0 to 900 parts by wt., Particularly preferably 100 to 850 parts by wt., Very particularly preferably 200 to 800 Parts by weight of the at least one organic solvent.
  • the coating composition may optionally contain one or more further coating additives beyond the 100 parts by weight of components (a), (b) and (c).
  • paint additives may for example be selected from the group comprising stabilizers, flow control agents, surface additives, pigments, dyes, inorganic nanoparticles, adhesion promoters, UV absorbers, IR absorbers, preferably from the group containing stabilizers, flow control agents, surface additives and inorganic nanoparticles.
  • the coating composition preferably contains, in addition to the 100 parts by weight of components (a), (b) and (c), 0 to 40 parts by weight, more preferably 0 to 30 parts by weight, most preferably 0.1 to 20 parts by weight of at least one additional paint additive.
  • the total amount of all coating additives contained in the coating composition is preferably from 0 to 40 parts by weight, more preferably from 0 to 30 parts by weight, most preferably from 0.1 to 20 parts by weight.
  • the paint composition may include inorganic nanoparticles for increasing mechanical resistance, such as scratch resistance and / or pencil hardness.
  • Suitable nanoparticles are inorganic oxides, mixed oxides, hydroxides, sulfates, carbonates, carbides, borides and nitrides of elements of the II to IV main group and / or elements of the I to VIII transition group of the periodic table, including the lanthanides.
  • preferred Nanoparticles are silica, alumina, ceria, zirconia, niobium oxide, zinc oxide or titanium oxide nanoparticles, with particular preference being given to silica nanoparticles.
  • the particles used preferably have mean particle sizes (measured by means of dynamic light scattering in dispersion determined as the Z mean) of less than 200 nm, preferably from 5 to 100 nm, particularly preferably from 5 to 50 nm. Preferably, at least 75%, more preferably at least 90%, most preferably at least 95% of all the nanoparticles used have the sizes defined above.
  • the coating composition can be easily prepared by first completely dissolving the polymer in the solvent at room temperature or at elevated temperatures, and then adding the other compulsory and optionally optional components to the room temperature cooled solution either in the absence of solvent (s) and mixed together by stirring or in the presence of solvent (s), for example, added to the solvent (s) and mixed together by stirring.
  • the photoinitiator is first dissolved in the solvent (s) and then the further components are added.
  • subsequent purification by filtration preferably by means of fine filtration.
  • thermoplastic polymer Due to the excellent impact resistance with simultaneous transparency polycarbonate in the context of the present invention can also be used as a thermoplastic polymer for injection molding or filling the 3D-shaped and coated with the protective layer film in a film insert molding process for producing a 3D molded body or plastic part become.
  • the thermoplastic polymer thus comprises polycarbonate.
  • Polycarbonates and polycarbonate preparations suitable for the invention, as well as polycarbonate films, are available, for example, under the trade names Makroion®, Bayblend® and Makroblend® (Bayer MaterialScience).
  • Suitable polycarbonates for the preparation of the polycarbonate compositions according to the invention are all known polycarbonates. These are homopolycarbonates, copolycarbonates and thermoplastic polyestercarbonates.
  • the suitable polycarbonates and polycarbonate preparations suitable for the preparation of the polycarbonate compositions according to the invention are all known polycarbonates. These are homopolycarbonates, copolycarbonates and thermoplastic polyestercarbonates.
  • Polycarbonates preferably have average molecular weights M w of from 18,000 to 40,000, preferably from 26,000 to 36,000 and in particular from 28,000 to 35,000, determined by measuring the relative solution viscosity in dichloromethane or mixtures of equal amounts by weight phenol / o-dichlorobenzene calibrated by light scattering.
  • the preparation of the polycarbonates is preferably carried out by the interfacial process or the melt transesterification process, which are described in various ways in the literature.
  • interfacial process see H. Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, Vol. 9, Interscience Publishers, New York 1964 p. 33 et seq., on Polymer Reviews, Vol. 10, "Condensation Polymers by Interfacial and Solution Methods", Paul W. Morgan, Interscience Publishers, New York 1965, Chapter VIII, p. 325, to Dres. U. Grigo, K. Kircher and P.
  • the polycarbonates can be prepared from reactions of bisphenol compounds with carbonic acid compounds, in particular phosgene or in the melt transesterification process diphenyl carbonate or dimethylcar bonat, to be obtained. Homopolycarbonates based on bisphenol A and copolycarbonates based on the monomers bisphenol A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are particularly preferred.
  • Other bisphenol compounds which can be used for the polycarbonate synthesis are disclosed inter alia in WO-A 2008037364, EP-A 1 582 549, WO-A 2002026862, WO-A 2005113639
  • the polycarbonates may be linear or branched. It is also possible to use mixtures of branched and unbranched polycarbonates.
  • Suitable branching agents for polycarbonates are known from the literature and described for example in the patents US-B 4 185 009, DE-A 25 00 092, DE-A 42 40 313, DE-A 19 943 642, US-B 5 367 044 and US Pat in literature cited herein.
  • the polycarbonates used can also be intrinsically branched, in which case no branching agent is added during the polycarbonate production.
  • An example of intrinsic branches are so-called frieze structures, as disclosed for melt polycarbonates in EP-A 1 506 249.
  • chain terminators can be used in polycarbonate production.
  • the chain terminators used are preferably phenols such as phenol, alkylphenols such as cresol and 4-tert-butylphenol, chlorophenol, bromophenol, cumylphenol or mixtures thereof.
  • the plastic composition (s) of the film or of the thermoplastic polymer of the 3D molded article may additionally contain additives, for example UV absorbers, IR absorbers and other customary processing aids, in particular mold release agents and flow agents, as well as the customary stabilizers, in particular heat stabilizers and also antistatic agents, pigments , Colorants and optical brighteners. In each layer different additives or concentrations of additives may be present.
  • additives for example UV absorbers, IR absorbers and other customary processing aids, in particular mold release agents and flow agents, as well as the customary stabilizers, in particular heat stabilizers and also antistatic agents, pigments , Colorants and optical brighteners.
  • additives for example UV absorbers, IR absorbers and other customary processing aids, in particular mold release agents and flow agents, as well as the customary stabilizers, in particular heat stabilizers and also antistatic agents, pigments , Colorants and optical brighteners.
  • Another object of the present invention is a process for producing the coated polycarbon
  • the coating of the film with the coating agent can be carried out by the conventional methods of coating films with liquid coating compositions, such as by knife coating, spraying, pouring, flooding, dipping, spraying, rolling or spin-coating.
  • the flood process can be done manually with hose or suitable coating head or automatically in the run on flood painting robot and possibly slot nozzles. Preference is given to a application of the coating agent via a roll to roll transfer.
  • the surface of the film to be coated can be pretreated by cleaning or activation.
  • the drying follows the application of the coating agent to the film. This is especially with elevated temperatures in ovens and with moving and possibly also dehumidified air such as working in convection ovens or by jet dryers and heat radiation such as IR and / or NIR. Furthermore, microwaves can be used. It is possible and advantageous to combine several of these drying methods.
  • the drying of the coating in step (ii) preferably comprises flash-off at room temperature and / or elevated temperature, such as preferably at 20-200 ° C., more preferably at 40-120 ° C. After the coating has dried, it is block-resistant, so that the coated substrate, in particular the coated film, can be printed, printed, and / or thermally deformed. In particular, the deformation is preferred because even here by the deformation of a coated film, the shape of a film insert molding process for producing a three-dimensional plastic part can be specified.
  • the conditions for the drying are chosen so that no polymerization (crosslinking) of the acrylate or methacrylate groups is triggered by the increased temperature and / or the heat radiation, since this can affect the deformability.
  • the maximum temperature reached is expediently to be chosen so low that the film does not deform uncontrollably.
  • the coated film After the drying / curing step, the coated film, optionally after lamination with a protective film on the coating, can be rolled up. Rolling up can be done without sticking the coating to the back side of the substrate film or the laminating film. But it is also possible to cut the coated film and feed the blanks individually or as a stack of further processing. Particularly preferred is the thermal deformation of the coated film to a three-dimensional shape, as it is preparatory to a back molding of the film with a thermoplastic polymer such as polycarbonate in a film insert molding process. In a preferred embodiment, step (iii) comprises the cutting and thermal deformation of the coated film.
  • curing with actinic radiation is meant the free radical polymerization of ethylenically unsaturated carbon-carbon double bonds by means of initiator radicals which are released by irradiation with actinic radiation, for example from the photoinitiators described above.
  • the radiation curing is preferably carried out by the action of high-energy radiation, ie UV radiation or daylight, for example light of wavelength from> 200 nm to ⁇ 750 nm, or by irradiation with high-energy electrons (electron radiation, for example from> 90 keV to ⁇ 300 keV).
  • high-energy radiation ie UV radiation or daylight, for example light of wavelength from> 200 nm to ⁇ 750 nm
  • electron radiation for example from> 90 keV to ⁇ 300 keV
  • medium or high pressure mercury vapor lamps are used as radiation sources for light or UV light, wherein the mercury vapor may be modified by doping with other elements such as gallium or iron.
  • the radiators can be installed immovable, so that the material to be irradiated is moved past the radiation source by means of a mechanical device, or the radiators can be movable, and the material to be irradiated does not change its location during curing.
  • the radiation dose for UV curing which is usually sufficient for crosslinking, is in the range from> 80 mJ / cm 2 to ⁇ 5000 mJ / cm 2 .
  • the actinic radiation is therefore light in the range of UV light.
  • the irradiation may optionally also be carried out in the absence of oxygen, for example under an inert gas atmosphere or oxygen-reduced atmosphere.
  • inert gases are preferably nitrogen, carbon dioxide, noble gases or combustion gases.
  • the irradiation can be carried out by covering the coating with media transparent to the radiation. Examples include plastic films, glass or liquids such as water.
  • the type and concentration of the optionally used initiator can be varied or optimized in a manner known to the person skilled in the art or by preliminary preliminary experiments.
  • the curing it is particularly advantageous to carry out the curing with a plurality of radiators whose arrangement is to be selected so that each point of the coating obtains as far as possible the optimal curing for curing dose and intensity.
  • unirradiated areas should be avoided.
  • thin films as well as films of materials with low glass transition temperature can tend to uncontrolled deformation when the irradiation exceeds a certain temperature.
  • mercury radiators are particularly preferably used in fixed installations.
  • Photoinitiators are then in concentrations of> 0.1% by weight to ⁇ 10% by weight, particularly preferably from> 0.2% by weight to ⁇ 3.0% by weight based on the solids Coating used.
  • a dose of> 80 mJ / cm 2 to ⁇ 5000 mJ / cm 2 is used.
  • thermoplastic polymer such as polycarbonate
  • the backing of the film takes place in a step (v) by means of extrusion or injection molding, preferably with polycarbonate melt.
  • the coated surface of the coated polycarbonate film produced in this way then has the property combination according to the invention with regard to scratch resistance, solvent resistance and the reduced oiling effect.
  • a further subject of the present invention is therefore a 3D plastic part comprising the coated polycarbonate film according to the invention.
  • the 3D plastic part according to the present invention is obtainable by a film insert molding method. Such methods include injection molding, for example by injection molding, the coated polycarbonate films of the invention with a thermoplastic polymer, in particular with polycarbonate.
  • another object of the present invention is the use of the coated polycarbonate film according to the invention for the production of plastic parts in film insert molding process.
  • the use according to the invention comprises the production of plastic parts for the automotive, transport, electrical, electronics and construction industries. Examples
  • the layer thickness of the coatings was measured by observing the cut edge in an optical microscope of the type Axioplan manufacturer Zeiss. Method - reflected light, bright field, magnification 500x.
  • the pencil hardness was measured according to ASTM D 3363 using an Elcometer 3086 Scratch boy (Elcometer Instruments GmbH, Aalen, Germany) at a loading of 500 g unless otherwise specified.
  • the steel wool scratching was determined by using a steel wool no. 00 (Oskar Weil GmbH Rakso, Lahr, Germany) was glued to the flat end of a 500 g locksmith hammer, the area of the hammer is 2.5 cm x 2.5 cm, ie about 6.25 cm 2 . The hammer was placed without additional pressure on the surface to be tested, so that a defined load of about 560 g was reached. The hammer was then moved back and forth ten times in double strokes. Subsequently, the contaminated surface was cleaned with a soft cloth of fabric residues and paint particles.
  • Scratch was characterized by haze and gloss values, measured across the scribing direction with a Micro HAZE plus (20 ° gloss and Haze; Byk-Gardner GmbH, Geretsried, Germany). The measurement was carried out before and after scratching. The difference values for gloss and haze before and after exposure as AGlanz and AHaze are given.
  • the solvent resistance of the coatings was usually tested with isopropanol, xylene, 1-methoxy-2-propyl acetate, ethyl acetate, acetone in technical grade.
  • the solvents were applied to the coating with a soaked cotton swab and protected from evaporation by capping. Unless otherwise stated, an exposure time of 60 minutes was maintained at about 23 ° C. After the end of the exposure time, the cotton ball is removed and the test surface wiped clean with a soft cloth. The matching takes place immediately visually and after slight scratching with the fingernail.
  • the "oiling effect” is also called the "Newton Ring Effect”.
  • Newton's rings appear as an irregular interference pattern on the surface of coated parts when viewed in reflection under white light.
  • a light beam is reflected both on the outer surface of a coated component and on the underlying surface of the coated substrate. Occurs between the two reflected rays of a wavelength a retardation in the range ⁇ / 2, this wavelength is attenuated by interference or even extinguished and the originally irradiated white light is changed locally in reflection color.
  • These patterns can also be described as oscillations in the reflection spectrum of coated surfaces (in this case coated films) be detected. The intensity and frequency of these oscillations is a measure of the occurrence of the Newton Ring effect.
  • the measured values used to determine the oiling effect were taken from transmission and reflection spectra taken with a spectrometer from STEAG ETA-Optik, CD-Measurement System ETA-RT.
  • the direct reflection was measured at a viewing angle of 0 °.
  • the numerical value for the Newton rings was determined from the reflection spectra as follows: mPV: maximum peak-valley ratio in% in the range 400-650 nm. MPV / 2: amplitude of the oscillation in% R: reflection at the associated wavelength in%
  • Example 1 Preparation of a coating agent
  • a coating composition was prepared from Degalan M345 (PMMA, manufacturer Evonik, M w 180,000 specification by Evonik). The yield was 275 g, the solids content 19 wt .-%, the calculated double bond density in the solids content of the paint about 5.1 mol / kg.
  • Example 3 (not according to the invention): Preparation of a coating agent
  • a coating composition was prepared from Degalan M825 (PMMA, manufactured by Evonik; M w 80,000 specified by Evonik). The yield was 280 g, the solids content 19 wt .-%, the calculated double bond density in the solids content of the paint about 5.1 mol / kg.
  • Example 4 Coating of Films
  • the coating compositions according to Examples 1 to 3 were applied by means of a slit caster of the manufacturer TSE Troller AG to a carrier film such as, for example, macro fol DE 1-1 (Bayer MaterialScience AG, Leverkusen, Germany).
  • the layer thickness of the carrier film was 250 ⁇ .
  • Another carrier film was a PC / PMMA coextruded film of the type macro fol® SR 253 (Bayer MaterialScience AG, Leverkusen, Germany).
  • the total layer thickness of the carrier film was 250 ⁇ ⁇ the strength of the PMMA layer 15 ⁇ .
  • the coating composition from example 1 was applied by means of slot caster to the PMMA side of the carrier film.
  • the third carrier film used was a PC / PMMA coextruded film of the manufacturer MSK (Meihan Shinku Kogyo Co. Ltd., Japan).
  • the total layer thickness of the carrier film was 250 ⁇ and the strength of the PMMA layer 56 ⁇ .
  • the coating composition from example 1 was applied by means of slot caster to the PMMA side of the carrier film.
  • Condenser drier 90-110 ° C preferably in the range of Tg of the polymer to be dried.
  • the coating was roll on roll, that is, the polycarbonate film was rolled in the coating system.
  • the film was passed through one of the above application units and charged with the coating solution. Thereafter, the film with the wet coating was passed through the dryer. After exiting the dryer, the now dry coating was usually provided with a laminating film to protect it from soiling and scratching. Thereafter, the film was rolled up again.
  • Example 5 Block Strength Check The coated sides of the non-UV cured films produced in Example 4 were covered with a GH-X 173 A laminating film (Bischof + Klein, Lengerich, Germany) and 1 h at about 23 ° C with an aluminum plate in the dimensions 4.5 x 4.5 cm 2 and a weight of 2 kg applied. Thereafter, the weight and the liner were removed and the surface of the coating visually inspected for changes.
  • a GH-X 173 A laminating film (Bischof + Klein, Lengerich, Germany) and 1 h at about 23 ° C with an aluminum plate in the dimensions 4.5 x 4.5 cm 2 and a weight of 2 kg applied. Thereafter, the weight and the liner were removed and the surface of the coating visually inspected for changes.
  • Example 6 Forming the coated films and curing the coatings
  • the HPF deformation tests were performed on a SAMK 360 system.
  • the tool was electrically heated to 100 ° C.
  • the film heating was carried out by means of IR radiators at 240, 260 and 280 ° C.
  • the heating time was 16 seconds. It was reached a film temperature of about 170 ° C.
  • the deformation took place at a deformation pressure of 100 bar.
  • the deformation tool was a HL-aperture.
  • the corresponding foil sheet was fixed in position on a pallet.
  • the pallet went through the deformation station in the heating zone and stayed there for the set time (16 s).
  • the film was heated so that the film briefly experienced a temperature above the softening point, the core of the film was about 10-20 ° C colder. As a result, the film was relatively stable when it is moved into the deformation station.
  • the film was fixed by moving the tool over the actual tool, at the same time the film was formed by gas pressure over the tool.
  • the pressure holding time of 7 s ensured that the film accurately formed the tool.
  • the gas pressure was relieved again.
  • the film was then removed from the pallet and could now be cured with UV light.
  • the UV curing of the coating according to the invention was carried out using a high-pressure mercury vapor lamp of the evo 7 dr type (ssr engineering GmbH, Lippstadt, Germany). This system is equipped with dichroic reflectors and quartz discs and has a specific power of 160 W / cm. A UV dose of 2.0 J / cm 2 and an intensity of 1.4 W / cm 2 was applied. The surface temperature should reach> 60 ° C. The UV dose was determined using a Lightbug ILT 490 (International Light Technologies Inc., Peabody MA, USA). The information on the surface temperature were with RS temperature test strips (order number 285-936, RS Components GmbH, Bad Hersfeld, Germany).
  • Table 1 shows that the uppermost coating according to the invention with the coating composition according to the invention leads to a marked improvement in pencil hardness and scratch resistance contributes.
  • the coating according to the invention led to very good solvent resistance of the films.
  • Particularly noteworthy is the solvent resistance of the developed final coating against acetone. Acetone, the most aggressive solvent for polycarbonate films, has almost no effect on the final coating of the invention even after an exposure time of 1 hour (characteristic ⁇ 1, scoring 0 to 5). This means that the solvent resistance for this coating is at the level of the best (but not deformable) hardcoats. Without the topcoat of the present invention, PC / PMMA coextrusion films, while relatively hard, do not exhibit adequate solvent resistance.
  • Example 7 Determination of the refractive index of the coating
  • the refractive index n as a function of the wavelength of the samples was obtained from the transmission and reflection spectra.
  • an approximately 300 nm thick film of the coating composition from Example 1 was spin-coated on a quartz glass substrate.
  • the transmission and reflection spectrum of this layer package was measured with a spectrometer "CD-Measurement System ETA-RT" manufacturer AudioDev and then the layer thickness and the spectral curve of n adapted to the measured transmission and reflection spectra in the range of 380-850 nm.
  • the refractive indices for the cured coatings refer to the wavelength of 589 nm and thus correspond to nD 20 .
  • the measure of the rainbow effect was the number of Newton rings determined from reflection spectra. It was calculated from the maximum amplitude in the reflection spectrum between 400 nm and 650 nm. Reflection (R) and maximum amplitude (MA) were taken from the spectrum in percent. To eliminate the unit, MA was divided by R at the same wavelength. To avoid decimal places, the calculated value was multiplied by 1000. Table 3: Rainbow effect / Newton rings
  • the coated polycarbonate films of the present invention have scratch resistant and solvent resistant surfaces with at least reduced oiling.
  • the films of the invention are outstandingly suitable for the production of moldings of all kinds, in particular by film insert molding process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Die vorliegende Erfindung betrifft eine mit mindestens einer Polymethylmethacrylat-haltigen Schicht beschichteten Polycarbonat-Folie, umfassend eine Polycarbonatfolie und darauf mindestens eine Polymethylmethacrylat-haltige Schicht mit einem Polymethylmethacrylat-Anteil von mindestens 40 Gew.-%, dadurch gekennzeichnet, dass die gesamte Schichtdicke der mindestens einen Polymethylmethacrylat-haltigen Schicht mindestens 10 µm beträgt, die oberste Schicht der mindestens einen Polymethylmethacrylat-haltigen Schicht erhältlich ist durch Beschichtung mit einem Beschichtungsmittel, umfassend mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat-Copolymer mit einem mittleren Molgewicht (Mw) von mindestens 100.000 g/mol in einem Gehalt von mindestens 40 Gew.-% des Festanteils des Beschichtungsmittels; mindestens einen UV-härtbaren Reaktivverdünner in einem Gehalt von mindestens 30 Gew.-% des Festanteils des Beschichtungsmittels; mindestens einen Fotoinitiator in einem Gehalt von 0,1 bis 10 Gewichtsteilen des Festanteils des Beschichtungsmittels; und mindestens ein organisches Lösungsmittel, wobei der Anteil an ethylenisch ungesättigten Gruppen mindestens 3 mol pro kg des Festanteils des Beschichtungsmittels beträgt.

Description

Oiling-arme beschichtete Polycarbonat-Folien
Die vorliegende Erfindung betrifft eine mit mindestens einer Polymethylmethacrylat-haltigen Schicht beschichteten Polycarbonat-Folie, deren Oberfläche verbesserte Eigenschaften hinsichtlich Kratzfestigkeit, Lösemittelbeständigkeit und Anti-Oiling- Verhalten aufweist, sowie ein Herstellungsverfahren für eine solche Folie. Des Weiteren betrifft die vorliegende Erfindung SD- Kunststoffteile, umfassend die erfindungsgemäße Folie sowie die Verwendung der erfindungsgemäßen Folien zur Herstellung von Kunststoffteilen in film insert molding- Verfahren.
Für die Herstellung von Kunststoffteilen im Spritzgussverfahren hat sich die Film-Insert-Molding- Technologie etabliert. Sie sieht vor, dass die Frontoberfläche eines Teiles zuerst aus einer beschichteten Folie zwei- oder dreidimensional vorgefertigt wird und danach mit einer Kunststoffschmelze von der Rückseite gefüllt bzw. hinterspritzt wird.
Dabei ist es oft erwünscht, dass die Frontseite gegen chemische und mechanische Einwirkungen ausreichend geschützt ist. Dieses wird im Stand der Technik oftmals durch eine entsprechende Beschichtung oder Lackierung der Oberfläche erreicht. Um eine Nassbeschichtung der fertigen dreidimensionalen Teile zu vermeiden, ist es dabei vorteilhaft, dass eine solche Lackierung oder Beschichtung schon auf der Folie aufgebracht sein soll, welche dann mit der Folie alle weiteren Umformungsschritte durchläuft und danach endgültig ausgehärtet wird, wie beispielsweise durch UV- Belichtung.
Daraus entsteht ein ganz spezielles Eigenschaftsprofil für beschichtete Folien, die zu dieser Technologie passen. Im Stand der Technik hat sich für diese Produktklasse der Begriff„Formable Hardcoating" durchgesetzt, nämlich eine Folienbeschichtung, die zuerst ausreichend blockfest ist, sich dann aber zusammen mit dem Substrat thermisch beliebig verformen lässt und am Ende durch UV-Härten die Eigenschaften einer Schutzschicht bekommt.
Eine solche Eigenschaftskombination im Sinne von Blockfestigkeit und thermoplastischem Verhalten der primären Beschichtung zusammen mit dem großen latenten Potential zur UV- Vernetzung ist schwer zu realisieren.
Die meisten Lösungsansätze für diese Aufgabenstellung im Stand der Technik umfassen den Einsatz von Makromonomeren, die hauptsächlich durch Dual-Cure- Verfahren hergestellt werden, wie es unter anderem beschrieben ist in Beck, Erich (BASF), Scratch resistant UV coatings for automotive applications, Pitture e Vernici, European Coatings (2006), 82(9), 10-19; Beck, Erich, Into the third dimension: three ways to apply UV coating technology to 3D-automotive objects, European Coatings Journal (2006), (4), 32, 34, 36, 38-39; Petzoldt, Joachim; Coloma, Fermin (BMS), New three- dimensionally formable hardcoat films, JOT, Journal fuer Oberflaechentechnik (2010), 50(9), 40-42; EP 2113527 AI ; Petzoldt et al., Development of new generation hardcoated films for complex 3D-shaped FIM applications, RadTech Asia 2011, Conference Proceedings.
Nach dem Hinterspritzen dieser Folienprodukte mit beispielsweise Polycarbonat-Schmelze {Film insert Molding) entstehen die gewünschten Kunststoffteile. An das optische Erscheinungsbild solcher Kunststoffteile, die im Auto, in jeglichen anderen Transportmitteln, Elektro- und Elektronikgeräten und in der Bauindustrie einen breiten Einsatz finden, werden hohe Anforderungen gestellt. Irreguläre Regenbogenphänomene, die oft als sogenanntes„Oiling" bezeichnet werden, stören den gewünschten optischen Eindruck. Besonders schwer fällt dieser unerwünschte Effekt ins Auge, wenn Kunststoffteile in glänzendem Piano- Schwarz dargestellt werden sollen.
Der„Oiling"-Effekt entsteht durch Interferenz zweier in eine Richtung reflektierten Lichtstrahlen, wobei ein Strahl an der Grenzfläche Luft-Beschichtung reflektiert wird, während der andere Strahl an der darunter liegenden Grenzfläche Beschichtung-Substratfolie reflektiert wird. Je mehr Licht von beiden Flächen reflektiert wird, desto sichtbarer kann der Effekt werden. Glänzende Lackierungen glänzender Substrate sind eine Voraussetzung für starkes Oiling. Genau dieser Fall tritt ein, wenn beispielsweise eine glatte Polycarbonatfolie mit einem glänzendem Klarlack überdeckt wird.
In einer solchen Anwendung werden oft glatte Polycarbonat-Folien mit einem Brechungsindex von ca. 1,58 verwendet, welche in der Regel mit einem Aliphaten-basierten Lack in einer anwendungsrelevanten Schichtstärke zwischen 5 und 20 μιη beschichtet werden. Durch thermische Verformung wird die Schichtdicke der Beschichtung auch ortsabhängig auf dem Bauteil variiert, was insgesamt die Ausbildung eines Regenbogeneffekts auf dem Bauteil begünstigen kann.
Insgesamt besteht damit ein erhöhter Bedarf an Polycarbonat-Folien mit einer oiling-armen Oberfläche, die darüber hinaus noch vor und nach einem Verformungsprozess ausreichend blockfest ist sowie nach dem Härten durch beispielsweise UV-Licht eine gewisse Kratzfestigkeit und Lösemittelbeständigkeit aufweist. Das Erfüllen eines solchen Anforderungsprofils mit der erwähnten Kombination von Eigenschaften stellt eine besondere Herausforderung an den Fachmann dar.
Es wurde überraschenderweise festgestellt, dass thermisch verformbare und danach UV-härtbare beschichteten Polycarbonatfolien mit besonderer Kratz- und Lösemittelbeständigkeit in besonders effizienter Weise auch„oiling"-arm realisiert werden können, wenn das Polycarbonatsubstrat mit mindestens einer Polymethylmethacrylat-haltigen Schicht überdeckt wird, wobei die gesamte Stärke der Schicht oder von den Schichten zusammen mindestens 10 μιη beträgt und diese Schicht oder jede von diesen Schichten mindestens 40 Gew.-% Polymethylmethacrylat beinhalten und ein Beschichtungsmittel für die gesamte Schicht oder für die oberste Schicht der PMMA-haltigen Beschichtung mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat- Copolymer mit einer gewichtsmittleren Molmasse von mindestens 100.000 g/mol, mindestens einen UV-härtbaren Reaktiwerdünner, mindestens einem Fotoinitiator und mindestens ein Lösemittel enthält.
Die vorliegende Erfindung stellt daher folgendes bereit: Eine beschichtete Polycarbonat-Folie, umfassend eine Polycarbonatfolie und darauf mindestens eine Polymethylmethacrylat-haltige Schicht mit einem Polymethylmethacrylat- Anteil von mindestens 40 Gew.-%, dadurch gekennzeichnet, dass die gesamte Schichtdicke der mindestens einen Polymethylmethacrylat-haltigen Schicht mindestens 10 μιη beträgt, die oberste Schicht der mindestens einen Polymethylmethacrylat-haltigen Schicht erhältlich ist durch Beschichtung mit einem Beschichtungsmittel, umfassend (a) mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat-
Copolymer mit einem mittleren Molgewicht Mw von mindestens 100.000 g/mol in einem Gehalt von mindestens 40 Gew.-% des Festanteils des B eschichtungsmittels ;
(b) mindestens einen UV-härtbaren Reaktiwerdünner in einem Gehalt von mindestens 30 Gew.-% des Festanteils des Beschichtungsmittels;
(c) mindestens einen Fotoinitiator in einem Gehalt von > 0,1 bis < 10 Gewichtsteilen des Festanteils des Beschichtungsmittels; und
(d) mindestens ein organisches Lösungsmittel, wobei der Anteil an ethylenisch ungesättigten Gruppen mindestens 3 mol pro kg des Festanteils des Beschichtungsmittels beträgt.
Die PMMA-haltige Beschichtung kann also homogen sein und einschichtig aufgetragen sein. Sie kann auch aus mehreren PMMA-haltigen Schichten bestehen, die nacheinander aufgetragen wurden. Wie oben beschrieben wurde, können die PMMA-haltigen Schichten der mindestens einen PMMA-haltigen Schicht unterschiedliche Zusammensetzungen haben. Die Voraussetzungen dafür umfassen den Mindestanteil des PMMAs von 40 Gew.-% für jede Schicht, die besondere Zusammensetzung des Beschichtungsmittels für die oberste Schicht und die gesamte Schichtstärke PMMA-haltigen Schichten der mindestens einen PMMA-haltigen Schicht von mindestens 10 μιη. Wenn nur eine PMMA-haltige Schicht vorgesehen ist, dann besteht die PMMA-Schicht mit einer Schichtdicke von mindestens 10 μιη aus einer Beschichtung, die durch Beschichten mit dem erfindungsgemäßen Beschichtungsmittel erhältlich ist.
Die beschichtete Polycarbonatfolie gemäß der vorliegenden Erfindung besteht daher in der einfachsten Ausführungsform aus einer Polycarbonatfolie und einer Beschichtung, die durch Beschichten der Folie mit dem Beschichtungsmittel gemäß der Erfindung erhalten wurde. Auf diese Weise lässt sich hocheffizient zu einer erfindungsgemäßen Polycarbonatfolie mit einer oiling- armen, kratzfesten und lösemittelbeständigen Oberfläche gelangen.
Ebenso vorteilhaft ist eine insgesamt mindestens 10 μιη starke zweischichtige Überdeckung des Polycarbonatsubstrats, wobei die untere Schicht, die unmittelbar an das Polycarbonat angrenzt, aus reinem Polymethylmethacrylat besteht und die obere Schicht aus dem erfindungsgemäßen Beschichtungsmittel erhältlich ist. Somit umfasst die erfindungsgemäße beschichtete Polycarbonatfolie in dieser bevorzugten Ausführungsform zwei Polymethylmethacrylat-haltige Schichten. In einer bevorzugten Ausgestaltung davon umfasst die erfindungsgemäße Folie eine durch Coextrusion erhältliche Polycarbonat/Polymethylmethacrylat-Folie und eine durch Beschichten mit dem Beschichtungsmittel gemäß der vorliegenden Erfindung erhältliche Beschichtung auf der Polymethylmethyacrylat-Schicht der Folie.
Polycarbonat/Polymethylmethacrylat co-extrudierten Folien mit unterschiedlich starker Polymethylmethacrylat-Schicht sind im Stand der Technik bekannt und vielfältig kommerziell erhältlich, wie beispielsweise von der Bayer Materialscience AG unter den Handelsnamen Makrofol® SR 253, Makrofol® SR 906, Makrofol® SR 280. Folien dieser Art können zur Herstellung der erfindungsgemäßen Folien dienen, indem sie derart mit auf der Polymethylmethacrylat-Seite mit dem erfindungsgemäßen Beschichtungsmittel beschichtet werden, dass die PMMA-haltige Gesamtschichtdicke mindestens 10 μιη beträgt.
Viele der erwähnten, im Stand der Technik und im Handel erhältlichen coextrudierten PC/PMMA- Folien weisen schon eine PMMA-Schicht mit einer Dicke von mehr als 10 μιη auf. Auf solchen Substraten führt sogar eine sehr dünne erfindungsgemäße Beschichtung wie beispielsweise in einer Dicke von 5 μιη zu keinem nennenswerten Oiling, weil die Brechungsindices von PMMA und der erfindungsgemäßen Beschichtung, die größtenteils auch aus PMMA besteht, sehr dicht beieinander liegen. Dieses neu entstehende Interface bringt keine Verstärkung des unerwünschten Regenbogen- Phänomens.
Die Anzahl der gesamten PMMA-haltigen Schichten ist somit mindestens 1 und kann insgesamt 1 , 2, 3 oder 4 betragen. Dabei beträgt die erfindungsgemäße Schichtdicke der PMMA-haltigen Schichten mindestens 10 μιη. Je nach Anzahl und Dicke der PMMA-haltigen Schichten kann die durch Beschichten mit dem erfindungsgemäßen Beschichtungsmittel erhältliche oberste PMMA- haltige Schicht mindestens 2 μιη, bevorzugt mindestens 5 μιη und besonders bevorzugt mindestens 10 μιη dick sein. Die Dicke der oben erwähnten coextradierten PMMA-Schicht einer coextradierten PC/PMMA-Folie kann mindestens 10 μηι, bevorzugt mindestens 15 μιη und besonders bevorzugt mindestens 20 μιη betragen. So kann die Dicke der PMMA-Schicht einer coextradierten PC/PMMA-Folie mindestens 10 μιη und die Dicke der aus dem erfindungsgemäßen Beschichtungsmittel erhältlichen Schicht darauf mindestens 5 μιη betragen.
Das erfindungsgemäße Beschichtungsmittel kann einfach und effizient erhalten werden. Darüber hinaus sind damit erhältliche Beschichtungen auf vielen Oberflächen wie insbesondere für die im Film insert molding- Verfahren in Frage kommenden Folien ausreichend blockfest, lassen sich dann aber zusammen mit dem beschichteten Substrat thermisch beliebig verformen und bekommen nach Härtung wie beispielsweise durch UV-Strahlung eine Oberfläche mit vorteilhaften Eigenschaften hinsichtlich Kratzfestigkeit, Lösemittelbeständigkeit sowie eines zumindest verringerten Oiling- Effektes.
Die Bestimmung der Kratzfestigkeit lässt sich beispielsweise anhand der Bleistifthärte bestimmen, wie sie in Anlehnung an ASTM D 3363 gemessen werden kann. Eine Bewertung der Lösemittelbeständigkeit kann in Anlehnung an EN ISO 2812-3:2007 erfolgen. Bemerkenswert ist, dass die durch das erfindungsgemäße Beschichten der Folie mit dem Beschichtungsmittel und abschließendem Härten durch UV-Strahlung erhaltene Oberfläche des Formkörpers selbst gegenüber dem sonst für Polycarbonat-Oberflächen sehr schädlichen Lösungsmittel Aceton eine gute Beständigkeit aufweist.
Als Maß für den das oiling definierenden Regenbogeneffekt dient die aus Reflektionsspektren ermittelte Zahl der Newton-Ringe. Sie wird aus der maximalen Amplitude im Reflektionsspektrum zwischen 400 nm und 650 nm errechnet. Reflektion (R) und maximale Amplitude (MA) werden aus dem Spektrum in Prozent entnommen. Um die Einheit zu eliminieren wird MA durch R bei derselben Wellenlänge dividiert. Um Nachkommastellen zu vermeiden, wird der ermittelte Wert mit 1000 multipliziert. Die so ermittelten Werte liegen bei erfindungsgemäßen Beschichtungen unter 20, während Vergleichsfolien mit offensichtlichem Oiling Werte ab 30 und auch weit darüber zeigen.
Das Beschichtungsmittel gemäß der vorliegenden Erfindung umfasst
(a) mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat- Copolymer mit einem mittleren Molgewicht Mw von mindestens 100.000 g/mol in einem Gehalt von mindestens 40 Gew.-% des Festanteils des B eschichtungsmittels ;
(b) mindestens einen UV-härtbaren Reaktiwerdünner in einem Gehalt von mindestens 30 Gew.-% des Festanteils des Beschichtungsmittels; (c) mindestens einen Fotoinitiator in einem Gehalt von > 0,1 bis < 10 Gewichtsteilen des Festanteils des Beschichtungsmittels; und
(d) mindestens ein organisches Lösungsmittel, wobei der Anteil an ethylenisch ungesättigten Gruppen mindestens 3 mol pro kg des Festanteils des Beschichtungsmittels beträgt.
Unter Polymethylmethacrylat (PMMA) versteht man Polymethylmethacrylat-Homopolymere und Copolymere auf Methylmethacrylat-Basis, vorzugsweise mit einem Methylmethacrylat- Anteil von mehr als 70 Gew.-%. Solche PMMA-Polymere und PMMA-Copolymere sind beispielsweise unter den Handelsnamen Degalan®, Degacryl®, Plexyglas®, Acrylite® (Hersteller Evonik), Altuglas, Oroglas (Hersteller Arkema), Elvacite®, Colacryl®, Lucite® (Hersteller Lucite) bekannt und im Handel erhältlich.
Bevorzugt sind PMMA-Homopolymere sowie Copolymere aus 70 Gew.-% bis 99,5 Gew.-% Methylmethacrylat und 0,5 Gew.-% bis 30 Gew.-% Methylacrylat, besonders bevorzugt aus 90 Gew.-% bis 99,5 Gew.-% Methylmethacrylat und 0,5 Gew.-% bis 10 Gew.-% Methylacrylat. Die Vicaterweichungstemperaturen VET gemäß ISO 306 betragen bevorzugt mindestens 95°C, und liegen besonders bevorzugt im Bereich von 100 °C bis 115 °C.
Das mittlere Molekulargewicht Mw der erfindungsgemäß im Beschichtungsmittel einzusetzenden PMMA-Homopolymere und Copolymere beträgt mindestens 100.000 g/mol, bevorzugt mindestens 150.000 g/mol und besonders bevorzugt mindestens 200.000 g/mol.
Die Bestimmung des Molekulargewichts Mw kann beispielsweise per Gelpermeationschromatographie oder per Streulichtmethode erfolgen (siehe z. B. H. F. Mark et al., Encyclopedia of Polymer Science and Engineering, 2nd. Edition, Vol. 10, Seiten 1 ff, J. Wiley, 1989).
Das PMMA-Homopolymer oder -Copolymer ist ein wesentlicher Teil des erfindungsgemäßen Beschichtungsmittels und der erfindungsgemäßen Beschichtung. Der Anteil des PMMA- Homopolymers oder -Copolymers beträgt im Festanteil des Beschichtungsmittels mindestens 40 Gew.- %, bevorzugt mindestens 45 Gew.- % und besonders bevorzugt mindestens 50 Gew.- %.
Als Komponente (b) des erfindungsgemäßen Beschichtungsmittel sind als Reaktiwerdünner bifunktionelle, trifunktionelle, tetrafunktionelle, pentafunktionelle oder hexafunktionelle Acryl- und/oder Methacrylmonomere bevorzugt einsetzbar. Vorzugsweise handelt es sich um Esterfunktionen, insbesondere Acrylesterfunktionen. Geeignete mehrfunktionelle Acryl- und/oder Methacrylsäureester leiten sich von aliphatischen Polyhydroxyverbindungen mit wenigstens 2, vorzugsweise wenigstens 3 und besonders bevorzugt wenigstens 4 Hydroxygruppen und vorzugsweise 2 bis 12 Kohlenstoffatomen ab.
Beispiele solcher aliphatischen Polyhydroxyverbindungen sind Ethylenglykol, Propylenglykol, Bu- tandiol-1,4, Hexandiol-1,6, Diethylenglykol, Triethylenglykol, Glycerin, Trimethylolpropan, Pentaerythrit, Dipentaerythrit, Tetramethylolethan und Sorbitan. Beispiele für sich als bi- bis hexafunktionelle Acryl- und/oder Methacrylmonomere zum Reaktiwerdünner erfindungsgemäß bevorzugt eignende Ester der genannten Polyhydroxyverbindungen sind Glykoldiacrylat und - dimethacrylat, Butandioldiacrylat oder -dimethacrylat, Dimethylolpropandiacrylat oder - dimethacrylat, Diethylenglykoldiacrylat oder -dimethacrylat, Divinylbenzol, Trimethylolpropan- triacrylat oder -trimethacrylat, Glycerintriacrylat oder -trimethacrylat, Pentaerythrittetraacrylat oder -tetramethacrylat, Dipentaerythritpenta/hexaacrylat (DPHA), 1,2,3,4-Butantetraoltetraacrylat oder - tetramethacrylat, Tetramethylolethantetraacrylat oder -tetramethacrylat, 2,2-Dihydroxy-propandiol- 1,3-tetraacrylat oder -tetramethacrylat, Diurethandimethacrylat (UDMA), Sorbitan-tetra-, -penta- oder -hexaacrylat oder die entsprechenden Methacrylate. Es können auch Gemische von vernetzenden Monomeren mit zwei bis vier oder mehr ethylenisch ungesättigten, radikalisch polymerisierbaren Gruppen mitverwendet werden.
Weiter erfindungsgemäß als Reaktiwerdünner bzw. als Komponente b) des erfindungsgemäßen Beschichtungsmittels können alkoxylierte Di-, Tri-,Tetra-, Penta- und Hexacrylate oder - methacrylate verwendet werden. Beispiele für alkoxylierte Diacrylate oder -methacrylate sind alkoxyliertes, bevorzugt ethoxyliertes Methandioldiacrylat, Methandioldimethacrylat, Glycerindiacrylat, Glycerindimethacrylat, Neopentylglycoldiacrylat,
Neopentylglycoldimethacrylat, 2-Butyl-2-Ethyl-l,3-Propandioldiacrylate, 2-Butyl-2-Ethyl-l,3- Propandioldimethacrylat, Trimethylolpropandiacrylat oder Trimethylolpropandimethacrylat. Beispiele für alkoxylierte Triacrylate oder -methacrylate sind alkoxyliertes, bevorzugt ethoxyliertes Pentaerythrittriacrylat, Pentaerythrittrimethacrylat, Glycerintriacrylat, Glycerintrimethacrylat, 1 ,2,4-Butantrioltriacrylat, 1 ,2,4-Butantrioltrimethacrylat, Trimethylolpropantriacrylat,
Trimethylolpropantrimethacrylat, Tricyclodecandimethanoldiacrylat, Tricyclodecandimethanoldimethacrylat, Ditrimethylolpropantetraacrylat oder
Ditrimethylolpropantetramethacrylat.
Beispiele für alkoxylierte Tetra-, Penta- oder Hexaacrylate sind alkoxyliertes, bevorzugt ethoxyliertes Pentaerythrittetraacrylat, Dipentaerythrittetraacrylat, Dipentaerythritpentaacrylat Dipentaerythrithexaacrylat, Pentaerythrittetramethacrylat, Dipentaerythrittetramethacrylat, Dipentaerythritpentamethacrylat oder Dipentaerythrithexamethacrylat.
In den alkoxylierten Diacrylaten oder -methacrylaten, Triacrylaten oder -methacrylaten, Tetraacrylaten oder -methacrylaten, Pentaacrylaten oder -methacrylaten und/oder alkoxylierten Hexaacrylaten oder -methacrylaten der Komponente b) können alle Acrylatgruppen oder Methacrylatgruppen oder nur ein Teil der Acrylatgruppen oder Methacrylatgruppen im jeweiligen Monomer über Alkylenoxidgruppen an den entsprechenden Rest gebunden sein. Es können auch beliebige Mischungen solcher ganz oder teilweise alkoxylierten Di-, Tri-, Tetra-, Penta- oder Hexaacrylate bzw. -methacrylate eingesetzt werden. Dabei ist es auch möglich, das die Acrylat- oder Methacrylatgruppe(n) über mehrere aufeinanderfolgende Alkylenoxidgruppen, vorzugsweise Ethylenoxidgruppen an den aliphatischen, cycloaliphatischen oder aromatischen Rest des Monomeren gebunden sind. Die mittlere Anzahl der Alkylenoxid- bzw Ethylenoxidgruppen im Monomer wird durch den Alkoxylierungsgrad bzw. Ethoxylierungsgrad angegeben. Der Alkoxylierungsgrad bzw. Ethoxylierungsgrad kann bevorzugt von 2 bis 25 betragen, besonders bevorzugt sind Alkoxylierungsgrade bzw. Ethoxylierungsgrade von 2 bis 15, ganz besonders bevorzugt von 3 bis 9.
Ebenso erfindungsgemäß als Reaktiwerdünner bzw. als Komponente b) des erfindungsgemäßen Beschichtungsmittels können Oligomere dienen, die zur Klasse der aliphatischen Urethanacrylate beziehungsweise der Polyesteracrylate oder Polyacrylacrylate gehören. Deren Verwendung als Lackbindemittel ist bekannt und ist in Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London (P.K.T: Oldring (Ed.) auf S.73- 123 (Urethane Acrylates) bzw. S.123-135 (Polyester Acrylates) beschrieben. Kommerziell erhältlich und geeignet im erfindungsgemäßen Sinne sind hier beispielsweise aliphatische Urethanacrylate wie Ebecryl® 4858, Ebecryl® 284, Ebecryl® 265, Ebecryl® 264, Ebecryl® 8465, Ebecryl® 8402 (Hersteller jeweils Cytec Surface Specialities), Craynor® 925 von Cray Valley, Viaktin® 6160 von Vianova Resin, Desmolux VP LS 2265 von Bayer MaterialScience AG, Photomer 6891 von Cognis oder auch in Reaktiwerdünnern gelöste aliphatische Urethanacrylate wie Laromer® 8987 (70%ig in Hexandioldiacrylat) von BASF AG, Desmolux U 680 H (80%ig in Hexandioldiacrylat) von Bayer MaterialScience AG, Craynor® 945B85 (85% in Hexandioldiacrylat) , Ebecryl® 294/25HD (75% in Hexandioldiacrylat), Ebecryl® 8405 (80% in Hexandioldiacrylat), Ebecryl® 4820 (65% in Hexandioldiacrylat) (Hersteller jeweils Cytec Surface Specialities) und Craynor® 963B80 (80% in Hexandioldiacrylat) jeweils von Cray Valley oder auch Polyesteracrylate wie Ebecryl® 810, 830 oder Polyacrylacrylate wie Ebecryl®, 740, 745, 767 oder 1200 von Cytec Surface Specialities.
In einer weiteren bevorzugten Ausführungsform umfasst der Reaktiwerdünner (b) alkoxylierte Diacrylate und/oder Dimethacrylate, alkoxylierte Triacrylate und/oder Trimethacrylate, alkoxylierte Tetraacrylate und/oder Tetramethacrylate, alkoxylierte Pentaaacrylate und/oder Pentamethacrylate, alkoxylierte Hexaacrylate und/oder Hexamethacrylate, aliphatische Urethanacrylate, Polyesteracrylate, Polyacrylacrylate und Gemische davon. In einer weiteren bevorzugten Ausführungsform umfasst der Reaktiwerdünner (b) des erfindungsgemäßen Beschichtungsmittels Dipentaerythritolpenta/hexaacrylat.
Auch erfindungsgemäß sind Gemische der oben genannten vernetzenden multifunktionellen Monomere mit monofunktionellen Monomeren wie insbesondere Methylmethacrylat. Der Anteil der multifunktionellen Monomere in einem solchen Gemisch beträgt bevorzugt mindestens 20 Gew.-%.
Der Reaktiwerdünner ist ein wesentlicher Teil des erfindungsgemäßen Beschichtungsmittels und der erfindungsgemäßen Beschichtung. Der Anteil des mindestens einen Reaktiwerdünners insgesamt beträgt im Festanteil des Beschichtungsmittels mindestens 30 Gew.-%, bevorzugt mindestens 40 Gew.-%, besonders bevorzugt mindestens 45 Gew.-%.
Der Gehalt an ethylenisch ungesättigten Gruppen hat wesentlichen Einfluss auf die erreichbaren Beständigkeitseigenschaften der mit Strahlung gehärteten Beschichtung. Daher enthält das erfindungsgemäße Beschichtungsmittel einen Gehalt an ethylenisch ungesättigten Gruppen von mindestens 3,0 mol pro kg Festgehalt des Beschichtungsmittels, bevorzugt mindestens 3,5 mol pro kg, besonders bevorzugt mindestens 4,0 mol pro kg Festgehalt des Beschichtungsmittels. Dieser Gehalt an ethylenisch ungesättigten Gruppen ist dem Fachmann auch unter dem Begriff der Doppelbindungsdichte wohlbekannt.
Der Begriff des mindestens einen Fotoinitiators des erfindungsgemäßen Beschichtungsmittel umfasst die gängigen dem Fachmann bekannten, kommerziell erhältlichen Verbindungen wie z. B. α-Hydroxyketone, Benzophenon, α,α-Diethoxyacetophenon, 4,4-Diethylaminobenzophenon, 2,2- Dimethoxy-2-phenylacetophenon, 4-Isopropylphenyl-2-hydroxy-2-propylketon, 1 -
Hydroxycyclohexylphenylketon, Isoamyl-p-dimethylaminobenzoat, Methyl-4- dimethylaminobenzoat, Methyl-o-benzoylbenzoat, Benzoin, Benzoinethylether, Benzoinisopro- pylether, Benzoinisobutylether, 2-Hydroxy-2-methyl-l-phenylpropan-l-on, 2-
Isopropylthioxanthon, Dibenzosuberon, 2,4,6-Trimethylbenzoyldiphenylphosphinoxid, Bisacylphosphinoxid und andere, wobei die genannten Photoinitiatoren allein oder in Kombination von zwei oder mehreren oder in Kombination mit einem der obigen Polymerisationsinitiatoren benutzt werden können.
Als UV-Fotoinitiatoren können beispielsweise die IRGACURE®-Typen von BASF eingesetzt werden, so beispielsweise die Typen IRGACURE® 184, IRGACURE® 500, IRGACURE® 1173, IRGACURE®2959, IRGACURE® 745, IRGACURE® 651, IRGACURE® 369, IRGACURE® 907, IRGACURE® 1000, IRGACURE® 1300, IRGACURE® 819, IRGACURE® 819DW, IRGACURE® 2022, IRGACURE® 2100, IRGACURE® 784, IRGACURE® 250, ferner können die DAROCUR®-Typen von BASF eingesetzt werden, so beispielsweise die Typen DAROCUR® MBF, D ARO CUR® 1173, DAROCUR® TPO, DAROCUR® 4265. Ein anderes Beispiel eines im erfindungsgemäßen Beschichtungsmittel einsetzbaren UV-Photoinitiators ist unter dem Handelsnamen Esacure One von dem Hersteller Lamberti zu beziehen.
Fotoinitiatoren sind mit im Bereich von > 0,1 bis < 10 Gewichtsteilen des Feststoffgehaltes des Beschichtungsmittels im Beschichtungsmittel enthalten.
Das Beschichtungsmittel soll zudem über die 100 Gew. -Teile der Komponenten (a), (b) und (c) hinaus ein oder mehrere organische Lösungsmittel enthalten.
Als Lösungsmittel sind dabei besonders diejenigen geeignet, die Polycarbonat-Polymere nicht angreifen. Solche Lösungsmittel sind bevorzugt Alkohole. In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Lösungsmittel (d) ausgewählt aus l-Methoxy-2-propanol, Diacetonalkohol, 2,2,3, 3-Tetrafluoropropanol und Gemischen davon. Ganz besonders bevorzugt ist 1 -Methoxy-2-propanol.
Die Lackzusammensetzung enthält somit bevorzugt zusätzlich zu den 100 Gew. -Teilen der Komponenten (a), (b) und (c) 0 bis 900 Gew. -Teile, besonders bevorzugt 100 bis 850 Gew. -Teile, ganz besonders bevorzugt 200 bis 800 Gew. -Teile des wenigstens einen organischen Lösungsmittels.
Das Beschichtungsmittel kann zudem über die 100 Gew. -Teile der Komponenten (a), (b) und (c) hinaus optional ein oder mehrere weitere Lackadditive enthalten. Solche Lackadditive können beispielsweise ausgewählt sein aus der Gruppe enthaltend Stabilisatoren, Verlaufsmittel, Oberflächenadditive, Pigmente, Farbstoffe, anorganische Nanopartikel, Haftvermittler, UV- Absorber, IR-Absorber, bevorzugt aus der Gruppe enthaltend Stabilisatoren, Verlaufsmittel, Oberflächenadditive und anorganische Nanopartikel. Die Lackzusammensetzung enthält bevorzugt zusätzlich zu den 100 Gew. -Teilen der Komponenten (a), (b) und (c) 0 bis 40 Gew. -Teile, besonders bevorzugt 0 bis 30 Gew. -Teile, ganz besonders bevorzugt 0,1 bis 20 Gew. -Teile wenigstens eines weiteren Lackadditivs. Bevorzugt beträgt der Gesamtanteil aller in der Lackzusammensetzung enthaltenen Lackadditive 0 bis 40 Gew. -Teile, besonders bevorzugt 0 bis 30 Gew. -Teile, ganz besonders bevorzugt 0,1 bis 20 Gew. -Teile.
Die Lackzusammensetzung kann anorganische Nanopartikel zur Erhöhung der mechanischen Beständigkeit, wie beispielsweise der Kratzfestigkeit und/oder Bleistifthärte enthalten. Als Nanopartikel kommen anorganische Oxide, Mischoxide, Hydroxide, Sulfate, Carbonate, Carbide, Boride und Nitride von Elementen der II bis IV Hauptgruppe und/oder Elementen der I bis VIII Nebengruppe des Periodensystems einschließlich der Lanthanide in Frage. Bevorzugte Nanopartikel sind Siliziumoxid-, Aluminiumoxid-, Ceroxid-, Zirkonoxid-, Nioboxid-, Zinkoxidoder Titanoxid-Nanopartikel, besonders bevorzugt sind Siliziumoxid-Nanopartikel.
Die eingesetzten Partikel weisen vorzugsweise mittlere Partikelgrößen (gemessen mittels dynamischer Lichtstreuung in Dispersion bestimmt als Z-Mittelwert) kleiner 200 nm, bevorzugt von 5 bis 100 nm, besonders bevorzugt 5 bis 50 nm auf. Bevorzugt weisen wenigstens 75%, besonders bevorzugt wenigstens 90 %>, ganz besonders bevorzugt wenigstens 95% aller eingesetzten Nanopartikel die vorstehend definierten Größen auf.
Das Beschichtungsmittel kann auf einfache Weise hergestellt werden, indem das Polymer in dem Lösemittel bei Raumtemperatur oder bei erhöhten Temperaturen vorerst komplett gelöst wird und dann der bis Raumtemperatur abgekühlten Lösung die anderen obligatorischen und gegebenenfalls die optionalen Komponenten entweder in Abwesenheit von Lösungsmittel(n) zusammen gegeben und durch Rühren miteinander vermischt werden oder in Anwesenheit von Lösungsmittel(n) beispielsweise in das oder die Lösungsmittel gegeben und durch Rühren miteinander vermischt werden. Bevorzugt wird zuerst der Fotoinitiator in dem oder den Lösungsmitteln gelöst und anschließend die weiteren Komponenten hinzugegeben. Gegebenenfalls erfolgt anschließend noch eine Reinigung mittels Filtration, vorzugsweise mittels Feinfiltration.
Aufgrund der hervorragenden Schlagzähigkeit bei gleichzeitiger Transparenz kann Polycarbonat im Rahmen der vorliegenden Erfindung auch als thermoplastisches Polymer zum Hinterspritzen bzw. Füllen der 3D-geformten und mit der Schutzschicht beschichteten Folie in einem film insert molding- Verfahren zur Herstellung eines 3D-Formkörpers bzw. Kunststoffteils eingesetzt werden. In einer ebenfalls besonders bevorzugten Ausführungsform der vorliegenden Erfindung umfasst das thermoplastische Polymer damit Polycarbonat. Für die Erfindung geeignete Polycarbonate und Polycarbonat-Zubereitungen sowie Polycarbonat-Folien sind beispielsweise unter den Handelsnamen Makroion®, Bayblend® und Makroblend® (Bayer MaterialScience) erhältlich. Geeignete Polycarbonate für die Herstellung der erfindungsgemäßen Polycarbonatzusammensetzungen sind alle bekannten Polycarbonate. Dies sind Homopolycarbonate, Copolycarbonate und thermoplastische Polyestercarbonate. Die geeigneten
Polycarbonate haben bevorzugt mittlere Molekulargewichte M w von 18.000 bis 40.000, vorzugsweise von 26.000 bis 36.000 und insbesondere von 28.000 bis 35.000, ermittelt durch Messung der relativen Lösungsviskosität in Dichlormethan oder in Mischungen gleicher Gewichtsmengen Phenol/o-Dichlorbenzol geeicht durch Lichtstreuung.
Die Herstellung der Polycarbonate erfolgt vorzugsweise nach dem Phasengrenzflächenverfahren oder dem Schmelze-Umesterungsverfahren, welche mannigfaltig in der Literatur beschrieben werden. Zum Phasengrenzflächenverfahren sei beispielhaft auf H. Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, Vol. 9, Interscience Publishers, New York 1964 S. 33 ff., auf Polymer Reviews, Vol. 10,„Condensation Polymers by Interfacial and Solution Methods", Paul W. Morgan, Interscience Publishers, New York 1965, Kap. VIII, S. 325, auf Dres. U. Grigo, K. Kircher und P. R- Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag München, Wien 1992, S. 118-145 sowie auf EP-A 0 517 044 verwiesen. Das Schmelze-Umesterungsverfahren ist beispielsweise in der Encyclopedia of Polymer Science, Vol. 10 (1969), Chemistry and Physics of Polycarbonates, Polymer Reviews, H. Schnell, Vol. 9, John Wiley and Sons, Inc. (1964) sowie in den Patentschriften DE-B 10 31 512 und US-B 6 228 973 beschrieben. Die Polycarbonate können aus Reaktionen von Bisphenolverbindungen mit Kohlensäureverbindungen, insbesondere Phosgen oder beim Schmelzeumesterungsprozess Diphenylcarbonat bzw. Dimethylcarbonat, erhalten werden. Hierbei sind Homopolycarbonate auf Basis Bisphenol-A und Copolycarbonate auf der Basis der Monomere Bisphenol-A und l,l-Bis-(4- hydroxyphenyl)-3,3,5-trimethylcyclohexan besonders bevorzugt. Weitere Bisphenolverbindungen, die sich für die Polycarbonatsynthese einsetzen lassen, sind unter anderem offenbart in WO-A 2008037364, EP-A 1 582 549, WO-A 2002026862, WO-A 2005113639
Die Polycarbonate können linear oder verzweigt sein. Es können auch Mischungen aus verzweigten und unverzweigten Polycarbonaten eingesetzt werden.
Geeignete Verzweiger für Polycarbonate sind aus der Literatur bekannt und beispielsweise beschrieben in den Patentschriften US-B 4 185 009, DE-A 25 00 092, DE-A 42 40 313, DE-A 19 943 642, US-B 5 367 044 sowie in hierin zitierter Literatur. Darüber hinaus können die verwendeten Polycarbonate auch intrinsisch verzweigt sein, wobei hier kein Verzweiger im Rahmen der Polycarbonatherstellung zugegeben wird. Ein Beispiel für intrinsische Verzweigungen sind so genannte Fries-Strukturen, wie sie für Schmelzepolycarbonate in der EP-A 1 506 249 offenbart sind.
Zudem können bei der Polycarbonat-Herstellung Kettenabbrecher eingesetzt werden. Als Kettenabbrecher werden bevorzugt Phenole wie Phenol, Alkylphenole wie Kresol und 4-tert- Butylphenol, Chlorphenol, Bromphenol, Cumylphenol oder deren Mischungen verwendet.
Die Kunststoffzusammensetzung(en) der Folie bzw. des thermoplastischen Polymers des 3D- Formkörpers können zusätzlich Additive, wie beispielsweise UV- Absorber, IR- Absorber sowie andere übliche Verarbeitungshilfsmittel, insbesondere Entformungsmittel und Fließmittel, sowie die üblichen Stabilisatoren, insbesondere Thermostabilisatoren sowie Antistatika, Pigmente, Farbmittel und optische Aufheller enthalten. In jeder Schicht können dabei unterschiedliche Additive bzw. Konzentrationen von Additiven vorhanden sein. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der beschichteten Polycarbonatfolie, umfassend die Schritte
(i) Beschichten einer Polycarbonatfolie oder einer coextrudierten Polycarbonat/Polymethylmethacrylatfolie mit einem Beschichtungsmittel, umfassend
(a) mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat- Copolymer mit einem mittleren Molgewicht Mw von mindestens 100.000 g/mol in einem Gehalt von mindestens 40 Gew.- % des Festanteils des Beschichtungsmittels;
(b) mindestens einen UV-härtbaren Reaktiwerdünner in einem Gehalt von mindestens 30 Gew.-% des Festanteils des Beschichtungsmittels;
(c) mindestens einen Fotoinitiator in einem Gehalt von 0,1 bis 10 Gewichtsteilen des Festanteils des Beschichtungsmittels; und
(d) mindestens ein organisches Lösungsmittel,
wobei der Anteil an ethylenisch ungesättigten Gruppen mindestens 3 mol pro kg des Festanteils des Beschichtungsmittels beträgt.
(ii) Trocknen der Beschichtung;
(iii) gegebenenfalls zurechtschneiden, dekaschieren, bedrucken und/oder thermisches oder mechanisches Verformen der Folie;
(iv) Bestrahlen der Beschichtung mit UV- Strahlung, dabei Härten der Beschichtung, wobei die Dicke der mindestens einen PMMA-haltigen Schicht nach dem Trocknungsschritt mindestens 10 μιη beträgt.
Dabei sind das Beschichtungsmittel mit seinen Bestandteilen und die Begriffe der Folien dieselben, die schon im Rahmen der vorliegenden Erfindung erläutert worden sind, auch in Kombination miteinander.
Das Beschichten der Folie mit dem Beschichtungsmittel kann dabei nach den gängigen Verfahren der Beschichtung von Folien mit flüssigen Beschichtungsmitteln erfolgen, wie beispielsweise durch Rakeln, Spritzen, Gießen, Fluten, Tauchen, Sprühen, Aufwalzen oder Aufschleudern. Das Flutverfahren kann manuell mit Schlauch oder geeignetem Beschichtungskopf oder automatisch im Durchlauf über Flutlackierroboter- und gegebenenfalls Schlitzdüsen erfolgen. Bevorzugt wird eine Auftragung des Beschichtungsmittels über eine Übertragung Rolle auf Rolle. Die Oberfläche der zu beschichtenden Folie kann dabei durch Reinigung oder Aktivierung vorbehandelt sein.
Das Trocknen schließt sich an die Applikation des Beschichtungsmittels auf die Folie an. Hierzu wird insbesondere mit erhöhten Temperaturen in Öfen und mit bewegter und gegebenenfalls auch entfeuchteter Luft wie beispielsweise in Konvektionsöfen oder mittels Düsentrocknern sowie Wärmestrahlung wie IR und/oder NIR gearbeitet. Weiterhin können Mikrowellen zum Einsatz kommen. Es ist möglich und vorteilhaft, mehrere dieser Trocknungsverfahren zu kombinieren. Das Trocknen der Beschichtung im Schritt (ii) umfasst bevorzugt das Ablüften bei Raumtemperatur und/oder erhöhter Temperatur, wie vorzugsweise bei 20 - 200 °C, besonders bevorzugt bei 40 - 120 °C. Nach dem Trocknen der Beschichtung ist diese blockfest, so dass das beschichtete Substrat, insbesondere die beschichtete Folie kaschiert, bedruckt, und/oder thermisch verformt werden kann. Insbesondere das Verformen ist dabei bevorzugt, da hier schon durch das Verformen einer beschichteten Folie die Form für ein film insert molding- Verfahren zur Herstellung eines dreidimensionalen Kunststoffteils vorgegeben werden kann.
Vorteilhafterweise werden die Bedingungen für die Trocknung so gewählt, dass durch die erhöhte Temperatur und/oder die Wärmestrahlung keine Polymerisation (Vernetzung) der Acrylat- oder Methacrylatgruppen ausgelöst wird, da dieses die Verformbarkeit beeinträchtigen kann. Weiterhin ist die maximal erreichte Temperatur zweckmäßigerweise so niedrig zu wählen, dass sich die Folie nicht unkontrolliert verformt.
Nach dem Trocknungs-/Härtungsschritt kann die beschichtete Folie, gegebenenfalls nach Kaschierung mit einer Schutzfolie auf der Beschichtung, aufgerollt werden. Das Aufrollen kann geschehen, ohne dass es zum Verkleben der Beschichtung mit der Rückseite der Substratfolie oder der Kaschierfolie kommt. Es ist aber auch möglich, die beschichtete Folie zuzuschneiden und die Zuschnitte einzeln oder als Stapel der Weiterverarbeitung zuzuführen. Besonders bevorzugt ist dabei das thermische Verformen der beschichteten Folie zu einer dreidimensionalen Form, wie sie vorbereitend auf ein Hinterspritzen der Folie mit einem thermoplastischen Polymer wie Polycarbonat in einem film insert molding- Verfahren vorgenommen wird. In einer bevorzugten Ausführungsform umfasst der Schritt (iii) das Zuschneiden und thermische Verformen der beschichteten Folie.
Unter Härtung mit aktinischer Strahlung versteht man die radikalische Polymerisation von ethylenisch ungesättigten Kohlenstoff-Kohlenstoff-Doppelbindungen mittels Initiatorradikalen, die durch Bestrahlung mit aktinischer Strahlung beispielsweise aus den vorstehend beschriebenen Fotoinitiatoren freigesetzt werden. Die Strahlungshärtung erfolgt bevorzugt durch Einwirkung energiereicher Strahlung, also UV- Strahlung oder Tageslicht, zum Beispiel Licht der Wellenlänge von > 200 nm bis < 750 nm, oder durch Bestrahlen mit energiereichen Elektronen (Elektronenstrahlung, zum Beispiel von > 90 keV bis < 300 keV). Als Strahlungsquellen für Licht oder UV-Licht dienen beispielsweise Mittel- oder Hochdruckquecksilberdampflampen, wobei der Quecksilberdampf durch Dotierung mit anderen Elementen wie Gallium oder Eisen modifiziert sein kann. Laser, gepulste Lampen (unter der Bezeichnung UV-Blitzlichtstrahler bekannt), Halogenlampen oder Excimerstrahler sind ebenfalls einsetzbar. Die Strahler können ortsunbeweglich installiert sein, so dass das zu bestrahlende Gut mittels einer mechanischen Vorrichtung an der Strahlungsquelle vorbeibewegt wird, oder die Strahler können beweglich sein, und das zu bestrahlende Gut verändert bei der Härtung seinen Ort nicht. Die üblicherweise zur Vernetzung ausreichende Strahlungsdosis bei UV-Härtung liegt im Bereich von > 80 mJ/cm2 bis < 5000 mJ/cm2.
In einer bevorzugten Ausführungsform ist die aktinische Strahlung daher Licht im Bereich des UV- Lichtes.
Die Bestrahlung kann gegebenenfalls auch unter Ausschluss von Sauerstoff, zum Beispiel unter Inertgas-Atmosphäre oder Sauerstoff-reduzierter Atmosphäre durchgeführt werden. Als Inertgase eignen sich bevorzugt Stickstoff, Kohlendioxid, Edelgase oder Verbrennungsgase. Des weiteren kann die Bestrahlung erfolgen, indem die Beschichtung mit für die Strahlung transparenten Medien abgedeckt wird. Beispiele hierfür sind Kunststofffolien, Glas oder Flüssigkeiten wie Wasser.
Je nach Strahlungsdosis und Aushärtungsbedingungen sind Typ und Konzentration des gegebenenfalls verwendeten Initiators in dem Fachmann bekannter Weise oder durch orientierende Vorversuche zu variieren bzw. zu optimieren. Zur Härtung der verformten Folien ist es besonders vorteilhaft, die Härtung mit mehreren Strahlern durchzuführen, deren Anordnung so zu wählen ist, dass jeder Punkt der Beschichtung möglichst die zur Aushärtung optimale Dosis und Intensität an Strahlung erhält. Insbesondere sind nicht bestrahlte Bereiche (Schattenzonen) zu vermeiden. Weiterhin kann es je nach eingesetzter Folie vorteilhaft sein, die Bestrahlungsbedingungen so zu wählen, dass die thermische Belastung der Folie nicht zu groß wird. Insbesondere dünne Folien sowie Folien aus Materialien mit niedriger Glasübergangstemperatur können zur unkontrollierten Verformung neigen, wenn durch die Bestrahlung eine bestimmte Temperatur überschritten wird. In diesen Fällen ist es vorteilhaft, durch geeignete Filter oder Bauart der Strahler möglichst wenig Infrarotstrahlung auf das Substrat einwirken zu lassen. Weiterhin kann durch Reduktion der entsprechenden Strahlendosis der unkontrollierten Verformung entgegengewirkt werden. Dabei ist jedoch zu beachten, dass für eine möglichst vollständige Polymerisation eine bestimmte Dosis und Intensität der Bestrahlung notwendig sind. Es ist in diesen Fällen besonders vorteilhaft, unter inerten oder sauerstoffreduzierten Bedingungen zu härten, da bei Reduktion des Sauerstoffanteils in der Atmosphäre oberhalb der Beschichtung die erforderliche Dosis zur Aushärtung abnimmt.
Besonders bevorzugt werden zur Härtung Quecksilberstrahler in ortsfesten Anlagen eingesetzt. Fotoinitiatoren werden dann in Konzentrationen von > 0,1 Gewichts-% bis < 10 Gewichts-%, besonders bevorzugt von > 0,2 Gewichts-% bis < 3,0 Gewichts-% bezogen auf den Festkörper der Beschichtung eingesetzt. Zur Härtung dieser Beschichtungen wird bevorzugt eine Dosis von > 80 mJ/cm2 bis < 5000 mJ/cm2 eingesetzt.
Ein Hinterspritzen der beschichteten Folie mit einem thermoplastischem Polymer wie Polycarbonat nach erfolgter Härtung der Folienbeschichtung und der optionalen, meist gewünschten Umformung der beschichteten Folie ist dem Fachmann durch das film insert molding- Verfahren, wie es beispielsweise in WO 2004/082926 AI und WO 02/07947 AI beschrieben ist, wohlbekannt. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt das Hinterschichten der Folie in einem Schritt (v) mittels Extrusion oder Spritzguss, vorzugsweise mit Polycarbonatschmelze. Die Verfahren der Extrusion und des Spritzgusses hierzu sind dem Fachmann wohlbekannt und beispielsweise im "Handbuch Spritzgießen", Friedrich Johannnaber/Walter Michaeli, München; Wien: Hanser, 2001, ISBN 3-446-15632-1 oder "Anleitung zum Bau von Spritzgießwerkzeugen", Menges/Michaeli/Mohren, München; Wien: Hanser, 1999, ISBN 3-446-21258-2 beschrieben.
Nach dem Härten durch Bestrahlung mit UV-Licht weist die beschichtete Oberfläche der auf diese Weise hergestellten beschichteten Polycarbonatfolie dann die erfindungsgemäße Eigenschaftskombination hinsichtlich Kratzfestigkeit, Lösemittelbeständigkeit und des verringerten oiling-Effektes auf.
Aufgrund der vorteilhaften Eigenschaftskombination aus Kratzfestigkeit, Lösemittelbeständigkeit und des verringerten oiling-Effektes der Oberflächen der erfindungsgemäßen Polycarbonatfolien eignen sich diese Folien in besonderer Weise zur Herstellung von 3D-Kunststoffteilen, insbesondere solchen, die durch film insert molding- Verfahren erhalten werden. Die Oberflächen der Kunststoffteile weisen somit die besonderen Eigenschaften der erfindungsgemäßen Folien auf. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein 3D-Kunststoffteil, umfassend die erfindungsgemäße beschichtete Polycarbonatfolie. In einer besonders bevorzugten Ausführungsform ist das 3D-Kunststoffteil gemäß der vorliegenden Erfindung erhältlich durch ein film insert molding- Verfahren. Solche Verfahren umfassen das Hinterspritzen, beispielsweise durch Spritzguss, der erfindungsgemäßen beschichteten Polycarbonat-Folien mit einem thermoplastischen Polymer, insbesondere mit Polycarbonat. Daher ist ein weiterer Gegenstand der vorliegenden Erfindung die Verwendung der erfindungsgemäßen beschichteten Polycarbonat-Folie zur Herstellung von Kunststoffteilen in film insert molding- Verfahren. In einer besonders bevorzugten Ausführungsform umfasst die erfindungsgemäße Verwendung die Herstellung von Kunststoffteilen für die Auto-, Transport-, Elektro-, Elektronik- und Bauindustrie. Beispiele
Bewertungsmethoden Schichtdicke
Die Schichtdicke der Beschichtungen wurde durch Beobachtung der Schnittkante in einem optischem Mikroskop des Typs Axioplan des Herstellers Zeiss gemessen. Methode - Auflicht, Hellfeld, Vergrößerung 500x.
Bewertung der Blockfestigkeit
Zur Simulation der Blockfestigkeit von aufgerollten vorgetrockneten beschichteten Folien reichen klassische Prüfmethoden wie etwa in DIN 53150 beschrieben nicht aus, weshalb auf nachfolgende Prüfung zurückgegriffen wurde: Die Beschichtungsmaterialien wurden mit einer handelsüblichen Rakel (Sollnassschichtdicke 100 μιη) auf Makrofol DE 1-1 (375 μιη) aufgetragen. Nach einer Ablüftphase von 10 min bei 20 °C bis 25 °C wurde die beschichteten Folien für 10 min bei 110 °C in einem Umluftofen getrocknet. Nach einer Abkühlphase von 1 min wurde eine handelsübliche Haftkaschierfolie GH-X173 natur (Firma Bischof u. Klein, Lengerich, Deutschland) mit einer Kunststoffwalze auf eine Fläche von 100 mm x 100 mm faltenfrei auf der getrockneten beschichteten Folie aufgebracht. Anschließend wurde das kaschierte Folienstück flächig mit einem Gewicht von 10 kg für 1 Stunde belastet. Danach wurde die Kaschierfolie entfernt und die beschichtete Oberfläche visuell beurteilt. Bewertung der Bleistifthärte
Die Bleistifthärte wurde analog ASTM D 3363 unter Verwendung eines Elcometer 3086 Scratch boy (Elcometer Instruments GmbH, Aalen, Deutschland) bei einer Belastung von 500 g, wenn nicht anders angegeben, gemessen.
Bewertung der Stahlwolle- Verkratzung Die Stahlwolle- Verkratzung wurde bestimmt, indem eine Stahlwolle No. 00 (Oskar Weil GmbH Rakso, Lahr, Deutschland) auf das flächige Ende eines 500 g Schlosser-Hammers geklebt wurde, wobei die Fläche des Hammers 2,5 cm x 2,5 cm, d.h. ca. 6,25 cm2 beträgt. Der Hammer wurde ohne zusätzlichen Druck auf die zu prüfende Fläche aufgesetzt, so dass eine definierte Belastung von ca. 560 g erreicht wurde. Der Hammer wurde dann lOmal in Doppelhüben vor und zurück bewegt. Nachfolgend wurde die belastete Oberfläche mit einem weichen Tuch von Geweberückständen und Lackpartikeln gereinigt. Die Verkratzung wurde durch Haze- und Glanzwerte charakterisiert, gemessen quer zur Verkratzungsrichtung mit einem Micro HAZE plus (20°-Glanz und Haze; Byk-Gardner GmbH, Geretsried, Deutschland). Die Messung erfolgte vor und nach Verkratzung. Angegeben werden die Differenzwerte bei Glanz und Haze vor und nach Belastung als AGlanz und AHaze .
Bewertung der Lösemittelbeständigkeit Die Lösemittelbeständigkeit der Beschichtungen wurde üblicherweise mit Isopropanol, Xylol, 1- Methoxy-2-propylacetat, Ethylacetat, Aceton in technischer Qualität geprüft. Die Lösemittel wurden mit einem durchnässten Wattebausch auf die Beschichtung aufgetragen und durch Abdecken gegen Verdunstung geschützt. Es wurde, wenn nicht anders beschrieben, eine Einwirkzeit von 60 Minuten bei ca. 23 °C eingehalten. Nach dem Ende der Einwirkzeit wird der Wattebausch entfernt und die Prüffläche mit einem weichen Tuch sauber gewischt. Die Abmusterung erfolgt sofort visuell und nach leichten Kratzen mit dem Fingernagel.
Folgende Stufen werden unterschieden:
• 0 = unverändert; keine Veränderung sichtbar; durch Kratzen nicht verletzbar.
• 1 = leichte Anquellung sichtbar, aber durch Kratzen nicht verletzbar.
· 2 = Veränderung deutlich sichtbar, durch Kratzen kaum verletzbar.
• 3 = merklich verändert nach festem Fingernageldruck oberflächlich zerstört.
• 4 = stark verändert nach festem Fingernageldruck bis zum Untergrund durchgekratzt.
• 5 = zerstört; schon beim Abwischen der Chemikalie wird der Lack zerstört; die Testsubstanz ist nicht entfernbar (eingefressen). Innerhalb dieser Bewertung wird der Test mit den Kennwerten 0 und 1 üblicherweise bestanden. Kennwerte > 1 stehen für ein„nicht bestanden".
Bewertung des Oiling-Effekts
Der„Oiling-Effekt" wird auch als„Newton Ring-Effekt" bezeichnet. Newton-Ringe treten als irreguläres Interferenzmuster an der Oberfläche beschichteter Teile auf, wenn diese in Reflexion unter weißem Licht betrachtet werden. Auf einer reflektierenden, glänzenden Oberfläche wird ein Lichtstrahl sowohl an der äußeren Oberfläche eines beschichteten Bauteils, wie auch an der darunter liegenden Oberfläche des beschichteten Substrats reflektiert. Tritt zwischen den beiden reflektierten Strahlen einer Wellenlänge ein Gangunterschied im Bereich λ/2 auf, so wird diese Wellenlänge durch Interferenz abgeschwächt oder sogar ausgelöscht und das ursprünglich eingestrahlte weiße Licht wird in Reflektion lokal farblich verändert. Diese Muster können auch als Oszillationen im Reflektionsspektrum beschichteter Oberflächen (hier beschichteter Folien) nachgewiesen werden. Die Intensität und die Frequenz dieser Oszillationen ist ein Maß für das Auftreten des Newton Ring-Effekts.
Die zur Bestimmung des Oiling-Effektes verwendeten Messwerte sind aus Transmissions- und Reflektionsspektren entnommen, die mit einem Spektrometer der Firma STEAG ETA-Optik, CD- Measurement System ETA-RT, aufgenommen wurden. Es wurde die direkte Reflektion unter einem Betrachtungswinkel von 0° gemessen.
Die Maßzahl für die Newton Ringe wurde aus den Reflektionsspektren wie folgt ermittelt: mPV: maximales Peak- Valley- Verhältnis in % im Bereich 400 - 650 nm. mPV/2: Amplitude der Oszillation in % R: Reflektion bei der zugehörigen Wellenlänge in %
Newton Ringe = mPV/2/R · 1000
Die Wellenlängenbereiche unterhalb 400 nm und oberhalb 650 nm werden nicht betrachtet, da Farbkontraste in diesen Bereichen so gering sind, dass keine für das bloße Auge störenden Effekte sichtbar werden. Beispiel 1: Herstellung eines Beschichtungsmittels
25 g Poly-(methacrylsäuremethylester) (Hersteller Aldrich, Katalog-Nr. 182265, Mw 996000 (GPS, Angabe von Aldrich) wurden in 142 g 1 -Methoxy-2-propanol bei 100 °C in ca. 5 h gelöst. Die Lösung wurde bis auf ca. 30 °C abgekühlt. Separat wurden in 83 g 1 -Methoxy-2-propanol bei Raumtemperatur folgende Komponenten gelöst: 25 g Dipentaerythritpenta/hexaacrylat (DPHA, Hersteller Cytec), 2,0 g Irgacure 1000 (Hersteller BASF), 1,0 g Darocur 4265 (Hersteller BASF), 0,0625 g BYK 333 (Hersteller BYK). Diese zweite Lösung wurde der Polymerlösung unter Rühren zugegeben. Der Lack wurde noch 3 h bei Raumtemperatur und unter Abschirmung des direkten Lichteinflusses gerührt, abgefüllt und 1 Tag ruhen gelassen. Die Ausbeute betrug 270 g, die Viskosität (23 °C) 9060 mPas, der Feststoffgehalt 19 Gew.-% und die berechnete Doppelbindungsdichte im Feststoffanteil des Lackes ca. 5,1 mol/kg.
Beispiel 2: Herstellung eines Beschichtungsmittels
Beispiel 1 analog wurde aus Degalan M345 (PMMA; Hersteller Evonik; Mw 180.000-Angabe von Evonik) ein Beschichtungsmittel hergestellt. Die Ausbeute betrug 275 g, der Feststoffgehalt 19 Gew.-% die berechnete Doppelbindungsdichte im Feststoffanteil des Lackes ca. 5,1 mol/kg. Beispiel 3 (nicht erfindungsgemäß): Herstellung eines Beschichtungsmittels
Beispiel 1 analog wurde aus Degalan M825 (PMMA; Hersteller Evonik; Mw 80.000-Angabe von Evonik) ein Beschichtungsmittel hergestellt. Die Ausbeute betrug 280 g, der Feststoffgehalt 19 Gew.-% die berechnete Doppelbindungsdichte im Feststoffanteil des Lackes ca. 5,1 mol/kg. Beispiel 4: Beschichtung von Folien
Die Beschichtungsmittel gemäß den Beispielen 1 bis 3 wurden mittels eines Schlitzgießers des Herstellers TSE Troller AG auf eine Trägerfolie wie beispielsweise Makro fol DE 1-1 (Bayer MaterialScience AG, Leverkusen, Deutschland), aufgetragen. Die Schichtstärke der Trägerfolie betrug 250 μιη. Eine weitere Trägerfolie war eine PC/PMMA-coextrudierte Folie des Typs Makro fol® SR 253 (Bayer MaterialScience AG, Leverkusen, Deutschland). Die gesamte Schichtstarke der Trägerfolie betrug 250 μιη υηά die Stärke der PMMA-Schicht 15 μιη. Das Beschichtungsmittel aus Beispiel 1 wurde mittels Schlitzgießer auf die PMMA-Seite der Trägerfolie aufgetragen.
Als dritte Trägerfolie wurde eine PC/PMMA-coextrudierte Folie des Hersteller MSK (Meihan Shinku Kogyo Co.Ltd, Japan) verwendet. Die gesamte Schichtstarke der Trägerfolie betrug 250 μιη und die Stärke der PMMA-Schicht 56 μιη. Das Beschichtungsmittel aus Beispiel 1 wurde mittels Schlitzgießer auf die PMMA-Seite der Trägerfolie aufgetragen.
Typische Antragsbedingungen waren dabei wie folgt:
• Bahngeschwindigkeit 1,3 bis 2,0 m/min
· Nasslackauftrag 20 - 150 μιη
• Umlufttrockner 90 - 110 °C, bevorzugt im Bereich der TG des zu trocknenden Polymers.
• Verweilzeit im Trockner 3,5 - 5 min.
Die Beschichtung erfolgte Rolle auf Rolle, das heißt, dass die Polycarbonatfolie in der Beschichtungsanlage abgerollt wurde. Die Folie wurde durch eines der oben genannten Antragsaggregate geführt und mit der Beschichtungslösung beaufschlagt. Danach wurde die Folie mit der nassen Beschichtung durch den Trockner gefahren. Nach Ausgang aus dem Trockner wurde die jetzt trockene Beschichtung üblicherweise mit einer Kaschierfolie versehen, um diese vor Verschmutzung und Verkratzung zu schützen. Danach wurde die Folie wieder aufgerollt.
Beispiel 5: Überprüfung der Blockfestigkeit Die beschichteten Seiten der in Beispiel 4 erzeugten nicht mit UV ausgehärteten Folien wurden mit einer Kaschierfolie vom Typ GH-X 173 A (Bischof + Klein, Lengerich, Deutschland) abgedeckt und 1 h bei ca. 23 °C mit einer Aluminiumplatte in den Maßen 4,5 x 4,5 cm2 und einem Gewicht von 2 kg beaufschlagt. Danach wurden das Gewicht und die Kaschierfolie entfernt und die Oberfläche der Beschichtung visuell auf Veränderungen geprüft.
Die Versuche zeigten, dass die Blockfestigkeit der Beschichtungen (kein Abdruck auf der Folie) ab einem Molekulargewicht des Polymethylmethacrylats von 100.000 und mehr gegeben ist.
Beispiel 6: Formen der beschichteten Folien und Härten der Beschichtungen
Die HPF-Verformungsversuche wurden auf einer SAMK 360 - Anlage ausgeführt. Das Werkzeug wurde auf 100 °C elektrisch beheizt. Die Folienaufheizung wurde mittels IR Strahler bei 240, 260 und 280 °C vorgenommen. Die Heizzeit betrug 16 Sekunden. Es wurde eine Folientemperatur von ca. 170 °C erreicht. Die Verformung erfolgte bei einem Verformungsdruck von 100 bar. Das Verformungswerkzeug war eine HL-Blende.
Der entsprechende Folienbogen wurde auf einer Palette positionsgenau fixiert. Die Palette fuhr durch die Verformungsstation in die Heizzone und verweilte dort die eingestellte Zeit (16 s). Dabei wurde die Folie so aufgeheizt, dass die Folie kurzzeitig eine Temperatur oberhalb des Erweichungspunktes erfuhr, der Kern der Folie war ca. 10-20° C kälter. Dadurch war die Folie relativ stabil, wenn sie in die Verformungsstation eingefahren wird.
In der Verformungsstation wurde die Folie durch Zufahren des Werkzeuges über dem eigentlichen Werkzeug fixiert, gleichzeitig wurde mittels Gasdruck die Folie über das Werkzeug geformt. Die Druckhaltezeit von 7 s sorgte dafür, dass die Folie das Werkzeug passgenau abformte. Nach der Haltezeit wurde der Gasdruck wieder entlastet. Das Werkzeug öffnete sich und die umgeformte Folie wurde aus der Verformungsstation herausgefahren.
Die Folie wurde anschließend von der Palette entnommen und konnte nun mit UV-Licht ausgehärtet werden.
Mit dem verwendeten Werkzeug wurden Radien bis herunter auf 1 mm abgebildet. Die UV-Härtung der erfindungsgemäßen Beschichtung wurde mit einer Quecksilberdampf- Hochdrucklampe vom Type evo 7 dr (ssr engineering GmbH, Lippstadt, Deutschland) ausgeführt. Diese Anlage ist ausgestattet mit dichroitischem Reflektoren und Quarzscheiben und hat eine spezifische Leistung von 160 W/cm. Es wurde eine UV-Dosis von 2,0 J/cm2 und eine Intensität von 1,4 W/cm2 appliziert. Die Oberflächentemperatur sollte > 60 °C erreichen. Die Angaben zur UV-Dosis wurden mit einem Lightbug ILT 490 (International Light Technologies Inc., Peabody MA, USA) ermittelt. Die Angaben zur Oberflächentemperatur wurden mit Temperatur-Teststreifen der Marke RS (Bestellnummer 285-936; RS Components GmbH, Bad Hersfeld, Deutschland) ermittelt.
Ergebnisse zur Beständigkeit der Beschichtungen, die unter Verwendung der genannten Bedingungen vernetzt wurden sind Tabelle 1 zu entnehmen. Tabelle 1: Chemikalien- und Kratzbeständigkeit der Beschichtungen
Figure imgf000023_0001
* Hersteller MSK (JP)
Tabelle 1 zeigt, dass die erfindungsgemäße oberste Beschichtung mit dem erfindungsgemäßen Beschichtungsmittel zu einer deutlichen Verbesserung der Bleistifthärte und Kratzfestigkeit beiträgt. Die erfindungsgemäße Beschichtung führte zu sehr guten Lösemittelbeständigkeiten der Folien. Besonders zu vermerken ist die Lösemittelbeständigkeit der entwickelten Endbeschichtung gegen Aceton. Aceton, das aggressivste Lösemittel für Polycarbonat-Folien, hat auf die erfindungsgemäße Endbeschichtung auch bei einer Einwirkungszeit von 1 Stunde fast keine Wirkung (Kennwert < 1 ; Scoring 0 bis 5). Das bedeutet, dass die Lösemittelbeständigkeit für diese Beschichtung auf dem Niveau der besten (aber nicht verformbaren) Hardcoats liegt. Ohne die erfindungsgemäße obere Beschichtung zeigen PC/PMMA-Coextrusionsfolien, die zwar relativ hart sind, keine ausreichende Lösemittelbeständigkeit.
Beispiel 7: Bestimmung des Brechungsindexes der Beschichtung Der Brechungsindex n in Abhängigkeit von der Wellenlänge der Proben wurde aus den Transmissions- und Reflexionsspektren erhalten. Dazu wurde ein ca. 300 nm dicker Film des Beschichtungsmittels aus Beispiel 1 auf Quarzglasträger aufgeschleudert. Das Transmissions- und Reflexionsspektrum dieses Schichtpaketes wurde mit einem Spektrometer „CD-Measurement System ETA-RT" des Herstellers AudioDev gemessen und danach die Schichtdicke und der spektrale Verlauf von n an die gemessenen Transmissions- und Reflexionsspektren im Bereich von 380 - 850 nm angepasst. Dieses geschah mit der internen Software des Spektrometers und erforderte zusätzlich die Brechungsindexdaten des Quarzglassubstrates, die in einer Blindmessung vorab bestimmt wurden. Die Brechungsindizes für die ausgehärteten Lacke beziehen sich auf die Wellenlänge von 589 nm und entsprechen damit nD20.
Tabelle 2: Brechungsindex
Figure imgf000024_0001
Beispiel 8: Bestimmung der Stärke des Regenbogeneffektes
Als Maß für den Regenbogeneffektes diente die aus Reflektionsspektren ermittelte Zahl der Newton- Ringe. Sie wurde aus der maximalen Amplitude im Reflektionsspektrum zwischen 400 nm und 650 nm errechnet. Reflektion (R) und maximale Amplitude (MA) wurden aus dem Spektrum in Prozent entnommen. Um die Einheit zu eliminieren wurde MA durch R bei derselben Wellenlänge dividiert. Um Nachkommastellen zu vermeiden, wurde der ermittelte Wert mit 1000 multipliziert. Tabelle 3: Regenbogeneffekt/Newtonringe
Figure imgf000025_0001
* Hersteller MSK (JP)
Die so ermittelten Werte lagen bei erfindungsgemäßen Beschichtungen der Nummern 3 bis 8 in Tabelle 3 um und unter 20, während die nicht erfindungsgemäßen Folien der Nummern 1 und 2 in Tabelle 3, deren Dicke der gesamten PMMA-haltigen Schichten unter 10 μιη liegt, Werte ab 30 und auch weit darüber und damit ein offensichtliches Oiling zeigen.
Wie in den Beispielen klar gezeigt wurde, weisen die erfindungsgemäßen beschichteten Polycarbonat- Folien kratzfeste und lösemittelbeständige Oberflächen bei einem zumindest verringerten Oiling auf. Damit sind die erfindungsgemäßen Folien hervorragend geeignet zur Herstellung von Formkörpern aller Art, insbesondere durch film insert molding- Verfahren.

Claims

Patentansprüche:
1. Beschichtete Polycarbonat-Folie, umfassend eine Polycarbonatfolie und darauf mindestens eine Polymethylmethacrylat-haltige Schicht mit einem Polymethylmethacrylat-Anteil von mindestens 40 Gew.-%, dadurch gekennzeichnet, dass die gesamte Schichtdicke der mindestens einen Polymethylmethacrylat-haltigen Schicht mindestens 10 μιη beträgt, die oberste Schicht der mindestens einen Polymethylmethacrylat-haltigen Schicht erhältlich ist durch Beschichtung mit einem Beschichtungsmittel, umfassend
(a) mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat- Copolymer mit einem mittleren Molgewicht Mw von mindestens 100.000 g/mol in einem Gehalt von mindestens 40 Gew.- % des Festanteils des Beschichtungsmittels;
(b) mindestens einen UV-härtbaren Reaktiwerdünner in einem Gehalt von mindestens 30 Gew.-% des Festanteils des Beschichtungsmittels;
(c) mindestens einen Fotoinitiator in einem Gehalt von 0,1 bis 10 Gewichtsteilen des Festanteils des Beschichtungsmittels; und
(d) mindestens ein organisches Lösungsmittel, wobei der Anteil an ethylenisch ungesättigten Gruppen mindestens 3 mol pro kg des Festanteils des Beschichtungsmittels beträgt.
2. Beschichtete Polycarbonat-Folie gemäß Anspruch 1, umfassend eine Polymethylmethacrylat- haltige Schicht.
3. Beschichtete Polycarbonat-Folie gemäß Anspruch 1, umfassend zwei Polymethylmethacrylat- haltige Schichten.
4. Beschichtete Polycarbonat-Folie gemäß Anspruch 3, umfassend eine mittels Coextrusion erhältliche Polycarbonat/Polymethylmethacrylat-Folie mit einer durch Beschichten mit dem Beschichtungsmittel erhältliche Beschichtung auf der Polymethylmethacrylat-Schicht der Folie.
5. Beschichtete Polycarbonat-Folie gemäß Anspruch 4, wobei die coextrudierte Polymethylmethacrylat-Schicht eine Dicke von mindestens 15 μιη aufweist.
6. Beschichtete Polycarbonat-Folie gemäß mindestens einem der vorstehenden Ansprüche, wobei das Polymethylmethacrylat-Polymer oder Polymethylmethacrylat-Copolymer (a) eine Vicaterweichungstemperatur VET gemäß ISO 306 von mindestens 95 °C aufweist.
7. Beschichtete Polycarbonat-Folie gemäß mindestens einem der vorstehenden Ansprüche, wobei das Polymethylmethacrylat-Copolymer (a) aus 70 Gew.-% bis 99,5 Gew.-% Methylmethacrylat und 0,5 Gew.- % bis 30 Gew.- % Methylacrylat besteht.
8. Beschichtete Polycarbonat-Folie gemäß mindestens einem der vorstehenden Ansprüche, wobei der mindestens eine UV-härtbare Reaktiwerdünner (b) bifunktionelle, trifunktionelle, tetrafunktionelle, pentafunktionelle und/oder hexafunktionelle Acryl- und/oder Methacrylmonomere umfasst.
9. Beschichtete Polycarbonat-Folie gemäß mindestens einem der vorstehenden Ansprüche, wobei das Lösungsmittel (d) ausgewählt ist aus 1 -Methoxy-2-propanol, Diacetonalkohol, 2,2,3,3- Tetrafluoropropanol und Gemischen davon.
10. Beschichtete Polycarbonat-Folie gemäß mindestens einem der vorstehenden Ansprüche, wobei das Lösungsmittel (d) 1 -Methoxy-2-propanol umfasst.
11. Verfahren zur Herstellung einer beschichteten Polycarbonatfolie, umfassend die Schritte
(i) Beschichten einer Polycarbonatfolie oder einer coextrudierten Polycarbonat/Polymethylmethacrylatfolie mit einem Beschichtungsmittel, umfassend
(a) mindestens ein Polymethylmethacrylat-Polymer oder Polymethylmethacrylat- Copolymer mit einem mittleren Molgewicht Mw von mindestens 100.000 g/mol in einem Gehalt von mindestens 40 Gew.-% des Festanteils des B eschichtungsmittels ;
(b) mindestens einen UV-härtbaren Reaktiwerdünner in einem Gehalt von mindestens 30 Gew.-% des Festanteils des B eschichtungsmittels;
(c) mindestens einen Fotoinitiator in einem Gehalt von 0,1 bis 10 Gewichtsteilen des Festanteils des B eschichtungsmittels; und
(d) mindestens ein organisches Lösungsmittel,
wobei der Anteil an ethylenisch ungesättigten Gruppen mindestens 3 mol pro kg des Festanteils des Beschichtungsmittels beträgt; (ii) Trocknen der Beschichtung;
(iii) gegebenenfalls zurechtschneiden, dekaschieren, bedrucken und/oder thermisches oder mechanisches Verformen der Folie;
(iv) Bestrahlen der Beschichtung mit UV-Strahlung, dabei Härten der Beschichtung, wobei die Dicke der mindestens einen PMMA-haltigen Schicht nach dem Trocknungsschritt mindestens 10 μιη beträgt.
12. 3D-Kunststoffteil, umfassend die beschichtete Polycarbonatfolie gemäß mindestens einem der Ansprüche 1 bis 10.
13. 3D-Kunststoffteil gemäß Anspruch 12, erhältlich durch ein film insert molding- Verfahren.
14. Verwendung der beschichteten Polycarbonat-Folie gemäß mindestens einem der Ansprüche 1 bis 10 zur Herstellung von Kunststoffteilen in film insert molding- Verfahren.
15. Verwendung gemäß Anspruch 14, wobei die Verwendung die Herstellung von Kunststoffteilen für die Auto-, Transport-, Elektro-, Elektronik- und Bauindustrie umfasst.
PCT/EP2014/062085 2013-06-14 2014-06-11 Oiling-arme beschichtete polycarbonat-folien WO2014198750A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480033128.6A CN105324443B (zh) 2013-06-14 2014-06-11 贫油光的涂覆的聚碳酸酯薄膜
KR1020157035014A KR20160020428A (ko) 2013-06-14 2014-06-11 저-오일링 코팅된 폴리카르보네이트 필름
US14/897,707 US20160311991A1 (en) 2013-06-14 2014-06-11 Low-oiling coated polycarbonate films
EP14729336.9A EP3008136B1 (de) 2013-06-14 2014-06-11 Oiling-arme beschichtete polycarbonat-folien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13172192 2013-06-14
EP13172192.0 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014198750A1 true WO2014198750A1 (de) 2014-12-18

Family

ID=48613518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/062085 WO2014198750A1 (de) 2013-06-14 2014-06-11 Oiling-arme beschichtete polycarbonat-folien

Country Status (6)

Country Link
US (1) US20160311991A1 (de)
EP (1) EP3008136B1 (de)
KR (1) KR20160020428A (de)
CN (1) CN105324443B (de)
TW (1) TWI616495B (de)
WO (1) WO2014198750A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122822B1 (de) * 2014-03-27 2019-04-24 Covestro Deutschland AG Beschichtungsmittel und folien mit erhöhter mechanischer und chemischer beständigkeit sowie ausreichender verformbarkeit in 2d-film-insert-molding-verfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061558A (en) * 1988-05-11 1991-10-29 Rohm Gmbh Chemische Fabrik Methacrylate protective coating containing a uv-absorber for polycarbonate
US20090163614A1 (en) * 2007-12-24 2009-06-25 Eternal Chemical Co., Ltd. Coating compositions and curing method thereof
US20110171476A1 (en) * 2004-02-24 2011-07-14 Basf Aktiengesellschaft Radiation hardened composite layer plate or film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929506A (en) * 1987-12-31 1990-05-29 General Electric Company Coated polycarbonate articles
KR102094765B1 (ko) * 2012-03-22 2020-03-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 폴리메틸메타크릴레이트계 하드코트 조성물 및 코팅된 물품

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061558A (en) * 1988-05-11 1991-10-29 Rohm Gmbh Chemische Fabrik Methacrylate protective coating containing a uv-absorber for polycarbonate
US20110171476A1 (en) * 2004-02-24 2011-07-14 Basf Aktiengesellschaft Radiation hardened composite layer plate or film
US20090163614A1 (en) * 2007-12-24 2009-06-25 Eternal Chemical Co., Ltd. Coating compositions and curing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122822B1 (de) * 2014-03-27 2019-04-24 Covestro Deutschland AG Beschichtungsmittel und folien mit erhöhter mechanischer und chemischer beständigkeit sowie ausreichender verformbarkeit in 2d-film-insert-molding-verfahren

Also Published As

Publication number Publication date
EP3008136A1 (de) 2016-04-20
US20160311991A1 (en) 2016-10-27
EP3008136B1 (de) 2019-07-24
TWI616495B (zh) 2018-03-01
KR20160020428A (ko) 2016-02-23
CN105324443A (zh) 2016-02-10
TW201510115A (zh) 2015-03-16
CN105324443B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
EP3008144B1 (de) Richtungsunabhängig schlagzähe 3-d-formteile
EP3008137B1 (de) Strahlungshärtbares beschichtungsmittel
EP2396373B1 (de) Antireflex- / antifog-beschichtungen
EP2235116B1 (de) Silikahaltige uv-vernetzbare hardcoatbeschichtungen mit urethanacrylaten
EP3008135B1 (de) Blendfreie, mikrostrukturierte und speziell beschichtete folie
EP3720674B1 (de) Verfahren zur übertragung einer prägestruktur auf die oberfläche einer beschichtung und verbund enthaltend diese beschichtung
EP3013912B1 (de) Metallisierbare, kratzfeste und lösemittelbeständige folie
EP2703092A1 (de) Verfahren zur Einstellung verschiedener Glanzgrade bei strahlengehärteten Lacken und deren Verwendung
EP3008136B1 (de) Oiling-arme beschichtete polycarbonat-folien
EP3008138B1 (de) Oiling-arme, kratzfeste und lösemittelbeständige polycarbonat-folie
EP3122822B1 (de) Beschichtungsmittel und folien mit erhöhter mechanischer und chemischer beständigkeit sowie ausreichender verformbarkeit in 2d-film-insert-molding-verfahren
US20160115322A1 (en) Radiation-curable coating composition
WO2022037950A1 (de) Beschichtungsmittelsysteme, bestehend aus basislack und decklack, sowie darauf basierendes halbzeug und herstellung desselben
WO2018215420A1 (de) Folien mit einer kratzfestbeschichtung als deckschicht und schichtverbunde umfassend solche folien

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033128.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14729336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014729336

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157035014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE