WO2014196536A1 - Curing resin composition and three-dimensional formed article - Google Patents

Curing resin composition and three-dimensional formed article Download PDF

Info

Publication number
WO2014196536A1
WO2014196536A1 PCT/JP2014/064758 JP2014064758W WO2014196536A1 WO 2014196536 A1 WO2014196536 A1 WO 2014196536A1 JP 2014064758 W JP2014064758 W JP 2014064758W WO 2014196536 A1 WO2014196536 A1 WO 2014196536A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
colorant
mass
compound
Prior art date
Application number
PCT/JP2014/064758
Other languages
French (fr)
Japanese (ja)
Inventor
千晴 本間
信夫 大金
栄治 中本
Original Assignee
シーメット 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーメット 株式会社 filed Critical シーメット 株式会社
Publication of WO2014196536A1 publication Critical patent/WO2014196536A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a curable resin composition that is cured by irradiation with an active energy ray such as light, and a three-dimensionally shaped article that is manufactured using the curable resin composition.
  • a three-dimensional molded item having a high yellowness tends to be unfavorable by users. For this reason, recently, it has been required to provide a three-dimensional structure with high transparency and low yellowness.
  • the dye compound does not fade during radiation exposure, but does not mention fading of the curable resin composition during storage. If a three-dimensional molded article is manufactured using the curable resin composition in which fading has progressed, the yellowness of the resulting three-dimensional molded article increases.
  • An object of the present invention is to provide a three-dimensional structure having low yellowness and high transparency, and a curable resin having low storage fading for forming such a three-dimensional structure.
  • a curable resin composition that cures when irradiated with active energy rays.
  • the curable resin composition includes a polymerizable compound, a polymerization initiator that initiates a polymerization reaction of the polymerizable compound when irradiated with the active energy ray, and a purple or blue colorant having a p-toluidine structure. And containing.
  • a three-dimensionally shaped object cured by irradiating the curable resin composition with active energy rays contains a polymerizable compound, a polymerization initiator, and a purple or blue colorant having a p-toluidine structure.
  • the three-dimensional model has a total light transmittance of 60% or more in a test piece having a thickness of 10 mm, and a yellow index of 15 or less in accordance with JIS K-7373.
  • FIG. 1 The figure which shows the change of the light absorbency with respect to elapsed days about the unhardened curable resin composition of Examples 1-3 and the comparative example 1.
  • FIG. 2-5 The figure which shows the change of the light absorbency with respect to elapsed days about the uncured curable resin composition of Comparative Examples 2-5.
  • FIG. The figure which shows the yellowness and the transmittance
  • the curable resin composition is a modeling material that is cured by irradiation with active energy rays, and contains a polymerizable compound, a polymerization initiator, and a purple or blue colorant.
  • the polymerizable compound is composed of at least one of a cationic polymerizable compound and a radical polymerizable compound.
  • the polymerization initiator includes a cationic polymerization initiator.
  • the polymerizable compound includes a radical polymerizable compound
  • the polymerization initiator includes a radical polymerization initiator.
  • the polymerizable compound contains both a cationic polymerizable compound and a radical polymerizable compound, the shrinkage rate of the three-dimensional structure is lowered. Therefore, it is preferable because warpage and deformation of the three-dimensional structure are reduced and dimensional stability is excellent.
  • the active energy ray is an energy ray that can cure the curable resin composition, and is, for example, visible light, ultraviolet ray, electron beam, X-ray, radiation, high-frequency ray, or the like.
  • a dedicated modeling apparatus When manufacturing a three-dimensional molded article having a desired shape using the curable resin composition, a dedicated modeling apparatus is used.
  • the modeling apparatus is not particularly limited.
  • the modeling apparatus reads shape data from a three-dimensional CAD or a scanner, and converts the read shape data into cross-section data.
  • the modeling apparatus irradiates the curable resin composition with active energy rays based on the cross-sectional data to cure the curable resin composition, and obtains a cured layer corresponding to the cross-sectional shape.
  • a modeling apparatus manufactures a three-dimensional molded item by laminating
  • the cationically polymerizable compound may be an organic compound that causes at least one of a cationic polymerization reaction and a cationic crosslinking reaction to proceed when irradiated with active energy rays in the presence of a cationic polymerization initiator.
  • Representative examples include epoxy compounds, oxetane compounds, cyclic ether compounds other than oxetane, cyclic acetal compounds, cyclic lactone compounds, spiro orthoester compounds, vinyl ether compounds, and the like.
  • the cationically polymerizable compound may be composed of only one kind of compound or may be composed of a plurality of kinds of compounds. Moreover, it is preferable to contain an epoxy compound and an oxetane compound among each said compound.
  • an epoxy compound used as a cationically polymerizable compound an alicyclic epoxy compound, an aliphatic epoxy compound, an aromatic epoxy compound, etc. can be used, for example.
  • the alicyclic epoxy compound include polyglycidyl ether of a polyhydric alcohol having at least one alicyclic ring, a cyclohexene oxide structure-containing compound, or a cyclopentene oxide structure-containing compound.
  • the cyclohexene oxide structure-containing compound and the cyclopentene oxide structure-containing compound are obtained by epoxidizing a cyclohexene ring-containing compound and a cyclopentene ring-containing compound with an oxidizing agent, respectively.
  • Examples of the aliphatic epoxy compound used as the cationically polymerizable compound include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, glycidyl acrylate or glycidyl methacrylate. And a copolymer obtained by vinyl polymerization of at least one of glycidyl acrylate and glycidyl methacrylate and another vinyl monomer.
  • the aromatic epoxy compound examples include an aromatic compound having a phenolic hydroxyl group or a glycidyl ether of an alkylene oxide adduct thereof.
  • diglycidyl ethers of bisphenols such as bisphenol A, bisphenol E, bisphenol F, and bisphenol Z
  • glycidyl ethers obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to bisphenols and phenols or Glycidylated products of condensates of naphthols and aldehydes (phenolic resins, novolak resins, etc.), glycidylated products of the condensates of phenols or naphthols and xylylene glycol, and condensates of phenols and isopropenylacetophenone
  • a glycidyl compound which is a reaction product of phenols and dicyclopentadiene e.glycidyl compound which is a reaction product of phenols and dicycl
  • the cationic polymerizable compound one or more of such epoxy compounds can be used. Moreover, it is preferable that the polyepoxy compound which has a 2 or more epoxy group in 1 molecule contains 30 mass% or more with respect to the total mass of a cationically polymerizable compound.
  • oxetane compound one or more of various monooxetane compounds having one oxetane group in one molecule and various polyoxetane compounds having two or more oxetane groups in one molecule can be used.
  • a monooxetane monoalcohol compound having one oxetane group and one alcoholic hydroxyl group in one molecule is particularly preferably used.
  • a dioxetane compound having two oxetane groups is particularly preferably used.
  • the mass ratio of the monooxetane compound and the polyoxetane compound is preferably in the range of 5:95 to 95: 5.
  • the mass ratio is more preferably in the range of 10:90 to 90:10, and still more preferably in the range of 20:80 to 80:20.
  • the curable resin composition contains an oxetane compound in a proportion of 1% by mass to 35% by mass with respect to the total mass of the cationic polymerizable compound from the viewpoint of photocuring performance and improvement of molding property by reducing viscosity. It is preferable to contain in the ratio of 5 mass% or more and 20 mass% or less.
  • diglycidyl ether of alkylene diol having 4 to 10 carbon atoms can be used.
  • examples of the diglycidyl ether of alkylene diol having 4 to 10 carbon atoms include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, butanediol diglycidyl ether, pentanediol diglycidyl ether, hexanediol diglycidyl ether, heptanediol diglycidyl.
  • Examples include ether, octanediol diglycidyl ether, nonanediol diglycidyl ether, and decanediol diglycidyl ether.
  • 1,6-hexanediol diglycidyl ether is preferable from the viewpoint of curing performance.
  • the radical polymerizable compound may be a compound that allows a reaction such as radical polymerization to proceed when irradiated with active energy rays in the presence of a radical polymerization initiator.
  • Representative examples include compounds having a (meth) acrylate group, unsaturated polyester compounds, allyl urethane compounds, polythiol compounds, and the like.
  • the radical polymerizable compound may be composed of only one type of compound or may be composed of a plurality of types of compounds. Among the above compounds, it is preferable to contain a compound having at least one (meth) acryloyloxy group in one molecule.
  • Such compounds include reaction products of epoxy compounds and (meth) acrylic acid, (meth) acrylic esters of alcohols, urethane (meth) acrylates, polyester (meth) acrylates, and polyether (meth) acrylates. Etc. can be used.
  • the curable resin composition contains a polyalkylene glycol di (meth) acrylate such as polytetramethylene glycol di (meth) acrylate as at least a part of the radical polymerizable compound, and the proportion of the total amount of the radical polymerizable compound. It is preferable to set it as 1 to 40 mass% with respect to mass.
  • the ratio of the polyalkylene glycol di (meth) acrylate is in the above range, the toughness of the three-dimensional structure is increased.
  • the ratio of the polyalkylene glycol di (meth) acrylate is 5% by mass or more and 20% by mass or less, the toughness of the three-dimensional model can be further increased.
  • the polyalkylene glycol di (meth) acrylate preferably has a number average molecular weight of 300 to 1500, more preferably 600 to 900. Specific examples include polytetramethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • polytetramethylene glycol di (meth) acrylate polypropylene glycol di (meth) acrylate
  • polyethylene glycol di (meth) acrylate polyethylene glycol di (meth) acrylate.
  • cationic polymerization initiator any polymerization initiator capable of initiating cationic polymerization of the cationic polymerizable compound when irradiated with active energy rays can be used.
  • an onium salt that releases a Lewis acid when irradiated with active energy rays is preferably used as the cationic polymerization initiator.
  • onium salts include aromatic sulfonium salts of Group VIIa elements, aromatic onium salts of Group VIa elements, aromatic onium salts of Group Va elements, and the like.
  • triarylsulfonium hexafluoroantimonate triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdihexa Fluoroantimonate, bis- [4- (di4'-hydroxyethoxyphenylsulfonio) phenyl] sulfide bisdihexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdihexafluorophos Fate, diphenyliodonium tetrafluoroborate and the like.
  • One or more of the cationic polymerization initiators as described above can be used. Of these, aromatic sulfonium salts are more preferably used. Further, for the purpose of improving the reaction rate, a photosensitizer such as benzophenone, alkoxyanthracene, dialkoxyanthracene, thioxanthone and the like may be used together with the cationic polymerization initiator as necessary.
  • the curable resin composition preferably contains an aromatic thiol compound represented by the following structural formula (1) together with the aromatic sulfonium compound.
  • R 1 in the structural formula (1) include monovalent aromatic groups such as a phenyl group, a naphthyl group, an anthracenyl group, an indenyl group, and a tolyl group. These aromatic groups may not be substituted, but when they have a substituent, examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, and a hydroxyl group.
  • aromatic thiol compound examples include benzene thiol, naphthalene thiol such as 1-naphthalene thiol and 2-naphthalene thiol, anthracene thiol, toluene thiol, and xylene thiol.
  • the content of the aromatic thiol compound is preferably 0.1% by mass or more and 5% by mass or less, and more preferably 0.2% by mass or more and 2% by mass or less with respect to the total mass of the aromatic sulfonium compound.
  • the content of the aromatic thiol compound is less than the above range, the yellowness increases, and when it exceeds the above range, the photocurability tends to decrease.
  • the radical polymerization initiator may be any polymerization initiator that can initiate a radical polymerization reaction of a radical polymerizable compound when irradiated with active energy rays. Examples include benzyl or its dialkyl acetal compound, phenyl ketone compound, acetophenone compound, benzoin or its alkyl ether compound, benzophenone compound, thioxanthone compound, and the like.
  • examples of benzyl or a dialkyl acetal compound thereof include benzyl dimethyl ketal and benzyl- ⁇ -methoxyethyl acetal.
  • examples of the phenyl ketone compound include 1-hydroxy-cyclohexyl phenyl ketone.
  • acetophenone compounds include diethoxyacetophenone, 2-hydroxymethyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methyl-propiophenone, 2-hydroxy-2-methyl- Examples thereof include propiophenone, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone.
  • 1-hydroxy-cyclohexyl phenyl ketone is preferable in that the yellowness of the shaped product is small.
  • benzoin compounds include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin normal butyl ether, benzoin isobutyl ether, and the like.
  • benzophenone compounds examples include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, and the like.
  • thioxanthone compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and the like.
  • the curable resin composition comprises a cationic polymerizable compound and a radical polymerizable compound such that the mass ratio of the cationic polymerizable compound and the radical polymerizable compound is in the range of 30:70 to 90:10 (cationic polymerizable compound: radical polymerizable compound). It is preferable to contain a radically polymerizable compound. When the said mass ratio exists in this range, photocurability, modeling speed, and the dimensional stability of a molded article can be improved. Further, the mass ratio is preferably in the range of 50:50 to 90:10, and particularly preferably in the range of 60:40 to 90:10.
  • the curable resin composition further contains a radical polymerization initiator in a proportion of 0.1% by mass to 10% by mass and 1% by mass to 5% by mass with respect to the mass of the radical polymerizable compound. preferable.
  • the curable resin composition may contain a polyalkylene ether compound.
  • the polyalkylene ether compound include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethylene oxide-polypropylene oxide block copolymer.
  • Another example is a polyether having an oxytetramethylene unit having an alkyl substituent represented by (—CH 2 CH 2 CH (R 2 ) CH 2 O—) bonded thereto. “R 2 ” is a lower alkyl group.
  • Other examples include polyethers in which oxytetramethylene units are randomly bonded.
  • the content of the polyalkylene ether compound is 0.5% by mass to 30% by mass with respect to the total mass of the curable resin composition. It is preferable that it is 1 mass% or more and 20 mass% or less, and it is especially preferable that it is 1 mass% or more and 15 mass% or less.
  • the curable resin composition may contain one or more kinds of alkylene diols having 4 to 10 carbon atoms.
  • alkylene diol having 4 to 10 carbon atoms include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, and decanediol. Of these, 1,6-hexanediol is preferred from the viewpoint of photocuring performance.
  • the curable resin composition when the curable resin composition contains an alkylene diol, the curable resin composition preferably contains the alkylene diol in a proportion of 0.3% by mass to 10% by mass with respect to the total mass. More preferably, it is contained in a proportion of 5% by mass or more and 5% by mass or less.
  • the proportion of the alkylene diol is in the above range, the toughness of the three-dimensional structure is improved. Moreover, since the viscosity of the curable resin composition is lowered, the moldability is improved.
  • the colorant is a purple or blue colorant.
  • “purple or blue” is a color including reddish purple, purple, blue, green blue, and blue green, and at least when the colorant is added to the curable resin composition, the curable resin composition is It exhibits a purple to blue color.
  • the colorant and the curable resin composition to which the colorant is added absorb light having a wavelength included in the wavelength region of 500 to 750 nm.
  • the inventor conducted a storage stability (fading) screening test by adding various colorants to the curable resin composition, and as a result, the colorant having a p-toluidine structure represented by the following structural formula (2) Has been found to have excellent storage stability.
  • Conventional colorants such as crystal violet have a great fading. Therefore, in order to continuously reduce the yellowness of the three-dimensional structure, measures such as adding a colorant when the uncured curable resin composition fades are necessary. That is, the measure of adding a colorant corresponding to the fading of each of the resin composition in the resin tank in the modeling apparatus and the resin composition to be replenished after modeling requires complicated and inefficient work.
  • the color fading of the colorant having a p-toluidine structure is small.
  • anthraquinone colorant or the like as a colorant having a p-toluidine structure because the color and transparency of the three-dimensional structure are excellent and its fading property is low.
  • An anthraquinone colorant having a p-toluidine structure has an anthraquinone ring represented by the following structural formula (3).
  • anthraquinone colorant having a p-toluidine structure examples include quinizarin blue represented by the following structural formula (4A), sudan blue represented by the structural formula (4B), and acid represented by the structural formula (4C).
  • Examples thereof include violet 34, quinizarin green SS represented by the structural formula (4D), toluidine blue (CAS number 3209-30-1) represented by the structural formula (4E), and the like.
  • the content of the colorant can be appropriately changed depending on the type of the colorant, the polymerizable compound, the polymerization initiator, and the composition thereof, and is 0.01 ppm or more and 10 ppm or less with respect to the total mass of the curable resin composition. Is preferred.
  • the content of the colorant exceeds 10 ppm, the color of the colorant itself is noticeable in many colorants, and the light transmittance of the three-dimensional structure decreases to an unfavorable appearance.
  • the content of the colorant is less than 0.01 ppm, the yellow color of the three-dimensional structure is noticeable according to the yellowness.
  • the content of the colorant is more preferably from 0.1 ppm to 7 ppm, and further preferably from 0.2 ppm to 2 ppm.
  • the yellowness can be further reduced, and the transmittance of a sample having a thickness of 10 mm obtained by curing the curable resin composition can be 60% or more.
  • the light transmittance of the whole three-dimensional object varies, but when the total light transmittance of a sample with a thickness of 10 mm is 60% or more, it has high transparency and has an internal shape. Can be obtained.
  • the manufacturing method of the three-dimensional model will be described together with the action of the colorant.
  • a known method and a modeling apparatus such as a 3D printer can be used for manufacturing the three-dimensional model.
  • the curable resin composition in a liquid state is selectively irradiated with ultraviolet rays that are active energy rays to produce a cured layer based on the cross-sectional shape.
  • an uncured curable resin composition is supplied to the cured layer, and ultraviolet rays are selectively irradiated based on the cross-sectional data to newly form a cured layer continuous with the cured layer.
  • the active energy ray include the energy rays described above, and ultraviolet rays having a wavelength of 300 to 400 nm are particularly preferable.
  • This curable resin composition is used as a modeling material in the three-dimensional modeling field.
  • a shape confirmation model for verifying the appearance design in the preliminary stage
  • a test model for confirming the functionality of parts
  • a master model for producing molds and molds
  • a direct mold for prototype molds etc.
  • the three-dimensional model contains a blue or purple colorant, and the colorant has only low fading. Therefore, the content of the colorant is small, the yellowness of the three-dimensional structure is low, and the transparency is high.
  • the concentration of purple or blue varies depending on the colorant
  • the total light transmittance of a test piece having a thickness of 10 mm is 60% or more while satisfying the above-mentioned range, and the yellow index according to JIS K-7373 is 15 or less. If the content rate of a coloring agent is adjusted so that it may become, while improving the transparency of a three-dimensional molded item, yellowness can be reduced. For this reason, the beauty
  • the three-dimensional model has high transparency, for example, the internal shape of the three-dimensional model can be easily confirmed.
  • the advantages listed below can be obtained. (1) Since the curable resin composition containing a polymerizable compound and a polymerization initiator contains a purple or blue colorant, the yellow degree exhibited by the polymerizable compound and the polymerization initiator can be reduced. Since the colorant has a p-toluidine structure, it has only a low color fading when contained in the curable resin composition. Therefore, even when the content of the colorant in the curable resin composition is reduced to keep the yellowness of the curable resin composition low, the curable resin composition can be used for a long period of time. Therefore, a three-dimensional molded item having high transparency can be continuously obtained from the curable resin composition.
  • the concentration of the colorant is in the range of 0.01 ppm or more and 10 ppm or less with respect to the total mass of the curable resin composition, the yellow color of the three-dimensional structure using the curable resin composition is increased. The degree can be reduced.
  • the colorant contains at least one of anthraquinone colorants. For this reason, while reducing the yellowness of a three-dimensional molded item, the state in which the yellowness fell can be maintained.
  • the spectral transmittance obtained in this way is numerically calculated by the method defined in JIS-K7373 using the software (UV Solutions) attached to the spectrophotometer, so that the conditions for the auxiliary illuminant C and the field of view of 2 degrees are obtained. Calculated as yellowness.
  • Example 1 6.5 parts by mass of 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (“Cel-2021P” manufactured by Daicel Corporation), hydrogenated bisphenol A diglycidyl ether (manufactured by Shin Nippon Rika Co., Ltd.
  • Example 2 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1.
  • a colorant 1 ppm of Sudan Blue (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue.
  • An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 638 nm was measured over time. As shown in FIG. 1, the absorbance immediately after preparation was 0.045, and the absorbance after 70 days was 0.038.
  • Example 3 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1.
  • a coloring agent 2.4 ppm of Acid Violet 34 (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue.
  • An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 566 nm was measured over time. As shown in FIG. 1, the absorbance immediately after preparation was 0.041, and the absorbance after 14 days was 0.038.
  • Example 4 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1.
  • a colorant 1 ppm of quinizarin green SS (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue.
  • An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 638 nm was measured over time. The absorbance immediately after preparation was 0.045, and the absorbance after 28 days was 0.044.
  • Example 1 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 0.85 ppm of Disperse Blue 14 (manufactured by Tokyo Chemical Industry) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 643 nm was measured over time. As shown in FIG. 1, the absorbance immediately after preparation was 0.047, and the absorbance after 60 days was 0.010. As shown in the following structural formula (5), Disperse Blue 14 is a colorant having an anthraquinone structure, not a colorant having a p-toluidine structure. The content of Disperse Blue 14 was set to 0.85 ppm so that the absorbance at a wavelength of 643 nm immediately after the preparation of the curable resin composition was the same as that in Example 1.
  • Example 2 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1.
  • a colorant 0.21 ppm of crystal violet (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue.
  • the absorbance at 590 nm was 0.041
  • the absorbance after 28 days at room temperature was 0.022
  • fading was observed.
  • 0.5 ppm of crystal violet was added, an 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 590 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.071, and the absorbance after 4 days was 0.006.
  • Example 3 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 0.5 ppm of ethyl violet (manufactured by Tokyo Kasei) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 596 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.113, and the absorbance after 33 days was 0.010.
  • Example 4 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 0.5 ppm of basic blue 7 (manufactured by Tokyo Kasei) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 615 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.081, and the absorbance after 81 days was 0.014.
  • Example 5 The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 10 ppm of quinacridone (manufactured by Tokyo Chemical Industry) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 580 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.059, and the absorbance after 5 days was 0.038.
  • Example 5 As a polymerizable compound, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (manufactured by Daicel Corporation, Cel-2021P) 5.0 parts by mass, hydrogenated bisphenol A diglycidyl ether (Nippon Riken) Co., Ltd., HBE-100) 58 parts by mass, 3-ethyl-3-hydroxymethyloxetane (Toagosei Co., Ltd., OXT101) 4.5 parts by mass, bis (3-ethyl-3-oxetanylmethyl) ether (Toago Synthetic Co., Ltd., OXT221) 12.5 parts by mass, dipentaerythritol polyacrylate (Shin Nakamura Chemical Co., Ltd., A-9550W) 10 parts by mass, polytetramethylene ether glycol (Hodogaya Chemical Co., Ltd., PTG-) 850SN,
  • cationic polymerization initiator As a cationic polymerization initiator, 4.0 parts by mass of “CPI-200K” manufactured by Sun Apro Co., Ltd. and 2.0 parts by mass of 1-hydroxy-cyclohexyl phenyl ketone (manufactured by BASF, Irgacure-184) as a radical polymerization initiator. was used.
  • cationic polymerization initiator radical polymerization initiator quinizarin blue (manufactured by Tokyo Chemical Industry Co., Ltd.) as a colorant is 1 ppm, 1.5 ppm, 3 ppm, 5 ppm, respectively, based on the total mass of the curable resin composition.
  • Each curable resin composition added with 6 ppm and 7 ppm was prepared.
  • a three-dimensional modeled object was prepared using an ultrahigh-speed optical modeling system (manufactured by Nabtesco, SOLIFORM 250).
  • light from a semiconductor laser (Spectra Physics, rated output 400 mW, wavelength 355 nm) was irradiated to the curable resin composition under the condition of a liquid surface irradiation energy of 100 mJ / cm 2 , 20 mm long, 45 mm wide.
  • a test piece having a thickness of 10 mm was formed.
  • the slice pitch was 0.1 mm, and the average modeling time per layer was 2 minutes.
  • Example 6 As a polymerizable compound, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (manufactured by Daicel Corporation, Cel-2021P) 5.0 parts by mass, hydrogenated bisphenol A diglycidyl ether (Nippon Riken) Co., Ltd., HBE-100) 55 parts by mass, 3-ethyl-3-hydroxymethyloxetane (manufactured by Toagosei Co., Ltd., OXT101), 10 parts by mass, tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 15 parts by mass of A-DCP), 2.0 parts by mass of dipentaerythritol polyacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-9550W), polytetramethylene glycol diacrylate (number average molecular weight 650)
  • a cationic polymerization initiator As a cationic polymerization initiator, 4.0 parts by mass of “CPI-200K” manufactured by Sun Apro Co., Ltd. and 2.0 parts by mass of 1-hydroxy-cyclohexyl phenyl ketone (manufactured by BASF, Irgacure-184) as a radical polymerization initiator. was used.
  • curable resins containing 1 ppm and 1.5 ppm of quinizarin blue (manufactured by Tokyo Chemical Industry) as a colorant with respect to the total mass of the curable resin composition.
  • a composition was prepared. Using these curable resin compositions, test pieces having a length of 20 mm, a width of 45 mm, and a thickness of 10 mm were formed in the same manner as in Example 5.
  • a curve L1 represents the result for the test piece of Example 5.
  • curve L3 shows the results for the test piece of Example 6.
  • the vertical axis on the left side of each graph indicates the yellow index (YI)
  • the vertical axis on the right side indicates the total light transmittance (%)
  • the horizontal axis indicates the content (ppm) of quinizarin blue.
  • the yellow index having a content rate of “0” is based on a test piece obtained by curing a curable resin composition containing no colorant.
  • the yellow index of the curable resin composition in Example 5 is about 13 in the state which does not contain a coloring agent, and the curable resin composition in Example 5 has a relatively high yellowness.
  • the yellow index of the curable resin composition in Example 6 is about 6 in the state containing no colorant, and the curable resin composition in Example 6 has a relatively low yellowness.
  • the yellow index reaches around “0”.
  • the total light transmittance decreases as the content of quinizarin blue increases.
  • the transmittance is 60% or more.
  • the yellow index reaches around “0”.
  • the transmittance exceeds 80%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This curing resin composition is cured through irradiation with rays of activation energy. The curing resin composition contains a polymerizable compound, a polymerization initiator, and a coloring agent. The polymerization initiator, through irradiation with rays of activation energy, initiates a polymerization reaction of the polymerizable compound. The coloring agent is a purple or blue coloring agent having a p-toluidine structure.

Description

硬化性樹脂組成物及び立体造形物Curable resin composition and three-dimensional model
 本発明は、光等の活性エネルギー線が照射されることによって硬化する硬化性樹脂組成物と、該硬化性樹脂組成物を用いて製造された立体造形物とに関する。 The present invention relates to a curable resin composition that is cured by irradiation with an active energy ray such as light, and a three-dimensionally shaped article that is manufactured using the curable resin composition.
 従来より、紫外線等の活性エネルギー線を硬化性樹脂組成物に照射して該硬化性樹脂組成物を硬化させることによって、該硬化性樹脂組成物から立体造形物を製造する方法が提案されている。 Conventionally, a method for producing a three-dimensional model from the curable resin composition has been proposed by irradiating the curable resin composition with an active energy ray such as ultraviolet rays to cure the curable resin composition. .
 着色剤を含有しない状態において立体造形物の多くは、淡い黄色を呈している。高い黄色度を有する立体造形物は、ユーザに好まれない傾向がある。このため最近では立体造形物に対し、高い透明度と低い黄色度とを備えることが要請されていた。 Many of the three-dimensional shaped objects have a pale yellow color in a state where no colorant is contained. A three-dimensional molded item having a high yellowness tends to be unfavorable by users. For this reason, recently, it has been required to provide a three-dimensional structure with high transparency and low yellowness.
 ジアリールメタン染料等の着色剤を硬化性樹脂組成物に添加することによって、立体造形物の色相を変化させる方法が提案されている(特許文献1参照)。 There has been proposed a method of changing the hue of a three-dimensional structure by adding a colorant such as a diarylmethane dye to the curable resin composition (see Patent Document 1).
特表2007-501318号公報JP-T-2007-501318
 当該文献においては、染料化合物が放射線露光中に色褪せないことは記載されているものの、保管中における硬化性樹脂組成物の退色については言及されていない。退色が進行した硬化性樹脂組成物を用いて立体造形物を製造すると、得られる立体造形物の黄色度は高くなる。 The document describes that the dye compound does not fade during radiation exposure, but does not mention fading of the curable resin composition during storage. If a three-dimensional molded article is manufactured using the curable resin composition in which fading has progressed, the yellowness of the resulting three-dimensional molded article increases.
 本発明の目的は、低い黄色度と、高い透明度とを有する立体造形物と、そうした立体造形物を造形するための低い保管中の退色性を有する硬化性樹脂とを提供することにある。 An object of the present invention is to provide a three-dimensional structure having low yellowness and high transparency, and a curable resin having low storage fading for forming such a three-dimensional structure.
 本発明の一態様では、活性エネルギー線が照射されることによって硬化する硬化性樹脂組成物を提供する。該硬化性樹脂組成物は、重合性化合物と、前記活性エネルギー線が照射されることによって前記重合性化合物の重合反応を開始する重合開始剤と、p-トルイジン構造を有する紫色又は青色の着色剤と、を含有する。 In one embodiment of the present invention, a curable resin composition that cures when irradiated with active energy rays is provided. The curable resin composition includes a polymerizable compound, a polymerization initiator that initiates a polymerization reaction of the polymerizable compound when irradiated with the active energy ray, and a purple or blue colorant having a p-toluidine structure. And containing.
 別の態様では、硬化性樹脂組成物に活性エネルギー線が照射されることによって硬化した立体造形物を提供する。該硬化性樹脂組成物は、重合性化合物と、重合開始剤と、p-トルイジン構造を有する紫色又は青色の着色剤とを含有する。該立体造形物は、厚さ10mmの試験片における60%以上の全光線透過率と、JIS K-7373に準拠する15以下のイエローインデックスとを有する。 In another aspect, a three-dimensionally shaped object cured by irradiating the curable resin composition with active energy rays is provided. The curable resin composition contains a polymerizable compound, a polymerization initiator, and a purple or blue colorant having a p-toluidine structure. The three-dimensional model has a total light transmittance of 60% or more in a test piece having a thickness of 10 mm, and a yellow index of 15 or less in accordance with JIS K-7373.
実施例1~3及び比較例1の未硬化の硬化性樹脂組成物について、経過日数に対する吸光度の変化を示す図。The figure which shows the change of the light absorbency with respect to elapsed days about the unhardened curable resin composition of Examples 1-3 and the comparative example 1. FIG. 比較例2~5の未硬化の硬化性樹脂組成物について、経過日数に対する吸光度の変化を示す図。The figure which shows the change of the light absorbency with respect to elapsed days about the uncured curable resin composition of Comparative Examples 2-5. 実施例5の硬化性樹脂組成物を用いた硬化物について、着色剤濃度に対する黄色度及び透過率を示す図。The figure which shows the yellowness and the transmittance | permeability with respect to a coloring agent density | concentration about the hardened | cured material using the curable resin composition of Example 5. FIG. 実施例6の硬化性樹脂組成物を用いた硬化物について、着色剤濃度に対する黄色度及び透過率を示す図。The figure which shows the yellowness and the transmittance | permeability with respect to a coloring agent density | concentration about the hardened | cured material using the curable resin composition of Example 6. FIG.
 以下、硬化性樹脂組成物及び当該組成物を用いて製造された立体造形物の一実施形態を説明する。
 硬化性樹脂組成物は、活性エネルギー線の照射によって硬化する造形材料であって、重合性化合物と、重合開始剤と、紫色又は青色の着色剤とを含有する。
Hereinafter, one embodiment of a three-dimensional model manufactured using a curable resin composition and the composition concerned is described.
The curable resin composition is a modeling material that is cured by irradiation with active energy rays, and contains a polymerizable compound, a polymerization initiator, and a purple or blue colorant.
 重合性化合物は、カチオン重合性化合物及びラジカル重合性化合物の少なくとも一方からなる。重合性化合物がカチオン重合性化合物を含む場合、重合開始剤はカチオン重合開始剤を含む。重合性化合物がラジカル重合性化合物を含む場合、重合開始剤はラジカル重合開始剤を含む。重合性化合物がカチオン重合性化合物及びラジカル重合性化合物の両方を含む場合、立体造形物の収縮率が低くなる。そのため、立体造形物の反り、変形が少なくなり、寸法安定性が優れるので、好ましい。活性エネルギー線は、硬化性樹脂組成物を硬化しうるエネルギー線であって、例えば、可視光線、紫外線、電子線、X線、放射線、高周波線等である。 The polymerizable compound is composed of at least one of a cationic polymerizable compound and a radical polymerizable compound. When the polymerizable compound includes a cationic polymerizable compound, the polymerization initiator includes a cationic polymerization initiator. When the polymerizable compound includes a radical polymerizable compound, the polymerization initiator includes a radical polymerization initiator. When the polymerizable compound contains both a cationic polymerizable compound and a radical polymerizable compound, the shrinkage rate of the three-dimensional structure is lowered. Therefore, it is preferable because warpage and deformation of the three-dimensional structure are reduced and dimensional stability is excellent. The active energy ray is an energy ray that can cure the curable resin composition, and is, for example, visible light, ultraviolet ray, electron beam, X-ray, radiation, high-frequency ray, or the like.
 硬化性樹脂組成物を用いて所望の形状の立体造形物を製造する場合、専用の造形装置を用いる。造形装置は特に限定されない。造形装置は、例えば、3次元CADやスキャナから形状データを読み込み、読み込んだ形状データを断面データに変換する。造形装置は、断面データに基づいて硬化性樹脂組成物に活性エネルギー線を照射して硬化性樹脂組成物を硬化させ、断面形状に相当する硬化層を得る。造形装置は、この硬化層を積層することによって立体造形物を製造する。 When manufacturing a three-dimensional molded article having a desired shape using the curable resin composition, a dedicated modeling apparatus is used. The modeling apparatus is not particularly limited. For example, the modeling apparatus reads shape data from a three-dimensional CAD or a scanner, and converts the read shape data into cross-section data. The modeling apparatus irradiates the curable resin composition with active energy rays based on the cross-sectional data to cure the curable resin composition, and obtains a cured layer corresponding to the cross-sectional shape. A modeling apparatus manufactures a three-dimensional molded item by laminating | stacking this hardening layer.
 (カチオン重合性化合物)
 次にカチオン重合性化合物について説明する。カチオン重合性化合物は、カチオン重合開始剤の存在下において活性エネルギー線が照射されたとき、カチオン重合反応及びカチオン架橋反応の少なくとも一方を進行させる有機化合物であればよい。代表例として、例えばエポキシ化合物、オキセタン化合物、オキセタン以外の環状エーテル化合物、環状アセタール化合物、環状ラクトン化合物、スピロオルソエステル化合物、ビニルエーテル化合物等が挙げられる。カチオン重合性化合物は、一種類の化合物のみから構成されてもよいし、複数種類の化合物から構成されてもよい。また上記各化合物のなかでも、エポキシ化合物、オキセタン化合物を含有することが好ましい。
(Cationically polymerizable compound)
Next, the cationic polymerizable compound will be described. The cationically polymerizable compound may be an organic compound that causes at least one of a cationic polymerization reaction and a cationic crosslinking reaction to proceed when irradiated with active energy rays in the presence of a cationic polymerization initiator. Representative examples include epoxy compounds, oxetane compounds, cyclic ether compounds other than oxetane, cyclic acetal compounds, cyclic lactone compounds, spiro orthoester compounds, vinyl ether compounds, and the like. The cationically polymerizable compound may be composed of only one kind of compound or may be composed of a plurality of kinds of compounds. Moreover, it is preferable to contain an epoxy compound and an oxetane compound among each said compound.
 カチオン重合性化合物として用いられるエポキシ化合物としては、例えば脂環族エポキシ化合物、脂肪族エポキシ化合物、芳香族エポキシ化合物等を用いることができる。
 脂環族エポキシ化合物としては、例えば、少なくとも1個の脂環族環を有する多価アルコールのポリグリシジルエーテル、又は、シクロヘキセンオキサイド構造含有化合物若しくはシクロペンテンオキサイド構造含有化合物等が挙げられる。シクロヘキセンオキサイド構造含有化合物及びシクロペンテンオキサイド構造含有化合物は、それぞれシクロヘキセン環含有化合物及びシクロペンテン環含有化合物を酸化剤でエポキシ化することによって得られる。
As an epoxy compound used as a cationically polymerizable compound, an alicyclic epoxy compound, an aliphatic epoxy compound, an aromatic epoxy compound, etc. can be used, for example.
Examples of the alicyclic epoxy compound include polyglycidyl ether of a polyhydric alcohol having at least one alicyclic ring, a cyclohexene oxide structure-containing compound, or a cyclopentene oxide structure-containing compound. The cyclohexene oxide structure-containing compound and the cyclopentene oxide structure-containing compound are obtained by epoxidizing a cyclohexene ring-containing compound and a cyclopentene ring-containing compound with an oxidizing agent, respectively.
 カチオン重合性化合物として用いられる脂肪族エポキシ化合物としては、例えば、脂肪族多価アルコール若しくはそのアルキレンオキサイド付加物のポリグリシジルエーテルと、脂肪族長鎖多塩基酸のポリグリシジルエステルと、グリシジルアクリレート若しくはグリシジルメタクリレートをビニル重合させたホモポリマーと、グリシジルアクリレート及びグリシジルメタクリレートの少なくとも一方とその他のビニルモノマーとをビニル重合させたコポリマー等が挙げられる。 Examples of the aliphatic epoxy compound used as the cationically polymerizable compound include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, glycidyl acrylate or glycidyl methacrylate. And a copolymer obtained by vinyl polymerization of at least one of glycidyl acrylate and glycidyl methacrylate and another vinyl monomer.
 芳香族エポキシ化合物としては、例えばフェノール性水酸基を有する芳香族化合物又はそのアルキレンオキサイド付加物のグリシジルエーテルが挙げられる。具体的には、例えばビスフェノールA、ビスフェノールE、ビスフェノールF、ビスフェノールZ等のビスフェノール類のジグリシジルエーテルと、ビスフェノール類にさらにエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを付加したグリシジルエーテルと、フェノール類又はナフトール類とアルデヒド類との縮合物(フェノール樹脂やノボラック樹脂等)のグリシジル化物と、フェノール類又はナフトール類とキシリレングリコールとの縮合物のグリシジル化物と、フェノール類とイソプロペニルアセトフェノンとの縮合物のグリシジル化物と、フェノール類とジシクロペンタジエンとの反応物であるグリシジル化物等が挙げられる。 Examples of the aromatic epoxy compound include an aromatic compound having a phenolic hydroxyl group or a glycidyl ether of an alkylene oxide adduct thereof. Specifically, for example, diglycidyl ethers of bisphenols such as bisphenol A, bisphenol E, bisphenol F, and bisphenol Z, glycidyl ethers obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to bisphenols, and phenols or Glycidylated products of condensates of naphthols and aldehydes (phenolic resins, novolak resins, etc.), glycidylated products of the condensates of phenols or naphthols and xylylene glycol, and condensates of phenols and isopropenylacetophenone And a glycidyl compound which is a reaction product of phenols and dicyclopentadiene.
 カチオン重合性化合物としては、このようなエポキシ化合物の1種又は2種以上を用いることができる。また1分子中に2個以上のエポキシ基を有するポリエポキシ化合物を、カチオン重合性化合物の全質量に対し30質量%以上含有していることが好ましい。 As the cationic polymerizable compound, one or more of such epoxy compounds can be used. Moreover, it is preferable that the polyepoxy compound which has a 2 or more epoxy group in 1 molecule contains 30 mass% or more with respect to the total mass of a cationically polymerizable compound.
 オキセタン化合物としては、1分子中にオキセタン基を1個有する各種モノオキセタン化合物及び1分子中にオキセタン基を2個以上有する各種ポリオキセタン化合物のうち、1種又は2種以上を用いることができる。 As the oxetane compound, one or more of various monooxetane compounds having one oxetane group in one molecule and various polyoxetane compounds having two or more oxetane groups in one molecule can be used.
 モノオキセタン化合物としては、特に1分子中に1個のオキセタン基と1個のアルコール性水酸基とを有するモノオキセタンモノアルコール化合物が好ましく用いられる。
 ポリオキセタン化合物としては、特にオキセタン基を2個有するジオキセタン化合物が好ましく用いられる。
As the monooxetane compound, a monooxetane monoalcohol compound having one oxetane group and one alcoholic hydroxyl group in one molecule is particularly preferably used.
As the polyoxetane compound, a dioxetane compound having two oxetane groups is particularly preferably used.
 特に、モノオキセタン化合物及びポリオキセタン化合物の質量比が、5:95~95:5の範囲内にあることが好ましい。質量比がこの範囲内にあることによって、高湿度状態での硬化性樹脂組成物の水分の吸収率が小さくなる。そのため、硬化性樹脂組成物の硬化感度を維持でき、造形物の靭性を高めることができる。また当該質量比が10:90~90:10の範囲内であることがより好ましく、20:80~80:20の範囲内であることがさらに好ましい。 In particular, the mass ratio of the monooxetane compound and the polyoxetane compound is preferably in the range of 5:95 to 95: 5. When the mass ratio is within this range, the moisture absorption rate of the curable resin composition in a high humidity state is reduced. Therefore, the curing sensitivity of the curable resin composition can be maintained, and the toughness of the model can be increased. The mass ratio is more preferably in the range of 10:90 to 90:10, and still more preferably in the range of 20:80 to 80:20.
 また硬化性樹脂組成物は、光硬化性能や低粘度化による造形性向上等の点から、カチオン重合性化合物の全質量に対して、オキセタン化合物を1質量%以上35質量%以下の割合で含有することが好ましく、5質量%以上20質量%以下の割合で含有することがより好ましい。 In addition, the curable resin composition contains an oxetane compound in a proportion of 1% by mass to 35% by mass with respect to the total mass of the cationic polymerizable compound from the viewpoint of photocuring performance and improvement of molding property by reducing viscosity. It is preferable to contain in the ratio of 5 mass% or more and 20 mass% or less.
 またカチオン重合性化合物として、炭素数4~10のアルキレンジオールのジグリシジルエーテルを用いることができる。炭素数4~10のアルキレンジオールのジグリシジルエーテルとしては、例えばエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ペンタンジオールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、ヘプタンジオールジグリシジルエーテル、オクタンジオールジグリシジルエーテル、ノナンジオールジグリシジルエーテル、デカンジオールジグリシジルエーテルが挙げられる。そのうちでも、1,6-ヘキサンジオールジグリシジルエーテルが硬化性能の点から好ましい。 As the cationically polymerizable compound, diglycidyl ether of alkylene diol having 4 to 10 carbon atoms can be used. Examples of the diglycidyl ether of alkylene diol having 4 to 10 carbon atoms include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, butanediol diglycidyl ether, pentanediol diglycidyl ether, hexanediol diglycidyl ether, heptanediol diglycidyl. Examples include ether, octanediol diglycidyl ether, nonanediol diglycidyl ether, and decanediol diglycidyl ether. Among these, 1,6-hexanediol diglycidyl ether is preferable from the viewpoint of curing performance.
 (ラジカル重合性化合物)
 次にラジカル重合性化合物について説明する。ラジカル重合性化合物は、ラジカル重合開始剤の存在下において活性エネルギー線が照射されたとき、ラジカル重合等の反応を進行させる化合物であればよい。代表例として、(メタ)アクリレート基を有する化合物、不飽和ポリエステル化合物、アリルウレタン系化合物、ポリチオール化合物等が挙げられる。ラジカル重合性化合物は、一種類の化合物のみから構成されてもよいし、複数種類の化合物から構成されてもよい。また上記各化合物の中でも、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基を有する化合物を含有することが好ましい。当該化合物の具体例としては、エポキシ化合物と(メタ)アクリル酸との反応生成物、アルコール類の(メタ)アクリル酸エステル、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等を用いることができる。
(Radically polymerizable compound)
Next, the radical polymerizable compound will be described. The radically polymerizable compound may be a compound that allows a reaction such as radical polymerization to proceed when irradiated with active energy rays in the presence of a radical polymerization initiator. Representative examples include compounds having a (meth) acrylate group, unsaturated polyester compounds, allyl urethane compounds, polythiol compounds, and the like. The radical polymerizable compound may be composed of only one type of compound or may be composed of a plurality of types of compounds. Among the above compounds, it is preferable to contain a compound having at least one (meth) acryloyloxy group in one molecule. Specific examples of such compounds include reaction products of epoxy compounds and (meth) acrylic acid, (meth) acrylic esters of alcohols, urethane (meth) acrylates, polyester (meth) acrylates, and polyether (meth) acrylates. Etc. can be used.
 硬化性樹脂組成物は、ラジカル重合性化合物の少なくとも一部として、ポリテトラメチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレートを含有するとともに、その割合をラジカル重合性化合物の全質量に対して1質量%以上40質量%以下とすることが好ましい。ポリアルキレングリコールジ(メタ)アクリレートの割合が上記範囲にある場合、立体造形物の靭性が高まる。ポリアルキレングリコールジ(メタ)アクリレートの割合を、5質量%以上20質量%以下とすると、さらに立体造形物の靭性を高めることができる。 The curable resin composition contains a polyalkylene glycol di (meth) acrylate such as polytetramethylene glycol di (meth) acrylate as at least a part of the radical polymerizable compound, and the proportion of the total amount of the radical polymerizable compound. It is preferable to set it as 1 to 40 mass% with respect to mass. When the ratio of the polyalkylene glycol di (meth) acrylate is in the above range, the toughness of the three-dimensional structure is increased. When the ratio of the polyalkylene glycol di (meth) acrylate is 5% by mass or more and 20% by mass or less, the toughness of the three-dimensional model can be further increased.
 ポリアルキレングリコールジ(メタ)アクリレートとしては、数平均分子量が300~1500のものが好ましく、600~900のものがさらに好ましく用いられる。具体的には、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等が挙げられる。但し、ポリアルキレングリコールジ(メタ)アクリレートの含有量が多すぎると、立体造形物の熱変形温度が低くなり、耐熱性が低下する。 The polyalkylene glycol di (meth) acrylate preferably has a number average molecular weight of 300 to 1500, more preferably 600 to 900. Specific examples include polytetramethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. However, when there is too much content of polyalkylene glycol di (meth) acrylate, the heat distortion temperature of a three-dimensional molded item will become low, and heat resistance will fall.
 (カチオン重合開始剤)
 カチオン重合開始剤としては、活性エネルギー線を照射したときにカチオン重合性化合物のカチオン重合を開始させ得る重合開始剤のいずれもが使用できる。そのうちでも、カチオン重合開始剤としては、活性エネルギー線が照射されたときにルイス酸を放出するオニウム塩が好ましく用いられる。そのようなオニウム塩の例としては、第VIIa族元素の芳香族スルホニウム塩、VIa族元素の芳香族オニウム塩、第Va族元素の芳香族オニウム塩などが挙げられる。具体的には、例えば、トリアリールスルホニウムヘキサフルオロアンチモネート、テトラフルオロホウ酸トリフェニルフェナシルホスホニウム、ヘキサフルオロアンチモン酸トリフェニルスルホニウム、ビス‐[4‐(ジフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス‐[4‐(ジ4´‐ヒドロキシエトキシフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス‐[4‐(ジフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロフォスフェート、テトラフルオロホウ酸ジフェニルヨードニウム等が挙げられる。
(Cationic polymerization initiator)
As the cationic polymerization initiator, any polymerization initiator capable of initiating cationic polymerization of the cationic polymerizable compound when irradiated with active energy rays can be used. Among them, as the cationic polymerization initiator, an onium salt that releases a Lewis acid when irradiated with active energy rays is preferably used. Examples of such onium salts include aromatic sulfonium salts of Group VIIa elements, aromatic onium salts of Group VIa elements, aromatic onium salts of Group Va elements, and the like. Specifically, for example, triarylsulfonium hexafluoroantimonate, triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdihexa Fluoroantimonate, bis- [4- (di4'-hydroxyethoxyphenylsulfonio) phenyl] sulfide bisdihexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdihexafluorophos Fate, diphenyliodonium tetrafluoroborate and the like.
 また上述したようなカチオン重合開始剤のうちの1種または2種以上を用いることができる。そのうちでも、芳香族スルホニウム塩がより好ましく用いられる。さらに反応速度を向上させる目的で、カチオン重合開始剤とともに必要に応じて光増感剤、例えばベンゾフェノン、アルコキシアントラセン、ジアルコキシアントラセン、チオキサントンなどを用いてもよい。 One or more of the cationic polymerization initiators as described above can be used. Of these, aromatic sulfonium salts are more preferably used. Further, for the purpose of improving the reaction rate, a photosensitizer such as benzophenone, alkoxyanthracene, dialkoxyanthracene, thioxanthone and the like may be used together with the cationic polymerization initiator as necessary.
 また、硬化性樹脂組成物は、芳香族スルホニウム化合物とともに、下記の構造式(1)で表される芳香族チオール化合物を含有することが好ましい。芳香族チオール化合物を含有する硬化性樹脂組成物を用いて立体造形することによって、低い黄色度を有し無色透明又はそれに近い色調及び外観を有する立体組成物を得ることができる。 The curable resin composition preferably contains an aromatic thiol compound represented by the following structural formula (1) together with the aromatic sulfonium compound. By three-dimensionally modeling using a curable resin composition containing an aromatic thiol compound, a three-dimensional composition having a low yellowness and being colorless and transparent or having a color tone and appearance close to it can be obtained.
Figure JPOXMLDOC01-appb-C000001
 上記構造式(1)におけるRの具体例としては、フェニル基、ナフチル基、アントラセルニル基、インデニル基、トリル基等の1価の芳香族基が挙げられる。これらの芳香族基は置換されていなくてもよいが、置換基を有している場合、その置換基としては、アルキル基、アルコシキ基、ハロゲン原子、水酸基等が挙げられる。芳香族チオール化合物としては、具体的には、ベンゼンチオール、1‐ナフタレンチオールや2‐ナフタレンチオール等のナフタレンチオール、アントラセンチオール、トルエンチオール、キシレンチオール等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Specific examples of R 1 in the structural formula (1) include monovalent aromatic groups such as a phenyl group, a naphthyl group, an anthracenyl group, an indenyl group, and a tolyl group. These aromatic groups may not be substituted, but when they have a substituent, examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, and a hydroxyl group. Specific examples of the aromatic thiol compound include benzene thiol, naphthalene thiol such as 1-naphthalene thiol and 2-naphthalene thiol, anthracene thiol, toluene thiol, and xylene thiol.
 芳香族チオール化合物の含有量は、芳香族スルホニウム化合物の全質量に対して0.1質量%以上5質量%以下が好ましく、0.2質量%以上2質量%以下がより好ましい。芳香族チオール化合物の含有量が上記範囲を下回る場合には、黄色度が高くなり、上記範囲を超えると光硬化性が低下しやすい。 The content of the aromatic thiol compound is preferably 0.1% by mass or more and 5% by mass or less, and more preferably 0.2% by mass or more and 2% by mass or less with respect to the total mass of the aromatic sulfonium compound. When the content of the aromatic thiol compound is less than the above range, the yellowness increases, and when it exceeds the above range, the photocurability tends to decrease.
 (ラジカル重合開始剤)
 次にラジカル重合開始剤について説明する。ラジカル重合開始剤は、活性エネルギー線が照射されたときにラジカル重合性化合物のラジカル重合反応等を開始可能な重合開始剤であればよい。例えば、ベンジル又はそのジアルキルアセタール系化合物、フェニルケトン系化合物、アセトフェノン系化合物、ベンゾイン又はそのアルキルエーテル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物等が挙げられる。
(Radical polymerization initiator)
Next, the radical polymerization initiator will be described. The radical polymerization initiator may be any polymerization initiator that can initiate a radical polymerization reaction of a radical polymerizable compound when irradiated with active energy rays. Examples include benzyl or its dialkyl acetal compound, phenyl ketone compound, acetophenone compound, benzoin or its alkyl ether compound, benzophenone compound, thioxanthone compound, and the like.
 具体的には、ベンジル又はそのジアルキルアセタール系化合物としては、例えばベンジルジメチルケタール、ベンジル‐β‐メトキシエチルアセタール等が挙げられる。フェニルケトン系化合物としては、例えば、1‐ヒドロキシ‐シクロヘキシルフェニルケトン等が挙げられる。アセトフェノン系化合物としては、例えばジエトキシアセトフェノン、2‐ヒドロキシメチル‐1‐フェニルプロパン‐1‐オン、4′‐イソプロピル‐2‐ヒドロキシ‐2‐メチル‐プロピオフェノン、2‐ヒドロキシ‐2‐メチル‐プロピオフェノン、p‐ジメチルアミノアセトフェノン、p‐tert‐ブチルジクロロアセトフェノン、p‐tert‐ブチルトリクロロアセトフェノン、p‐アジドベンザルアセトフェノン等が挙げられる。特に1‐ヒドロキシ‐シクロヘキシルフェニルケトンは、造形物の黄色度が小さい点で好ましい。 Specifically, examples of benzyl or a dialkyl acetal compound thereof include benzyl dimethyl ketal and benzyl-β-methoxyethyl acetal. Examples of the phenyl ketone compound include 1-hydroxy-cyclohexyl phenyl ketone. Examples of acetophenone compounds include diethoxyacetophenone, 2-hydroxymethyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methyl-propiophenone, 2-hydroxy-2-methyl- Examples thereof include propiophenone, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone. In particular, 1-hydroxy-cyclohexyl phenyl ketone is preferable in that the yellowness of the shaped product is small.
 ベンゾイン系化合物としては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインノルマルブチルエーテル、ベンゾインイソブチルエーテル等が挙げられる。 Examples of benzoin compounds include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin normal butyl ether, benzoin isobutyl ether, and the like.
 ベンゾフェノン系化合物としては、例えばベンゾフェノン、o‐ベンゾイル安息香酸メチル、ミヒラースケトン、4,4´‐ビスジエチルアミノベンゾフェノン、4,4´‐ジクロロベンゾフェノン等が挙げられる。 Examples of the benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, and the like.
 チオキサントン系化合物としては、例えばチオキサントン、2‐メチルチオキサントン、2‐エチルチオキサントン、2‐クロロチオキサントン、2‐イソプロピルチオキサントン等が挙げられる。 Examples of the thioxanthone compound include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and the like.
 硬化性樹脂組成物は、カチオン重合性化合物及びラジカル重合性化合物の質量比が30:70~90:10(カチオン重合性化合物:ラジカル重合性化合物)の範囲にあるように、カチオン重合性化合物及びラジカル重合性化合物を含有することが好ましい。当該質量比がこの範囲にある場合、光硬化性、造形速度、造形物の寸法安定性を高めることができる。さらに当該質量比が50:50~90:10の範囲にあることが好ましく、60:40~90:10の範囲にあることが特に好ましい。 The curable resin composition comprises a cationic polymerizable compound and a radical polymerizable compound such that the mass ratio of the cationic polymerizable compound and the radical polymerizable compound is in the range of 30:70 to 90:10 (cationic polymerizable compound: radical polymerizable compound). It is preferable to contain a radically polymerizable compound. When the said mass ratio exists in this range, photocurability, modeling speed, and the dimensional stability of a molded article can be improved. Further, the mass ratio is preferably in the range of 50:50 to 90:10, and particularly preferably in the range of 60:40 to 90:10.
 また硬化性樹脂組成物は、ラジカル重合性化合物の質量に対し0.1質量%以上10質量%以下、1質量%以上5質量%以下の割合でラジカル重合開始剤を含有していることがさらに好ましい。 The curable resin composition further contains a radical polymerization initiator in a proportion of 0.1% by mass to 10% by mass and 1% by mass to 5% by mass with respect to the mass of the radical polymerizable compound. preferable.
 (添加物)
 また硬化性樹脂組成物は、ポリアルキレンエーテル系化合物を含有していてもよい。ポリアルキレンエーテル系化合物を含有していると、造形物の靭性が向上する。ポリアルキレンエーテル系化合物の好適な例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレンオキサイド‐ポリプロピレンオキサイドブロック共重合体が挙げられる。他の例としては(‐CHCHCH(R)CHO‐)で表されるアルキル置換基を有するオキシテトラメチレン単位が結合したポリエーテル等がある。「R」は低級アルキル基である。また他の例としてはオキシテトラメチレン単位がランダムに結合したポリエーテルが挙げられる。
(Additive)
Moreover, the curable resin composition may contain a polyalkylene ether compound. When the polyalkylene ether compound is contained, the toughness of the shaped article is improved. Preferable examples of the polyalkylene ether compound include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethylene oxide-polypropylene oxide block copolymer. Another example is a polyether having an oxytetramethylene unit having an alkyl substituent represented by (—CH 2 CH 2 CH (R 2 ) CH 2 O—) bonded thereto. “R 2 ” is a lower alkyl group. Other examples include polyethers in which oxytetramethylene units are randomly bonded.
 硬化性樹脂組成物がポリアルキレンエーテル系化合物を含有する場合には、ポリエルキレンエーテル系化合物の含有量は、硬化性樹脂組成物の全質量に対して0.5質量%以上30質量%以下であることが好ましく、1質量%以上20質量%以下であることがさらに好ましく、1質量%以上15質量%以下であることが特に好ましい。 When the curable resin composition contains a polyalkylene ether compound, the content of the polyalkylene ether compound is 0.5% by mass to 30% by mass with respect to the total mass of the curable resin composition. It is preferable that it is 1 mass% or more and 20 mass% or less, and it is especially preferable that it is 1 mass% or more and 15 mass% or less.
 また硬化性樹脂組成物は、炭素数4~10のアルキレンジオールを1種類又は複数種類含有してもよい。炭素数4~10のアルキレンジオールとしては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオールが挙げられる。そのうちでも1,6‐ヘキサンジオールが光硬化性能の点から好ましい。 Moreover, the curable resin composition may contain one or more kinds of alkylene diols having 4 to 10 carbon atoms. Examples of the alkylene diol having 4 to 10 carbon atoms include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, and decanediol. Of these, 1,6-hexanediol is preferred from the viewpoint of photocuring performance.
 硬化性樹脂組成物がアルキレンジオールを含有する場合、硬化性樹脂組成物はアルキレンジオールを、その全質量に対して0.3質量%以上10質量%以下の割合で含有することが好ましく、0.5質量%以上5質量%以下の割合で含有することがさらに好ましい。アルキレンジオールの割合が上記範囲にある場合、立体造形物の靭性が良好になる。しかも、硬化性樹脂組成物の粘度が低下するので造形性が向上する。 When the curable resin composition contains an alkylene diol, the curable resin composition preferably contains the alkylene diol in a proportion of 0.3% by mass to 10% by mass with respect to the total mass. More preferably, it is contained in a proportion of 5% by mass or more and 5% by mass or less. When the proportion of the alkylene diol is in the above range, the toughness of the three-dimensional structure is improved. Moreover, since the viscosity of the curable resin composition is lowered, the moldability is improved.
 (着色剤)
 次に硬化性樹脂組成物に添加される着色剤について説明する。着色剤は、紫色又は青色の着色剤である。尚、「紫色又は青色」とは、赤紫、紫、青、緑青、青緑を含む色であって、少なくとも着色剤が硬化性樹脂組成物に添加されたときに、硬化性樹脂組成物が紫色~青色を呈するものである。換言すると着色剤及び着色剤を添加した硬化性樹脂組成物は、500~750nmの波長域に含まれる波長の光を吸収する。
(Coloring agent)
Next, the colorant added to the curable resin composition will be described. The colorant is a purple or blue colorant. Note that “purple or blue” is a color including reddish purple, purple, blue, green blue, and blue green, and at least when the colorant is added to the curable resin composition, the curable resin composition is It exhibits a purple to blue color. In other words, the colorant and the curable resin composition to which the colorant is added absorb light having a wavelength included in the wavelength region of 500 to 750 nm.
 発明者は、硬化性樹脂組成物に各種着色剤を添加して保存安定性(退色性)のスクリーニング試験をした結果、下記の構造式(2)で表されるp-トルイジン構造を有する着色剤が優れた保存安定性を有することを見出した。クリスタルバイオレット等の従来の着色剤は大きな退色性を有する。そのため、立体造形物の黄色度を継続して低くしておくには、未硬化の硬化性樹脂組成物が退色したときに着色剤を追加で添加すること等の措置が必要である。即ち、造形装置内樹脂槽の樹脂組成物および造形後に補充する樹脂組成物の各々の退色に対応して着色剤を追加する措置は、煩雑で非効率な作業を要する。p-トルイジン構造を有する着色剤の退色性は小さい。そのため、着色剤を追加で添加することは不要であり、硬化性樹脂組成物における着色剤の初期の含有率を小さくし、その小さな含有率を継続的に維持できる。特にp-トルイジン構造を有する着色剤として、アントラキノン系着色剤等を用いると、立体造形物の色や透明度が優れ、その退色性も低いために好ましい。 The inventor conducted a storage stability (fading) screening test by adding various colorants to the curable resin composition, and as a result, the colorant having a p-toluidine structure represented by the following structural formula (2) Has been found to have excellent storage stability. Conventional colorants such as crystal violet have a great fading. Therefore, in order to continuously reduce the yellowness of the three-dimensional structure, measures such as adding a colorant when the uncured curable resin composition fades are necessary. That is, the measure of adding a colorant corresponding to the fading of each of the resin composition in the resin tank in the modeling apparatus and the resin composition to be replenished after modeling requires complicated and inefficient work. The color fading of the colorant having a p-toluidine structure is small. Therefore, it is unnecessary to add a colorant additionally, and the initial content of the colorant in the curable resin composition can be reduced, and the small content can be continuously maintained. In particular, it is preferable to use an anthraquinone colorant or the like as a colorant having a p-toluidine structure because the color and transparency of the three-dimensional structure are excellent and its fading property is low.
Figure JPOXMLDOC01-appb-C000002
 p-トルイジン構造を有するアントラキノン系着色剤は、下記の構造式(3)で表されるアントラキノン環を有する。
Figure JPOXMLDOC01-appb-C000002
An anthraquinone colorant having a p-toluidine structure has an anthraquinone ring represented by the following structural formula (3).
Figure JPOXMLDOC01-appb-C000003
 p-トルイジン構造を有するアントラキノン系着色剤の具体例としては、下記の構造式(4A)で表されるキニザリンブルー、構造式(4B)で表されるスダンブルー、構造式(4C)で表されるアシッドバイオレット34、構造式(4D)で表されるキニザリングリーンSS、構造式(4E)で表されるトルイジンブルー(CAS番号3209-30-1)等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
Specific examples of the anthraquinone colorant having a p-toluidine structure include quinizarin blue represented by the following structural formula (4A), sudan blue represented by the structural formula (4B), and acid represented by the structural formula (4C). Examples thereof include violet 34, quinizarin green SS represented by the structural formula (4D), toluidine blue (CAS number 3209-30-1) represented by the structural formula (4E), and the like.
Figure JPOXMLDOC01-appb-C000004
 着色剤の含有率は、着色剤の種類、重合性化合物及び重合開始剤及びそれらの組成によって適宜変更できるが、硬化性樹脂組成物の全質量に対して、0.01ppm以上10ppm以下であることが好ましい。着色剤の含有率が10ppm超となる場合には、多くの着色剤において着色剤自体の色が目立ち、立体造形物の光透過率が外観上好ましくない程度まで低下する。着色剤の含有率が0.01ppm未満の場合には、立体造形物がその黄色度に従って呈する黄色が目立つようになる。また着色剤の含有率が0.1ppm以上7ppm以下であることがより好ましく、0.2ppm以上2ppm以下であることがさらに好ましい。これらの範囲に着色剤の含有率がある場合、黄色度をより低下させ、硬化性樹脂組成物を硬化させて得た厚さ10mmの試料における透過率を60%以上とすることができる。造形される立体造形物の厚みや形状によって、立体造形物全体の光透過度は異なるが、厚さ10mmの試料の全光線透過率が60%以上になると、高い透明度を有し、内部の形状を容易に確認可能な立体造形物を得ることができる。
Figure JPOXMLDOC01-appb-C000004
The content of the colorant can be appropriately changed depending on the type of the colorant, the polymerizable compound, the polymerization initiator, and the composition thereof, and is 0.01 ppm or more and 10 ppm or less with respect to the total mass of the curable resin composition. Is preferred. When the content of the colorant exceeds 10 ppm, the color of the colorant itself is noticeable in many colorants, and the light transmittance of the three-dimensional structure decreases to an unfavorable appearance. When the content of the colorant is less than 0.01 ppm, the yellow color of the three-dimensional structure is noticeable according to the yellowness. Further, the content of the colorant is more preferably from 0.1 ppm to 7 ppm, and further preferably from 0.2 ppm to 2 ppm. When the content of the colorant is within these ranges, the yellowness can be further reduced, and the transmittance of a sample having a thickness of 10 mm obtained by curing the curable resin composition can be 60% or more. Depending on the thickness and shape of the three-dimensional object to be formed, the light transmittance of the whole three-dimensional object varies, but when the total light transmittance of a sample with a thickness of 10 mm is 60% or more, it has high transparency and has an internal shape. Can be obtained.
 次に立体造形物の製造方法について着色剤の作用とともに説明する。立体造形物の製造には、公知の方法、及び3Dプリンタ等の造形用装置を用いることができる。例えば、上述した断面データに基づいて、液状をなす硬化性樹脂組成物に活性エネルギー線である紫外線を選択的に照射し、断面形状に基づく硬化層を作製する。次いで、該硬化層に未硬化の硬化性樹脂組成物を供給し、断面データに基づいて紫外線を選択的に照射して、該硬化層に連続した硬化層を新たに形成する。この積層操作を繰り返すことによって、最終的に立体造形物を得ることができる。活性エネルギー線は、上述したエネルギー線が挙げられるが、特に300~400nmの波長を有する紫外線が好ましい。 Next, the manufacturing method of the three-dimensional model will be described together with the action of the colorant. A known method and a modeling apparatus such as a 3D printer can be used for manufacturing the three-dimensional model. For example, based on the cross-sectional data described above, the curable resin composition in a liquid state is selectively irradiated with ultraviolet rays that are active energy rays to produce a cured layer based on the cross-sectional shape. Next, an uncured curable resin composition is supplied to the cured layer, and ultraviolet rays are selectively irradiated based on the cross-sectional data to newly form a cured layer continuous with the cured layer. By repeating this laminating operation, a three-dimensional model can be finally obtained. Examples of the active energy ray include the energy rays described above, and ultraviolet rays having a wavelength of 300 to 400 nm are particularly preferable.
 この硬化性樹脂組成物は立体造形分野の造形材料として用いられる。例えば、予備段階で外観デザインを検証するための形状確認モデル、部品の機能性等を確認するための試験モデル、鋳型や金型を製作するためのマスターモデル、試作金型用の直接型等が挙げられる。 This curable resin composition is used as a modeling material in the three-dimensional modeling field. For example, there are a shape confirmation model for verifying the appearance design in the preliminary stage, a test model for confirming the functionality of parts, a master model for producing molds and molds, a direct mold for prototype molds, etc. Can be mentioned.
 立体造形物には青色又は紫色の着色剤が含まれており、該着色剤は低い退色性しか有しない。そのため、着色剤の含有量は少なく、立体造形物の黄色度は低く、その透明度は高い。着色剤によって紫色又は青色の濃度は異なるが、含有率を、上記範囲を満たしつつ、厚さ10mmの試験片の全光線透過率が60%以上、JIS K-7373に準ずるイエローインデックスは15以下となるように着色剤の含有率を調整すると、立体造形物の透明度を高めるとともに黄色度を低下させることができる。このため、立体造形物の色合いについての美観を向上できる。また、立体造形物が高い透明度を有するので、例えば、立体造形物の内部の形状を容易に確認できる。 The three-dimensional model contains a blue or purple colorant, and the colorant has only low fading. Therefore, the content of the colorant is small, the yellowness of the three-dimensional structure is low, and the transparency is high. Although the concentration of purple or blue varies depending on the colorant, the total light transmittance of a test piece having a thickness of 10 mm is 60% or more while satisfying the above-mentioned range, and the yellow index according to JIS K-7373 is 15 or less. If the content rate of a coloring agent is adjusted so that it may become, while improving the transparency of a three-dimensional molded item, yellowness can be reduced. For this reason, the beauty | look about the color of a three-dimensional molded item can be improved. In addition, since the three-dimensional model has high transparency, for example, the internal shape of the three-dimensional model can be easily confirmed.
 上記実施形態によれば、以下に列挙する利点が得られるようになる。
 (1)重合性化合物と重合開始剤とを含む硬化性樹脂組成物は、紫色又は青色の着色剤を含有するので、重合性化合物及び重合開始剤が呈する黄色の度合いを低下させることができる。着色剤は、p-トルイジン構造を有するので、硬化性樹脂組成物に含有された状態において低い退色性しか有しない。従って、硬化性樹脂組成物の黄色度を低く保つべく硬化性樹脂組成物における着色剤の含有量を少なくした場合であっても、硬化性樹脂組成物を長期間使用できる。そのため、該硬化性樹脂組成物から高い透明度を有する立体造形物を継続的に得ることができる。
According to the embodiment, the advantages listed below can be obtained.
(1) Since the curable resin composition containing a polymerizable compound and a polymerization initiator contains a purple or blue colorant, the yellow degree exhibited by the polymerizable compound and the polymerization initiator can be reduced. Since the colorant has a p-toluidine structure, it has only a low color fading when contained in the curable resin composition. Therefore, even when the content of the colorant in the curable resin composition is reduced to keep the yellowness of the curable resin composition low, the curable resin composition can be used for a long period of time. Therefore, a three-dimensional molded item having high transparency can be continuously obtained from the curable resin composition.
 (2)着色剤の濃度は硬化性樹脂組成物の全質量に対して0.01ppm以上10ppm以下の範囲にあるので、硬化性樹脂組成物を用いた立体造形物の透明度を高めつつ、その黄色度を低下させることができる。 (2) Since the concentration of the colorant is in the range of 0.01 ppm or more and 10 ppm or less with respect to the total mass of the curable resin composition, the yellow color of the three-dimensional structure using the curable resin composition is increased. The degree can be reduced.
 (3)着色剤は、アントラキノン系着色剤のうち少なくとも1種を含有する。このため立体造形物の黄色度を低下させるとともに、黄色度が低下した状態を維持することができる。 (3) The colorant contains at least one of anthraquinone colorants. For this reason, while reducing the yellowness of a three-dimensional molded item, the state in which the yellowness fell can be maintained.
 次に、実施例及び比較例を挙げて実施形態をさらに具体的に説明する。本発明は、これらの実施例に限定されるものではない。
 (a)硬化性樹脂組成物の吸光度:
 紫外可視分光光度計(日立ハイテクノロジーズ社製「U-3900H」)を使用して、石英セル内に未硬化の硬化性樹脂組成物を入れ、ダブルビーム指定波長における硬化性樹脂組成物の吸光度を測定した。
Next, the embodiment will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples.
(A) Absorbance of curable resin composition:
Using an ultraviolet-visible spectrophotometer ("U-3900H" manufactured by Hitachi High-Technologies Corporation), put an uncured curable resin composition in a quartz cell, and determine the absorbance of the curable resin composition at a specified double beam wavelength. It was measured.
 (b)立体造形物の黄色度:
 下記の実施例5および実施例6において得られた光学的立体造形物(縦×横×厚さ=45mm×20mm×10mmの直方体)[紫外線(高圧水銀灯)(波長365nm;強度3mW/cm)を20分間照射して後硬化したもの]を、直径60mmの積分球を備えた紫外可視分光光度計(日立ハイテクノロジーズ社製「U-3900H」)に取り付け、板厚10mmの分光透過率を測定した。これにより得られた分光透過率を、当該分光光度計に付属したソフトウェア(UV Solutions)を用いてJIS-K7373に規定された方法で数値計算することによって、補助イルミナントC、視野2度の条件における黄色度として求めた。
(B) Yellowness of the three-dimensional structure:
Optical three-dimensional modeled object obtained in Example 5 and Example 6 below (length × width × thickness = 45 mm × 20 mm × 10 mm cuboid) [ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 3 mW / cm 2 ) Is then cured for 20 minutes and then attached to an ultraviolet-visible spectrophotometer ("U-3900H" manufactured by Hitachi High-Technologies Corporation) equipped with an integrating sphere with a diameter of 60 mm, and the spectral transmittance at a thickness of 10 mm is measured. did. The spectral transmittance obtained in this way is numerically calculated by the method defined in JIS-K7373 using the software (UV Solutions) attached to the spectrophotometer, so that the conditions for the auxiliary illuminant C and the field of view of 2 degrees are obtained. Calculated as yellowness.
 (c)立体造形物の全光線透過率:
 上記(b)黄色度測定と同じ光学的立体造形物について、紫外可視分光光度計(日立ハイテクノロジーズ社製「U-3900H」)を使用して、ダブルビーム標準イルミナントD65分光透過率を測定して求めた。
(C) Total light transmittance of the three-dimensional structure:
(B) For the same optical three-dimensional structure as in the yellowness measurement, the double-beam standard illuminant D65 spectral transmittance was measured using an ultraviolet-visible spectrophotometer ("U-3900H" manufactured by Hitachi High-Technologies Corporation). Asked.
 (実施例1)
 3,4‐エポキシシクロヘキシルメチル‐3´,4´‐エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製「Cel-2021P」)6.5質量部、水素化ビスフェノールAジグリシジルエーテル(新日本理化株式会社製「HBE-100」)30質量部、芳香族トリグリシジルエーテル化合物[2‐[4‐(2,3‐エポキシプロポキシ)フェニル]‐2‐[4‐[1,1‐ビス[4‐(2,3‐エポキシプロポキシ)フェニル]エチル]フェニル]プロパン](株式会社プリンテック製「VG3101L」)30質量部、3‐エチル‐3‐ヒドロキシメチルオキセタン(東亞合成株式会社製「OXT101」)7.5質量部、ビス(3‐エチル‐3‐オキセタニルメチル)エーテル(東亞合成株式会社製「OXT221」)15質量部、1,6‐ヘキサンジオールジグリシジルエーテル(ナガセケムテックス株式会社製「EX-212」)3質量部、ジペンタエリスリトールポリアクリレート(新中村化学工業株式会社製「A-9550W」)10質量部、ラウリルアクリレート(新中村化学工業株式会社製「NKエステル-LA」)8質量部、ポリテトラメチレンエーテルグリコール(保土谷化学株式会社製「PTG-850SN」、数平均分子量801~890)1.5質量部、1,6‐ヘキサンジオール0.8質量部、サンアプロ株式会社製「CPI-200K」[芳香族スルホニウム化合物に相当する化合物を50質量%の濃度で含有するカチオン重合開始剤溶液]3.5質量部、1‐ヒドロキシ-シクロヘキシルフェニルケトン(BASF社製「イルガキュア-184」、ラジカル重合開始剤)2.5質量部および2‐ナフタレンチオール0.025質量部をよく混合して硬化性樹脂組成物を調製した。また着色剤として、キニザリンブルー(東京化成製)を硬化性樹脂組成物の全質量に対し1ppm含有させた。この調製直後の硬化性樹脂組成物の吸光度は0.044であった(波長583nm)。
(Example 1)
6.5 parts by mass of 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (“Cel-2021P” manufactured by Daicel Corporation), hydrogenated bisphenol A diglycidyl ether (manufactured by Shin Nippon Rika Co., Ltd. “ HBE-100 "), 30 parts by weight, aromatic triglycidyl ether compound [2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Epoxypropoxy) phenyl] ethyl] phenyl] propane] ("VG3101L" manufactured by Printec Co., Ltd.) 30 parts by mass, 7.5 parts by mass of 3-ethyl-3-hydroxymethyloxetane ("OXT101" manufactured by Toagosei Co., Ltd.) Bis (3-ethyl-3-oxetanylmethyl) ether (“OXT221” manufactured by Toagosei Co., Ltd.) 1 5 parts by mass, 1,6-hexanediol diglycidyl ether (“EX-212” manufactured by Nagase ChemteX Corporation) 3 parts by mass, dipentaerythritol polyacrylate (“A-9550W” manufactured by Shin-Nakamura Chemical Co., Ltd.) 10 Part by mass, 8 parts by mass of lauryl acrylate (“NK Ester-LA” manufactured by Shin-Nakamura Chemical Co., Ltd.), polytetramethylene ether glycol (“PTG-850SN” manufactured by Hodogaya Chemical Co., Ltd., number average molecular weight 801 to 890) 1 0.5 part by mass, 0.8 part by mass of 1,6-hexanediol, “CPI-200K” manufactured by San Apro Co., Ltd. [cationic polymerization initiator solution containing a compound corresponding to an aromatic sulfonium compound at a concentration of 50% by mass] 3.5 parts by mass, 1-hydroxy-cyclohexyl phenyl ketone ("Iraki" manufactured by BASF A -184 "to prepare a radical polymerization initiator) 2.5 parts by mass of the curable resin composition of 2-naphthalene thiol 0.025 parts by mixed well. Further, 1 ppm of quinizarin blue (manufactured by Tokyo Chemical Industry Co., Ltd.) as a colorant was contained with respect to the total mass of the curable resin composition. The absorbance of the curable resin composition immediately after this preparation was 0.044 (wavelength 583 nm).
 さらに、この着色剤を添加した硬化性樹脂組成物20mlをガラスバイアル瓶に入れ、80℃の熱オーブン(SANYO社製「MOV-112F」)を用いて加速試験を行い、経時で583nmの吸光度を測定した。図1に示すように、70日経過後の吸光度は0.043であった。 Furthermore, 20 ml of the curable resin composition to which this colorant was added was placed in a glass vial and subjected to an acceleration test using a heat oven at 80 ° C. (“MOV-112F” manufactured by SANYO). The absorbance at 583 nm was obtained over time. It was measured. As shown in FIG. 1, the absorbance after 70 days was 0.043.
 (実施例2)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにスダンブルー(東京化成製)1ppmを添加した。実施例1と同様に80℃加速試験を行い、経時で638nmの吸光度を測定した。図1に示すように、調製直後の吸光度は0.045、70日経過後の吸光度は0.038であった。
(Example 2)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. As a colorant, 1 ppm of Sudan Blue (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 638 nm was measured over time. As shown in FIG. 1, the absorbance immediately after preparation was 0.045, and the absorbance after 70 days was 0.038.
 (実施例3)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにアシッドバイオレット34(東京化成製)2.4ppmを添加した。実施例1と同様に80℃加速試験を行い、経時で566nmの吸光度を測定した。図1に示すように、調製直後の吸光度は0.041、14日経過後の吸光度は0.038であった。
(Example 3)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. As a coloring agent, 2.4 ppm of Acid Violet 34 (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 566 nm was measured over time. As shown in FIG. 1, the absorbance immediately after preparation was 0.041, and the absorbance after 14 days was 0.038.
 (実施例4)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにキニザリングリーンSS(東京化成製)1ppmを添加した。実施例1と同様に80℃加速試験を行い、経時で638nmの吸光度を測定した。調製直後の吸光度は0.045、28日経過後の吸光度は0.044であった。
Example 4
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. As a colorant, 1 ppm of quinizarin green SS (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 638 nm was measured over time. The absorbance immediately after preparation was 0.045, and the absorbance after 28 days was 0.044.
 上記した実施例1から実施例4までに添加した着色剤は、いずれもアントラキノン骨格にp-トルイジン官能基を有している。調製直後から80℃加速試験14日から70日後における吸光度の低下は0.007以下であり、退色が極めて低い。アレニウスの法則から、室温ではさらに退色しづらいことが推測され、着色剤としての保存安定性を有することが示唆される。 All of the colorants added in Examples 1 to 4 described above have a p-toluidine functional group in the anthraquinone skeleton. Immediately after the preparation, the decrease in absorbance in the 80 ° C. accelerated test from 14 to 70 days is 0.007 or less, and the fading is extremely low. From Arrhenius's law, it is presumed that it is more difficult to fade at room temperature, suggesting that it has storage stability as a colorant.
 (比較例1)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにディスパースブルー14(東京化成製)を0.85ppm添加した。実施例1と同様に80℃加速試験を行い、経時で643nmの吸光度を測定した。図1に示すように、調製直後の吸光度は0.047、60日経過後の吸光度は0.010であった。下記の構造式(5)に示すようにディスパースブルー14は、アントラキノン構造を有する着色剤であり、p-トルイジン構造を有する着色剤ではない。ディスパースブルー14の含有率は、硬化性樹脂組成物の調製直後の波長643nmにおける吸光度が実施例1と同じになるように0.85ppmとした。
(Comparative Example 1)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 0.85 ppm of Disperse Blue 14 (manufactured by Tokyo Chemical Industry) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 643 nm was measured over time. As shown in FIG. 1, the absorbance immediately after preparation was 0.047, and the absorbance after 60 days was 0.010. As shown in the following structural formula (5), Disperse Blue 14 is a colorant having an anthraquinone structure, not a colorant having a p-toluidine structure. The content of Disperse Blue 14 was set to 0.85 ppm so that the absorbance at a wavelength of 643 nm immediately after the preparation of the curable resin composition was the same as that in Example 1.
Figure JPOXMLDOC01-appb-C000005
 (比較例2)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにクリスタルバイオレット(東京化成製)0.21ppmを添加した。調製直後の590nmにおける吸光度は0.041、室温28日経過後の吸光度は0.022であり退色が認められた。また、クリスタルバイオレット0.5ppmを添加し、実施例1と同様に80℃加速試験を行い、経時で590nmの吸光度を測定した。図2に示すように、調製直後の吸光度は0.071であり、4日経過後の吸光度は0.006であった。
Figure JPOXMLDOC01-appb-C000005
(Comparative Example 2)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. As a colorant, 0.21 ppm of crystal violet (manufactured by Tokyo Chemical Industry) was added instead of quinizarin blue. Immediately after the preparation, the absorbance at 590 nm was 0.041, the absorbance after 28 days at room temperature was 0.022, and fading was observed. Further, 0.5 ppm of crystal violet was added, an 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 590 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.071, and the absorbance after 4 days was 0.006.
 (比較例3)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにエチルバイオレット(東京化成製)0.5ppmを添加した。実施例1と同様に80℃加速試験を行い、経時で596nmの吸光度を測定した。図2に示すように、調製直後の吸光度は0.113であり、33日経過後の吸光度は0.010であった。
(Comparative Example 3)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 0.5 ppm of ethyl violet (manufactured by Tokyo Kasei) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 596 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.113, and the absorbance after 33 days was 0.010.
 (比較例4)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにベーシックブルー7(東京化成製)0.5ppmを添加した。実施例1と同様に80℃加速試験を行い、経時で615nmの吸光度を測定した。図2に示すように、調製直後の吸光度は0.081であり、81日経過後の吸光度は0.014であった。
(Comparative Example 4)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 0.5 ppm of basic blue 7 (manufactured by Tokyo Kasei) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 615 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.081, and the absorbance after 81 days was 0.014.
 (比較例5)
 重合性化合物、カチオン重合開始剤及びラジカル重合開始剤は実施例1と同様である。着色剤としてキニザリンブルーの替わりにキナクリドン(東京化成製)10ppmを添加した。実施例1と同様に80℃加速試験を行い、経時で580nmの吸光度を測定した。図2に示すように、調製直後の吸光度は0.059であり、5日経過後の吸光度は0.038であった。
(Comparative Example 5)
The polymerizable compound, cationic polymerization initiator and radical polymerization initiator are the same as in Example 1. Instead of quinizarin blue, 10 ppm of quinacridone (manufactured by Tokyo Chemical Industry) was added as a colorant. An 80 ° C. accelerated test was conducted in the same manner as in Example 1, and the absorbance at 580 nm was measured over time. As shown in FIG. 2, the absorbance immediately after preparation was 0.059, and the absorbance after 5 days was 0.038.
 (実施例5)
 重合性化合物として、3,4‐エポキシシクロヘキシルメチル‐3′,4′‐エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製、Cel-2021P)5.0質量部、水素化ビスフェノールAジグリシジルエーテル(新日本理化学株式会社製、HBE-100)58質量部、3‐エチル‐3‐ヒドロキシメチルオキセタン(東亞合成株式会社製、OXT101)4.5質量部、ビス(3‐エチル‐3‐オキセタニルメチル)エーテル(東亞合成株式会社製、OXT221)12.5質量部、ジペンタエリスリトールポリアクリレート(新中村化学工業株式会社製、A-9550W)10質量部、ポリテトラメチレンエーテルグリコール(保土谷化学株式会社製、PTG-850SN、数分子量801~890)4.0質量部を用いた。またカチオン重合開始剤として、サンアプロ株式会社製「CPI-200K」を4.0質量部、ラジカル重合開始剤として、1‐ヒドロキシ‐シクロヘキシルフェニルケトン(BASF社製、イルガキュア-184)2.0質量部を用いた。これらの重合性化合物、カチオン重合開始剤ラジカル重合開始剤に加え、着色剤として、キニザリンブルー(東京化成製)を硬化性樹脂組成物の全質量に対してそれぞれ1ppm、1.5ppm、3ppm、5ppm、6ppm、7ppm添加した各硬化性樹脂組成物を調製した。
(Example 5)
As a polymerizable compound, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (manufactured by Daicel Corporation, Cel-2021P) 5.0 parts by mass, hydrogenated bisphenol A diglycidyl ether (Nippon Riken) Co., Ltd., HBE-100) 58 parts by mass, 3-ethyl-3-hydroxymethyloxetane (Toagosei Co., Ltd., OXT101) 4.5 parts by mass, bis (3-ethyl-3-oxetanylmethyl) ether (Toago Synthetic Co., Ltd., OXT221) 12.5 parts by mass, dipentaerythritol polyacrylate (Shin Nakamura Chemical Co., Ltd., A-9550W) 10 parts by mass, polytetramethylene ether glycol (Hodogaya Chemical Co., Ltd., PTG-) 850SN, number molecular weight 801-890) 4.0 parts by weight It had. As a cationic polymerization initiator, 4.0 parts by mass of “CPI-200K” manufactured by Sun Apro Co., Ltd. and 2.0 parts by mass of 1-hydroxy-cyclohexyl phenyl ketone (manufactured by BASF, Irgacure-184) as a radical polymerization initiator. Was used. In addition to these polymerizable compounds, cationic polymerization initiator radical polymerization initiator, quinizarin blue (manufactured by Tokyo Chemical Industry Co., Ltd.) as a colorant is 1 ppm, 1.5 ppm, 3 ppm, 5 ppm, respectively, based on the total mass of the curable resin composition. Each curable resin composition added with 6 ppm and 7 ppm was prepared.
 さらに各硬化性樹脂組成物を用いて、超高速光造形システム(ナブテスコ社製、SOLIFORM250)を使用して立体造形物を作製した。このとき半導体レーザ(スペクトラフィジックス社製、定格出力400mW、波長355nm)からの光を、硬化性樹脂組成物に対し、液面照射エネルギー100mJ/cmの条件下で照射し、縦20mm、横45mm、厚さ10mmの試験片を造形した。スライスピッチは0.1mm、1層あたりの平均造形時間は2分間であった。 Furthermore, using each curable resin composition, a three-dimensional modeled object was prepared using an ultrahigh-speed optical modeling system (manufactured by Nabtesco, SOLIFORM 250). At this time, light from a semiconductor laser (Spectra Physics, rated output 400 mW, wavelength 355 nm) was irradiated to the curable resin composition under the condition of a liquid surface irradiation energy of 100 mJ / cm 2 , 20 mm long, 45 mm wide. A test piece having a thickness of 10 mm was formed. The slice pitch was 0.1 mm, and the average modeling time per layer was 2 minutes.
 (実施例6)
 重合性化合物として、3,4‐エポキシシクロヘキシルメチル‐3′,4′‐エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製、Cel-2021P)5.0質量部、水素化ビスフェノールAジグリシジルエーテル(新日本理化学株式会社製、HBE-100)55質量部、3‐エチル‐3‐ヒドロキシメチルオキセタン(東亞合成株式会社製、OXT101)10質量部、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製、A-DCP)15質量部、ジペンタエリスリトールポリアクリレート(新中村化学工業株式会社製、A-9550W)2.0質量部、ポリテトラメチレングリコールジアクリレート(数平均分子量650)(新中村化学工業株式会社製、A-PTMG-65)10質量部を用いた。またカチオン重合開始剤として、サンアプロ株式会社製「CPI-200K」を4.0質量部、ラジカル重合開始剤として、1‐ヒドロキシ‐シクロヘキシルフェニルケトン(BASF社製、イルガキュア-184)2.0質量部を用いた。これらの重合性化合物、カチオン重合開始剤ラジカル重合開始剤に加え、着色剤として、キニザリンブルー(東京化成製)を硬化性樹脂組成物の全質量に対し1ppm、1.5ppm含有させた各硬化性樹脂組成物を調製した。これらの硬化性樹脂組成物を用いて実施例5と同様に縦20mm、横45mm、厚さ10mmの試験片を造形した。
(Example 6)
As a polymerizable compound, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (manufactured by Daicel Corporation, Cel-2021P) 5.0 parts by mass, hydrogenated bisphenol A diglycidyl ether (Nippon Riken) Co., Ltd., HBE-100) 55 parts by mass, 3-ethyl-3-hydroxymethyloxetane (manufactured by Toagosei Co., Ltd., OXT101), 10 parts by mass, tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 15 parts by mass of A-DCP), 2.0 parts by mass of dipentaerythritol polyacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-9550W), polytetramethylene glycol diacrylate (number average molecular weight 650) (Shin-Nakamura Chemical Co., Ltd.) 10 parts by mass, manufactured by A-PTMG-65) It was. As a cationic polymerization initiator, 4.0 parts by mass of “CPI-200K” manufactured by Sun Apro Co., Ltd. and 2.0 parts by mass of 1-hydroxy-cyclohexyl phenyl ketone (manufactured by BASF, Irgacure-184) as a radical polymerization initiator. Was used. In addition to these polymerizable compounds, cationic polymerization initiators and radical polymerization initiators, curable resins containing 1 ppm and 1.5 ppm of quinizarin blue (manufactured by Tokyo Chemical Industry) as a colorant with respect to the total mass of the curable resin composition. A composition was prepared. Using these curable resin compositions, test pieces having a length of 20 mm, a width of 45 mm, and a thickness of 10 mm were formed in the same manner as in Example 5.
 図3において、曲線L1は、実施例5の試験片についての結果を表す。図4において、曲線L3は実施例6の試験片についての結果を示す。各グラフの左側の縦軸がイエローインデックス(YI)を示し、右側の縦軸が全光線透過率(%)を示し、横軸がキニザリンブルーの含有率(ppm)を示し。含有率「0」のイエローインデックスは、着色剤を含まない状態の硬化性樹脂組成物を硬化させた試験片に基づく。 3, a curve L1 represents the result for the test piece of Example 5. In FIG. 4, curve L3 shows the results for the test piece of Example 6. The vertical axis on the left side of each graph indicates the yellow index (YI), the vertical axis on the right side indicates the total light transmittance (%), and the horizontal axis indicates the content (ppm) of quinizarin blue. The yellow index having a content rate of “0” is based on a test piece obtained by curing a curable resin composition containing no colorant.
 図3及び図4における曲線L1及び曲線L3に示すように、キニザリンブルーの含有率が増加するに伴いイエローインデックスが小さくなり、黄色度が低下していることがわかる。また図3に示すように、実施例5における硬化性樹脂組成物のイエローインデックスは、着色剤を含有しない状態において約13であり、実施例5における硬化性樹脂組成物は比較的高い黄色度を有する。この組成物において、キニザリンブルーの含有率が7ppmに増加すると、イエローインデックスが「0」付近に到達する。一方、図4に示すように、実施例6における硬化性樹脂組成物のイエローインデックスは、着色剤を含有しない状態において約6であり、実施例6における硬化性樹脂組成物は比較的低い黄色度を有する。この組成物において、キニザリンブルーの含有率が1.5ppm程度まで増加すると、イエローインデックスが「0」付近に到達する。 3 and 4, it can be seen that as the content of quinizarin blue increases, the yellow index decreases and the yellowness decreases as indicated by the curves L1 and L3. Moreover, as shown in FIG. 3, the yellow index of the curable resin composition in Example 5 is about 13 in the state which does not contain a coloring agent, and the curable resin composition in Example 5 has a relatively high yellowness. Have. In this composition, when the content of quinizarin blue is increased to 7 ppm, the yellow index reaches around “0”. On the other hand, as shown in FIG. 4, the yellow index of the curable resin composition in Example 6 is about 6 in the state containing no colorant, and the curable resin composition in Example 6 has a relatively low yellowness. Have In this composition, when the content of quinizarin blue increases to about 1.5 ppm, the yellow index reaches around “0”.
 また図3及び図4における曲線L2及び曲線L4に示すように、キニザリンブルーの含有率が増加するに伴い全光線透過率が小さくなる。図3に示すように、キニザリンブルーの含有率が7ppm以下では、透過率が60%以上である。上述の通り、実施例6では、キニザリンブルーの含有率が1.5ppm程度まで増加するとイエローインデックスが「0」付近に到達する。図4に示すように、実施例6ではキニザリンブルーの含有率が1.5ppmであっても、透過率は80%を超える。 Also, as shown by curves L2 and L4 in FIGS. 3 and 4, the total light transmittance decreases as the content of quinizarin blue increases. As shown in FIG. 3, when the content of quinizarin blue is 7 ppm or less, the transmittance is 60% or more. As described above, in Example 6, when the content of quinizarin blue increases to about 1.5 ppm, the yellow index reaches around “0”. As shown in FIG. 4, in Example 6, even if the content of quinizarin blue is 1.5 ppm, the transmittance exceeds 80%.

Claims (5)

  1.  活性エネルギー線が照射されることによって硬化する硬化性樹脂組成物であって、
     重合性化合物と、
     前記活性エネルギー線が照射されることによって前記重合性化合物の重合反応を開始する重合開始剤と、
     p-トルイジン構造を有する紫色又は青色の着色剤と、を含有する硬化性樹脂組成物。
    A curable resin composition that cures when irradiated with active energy rays,
    A polymerizable compound;
    A polymerization initiator that initiates a polymerization reaction of the polymerizable compound by being irradiated with the active energy ray;
    A curable resin composition comprising a purple or blue colorant having a p-toluidine structure.
  2.  前記着色剤の含有率が、未硬化の前記硬化性樹脂組成物の全質量に対して0.01ppm以上10ppm以下の範囲にある、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the content of the colorant is in the range of 0.01 ppm to 10 ppm with respect to the total mass of the uncured curable resin composition.
  3.  前記着色剤はアントラキノン系着色剤を含有する、請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the colorant contains an anthraquinone colorant.
  4.  前記アントラキノン系着色剤は、キニザリンブルー、スダンブルー、アシッドバイオレット34、キニザリングリーンSS及びトルイジンブルーのうち、少なくとも1種を含有する、請求項3に記載の硬化性樹脂組成物。 The curable resin composition according to claim 3, wherein the anthraquinone colorant contains at least one of quinizarin blue, sudan blue, acid violet 34, quinizarin green SS, and toluidine blue.
  5.  重合性化合物と、重合開始剤と、p-トルイジン構造を有する紫色又は青色の着色剤とを含有する硬化性樹脂組成物に活性エネルギー線が照射されることによって硬化した立体造形物であって、厚さ10mmの試験片における60%以上の全光線透過率がと、JIS K-7373に準拠する15以下のイエローインデックスとを有する、立体造形物。 A three-dimensional structure cured by irradiating an active energy ray to a curable resin composition containing a polymerizable compound, a polymerization initiator, and a purple or blue colorant having a p-toluidine structure, A three-dimensional structure having a total light transmittance of 60% or more in a test piece having a thickness of 10 mm and a yellow index of 15 or less in accordance with JIS K-7373.
PCT/JP2014/064758 2013-06-04 2014-06-03 Curing resin composition and three-dimensional formed article WO2014196536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-117996 2013-06-04
JP2013117996A JP6161961B2 (en) 2013-06-04 2013-06-04 Curable resin composition and three-dimensional model

Publications (1)

Publication Number Publication Date
WO2014196536A1 true WO2014196536A1 (en) 2014-12-11

Family

ID=52008175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064758 WO2014196536A1 (en) 2013-06-04 2014-06-03 Curing resin composition and three-dimensional formed article

Country Status (2)

Country Link
JP (1) JP6161961B2 (en)
WO (1) WO2014196536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188308A (en) * 2015-03-30 2016-11-04 シーメット株式会社 Resin composition for optical stereolithography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099666A (en) * 2017-12-01 2019-06-24 サンアプロ株式会社 Resin composition for optical solid molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199157A (en) * 1984-10-22 1986-05-17 Canon Inc Material for electrostatic image development
JPS6254276A (en) * 1985-05-28 1987-03-09 Canon Inc Positive chargeability toner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229127A (en) * 1985-12-09 1987-10-07 Nippon Paint Co Ltd Photosensitive resin block material
JP4010637B2 (en) * 1998-03-17 2007-11-21 株式会社リコー Stencil printing method
WO2007054710A2 (en) * 2005-11-11 2007-05-18 Molecular Vision Limited Microfluidic device
EP2101716A2 (en) * 2006-12-13 2009-09-23 3M Innovative Properties Company Methods of using a dental composition having an acidic component and a photobleachable dye
JP2014038180A (en) * 2012-08-15 2014-02-27 Konica Minolta Inc Optical film, production method of optical film, polarizing plate and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199157A (en) * 1984-10-22 1986-05-17 Canon Inc Material for electrostatic image development
JPS6254276A (en) * 1985-05-28 1987-03-09 Canon Inc Positive chargeability toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188308A (en) * 2015-03-30 2016-11-04 シーメット株式会社 Resin composition for optical stereolithography

Also Published As

Publication number Publication date
JP2014234478A (en) 2014-12-15
JP6161961B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP5266131B2 (en) Optical three-dimensional resin composition
JP5970265B2 (en) Processing device for optical three-dimensional objects
CN101776846B (en) Light-cured component for laser stereo lithography
JP2018536731A (en) Improved antimony-free antimony-free radiation curable composition and its use in investment casting process
CN104345562A (en) Low-viscosity liquid radiation curable dental aligner mold resin compositions for additive manufacturing
JP5210645B2 (en) Optical three-dimensional resin composition
WO2006137329A1 (en) Three-dimensional shaped item with smoothed molding end face
JPWO2013172407A1 (en) Optical three-dimensional resin composition
JP5393239B2 (en) Processing method for optical three-dimensional object
JP6091342B2 (en) Optical three-dimensional resin composition
JP6457860B2 (en) Optical three-dimensional resin composition
JP6348702B2 (en) Optical three-dimensional resin composition
WO2009145167A1 (en) Resin composition for optical three-dimensional molding
JP3913350B2 (en) Optical molding resin composition
WO2014196536A1 (en) Curing resin composition and three-dimensional formed article
JP3974336B2 (en) Active energy ray-curable resin composition for optical three-dimensional modeling
JP2013151703A (en) Resin composition for three-dimensional shaping
JP5738367B2 (en) Optical three-dimensional model with low yellowness
WO2013172406A1 (en) Resin composition for optical stereolithography
JP6865460B2 (en) Resin composition for optical three-dimensional modeling
JP2009203306A (en) Resin composition for optical three-dimensional shaping
TWI707910B (en) Photo-curing resin composition and optics formed by using the same
CN109293851B (en) Photo-curing resin composition and optical device prepared from same
JP6877017B2 (en) Optical three-dimensional modeling method
KR20160033915A (en) Composition for optical three-dimensional molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807271

Country of ref document: EP

Kind code of ref document: A1