WO2014198139A1 - 一种电子镇流器分时启动控制方法及延时启动电子镇流器 - Google Patents

一种电子镇流器分时启动控制方法及延时启动电子镇流器 Download PDF

Info

Publication number
WO2014198139A1
WO2014198139A1 PCT/CN2014/073284 CN2014073284W WO2014198139A1 WO 2014198139 A1 WO2014198139 A1 WO 2014198139A1 CN 2014073284 W CN2014073284 W CN 2014073284W WO 2014198139 A1 WO2014198139 A1 WO 2014198139A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
delay
electronic ballast
electronic
real
Prior art date
Application number
PCT/CN2014/073284
Other languages
English (en)
French (fr)
Inventor
蔡世学
蒋中为
Original Assignee
深圳市电王科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市电王科技有限公司 filed Critical 深圳市电王科技有限公司
Priority to US14/413,472 priority Critical patent/US9848477B2/en
Publication of WO2014198139A1 publication Critical patent/WO2014198139A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters

Definitions

  • This invention relates to an electronic ballast, and more particularly to a method for time-division start of an electronic ballast and a time-delayed electronic ballast in order to overcome a short-time voltage drop of a line when multiple electronic ballasts are operated in parallel.
  • ballast is an electronic control device that converts a direct current or low frequency alternating current voltage into a frequency alternating current voltage and drives a light source such as a low pressure gas discharge lamp or a tungsten halogen lamp.
  • a light source such as a low pressure gas discharge lamp or a tungsten halogen lamp.
  • Electronic ballasts are widely used due to their low energy consumption, high efficiency, light efficiency, light weight, and power factor. In particular, the advantages of high-power electronic ballasts in applications are more obvious. Therefore, in the case of vegetable cultivation, street lamps, etc., multiple units in parallel are used in series. In the application, each electronic ballast starts working simultaneously when the switch is uniformly energized to the line. Due to the line impedance of the power grid, multiple large currents simultaneously start to cause the line voltage to drop.
  • the electronic ballast is a constant power load. In order to maintain the power at startup, the electronic ballast can only increase the input current by a multiple, and the input current increases. The further increase caused the grid voltage to drop, forming a vicious circle.
  • the invention provides a control method for delaying start of an electronic ballast and an extension method for solving the problem that the electronic ballast is randomly damaged due to the simultaneous start of the multi-electronic ballast and the lamp tube in parallel, causing the instantaneous voltage drop of the grid voltage and the random damage of the electronic ballast. When starting the electronic ballast.
  • the technical scheme of the utility model is: a control method for time-division start of an electronic ballast, wherein after the electronic ballast is powered, the electronic ballast is delayed to start, and the electronic ballast delay is obtained.
  • the delay time of the startup includes the following steps:
  • Step A detecting the real-time temperature of the electronic ballast
  • Step B normalizing the real-time temperature value of the electronic ballast at this time;
  • Step C obtaining the real-time temperature value in the mapping relationship between each value and the delay time in the previously determined normalization interval The delay time after mapping.
  • step B When the real-time temperature is normalized in step B, the following steps are included:
  • Step B01 amplifying the real-time temperature value
  • Step B02 intercepting the low-order portion of the amplified real-time temperature value.
  • step B01 the real-time temperature value is amplified to at least one hundred digits, and the decimal point portion is discarded; the step B02 is intercepted and amplified.
  • the single digit and the tens digit of the subsequent real-time temperature value further includes step B03, dividing the number of results in step B02 by 2, and then "rounding off" to obtain the normalized number.
  • the relationship between each value and the delay time in the predetermined normalization interval is: normalized number is 0 to 49, mapped to 0 ⁇ The delay time is from 0.1 to 5. 0 seconds.
  • the invention also provides a delay-activated electronic ballast, comprising an electronic ballast body and a delay switch, wherein the delay switch is disposed at the current input end of the electronic ballast body;
  • the delay switch is a digital delay switch that automatically sets a delay time, and includes a temperature sensor that detects an external ambient temperature of the electronic ballast, and an A/D converter that performs analog/digital conversion on the signal output by the temperature sensor,
  • the digital output processor of the A/D converter outputs data, and the processing result output by the digital processor is connected to the digital input end of the digital delay switch.
  • the delay device using the delay time set by the random number corresponding to different ambient temperatures is added to the ballast, the plurality of ballasts connected in the circuit are Under the control of the same control switch, starting at different time points through different delay times, the current impact on the power grid is significantly reduced, and the voltage drop is reduced, thereby solving the instantaneous voltage drop of the grid voltage caused by the simultaneous start of multiple machines.
  • Technical problems with random damage to electronic ballasts since the delay device using the delay time set by the random number corresponding to different ambient temperatures is added to the ballast, the plurality of ballasts connected in the circuit are Under the control of the same control switch, starting at different time points through different delay times, the current impact on the power grid is significantly reduced, and the voltage drop is reduced, thereby solving the instantaneous voltage drop of the grid voltage caused by the simultaneous start of multiple machines.
  • 1 is a flow chart of the acquisition delay time of the present invention.
  • FIG. 2 is a block diagram showing the structure of a single time delay electronic ballast of the present invention.
  • the embodiment i is an electronic ballast that can be used in parallel by a plurality of electronic ballasts.
  • the difference from the ordinary electronic ballast is that it is connected to the mains.
  • a digital delay switch is added, and the delay time is separately obtained by the method of the present invention.
  • FIG. 2 a single electronic ballast with a delay switch in this embodiment is shown in the figure.
  • Example of a delayed start electronic ballast including an electronic ballast body and delay
  • the delay switch is set at the mains current input end of the electronic ballast body
  • the delay switch is a digital delay switch that automatically sets the delay time, including a temperature sensor for detecting the external ambient temperature of the electronic ballast, and the temperature sensor output
  • the signal is subjected to analog/digital conversion A/D converter, the digital processor for data processing of the digital output of the A/D converter, and the processing result of the digital processor output is connected to the digital input terminal of the digital delay switch.
  • the digital processor has the following steps to complete the setting of the random delay time: as shown in Figure 1.
  • Step A detecting the real-time temperature of the electronic ballast
  • Step B normalizing the real-time temperature value of the electronic ballast at this time; amplifying the real-time temperature value to at least one hundred digits, and discarding the decimal point portion; intercepting the single digit of the amplified real-time temperature value and Ten digits;
  • Step C In the mapping relationship between each value and the delay time in the predetermined normalization interval, obtain the delay time mapped after the normalized temperature value is normalized.
  • each value and the delay time in the previously determined normalization interval is as follows:
  • the normalized number is 0 to 49, and the delay time is 0.1 to 5. 0 seconds.
  • a control method for time-divisionally starting an electronic ballast is adopted, and the electronic ballast in the method includes a variable generation and a program calculation portion.
  • Variable generation includes temperature detection and A/D conversion modules. Temperature detection detects small differences in temperature of different electronic ballasts, and thus obtains different variable coefficients of different machines.
  • the A/D conversion module quantizes the analog part, and the program calculation includes decimal calculation and time setting.
  • the decimal calculation section is used to amplify the low-order portion of the quantized data to make the random time difference more obvious, while limiting the case where the coefficient of the variable is very large.
  • the time setting section takes the random coefficient as the time base from power-on to startup. The startup work is performed when the arrival time is set.
  • the electronic ballast is started in time sharing as shown in Fig. 2, including the variable generation and program calculation sections.
  • Variable generation includes temperature detection and A/D conversion modules. The temperature is detected by the external ambient temperature signal, and the temperature signals at different positions are slightly different.
  • the digital conversion is digitally quantized by the AD conversion module to facilitate signal processing.
  • the program calculation section includes decimal calculation and time setting and execution.
  • the AD conversion module outputs the fraction that ingests the low position during the conversion process in decimal calculation, and is mainly used to amplify the changed portion while limiting the variable value to a certain range. Since the change time is in seconds, the variable value is limited to 50 steps to achieve 0.1 seconds.
  • the time setting and execution load the variable value of the decimal calculation output into the time counter, and different variable values implement different startup times.
  • the above method can also not perform the calculation of divide by 2, so the normalized number is 0-99, if the first number corresponds to the number plus 1 and then divided by 20 to obtain the number of seconds, the same.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电子镇流器分时启动的控制方法和延时启动镇流器,该方法在电子镇流器加电后,延时启动电子镇流器,获取所述的电子镇流器延时启动的延时时间是以镇流器的温度为基础获得的随机数该延时启动的电子镇流器,包括电子镇流器本体和延时开关。在采用了本发明的上述技术方案后,由于在镇流器中增加了利用不同环境温度所对应的随机数设置的延时时间的延时器,使并联在电路中的多台镇流器在同一个控制开关的控制下,通过不同的延迟时间,在不同的时间点启动,明显减小对电网的电流冲击,减小电压跌落情况,从而解决了多台机同时启动造成电网电压瞬时跌落,电子镇流器随机损坏的技术问题。

Description

一种电^ «流器分时启动控制: ^及延时启动电子镇流器 技术领域
本发明涉及电子镇流器,特别涉及在多台电子镇流器并联工作时 为了克服线路短时间的电压跌落而进行电子镇流器分时启动的方法 和延时启动的电子镇流器。
背景技术
大多数气体放电灯是利用弧光放电特性制成的,具有电压随电流 增加而下降的负特性 (又称负阻特性), 不可能建立稳定的工作点。 为了使放电稳定, 限制灯工作电流, 必须在气体放电光源电路中设置 镇流器。 镇流器已成为气体放电光源电路中重要的附加装置。 镇流 器是将直流或低频交流电压转换成髙频交流电压,驱动低压气体放电 灯、 卤钨灯等光源工作的电子控制装置。 目前, 应用最广的是荧光灯 电子镇流器。
电子镇流器因其能耗低、 效率髙、 光效髙、 重量轻、 髙功率因素 等多方面优点, 被大量使用。特别是大功率电子镇流器在应用中优势 体现更加明显。所以在蔬菜种植、路灯等场合都是线路中并联多台集 中使用。在应用中, 当开关给线路统一通电时各电子镇流器同时启动 工作。 由于电网存在线路阻抗, 多台同时启动的大电流造成线路电压 下降, 电子镇流器是恒功率负载, 为了维持启动时的功率, 电子镇流 器只能成倍增加输入电流, 输入电流的增大进一步造成电网电压下 降, 形成恶性循环。 表现为线路短时间的电压跌落。 当实际情况严重 时, 如线路阻抗髙, 并联的电子镇流器数量多, 就会造成某台电子镇 流器的损坏。 据统计有>40%的电子镇流器损坏发生在开机启动时。 发明内容 本发明为了解决因多电子镇流器及灯管并联时, 同时启动造成电 网电压瞬时跌落, 电子镇流器随机损坏的技术问题, 而提供一种电子 镇流器分时启动的控制方法及延时启动的电子镇流器。
本实用新型的技术方案是: 一种电子镇流器分时启动的控制方 法, 该方法在电子镇流器加电后, 延时启动电子镇流器, 获取所述的 电子镇流器延时启动的延时时间, 包括如下步骤:
步骤 A、 检测电子镇流器的实时温度;
步骤 B、 对此时电子镇流器的实时温度数值进行归一化处理; 步骤 C、 在事先确定的归一化区间内各数值与延时时间映射关系 中, 获取所述的实时温度数值归一化后所映射的延时时间。
进一步的, 上述的电子镇流器分时启动的控制方法中: 在步骤 B 中对实时温度进行归一化处理时, 包括以下步骤:
步骤 B01、 对实时温度数值进行放大;
步骤 B02、 截取放大后的实时温度数值的低位数部分。
进一步的, 上述的电子镇流器分时启动的控制方法中: 所述的步 骤 B01中, 将实时温度数值放大到至少有百位数, 并将小数点部分丢 弃; 所述的步骤 B02 中截取放大后的实时温度数值的个位数和十位 数; 还包括步骤 B03、 将步骤 B02中的结果数除以 2, 然后 "四舍五 入"得到归一化后的数字。
进一步的, 上述的电子镇流器分时启动的控制方法中: 所述的事 先确定的归一化区间内各数值与延时时间映射关系为:归一化的数字 为 0至 49, 映射到延迟时间为 0. 1至 5. 0秒。 本发明中还提供一种延时启动的电子镇流器, 包括电子镇流器本 体和延时开关,所述的延时开关设置在所述的电子镇流器本体电流输 入端; 所述的延时开关为自动设置延时时间的数字延时开关, 包括检 测电子镇流器外部环境温度的温度传感器,对所述的温度传感器输出 的信号进行模 /数转换的 A/D转换器, 对所述的 A/D转换器输出的数 字进行数据处理的数字处理器,所述的数字处理器输出的处理结果数 值接所述的数字延时开关的数字输入端。
在采用了本发明的上述技术方案后,由于在镇流器中增加了利用 不同环境温度所对应的随机数设置的延时时间的延时器,使并联在电 路中的多台镇流器在同一个控制开关的控制下, 通过不同的延迟时 间, 在不同的时间点启动, 明显减小对电网的电流冲击, 减小电压跌 落情况, 从而解决了多台机同时启动造成电网电压瞬时跌落, 电子镇 流器随机损坏的技术问题。
以下将结合附图和实施例, 对本实用新型进行较为详细的说明。 附图说明
图 1是本发明获取延时时间的流程图。
图 2是本发明单个延时电子镇流器结构框图。
具体实l¾r式 实施例 i, 本实施例是一种可以由多个电子镇流器并联在电路中 使用的电子镇流器,它与普通的电子镇流器的区别是在接入到市电时 增加了一个数字延时开关, 而延时时间通过本发明的方法分别获取, 如图 2所示是本实施例中的单个具有延时开关的电子镇流器,如图所 示, 本实施例中延时启动的电子镇流器, 包括电子镇流器本体和延时 开关, 延时开关设置在电子镇流器本体市电电流输入端; 延时开关为 自动设置延时时间的数字延时开关,包括检测电子镇流器外部环境温 度的温度传感器, 对温度传感器输出的信号进行模 /数转换的 A/D转 换器, 对 A/D转换器输出的数字进行数据处理的数字处理器, 数字处 理器输出的处理结果数值接数字延时开关的数字输入端。数字处理器 中具有如下步骤完成随机延迟时间的设置: 如图 1所示。
步骤 A、 检测电子镇流器的实时温度;
步骤 B、 对此时电子镇流器的实时温度数值进行归一化处理; 将实时温度数值放大到至少有百位数, 并将小数点部分丢弃; 截取放大后的实时温度数值的个位数和十位数;
结果数除以 2, 然后 "四舍五入"得到归一化后的数字。
步骤 C、 在事先确定的归一化区间内各数值与延时时间映射关系 中, 获取所述的实时温度数值归一化后所映射的延时时间。
本实施例中, 事先确定的归一化区间内各数值与延时时间映射关 系为: 归一化的数字为 0至 49, 映射到延迟时间为 0. 1至 5. 0秒。
本实施例中采用分时启动电子镇流器的控制方法, 该方法中的电 子镇流器包括变量产生、 程序计算部分。 变量产生包括温度检测和 A/D转换模块。 温度检测检测不同电子镇流器的温度微小差异, 据此 得到不同机器的不同变量系数, A/D转换模块将模拟部分数字量化, 程序计算包括十进制计算和时间设定。十进制计算部分用于放大量化 数据低位数部分, 使随机时间差异更明显, 同时限制变量系数非常大 的情况。 时间设定部分将随机的系数作为从上电到启动的时间基准, 到达时间设定时执行启动工作。
如图 2所示分时启动电子镇流器,包括变量产生和程序计算部分。 变量产生包括温度检测和 A/D变换模块。 温度检测外部环境温度信 号, 不同位置的温度信号存在微小差异, 经 AD变换模块数字量化为 数字信号, 便于信号处理。程序计算部分包括十进制计算和时间设定 和执行。 AD变换模块输出经十进制计算在转换过程中摄取低位的部 分, 主要用于放大变化的部分, 同时将变量值限制在一定范围内。 由 于变化时间以秒为单位,变量值限制在 50以内能实现 0. 1秒的步进。 时间设定和执行将十进制计算输出的变量值装入时间计数器,不同变 量值实现不同的启动时间。
当然, 在获取变量时, 上面的方法中也可以不进行除 2的计算, 这样归一化的数字就是 0-99, 如果第个数字对应该数字加 1 以后再 除以 20所获得秒数, 也是一样。
在采用了本实施例的技术方案后, 由于增加随机时间变量产生模 块, 多台机同时上电工作, 不同机器在不同的时间点启动, 明显减小 对电网的电流冲击, 减小电压跌落情况, 从而解决了多台机同时启动 造成电网电压瞬时跌落, 电子镇流器随机损坏的技术问题。

Claims

WO 2014/198139 权 利 求 书 PCT/CN2014/073284
1、 一种电子镇流器分时启动的控制方法, 该方法在电子镇流器加电后, 延时启动电子镇流器, 其特征在于, 获取所述的电子镇流器延时启动的延时 时间, 包括如下步骤:
步骤 A、 检测电子镇流器的实时温度;
步骤 B、 对此时电子镇流器的实时温度数值进行归一化处理;
步骤 C 在事先确定的归一化区间内各数值与延时时间映射关系中, 获取 所述的实时温度数值归一化后所映射的延时时间。
2、根据权利要求 1所述的电子镇流器分时启动的控制方法,其特征在于: 在步骤 B中对实时温度进行归一化处理时, 包括以下步骤:
步骤 B01、 对实时温度数值进行放大;
步骤 B02、 截取放大后的实时温度数值的低位数部分。
3、根据权利要求 2所述的电子镇流器分时启动的控制方法,其特征在于: 所述的步骤 B01 中, 将实时温度数值放大到至少有百位数, 并将小数点部分 丢弃; 所述的步骤 B02中截取放大后的实时温度数值的个位数和十位数; 还 包括步骤 B03、 将步骤 B02中的结果数除以 2, 然后 "四舍五入"得到归一化 后的数字。
4、根据权利要求 3所述的电子镇流器分时启动的控制方法,其特征在于: 所述的事先确定的归一化区间内各数值与延时时间映射关系为: 归一化的数 字为 0至 49, 映射到延迟时间为 0. 1至 5. 0秒。
5、 一种延时启动电子镇流器, 包括电子镇流器本体和延时开关, 所述的 延时开关设置在所述的电子镇流器本体电流输入端; 其特征在于: 所述的延 时开关为自动设置延时时间的数字延时开关, 包括检测电子镇流器外部环境 温度的温度传感器, 对所述的温度传感器输出的信号进行模 /数转换的 V D转 换器, 对所述的 V D转换器输出的数字进行数据处理的数字处理器, 所述的 数字处理器输出的处理结果数值接所述的数字延时开关的数字输入端。
PCT/CN2014/073284 2013-06-14 2014-03-12 一种电子镇流器分时启动控制方法及延时启动电子镇流器 WO2014198139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/413,472 US9848477B2 (en) 2013-06-14 2014-03-12 Method for controlling time sharing starting of electronic ballasts and delayed-started electronic ballast

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310233968.4 2013-06-14
CN201310233968.4A CN103298225B (zh) 2013-06-14 2013-06-14 一种电子镇流器分时启动控制方法及延时启动电子镇流器

Publications (1)

Publication Number Publication Date
WO2014198139A1 true WO2014198139A1 (zh) 2014-12-18

Family

ID=49098334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073284 WO2014198139A1 (zh) 2013-06-14 2014-03-12 一种电子镇流器分时启动控制方法及延时启动电子镇流器

Country Status (3)

Country Link
US (1) US9848477B2 (zh)
CN (1) CN103298225B (zh)
WO (1) WO2014198139A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298225B (zh) * 2013-06-14 2016-03-30 深圳市电王科技有限公司 一种电子镇流器分时启动控制方法及延时启动电子镇流器
CN103763844B (zh) * 2014-01-20 2016-03-30 李丽群 荧光节能灯延寿启动模块及荧光节能灯
CN111163568B (zh) * 2018-11-06 2021-06-18 比亚迪半导体股份有限公司 车灯同步控制方法、装置、存储介质和车灯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780521A (zh) * 2004-11-24 2006-05-31 黄甜仔 一种电子镇流器启动缓冲装置
CN101896857A (zh) * 2008-02-19 2010-11-24 三菱电机株式会社 车载显示装置
CN202231933U (zh) * 2011-10-08 2012-05-23 张玉清 一种亮度可调电子镇流器
CN103298225A (zh) * 2013-06-14 2013-09-11 深圳市电王科技有限公司 一种电子镇流器分时启动控制方法及延时启动电子镇流器
CN203352923U (zh) * 2013-06-14 2013-12-18 深圳市电王科技有限公司 一种延时启动电子镇流器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838830A1 (de) * 1998-08-26 2000-03-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verbesserte Anlaufschaltung für Niederdruck-Entladungslampe
US6631503B2 (en) * 2001-01-05 2003-10-07 Ibm Corporation Temperature programmable timing delay system
JP2005142130A (ja) * 2003-11-10 2005-06-02 Matsushita Electric Works Ltd 高圧放電灯点灯装置及び照明器具
US6936974B2 (en) * 2004-01-30 2005-08-30 Ballastronic, Inc. Half-bridge inverter for asymmetrical loads
JP4283314B2 (ja) * 2007-01-31 2009-06-24 シャープ株式会社 照度センサ及び調光制御装置
CN201682684U (zh) * 2010-02-01 2010-12-22 张飞林 一种荧光灯的预热启动器
US9095023B2 (en) * 2010-10-19 2015-07-28 Koninklijke Philips N.V. LED retrofit lamp
CN102196653B (zh) * 2011-06-21 2013-12-18 常州天雄照明科技有限公司 一种氙气灯电路及其智能控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780521A (zh) * 2004-11-24 2006-05-31 黄甜仔 一种电子镇流器启动缓冲装置
CN101896857A (zh) * 2008-02-19 2010-11-24 三菱电机株式会社 车载显示装置
CN202231933U (zh) * 2011-10-08 2012-05-23 张玉清 一种亮度可调电子镇流器
CN103298225A (zh) * 2013-06-14 2013-09-11 深圳市电王科技有限公司 一种电子镇流器分时启动控制方法及延时启动电子镇流器
CN203352923U (zh) * 2013-06-14 2013-12-18 深圳市电王科技有限公司 一种延时启动电子镇流器

Also Published As

Publication number Publication date
US20160088713A1 (en) 2016-03-24
US9848477B2 (en) 2017-12-19
CN103298225A (zh) 2013-09-11
CN103298225B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
TWI530227B (zh) A Silicon - controlled Rectifier Dimming Circuit with Lossless Discharge Circuit and Its
MX2018012625A (es) Arquitectura de microcontrolador para convertidor con correccion de factor de potencia.
JP2017123781A5 (zh)
EP2187512A3 (en) Method and apparatus to control a power factor correction circuit
EP2473003A3 (en) Led lighting device and illumination apparatus including same
WO2014198139A1 (zh) 一种电子镇流器分时启动控制方法及延时启动电子镇流器
CN103825251B (zh) 光伏逆变器过温输出功率降额的软件控制方法
US9143112B2 (en) Circuits and methods for providing an impedance adjustment
JP3192402U (ja) 光源の最大作動電流を自動検出するコントローラー
GB2490420B (en) Power factor correction
JP6588430B2 (ja) Led照明システム用電源
CN203352923U (zh) 一种延时启动电子镇流器
CN107872912B (zh) 控制电路/方法、调光控制系统及电子设备
TW201401030A (zh) 電源供應模式切換電路及方法
TWI576006B (zh) Light emitting diode controller and method thereof
CN102454621A (zh) 风扇控制电路
CN208735665U (zh) 一种燃烧设备的热面点火控制系统
CN103874294B (zh) 一种缝纫机的光控照明装置
CN110582144A (zh) 自适应泄放控制电路及方法
IN2014DN09407A (zh)
CN101820161A (zh) 一种功率检测控制电路
US10243378B2 (en) Discharge protection circuit and its control method
CN202216300U (zh) 电磁炉微波炉节能控制开关
CN207678041U (zh) 一种自供电过载保护电路
CN107197570B (zh) 通过检测电源开关动作调节光源亮度的控制电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14413472

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14810775

Country of ref document: EP

Kind code of ref document: A1