WO2014198198A1 - 三维光栅抗反射结构和元器件 - Google Patents

三维光栅抗反射结构和元器件 Download PDF

Info

Publication number
WO2014198198A1
WO2014198198A1 PCT/CN2014/079335 CN2014079335W WO2014198198A1 WO 2014198198 A1 WO2014198198 A1 WO 2014198198A1 CN 2014079335 W CN2014079335 W CN 2014079335W WO 2014198198 A1 WO2014198198 A1 WO 2014198198A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
substrate
refractive index
light
micro
Prior art date
Application number
PCT/CN2014/079335
Other languages
English (en)
French (fr)
Inventor
张昭宇
肖登
支晓婷
苏光耀
刘传鸿
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2014198198A1 publication Critical patent/WO2014198198A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Definitions

  • the present application relates to a micro-nano anti-reflection structure, and in particular to a three-dimensional grating anti-reflection structure and components.
  • micro-nano anti-reflection structure has become a new and important topic, which has been rapidly developed in the past ten years.
  • Micro-nano anti-reflective structures have strong potential applications in many fields, including everyday lens applications, thin film solar cells, and micro-nano sensors.
  • crystalline silicon solar cells have a photoelectric conversion efficiency of about 18%, but silicon has up to 37.5% for sunlight.
  • the reflectivity which is one of the main reasons for the low efficiency of solar cells.
  • the research of anti-reflection technology is extremely important.
  • the micro-nano anti-reflection structure can reduce the glare or ghost phenomenon caused by the reflection of the external light source on the surface of the component, and improve the utilization efficiency of the light energy.
  • the main anti-reflection technology is to form a plurality of films of different refractive indices on the surface of the component to reduce the reflectivity of light.
  • the multilayer film structure is composed of a high refractive index layer composed of a transparent material such as a metal oxide and a low Obtained from the repeated structure of the refractive index layer.
  • the antireflection structure of the conventional multilayer film has a problem of using a narrow wavelength range, sensitivity to an incident direction, and sensitivity to polarization, a good antireflection effect cannot be achieved.
  • the present application provides a three-dimensional grating anti-reflection structure and component that increases the transmittance of incident light over a particular range of wavelengths.
  • the present application provides a three-dimensional grating anti-reflection structure, including:
  • each unit comprising at least a first portion, a first portion of the grating being formed on the first side of the substrate and exposed in the external environment, the second portion being from the first side of the substrate Buried into the substrate, the area of the cross section of the first portion of the grating parallel to the first side gradually decreases as the distance from the cross section to the first side gradually decreases, and the refractive index of the grating material is between the external environment and the refraction of the substrate material The ratio is equal to or equal to the refractive index of the substrate material.
  • each of the grating base units further includes a second portion extending from the bottom of the first portion in contact with the first side of the substrate toward the interior of the substrate, and the area of the cross section of the second portion parallel to the first side also corresponds to the cross section The distance to the first side gradually increases and gradually decreases.
  • a groove having a large opening and then gradually narrowing is formed on the first side of the substrate, the grooves being closely arranged in an array of micro-nano structures, and the second portion of the grating is tightly embedded in the groove of the first side.
  • the substrate is a semiconductor material and the material of the grating is a non-dispersive dielectric material having a refractive index between 1 and 5.
  • the grating is a double-sided pyramid or a double-sided abutment that is butted at the bottom.
  • the abutting surface of the first portion and the second portion of the grating is square, and the relationship between the size of the first portion and the second portion of the grating and the wavelength of the incident light is: d ⁇ ⁇ ⁇ 2.5 h, where ⁇ is the wavelength of the incident light, d For the side length of the abutting face, h is the height of the first part and the second part of the grating.
  • the first portion and the second portion of the grating are of the same material and are symmetrical along the abutting faces of the two.
  • an anti-light reflective component including:
  • a light layer having a first side for receiving light incident
  • a grating formed by closely aligning grating basic units into an array of micro-nano structures, each unit including at least a first portion, a first portion of the grating being formed on the first side of the substrate and exposed in the external environment, the second portion being first from the substrate
  • the side surface is buried in the substrate, and the area of the cross section of the first portion of the grating parallel to the first side gradually decreases as the distance from the section to the first side gradually increases, and the refractive index of the grating material is different from the external environment and the light layer material.
  • the refractive index is equal to or equal to the refractive index of the material of the illumination layer.
  • each of the grating basic units further includes a second portion extending from the bottom of the first portion in contact with the first side of the illumination layer toward the interior of the illumination layer, the first side of the illumination layer being formed with an opening, Then gradually narrowing the grooves, the grooves are closely arranged in an array of micro-nano structures, the second portion of the grating is tightly embedded in the grooves of the first side, and the second portion of the grating is parallel to the cross-section of the first side The area gradually decreases as the distance from the section to the first side increases.
  • the present invention forms a three-dimensional grating anti-reflection structure functional coating by embedding a three-dimensional grating closely arranged in an array of micro-nano structures on the surface of the illumination layer of the micro-nano photoelectric component, thereby improving the incident light of the micro-nano photoelectric component to a specific wavelength range. Transmittance.
  • FIG. 1 is a schematic diagram of a semi-buried double pyramid grating anti-reflection structure according to an embodiment of the present application
  • Figure 2 is a cross-sectional view of Figure 1;
  • FIG. 3 is a graph showing a graded refractive index from an external environment to a substrate layer in an embodiment of the present application
  • FIG. 4 is a comparison diagram of transmittance of incident light in the presence or absence of an anti-reflection structure in an embodiment of the present application.
  • the researchers found that some organs of some organisms have a very good anti-reflective effect on light.
  • the surface layer structure of moths of moths has a number of closely arranged small protrusions, which can form a good anti-reflection layer, and the three-dimensional hole structure on the surface of the butterfly wings can modulate the incident light to obtain the color of the colorful wings.
  • these micro-nano scale surface layer structures have not been manufactured in practical applications.
  • the manufacturing capabilities of micro-nano-scale small structures have gradually developed and improved, so the research and manufacture of related devices has also become possible.
  • a "micro/nano” structure refers to a microstructure having a feature size below 100 nanometers (nm). Examples of such structures include nanodots, nanowires, nanorods, nanotubes, nanocrystals, and the like.
  • the "micro-nano-optical components" used in the present application are processed by nano-scale processing and preparation techniques to produce optoelectronic components having a nanoscale (1-100 nm) scale and having certain functions.
  • anti-reflective property refers to the property of a coating, layer or surface that reduces optical surface light reflection.
  • the antireflective properties may depend on various parameters such as the refractive index of the material, the thickness of the layer, the structure of the layer or surface, and the like.
  • the refractive index of a medium is defined as the ratio of the speed of light in a vacuum to the speed of light in a medium.
  • the refractive index of the micro/nano structure used herein refers to the effective refractive index of the three-dimensional grating anti-reflective structure.
  • Gradient index means that the change in refractive index in a selected direction is gradual.
  • Transmittance is the ratio of incident light flux to transmitted light flux.
  • Light dispersion refers to the phenomenon that complex color light is decomposed into monochromatic light to form a spectrum.
  • a grating layer is formed on a first side surface of a substrate that receives light, and a graded refractive index is achieved by the grating layer.
  • the grating layer comprises a plurality of grating basic units closely arranged in an array of micro-nano structures, each unit comprising at least a first portion, a first portion of the grating being formed on the first side of the substrate and exposed in the external environment, the second portion being from the substrate
  • the first side is buried in the substrate, and the area of the cross section of the first portion of the grating parallel to the first side gradually decreases as the distance from the section to the first side gradually increases, and the refractive index of the grating material is between the external environment and the substrate
  • the refractive index of the material is equal to or equal to the refractive index of the substrate material.
  • a double pyramid type grating anti-reflection structure semi-buried in a substrate, comprising a closely arranged double pyramid type grating 1 and a substrate from top to bottom.
  • the substrate 2 has a first side surface 21 on which an inverted pyramid type groove array is formed.
  • the grating 1 is divided into two parts, the first part being an upper grating layer 101 formed on the first side 21 of the substrate 2, exposed in the external environment (usually air), and the second part being the lower grating layer 102, which is from the substrate The first side is embedded in the recess of the substrate 2.
  • the material is not limited, but should have properties suitable for its specific use.
  • the material should have a good absorption capacity for light (such as single crystal silicon, non- Crystalline silicon, gallium arsenide, etc.); if the substrate 2 is a lens, the material should have good light transmission (such as glass, plexiglass, crystal, etc.).
  • the grating 1 is a low refractive index non-dispersive material such as indium tin oxide, silicon dioxide or the like.
  • the refractive index of the grating 1 is between the external environment and the substrate 2, or equal to the refractive index of the substrate 2. When the refractive index of the grating 1 is equal to the refractive index of the substrate 2, it corresponds to the grating 1 having only the upper grating layer 101.
  • the basic unit of the grating 1 in this embodiment is a bottom-facing double pyramid (ie, a double pyramid structure).
  • the basic unit of the grating 1 may also be a bottom-butted double-sided platform or a hemisphere. Or an ellipsoid.
  • the area of the section of the first portion of the grating parallel to the first side is gradually decreased as the distance from the section to the first side is gradually increased, the area of the section of the second portion of the grating parallel to the first side is also related to the section The distance to the first side gradually increases and gradually decreases.
  • the recess in order to embed the second portion of the grating into the recess of the first side of the substrate, the recess must be first etched on the substrate, the size and shape of the recess being the same as the size and shape of the second portion of the grating. Matching causes the second portion of the grating to fit tightly into the groove of the substrate.
  • the second portion of the grating can also be formed directly in the substrate.
  • the upper grating layer 101 and the lower grating layer 102 of the grating 1 are of the same material and are symmetrical along the abutting faces of the two.
  • the size of the grating unit can be determined based on the spectral band it is incident on.
  • the bottom of the grating has a length of W
  • the height of the grating is h 0
  • the wavelength of the incident light is ⁇
  • the relationship between the three is as follows: W ⁇ 2.5h 0 .
  • the height of the pyramid grating unit should be between 700 and 1100 nm
  • the bottom side should be between 100 and 240 nm. between.
  • R is the reflectivity of light at the interface of adjacent media (ie, medium 1 and medium 2)
  • n 1 and n 2 are refractive indices of adjacent media, respectively. It can be seen from the above formula that the closer the refractive index of the medium is, the smaller the reflectance is when light passes through the adjacent medium. Therefore, if the change in refractive index is gradual over the entire optical path of the transition medium 2 from the medium 1, the transmittance of light from the medium 1 to the medium 2 can be greatly increased.
  • the graded index of refraction is not an attribute of the material, but an optical property of the entire grating layer.
  • the refractive index of the grating 1 is fixed, except that the layer in which the grating 1 is located contains or contains air, and the grating has a gradual cross-sectional area to ensure that the proportion of the grating material continuously changes in the longitudinal direction. Therefore, the effective refractive index of the grating 1 is gradual.
  • the equivalent refractive index depends on the ratio of the two media in the layer. For example, in this embodiment, we divide the entire grating layer into a first grating layer and a second grating layer, the first grating layer being a layer in which the first portion exposed outside the substrate 2 is located, and the first grating layer is composed of a grating and an external environment.
  • the composition of (for example, air) is closer to the first side, and the composition ratio of the grating is larger, and the composition ratio of air is smaller.
  • the second grating layer is composed of a grating and a substrate. The farther away from the first side, the smaller the composition ratio of the grating, the larger the composition ratio of the substrate. Since the refractive indices of the air, the grating material and the base material are arranged from small to large, the refractive index of the entire grating layer is larger from the outside to the inside (ie, along the incident direction of the light), thereby forming a gradual change. Refractive index. As shown in FIG.
  • the vertical axis represents the refractive index
  • the horizontal axis represents the height of the grating
  • the height of the portion of the grating below the first side of the substrate is negative
  • the height of the portion of the grating above the first side of the substrate is positive.
  • the higher the height the smaller the refractive index. Therefore, the grating layer structure of the present embodiment can reduce the reflectance of light incident into the substrate from the environment and increase the transmittance. It should be noted here that the incident angle of the incident light is not limited as long as it is incident from the front surface of the anti-reflection structure.
  • the material of the substrate 2 is Si
  • the material of the grating 1 is SiO 2
  • the composition of this layer is 100% air and 0% SiO 2 , so the refractive index is equivalent to the refractive index of air (equal to 1); along this layer, the refractive index gradually increases
  • the composition of this layer is 0% air and 100% SiO 2 , so the refractive index corresponds to the refractive index of SiO 2 (approximately equal to 1.5); the refractive index continues further along this layer.
  • the composition of this layer is 100% Si and 0% SiO 2 , so the refractive index corresponds to the Si refractive index (approximately equal to 5).
  • the effective refractive index is also gradual.
  • the anti-reflective structure is as shown in FIG. 1.
  • the refractive index of the entire anti-reflective structure is a graded refractive index as shown in FIG. 3, and the incident light wavelength range is 300-2000.
  • Nm covering the visible light to the infrared band
  • the contrast curve of incident light transmittance is shown in Fig. 4. It can be seen that the three-dimensional grating anti-reflection structure with graded refractive index has excellent transmission enhancement effect on wide-band, omnidirectional and various polarized incident light, and its spectral coverage can be from visible light to infrared.
  • the grating anti-reflection structure of the present application can be widely used in many fields, such as ophthalmic lenses, optical disks, computer screens, digital cameras, PDAs, GPS and mobile phone displays, automotive glass, aircraft and automobile dashboards, and solar panel surfaces.
  • the common point of the device is that each has a transparent illumination surface, and the illumination surface has a first side on which the light is incident.
  • the first side of the light incident on the illumination surface can be formed on the first side of the illumination surface.
  • the grating layer, that is, the second portion of the grating in the above embodiment is embedded from the first side into the interior of the illumination surface, thereby significantly improving the image performance of the product or improving the utilization of light energy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种三维光栅抗反射结构和元器件,包括具有第一侧面基底(2)和一个密排光栅结构(1),光栅基本单元分为两部分,第一部分(101)露出在外界环境中,第二部分(102)从基底的第一侧面埋入基底(2),多个基本单元紧密排列成微纳结构阵列,基本单元的第一部分(101)的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,基本单元的第二部分(102)的平行于第一侧面的截面的面积也随截面到第一侧面的距离的逐渐增加而逐渐减小,光栅材料的折射率介于外界环境和基底材料的折射率之间。通过在微纳光电元器件的光照层表面埋入紧密排列成微纳结构阵列的三维光栅,形成三维光栅抗反射结构功能涂层,可提高微纳光电元器件对特定波长范围入射光的透射率。

Description

三维光栅抗反射结构和元器件 技术领域
本申请涉及微纳抗反射结构,具体涉及一种三维光栅抗反射结构和元器件。
背景技术
目前,微纳抗反射结构的研究已成为一个崭新的重要课题,在近十年得到了迅速发展。微纳抗反射结构在诸多领域,包括日常透镜应用、薄膜太阳能电池、微纳传感器等方面都有很强的潜在应用价值。例如,结晶硅太阳能电池的光电转换效率约为18%,但其中硅对于太阳光有高达37.5% 的反射率,此高反射率是造成太阳能电池效率低的主要原因之一。有鉴于此,为了克服现有技术面临的高反射率问题,抗反射技术的研究显得极为重要。微纳抗反射结构可减少元器件表面对外界光源反射所造成的炫光或鬼影现象,并提高光能的利用效率。
目前,主要的抗反射技术是在元器件表面形成多层不同折射率的薄膜来降低光的反射率,这种多层膜结构是由基于金属氧化物等透明材料组成的高折射率层和低折射率层的重复结构而得到的。然而,由于传统多层膜的抗反射结构具有使用波长范围窄、对入射方向敏感以及对偏振敏感的问题,未能达到良好的抗反射效果。
发明内容
本申请提供一种提高特定波长范围的入射光透射率的三维光栅抗反射结构和元器件。
根据本申请的第一方面,本申请提供一种三维光栅抗反射结构,包括:
基底,所述基底具有第一侧面;
紧密排列成微纳结构阵列的多个光栅基本单元,每个单元至少包括第一部分,光栅的第一部分形成于基底的第一侧面上且露出在外界环境中,第二部分从基底的第一侧面埋入基底,光栅的第一部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,所述光栅材料的折射率介于外界环境和基底材料的折射率之间或等于基底材料的折射率。
在一种实施例中,每个光栅基本单元还包括从第一部分与基底第一侧面接触的底部向基底内部延伸的第二部分,第二部分的平行于第一侧面的截面的面积也随截面到第一侧面的距离的逐渐增加而逐渐减小。
所述基底的第一侧面上制作有开口大、然后逐渐收小的凹槽,所述凹槽紧密排列成微纳结构阵列,所述光栅的第二部分紧密嵌入第一侧面的凹槽内。
所述基底是半导体材料,所述光栅的材料是折射率在1~5之间的非色散电介质材料。
所述光栅为底部对接的双棱锥体或双棱台体。
所述光栅第一部分和第二部分的对接面为正方形,光栅第一部分和第二部分的尺寸与入射光的波长的关系为:d<λ<2.5h,其中,λ为入射光的波长,d为对接面的边长,h为光栅第一部分和第二部分的高度。
所述光栅的第一部分和第二部分材料相同且沿两者的对接面对称。
根据本申请的第二方面,本申请提供一种抗光反射元器件,包括:
光照层,所述光照层具有用于接收光入射的第一侧面;
由光栅基本单元紧密排列成微纳结构阵列形成的光栅,每个单元至少包括第一部分,光栅的第一部分形成于基底的第一侧面上且露出在外界环境中,第二部分从基底的第一侧面埋入基底,光栅的第一部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,所述光栅材料的折射率介于外界环境和光照层材料的折射率之间或等于光照层材料的折射率。
在一种实施例中,每个光栅基本单元还包括从第一部分与光照层第一侧面接触的底部向光照层内部延伸的第二部分,所述光照层的第一侧面上制作有开口大、然后逐渐收小的凹槽,所述凹槽紧密排列成微纳结构阵列,所述光栅的第二部分紧密嵌入第一侧面的凹槽内,光栅第二部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小。
本申请通过在微纳光电元器件的光照层表面埋入紧密排列成微纳结构阵列的三维光栅,形成三维光栅抗反射结构功能涂层,可提高微纳光电元器件对特定波长范围入射光的透射率。
附图说明
图1为本申请一种实施例中半埋双金字塔光栅抗反射结构的示意图;
图2为图1的剖面图;
图3为本申请一种实施例中从外界环境到基底层渐变折射率的曲线图;
图4为本申请一种实施例中入射光在有无抗反射结构的透射率对比图。
具体实施方式
为了使本申请揭示的内容更加详尽与完备,下面通过具体实施方式并结合附图对本申请作进一步详细说明。本领域的技术人员应当理解,这并非实施或运用本申请的唯一形式,而是仅仅用以解释本申请,并不用以限制本申请的保护范围。
通过观察,研究人员发现一些生物(如飞蛾、蝴蝶等)的某些器官具有对光非常好的抗反射作用。例如,飞蛾的蛾眼表面层结构拥有一些密排的小小突起,能够形成良好的抗反射层,而蝴蝶翅膀表面的三维孔洞结构,则能调制入射光得到色彩斑斓的翅膀颜色。研究人员曾尝试将一些生物器官中的抗反射结构应用到实际元器件中,然而受限于工艺技术,这些微纳尺度的表面层结构一直不能在实际应用中制造出来。近年来,随着纳米科技的兴起,微纳尺度小结构的制造能力也逐渐发展完善,于是相关器件的研究和制造也成为可能。
本申请所用的“微纳”结构是指具有特征尺寸在100纳米(nm)以下的微小结构,这类结构的实例包括纳米点、纳米线、纳米棒、纳米管、纳米晶体等。本申请所用的“微纳光电元器件”是利用纳米级加工和制备技术加工制备具有纳米级(1-100nm)尺度以及具有一定功能的光电元器件。
本申请所用的“抗反射”性质是指减少光学表面光反射的涂层、层或表面的性质。抗反射性质可取决于各种参数,如材料的折射率、层的厚度、层或表面的结构等。
一般来讲,介质的折射率定义为真空中光速与介质中光速之比。本申请所用的微纳结构的折射率是指三维光栅抗反射结构的有效折射率。渐变折射率是指沿选定方向折射率的变化是渐变的。透射率是指入射光通量与透过后的光通量之比。光色散指复色光分解为单色光而形成光谱的现象。
本申请中的光栅抗反射结构中,在接受光入射的基底的第一侧面形成光栅层,通过光栅层实现渐变的折射率。光栅层包括紧密排列成微纳结构阵列的多个光栅基本单元,每个单元至少包括第一部分,光栅的第一部分形成于基底的第一侧面上且露出在外界环境中,第二部分从基底的第一侧面埋入基底,光栅的第一部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,所述光栅材料的折射率介于外界环境和基底材料的折射率之间或等于基底材料的折射率。
在本申请一种实施例中,如图1和图2所示,是一种半埋入基底中的双金字塔型光栅抗反射结构,自上而下包括紧密排列的双金字塔型光栅1和基底2,基底2具有第一侧面21,第一侧面21上制作有倒金字塔型的凹槽阵列。光栅1分为两部分,第一部分为上部光栅层101,其形成在基底2的第一侧面21上,露出在外界环境(通常是空气)中,第二部分为下部光栅层102,其从基底的第一侧面嵌入基底2的凹槽内。
对于基底2来说,其材料不限,但应具有与其特定用途相适应的性质,例如,若基底2为太阳能电池,则其材料应具有对光较好的吸收能力(如单晶硅、非晶硅、砷化镓等);若基底2为透镜,则其材料应具有较好透光性(如玻璃、有机玻璃、水晶等)。光栅1为低折射率非色散材料,如铟锡氧化物、二氧化硅等。光栅1的折射率介于外界环境和基底2之间,或等于基底2的折射率。当光栅1的折射率等于基底2的折射率时,相当于光栅1只有上部光栅层101。
本实施例中的光栅1的基本单元为底部对接的双棱锥体(即双金字塔结构),在其他实施例中,光栅1的基本单元还可以是底部对接的双棱台体,或者是半球体或椭球体。只要使得光栅的第一部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,光栅的第二部分的平行于第一侧面的截面的面积也随截面到第一侧面的距离的逐渐增加而逐渐减小即可。
本实施例中,为了将光栅的第二部分嵌入到基底第一侧面的凹槽内,须先在基底上刻蚀凹槽,凹槽的大小和形状与光栅的第二部分的大小和形状相匹配,使光栅的第二部分紧密嵌入到基底的凹槽内。在另外的具体实例中,光栅的第二部分也可以直接形成在基底中。
在一种具体实施例中,光栅1的上部光栅层101和下部光栅层102的材料相同,且沿两者的对接面对称。
在较优的实施例中,光栅单元的尺寸可根据其入射的光谱波段来确定。在一种具体实施例中,如图2所示,设金字塔的光栅底部边长为W,光栅的高度为h0,其对应入射光的波长为λ,三者之间具有以下关系,即:W<λ<2.5h0. 例如,若要使抗反射结构对可见光及红外波段有明显的抗反射作用,则金字塔光栅单元的高度应在700至1100nm之间,底部边长应在100至240nm之间。
按照菲涅尔反射公式:
R=[(n1-n2)/(n1+n2)]2, (1)
其中,R为光在相邻介质(即介质1和介质2)界面的反射率,n1和n2分别为相邻介质的折射率。由上述公式可知,光在通过相邻介质时,介质折射率越相近,反射率越小。因此,若光在从介质1过渡介质2的整个光程上,折射率的改变都是渐变的,则可大大增加光从介质1到介质2的透射率。
渐变折射率不是材料的属性,而是整个光栅层的光学属性。在本实施例中,光栅1的折射率是固定的,只是光栅1所处的层中或者包含空气,或者包含基底材料,光栅具有渐变的横截面积可保证光栅材料所占比例沿纵向连续变化,因此光栅1的有效折射率是渐变的。由于光栅1的光栅单元尺寸与入射光波长相当甚至更小,在此尺度下,入射光不能辨认光栅1的具体结构,因而不会实现几何光学的反射、衍射等效果,而是将整个光栅1看做一个材料均匀的介质层,其等效折射率视此层中两种介质的比例而定。例如,本实施例中,我们将整个光栅层分为第一光栅层和第二光栅层,第一光栅层为露在基底2外面的第一部分所在的层,第一光栅层由光栅和外部环境(例如空气)组成,越接近第一侧面,光栅的组成比例越大,空气的组成比例越小。第二光栅层由光栅和基底组成,越远离第一侧面,光栅的组成比例越小,基底的组成比例越大。由于空气、光栅材料和基底材料三种的折射率呈现由小到大排列,因此整个光栅层的折射率由外到内(即沿着光的入射方向)是越来越大,从而形成渐变的折射率。如图3所示,纵轴表示折射率,横轴表示光栅的高度,光栅位于基底第一侧面下面的部分的高度为负值,光栅位于基底第一侧面上面的部分的高度为正值,由图可知,高度越大折射率越小。因此本实施例的这种光栅层结构可减少光由环境入射到基底中的反射率,增加透射率。在此需要说明,入射光的入射角度没有限制,只要是从抗反射结构的正面入射即可。
在一种具体实施例中,如图2所示,基底2的材料为Si,光栅1的材料为SiO2。在光栅1的顶部尖顶层处,此层的组成是100%的空气和0%的SiO2,因此折射率相当于空气的折射率(等于1);沿此层往下,折射率逐渐增加,在光栅1和基底2的交界处,此层的组成是0%的空气和100%的SiO2,因此折射率相当于SiO2折射率(近似等于1.5);沿此层再往下折射率继续增加,到光栅1的底部尖顶层处,此层的组成是100%的Si和0%的SiO2,因此折射率相当于Si折射率(近似等于5)。在整个抗反射结构中,由于光栅单元的横截面积都是渐变的,因此有效折射率也是渐变的。
在一种具体实施例中,抗反射结构如图1所示,整个抗反射结构的折射率是如图3所示渐变折射率,入射光波长范围是300-2000 nm(涵盖可见光到红外波段),在有抗反射结构与无抗反射结构的平板同材质基底两种情况下,入射光透射率的对比曲线如图4所示。由此可见,具有渐变折射率的三维光栅抗反射结构对宽波段、全方向以及各种偏振的入射光具有优良的透射增强作用,其光谱覆盖范围可从可见光到红外波段。
本申请的光栅抗反射结构可广泛应用于诸多领域,如眼镜片、光盘、计算机屏幕、数码相机、PDA、GPS及手机显示器、汽车玻璃、飞机及汽车仪表板、太阳能电池板的表面,这种器件的共同点是都具有透明的光照面,光照面具有光入射的第一侧面,为了提高光照面的抗光反射性能,可在光照面的光入射的第一侧面上形成上述实施例中的光栅层,即将上述实施例中的光栅的第二部分从第一侧面嵌入到光照面内部,从而可显著改善产品的影像表现或提高光能利用率。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (10)

  1. 一种三维光栅抗反射结构,其特征在于包括:
    基底,所述基底具有第一侧面;
    紧密排列成微纳结构阵列的多个光栅基本单元,每个单元至少包括第一部分,光栅的第一部分形成于基底的第一侧面上且露出在外界环境中,第二部分从基底的第一侧面埋入基底,光栅的第一部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,所述光栅材料的折射率介于外界环境和基底材料的折射率之间或等于基底材料的折射率。
  2. 如权利要求1所述的三维光栅抗反射结构,其特征在于,每个光栅基本单元还包括从第一部分与基底第一侧面接触的底部向基底内部延伸的第二部分,第二部分的平行于第一侧面的截面的面积也随截面到第一侧面的距离的逐渐增加而逐渐减小。
  3. 如权利要求2所述的三维光栅抗反射结构,其特征在于包括:所述基底的第一侧面上制作有开口大、然后逐渐收小的凹槽,所述凹槽紧密排列成微纳结构阵列,所述光栅的第二部分紧密嵌入第一侧面的凹槽内。
  4. 如权利要求2所述的三维光栅抗反射结构,其特征在于,所述基底是半导体材料,所述光栅的材料是折射率在1~5之间的非色散电介质材料。
  5. 如权利要求2所述的三维光栅抗反射结构,其特征在于,所述光栅为底部对接的双棱锥体或双棱台体。
  6. 如权利要求2所述的三维光栅抗反射结构,其特征在于,所述光栅第一部分和第二部分的对接面为正方形,光栅第一部分和第二部分的尺寸与入射光的波长的关系为:d<λ<2.5h,其中,λ为入射光的波长,d为对接面的边长,h为光栅第一部分和第二部分的高度。
  7. 如权利要求2-6中任一项所述的三维光栅抗反射结构,其特征在于,所述光栅的第一部分和第二部分材料相同且沿两者的对接面对称。
  8. 一种抗光反射元器件,其特征在于包括:
    光照层,所述光照层具有用于接收光入射的第一侧面;
    由光栅基本单元紧密排列成微纳结构阵列形成的光栅,每个单元至少包括第一部分,光栅的第一部分形成于基底的第一侧面上且露出在外界环境中,第二部分从基底的第一侧面埋入基底,光栅的第一部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小,所述光栅材料的折射率介于外界环境和光照层材料的折射率之间或等于光照层材料的折射率。
  9. 如权利要求8所述的抗光反射元器件,其特征在于,每个光栅基本单元还包括从第一部分与光照层第一侧面接触的底部向光照层内部延伸的第二部分,所述光照层的第一侧面上制作有开口大、然后逐渐收小的凹槽,所述凹槽紧密排列成微纳结构阵列,所述光栅的第二部分紧密嵌入第一侧面的凹槽内,光栅第二部分的平行于第一侧面的截面的面积随截面到第一侧面的距离的逐渐增加而逐渐减小。
  10. 如权利要求9所述的抗光反射元器件,其特征在于,所述光栅的第一部分和第二部分材料相同且沿两者的对接面对称,所述光栅的第一部分和第二部分为底部对接的双棱锥体或双棱台体,所述对接面为正方形,光栅第一部分和第二部分的尺寸与入射光的波长的关系为:d<λ<2.5h,其中,λ为入射光的波长,d为对接面的边长,h为光栅第一部分和第二部分的高度。
PCT/CN2014/079335 2013-06-13 2014-06-06 三维光栅抗反射结构和元器件 WO2014198198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310233914.8 2013-06-13
CN201310233914.8A CN103353626B (zh) 2013-06-13 2013-06-13 三维光栅抗反射结构和元器件

Publications (1)

Publication Number Publication Date
WO2014198198A1 true WO2014198198A1 (zh) 2014-12-18

Family

ID=49310013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079335 WO2014198198A1 (zh) 2013-06-13 2014-06-06 三维光栅抗反射结构和元器件

Country Status (2)

Country Link
CN (1) CN103353626B (zh)
WO (1) WO2014198198A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10725212B2 (en) 2017-04-28 2020-07-28 Young Optics Inc. Lens

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353626B (zh) * 2013-06-13 2016-04-20 北京大学深圳研究生院 三维光栅抗反射结构和元器件
CN103646998B (zh) * 2013-12-16 2016-08-17 陕西师范大学 增强硅薄膜太阳电池光吸收的织构横向错位方法
CN104465821B (zh) * 2014-12-25 2017-11-24 胡明建 一种圆锥形等距矩阵排列太阳能板的设计方法
CN109239817B (zh) * 2018-11-19 2024-05-31 深圳大学 一种入射电磁波的增透装置及利用其调节透射率的方法
CN113866997B (zh) * 2021-09-17 2023-10-24 深圳技术大学 显示系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711486A (zh) * 2002-11-06 2005-12-21 帝斯曼知识产权资产管理有限公司 具有抗反射性能的机械耐久性单层涂层的制备
KR20060135443A (ko) * 2005-06-25 2006-12-29 학교법인 포항공과대학교 광대역 반사방지 필름의 제조방법 및 그로부터 제조된반사방지 필름
US20100149510A1 (en) * 2007-06-05 2010-06-17 Carl Zeiss Smt Ag Methods for producing an antireflection surface on an optical element, optical element and associated optical arrangement
CN101958347A (zh) * 2009-07-15 2011-01-26 通用电气公司 纳米结构功能涂层和器件
TW201109740A (en) * 2009-09-01 2011-03-16 Au Optronics Corp Hybrid optical film
CN102597819A (zh) * 2009-09-11 2012-07-18 旭化成电子材料株式会社 点光源用光扩散板及直下型点光源背光灯装置
CN102855817A (zh) * 2011-06-29 2013-01-02 群康科技(深圳)有限公司 显示装置、抗反射基板及其制造方法
CN103353626A (zh) * 2013-06-13 2013-10-16 北京大学深圳研究生院 三维光栅抗反射结构和元器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022319A (ja) * 2009-07-15 2011-02-03 Nikon Corp 回折光学素子、光学系及び光学装置
CN101726769B (zh) * 2009-12-16 2011-11-16 中国科学院苏州纳米技术与纳米仿生研究所 叠层亚波长减反结构及其制备方法
WO2011108208A1 (ja) * 2010-03-02 2011-09-09 パナソニック株式会社 光学素子及び光学素子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711486A (zh) * 2002-11-06 2005-12-21 帝斯曼知识产权资产管理有限公司 具有抗反射性能的机械耐久性单层涂层的制备
KR20060135443A (ko) * 2005-06-25 2006-12-29 학교법인 포항공과대학교 광대역 반사방지 필름의 제조방법 및 그로부터 제조된반사방지 필름
US20100149510A1 (en) * 2007-06-05 2010-06-17 Carl Zeiss Smt Ag Methods for producing an antireflection surface on an optical element, optical element and associated optical arrangement
CN101958347A (zh) * 2009-07-15 2011-01-26 通用电气公司 纳米结构功能涂层和器件
TW201109740A (en) * 2009-09-01 2011-03-16 Au Optronics Corp Hybrid optical film
CN102597819A (zh) * 2009-09-11 2012-07-18 旭化成电子材料株式会社 点光源用光扩散板及直下型点光源背光灯装置
CN102855817A (zh) * 2011-06-29 2013-01-02 群康科技(深圳)有限公司 显示装置、抗反射基板及其制造方法
CN103353626A (zh) * 2013-06-13 2013-10-16 北京大学深圳研究生院 三维光栅抗反射结构和元器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10725212B2 (en) 2017-04-28 2020-07-28 Young Optics Inc. Lens

Also Published As

Publication number Publication date
CN103353626A (zh) 2013-10-16
CN103353626B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2014198198A1 (zh) 三维光栅抗反射结构和元器件
Keshavarz Hedayati et al. Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review
Raut et al. Anti-reflective coatings: A critical, in-depth review
Song et al. Design of highly transparent glasses with broadband antireflective subwavelength structures
Leem et al. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns
Chen et al. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells
Li et al. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing
Chung et al. Mining the smartness of insect ultrastructures for advanced imaging and illumination
US20090231714A1 (en) Transparent anti-reflective article and method of fabricating same
Leem et al. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells
Parchine et al. Large area colloidal photonic crystals for light trapping in flexible organic photovoltaic modules applied using a roll-to-roll Langmuir-Blodgett method
WO2012018199A2 (ko) 점진적으로 굴절률이 변하는 실리콘 다층 무반사막 및 그 제조방법 및 이를 구비하는 태양전지 및 그 제조방법
Dottermusch et al. Micro‐cone textures for improved light in‐coupling and retroreflection‐inspired light trapping at the front surface of solar modules
Van Lare et al. Dielectric back scattering patterns for light trapping in thin-film Si solar cells
US9207363B2 (en) Anti-reflection nanostructure array and method
Zhou et al. Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells
WO2023155611A1 (zh) 一种远红外超透镜及其加工方法
Leem et al. Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells
Choi et al. A review on the fabrication and applications of sub-wavelength anti-reflective surfaces based on biomimetics
Phillips et al. Engineered Biomimicry: Chapter 12. Biomimetic Antireflection Surfaces
Sun et al. Double grating high efficiency nanostructured silicon-based ultra-thin solar cells
Li et al. Silica single-layer inverse opal films: large-area crack-free fabrication and the regulation of transmittance in the visible region
Kim et al. Light absorption enhancement in ultrathin perovskite solar cells using light scattering of high-index dielectric nanospheres
Wang et al. Flexible semiconductor Technologies with Nanoholes-Provided high Areal Coverages and their application in Plasmonic-enhanced thin film Photovoltaics
Shen et al. Performance enhancement in a-Si: H/μc-Si: H tandem solar cells with periodic microstructured surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810449

Country of ref document: EP

Kind code of ref document: A1