WO2014198102A1 - 油缸式强夯机夯击深度测量方法、装置及强夯机 - Google Patents

油缸式强夯机夯击深度测量方法、装置及强夯机 Download PDF

Info

Publication number
WO2014198102A1
WO2014198102A1 PCT/CN2013/087040 CN2013087040W WO2014198102A1 WO 2014198102 A1 WO2014198102 A1 WO 2014198102A1 CN 2013087040 W CN2013087040 W CN 2013087040W WO 2014198102 A1 WO2014198102 A1 WO 2014198102A1
Authority
WO
WIPO (PCT)
Prior art keywords
ramming
depth
cylinder
lifting cylinder
tamping machine
Prior art date
Application number
PCT/CN2013/087040
Other languages
English (en)
French (fr)
Inventor
易小刚
张作良
汤彪
韩晓东
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310236759.5A external-priority patent/CN103344208B/zh
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2014198102A1 publication Critical patent/WO2014198102A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/18Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring depth

Definitions

  • the present invention relates generally to the field of construction machinery, and more particularly to a method and apparatus for measuring the depth of impact of a cylinder-type powerful compactor, and a tamping machine including the slamming depth measuring device of the cylinder-type tamping machine.
  • the tamping machine is an engineering machine used for impact compaction of materials or foundations and is widely used in various fields of infrastructure construction. After the tamping machine lifts the tamper to the specified height, the tamper is released to make it fall freely, so that the foundation can be strongly impacted and vibrated, the soil is destroyed and compacted, the compressibility is reduced, and the soil is improved. The uniformity of the layers reduces the differential settling that may occur in the future.
  • the number of slamming hammers and the depth of slamming during the construction process are important parameters for the construction of the tamping machine.
  • the number of snipers and the depth of slamming are mainly determined by the real-time counting and actual measurement of the supervisor. With the fall of the tamper, the land around the tamper will bulge, which brings great difficulty to the measurement of whether the sniper is in place.
  • the historical data in a certain construction cannot be recorded in detail, it will be given The quality of the project brings about a big problem.
  • the sniper strength is already in place, but the erroneous measurement of the supervisors caused the increase in the number of slams due to the swell of the surrounding land, which in turn increased the fuel consumption and extended the operating time, which not only reduced the construction efficiency, but also caused a large Energy waste.
  • the above-mentioned method of manually recording the depth of the slamming has the disadvantages of low construction efficiency, high cost, large error, insufficient measurement, easy injury to personnel, and the phenomenon of hammering and hammering.
  • the applicant has disclosed an automatic measurement of sniper in the Chinese patent application entitled "A powerful tamping machine and its slamming depth measuring method and device” by Sany Heavy Industry Co., Ltd., Application No. 201210477177.1.
  • a deep technical solution which measures and records the angular displacement of the pulley rotation at different times, and obtains the angular difference, which is then converted into the difference between the lengths of the two ropes before and after, thereby obtaining the slamming depth.
  • the premise of this measurement method is that the tamper hoisting rope and the pulley have good synchronism, and the rope is always required to be in tension. Tight state.
  • the synchronism is poor; and during the falling of the hammer, the rope follows the hammer, but when the hammer falls, the rope will continue to move under the inertia.
  • an object of the present invention is to provide a method for measuring the slamming depth of a cylinder type tamping machine, which can automatically measure the slamming depth and solve the problem of poor accuracy of the prior art measurement data.
  • the slamming depth measuring method of the oil cylinder type tamping machine of the present invention comprising a lifting cylinder, a pulley block, a rope and a tamper, the rope is wound on the pulley block and connected to the tamper, the pulley block
  • the magnification is K
  • the hammer is correspondingly dropped or lifted when the lifting cylinder is stretched and contracted.
  • the method for measuring the slamming depth of the cylinder-type tamping machine comprises:
  • Step 1 detecting the stroke of the lifting cylinder
  • Step 2 Calculate the slamming depth of each smash of the tamper according to the stroke of the lift cylinder and the pulley group magnification K.
  • the method for measuring the slamming depth of the cylinder-type tamping machine of the present invention specifically includes: Step 11: detecting, for the i-th snoring, a first length between the fixed point of the lifting cylinder and the moving point;
  • Step 12 detecting, for the i+1th snoring, a second length between the fixed point of the lifting cylinder and the moving point;
  • Step 21 Calculate the slamming depth of the tamper when the i+1th snoring is based on the second length, the difference of the first length, and the pulley group magnification K.
  • step 11 is specifically:
  • step 11 is specifically:
  • the lifting cylinder acts to lift the rope, and at the moment when the pulling force of the rope reaches the second preset value, the first length of the lifting cylinder at this time is recorded.
  • the method for measuring the slamming depth of the cylinder type tamping machine of the present invention further includes: Step 3: setting a slamming pit depth requirement value, and determining a magnitude between the slamming depth and the required depth of the slamming pit, If the slamming depth is greater than the slamming pit depth requirement value, the sniper is prompted to continue; if the slamming depth is less than or equal to the slamming pit depth requirement value, the sniper is prompted to complete.
  • a cylinder-type tamping machine slamming depth measuring device comprising a lifting cylinder, a pulley block, a rope and a tamper, the rope being wound on the pulley block and connected
  • the cylinder slamming machine slamming depth measuring device comprises: a linear displacement detecting device, Detecting the stroke of the lift cylinder;
  • the processor is connected to the linear displacement detecting device, and calculates a slamming depth of the hammer for each snoring according to the stroke of the lift cylinder and the pulley group magnification K.
  • the cylinder-type tamping depth measuring device of the present invention further includes: a display device connected to the processor for displaying the slamming depth; and/or an alarm device connected to the processor, Corresponding alarm prompts are made according to the size between the sniper depth and the required depth of the slamming pit.
  • the linear displacement detecting device is a wire displacement sensor, a laser displacement sensor or an ultrasonic displacement sensor.
  • a rod cavity of the lift cylinder is provided with a pressure sensor, and when the pressure sensor detects that the pressure of the lift cylinder has a rod cavity reaches a first preset value, the linear displacement detecting device records the lift cylinder at this time. length.
  • a tension detecting means is attached to the rope, and the linear displacement detecting means records the length of the lifting cylinder at this time when the pulling force detecting means detects that the pulling force of the rope reaches the second predetermined value.
  • a tamping machine provided with the slamming depth measuring device of the cylinder type tamping machine of any of the foregoing.
  • the tamping machine comprises a fixed pulley set, a movable pulley set and an arm head guiding pulley, the first end of the lifting cylinder is connected to the body of the tamping machine, and the second end is connected to the moving pulley set; After the pulley block and the movable pulley block are wound up, the arm guide pulley is bypassed and turned to connect the hammer.
  • the movable pulley of the movable pulley group is X, and the pulley group magnification K is related to X.
  • the tamping machine further includes a guide rail and a guiding moving member, the rail is fixed, the guiding moving member is limited to the rail, and is movable along the rail, the guiding moving member and the guiding The movable pulley block and/or the lift cylinder are connected.
  • the guiding moving member is a rolling member
  • the rolling member includes a first roller disposed on a mounting bracket of the movable pulley block and/or a hinge seat disposed on the movable pulley block and the lifting cylinder The second roller.
  • the invention can detect the stroke of the lifting cylinder and calculate the slamming depth of the tamping according to the fixed magnification relationship of the pulley block, thereby realizing the automatic measurement of the slamming depth.
  • the present application converts the large stroke displacement detection of the rope and the tamper into the displacement detection within the small stroke range of the lifting cylinder, which reduces the measurement difficulty.
  • a pressure sensor may be arranged in the rod cavity of the lifting cylinder, or a tension detecting device may be connected to the rope, thereby ensuring that the ropes are all in the same tension state each time the lifting cylinder stroke is detected, reducing the measurement.
  • the error improves the measurement stability by maintaining the consistency of the measurement reference.
  • the invention can also automatically judge whether the slamming is up to standard, through automatic supervision, avoiding the occurrence of the hammering phenomenon, avoiding excessive slamming, optimizing the construction process, and ensuring the best number of sniping.
  • FIG. 1 is a flow chart showing a method for measuring a slamming depth of a cylinder type tamping machine according to an embodiment of the present invention
  • FIG. 2 is a connection diagram of a lifting cylinder, a rope and a tamper according to an embodiment of the present invention
  • FIG. 3b is a state diagram of the lift cylinder in the i+1th slamming according to an embodiment of the present invention
  • FIG. 4 is a view showing a state of the lift cylinder according to an embodiment of the present invention
  • Structural block diagram of the slamming depth measuring device of the powerful tamping machine
  • Figure 5 is a schematic structural view of a tamping machine according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a lift cylinder according to an embodiment of the present invention.
  • Fig. 7 is a schematic view showing the mounting of a movable pulley block according to an embodiment of the present invention.
  • the non-decoupling type tamping machine includes a lifting cylinder 1, a pulley block, a rope 5, and a tamper G.
  • the structure can be referred to FIG.
  • the rope 5 is wound around the pulley block and connected to the hammer G.
  • the magnification of the pulley block is K.
  • the powerful machine adopts a cylinder driven lifting mechanism.
  • the stroke of the hammer G is K times the stroke of the lift cylinder 1.
  • the values of the aforementioned K are different for different pulley connection states.
  • the stroke of the hammer G and the stroke of the lifting cylinder 1 also have a magnification relationship, and the magnification relationship may be equal to K, or according to the actual working conditions, each is performed on the basis of K.
  • the value of K may be 1, preferably greater than 1, to convert the small stroke displacement of the lift cylinder 1 into a large stroke displacement of the hammer G.
  • the value of K can be variously modified.
  • the slamming depth measurement method of the cylinder type tamping machine includes:
  • Step 1 Detecting the stroke of the lift cylinder 1;
  • step 1 the stroke of the lift cylinder 1 can be detected in various ways, and a fixed point can be selected at the cylinder end and a moving point can be selected at the end of the piston rod.
  • the length of the lift cylinder 1 may be the distance from the fixed point to the moving point, and the stroke of the lift cylinder 1 is the difference in length of the lift cylinder 1 before and after the movement.
  • Step 2 Calculate the slamming depth ⁇ of the tamper G for each slamming according to the stroke of the lift cylinder 1 and the pulley group magnification K.
  • the invention can finally obtain the slamming depth ⁇ of the tamper G by a plurality of formula conversions, for example, the difference of the lift cylinder stroke can be calculated first, or the rope length can be calculated first, and then the difference can be calculated.
  • the present invention is not limited to various specific calculation methods, and the calculation of the slamming depth ⁇ according to the measurement of the lift cylinder stroke is within the scope of the technical solution covered by the present invention.
  • the method for measuring the slamming depth of the cylinder-type tamping machine specifically includes: Step 11: For the ith snoring, detecting the first length L 1 between the fixed point and the moving point of the lifting cylinder 1 ;
  • Step 12 For the i+1th snoring, detecting a second length L 1 + 1 between the fixed point and the moving point of the lift cylinder 1 ;
  • Step 21 According to the second length L 1 + 1 , the first length! The difference between ⁇ and the pulley group magnification K, the slamming depth ⁇ of the hammer G at the i+1th snoring is calculated.
  • the aforementioned i is an integer greater than or equal to zero, and the cylinder slamming machine slamming depth measuring method can calculate the slamming depth ⁇ of the first, second, and third snoring.
  • i is equal to zero, the snoring has not yet started.
  • the tamper G is at the same level as the chassis of the tamping machine, and the length L of the lifting cylinder at this time can be detected. And can be calibrated to an absolute reference value.
  • two methods for calculating the slamming depth ⁇ are preferably employed:
  • the lift cylinder length measurement value L 1+1 is obtained when the i+1th snoring is acquired, and the i+th is obtained.
  • the slamming depth ⁇ Kx ( L 1+1 -L, ) of one snoring.
  • the present invention can also calculate the lifting height of the tamper G.
  • the lift cylinder 1 raises the hammer G to a certain height
  • the present invention also unifies the measurement reference, that is, the rope 5 is measured every time.
  • the slamming depth measuring method of the cylinder type tamping machine of the present invention further defines a measuring moment. For detecting the first length, after the ith smashing is completed, the lifting cylinder 1 is actuated to lift the rope 5 When the pressure of the rod chamber of the lift cylinder 1 reaches the first preset value, the first length of the lift cylinder 1 is recorded at this time.
  • the first predetermined value is less than the pressure required to fully lift and release the hammer G from the foundation, i.e., at the moment of measurement, the rope 5 is in tension but the hammer G is not off the foundation.
  • the detection of the second length L 1+ i is also carried out when the rod cavity pressure reaches the same requirement.
  • the lifting cylinder 1 is actuated to lift the rope 5, and when the pulling force of the rope 5 reaches the second preset value, the first length of the lifting cylinder 1 is recorded at this time.
  • the second preset value is less than the pull required to fully lift the tamper G and disengage the foundation
  • the force that is, at the moment of measurement, the rope 5 is in a tensioned state but the hammer G is not separated from the foundation.
  • the detection of the second length L 1 + 1 is also carried out when the rope tension reaches the same requirement.
  • the method for measuring the slamming depth of the cylinder type tamping machine further includes:
  • Step 3 Set the slammed pit depth requirement value H0, and determine the magnitude between the slamming depth ⁇ and the slamming pit depth requirement value H0. If the slamming depth ⁇ is greater than the slamming pit depth requirement value H0, the prompt continues. If the slamming depth ⁇ is less than or equal to the slamming pit depth requirement value H0, the slamming is completed.
  • the value required to set the depth pit depth is a number greater than 0.
  • This step can automatically determine whether the slamming target is reached.
  • the slamming depth ⁇ is small, that is, it is difficult to slam the foundation down in real time, the slamming request is reached.
  • the construction process is optimized to ensure the best number of snipers.
  • the first embodiment further includes the step of displaying the slamming depth ⁇ .
  • the operator can intuitively know the slamming depth ⁇ of each sniper operation and provide a basis for the construction strategy.
  • the display of the snip depth ⁇ can be either a digital display or an analog graphic display.
  • Fig. 4 is a block diagram showing the structure of a slamming depth measuring device for a cylinder type tamping machine according to an embodiment of the present invention.
  • the cylinder type slamming machine slamming depth measuring device is used in a non-decoupling type tamping machine, and includes a linear displacement detecting device 71 and a processor 72.
  • the linear displacement detecting device 71 is configured to detect the stroke of the lift cylinder 1; the processor 72 is connected to the linear displacement detecting device 71, and calculates the slamming depth of the hammer G every time according to the stroke of the lift cylinder 1 and the pulley group magnification K. ⁇ .
  • the linear displacement detecting device 71 can be a position sensor of various configurations and can have a different mounting manner with respect to the lift cylinder 1.
  • the linear displacement detecting device 71 is a wire displacement sensor including a wire, one end of the wire is connected to the piston rod of the lifting cylinder 1, and the other end of the wire is retracted on the winder, and the axis connection code of the winder is Device.
  • the encoder can detect the angular displacement of the winder, which can be converted into a linear displacement of the cable to correspond to the stroke of the lift cylinder 1.
  • the linear displacement detecting device 71 may be a laser displacement sensor that measures a linear distance by a laser triangulation method or an ultrasonic displacement sensor that measures a linear distance according to a reflection time of the ultrasonic wave.
  • the powerful rake depth measuring device may further include a display device 73 and/or an alarm device 74.
  • the display device 73 is connected to the processor 72 for displaying the impact depth ⁇ .
  • the display device 73 can perform digital display or analog graphic display.
  • the alarm device 74 is coupled to the processor 72 for prompting a corresponding alarm based on the magnitude of the slamming depth ⁇ and the slamming pit depth requirement value H0.
  • the alarm device 74 can be an acousto-optic component such as a buzzer or an indicator light, and accordingly the alarm signal can be a buzzer of the buzzer, a lighting or blinking of the indicator light. For example, when the slamming depth ⁇ is less than or equal to the slamming pit depth requirement value H0, the buzzer sounds an alarm, thereby prompting the operator to slam the target completion.
  • a pressure sensor la may be disposed in the rod cavity of the lift cylinder 1, and when the pressure sensor 1a detects that the pressure of the lift cylinder 1 has a rod cavity reaches a first preset value, the linear displacement detecting device 71 records the lift at this time.
  • the pressure sensor la can be installed at the rod chamber inlet of the lift cylinder 1. The pressure sensor la ensures that the rope 5 is in the same tension state each time the lift cylinder 1 stroke is detected, and the measurement stability is improved and the measurement error is reduced by maintaining the consistency of the measurement reference.
  • the rope 5 is connected to the tension detecting means, and when the tension detecting means detects that the pulling force of the rope 5 reaches the second predetermined value, the linear displacement detecting means 71 records the length of the lift cylinder 1 at this time.
  • the tension detecting device can also ensure that the rope 5 is in the same tension state every time the lift cylinder 1 stroke is detected, and the measurement error is reduced.
  • the present invention also discloses a tamping machine including the aforementioned tamping machine depth measuring device, and the structure of the tamping machine is as shown in FIG.
  • the tamping machine also includes a lifting cylinder 1, a rope 5, a tamper G and a pulley block, and the respective parts can be referred to the foregoing description.
  • the pulley block connected between the lift cylinder 1 and the tamper G can have a variety of possible connection relationships.
  • the tamping machine preferably includes a fixed pulley set 2, a movable pulley set 3, and an arm head guiding pulley 4.
  • the first end of the lifting cylinder 1 is connected to the body of the tamping machine, and the second end
  • the movable pulley block 3 is connected; after the rope 5 is wound on the fixed pulley block 2 and the movable pulley block 3, it is preferably bypassed from the bottom to the arm guide pulley 4, and is turned to connect the hammer G from the top to the bottom, and the movable pulley of the movable pulley group 3 is X, the pulley block magnification K is related to X.
  • the upper and lower sides may be straight up and down, or may be inclined in a vertical direction at a certain angle.
  • the torsion machine of this embodiment preferably further includes a guide rail 10 and a guiding moving member, the guide rail 10 is fixed, and the guiding moving member is limited to The guide rail 10 is movable along the guide rail 10, and the guide moving member is coupled to the movable pulley block 3 and/or the lift cylinder 1.
  • the degree of freedom of the guide moving member on the guide rail 10 is correspondingly limited.
  • the guide rail 10 can be provided with one column, two columns or other number of columns, and the number of the guide moving members corresponds to the guide rail 10.
  • the guiding moving member preferably performs rolling movement on the guide rail 10, that is, the guiding moving member is a rolling member, and the rolling member includes a first roller 11 disposed on the mounting bracket 30 of the movable pulley block 3 and a hinge disposed on the movable pulley block 3 and the cylinder 1
  • the second roller 12 on the seat 31.
  • the first roller 11 and the second roller 12 can be rolled on different guide rails 10, preferably on the same guide rail 10. Further, alternatively, only the first roller 11 or the second roller 12 may be provided.
  • the guide rail 10 may be made of channel steel, angle steel and I-beam, and other materials or structures may be used, and the present invention is not limited thereto.
  • the guide moving member is preferably also slidably movable on the guide rail 10, i.e., the guide moving member is a slider, and the slider and the guide rail 10 are fitted to each other.
  • the tamping machine of the above embodiment can ensure the smooth movement of the lifting cylinder 1 by supporting and constraining the movable pulley block 3 and the lifting cylinder 1, which facilitates the detection of the stroke of the linear displacement detecting device 71, thereby improving the accuracy of the smashing depth ⁇ measurement. And reliability.
  • the foregoing embodiment of the present invention can detect the stroke of the lift cylinder 1 and calculate the slamming depth ⁇ of the tamper according to the fixed magnification relationship of the pulley group, thereby realizing the automatic measurement of the slamming depth ⁇ .
  • the foregoing embodiment of the present invention has the following advantages over the prior art:
  • the foregoing embodiment of the present invention converts the large stroke displacement detection of the rope 5 and the tamper G into the displacement detection in the small stroke range of the lift cylinder 1, which reduces the measurement difficulty.
  • the pressure sensor la is provided in the rod chamber of the lift cylinder 1, or the tension detecting device is connected to the rope 5, thereby ensuring that the ropes 5 are all in the same tension state each time the lift cylinder stroke is detected. , the measurement error is reduced, and the measurement stability is improved by maintaining the consistency of the measurement reference.
  • the method and apparatus for the slamming depth of the cylinder type tamping machine of the foregoing embodiment have the advantages of low cost, good reliability, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

一种油缸式强夯机夯击深度测量装置,包括:直线位移检测装置(71),用于检测提升油缸(1)的行程;处理器(72),连接所述直线位移检测装置(71),并根据所述提升油缸(1)的行程和滑轮组倍率K,计算夯锤(G)每次打夯的夯击深度,还可以包括显示装置(73)、报警装置(74)和压力传感器(1a)等。以及,一种设置有所述油缸式强夯机夯击深度测量装置的强夯机。以及,一种油缸式强夯机夯击深度测量方法,根据提升油缸(1)的行程和滑轮组倍率K计算夯锤(G)每次打夯的夯击深度。可实现夯击深度的自动测量,并具有测量精确度高、成本低、可靠性好等优点。

Description

油缸式强夯机夯击深度测量方法、 装置及强夯机 本申请要求于 2013 年 06 月 14 日提交中国专利局、 申请号为 201310236759.5、 发明名称为"油缸式强夯机夯击深度测量方法、装置及强 夯机"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明主要涉及工程机械领域, 具体地说, 涉及一种油缸式强夯机夯 击深度测量方法和装置, 以及包括该油缸式强夯机夯击深度测量装置的强 夯机。
背景技术
强夯机是一种用于对物料或地基进行沖击压实的工程机械, 广泛应用 于基础建设的各个领域。 强夯机将夯锤吊到指定高度后, 释放夯锤使其自 由下落, 从而可以给地基以强烈的沖击力和振动, 破坏土体并对其进行压 实, 降低其压缩性, 提高土层的均匀程度, 减少将来可能出现的差异沉降。
施工过程中夯锤的夯击次数和夯击深度是强夯机施工的重要参数。 现 有技术中, 夯击次数和夯击深度主要是依靠监理人员的实时计数和实际测 量获取。 伴随着夯锤的下落, 夯锤四周的土地就会隆起, 这给夯击是否到 位的测量带来了很大的困难; 此外, 如果对某次施工中的历史数据不能详 细记录, 则会给工程质量的优劣带来^艮大的问题。
比如说, 夯击强度已经到位, 但由于周围土地的隆起导致监理人员的 错误测量使得夯击次数的增加, 进而使得油耗增加, 作业时间无谓延长, 不仅降低了施工效率, 也造成了很大的能源浪费。
采用前述人工记录夯击深度的方式, 存在施工效率低、 成本高、 误差 大、 测量不足、 易造成人员伤害及存在偷锤漏锤现象等不足。 为了解决这 些问题, 申请人为三一重工股份有限公司、 申请号为 201210477177.1、 名 称为 《一种强夯机及其夯击深度测量方法、 装置》 的中国专利申请公开 了一种可自动测量夯击深度的技术方案, 该方法测量并记录不同时刻的 滑轮转动的角位移,得出角度差值,进而换算成前后两次绳索的长度差值, 从而得出夯击深度。 但是对于前述自动测量的方案而言,由于其应用于非脱钩式强夯机中, 这种测量方式的前提是要求夯锤提升绳索与滑轮之间具有良好的同步性, 且要求绳索一直处于张紧状态。 但由于绳索和滑轮之间容易打滑, 同步性 差; 且在夯锤下落过程中, 绳索跟随夯锤运动, 但当夯锤落地后, 在惯性 作用下, 绳索仍会继续运动。这两个原因直接影响了绳索与滑轮的同步性, 从而导致测量结果不准确。
因此, 在相对于人工测量方式提高测量效率、 降低成本的同时, 如何 提高强夯机的夯击深度测量的准确性, 仍是本领域技术人员亟待解决的技 术问题。
发明内容
有鉴于此,本发明的目的在于提供一种油缸式强夯机夯击深度测量方 法,可以自动测量夯击深度,并可解决现有技术测量数据准确性差的不足。
本发明油缸式强夯机夯击深度测量方法, 所述强夯机包括提升油缸、 滑轮组、 绳索和夯锤, 所述绳索卷绕在所述滑轮组上并连接所述夯锤, 所 述滑轮组的倍率为 K, 所述提升油缸伸缩时所述夯锤相应地下落或上提, 所述油缸式强夯机夯击深度测量方法包括:
步骤 1: 检测所述提升油缸的行程;
步骤 2: 根据所述提升油缸的行程和滑轮组倍率 K, 计算所述夯锤每 次打夯的夯击深度。
进一步地, 本发明的油缸式强夯机夯击深度测量方法具体包括: 步骤 11: 对于第 i次打夯, 检测所述提升油缸固定点和移动点之间的 第一长度;
步骤 12: 对于第 i+1次打夯, 检测所述提升油缸固定点和移动点之间 的第二长度;
步骤 21 : 根据所述第二长度、 第一长度的差值和滑轮组倍率 K, 计算 得出第 i+1次打夯时所述夯锤的夯击深度。
进一步地, 步骤 11具体为:
在第 i次打夯完成后, 提升油缸动作使绳索上提, 在所述提升油缸的 有杆腔压力达到第一预设值的时刻, 记录此时所述提升油缸的第一长度。 可替换地, 步骤 11具体为:
在第 i次打夯完成后, 提升油缸动作使绳索上提, 在所述绳索的拉力 达到第二预设值的时刻, 记录此时所述提升油缸的第一长度。
进一步地, 本发明的油缸式强夯机夯击深度测量方法还包括: 步骤 3: 设定夯击坑深要求值, 并判断夯击深度与所述夯击坑深要求 值之间的大小, 若夯击深度大于所述夯击坑深要求值, 则提示继续夯击; 若夯击深度小于等于所述夯击坑深要求值, 则提示夯击完成。
本发明的另一个方面, 还提供一种油缸式强夯机夯击深度测量装置, 所述强夯机包括提升油缸、 滑轮组、 绳索和夯锤, 所述绳索卷绕在所述滑 轮组上并连接所述夯锤, 所述滑轮组的倍率为 K, 所述提升油缸伸缩时所 述夯锤相应地下落或上提, 所述油缸式强夯机夯击深度测量装置包括: 直线位移检测装置, 用于检测所述提升油缸的行程;
处理器, 连接所述直线位移检测装置, 并根据所述提升油缸的行程和 滑轮组倍率 K, 计算所述夯锤每次打夯的夯击深度。
进一步地, 本发明的油缸式强夯机夯击深度测量装置还包括: 显示装置, 连接所述处理器, 用于显示所述夯击深度; 和 /或 报警装置, 连接所述处理器, 用于根据夯击深度和夯击坑深要求值之 间的大小情况, 进行相应的报警提示。
进一步地, 所述直线位移检测装置为拉线位移传感器、 激光位移传感 器或超声波位移传感器。
进一步地, 所述提升油缸的有杆腔设置有压力传感器, 在所述压力传 感器检测到提升油缸有杆腔的压力达到第一预设值的时刻, 所述直线位移 检测装置记录此时提升油缸的长度。
可替换地, 所述绳索上连接有拉力检测装置, 在所述拉力检测装置检 测到绳索的拉力达到第二预设值的时刻, 所述直线位移检测装置记录此时 提升油缸的长度。
本发明的又一个方面, 还提供一种强夯机, 该强夯机设置有前述任一 项的油缸式强夯机夯击深度测量装置。 进一步地, 所述强夯机包括定滑轮组、 动滑轮组以及臂头导向滑轮, 所述提升油缸的第一端连接强夯机的车体、 第二端连接所述动滑轮组; 所 述绳索在所述定滑轮组和所述动滑轮组上卷绕后,绕过所述臂头导向滑轮, 并转向至连接所述夯锤, 所述动滑轮组的动滑轮为 X个, 滑轮组倍率 K与 X相关。
进一步地, 所述强夯机还包括导轨和导向移动件, 所述导轨固定, 所 述导向移动件被限位于所述导轨上, 并可沿所述导轨移动, 所述导向移动 件与所述动滑轮组和 /或所述提升油缸连接。
进一步地, 所述导向移动件为滚动件, 所述滚动件包括设置于所述动 滑轮组的安装架上的第一滚轮和 /或设置于所述动滑轮组与所述提升油缸 的铰接座上的第二滚轮。
本发明通过检测提升油缸的行程, 并根据滑轮组的固定倍率关系, 可 计算得出夯锤的夯击深度, 实现夯击深度的自动测量。
由于提升油缸的行程与夯锤的行程之间也保持严格的倍率关系, 同步 性非常好,可避免角度测量时因绳索与滑轮之间打滑而影响准确度的问题, 因此可保证测量准确性和可靠性。
而且本申请将绳索和夯锤的大行程位移检测转化为提升油缸小行程范 围内的位移检测, 降低了测量难度。
在进一步的技术方案中, 可在提升油缸的有杆腔设置压力传感器, 或 者在绳索上连接拉力检测装置, 从而保证每次检测提升油缸行程的时刻绳 索均为相同的张紧状态, 降低了测量误差, 通过保持测量基准的一致性, 提高了测量稳定性。
此外, 本发明还可以自动判断是否夯击达标, 通过自动监管, 避免了 偷锤漏锤现象的发生, 也避免了夯击过多, 优化了施工过程, 保证夯击次 数最佳。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解, 本发明 的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。 在附图中: 图 1是本发明一实施例的油缸式强夯机夯击深度测量方法的流程图; 图 2是本发明一实施例的提升油缸、 绳索和夯锤的连接关系图; 图 3a是本发明一实施例的提升油缸在第 i次夯击时的状态图; 图 3b是本发明一实施例的提升油缸在第 i+1次夯击时的状态图; 图 4 是本发明一实施例的油缸式强夯机夯击深度测量装置的结构框 图;
图 5是本发明一实施例的强夯机的结构示意图;
图 6是本发明一实施例的提升油缸的结构示意图;
图 7是本发明一实施例的动滑轮组的安装示意图。
附图标记说明:
提升油缸—1 定滑轮组 -2 动滑轮组 -3 臂头导向滑轮 -4 绳索 -5 夯锤 -G 压力传感器 -la导轨 -10 第一滚轮 -11 第二滚轮 -12 安装架 -30铰接座 -31 直线位移检测装置 -71 处理器 -72 显示装置 -73 报警装置 -74
具体实施方式
为了能够更清楚地理解本发明的上述目的、 特征和优点, 下面结合 附图和具体实施方式对本发明进行进一步的详细描述。
在下面的描述中阐述了很多具体细节以便于充分理解本发明, 但 是, 本发明还可以采用其他不同于在此描述的其他方式来实施, 因此, 本发明的基本思想在于提供一种油缸式强夯机及其夯击深度测量装 置,该装置通过本文描述的油缸式强夯机夯击深度测量方法完成测量过程。 为了便于本领域技术人员对技术方案的理解, 本文先对油缸式强夯机夯击 深度测量方法进行描述。
图 1所示是本发明一实施例的油缸式强夯机夯击深度测量方法的流程 图, 该油缸式强夯机夯击深度测量方法用于非脱钩式强夯机中。 该非脱钩 式强夯机包括提升油缸 1、滑轮组、绳索 5和夯锤 G,其结构可以参考图 2。 绳索 5卷绕在滑轮组上并连接夯锤 G, 滑轮组的倍率为 K, 提升油缸 1伸 缩时夯锤 G相应地下落或上提, 该强夯机采用了油缸驱动的提升机构。 其 中, 夯锤 G的行程是提升油缸 1行程的 K倍。 对于不同的滑轮连接状态, 前述 K的值不同。在夯锤 G下落和上提的 过程中, 夯锤 G的行程与提升油缸 1的行程之间也具有倍率关系, 其倍率 关系可以等于 K, 或者根据实际工作情况, 在 K的基础上进行各种修正。 该 K的值可以为 1 , 优选大于 1 , 从而将提升油缸 1的小行程位移转化为 夯锤 G的大行程位移。 此外, 根据实际工作情况, 该 K的值还可以进行各 种修正。
该油缸式强夯机夯击深度测量方法包括:
步骤 1 : 检测提升油缸 1的行程;
该步骤 1可以通过各种方式检测提升油缸 1的行程, 可以在缸筒端选 取固定点, 在活塞杆端选移动点。 该提升油缸 1的长度可以是固定点到移 动点之间的距离, 提升油缸 1的行程则是运动前和运动后提升油缸 1的长 度差值。
步骤 2: 根据提升油缸 1的行程和滑轮组倍率 K, 计算夯锤 G每次打 夯的夯击深度 ΔΗ。
本发明可以通过多种公式的转换最终得出夯锤 G的夯击深度 ΔΗ, 比 如可以先计算提升油缸行程的差值, 也可以先计算出绳长度然后计算差值 等等。 本发明并不受限于各种具体计算方式, 只要是依据于测量提升油缸 行程计算夯击深度 ΔΗ, 即属于本发明所涵盖的技术方案范围之内。
在图 1所示的实施例中, 油缸式强夯机夯击深度测量方法具体包括: 步骤 11 : 对于第 i次打夯, 检测提升油缸 1固定点和移动点之间的第 一长度 L1;
步骤 12: 对于第 i+1次打夯, 检测提升油缸 1固定点和移动点之间的 第二长度 L1 + 1
步骤 21 : 根据第二长度 L1 + 1、第一长度!^的差值 和滑轮组倍率 K, 计算得出第 i+1次打夯时夯锤 G的夯击深度 ΔΗ。
前述 i为大于或等于零的整数, 该油缸式强夯机夯击深度测量方法可 以计算第 1、 2、 3...次打夯的夯击深度 ΔΗ。 在 i等于零时, 还未开始打夯, 此时, 夯锤 G与强夯机底盘在同一水平高度, 可以检测此时的提升油缸长 度 L。, 并可将其标定为绝对参考值。 对于前述步骤 21, 优选采用两种计算夯击深度 ΔΗ的方法:
方法 1、 以 L。作为绝对参考值, 求夯击深度 ΔΗ。
通过第 i次和第 i+1次打夯时获取的提升油缸行程!^和 L1+1, 参考图 3a和图 3b, 求出分别相对 L。的行程差值 ALi=Li-L。和 ALi+1=Li+1-L。, 从 而得到第 i+1次打夯的夯击深度 AH=Kx[(L1+1- Ι^。)_(Ι^_Ι^。)]=Κχ(Ι^+1_ - LJ。
方法 2、 以!^作为相对参考值, 求夯击深度 ΔΗ。
将前一次打夯时(第 i次)的提升油缸长度测量值 作为相对参考值, 在获取第 i+1次打夯时提升油缸长度测量值 L1+1后, 即可求出第 i+1次打 夯的夯击深度 ΔΗ= Kx ( L1+1 -L, )。
此外, 本发明还可以计算夯锤 G的提升高度。 当提升油缸 1将夯锤 G 提升至某一高度时,检测此时的提升油缸长度 Ltl,即可得到提升高度 IHI=Kx (Ltl-L0)。
由于提升油缸 1的行程与夯锤 G的行程之间也保持严格的倍率关系, 同步性非常好, 可避免角度测量时因绳索与滑轮之间打滑而影响准确度的 问题, 因此可保证测量准确性和可靠性。
由于打夯完成后, 绳索通常为松弛状态, 在进一步的技术方案中, 为 了保证每次在测量提升油缸行程时的准确性, 本发明还统一了测量基准, 即每次测量时绳索 5均为相同的张紧状态。 优选地, 本发明的油缸式强夯 机夯击深度测量方法还对测量时刻进行了规定,对于检测第一长度 而言, 在第 i次打夯完成后, 提升油缸 1动作使绳索 5上提, 在提升油缸 1的有 杆腔压力达到第一预设值的时刻, 记录此时提升油缸 1的第一长度
该第一预设值小于使夯锤 G完全提起并脱离地基所需要的压力, 即在 该测量时刻, 绳索 5为拉紧状态但夯锤 G未脱离地基。 同样地, 检测第二 长度 L1+ i也在有杆腔压力达到同样要求时进行。
作为另一个优选实施例, 在第 i次打夯完成后, 提升油缸 1动作使绳 索 5上提, 在绳索 5的拉力达到第二预设值的时刻, 记录此时提升油缸 1 的第一长度 第二预设值小于使夯锤 G完全提起并脱离地基所需要的拉 力, 即在该测量时刻, 绳索 5为拉紧状态但夯锤 G未脱离地基。 同样地, 检测第二长度 L1 + 1也在绳索拉力达到同样要求时进行。
进一步地, 在图 1所示的实施例中, 油缸式强夯机夯击深度测量方法 还包括:
步骤 3: 设定夯击坑深要求值 H0, 并判断夯击深度 ΔΗ与夯击坑深要 求值 H0之间的大小, 若夯击深度 ΔΗ大于夯击坑深要求值 H0, 则提示继 续夯击; 若夯击深度 ΔΗ小于等于夯击坑深要求值 H0, 则提示夯击完成。
为设定的深度坑深要求值, 为大于 0的数。
该步骤可以自动判断是否夯击达标, 当夯击深度 ΔΗ很小, 即难以再 将地基向下夯实时, 则达到夯击要求。 通过自动监管, 避免了偷锤漏锤现 象的发生, 也避免了夯击过多, 优化了施工过程, 保证夯击次数最佳。
此外, 第一实施例还包括显示夯击深度 ΔΗ 的步骤。 操作人员可以直 观的知晓各次夯击作业的夯击深度 ΔΗ,为施工策略提供依据。夯击深度 ΔΗ 的显示既可以是数字显示, 也可以是模拟图形显示。
图 4所示是本发明一实施例的油缸式强夯机夯击深度测量装置的结构 框图。 该油缸式强夯机夯击深度测量装置用于非脱钩式强夯机中, 并且包 括直线位移检测装置 71和处理器 72。 其中, 直线位移检测装置 71用于检 测提升油缸 1的行程; 处理器 72连接直线位移检测装置 71 , 并根据提升 油缸 1的行程和滑轮组倍率 K, 计算夯锤 G每次打夯的夯击深度 ΔΗ。
该直线位移检测装置 71可以为多种结构的位置传感器,并可以相对于 提升油缸 1具有不同的安装方式。 作为一个实施例, 该直线位移检测装置 71为包括拉线的拉线位移传感器, 拉线的一端连接提升油缸 1的活塞杆, 拉线的另一端在绕线器上收放, 绕线器的轴心连接编码器。 编码器可以检 测绕线器的角位移, 该角位移可转换为拉线的直线位移, 从而与提升油缸 1的行程相对应。
此外,该直线位移检测装置 71可以为激光位移传感器,通过激光三角 法测量直线距离; 或者为超声波位移传感器, 根据超声波的反射时间测量 直线距离。 进一步地, 该强夯机深度测量装置还可以包括显示装置 73和 /或报警 装置 74。 其中, 该显示装置 73连接处理器 72, 用于显示夯击深度 ΔΗ, 该 显示装置 73既可以进行数字显示, 也可以进行模拟图形显示。
该报警装置 74连接处理器 72,用于根据夯击深度 ΔΗ和夯击坑深要求 值 H0之间的大小情况, 进行相应的报警提示。 该报警装置 74可以是蜂鸣 器或指示灯等声光部件, 相应地报警信号可为蜂鸣器的蜂鸣、 指示灯的发 光或闪烁。 比如, 当夯击深度 ΔΗ小于等于夯击坑深要求值 H0时, 蜂鸣器 发声报警, 从而提示操作人员夯击达标完成。
进一步地, 在提升油缸 1的有杆腔可设置有压力传感器 la, 在压力传 感器 la检测到提升油缸 1有杆腔的压力达到第一预设值的时刻,直线位移 检测装置 71记录此时提升油缸 1的长度。 如图 6所示, 该压力传感器 la 可以安装于提升油缸 1的有杆腔进油口处。该压力传感器 la可以保证每次 检测提升油缸 1行程的时刻绳索 5均为相同的张紧状态, 通过保持测量基 准的一致性, 提高了测量稳定性, 降低了测量误差。
作为另一种实施方式, 绳索 5上连接有拉力检测装置, 在拉力检测装 置检测到绳索 5的拉力达到第二预设值的时刻,直线位移检测装置 71记录 此时提升油缸 1的长度。 该拉力检测装置也可以保证每次检测提升油缸 1 行程的时刻绳索 5均为相同的张紧状态, 降低了测量误差。
此外, 本发明还公开了一种包括前述强夯机深度测量装置的强夯机, 该强夯机的结构如图 5所示。 该强夯机还包括提升油缸 1、 绳索 5、 夯锤 G 和滑轮组, 各部分可以参考前述说明。
连接于提升油缸 1 和夯锤 G之间的滑轮组可以有多种可能的连接关 系。 作为一种实施方式, 如图 2所示, 该强夯机优选包括定滑轮组 2、 动 滑轮组 3以及臂头导向滑轮 4, 提升油缸 1的第一端连接强夯机的车体、 第二端连接动滑轮组 3; 绳索 5在定滑轮组 2和动滑轮组 3上卷绕后, 优 选从下向上绕过臂头导向滑轮 4, 并转向至从上向下连接夯锤 G, 动滑轮 组 3的动滑轮为 X个, 滑轮组倍率 K与 X相关。 前述上下既可以是直上 直下, 也可以是倾斜一定角度的上下方向。 在图 2所示的示意图中, 动滑轮为 3个, 则当 Κ= / ( Χ ) =2 χ Χ时, Κ=6, 夯锤 G的行程是提升油缸 1行程的 6倍。 提升油缸 1的行程可以保 持在合理的范围, 降低了生产制造难度, 具有易于实施的优点。
进一步地, 由于在提升油缸 1动作的过程中, 动滑轮组 3随提升油缸 1 动作, 在打夯过程中, 会对臂架产生强烈的沖击振动, 导致臂架变形进 而对提升油缸 1及动滑轮组 3的运动产生影响。 为了限制和约束动滑轮组 3的动作, 提高稳定性和可靠性, 如图 7所示, 优选该实施例的强夯机还 包括导轨 10和导向移动件, 导轨 10 固定, 导向移动件被限位于导轨 10 上, 并可沿导轨 10移动, 导向移动件与动滑轮组 3和 /或提升油缸 1连接。 导向移动件在导轨 10上的自由度受到相应限制。 导轨 10可以设置一列、 两列或其它列数, 导向移动件的数量与导轨 10相对应。
该导向移动件优选在导轨 10 上进行滚动移动, 即导向移动件为滚动 件, 滚动件包括设置于动滑轮组 3的安装架 30上的第一滚轮 11和设置于 动滑轮组 3与油缸 1的铰接座 31上的第二滚轮 12。 应当清楚, 第一滚轮 11和第二滚轮 12可以在不同的导轨 10上滚动, 优选在同一导轨 10上滚 动。 此外, 可替换地, 也可以只设置有第一滚轮 11或第二滚轮 12。 导轨 10可以采用槽钢、 角钢和工字钢, 也可以采用其它材料或结构, 本发明并 不受限于此。 此外, 还应当清楚, 该导向移动件优选也可以在导轨 10上进 行滑动移动, 即导向移动件为滑块, 滑块与导轨 10相互配合。
上述实施例的强夯机, 通过支撑和约束动滑轮组 3及提升油缸 1 , 可 以保证提升油缸 1平稳动作, 利于直线位移检测装置 71对其行程的检测, 从而提高夯击深度 ΔΗ测量的准确性和可靠性。
综上所述, 本发明前述实施例通过检测提升油缸 1的行程, 并根据滑 轮组的固定倍率关系, 可计算得出夯锤的夯击深度 ΔΗ, 实现夯击深度 ΔΗ 的自动测量。 与现有技术相比, 本发明前述实施例具有以下优点:
1 )测量精确度高
由于提升油缸 1的行程与夯锤 G的行程之间保持严格的倍率关系, 同 步性非常好, 可避免角度测量时因绳索与滑轮之间打滑而影响准确度的问 题, 因此可保证测量准确性和可靠性。 2 )测量难度小
本发明前述实施例将绳索 5和夯锤 G的大行程位移检测转化为提升油 缸 1小行程范围内的位移检测, 降低了测量难度。
3 )测量基准一致、 稳定性好
在前述的优选实施例中, 在提升油缸 1的有杆腔设置压力传感器 la, 或者在绳索 5上连接拉力检测装置, 从而保证每次检测提升油缸行程的时 刻绳索 5均为相同的张紧状态, 降低了测量误差, 通过保持测量基准的一 致性, 提高了测量稳定性。
此外,前述实施例的油缸式强夯机夯击深度方法和装置还具有成本低、 可靠性好等优点。
因此, 本发明前述实施例的有益效果是显著的。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对 于本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权 利 要 求
1、 一种油缸式强夯机夯击深度测量方法, 其特征在于, 所述强夯机包 括提升油缸(1)、 滑轮组、 绳索 (5)和夯锤(G), 所述绳索 (5)卷绕在 所述滑轮组上并连接所述夯锤( G ), 所述滑轮组的倍率为 K, 所述提升油 缸( 1 )伸缩时所述夯锤 (G)相应地下落或上提, 所述油缸式强夯机夯击 深度测量方法包括:
步骤 1: 检测所述提升油缸( 1 ) 的行程;
步骤 2: 根据所述提升油缸( 1 )的行程和滑轮组倍率 K, 计算所述夯 锤(G)每次打夯的夯击深度(ΔΗ)。
2、根据权利要求 1所述的油缸式强夯机夯击深度测量方法,其特征在 于, 具体包括:
步骤 11: 对于第 i次打夯, 检测所述提升油缸( 1 )固定点和移动点之 间的第一长度 (L ;
步骤 12: 对于第 i+1 次打夯, 检测所述提升油缸(1) 固定点和移动 点之间的第二长度 (L1+!);
步骤 21: 根据所述第二长度(L1+1;)、 第一长度(LJ的差值(L^-LJ 和滑轮组倍率 K,计算得出第 i+1次打夯时所述夯锤(G)的夯击深度( ΔΗ)。
3、根据权利要求 2所述的油缸式强夯机夯击深度测量方法,其特征在 于, 步骤 11具体为:
在第 i次打夯完成后, 提升油缸(1)动作使绳索 (5)上提, 在所述 提升油缸( 1 )的有杆腔压力达到第一预设值的时刻, 记录此时所述提升油 缸(1) 的第一长度(LJ。
4、根据权利要求 2所述的油缸式强夯机夯击深度测量方法,其特征在 于, 步骤 11具体为: 在第 i次打夯完成后, 提升油缸(1)动作使绳索 (5)上提, 在所述 绳索 (5) 的拉力达到第二预设值的时刻, 记录此时所述提升油缸(1 ) 的 第一长度(LJ。
5、 根据权利要求 1-4任一项所述的油缸式强夯机夯击深度测量方法, 其特征在于, 还包括:
步骤 3: 设定夯击坑深要求值(H0), 并判断夯击深度(ΔΗ)与所述 夯击坑深要求值(H0)之间的大小, 若夯击深度(ΔΗ) 大于所述夯击坑 深要求值(H0), 则提示继续夯击; 若夯击深度(ΔΗ) 小于等于所述夯击 坑深要求值(H0), 则提示夯击完成。
6、 一种油缸式强夯机夯击深度测量装置, 其特征在于, 所述强夯机包 括提升油缸(1)、 滑轮组、 绳索 (5)和夯锤(G), 所述绳索 (5)卷绕在 所述滑轮组上并连接所述夯锤( G ), 所述滑轮组的倍率为 K, 所述提升油 缸( 1 )伸缩时所述夯锤 (G)相应地下落或上提, 所述油缸式强夯机夯击 深度测量装置包括:
直线位移检测装置(71), 用于检测所述提升油缸(1) 的行程; 处理器(72), 连接所述直线位移检测装置(71), 并根据所述提升油 缸( 1 ) 的行程和滑轮组倍率 K, 计算所述夯锤 ( G )每次打夯的夯击深度 (ΔΗ)。
7、根据权利要求 6所述的油缸式强夯机夯击深度测量装置,其特征在 于, 还包括:
显示装置( 73 ),连接所述处理器( 72 ),用于显示所述夯击深度( ΔΗ ); 和 /或
报警装置( 74 ), 连接所述处理器( 72 ), 用于根据夯击深度( ΔΗ )和 夯击坑深要求值(Η0)之间的大小情况, 进行相应的报警提示。
8、根据权利要求 6所述的油缸式强夯机夯击深度测量装置,其特征在 于, 所述直线位移检测装置(71) 为拉线位移传感器、 激光位移传感器或 超声波位移传感器。
9、 根据权利要求 6-8任一项所述的油缸式强夯机夯击深度测量装置, 其特征在于, 所述提升油缸(1) 的有杆腔设置有压力传感器(la), 在所 述压力传感器( 1 a )检测到提升油缸有杆腔的压力达到第一预设值的时刻, 所述直线位移检测装置(71)记录此时提升油缸(1) 的长度。
10、根据权利要求 6-8任一项所述的油缸式强夯机夯击深度测量装置, 其特征在于, 所述绳索(5)上连接有拉力检测装置, 在所述拉力检测装置 检测到绳索( 5 )的拉力达到第二预设值的时刻,所述直线位移检测装置( 71 ) 记录此时提升油缸( 1 ) 的长度。
11、 一种强夯机, 其特征在于, 设置有权利要求 6-10任一项所述的油 缸式强夯机夯击深度测量装置。
12、 根据权利要求 11所述的强夯机, 其特征在于, 所述强夯机包括定 滑轮组(2)、 动滑轮组(3) 以及臂头导向滑轮(4), 所述提升油缸(1) 的第一端连接强夯机的车体、第二端连接所述动滑轮组( 3 ); 所述绳索( 5 ) 在所述定滑轮组(2)和所述动滑轮组(3)上卷绕后, 绕过所述臂头导向 滑轮(4), 并转向至连接所述夯锤(G), 所述动滑轮组(3) 的动滑轮为 X个, 滑轮组倍率 K与 X相关。
13、 根据权利要求 12所述的强夯机, 其特征在于, 还包括导轨(10) 和导向移动件, 所述导轨(10) 固定, 所述导向移动件被限位于所述导轨 (10)上, 并可沿所述导轨(10)移动, 所述导向移动件与所述动滑轮组 ( 3 )和 /或所述提升油缸( 1 )连接。
14、根据权利要求 13所述的强夯机, 其特征在于, 所述导向移动件为 滚动件, 所述滚动件包括设置于所述动滑轮组( 3 )的安装架( 30 )上的第 一滚轮 ( 11 )和 /或设置于所述动滑轮组( 3 )与所述提升油缸( 1 ) 的铰接 座(31 )上的第二滚轮(12 )。
PCT/CN2013/087040 2013-06-14 2013-11-13 油缸式强夯机夯击深度测量方法、装置及强夯机 WO2014198102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310236759.5A CN103344208B (zh) 2013-05-30 2013-06-14 油缸式强夯机夯击深度测量方法、装置及强夯机
CN201310236759.5 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014198102A1 true WO2014198102A1 (zh) 2014-12-18

Family

ID=52022976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087040 WO2014198102A1 (zh) 2013-06-14 2013-11-13 油缸式强夯机夯击深度测量方法、装置及强夯机

Country Status (1)

Country Link
WO (1) WO2014198102A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256945A (en) * 1962-12-05 1966-06-21 Grospas Pierre Drive device for percussion drills, pile drivers and other rammers
CN101413275A (zh) * 2008-10-29 2009-04-22 山东大学 交通荷载作用下地基累积沉降现场模拟装置及模拟方法
US20110313724A1 (en) * 2010-06-18 2011-12-22 Pile Dynamics, Inc. Measurement device and a system and method for using the same
CN102980548A (zh) * 2012-11-22 2013-03-20 三一重工股份有限公司 一种强夯机及其夯击深度测量方法、装置
CN103241672A (zh) * 2013-06-03 2013-08-14 徐工集团工程机械股份有限公司 一种强夯机的卷扬装置及强夯机
CN103344208A (zh) * 2013-05-30 2013-10-09 三一重工股份有限公司 油缸式强夯机夯击深度测量方法、装置及强夯机
CN203393694U (zh) * 2013-05-30 2014-01-15 三一重工股份有限公司 油缸式强夯机夯击深度测量装置及强夯机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256945A (en) * 1962-12-05 1966-06-21 Grospas Pierre Drive device for percussion drills, pile drivers and other rammers
CN101413275A (zh) * 2008-10-29 2009-04-22 山东大学 交通荷载作用下地基累积沉降现场模拟装置及模拟方法
US20110313724A1 (en) * 2010-06-18 2011-12-22 Pile Dynamics, Inc. Measurement device and a system and method for using the same
CN102980548A (zh) * 2012-11-22 2013-03-20 三一重工股份有限公司 一种强夯机及其夯击深度测量方法、装置
CN103344208A (zh) * 2013-05-30 2013-10-09 三一重工股份有限公司 油缸式强夯机夯击深度测量方法、装置及强夯机
CN203393694U (zh) * 2013-05-30 2014-01-15 三一重工股份有限公司 油缸式强夯机夯击深度测量装置及强夯机
CN103241672A (zh) * 2013-06-03 2013-08-14 徐工集团工程机械股份有限公司 一种强夯机的卷扬装置及强夯机

Similar Documents

Publication Publication Date Title
WO2014190902A1 (zh) 油缸式强夯机夯击深度测量方法、装置及强夯机
CN104631519B (zh) 复杂荷载作用下桩基承载特性模型试验装置及试验方法
US6217260B1 (en) Downhole reamer with double acting dual piston cylinder
CN107476303A (zh) 一种建筑工地用小型打桩机
WO2013143145A1 (zh) 动力学性能测试系统
CN109975129B (zh) 一种可移动框架、模拟试验系统及其模拟方法
KR20010085082A (ko) 표준 관입 시험 자동 수행 장치
CN207331691U (zh) 一种建筑工地用小型打桩机
CN210013694U (zh) 一种灌注桩成孔质量检测装置
CN2677881Y (zh) 强夯作业参数自动测量记录分析装置
CN106638596A (zh) 一种载体桩的施工设备
CN106592590A (zh) 一种载体桩的施工设备
WO2014198102A1 (zh) 油缸式强夯机夯击深度测量方法、装置及强夯机
CN203393694U (zh) 油缸式强夯机夯击深度测量装置及强夯机
CN202947719U (zh) 一种强夯机及其夯击深度测量装置
CN107202611B (zh) 用于强夯作业过程监测的传感型定滑轮测试系统及其方法
EP0737262B1 (en) Pile driving rig
CN113404095B (zh) 基桩高应变的检测设备及检测方法
KR20010044186A (ko) 표준 관입 시험 자동 수행 방법 및 그 장치
CN210625524U (zh) 挖坑法路基压实度检测用挖坑体积检测装置
CN210684684U (zh) 一种履带式打桩机配重调节装置
CN217980279U (zh) 一种强夯机夯击沉降量精确测量装置
CN113970631A (zh) 一种混凝土结构无损检测设备测试平台及方法
CN217932753U (zh) 强夯机夯击深度及频次同步检测装置
CN206523151U (zh) 基坑测量辅助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886990

Country of ref document: EP

Kind code of ref document: A1