WO2014196686A1 - Organometallic compound, method for preparing same, and method for preparing carbonic acid ester using same - Google Patents

Organometallic compound, method for preparing same, and method for preparing carbonic acid ester using same Download PDF

Info

Publication number
WO2014196686A1
WO2014196686A1 PCT/KR2013/006975 KR2013006975W WO2014196686A1 WO 2014196686 A1 WO2014196686 A1 WO 2014196686A1 KR 2013006975 W KR2013006975 W KR 2013006975W WO 2014196686 A1 WO2014196686 A1 WO 2014196686A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
organometallic compound
reaction
group
represented
Prior art date
Application number
PCT/KR2013/006975
Other languages
French (fr)
Korean (ko)
Inventor
김동백
이창훈
이연주
권오성
양일환
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014196686A1 publication Critical patent/WO2014196686A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/2224Compounds having one or more tin-oxygen linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to an organometallic compound, a method for preparing the same, and a method for preparing a carbonate ester using the same. More specifically, the present invention relates to a novel organometallic compound capable of producing carbonic acid esters in high yield by improving the reactivity of carbon dioxide and alcohol, a method for preparing the same, and a method for preparing carbonic acid esters using the same.
  • Carbonate esters are useful monomers for the production of polycarbonates, and a lot of researches on their preparation have been conducted.
  • carbonate esters have been prepared through reaction with alcohol using phosgene as a carbonyl source.
  • this method not only has a problem of using very harmful phosgene, but also a problem due to the use of chlorine-based solvents and the treatment of by-product neutral salts.
  • organometallic compounds have been studied. It was found that the carbonate was separated from the mixture produced by the above method, and the residual liquid was able to regenerate the organometallic compound through reaction with alcohol. That is, since the organometallic compound used in the reaction can be recycled, it can be reused in the carbonate forming reaction and there is no problem due to transportation.
  • organometallic compounds compounds of the same type as Sn (R) 2 (OR ') 2 (R, R': different alkyl groups) having a central metal of tin and having two alkyl groups and an alkoxy group have been disclosed.
  • known organometallic compounds have a problem of low reactivity and low yield of carbonate ester production.
  • An object of the present invention is to provide a novel organometallic compound and a method for producing the same that can be produced in high yield by improving the reactivity of carbon dioxide and alcohol.
  • Another object of the present invention is to provide a method for directly synthesizing carbonate esters from alcohols and carbon dioxide using the organometallic compounds.
  • organometallic compounds characterized in that represented by the following formula (1):
  • M a is cerium
  • M b is a Group 4 or 14 metal
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms.
  • M b may be titanium (Ti), tin (Sn), or zirconium (Zr).
  • R 1 may be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a phenyl group.
  • the preparation method is to prepare a dissimilar metal alkoxide represented by the following formula (4) by reacting the alkali metal alkoxide represented by the formula (2) and the metal alkoxide represented by the formula (3); And preparing an organometallic compound represented by Chemical Formula 1 by reacting the dissimilar metal alkoxide and a halogenated metal compound represented by Chemical Formula 5.
  • M a , M b and R 1 are as defined in Formula 1, M c is an alkali metal, X is a halogen atom.
  • the molar ratio of the halogenated metal compound represented by Formula 5 and the dissimilar metal alkoxide represented by Formula 4 may be about 1: about 2 to about 1: about 4.
  • the reaction of the alkali metal alkoxide and the metal alkoxide may be carried out at a temperature of about 100 to about 200 °C.
  • the reaction of the dissimilar metal alkoxide and the halide metal compound may be performed at a temperature of about 100 to about 200 °C.
  • Another aspect of the invention relates to a method for producing a carbonate ester.
  • the production method is characterized in that in the presence of the organometallic compound, the carbon 1 to 10 alcohol and carbon dioxide to react.
  • the reaction can be carried out at a temperature of about 130 to about 200 ° C. and a pressure of about 10 to about 200 bar.
  • the present invention is a novel organometallic compound capable of producing carbonic acid esters in high yield by improving the reactivity of carbon dioxide and alcohol, and a method of preparing the same, and a method of directly synthesizing carbonic acid esters from alcohols and carbon dioxide using the organometallic compound. It has the effect of providing the invention.
  • the organometallic compound according to the present invention may be represented by the following Chemical Formula 1.
  • M a is cerium
  • M b is a Group 4 or 14 metal, preferably titanium (Ti), tin (Sn), or zirconium (Zr)
  • R 1 is a hydrocarbon having 1 to 10 carbon atoms
  • the group may be, for example, an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 10 carbon atoms, and specifically, may be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a phenyl group.
  • the oxygen atoms (O) of the metal atoms (M a and M b ) and the alkoxy group (OR 1 ) may be connected by covalent bonds and coordination bonds, as shown in Formula 1a.
  • M a , M b and R 1 are as defined in Formula 1, and the arrow means a coordination bond.
  • the organometallic compound of the present invention is prepared by reacting an alkali metal alkoxide represented by the following Chemical Formula 2 and a metal alkoxide represented by the following Chemical Formula 3 to produce a dissimilar metal alkoxide represented by the following Chemical Formula 4; And reacting the dissimilar metal alkoxide and the halogenated metal compound represented by Chemical Formula 5 to prepare an organometallic compound represented by Chemical Formula 1.
  • M a , M b and R 1 are as defined in Formula 1
  • M c is an alkali metal, for example, sodium (Na), potassium (K) and the like
  • X is a halogen atom, For example, it is a chlorine atom (Cl), a bromine atom (Br).
  • the alkali metal alkoxide represented by the formula (2) and the metal alkoxide represented by the formula (3) for example, about 1: 1: 0.5 to about 1: molar ratio of about 2, specifically in an equimolar ratio , Bimetal alkoxide represented by Chemical Formula 4 by reflux at a temperature of about 100 to about 200 ° C., for example, about 110 to about 150 ° C., for example, for about 2 to about 4 hours.
  • the organometallic compound represented by Chemical Formula 1 may be prepared by reflux reaction for about 10 to about 15 hours.
  • the prepared organometallic compound may be obtained in a solid state through a conventional cooling, filtration, and purification process.
  • the molar ratio of the halogenated metal compound represented by Chemical Formula 5 and the dissimilar metal alkoxide represented by Chemical Formula 4 is about 1: about 1 to about 1: about 5, for example, about 1: about 2 to about 1 : About 4, specifically about 1: about 3 to about 1: about 3.5.
  • By-products can be minimized in the above range.
  • the method for preparing carbonate ester using the organometallic compound according to the present invention is characterized in that the carbonate ester is directly prepared by reacting carbon dioxide having 1 to 10 carbon atoms and carbon dioxide which are environmentally friendly raw materials in the presence of the organometallic compound.
  • Alcohol used in the present invention may be represented by the following formula (6).
  • R 2 is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
  • the alcohol may include methanol, ethanol, propanol, butanol, pentanol, hexanol, phenol, and the like, but are not limited thereto.
  • carbonate ester may be represented by the following formula (7).
  • R 2 is as defined in Chemical Formula 6.
  • the reaction can be carried out by a conventional batch reaction, and can be carried out at a temperature of 130 to 200 °C, for example 140 to 190 °C and pressure conditions of 10 to 200 bar, for example 40 to 150 bar. In the above range, the reaction rate is fast and carbonate ester can be produced in high yield.
  • Batch reactions are typically carried out in consideration of conversion and reactor volume and are liquid phase processes that do not overheat.
  • the reaction of the present invention is a reaction that does not require a separate solvent using an alcohol having 1 to 10 carbon atoms as a liquid reactant and carbon dioxide and a solid organometallic compound as a gaseous reactant. That is, it may be a homogeneous reaction in which carbon dioxide and an organometallic compound are dissolved and reacted with the alcohol.
  • the stirring of the reactor may use a magnetic bar or the like, and may be performed at a stirring speed of about 300 to about 1,000 rpm, for example 400 to 500 rpm, and a reaction time condition of 0.5 to 24 hours, for example 1 to 3 hours.
  • the organometallic compound may be used in an amount of about 1 to about 30 moles, for example about 5 to about 15 moles, based on 100 moles of alkyl alcohol.
  • Carbonate ester can be manufactured in high yield in the said range.
  • the pressure of the carbon dioxide may be about 10 to about 200 bar, for example about 40 to about 150 bar. Carbonate ester can be manufactured in high yield in the said range.
  • Carbonate ester production method of the present invention is economical because no separate organometallic compound regeneration process is required.
  • the reaction was performed in the same manner as in Example 1 except that the reaction temperature was 180 ° C. After completion of the reaction, the reaction solution was analyzed by gas chromatography. As a result, it was confirmed that di-n-butylcarbonate was obtained in 127% yield.
  • the reaction was performed in the same manner as in Example 1 except that the reaction pressure was 60 bar. After completion of the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 69% yield.
  • the reaction was carried out in the same manner as in Comparative Example 1 except that the reaction pressure was 60 bar. After the completion of the reaction, the reaction solution was analyzed by gas chromatography. As a result, it was confirmed that di-n-butylcarbonate was obtained in 20% yield.
  • the reaction was performed in the same manner as in Comparative Example 3 except that the reaction temperature was 180 ° C. After the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 82% yield.
  • Example 1 and 5 except that 5 g (13.3 mmol) of the compound represented by the following Chemical Formula 8b (Bu 2 Sn (OBu) 2 ) was used as the organometallic compound, and 24.4 g (329.5 mmol) of 1-butanol was used. The reaction proceeded in the same manner. After completion of the reaction, gas chromatography analysis showed that di-n-butylcarbonate was obtained in 49% yield.
  • Chemical Formula 8b Bu 2 Sn (OBu) 2
  • the reaction was carried out in the same manner as in Comparative Example 5 except that the reaction temperature was 180 ° C. After completion of the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 69% yield.
  • the reaction was carried out in the same manner as in Comparative Example 5 except that the reaction pressure was 60 bar. After the completion of the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 50% yield.

Abstract

An organometallic compound of the present invention is characterized by being represented by chemical formula 1 below. The organometallic compound can improve the reactivity of carbon dioxide and alcohol, thereby preparing carbonic acid ester at a high yield. [Chemical formula 1] Ma 3+[Mb(OR1)5]3 - In chemical formula 1, Ma is cerium, Mb is group 4 or 14 metal, and R1 is a hydrocarbon group having 1 to 10 carbon atoms.

Description

유기금속화합물, 이의 제조방법 및 이를 이용한 탄산에스테르의 제조방법Organometallic compound, preparation method thereof and preparation method of carbonate ester using same
본 발명은 유기금속화합물, 이의 제조방법 및 이를 이용한 탄산에스테르의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 이산화탄소와 알코올의 반응성을 향상시켜 탄산에스테르를 고수율로 제조할 수 있는 신규한 유기금속화합물, 이의 제조방법 및 이를 이용한 탄산에스테르의 제조방법에 관한 것이다.The present invention relates to an organometallic compound, a method for preparing the same, and a method for preparing a carbonate ester using the same. More specifically, the present invention relates to a novel organometallic compound capable of producing carbonic acid esters in high yield by improving the reactivity of carbon dioxide and alcohol, a method for preparing the same, and a method for preparing carbonic acid esters using the same.
탄산에스테르는 폴리카보네이트 제조에 유용하게 사용되는 모노머로서, 그 제조와 관련한 많은 연구가 진행되고 있다. 종래에는 카르보닐 공급원으로 포스겐을 이용하여 알코올과의 반응을 통해 탄산에스테르를 제조하였다. 그러나, 이러한 방법은 매우 유해한 포스겐을 사용한다는 문제점뿐만 아니라 염소계 용매 사용에 따른 문제 및 부생하는 중성염의 처리 등에 문제점이 있다.Carbonate esters are useful monomers for the production of polycarbonates, and a lot of researches on their preparation have been conducted. Conventionally, carbonate esters have been prepared through reaction with alcohol using phosgene as a carbonyl source. However, this method not only has a problem of using very harmful phosgene, but also a problem due to the use of chlorine-based solvents and the treatment of by-product neutral salts.
상기 포스겐 사용에 따른 문제점을 해결하기 위하여, 일산화탄소를 카르보닐 공급원으로 사용하는 탄산에스테르 제조방법이 개발되었다. 그러나, 일산화탄소를 카르보닐 공급원으로 사용할 경우, 반응 속도 및 수율이 낮고, 유독한 일산화탄소를 고압에서 사용하기 때문에 폭발 위험성이 높으며, 안정성 확보를 위해 많은 비용이 요구된다. 또한, 일산화탄소가 산화되어 이산화탄소를 생성하는 등의 부반응이 발생할 우려가 있다.In order to solve the problems caused by the use of phosgene, a method for preparing a carbonate ester using carbon monoxide as a carbonyl source has been developed. However, when carbon monoxide is used as the carbonyl source, the reaction rate and yield are low, the high risk of explosion due to the use of toxic carbon monoxide at high pressure, and high cost is required to ensure stability. In addition, there is a fear that side reactions such as carbon monoxide being oxidized to generate carbon dioxide.
또한, 이산화탄소를 에틸렌 옥시드 등과 반응시켜 환상 탄산에스테르를 합성하고, 이를 메탄올과 반응시켜 탄산디메틸을 생산하는 방법이 개발되었다. 이 방법은 원료인 이산화탄소에 유해성이 없고, 염산 등의 부식성 물질을 사용하거나, 부식성 물질이 발생하는 경우가 거의 없기 때문에 우수한 방법이다. 그러나, 에틸렌글리콜이 생성되는 부반응이 일어날 수 있고, 에틸렌 옥시드의 원료인 에틸렌이나 에틸렌 옥시드의 안전한 수송이 어려워서 플랜트 입지 등과 관련된 제한이 존재한다.In addition, a method of producing dimethyl carbonate by reacting carbon dioxide with ethylene oxide and the like to synthesize cyclic carbonate and reacting with methanol has been developed. This method is excellent because there is no harmful effect on carbon dioxide as a raw material, and no corrosive substances such as hydrochloric acid are used or no corrosive substances are generated. However, side reactions in which ethylene glycol is produced may occur, and there are limitations related to plant location due to difficulty in safe transport of ethylene oxide or ethylene oxide, which is a raw material of ethylene oxide.
최근에는 이산화탄소를 유기금속화합물과 반응시켜 탄산에스테르를 제조하는 방법이 연구되고 있다. 상기 방법으로 생성된 혼합물로부터 탄산에스테르를 분리하고, 잔류액은 알코올과의 반응을 통해 유기금속화합물을 재생할 수 있다는 것이 발견되었다. 즉, 반응에 사용된 유기금속화합물의 재순환이 가능하기 때문에 탄산에스테르 형성 반응에 재이용할 수 있고, 수송 등에 따른 문제가 없다. 이러한 유기금속화합물로서, 중심금속이 주석이며 2개의 알킬기와 알콕시기를 가지는 Sn(R)2(OR')2(R, R': 서로 다른 알킬기)와 같은 형태의 화합물이 개시되어 있다(일본공개특허 2010-523783호, 2006-548937호, 2006-513613호, 2006-095140호, 2005-511122호, 2003-556375호, 2001-396545호, 2001-396537호 등). 그러나, 공지된 유기금속화합물들은 반응성이 낮고, 탄산에스테르 제조 수율이 낮다는 문제점이 있어, 이의 해결이 필요한 실정이다.Recently, a method of preparing a carbonate by reacting carbon dioxide with an organometallic compound has been studied. It was found that the carbonate was separated from the mixture produced by the above method, and the residual liquid was able to regenerate the organometallic compound through reaction with alcohol. That is, since the organometallic compound used in the reaction can be recycled, it can be reused in the carbonate forming reaction and there is no problem due to transportation. As such organometallic compounds, compounds of the same type as Sn (R) 2 (OR ') 2 (R, R': different alkyl groups) having a central metal of tin and having two alkyl groups and an alkoxy group have been disclosed. Patent 2010-523783, 2006-548937, 2006-513613, 2006-095140, 2005-511122, 2003-556375, 2001-396545, 2001-396537 and the like). However, known organometallic compounds have a problem of low reactivity and low yield of carbonate ester production.
본 발명의 목적은 이산화탄소와 알코올의 반응성을 향상시켜 탄산에스테르를 고수율로 제조할 수 있는 신규한 유기금속화합물 및 이의 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a novel organometallic compound and a method for producing the same that can be produced in high yield by improving the reactivity of carbon dioxide and alcohol.
본 발명의 다른 목적은 상기 유기금속화합물를 이용하여 알코올류와 이산화탄소로부터 탄산에스테르를 직접 합성하는 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for directly synthesizing carbonate esters from alcohols and carbon dioxide using the organometallic compounds.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 하나의 관점은 유기금속화합물에 관한 것이다. 상기 유기금속화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다:One aspect of the invention relates to organometallic compounds. The organometallic compound is characterized in that represented by the following formula (1):
[화학식 1][Formula 1]
Ma 3+[Mb(OR1)5]3 - M a 3+ [M b (OR 1) 5] 3 -
상기 화학식 1에서, Ma는 세륨이고, Mb는 4족 또는 14족 금속이며, R1은 탄소수 1 내지 10의 탄화수소기이다.In Formula 1, M a is cerium, M b is a Group 4 or 14 metal, R 1 is a hydrocarbon group having 1 to 10 carbon atoms.
구체예에서, 상기 Mb는 티타늄(Ti), 주석(Sn), 또는 지르코늄(Zr)일 수 있다.In embodiments, M b may be titanium (Ti), tin (Sn), or zirconium (Zr).
구체예에서, 상기 R1은 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기, 또는 페닐기일 수 있다.In embodiments, R 1 may be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a phenyl group.
본 발명의 다른 관점은 상기 유기금속화합물의 제조방법에 관한 것이다. 상기 제조방법은 하기 화학식 2로 표시되는 알칼리금속 알콕사이드 및 하기 화학식 3으로 표시되는 금속 알콕사이드를 반응시켜 하기 화학식 4로 표시되는 이종금속 알콕사이드를 제조하고; 그리고 상기 이종금속 알콕사이드 및 하기 화학식 5로 표시되는 할로겐화 금속화합물을 반응시켜 상기 화학식 1로 표시되는 유기금속화합물을 제조하는 단계를 포함한다.Another aspect of the invention relates to a method for producing the organometallic compound. The preparation method is to prepare a dissimilar metal alkoxide represented by the following formula (4) by reacting the alkali metal alkoxide represented by the formula (2) and the metal alkoxide represented by the formula (3); And preparing an organometallic compound represented by Chemical Formula 1 by reacting the dissimilar metal alkoxide and a halogenated metal compound represented by Chemical Formula 5.
[화학식 2][Formula 2]
McOR1 M c OR 1
[화학식 3][Formula 3]
Mb(OR1)4 M b (OR 1 ) 4
[화학식 4][Formula 4]
Mc +[Mb(OR1)5]- M c + [M b (OR 1 ) 5 ] -
[화학식 5][Formula 5]
Ma(X)3 M a (X) 3
상기 화학식 2 내지 5에서, Ma, Mb 및 R1은 상기 화학식 1에서 정의한 바와 같고, Mc는 알칼리금속이고, X는 할로겐 원자이다.In Formulas 2 to 5, M a , M b and R 1 are as defined in Formula 1, M c is an alkali metal, X is a halogen atom.
구체예에서, 상기 화학식 5로 표시되는 할로겐화 금속화합물 및 상기 화학식 4로 표시되는 이종금속 알콕사이드의 몰비는 약 1 : 약 2 내지 약 1 : 약 4일 수 있다. In embodiments, the molar ratio of the halogenated metal compound represented by Formula 5 and the dissimilar metal alkoxide represented by Formula 4 may be about 1: about 2 to about 1: about 4.
구체예에서, 상기 알칼리금속 알콕사이드 및 상기 금속 알콕사이드의 반응은 약 100 내지 약 200℃의 온도에서 수행될 수 있다.In embodiments, the reaction of the alkali metal alkoxide and the metal alkoxide may be carried out at a temperature of about 100 to about 200 ℃.
구체예에서, 상기 이종금속 알콕사이드 및 상기 할로겐화 금속화합물의 반응은 약 100 내지 약 200℃의 온도에서 수행될 수 있다.In embodiments, the reaction of the dissimilar metal alkoxide and the halide metal compound may be performed at a temperature of about 100 to about 200 ℃.
본 발명의 또 다른 관점은 탄산에스테르의 제조방법에 관한 것이다. 상기 제조방법은 상기 유기금속화합물 존재 하에, 탄소수 1 내지 10의 알코올 및 이산화탄소를 반응시키는 것을 특징으로 한다.Another aspect of the invention relates to a method for producing a carbonate ester. The production method is characterized in that in the presence of the organometallic compound, the carbon 1 to 10 alcohol and carbon dioxide to react.
구체예에서, 상기 반응은 약 130 내지 약 200℃의 온도 및 약 10 내지 약 200 bar의 압력 조건에서 수행될 수 있다.In an embodiment, the reaction can be carried out at a temperature of about 130 to about 200 ° C. and a pressure of about 10 to about 200 bar.
본 발명은 이산화탄소와 알코올의 반응성을 향상시켜 탄산에스테르를 고수율로 제조할 수 있는 신규한 유기금속화합물 및 이의 제조방법과 상기 유기금속화합물를 이용하여 알코올류와 이산화탄소로부터 탄산에스테르를 직접 합성하는 제조방법을 제공하는 발명의 효과를 갖는다.The present invention is a novel organometallic compound capable of producing carbonic acid esters in high yield by improving the reactivity of carbon dioxide and alcohol, and a method of preparing the same, and a method of directly synthesizing carbonic acid esters from alcohols and carbon dioxide using the organometallic compound. It has the effect of providing the invention.
도 1은 본 발명의 제조예 1에 따라 제조된 유기금속화합물의 1H-NMR 스펙트럼이다.1 is a 1 H-NMR spectrum of the organometallic compound prepared according to Preparation Example 1 of the present invention.
이하, 본 발명을 상세히 설명하면, 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 유기금속화합물은 하기 화학식 1로 표시될 수 있다.The organometallic compound according to the present invention may be represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Ma 3+[Mb(OR1)5]3 - M a 3+ [M b (OR 1) 5] 3 -
상기 화학식 1에서, Ma는 세륨이고, Mb는 4족 또는 14족 금속, 바람직하게는 티타늄(Ti), 주석(Sn), 또는 지르코늄(Zr)이며, R1은 탄소수 1 내지 10의 탄화수소기, 예를 들면, 탄소수 1 내지 8의 알킬기, 탄소수 6 내지 10의 아릴기일 수 있고, 구체적으로 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기, 또는 페닐기일 수 있다. 여기서, 금속 원자(Ma 및 Mb)와 알콕시기(OR1)의 산소 원자(O)는 하기 화학식 1a와 같이, 공유결합 및 배위결합으로 연결되는 것일 수도 있다.In Formula 1, M a is cerium, M b is a Group 4 or 14 metal, preferably titanium (Ti), tin (Sn), or zirconium (Zr), R 1 is a hydrocarbon having 1 to 10 carbon atoms The group may be, for example, an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 10 carbon atoms, and specifically, may be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a phenyl group. Here, the oxygen atoms (O) of the metal atoms (M a and M b ) and the alkoxy group (OR 1 ) may be connected by covalent bonds and coordination bonds, as shown in Formula 1a.
[화학식 1a] [Formula 1a]
Figure PCTKR2013006975-appb-I000001
Figure PCTKR2013006975-appb-I000001
상기 화학식 1a에서, Ma, Mb 및 R1은 상기 화학식 1에서 정의한 바와 같고, 화살표는 배위결합을 의미한다.In Formula 1a, M a , M b and R 1 are as defined in Formula 1, and the arrow means a coordination bond.
본 발명의 유기금속화합물은 하기 화학식 2로 표시되는 알칼리금속 알콕사이드 및 하기 화학식 3으로 표시되는 금속 알콕사이드를 반응시켜 하기 화학식 4로 표시되는 이종금속 알콕사이드를 제조하고; 그리고 상기 이종금속 알콕사이드 및 하기 화학식 5로 표시되는 할로겐화 금속화합물을 반응시켜 상기 화학식 1로 표시되는 유기금속화합물을 제조하는 단계를 포함하여 제조될 수 있다.The organometallic compound of the present invention is prepared by reacting an alkali metal alkoxide represented by the following Chemical Formula 2 and a metal alkoxide represented by the following Chemical Formula 3 to produce a dissimilar metal alkoxide represented by the following Chemical Formula 4; And reacting the dissimilar metal alkoxide and the halogenated metal compound represented by Chemical Formula 5 to prepare an organometallic compound represented by Chemical Formula 1.
[화학식 2][Formula 2]
McOR1 M c OR 1
[화학식 3][Formula 3]
Mb(OR1)4 M b (OR 1 ) 4
[화학식 4][Formula 4]
Mc +[Mb(OR1)5]- M c + [M b (OR 1 ) 5 ] -
[화학식 5][Formula 5]
Ma(X)3 M a (X) 3
상기 화학식 2 내지 5에서, Ma, Mb 및 R1은 상기 화학식 1에서 정의한 바와 같고, Mc는 알칼리금속, 예를 들면, 소듐(Na), 포타슘(K) 등이고, X는 할로겐 원자, 예를 들면, 염소 원자(Cl), 브롬 원자(Br) 등이다.In Formulas 2 to 5, M a , M b and R 1 are as defined in Formula 1, M c is an alkali metal, for example, sodium (Na), potassium (K) and the like, X is a halogen atom, For example, it is a chlorine atom (Cl), a bromine atom (Br).
구체예에서, 상기 화학식 2로 표시되는 알칼리금속 알콕사이드 및 상기 화학식 3으로 표시되는 금속 알콕사이드를 예를 들면, 약 1 : 약 0.5 내지 약 1 : 약 2의 몰비, 구체적으로는 등몰비로 투입한 후, 약 100 내지 약 200℃, 예를 들면 약 110 내지 약 150 ℃의 온도에서, 예를 들면, 약 2 내지 약 4시간 동안 환류(reflux) 반응시켜 상기 화학식 4로 표시되는 이종금속 알콕사이드(bimetal alkoxide)를 제조할 수 있다.In embodiments, the alkali metal alkoxide represented by the formula (2) and the metal alkoxide represented by the formula (3), for example, about 1: 1: 0.5 to about 1: molar ratio of about 2, specifically in an equimolar ratio , Bimetal alkoxide represented by Chemical Formula 4 by reflux at a temperature of about 100 to about 200 ° C., for example, about 110 to about 150 ° C., for example, for about 2 to about 4 hours. ) Can be prepared.
다음으로, 하기 반응식 1과 같이, 제조된 이종금속 알콕사이드에 상기 화학식 5로 표시되는 할로겐화 금속화합물을 투입한 후, 약 100 내지 약 200℃, 예를 들면 약 110 내지 약 150℃의 온도에서, 예를 들면, 약 10 내지 약 15시간 동안 환류(reflux) 반응시켜 상기 화학식 1로 표시되는 유기금속화합물을 제조할 수 있다. 또한, 제조된 유기금속화합물은 통상적인 냉각, 여과, 정제 등의 과정을 거쳐 고체 상태로 얻을 수 있다.Next, after the halogenated metal compound represented by Formula 5 is added to the prepared dissimilar metal alkoxide, as shown in Scheme 1, at a temperature of about 100 to about 200 ° C, for example, about 110 to about 150 ° C, for example For example, the organometallic compound represented by Chemical Formula 1 may be prepared by reflux reaction for about 10 to about 15 hours. In addition, the prepared organometallic compound may be obtained in a solid state through a conventional cooling, filtration, and purification process.
[반응식 1] Scheme 1
Figure PCTKR2013006975-appb-I000002
Figure PCTKR2013006975-appb-I000002
상기 제조 과정에서, 상기 화학식 5로 표시되는 할로겐화 금속화합물 및 상기 화학식 4로 표시되는 이종금속 알콕사이드의 몰비는 약 1 : 약 1 내지 약 1 :약 5, 예를 들면 약 1 : 약 2 내지 약 1 : 약 4, 구체적으로 약 1 : 약 3 내지 약 1 : 약 3.5일 수 있다. 상기 범위에서 부산물을 최소화할 수 있다.In the manufacturing process, the molar ratio of the halogenated metal compound represented by Chemical Formula 5 and the dissimilar metal alkoxide represented by Chemical Formula 4 is about 1: about 1 to about 1: about 5, for example, about 1: about 2 to about 1 : About 4, specifically about 1: about 3 to about 1: about 3.5. By-products can be minimized in the above range.
본 발명에 따른 유기금속화합물을 이용한 탄산에스테르의 제조방법은 상기 유기금속화합물 존재 하에, 환경 친화적 원료인 탄소수 1 내지 10의 알코올 및 이산화탄소를 반응시켜 탄산에스테르를 직접 제조하는 것을 특징으로 한다.The method for preparing carbonate ester using the organometallic compound according to the present invention is characterized in that the carbonate ester is directly prepared by reacting carbon dioxide having 1 to 10 carbon atoms and carbon dioxide which are environmentally friendly raw materials in the presence of the organometallic compound.
본 발명에 사용되는 알코올은 하기 화학식 6으로 표시될 수 있다.Alcohol used in the present invention may be represented by the following formula (6).
[화학식 6][Formula 6]
R2OHR 2 OH
상기 화학식 6에서, R2는 탄소수 1 내지 10, 바람직하게는 1 내지 6의 탄화수소기이다.In Chemical Formula 6, R 2 is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
상기 알코올의 구체적인 예로는 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 페놀 등을 예시할 수 있으나, 이에 제한되지 않는다.Specific examples of the alcohol may include methanol, ethanol, propanol, butanol, pentanol, hexanol, phenol, and the like, but are not limited thereto.
또한, 상기 탄산에스테르는 하기 화학식 7로 표시될 수 있다.In addition, the carbonate ester may be represented by the following formula (7).
[화학식 7][Formula 7]
R2OCOOR2 R 2 OCOOR 2
상기 화학식 7에서, R2는 상기 화학식 6에서 정의한 바와 같다.In Chemical Formula 7, R 2 is as defined in Chemical Formula 6.
상기 반응은 통상적인 회분식 반응에 의해 수행될 수 있으며, 130 내지 200℃, 예를 들면 140 내지 190℃의 온도 및 10 내지 200 bar, 예를 들면 40 내지 150 bar의 압력 조건에서 수행될 수 있다. 상기 범위에서 반응 속도가 빠르고, 높은 수율로 탄산에스테르를 제조할 수 있다.The reaction can be carried out by a conventional batch reaction, and can be carried out at a temperature of 130 to 200 ℃, for example 140 to 190 ℃ and pressure conditions of 10 to 200 bar, for example 40 to 150 bar. In the above range, the reaction rate is fast and carbonate ester can be produced in high yield.
통상적으로 회분식 반응은 전환율과 반응기 부피를 고려하여 수행되며, 과열되지 않는 액상 공정이다.Batch reactions are typically carried out in consideration of conversion and reactor volume and are liquid phase processes that do not overheat.
또한, 본 발명의 반응은 액상 반응물인 탄소수 1 내지 10의 알코올과 기상 반응물인 이산화탄소 및 고체 유기금속화합물을 사용하여, 별도의 용매가 필요없는 반응이다. 즉, 상기 알코올에 이산화탄소 및 유기금속화합물이 녹아서 반응하는 균일계 반응일 수 있다. 반응기의 교반은 마그네틱 바 등을 사용할 수 있으며, 약 300 내지 약 1,000 rpm, 예를 들면 400 내지 500 rpm의 교반 속도 및 0.5 내지 24시간, 예를 들면 1 내지 3시간의 반응 시간 조건에서 수행될 수 있으나, 상기 유기금속화합물의 상태와 용매의 점도 등을 고려하여 이산화탄소와 알킬알코올간 계면의 물질 전달이 최대인 영역에서 행하는 것이 바람직하다. 이러한 반응은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 용이하게 수행될 수 있다.In addition, the reaction of the present invention is a reaction that does not require a separate solvent using an alcohol having 1 to 10 carbon atoms as a liquid reactant and carbon dioxide and a solid organometallic compound as a gaseous reactant. That is, it may be a homogeneous reaction in which carbon dioxide and an organometallic compound are dissolved and reacted with the alcohol. The stirring of the reactor may use a magnetic bar or the like, and may be performed at a stirring speed of about 300 to about 1,000 rpm, for example 400 to 500 rpm, and a reaction time condition of 0.5 to 24 hours, for example 1 to 3 hours. However, in consideration of the state of the organometallic compound and the viscosity of the solvent, it is preferable to carry out in a region where the mass transfer at the interface between the carbon dioxide and the alkyl alcohol is maximum. Such a reaction can be easily carried out by those skilled in the art.
구체예에서, 상기 유기금속화합물은 상기 알킬알코올 100 몰부에 대하여, 약 1 내지 약 30 몰부, 예를 들면 약 5 내지 약 15 몰부 사용될 수 있다. 상기 범위에서 높은 수율로 탄산에스테르를 제조할 수 있다.In an embodiment, the organometallic compound may be used in an amount of about 1 to about 30 moles, for example about 5 to about 15 moles, based on 100 moles of alkyl alcohol. Carbonate ester can be manufactured in high yield in the said range.
또한, 상기 이산화탄소의 압력은 약 10 내지 약 200 bar, 예를 들면 약 40 내지 약 150 bar일 수 있다. 상기 범위에서 높은 수율로 탄산에스테르를 제조할 수 있다.In addition, the pressure of the carbon dioxide may be about 10 to about 200 bar, for example about 40 to about 150 bar. Carbonate ester can be manufactured in high yield in the said range.
본 발명의 탄산에스테르 제조방법은 별도의 유기금속화합물 재생공정이 필요하지 않아 경제적이다.Carbonate ester production method of the present invention is economical because no separate organometallic compound regeneration process is required.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예Example
제조예 1: 유기금속화합물의 제조Preparation Example 1 Preparation of Organometallic Compound
포타슘(Potassium) 0.6 g(15 mmol)을 1-부탄올 11.5 g(155 mmol)과 상온에서 교반하며, 20분간 반응시킨 후, 120℃에서 1시간 동안 환류(reflux) 반응시키고 냉각하여, 포타슘 부톡사이드(KOBu)를 제조하였다. 제조된 포타슘 부톡사이드(KOBu) 1.7 g(15 mmol) 및 1-부탄올 혼합물에 금속 알콕사이드로서 Ti(OBu)4 5.2 g(15 mmol)을 투입하고, 120℃에서 3시간 동안 환류 반응시킨 후 냉각하여 하기 화학식 4a로 표시되는 이종금속 알콕사이드(KTi(OBu)5)를 제조하였다. 제조된 이중금속 알콕사이드 6.8 g(15 mmol) 및 1-부탄올 혼합물에 염화세륨(CeCl3) 1.25 g(5 mmol)를 첨가하고, 질소 분위기에서 120℃에서 12시간 동안 환류 반응시킨 후 냉각, 여과 및 정제 과정을 거치고, 용매를 증발시켜 백색 고체 형태의 하기 화학식 1b로 표시되는 유기금속화합물을 얻었다(수율: 23 %). 제조된 유기금속화합물의 금속 및 알콕시기를 유도결합 플라즈마 분광광도계(Ion Coupled Plasma-Atomic Emission Spectroscopy: ICP-AES) 및 핵자기공명분광기(NMR)을 사용하여 확인하였다. 도 1 및 표 1에 각각  1H-NMR 스펙트럼 및 ICP-AES 원소 분석 결과를 나타내었다(Ce : Ti(몰비) = 약 1 : 3). 0.6 g (15 mmol) of potassium was stirred with 11.5 g (155 mmol) of 1-butanol at room temperature, and then reacted for 20 minutes, and then refluxed and cooled at 120 ° C. for 1 hour, followed by potassium butoxide. (KOBu) was prepared. To the prepared potassium butoxide (KOBu) 1.7 g (15 mmol) and 1-butanol mixture was added 5.2 g (15 mmol) of Ti (OBu) 4 as a metal alkoxide, refluxed at 120 ° C. for 3 hours, and then cooled. To prepare a dissimilar metal alkoxide (KTi (OBu) 5 ) represented by the following Chemical Formula 4a. To 6.8 g (15 mmol) of the prepared double metal alkoxide and 1-butanol mixture, 1.25 g (5 mmol) of cerium chloride (CeCl 3 ) was added and refluxed at 120 ° C. for 12 hours in a nitrogen atmosphere, followed by cooling, filtration and After purification, the solvent was evaporated to obtain an organometallic compound represented by Chemical Formula 1b in the form of a white solid (yield: 23%). Metals and alkoxy groups of the prepared organometallic compounds were identified using an Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and nuclear magnetic resonance spectroscopy (NMR). 1 and Table 1 show the results of 1 H-NMR spectra and ICP-AES elemental analysis, respectively (Ce: Ti (molar ratio) = about 1: 3).
[화학식 4a][Formula 4a]
K+[Mb(OBu)5]- K + [M b (OBu) 5 ] -
[화학식 1b][Formula 1b]
Ce3+[Ti(OBu)5]3 - Ce 3+ [Ti (OBu) 5 ] 3 -
표 1
  Ce Ti
화학식량 (F.W) 140.12 g/mol 47.88 g/mol
함량 (중량%) 11.02 10.95
Table 1
Ce Ti
Formula weight (FW) 140.12 g / mol 47.88 g / mol
Content (% by weight) 11.02 10.95
실시예 1Example 1
외부 히터를 가진 내용적 75 ml의 오토클레이브 반응기에 상기 반응식 1a로 표시되는 유기금속화합물(Ce3+[Ti(OBu)5]3 -) 5 g(3.6 mmol), 1-부탄올 27.2 g(367.3 mmol)를 넣고 교반과 동시에 150℃까지 승온시킨 후 120 bar까지 이산화탄소를 넣고, 150℃ 및 120 bar 상태에서 1시간 반응 후, 상온까지 냉각하였다. 이산화탄소를 벤트하여 상압으로 되돌린 후, 반응액을 가스크로마토그래피로 분석한 결과, 디-n-부틸카보네이트가 75% 수율로 얻어졌음을 확인할 수 있었다.5 g (3.6 mmol) of organometallic compound (Ce 3+ [Ti (OBu) 5 ] 3 ) represented by Scheme 1a in a 75 ml autoclave reactor with an external heater, 27.2 g (367.3) of 1-butanol mmol) was added and the mixture was heated to 150 ° C at the same time with stirring. Then, carbon dioxide was added to 120 bar, and the reaction was performed at 150 ° C and 120 bar for 1 hour, and then cooled to room temperature. After venting carbon dioxide and returning to normal pressure, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 75% yield.
실시예 2Example 2
반응온도를 180℃로 한 것을 제외하고는 상기 실시예 1과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 127% 수율로 얻어졌음을 확인할 수 있었다.The reaction was performed in the same manner as in Example 1 except that the reaction temperature was 180 ° C. After completion of the reaction, the reaction solution was analyzed by gas chromatography. As a result, it was confirmed that di-n-butylcarbonate was obtained in 127% yield.
실시예 3Example 3
반응압력을 60 bar로 한 것을 제외하고는 상기 실시예 1과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 69% 수율로 얻어졌음을 확인할 수 있었다.The reaction was performed in the same manner as in Example 1 except that the reaction pressure was 60 bar. After completion of the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 69% yield.
실시예 4Example 4
반응압력을 60 bar로 한 것을 제외하고는 상기 실시예 2와 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 106% 수율로 얻어졌음을 확인할 수 있었다.The reaction was carried out in the same manner as in Example 2, except that the reaction pressure was 60 bar. After completion of the reaction, gas chromatography analysis showed that di-n-butylcarbonate was obtained in 106% yield.
비교예 1Comparative Example 1
유기금속화합물로서 하기 화학식 8a로 표시되는 화합물(Ti[OBu]4) 5 g(14.7 mmol)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 30% 수율로 얻어졌음을 확인할 수 있었다.The reaction was carried out in the same manner as in Example 1, except that 5 g (14.7 mmol) of the compound (Ti [OBu] 4 ) represented by Formula 8a was used as the organometallic compound. After the completion of the reaction, gas chromatography analysis showed that di-n-butylcarbonate was obtained in 30% yield.
[화학식 8a][Formula 8a]
Figure PCTKR2013006975-appb-I000003
Figure PCTKR2013006975-appb-I000003
비교예 2Comparative Example 2
반응온도를 180℃로 한 것을 제외하고는 상기 비교예 1과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸이카보네이트가 98% 수율로 얻어졌음을 확인할 수 있었다. The reaction was performed in the same manner as in Comparative Example 1 except that the reaction temperature was 180 ° C. After the completion of the reaction, gas chromatography analysis showed that di-n-butyldicarbonate was obtained in 98% yield.
비교예 3Comparative Example 3
반응압력을 60 bar로 한 것을 제외하고는 상기 비교예 1과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 20% 수율로 얻어졌음을 확인할 수 있었다.The reaction was carried out in the same manner as in Comparative Example 1 except that the reaction pressure was 60 bar. After the completion of the reaction, the reaction solution was analyzed by gas chromatography. As a result, it was confirmed that di-n-butylcarbonate was obtained in 20% yield.
비교예 4Comparative Example 4
반응온도를 180℃로 한 것을 제외하고는 상기 비교예 3과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 82% 수율로 얻어졌음을 확인할 수 있었다. The reaction was performed in the same manner as in Comparative Example 3 except that the reaction temperature was 180 ° C. After the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 82% yield.
비교예 5Comparative Example 5
유기금속화합물로서 하기 화학식 8b로 표시되는 화합물(Bu2Sn(OBu)2) 5 g(13.3 mmol)을 사용하고, 1-부탄올 24.4 g(329.5 mmol)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 49% 수율로 얻어졌음을 확인할 수 있었다.Example 1 and 5, except that 5 g (13.3 mmol) of the compound represented by the following Chemical Formula 8b (Bu 2 Sn (OBu) 2 ) was used as the organometallic compound, and 24.4 g (329.5 mmol) of 1-butanol was used. The reaction proceeded in the same manner. After completion of the reaction, gas chromatography analysis showed that di-n-butylcarbonate was obtained in 49% yield.
[화학식 8b][Formula 8b]
Figure PCTKR2013006975-appb-I000004
Figure PCTKR2013006975-appb-I000004
비교예 6Comparative Example 6
반응온도를 180℃로 한 것을 제외하고는 상기 비교예 5와 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 69% 수율로 얻어졌음을 확인할 수 있었다. The reaction was carried out in the same manner as in Comparative Example 5 except that the reaction temperature was 180 ° C. After completion of the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 69% yield.
비교예 7Comparative Example 7
반응압력을 60 bar로 한 것을 제외하고는 상기 비교예 5와 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 50% 수율로 얻어졌음을 확인할 수 있었다.The reaction was carried out in the same manner as in Comparative Example 5 except that the reaction pressure was 60 bar. After the completion of the reaction, the reaction solution was analyzed by gas chromatography, and it was confirmed that di-n-butylcarbonate was obtained in 50% yield.
비교예 8Comparative Example 8
반응온도를 180℃로 한 것을 제외하고는 상기 비교예 7과 동일하게 반응을 진행하였다. 반응 종료 후, 반응액을 가스크로마토그래피 분석한 결과, 디-n-부틸카보네이트가 60% 수율로 얻어졌음을 확인할 수 있었다. The reaction was carried out in the same manner as in Comparative Example 7 except that the reaction temperature was 180 ° C. After completion of the reaction, gas chromatography analysis showed that di-n-butyl carbonate was obtained in 60% yield.
상기 반응 조건 및 탄산에스테르 수율을 하기 표 2에 나타내었다.The reaction conditions and the carbonate ester yield are shown in Table 2 below.
표 2
  유기금속화합물 알코올 반응온도(℃) 반응압력(bar) 반응시간(h) 수율(%)
종류 mmol g mmol g
실시예 1 Ce3+[Ti(OBu)5]3 - 3.6 5 367.3 27.2 150 120 1 75
실시예 2 Ce3+[Ti(OBu)5]3 - 3.6 5 367.3 27.2 180 120 1 127
실시예 3 Ce3+[Ti(OBu)5]3 - 3.6 5 367.3 27.2 150 60 1 69
실시예 4 Ce3+[Ti(OBu)5]3 - 3.6 5 367.3 27.2 180 60 1 106
비교예 1 Ti[OBu]4 14.7 5 367.3 27.2 150 120 1 68
비교예 2 Ti[OBu]4 14.7 5 367.3 27.2 180 120 1 98
비교예 3 Ti[OBu]4 14.7 5 367.3 27.2 150 60 1 61
비교예 4 Ti[OBu]4 14.7 5 367.3 27.2 180 60 1 82
비교예 5 Bu2Sn(OBu)2 13.2 5 329.7 24.5 150 120 1 55
비교예 6 Bu2Sn(OBu)2 13.2 5 329.7 24.5 180 120 1 69
비교예 7 Bu2Sn(OBu)2 13.2 5 329.7 24.5 150 60 1 52
비교예 8 Bu2Sn(OBu)2 13.2 5 329.7 24.5 180 60 1 60
TABLE 2
Organometallic compounds Alcohol Reaction temperature (℃) Reaction pressure (bar) Response time (h) yield(%)
Kinds mmol g mmol g
Example 1 Ce 3+ [Ti (OBu) 5 ] 3 - 3.6 5 367.3 27.2 150 120 One 75
Example 2 Ce 3+ [Ti (OBu) 5 ] 3 - 3.6 5 367.3 27.2 180 120 One 127
Example 3 Ce 3+ [Ti (OBu) 5 ] 3 - 3.6 5 367.3 27.2 150 60 One 69
Example 4 Ce 3+ [Ti (OBu) 5 ] 3 - 3.6 5 367.3 27.2 180 60 One 106
Comparative Example 1 Ti [OBu] 4 14.7 5 367.3 27.2 150 120 One 68
Comparative Example 2 Ti [OBu] 4 14.7 5 367.3 27.2 180 120 One 98
Comparative Example 3 Ti [OBu] 4 14.7 5 367.3 27.2 150 60 One 61
Comparative Example 4 Ti [OBu] 4 14.7 5 367.3 27.2 180 60 One 82
Comparative Example 5 Bu 2 Sn (OBu) 2 13.2 5 329.7 24.5 150 120 One 55
Comparative Example 6 Bu 2 Sn (OBu) 2 13.2 5 329.7 24.5 180 120 One 69
Comparative Example 7 Bu 2 Sn (OBu) 2 13.2 5 329.7 24.5 150 60 One 52
Comparative Example 8 Bu 2 Sn (OBu) 2 13.2 5 329.7 24.5 180 60 One 60
물성 평가 방법Property evaluation method
(1) 수율 평가: 반응 후 반응액을 가스 크로마토그래피로 분석하였다.(1) Yield Evaluation: After the reaction, the reaction solution was analyzed by gas chromatography.
탄산에스테르 수율(%) = (생성된 탄산에스테르 몰수 / 첨가한 유기금속화합물 몰수) × 100Yield of carbonate (%) = (mol of carbonate produced / mol of organometallic compound added) × 100
상기 표 1의 결과로부터, 본 발명의 유기금속화합물은 동일한 반응조건에서, 기존 유기금속화합물(비교예 1 내지 8)에 비하여, 우수한 수율로 탄산에스테르를 제조할 수 있음을 알 수 있다.From the results of Table 1, it can be seen that the organometallic compound of the present invention can be produced in a good yield, compared to the existing organometallic compounds (Comparative Examples 1 to 8) under the same reaction conditions.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (9)

  1. 하기 화학식 1로 표시되는 것을 특징으로 하는 유기금속 화합물:An organometallic compound characterized by the following formula (1):
    [화학식 1][Formula 1]
    Ma 3+[Mb(OR1)5]3 - M a 3+ [M b (OR 1) 5] 3 -
    상기 화학식 1에서, Ma는 세륨이고, Mb는 4족 또는 14족 금속이며, R1은 탄소수 1 내지 10의 탄화수소기이다.In Formula 1, M a is cerium, M b is a Group 4 or 14 metal, R 1 is a hydrocarbon group having 1 to 10 carbon atoms.
  2. 제1항에 있어서, 상기 Mb는 티타늄(Ti), 주석(Sn), 또는 지르코늄(Zr)인 것을 특징으로 하는 유기금속 화합물.The organometallic compound according to claim 1, wherein M b is titanium (Ti), tin (Sn), or zirconium (Zr).
  3. 제1항에 있어서, 상기 R1은 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기, 또는 페닐기인 것을 특징으로 하는 유기금속 화합물.The organometallic compound according to claim 1, wherein R 1 is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a phenyl group.
  4. 하기 화학식 2로 표시되는 알칼리금속 알콕사이드 및 하기 화학식 3으로 표시되는 금속 알콕사이드를 반응시켜 하기 화학식 4로 표시되는 이종금속 알콕사이드를 제조하고; 그리고To prepare a heterometal alkoxide represented by the following formula (4) by reacting the alkali metal alkoxide represented by the formula (2) and the metal alkoxide represented by the formula (3); And
    상기 이종금속 알콕사이드 및 하기 화학식 5로 표시되는 할로겐화 금속화합물을 반응시켜 하기 화학식 1로 표시되는 유기금속화합물을 제조하는 단계를 포함하는 것을 특징으로 유기금속화합물의 제조방법:A method for preparing an organometallic compound, comprising the step of reacting the dissimilar metal alkoxide and a halogenated metal compound represented by Formula 5 to produce an organometallic compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    Ma 3+[Mb(OR1)5]3 - M a 3+ [M b (OR 1) 5] 3 -
    상기 화학식 1에서, Ma는 세륨이고, Mb는 4족 또는 14족 금속이며, R1은 탄소수 1 내지 10의 탄화수소기이다;In Formula 1, M a is cerium, M b is a Group 4 or 14 metal, R 1 is a hydrocarbon group having 1 to 10 carbon atoms;
    [화학식 2][Formula 2]
    McOR1 M c OR 1
    [화학식 3][Formula 3]
    Mb(OR1)4 M b (OR 1 ) 4
    [화학식 4][Formula 4]
    Mc +[Mb(OR1)5]- M c + [M b (OR 1 ) 5 ] -
    [화학식 5][Formula 5]
    Ma(X)3 M a (X) 3
    상기 화학식 2 내지 5에서, Ma, Mb 및 R1은 상기 화학식 1에서 정의한 바와 같고, Mc는 알칼리금속이고, X는 할로겐 원자이다.In Formulas 2 to 5, M a , M b and R 1 are as defined in Formula 1, M c is an alkali metal, X is a halogen atom.
  5. 제4항에 있어서, 상기 화학식 5로 표시되는 할로겐화 금속화합물 및 상기 화학식 4로 표시되는 이종금속 알콕사이드의 몰비는 약 1 : 약 2 내지 약 1 : 약 4인 것을 특징으로 유기금속화합물의 제조방법.The method of claim 4, wherein the molar ratio of the halogenated metal compound represented by Chemical Formula 5 and the dissimilar metal alkoxide represented by Chemical Formula 4 is about 1: about 2 to about 1: about 4. 6.
  6. 제4항에 있어서, 상기 알칼리금속 알콕사이드 및 상기 금속 알콕사이드의 반응은 약 100 내지 약 200℃의 온도에서 수행되는 것을 특징으로 유기금속화합물의 제조방법.The method of claim 4, wherein the reaction of the alkali metal alkoxide and the metal alkoxide is carried out at a temperature of about 100 ° C. to about 200 ° C. 6.
  7. 제4항에 있어서, 상기 이종금속 알콕사이드 및 상기 할로겐화 금속화합물의 반응은 약 100 내지 약 200℃의 온도에서 수행되는 것을 특징으로 유기금속화합물의 제조방법.The method of claim 4, wherein the reaction of the dissimilar metal alkoxide and the halide metal compound is performed at a temperature of about 100 ° C. to about 200 ° C. 6.
  8. 제1항 내지 제3항 중 어느 한 항에 따른 유기금속화합물 존재 하에, 탄소수 1 내지 10의 알코올 및 이산화탄소를 반응시키는 것을 특징으로 하는 탄산에스테르 제조방법.A method for producing a carbonate, characterized by reacting an alcohol having 1 to 10 carbon atoms and carbon dioxide in the presence of the organometallic compound according to any one of claims 1 to 3.
  9. 제8항에 있어서, 상기 반응은 약 130 내지 약 200℃의 온도 및 약 10 내지 약 200 bar의 압력 조건에서 수행되는 것을 특징으로 하는 탄산에스테르 제조방법.The method of claim 8, wherein the reaction is performed at a temperature of about 130 to about 200 ° C. and a pressure of about 10 to about 200 bar.
PCT/KR2013/006975 2013-06-03 2013-08-02 Organometallic compound, method for preparing same, and method for preparing carbonic acid ester using same WO2014196686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130063750A KR101593746B1 (en) 2013-06-03 2013-06-03 Organometallic compound, method for preparing the same, and method for preparing carbonic ester using the same
KR10-2013-0063750 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196686A1 true WO2014196686A1 (en) 2014-12-11

Family

ID=52008307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006975 WO2014196686A1 (en) 2013-06-03 2013-08-02 Organometallic compound, method for preparing same, and method for preparing carbonic acid ester using same

Country Status (2)

Country Link
KR (1) KR101593746B1 (en)
WO (1) WO2014196686A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051813A (en) * 1999-01-27 2000-08-16 유현식 The preparation of non-symmetric dialkyated carbonates
EP1020405B1 (en) * 1999-01-11 2003-03-26 Ford Global Technologies, Inc. Alumina-based oxide material useful as NOx absorbent
JP2004249228A (en) * 2003-02-20 2004-09-09 National Institute Of Advanced Industrial & Technology Catalyst for manufacture of carbonic acid ester and method for manufacturing carbonic acid ester
KR20050030631A (en) * 2002-08-07 2005-03-30 아사히 가세이 케미칼즈 가부시키가이샤 Process for producing carbonic ester
KR20110076601A (en) * 2009-12-29 2011-07-06 주식회사 포스코 Composition for sol-gel coating solution, preparation method of the same and surface treatment process for magnesium parts using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020405B1 (en) * 1999-01-11 2003-03-26 Ford Global Technologies, Inc. Alumina-based oxide material useful as NOx absorbent
KR20000051813A (en) * 1999-01-27 2000-08-16 유현식 The preparation of non-symmetric dialkyated carbonates
KR20050030631A (en) * 2002-08-07 2005-03-30 아사히 가세이 케미칼즈 가부시키가이샤 Process for producing carbonic ester
JP2004249228A (en) * 2003-02-20 2004-09-09 National Institute Of Advanced Industrial & Technology Catalyst for manufacture of carbonic acid ester and method for manufacturing carbonic acid ester
KR20110076601A (en) * 2009-12-29 2011-07-06 주식회사 포스코 Composition for sol-gel coating solution, preparation method of the same and surface treatment process for magnesium parts using the same

Also Published As

Publication number Publication date
KR20140142114A (en) 2014-12-11
KR101593746B1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
WO2017119793A2 (en) Phthalonitrile resin
WO2014092254A1 (en) Method for preparing polysilsesquioxane using carbon dioxide solvent and polysilsesquioxane prepared using same
WO2017003250A1 (en) Phthalonitrile resin
WO2014196686A1 (en) Organometallic compound, method for preparing same, and method for preparing carbonic acid ester using same
WO2013168941A1 (en) Magnesium oxide precursor, method for producing same, and method for forming a thin film using same
WO2015050292A1 (en) Method for preparing carbonate by using organometallic compound
WO2020040617A1 (en) Method of manufacturing gadobutrol
WO2018097496A9 (en) Compound
WO2017082541A1 (en) Metal precursor, manufacturing method therefor, and method for forming thin film by using same
WO2022244969A1 (en) Method for preparing methylene lactone-based compound
US5017695A (en) Ceric hydrocarbyl silyloxides and process for their preparation
WO2015050291A1 (en) Method for preparing aromatic carbonate
WO2020190080A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid
WO2011105649A1 (en) New method for manufacturing pitavastatin hemicalcium using new intermediate
US4739088A (en) Process for the preparation of amidosilanes
WO2015083910A1 (en) Salen type catalyst, production method therefor and production method of aromatic carbonate using same
WO2016108364A1 (en) Tin compound, method for preparing same, and method for preparing aromatic carbonate from dialkyl carbonate using same
JP2814002B2 (en) Method for producing alkylene glycol ether
WO2020222410A1 (en) Method for continuously preparing tetraalkoxysilane
US5017694A (en) Process for the preparation of ceric hydrocarbyl silyloxides by transetherification of ceric alkoxides
WO2016137067A1 (en) Method for preparing dialkyl carbonate
US9328056B2 (en) Method for preparing carbonic ester using organometallic compound
WO2012128510A2 (en) Method for preparing a furfuranol-based compound and a 2-furancarboxylic acid-based compound using an ionic liquid as a solvent
WO2022158713A1 (en) Method for preparing 3,5-diamino-1,2,4-triazole
WO2023277587A1 (en) Method for preparing n-acyl derivative, composition, and pharmaceutical or agricultural product containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886545

Country of ref document: EP

Kind code of ref document: A1