WO2014196297A1 - Underfill material, laminate sheet, and method for manufacturing semiconductor device - Google Patents

Underfill material, laminate sheet, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2014196297A1
WO2014196297A1 PCT/JP2014/062145 JP2014062145W WO2014196297A1 WO 2014196297 A1 WO2014196297 A1 WO 2014196297A1 JP 2014062145 W JP2014062145 W JP 2014062145W WO 2014196297 A1 WO2014196297 A1 WO 2014196297A1
Authority
WO
WIPO (PCT)
Prior art keywords
underfill material
weight
semiconductor element
flux component
adherend
Prior art date
Application number
PCT/JP2014/062145
Other languages
French (fr)
Japanese (ja)
Inventor
章洋 福井
尚英 高本
博行 花園
浩介 盛田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014196297A1 publication Critical patent/WO2014196297A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1418Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/14181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90

Definitions

  • the present invention relates to an underfill material, a laminated sheet, and a method for manufacturing a semiconductor device.
  • flip chip type semiconductor devices in which a semiconductor element such as a semiconductor chip is mounted on a substrate by flip chip bonding (flip chip connection) are widely used.
  • the semiconductor chip is fixed to the adherend via the protruding electrode formed on the circuit surface with the circuit surface of the semiconductor chip facing the electrode forming surface of the adherend (face down).
  • Implementation method After flip chip connection, the space between the semiconductor element and the substrate is filled with a sealing resin in order to protect the surface of the semiconductor element and ensure the connection reliability between the semiconductor element and the substrate. .
  • Patent Document 1 a technique for adding a compound having flux activity to the above-described sheet-shaped sealing resin has been proposed.
  • the above technique enables good solder bonding, and also fills the space between the semiconductor element and the adherend and provides good connection reliability.
  • a chip-on-wafer (CoW) process which is one of the semiconductor device manufacturing processes, for example, a large number of semiconductor chips are flip-chip connected to a semiconductor wafer, and a semiconductor chip bonded at the beginning of the process and a semiconductor bonded at the end of the process.
  • a difference in thermal history of 1 hour at 100 ° C. occurs with the chip. Therefore, in the underfill material of the semiconductor chip bonded in the initial stage, the flux component is lost or modified due to the influence of the thermal history, and as a result, the underfill material may not exhibit sufficient flux activity.
  • the underfill material is integrated with a member having an adhesive layer such as a back surface grinding tape and stored for a long period of time, the flux component in the underfill material moves to the adhesive layer and is sufficient during bonding. May not be obtained.
  • the present invention has been made in view of the above-mentioned problems, and includes heat-resistant storage stability capable of maintaining flux activity even when a heat history is loaded while containing a flux component, and transition to other pressure-sensitive adhesive layers over time.
  • An object of the present invention is to provide an underfill material having good non-migratory properties in which suppression is suppressed, a laminated sheet including the same, and a method for manufacturing a semiconductor device.
  • the present invention is an underfill material containing an aromatic compound having a molecular weight of 300 or more as a flux component and having at least one ester bond in the molecule.
  • the underfill material uses a specific flux component, it can exhibit heat-resistant storage stability capable of maintaining flux activity even when a thermal history is applied, and can also be bonded to other adhesive layers. Transition to the pressure-sensitive adhesive layer is suppressed, and good non-migration can be exhibited. The reason for this is not clear, but volatilization or outflow due to thermal history is suppressed by setting the molecular weight of the flux component to 300 or more, and by using an aromatic compound having an ester bond introduced in the molecule, It is presumed that the affinity between the flux component and the resin component forming the underfill material has increased, and the persistence of the flux component in the underfill material has increased.
  • the ester bond is chemically stable as compared with a carboxyl group or a hydroxyl group, which contributes to heat resistant storage stability.
  • the flux component may contain a reactive functional group such as a carboxyl group or a hydroxyl group.
  • the weight reduction rate with respect to the initial content of the flux component after heating the underfill material at 100 ° C. for 1 hour is preferably less than 50%.
  • the weight reduction rate with respect to the initial content of the flux component in the underfill material after leaving the laminated body in which the underfill material and the pressure-sensitive adhesive layer are laminated at 50 ° C. for 72 hours is less than 50%. .
  • the transition of the flux component to the adhesive layer is suppressed, so that excellent non-migration Can demonstrate its sexuality.
  • the ratio of the weight of the flux component to the total weight of the weight of the flux component and the weight of components other than the flux component in the underfill material is preferably 1% by weight or more and 50% by weight or less.
  • the underfill material exhibits a sufficient flux activity, and by setting it to 50% by weight or less, the function of the underfill material as a sealing resin is secured. can do.
  • the “component other than the flux component” refers to an organic component and an inorganic component other than the flux component and the solvent that can be included in the underfill material.
  • a pressure-sensitive adhesive tape having a base material and a pressure-sensitive adhesive layer provided on the base material, A laminated sheet comprising the underfill material laminated on the pressure-sensitive adhesive layer is also included.
  • the adhesive tape may be either a semiconductor wafer back surface grinding tape or a dicing tape.
  • a semiconductor device comprising an adherend, a semiconductor element electrically connected to the adherend, and an underfill material that fills a space between the adherend and the semiconductor element.
  • a manufacturing method comprising: A step of preparing a semiconductor element with an underfill material in which the underfill material is bonded to the semiconductor element; And a connecting step of electrically connecting the semiconductor element and the adherend while filling a space between the adherend and the semiconductor element with the underfill material.
  • the manufacturing method uses an underfill material containing a specific flux component, even if a thermal history is applied to the underfill material by mounting a plurality of semiconductor elements on the adherend,
  • the material can exhibit a sufficient flux activity, and a good electrical connection between the semiconductor element and the adherend can be obtained.
  • the backside grinding of the semiconductor wafer is performed using a laminated sheet including an underfill material laminated on the backside grinding tape, and then dicing on the dicing tape and the semiconductor element are picked up. A semiconductor element is mounted on an adherend.
  • a preparation process for preparing a laminated sheet including a back grinding tape and an underfill material laminated on the back grinding tape, a circuit in which a semiconductor wafer connection member is formed A laminating step of bonding the surface and the underfill material of the laminated sheet; a grinding step of grinding the back surface of the semiconductor wafer; and peeling the semiconductor wafer together with the underfill material from the back surface grinding tape to dicing the semiconductor wafer
  • a position aligning step for aligning the relative positions of the semiconductor element and the adherend to each other's planned connection positions, and filling the space between the adherend and the semiconductor element with the underfill material;
  • a laminated sheet including a back grinding tape and an underfill material laminated on the back grinding tape is prepared.
  • the laminated sheet 10 includes a back grinding tape 1 and an underfill material 2 laminated on the back grinding tape 1.
  • the underfill material 2 may be provided in a size sufficient for bonding to the semiconductor wafer 3 (see FIG. 2A), and is laminated on the entire surface of the back surface grinding tape 1. It may be.
  • the back grinding tape 1 includes a substrate 1a and an adhesive layer 1b laminated on the substrate 1a.
  • the underfill material 2 is laminated
  • the base material 1 a is a strength matrix of the laminated sheet 10.
  • polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, aramid (paper), glass, glass cloth, fluorine resin
  • examples of the material of the substrate 1a include polymers such as a crosslinked body of the above resin.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
  • the surface of the substrate 1a is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the base material 1a can be used by appropriately selecting the same type or different types, and a blend of several types can be used as necessary.
  • a conductive material vapor deposition layer having a thickness of about 30 to 500 mm made of metal, alloy, oxide thereof, or the like is provided on the base material 1a. be able to.
  • Antistatic ability can also be imparted by adding an antistatic agent to the substrate.
  • the substrate 1a may be a single layer or a multilayer of two or more.
  • the thickness of the substrate 1a can be appropriately determined, and is generally about 5 ⁇ m to 200 ⁇ m, preferably 35 ⁇ m to 120 ⁇ m.
  • additives for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.
  • a colorant for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 1b firmly holds the semiconductor wafer via the underfill material during back surface grinding, and is used when the semiconductor wafer with the underfill material is transferred to a dicing tape after back surface grinding.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • acrylic polymer examples include those using acrylic acid ester as a main monomer component.
  • acrylic esters include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl
  • the acrylic polymer includes units corresponding to the other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance, and the like. You may go out.
  • Such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate;
  • the Sulfonic acid groups such as lensulfonic acid, allylsulfonic acid, 2- (meth)
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) Examples include acrylates. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer or the like that is a base polymer.
  • the external crosslinking method include a method in which a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. Generally, about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, is preferably added to 100 parts by weight of the base polymer.
  • additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive
  • the pressure-sensitive adhesive layer 1b can be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays and can easily reduce its adhesive strength, and can easily peel a semiconductor wafer with an underfill material.
  • radiation include X-rays, ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and neutron rays.
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure-sensitive adhesive include additive-type radiation curable pressure-sensitive adhesives in which radiation-curable monomer components and oligomer components are blended with general pressure-sensitive pressure-sensitive adhesives such as the above-mentioned acrylic pressure-sensitive adhesives and rubber-based pressure-sensitive adhesives. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples thereof include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate and the like.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a weight average molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation curable monomer component or oligomer component can be appropriately determined in such an amount that the adhesive force of the pressure-sensitive adhesive layer can be reduced depending on the type of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive has a carbon-carbon double bond as a base polymer in the polymer side chain or main chain or at the main chain terminal.
  • Intrinsic radiation curable adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so they are stable without the oligomer components, etc. moving through the adhesive over time. This is preferable because an adhesive layer having a layered structure can be formed.
  • Such a base polymer is preferably one having an acrylic polymer as a basic skeleton.
  • Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. Examples of the method include condensation or addition reaction while maintaining the above.
  • combinations of these functional groups include carboxyl group and epoxy group, carboxyl group and aziridyl group, hydroxyl group and isocyanate group.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the above compound as long as the acrylic polymer having the carbon-carbon double bond is generated by the combination of these functional groups.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • acrylic polymer those obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
  • a base polymer having a carbon-carbon double bond can be used alone, but the radiation-curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive preferably contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropan-1-one; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; Naphthalen
  • oxygen air
  • a method of covering the surface of the pressure-sensitive adhesive layer 1b with a separator, a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.
  • various additives for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an antiaging agent, Antioxidants, surfactants, crosslinking agents, etc.
  • a colorant for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an antiaging agent, Antioxidants, surfactants, crosslinking agents, etc.
  • the thickness of the pressure-sensitive adhesive layer 1b is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the ground surface of the semiconductor wafer and compatibility of fixing and holding the underfill material 2.
  • the thickness is preferably 5 to 40 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the underfill material 2 in the present embodiment can be suitably used as a sealing film that fills a space between a surface-mounted (for example, flip chip mounted) semiconductor element and an adherend.
  • the underfill material contains a specific flux component.
  • Other constituent materials other than the flux component include organic components (excluding solvents) such as resin components, thermosetting accelerators, crosslinking agents, and other organic additives, inorganic fillers, and other materials as necessary. Examples include inorganic components such as inorganic additives.
  • the resin component include those in which a thermoplastic resin and a thermosetting resin are used in combination. A thermoplastic resin or a thermosetting resin can be used alone.
  • the underfill material 2 includes a flux component in order to remove the oxide film on the surface of the solder bump and facilitate mounting of the semiconductor element.
  • the flux component is an aromatic compound (hereinafter also referred to as “specific aromatic compound”) having a molecular weight of 300 or more and having at least one ester bond in the molecule.
  • specific aromatic compound include phenolphthalein, rosemary acid, 5-carboxyfluorescein, 6-carboxyfluorescein, Corey lactone, and crotaline.
  • phenolphthalein is preferable from the viewpoints of heat resistant storage stability, non-migration, and availability.
  • the flux component must have an ester bond. By including a chemically stable ester bond with low reactivity, an unintended reaction can be suppressed, which is effective in improving heat-resistant storage stability.
  • the underfill material 2 may contain other flux components in addition to the specific aromatic compound as long as the effects of the present invention are not impaired.
  • the other flux component is not particularly limited, and a conventionally known compound having a flux action can be used, for example, diphenolic acid, adipic acid, acetylsalicylic acid, benzoic acid, benzylic acid, azelaic acid, benzylbenzoic acid, Malonic acid, 2,2-bis (hydroxymethyl) propionic acid, salicylic acid, o-methoxybenzoic acid (o-anisic acid), m-hydroxybenzoic acid, succinic acid, 2,6-dimethoxymethylparacresol, benzoic acid hydrazide , Carbohydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, salicylic acid hydrazide, iminodiacetic acid dihydrazide, itaconic acid dihydrazide
  • the amount of the flux component added (the total amount when plural kinds of flux components are included) may be such that the above-mentioned flux action is exerted, and the weight of the flux component in the underfill material and the components other than the flux component
  • the ratio of the weight of the flux component to the total weight with respect to the total weight of is preferably 1% to 50% by weight, more preferably 1% to 25% by weight, and more preferably 1% by weight. More preferably, the content is 10% by weight or less.
  • the weight reduction rate with respect to the initial content of the flux component after heating the underfill material at 100 ° C. for 1 hour is preferably less than 50%, more preferably less than 40%, and less than 30%. Further preferred. Even if it is a process in which a thermal history is loaded on an underfill material such as a chip-on-wafer process by suppressing the weight reduction rate after loading a thermal history of 1 hour at 100 ° C. to less than the above upper limit The heat resistant storage stability is exhibited, and the underfill material can exhibit a desired flux activity.
  • the weight reduction rate with respect to the initial content of the flux component in the underfill material after leaving the laminated body in which the underfill material and the pressure-sensitive adhesive layer are laminated at 50 ° C. for 72 hours is less than 50%. , Less than 40%, more preferably less than 30%.
  • the transition of the flux component to the adhesive layer is suppressed, so that excellent non-migration Can demonstrate its sexuality.
  • thermoplastic resin examples include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor element is particularly preferable.
  • the acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms.
  • Examples include polymers as components.
  • the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2 -Ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group,
  • the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • Carboxyl group-containing monomers maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as
  • thermosetting resin examples include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin. These resins can be used alone or in combination of two or more. In particular, an epoxy resin containing a small amount of ionic impurities or the like that corrode semiconductor elements is preferable. Moreover, as a hardening
  • the epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type.
  • novolac type epoxy resins novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like.
  • the phenol resin acts as a curing agent for the epoxy resin, for example, a novolac type phenol resin such as a phenol novolac resin, a phenol aralkyl resin, a cresol novolac resin, a tert-butylphenol novolac resin, a nonylphenol novolac resin, Examples include resol-type phenolic resins and polyoxystyrenes such as polyparaoxystyrene. These can be used alone or in combination of two or more. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
  • the compounding ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.
  • an underfill material using an epoxy resin, a phenol resin and an acrylic resin is particularly preferable. Since these resins have few ionic impurities and high heat resistance, the reliability of the semiconductor element can be ensured.
  • the mixing ratio of the epoxy resin and the phenol resin is 50 to 500 parts by weight with respect to 100 parts by weight of the acrylic resin component.
  • thermosetting acceleration catalyst for epoxy resin and phenol resin is not particularly limited, and can be appropriately selected from known thermosetting acceleration catalysts.
  • stimulation catalyst can be used individually or in combination of 2 or more types.
  • thermosetting acceleration catalyst for example, an amine-based curing accelerator, a phosphorus-based curing accelerator, an imidazole-based curing accelerator, a boron-based curing accelerator, a phosphorus-boron-based curing accelerator, or the like can be used.
  • Crosslinking agent When the underfill material 2 of the present embodiment is previously crosslinked to some extent, a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer is added as a crosslinking agent during the production. Good. Thereby, the adhesive property under high temperature can be improved and heat resistance can be improved.
  • the cross-linking agent is particularly preferably a polyisocyanate compound such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, an adduct of polyhydric alcohol and diisocyanate.
  • the addition amount of the crosslinking agent is usually preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.
  • the underfill material 2 can be appropriately mixed with an inorganic filler.
  • the blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the storage elastic modulus, and the like.
  • the inorganic filler examples include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina, beryllium oxide, silicon carbide, silicon nitride, and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead. , Various inorganic powders made of metals such as tin, zinc, palladium, solder, or alloys, and other carbon. These can be used alone or in combination of two or more. Among these, silica, particularly fused silica is preferably used.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably in the range of 0.005 to 10 ⁇ m, more preferably in the range of 0.01 to 5 ⁇ m, and still more preferably 0.05 to 2 0.0 ⁇ m.
  • the average particle size of the inorganic filler is less than 0.005 ⁇ m, the particles are likely to aggregate and it may be difficult to form the underfill material. In addition, the flexibility of the underfill material is reduced.
  • the average particle diameter exceeds 10 ⁇ m, the inorganic particles tend to be caught in the joint portion between the underfill material and the adherend, so that the connection reliability of the semiconductor device may be lowered.
  • the average particle size is a value determined by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
  • the blending amount of the inorganic filler is preferably 10 to 400 parts by weight, more preferably 50 to 250 parts by weight with respect to 100 parts by weight of the resin component. If the blending amount of the inorganic filler is less than 10 parts by weight, the storage elastic modulus may be lowered and the stress reliability of the package may be greatly impaired. On the other hand, if it exceeds 400 parts by weight, the fluidity of the underfill material 2 may be reduced, and may not be sufficiently embedded in the irregularities of the substrate or semiconductor element, causing voids or cracks.
  • additives In addition to the said inorganic filler, other additives can be suitably mix
  • other additives include flame retardants, silane coupling agents, ion trapping agents, and the like.
  • flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more.
  • the silane coupling agent include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more.
  • the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
  • the underfill material before the thermosetting treatment preferably has a region where the viscosity at 100 to 200 ° C. is 20000 Pa ⁇ s or less, and has a region which is 100 Pa ⁇ s or more and 10,000 Pa ⁇ s or less. Is more preferable.
  • the connection member 4 see FIG. 2A
  • the minimum viscosity at 100 to 200 ° C. of the underfill material before the thermosetting treatment is preferably 0.1 Pa ⁇ s or more and 10,000 Pa ⁇ s or less, more preferably 1 Pa ⁇ s or more and 5000 Pa ⁇ s or less, and 10 Pa ⁇ s or more. 3000 Pa ⁇ s or less is more preferable.
  • the viscosity at 23 ° C. of the underfill material 2 before thermosetting is preferably 0.01 MPa ⁇ s or more and 100 MPa ⁇ s or less, and more preferably 0.1 MPa ⁇ s or more and 10 MPa ⁇ s or less.
  • the underfill material before thermosetting has a viscosity in the above range, the retainability of the semiconductor wafer 3 (see FIG. 2B) during back grinding and the handleability during work can be improved.
  • the measurement of the said minimum viscosity and a viscosity can be performed in the procedure as described in an Example.
  • the water absorption rate under the conditions of a temperature of 23 ° C. and a humidity of 70% of the underfill material 2 before thermosetting is preferably 1% by weight or less, and more preferably 0.5% by weight or less.
  • the lower limit of the water absorption rate is preferably as small as possible, substantially 0% by weight is preferable, and 0% by weight is more preferable.
  • the thickness of the underfill material 2 is not particularly limited, in consideration of the strength of the underfill material 2 and the filling of the space between the semiconductor element 5 and the adherend 16, it is 10 ⁇ m or more. It may be about 100 ⁇ m or less. Note that the thickness of the underfill material 2 may be appropriately set in consideration of the gap between the semiconductor element 5 and the adherend 16 and the height of the connection member.
  • the underfill material 2 of the laminated sheet 10 is preferably protected by a separator (not shown).
  • the separator has a function as a protective material that protects the underfill material 2 until it is practically used.
  • the separator is peeled off when the semiconductor wafer 3 is stuck on the underfill material 2 of the laminated sheet.
  • a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, or a long-chain alkyl acrylate release agent can be used.
  • the laminated sheet 10 according to the present embodiment can be produced, for example, by separately producing the back grinding tape 1 and the underfill material 2 and finally bonding them together. Specifically, it can be produced according to the following procedure.
  • the base material 1a can be formed by a conventionally known film forming method.
  • the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
  • an adhesive composition for forming an adhesive layer is prepared. Resin, additive, etc. which were demonstrated by the term of the adhesive layer are mix
  • the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form the pressure-sensitive adhesive layer 1b.
  • predetermined conditions For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed.
  • the coating film may be dried on the said dry conditions, and the adhesive layer 1b may be formed. Then, the adhesive layer 1b is bonded together with a separator on the base material 1a. Thereby, the tape 1 for back surface grinding provided with the base material 1a and the adhesive layer 1b is produced.
  • the underfill material 2 is produced as follows, for example. First, an adhesive composition that is a material for forming the underfill material 2 is prepared. As described in the section of the underfill material, the adhesive composition contains a thermoplastic component, an epoxy resin, various additives, and the like.
  • the coating film is dried under a predetermined condition to form an underfill material.
  • a coating method For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes are performed.
  • an underfill material may be formed by drying a coating film on the said drying conditions. Then, an underfill material is bonded together with a separator on a base material separator.
  • the separator is peeled off from the back surface grinding tape 1 and the underfill material 2 respectively, and both are bonded so that the underfill material and the pressure-sensitive adhesive layer become a bonding surface.
  • Bonding can be performed by, for example, pressure bonding.
  • the laminating temperature is not particularly limited, and is preferably 30 to 100 ° C., for example, and more preferably 40 to 80 ° C.
  • the linear pressure is not particularly limited, and for example, 0.98 to 196 N / cm is preferable, and 9.8 to 98 N / cm is more preferable.
  • the base material separator on the underfill material is peeled off to obtain the laminated sheet according to the present embodiment.
  • connection process In the bonding step, the circuit surface 3a on which the connection member 4 of the semiconductor wafer 3 is formed and the underfill material 2 of the laminated sheet 10 are bonded together (see FIG. 2A).
  • connection members 4 are formed on the circuit surface 3a of the semiconductor wafer 3 (see FIG. 2A).
  • the material of the connecting member such as a bump or a conductive material, for example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, Examples thereof include solders (alloys) such as a tin-zinc-bismuth metal material, a gold metal material, and a copper metal material.
  • the height of the connecting member is also determined according to the application, and is generally about 15 to 100 ⁇ m. Of course, the height of each connection member in the semiconductor wafer 3 may be the same or different.
  • the thickness of the underfill material includes a height X ( ⁇ m) of the connecting member formed on the surface of the semiconductor wafer and a thickness Y ( ⁇ m) of the underfill material.
  • X ⁇ m
  • Y ⁇ m
  • the height X ( ⁇ m) of the connecting member and the thickness Y ( ⁇ m) of the cured film satisfy the above relationship, the space between the semiconductor element and the adherend can be sufficiently filled. Further, excessive protrusion of the underfill material from the space can be prevented, and contamination of the semiconductor element by the underfill material can be prevented.
  • the height of each connection member differs, the height of the highest connection member is used as a reference.
  • the method of bonding is not particularly limited, but a method by pressure bonding is preferable.
  • the crimping is usually performed while applying a pressure of 0.1 to 1 MPa, more preferably 0.3 to 0.7 MPa by a known pressing means such as a crimping roll. At this time, pressure bonding may be performed while heating to about 40 to 100 ° C. In order to improve the adhesion, it is also preferable to perform pressure bonding under reduced pressure (1 to 1000 Pa).
  • the surface (that is, the back surface) 3b opposite to the circuit surface 3a of the semiconductor wafer 3 is ground (see FIG. 2B).
  • the thin processing machine used for back surface grinding of the semiconductor wafer 3 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer has a desired thickness (for example, 700 to 25 ⁇ m).
  • the semiconductor wafer 3 is peeled from the back surface grinding tape 1 with the underfill material 2 attached, and the semiconductor wafer 3 and the dicing tape 11 are attached (see FIG. 2C). At this time, bonding is performed so that the back surface 3b of the semiconductor wafer 3 and the adhesive layer 11b of the dicing tape 11 face each other. Therefore, the underfill material 2 bonded to the circuit surface 3a of the semiconductor wafer 3 is exposed.
  • the dicing tape 11 has a structure in which an adhesive layer 11b is laminated on a substrate 11a.
  • the base material 11a and the pressure-sensitive adhesive layer 11b can be suitably produced by using the components and the production methods shown in the paragraphs of the base material 1a and the pressure-sensitive adhesive layer 1b of the back grinding tape 1.
  • the pressure-sensitive adhesive layer 1b When the pressure-sensitive adhesive layer 1b has radiation curability when the semiconductor wafer 3 is peeled from the back surface grinding tape 1, the pressure-sensitive adhesive layer 1b is irradiated with radiation to cure the pressure-sensitive adhesive layer 1b. Can be easily performed.
  • the radiation dose may be appropriately set in consideration of the type of radiation used, the degree of cure of the pressure-sensitive adhesive layer, and the like.
  • the peeling force of the underfill material from the back surface grinding tape is 0.03 to 0.10 N / 20 mm.
  • Such a light peeling force can prevent breakage and deformation of the underfill material at the time of peeling from the back surface grinding tape, and can also prevent deformation of the semiconductor wafer.
  • the measurement of the peeling force is performed by cutting a sample piece having a width of 20 mm from the laminated sheet and attaching it to a silicon mirror wafer placed on a 40 ° C. hot plate. Leave for about 30 minutes and measure the peel force using a tensile tester.
  • the measurement conditions are peeling angle: 90 ° and tensile speed: 300 mm / min. Note that the peel force is measured in an environment at a temperature of 23 ° C. and a relative humidity of 50%.
  • the pressure-sensitive adhesive layer is an ultraviolet curable type, it is affixed to a silicon mirror wafer under the same conditions as described above, and is allowed to stand for about 30 minutes. And the peel strength at that time is measured.
  • UV irradiation device high-pressure mercury lamp UV irradiation integrated light quantity: 500 mJ / cm 2 Output: 75W Irradiation intensity: 150 mW / cm 2
  • the semiconductor element 5 with the underfill material diced by dicing the semiconductor wafer 3 and the underfill material 2 as shown in FIG. Form.
  • the semiconductor wafer 3 is cut into a predetermined size and divided into pieces (small pieces), and a semiconductor chip (semiconductor element) 5 is manufactured.
  • the semiconductor chip 5 obtained here is integrated with the underfill material 2 cut into the same shape. Dicing is performed according to a conventional method from the circuit surface 3a on which the underfill material 2 of the semiconductor wafer 3 is bonded.
  • a cutting method called full cut in which cutting is performed up to the dicing tape 11 with a dicing blade can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer is bonded and fixed with excellent adhesion by the dicing tape 11, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer can also be suppressed.
  • the underfill material is formed of a resin composition containing an epoxy resin, even if the underfill material is cut by dicing, the underfill material of the underfill material is prevented or prevented from protruding on the cut surface. Can do. As a result, it is possible to suppress or prevent the cut surfaces from reattaching (blocking), and the pickup described later can be performed more satisfactorily.
  • the expanding apparatus includes a donut-shaped outer ring that can push down the dicing tape through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing tape.
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, a method of pushing up individual semiconductor chips from the base material side of the dicing tape with a needle and picking up the pushed-up semiconductor chips with a pickup device can be mentioned.
  • the picked-up semiconductor chip 5 constitutes a laminate A integrally with the underfill material 2 bonded to the circuit surface 3a.
  • the pickup is performed after the pressure-sensitive adhesive layer 11b is irradiated with ultraviolet light. Thereby, the adhesive force with respect to the semiconductor chip 5 of the adhesive layer 11b falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip 5.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • a light source used for ultraviolet irradiation for example, a low-pressure mercury lamp, a low-pressure high-power lamp, a medium-pressure mercury lamp, an electrodeless mercury lamp, a xenon flash lamp, an excimer lamp, an ultraviolet LED, or the like can be used.
  • the mounting position of the semiconductor element 5 is obtained in advance by direct light, indirect light, infrared light, or the like, and the space between the adherend 16 and the semiconductor element 5 is filled with the underfill material 2 according to the obtained mounting position.
  • the semiconductor element 5 and the adherend 16 are electrically connected through the connection member 4 (see FIG. 2F).
  • the semiconductor chip 5 of the stacked body A is fixed to the adherend 16 according to a conventional method with the circuit surface 3a of the semiconductor chip 5 facing the adherend 16.
  • bumps (connection members) 4 formed on the semiconductor chip 5 are brought into contact with a bonding conductive material 17 (solder or the like) attached to the connection pads of the adherend 16 while pressing the conductive material.
  • the electrical connection between the semiconductor chip 5 and the adherend 16 can be secured, and the semiconductor chip 5 can be fixed to the adherend 16. Since the underfill material 2 is affixed to the circuit surface 3 a of the semiconductor chip 5, the space between the semiconductor chip 5 and the adherend 16 as well as the electrical connection between the semiconductor chip 5 and the adherend 16. Is filled with the underfill material 2.
  • the heating condition in the mounting process is 100 to 300 ° C.
  • the pressurizing condition is 0.5 to 500 N.
  • the adherend 16 various substrates such as a semiconductor wafer, a lead frame, a circuit board (such as a wiring circuit board), and other semiconductor elements can be used.
  • the material of the substrate is not particularly limited, and examples thereof include a ceramic substrate and a plastic substrate.
  • the plastic substrate include an epoxy substrate, a bismaleimide triazine substrate, a polyimide substrate, and a glass epoxy substrate.
  • the number of semiconductor elements to be mounted on one adherend is not limited, and may be one or plural.
  • the underfill material 2 can be suitably applied to a chip-on-wafer process in which a large number of semiconductor chips are mounted on a semiconductor wafer.
  • connection member and the conductive material are melted to connect the bumps 4 on the connection member forming surface 3a of the semiconductor chip 5 and the conductive material 17 on the surface of the adherend 16.
  • the temperature at the time of melting the bump 4 and the conductive material 17 is usually about 260 ° C. (for example, 250 ° C. to 300 ° C.).
  • the laminated sheet according to the present embodiment can have heat resistance that can withstand high temperatures in this mounting process by forming the underfill material 2 with an epoxy resin or the like.
  • the underfill material 2 is cured by heating. Thereby, the surface of the semiconductor element 5 can be protected, and the connection reliability between the semiconductor element 5 and the adherend 16 can be ensured.
  • the heating temperature for curing the underfill material is not particularly limited, and may be about 150 to 250 ° C.
  • cures by the heat processing in a mounting process this process can be abbreviate
  • a sealing step may be performed in order to protect the entire semiconductor device 20 including the mounted semiconductor chip 5.
  • the sealing step is performed using a sealing resin.
  • the sealing conditions at this time are not particularly limited.
  • the sealing resin is thermally cured by heating at 175 ° C. for 60 seconds to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 ° C. to 185 ° C. for several minutes.
  • the sealing resin is not particularly limited as long as it is an insulating resin (insulating resin), and can be appropriately selected from sealing materials such as known sealing resins. Is more preferable.
  • sealing resin the resin composition containing an epoxy resin etc. are mentioned, for example.
  • the epoxy resin include the epoxy resins exemplified above.
  • a thermosetting resin other than an epoxy resin such as a phenol resin
  • a thermoplastic resin may be included as a resin component. Good.
  • a phenol resin it can utilize also as a hardening
  • the semiconductor element 5 and the adherend 16 are connected via the bump (connection member) 4 formed on the semiconductor element 5 and the conductive material 17 provided on the adherend 16. Are electrically connected.
  • An underfill material 2 is disposed between the semiconductor element 5 and the adherend 16 so as to fill the space. Since the semiconductor device 20 is obtained by the above manufacturing method that employs the predetermined underfill material 2 and alignment by light irradiation, good electrical connection is achieved between the semiconductor element 5 and the adherend 16. Yes. Accordingly, the surface protection of the semiconductor element 5, the filling of the space between the semiconductor element 5 and the adherend 16, and the electrical connection between the semiconductor element 5 and the adherend 16 become sufficient levels, respectively, and the semiconductor device High reliability can be demonstrated as 20.
  • a semiconductor wafer having a circuit formed on one side is used, whereas in the present embodiment, a semiconductor device is manufactured using a semiconductor wafer having a circuit formed on both sides. Further, since the semiconductor wafer used in this embodiment has a target thickness, the grinding step is omitted. Therefore, a laminated sheet including a dicing tape and a predetermined underfill material laminated on the dicing tape is used as the laminated sheet in the second embodiment.
  • a preparation process for preparing the laminated sheet, a semiconductor wafer on which circuit surfaces having connection members are formed on both sides, and an underfill material for the laminated sheet A bonding step of bonding the semiconductor wafer, a dicing step of dicing the semiconductor wafer to form a semiconductor element with the underfill material, and a pickup step of peeling the semiconductor element with the underfill material from the laminated sheet.
  • the semiconductor device is manufactured by performing the steps after the position alignment step.
  • a laminated sheet including a dicing tape 41 and a predetermined underfill material 42 laminated on the dicing tape 41 is prepared (see FIG. 3A).
  • the dicing tape 41 includes a base material 41a and an adhesive layer 41b laminated on the base material 41a.
  • the underfill material 42 is laminated on the pressure-sensitive adhesive layer 41b.
  • the base material 41a and the pressure-sensitive adhesive layer 41b of the dicing tape 41 and the underfill material 42 the same materials as those in the first embodiment can be used.
  • the semiconductor wafer 43 having the circuit surface having the connection member 44 formed on both sides and the underfill material 42 of the laminated sheet are bonded together.
  • the semiconductor wafer since the strength of the semiconductor wafer thinned to a predetermined thickness is weak, the semiconductor wafer may be fixed to a support such as support glass via a temporary fixing material (not shown) for reinforcement. .
  • the process of peeling a support body with a temporary fixing material after bonding a semiconductor wafer and an underfill material may be included. Which circuit surface of the semiconductor wafer 43 and the underfill material 42 are bonded together may be changed according to the structure of the target semiconductor device.
  • the semiconductor wafer 43 is the same as the semiconductor wafer of the first embodiment except that the circuit surface having the connection member 44 is formed on both surfaces and has a predetermined thickness.
  • the connection members 44 on both surfaces of the semiconductor wafer 43 may be electrically connected or may not be connected. Examples of the electrical connection between the connection members 44 include a connection through a via called a TSV format.
  • the bonding conditions in the first embodiment can be suitably employed.
  • the semiconductor wafer 43 and the underfill material 42 are diced to form the semiconductor element 45 with the underfill material (see FIG. 3B).
  • the conditions in the first embodiment can be suitably employed.
  • dicing since dicing is performed on the exposed circuit surface of the semiconductor wafer 43, it is easy to detect the dicing position. However, dicing may be performed after confirming the dicing position by irradiating light as necessary. Good.
  • the semiconductor element 45 with the underfill material 42 is peeled from the dicing tape 41 (FIG. 3C).
  • various conditions in the first embodiment can be suitably employed.
  • the peeling force of the underfill material from the dicing tape is 0.03 to 0.10 N / 20 mm. Thereby, it is possible to easily pick up a semiconductor element with an underfill material.
  • the semiconductor element 45 and the adherend 66 are electrically connected via the connection member 44 while the space between the adherend 66 and the semiconductor element 45 is filled with the underfill material 42 (see FIG. 3D). ).
  • Various conditions in the first embodiment can be suitably employed as the conditions in the mounting process. Thereby, the semiconductor device 60 according to the present embodiment can be manufactured.
  • an underfill material curing step and a sealing step may be performed as necessary.
  • the back surface grinding tape is used as a constituent member of the laminated sheet, but in this embodiment, the base material alone is used without providing the adhesive layer of the back surface grinding tape. Therefore, the laminated sheet of the present embodiment is in a state where the underfill material is laminated on the base material.
  • the grinding process can be performed arbitrarily, ultraviolet irradiation before the pick-up process is not performed by omitting the adhesive layer. Except for these points, a predetermined semiconductor device can be manufactured through the same steps as in the first embodiment.
  • dicing using a dicing blade is employed in the dicing process.
  • a modified portion is formed inside the semiconductor wafer by laser irradiation, and the modified portion is formed on the modified portion.
  • stealth dicing may be employed in which the semiconductor wafer is divided into pieces along the semiconductor wafer.
  • Examples 1 to 3 and Comparative Examples 1 and 2 (Production of laminated sheet) The following components were dissolved in methyl ethyl ketone in the proportions shown in Table 1 to prepare an adhesive composition solution having a solid content concentration of 25.4 to 60.6% by weight.
  • Acrylic polymer Acrylate polymer based on ethyl acrylate-methyl methacrylate (trade name “Paracron W-197CM”, manufactured by Negami Kogyo Co., Ltd.)
  • Epoxy resin 1 Trade name “Epicoat 1004”, JER Corporation Epoxy resin 2: Trade name “Epicoat 828”, JER Corporation Phenol resin: Trade name “Mirex XLC-4L”, Mitsui Chemicals, Inc. Examples 1 to 3): Phenolphthalein flux (Comparative Example 1): 2-phenoxybenzoic acid flux (Comparative Example 2): Trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd.
  • Inorganic filler Spherical silica ( Product name “SO-25R” (manufactured by Admatechs)
  • Thermosetting catalyst Imidazole catalyst (trade name “2PHZ-PW”, manufactured by Shikoku Kasei Co., Ltd.)
  • Samples a and b were prepared by applying the following treatment to the produced underfill material.
  • Sample a left in an air atmosphere at room temperature for 1 hour
  • Sample b left in an air atmosphere at 100 ° C. for 1 hour
  • samples a and b were each cut into about 1 cm square, and the cut pieces were weighed against a screw tube. 5 mL of tetrahydrofuran was added thereto, and the sample was swollen by shaking at room temperature for 12 hours or more, and then 15 mL of a phosphate buffer / acetonitrile mixed solution was added to reprecipitate the polymers. The supernatant was collected by decantation and filtered through a membrane filter (pore size: 0.2 ⁇ m). The filtrate was diluted with an eluent to obtain a sample solution, and high performance liquid chromatography (HPLC) measurement was performed on the sample solution under the following conditions.
  • HPLC high performance liquid chromatography
  • a calibration curve was prepared from the adjusted concentration and peak area of the standard product (flux component), and the flux component weight in each sample was calculated from the peak area of the HPLC measurement of the sample liquid from samples a and b.
  • Each calculated flux component weight is divided by the flux component weight (calculated from the blended amount) contained in the weighed cut piece before processing, and normalized, and the normalized flux component weight Wa from the sample a is initially set.
  • content was calculated weight loss based on the following equation normalized flux component weight W b as content after thermal history loads from the sample b. A case where the weight reduction rate was less than 50% by weight was evaluated as “ ⁇ ”, and a case where the weight loss rate was 50% by weight or more was evaluated as “x”.
  • Sample c Standing at 50 ° C. for 72 hours in the air atmosphere
  • Sample d Tape for back surface grinding having a pressure-sensitive adhesive layer formed of an acrylic pressure-sensitive adhesive (trade name “UB3083D”, Nitto Denko)
  • a laminated sheet is prepared by using a hand roller to attach the laminated sheet onto a pressure-sensitive adhesive layer (manufactured by Co., Ltd.), and the laminated sheet is allowed to stand at 50 ° C. for 72 hours in an air atmosphere.
  • the supernatant was collected by decantation and filtered through a membrane filter (pore size: 0.2 ⁇ m).
  • the filtrate was diluted with an eluent to obtain a sample solution, and high performance liquid chromatography (HPLC) measurement was performed on the sample solution under the following conditions.
  • a calibration curve was created from the adjusted concentration of the standard product (flux component) and the peak area, and the flux component weight in each sample was calculated from the peak area of the HPLC measurement of the sample liquid from samples c and d.
  • the calculated flux component weight is divided by the flux component weight (obtained from the blending amount) contained in the weighed cut pieces before processing, and normalized, and the normalized flux component weight W c from the sample c is initially set.
  • content was calculated weight loss based on the following equation normalized flux component weight W d as content after thermal history load from sample d. A case where the weight reduction rate was less than 50% by weight was evaluated as “ ⁇ ”, and a case where the weight loss rate was 50% by weight or more was evaluated as “x”. The evaluation results are shown in Table 1.
  • Weight reduction rate ⁇ (W c ⁇ W d ) / W c ⁇ ⁇ 100 (%)
  • Measurement was performed by a parallel plate method using a rheometer (manufactured by HAAKE, RS-1). Specifically, the conditions are a gap of 100 ⁇ m, a rotating plate diameter of 20 mm, a rotation speed of 5 s ⁇ 1 , a temperature increase rate of 10 ° C./min, the temperature is increased from 80 ° C., and the viscosity increases due to the curing reaction of the underfill material.
  • the measurement was performed up to a temperature at which the rotating plate could not rotate (it was 200 ° C. or higher in all Examples and Comparative Examples). The lowest viscosity in the range from 100 ° C. to 200 ° C. at that time was defined as the lowest viscosity.
  • Table 1 The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Wire Bonding (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Sealing Material Composition (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 Provided are: an underfill material including a flux component, the underfill material having heat storage stability allowing flux activity to be maintained even after loading by a heat history, and having excellent non-migrating properties such that migration over time to another adhesive layer is suppressed; a laminate sheet provided with the underfill material; and a method for manufacturing a semiconductor device. The present invention is an underfill material including, as a flux component, an aromatic compound having a molecular weight of at least 300 and having at least one ester bond within the molecule. The flux component undergoes a reduction in weight of less than 50% relative to the initial content after the underfill material has been heated for one hour at 100°C.

Description

アンダーフィル材、積層シート及び半導体装置の製造方法Underfill material, laminated sheet, and method of manufacturing semiconductor device
 本発明は、アンダーフィル材、積層シート及び半導体装置の製造方法に関する。 The present invention relates to an underfill material, a laminated sheet, and a method for manufacturing a semiconductor device.
 近年、半導体装置及びそのパッケージの薄型化、小型化がより一層求められている。そのための方策として、半導体チップ等の半導体素子が基板上にフリップチップボンディングにより実装された(フリップチップ接続された)フリップチップ型の半導体装置が広く利用されている。フリップチップ接続は、半導体チップの回路面が被着体の電極形成面と対向した状態で(フェイスダウン)、半導体チップがその回路面に形成された突起電極を介して被着体に固定される実装法である。フリップチップ接続後には、半導体素子表面の保護や半導体素子と基板との間の接続信頼性を確保するために、半導体素子と基板との間の空間への封止樹脂の充填が行われている。このような封止樹脂としては、液状の封止樹脂が広く用いられているものの、液状の封止樹脂では注入位置や注入量の調節が困難である。そこで、シート状の封止樹脂を用いて半導体素子と基板との間の空間を充填する技術が提案されている。 In recent years, there has been a further demand for thinner and smaller semiconductor devices and their packages. For this purpose, flip chip type semiconductor devices in which a semiconductor element such as a semiconductor chip is mounted on a substrate by flip chip bonding (flip chip connection) are widely used. In the flip chip connection, the semiconductor chip is fixed to the adherend via the protruding electrode formed on the circuit surface with the circuit surface of the semiconductor chip facing the electrode forming surface of the adherend (face down). Implementation method. After flip chip connection, the space between the semiconductor element and the substrate is filled with a sealing resin in order to protect the surface of the semiconductor element and ensure the connection reliability between the semiconductor element and the substrate. . As such a sealing resin, although a liquid sealing resin is widely used, it is difficult to adjust the injection position and the injection amount with the liquid sealing resin. Therefore, a technique for filling a space between a semiconductor element and a substrate using a sheet-shaped sealing resin has been proposed.
 半導体素子の被着体へのフリップチップ実装では、半導体素子に設けられた半田バンプ等の電極を溶融させて両者を電気的に接続する。その際、電極表面の酸化膜の除去や半田の濡れ性の向上等を目的としてフラックス剤による処理を行うことがある。最近ではフラックス活性を有する化合物を上述のようなシート状の封止樹脂にも添加する技術が提案されている(特許文献1)。 In flip chip mounting on an adherend of a semiconductor element, electrodes such as solder bumps provided on the semiconductor element are melted to electrically connect them. At that time, a treatment with a flux agent may be performed for the purpose of removing the oxide film on the electrode surface or improving the wettability of the solder. Recently, a technique for adding a compound having flux activity to the above-described sheet-shaped sealing resin has been proposed (Patent Document 1).
特開2012-195414号公報JP 2012-195414 A
 上記技術により、良好なはんだ接合が可能となり、半導体素子と被着体との間の空間も充填されて良好な接続信頼性が得られる。しかしながら、例えば半導体装置製造プロセスの1つであるチップオンウェハ(CoW)プロセスでは、多数の半導体チップを半導体ウェハ上にフリップチップ接続するところ、工程の初期にボンディングした半導体チップと終期にボンディングした半導体チップとでは100℃で1時間という熱履歴の差が生じることになる。そのため、初期にボンディングした半導体チップのアンダーフィル材では熱履歴の影響によりフラックス成分が消失ないし変性し、その結果アンダーフィル材が十分なフラックス活性を発揮しない場合がある。また、アンダーフィル材を裏面研削用テープ等の粘着剤層を有する部材と一体化させて長期間保存した場合、アンダーフィル材内のフラックス成分がその粘着剤層へ移行してしまい、ボンディング時に十分なフラックス活性が得られない場合がある。 The above technique enables good solder bonding, and also fills the space between the semiconductor element and the adherend and provides good connection reliability. However, in a chip-on-wafer (CoW) process, which is one of the semiconductor device manufacturing processes, for example, a large number of semiconductor chips are flip-chip connected to a semiconductor wafer, and a semiconductor chip bonded at the beginning of the process and a semiconductor bonded at the end of the process. A difference in thermal history of 1 hour at 100 ° C. occurs with the chip. Therefore, in the underfill material of the semiconductor chip bonded in the initial stage, the flux component is lost or modified due to the influence of the thermal history, and as a result, the underfill material may not exhibit sufficient flux activity. In addition, when the underfill material is integrated with a member having an adhesive layer such as a back surface grinding tape and stored for a long period of time, the flux component in the underfill material moves to the adhesive layer and is sufficient during bonding. May not be obtained.
 本発明は前記問題点に鑑みなされたものであり、フラックス成分を含みつつ、熱履歴が負荷されてもフラックス活性の維持が可能な耐熱保存性と、他の粘着剤層への経時的な移行が抑制された良好な非移行性とを有するアンダーフィル材及びこれを備える積層シート、並びに半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and includes heat-resistant storage stability capable of maintaining flux activity even when a heat history is loaded while containing a flux component, and transition to other pressure-sensitive adhesive layers over time. An object of the present invention is to provide an underfill material having good non-migratory properties in which suppression is suppressed, a laminated sheet including the same, and a method for manufacturing a semiconductor device.
 本願発明者らは鋭意検討したところ、下記構成を採用することにより前記目的を達成できることを見出して、本発明を完成させるに至った。 The inventors of the present application have intensively studied and found that the above object can be achieved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明は、フラックス成分として、分子量が300以上であり、かつ分子内にエステル結合を少なくとも1つ有する芳香族化合物を含むアンダーフィル材である。 That is, the present invention is an underfill material containing an aromatic compound having a molecular weight of 300 or more as a flux component and having at least one ester bond in the molecule.
 当該アンダーフィル材では特定のフラックス成分を用いているので、熱履歴が負荷されてもフラックス活性を維持可能な耐熱保存性を発揮することができ、また、他の粘着剤層と貼り合わせてもその粘着剤層への移行が抑制され、良好な非移行性を発揮することができる。この理由は定かではないが、フラックス成分の分子量を300以上とすることで熱履歴に起因する揮発ないし流出が抑制されることとともに、分子内にエステル結合を導入した芳香族化合物を用いることで、フラックス成分とアンダーフィル材を形成する樹脂成分との親和性が高まってフラックス成分のアンダーフィル材での残留性が高まったことであると推定される。また、エステル結合は、カルボキシル基やヒドロキシル基と比較して化学的に安定であるという面も耐熱保存性に寄与していると考えられる。ただし、本発明の作用効果を損なわない限り、フラックス成分はカルボキシル基やヒドロキシル基等の反応性官能基を含んでいてもよい。 Since the underfill material uses a specific flux component, it can exhibit heat-resistant storage stability capable of maintaining flux activity even when a thermal history is applied, and can also be bonded to other adhesive layers. Transition to the pressure-sensitive adhesive layer is suppressed, and good non-migration can be exhibited. The reason for this is not clear, but volatilization or outflow due to thermal history is suppressed by setting the molecular weight of the flux component to 300 or more, and by using an aromatic compound having an ester bond introduced in the molecule, It is presumed that the affinity between the flux component and the resin component forming the underfill material has increased, and the persistence of the flux component in the underfill material has increased. In addition, it is considered that the ester bond is chemically stable as compared with a carboxyl group or a hydroxyl group, which contributes to heat resistant storage stability. However, as long as the effects of the present invention are not impaired, the flux component may contain a reactive functional group such as a carboxyl group or a hydroxyl group.
 前記アンダーフィル材を100℃で1時間加熱した後の前記フラックス成分の初期含有量に対する重量減少率は50%未満であることが好ましい。100℃で1時間という熱処理後の重量減少率を50%未満に抑制することで、熱履歴が負荷された後でもアンダーフィル材が所望のフラックス活性を発揮することができる。 The weight reduction rate with respect to the initial content of the flux component after heating the underfill material at 100 ° C. for 1 hour is preferably less than 50%. By suppressing the weight reduction rate after heat treatment of 1 hour at 100 ° C. to less than 50%, the underfill material can exhibit the desired flux activity even after the thermal history is loaded.
 前記アンダーフィル材と粘着剤層とを積層した積層体を50℃で72時間静置した後の前記アンダーフィル材における前記フラックス成分の初期含有量に対する重量減少率が50%未満であることが好ましい。これにより、例えばアンダーフィル材と粘着剤層を備える裏面研削用テープとを一体化させて用いる場合であっても、フラックス成分の粘着剤層への移行が抑制されているので、優れた非移行性を発揮することができる。 It is preferable that the weight reduction rate with respect to the initial content of the flux component in the underfill material after leaving the laminated body in which the underfill material and the pressure-sensitive adhesive layer are laminated at 50 ° C. for 72 hours is less than 50%. . As a result, for example, even when an underfill material and a back surface grinding tape having an adhesive layer are used in an integrated manner, the transition of the flux component to the adhesive layer is suppressed, so that excellent non-migration Can demonstrate its sexuality.
 前記アンダーフィル材中の前記フラックス成分の重量と前記フラックス成分以外の成分の重量との合計重量に対して前記フラックス成分の重量が占める割合は1重量%以上50重量%以下であることが好ましい。フラックス成分の重量割合を1重量%以上とすることで、アンダーフィル材が十分なフラックス活性を発揮するとともに、50重量%以下とすることでアンダーフィル材のそもそもの封止樹脂としての機能を確保することができる。なお、本明細書において、「フラックス成分以外の成分」とは、アンダーフィル材が含み得るフラックス成分及び溶媒以外の有機成分及び無機成分をいう。 The ratio of the weight of the flux component to the total weight of the weight of the flux component and the weight of components other than the flux component in the underfill material is preferably 1% by weight or more and 50% by weight or less. By setting the weight ratio of the flux component to 1% by weight or more, the underfill material exhibits a sufficient flux activity, and by setting it to 50% by weight or less, the function of the underfill material as a sealing resin is secured. can do. In the present specification, the “component other than the flux component” refers to an organic component and an inorganic component other than the flux component and the solvent that can be included in the underfill material.
 本発明には、基材及び該基材上に設けられた粘着剤層を有する粘着テープと、
 前記粘着剤層上に積層された当該アンダーフィル材と
 を備える積層シートも含まれる。
In the present invention, a pressure-sensitive adhesive tape having a base material and a pressure-sensitive adhesive layer provided on the base material,
A laminated sheet comprising the underfill material laminated on the pressure-sensitive adhesive layer is also included.
 当該アンダーフィル材と粘着テープとを一体的に用いることにより、半導体ウェハの加工から半導体素子の実装までの製造過程の効率化を図ることができる。 By using the underfill material and the adhesive tape integrally, it is possible to improve the efficiency of the manufacturing process from the processing of the semiconductor wafer to the mounting of the semiconductor element.
 前記粘着テープは、半導体ウェハの裏面研削用テープ又はダイシングテープのいずれであってもよい。 The adhesive tape may be either a semiconductor wafer back surface grinding tape or a dicing tape.
 本発明には、被着体と、該被着体と電気的に接続された半導体素子と、該被着体と該半導体素子との間の空間を充填するアンダーフィル材とを備える半導体装置の製造方法であって、
 当該アンダーフィル材が前記半導体素子に貼り合わされたアンダーフィル材付き半導体素子を準備する工程と、
 前記被着体と前記半導体素子の間の空間を前記アンダーフィル材で充填しつつ前記半導体素子と前記被着体とを電気的に接続する接続工程と
 を含む半導体装置の製造方法も含まれる。
According to the present invention, there is provided a semiconductor device comprising an adherend, a semiconductor element electrically connected to the adherend, and an underfill material that fills a space between the adherend and the semiconductor element. A manufacturing method comprising:
A step of preparing a semiconductor element with an underfill material in which the underfill material is bonded to the semiconductor element;
And a connecting step of electrically connecting the semiconductor element and the adherend while filling a space between the adherend and the semiconductor element with the underfill material.
 当該製造方法では特定のフラックス成分を含むアンダーフィル材を用いているので、複数の半導体素子を被着体に搭載させることでアンダーフィル材に熱履歴が負荷される場合であっても、アンダーフィル材が十分なフラックス活性を発揮することができ、半導体素子と被着体との良好な電気的接続を得ることができる。 Since the manufacturing method uses an underfill material containing a specific flux component, even if a thermal history is applied to the underfill material by mounting a plurality of semiconductor elements on the adherend, The material can exhibit a sufficient flux activity, and a good electrical connection between the semiconductor element and the adherend can be obtained.
本発明の一実施形態に係る積層シートを示す断面模式図である。It is a cross-sectional schematic diagram which shows the lamination sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on other embodiment of this invention. 本発明の他の実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on other embodiment of this invention. 本発明の他の実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on other embodiment of this invention. 本発明の他の実施形態に係る半導体装置の製造工程の一工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1 process of the manufacturing process of the semiconductor device which concerns on other embodiment of this invention.
<第1実施形態>
 以下、本発明の一実施形態について、アンダーフィル材と裏面研削用テープとが一体となった積層シート及びこれを用いる半導体装置の製造方法を例に説明する。従って、本実施形態では、粘着テープとして裏面研削用テープを用いる。以下の説明は基本的にアンダーフィル材単独の場合にも適用することができる。
<First Embodiment>
Hereinafter, an embodiment of the present invention will be described by taking as an example a laminated sheet in which an underfill material and a back surface grinding tape are integrated, and a method for manufacturing a semiconductor device using the same. Therefore, in this embodiment, the back surface grinding tape is used as the adhesive tape. The following description can be basically applied to the case of the underfill material alone.
 本実施形態では、裏面研削用テープ上に積層されたアンダーフィル材を備える積層シートを用いて半導体ウェハの裏面研削を行い、その後、ダイシングテープ上でのダイシング、半導体素子のピックアップを行い、最後に半導体素子を被着体に実装する。 In the present embodiment, the backside grinding of the semiconductor wafer is performed using a laminated sheet including an underfill material laminated on the backside grinding tape, and then dicing on the dicing tape and the semiconductor element are picked up. A semiconductor element is mounted on an adherend.
 本実施形態の代表的な工程としては、裏面研削用テープと該裏面研削用テープ上に積層されたアンダーフィル材とを備える積層シートを準備する準備工程、半導体ウェハの接続部材が形成された回路面と上記積層シートのアンダーフィル材とを貼り合わせる貼合せ工程、上記半導体ウェハの裏面を研削する研削工程、上記アンダーフィル材とともに半導体ウェハを裏面研削用テープから剥離して該半導体ウェハをダイシングテープに貼り付ける固定工程、上記半導体ウェハにおけるダイシング位置を決定するダイシング位置決定工程、上記半導体ウェハをダイシングして上記アンダーフィル材付きの半導体素子を形成するダイシング工程、上記アンダーフィル材付きの半導体素子を上記ダイシングテープから剥離するピックアップ工程、上記半導体素子と上記被着体との相対位置を互いの接続予定位置に整合させる位置整合工程、及び上記被着体と上記半導体素子の間の空間を上記アンダーフィル材で充填しつつ上記接続部材を介して上記半導体素子と上記被着体とを電気的に接続する接続工程を含む。 As a typical process of the present embodiment, a preparation process for preparing a laminated sheet including a back grinding tape and an underfill material laminated on the back grinding tape, a circuit in which a semiconductor wafer connection member is formed A laminating step of bonding the surface and the underfill material of the laminated sheet; a grinding step of grinding the back surface of the semiconductor wafer; and peeling the semiconductor wafer together with the underfill material from the back surface grinding tape to dicing the semiconductor wafer A dicing step for determining a dicing position in the semiconductor wafer, a dicing step for dicing the semiconductor wafer to form the semiconductor element with the underfill material, and a semiconductor element with the underfill material. Pickup process for peeling from the dicing tape, above A position aligning step for aligning the relative positions of the semiconductor element and the adherend to each other's planned connection positions, and filling the space between the adherend and the semiconductor element with the underfill material; A connection step of electrically connecting the semiconductor element and the adherend via the substrate.
 [準備工程]
 準備工程では、裏面研削用テープと該裏面研削用テープ上に積層されたアンダーフィル材とを備える積層シートを準備する。
[Preparation process]
In the preparation step, a laminated sheet including a back grinding tape and an underfill material laminated on the back grinding tape is prepared.
 (積層シート)
 図1に示すように、積層シート10は、裏面研削用テープ1と、裏面研削用テープ1上に積層されたアンダーフィル材2とを備えている。なお、アンダーフィル材2は、図1に示したように、半導体ウェハ3(図2A参照)との貼り合わせに十分なサイズで設けられていればよく、裏面研削用テープ1の全面に積層されていてもよい。
(Laminated sheet)
As shown in FIG. 1, the laminated sheet 10 includes a back grinding tape 1 and an underfill material 2 laminated on the back grinding tape 1. As shown in FIG. 1, the underfill material 2 may be provided in a size sufficient for bonding to the semiconductor wafer 3 (see FIG. 2A), and is laminated on the entire surface of the back surface grinding tape 1. It may be.
 (裏面研削用テープ)
 裏面研削用テープ1は、基材1aと、基材1a上に積層された粘着剤層1bとを備えている。なお、アンダーフィル材2は、粘着剤層1b上に積層されている。
(Back grinding tape)
The back grinding tape 1 includes a substrate 1a and an adhesive layer 1b laminated on the substrate 1a. In addition, the underfill material 2 is laminated | stacked on the adhesive layer 1b.
 (基材)
 上記基材1aは積層シート10の強度母体となるものである。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。粘着剤層1bが紫外線硬化型である場合、基材1aは紫外線に対し透過性を有するものが好ましい。
(Base material)
The base material 1 a is a strength matrix of the laminated sheet 10. For example, polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like. In the case where the pressure-sensitive adhesive layer 1b is of an ultraviolet curable type, the substrate 1a is preferably transparent to ultraviolet rays.
 また基材1aの材料としては、上記樹脂の架橋体等のポリマーが挙げられる。上記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。 Further, examples of the material of the substrate 1a include polymers such as a crosslinked body of the above resin. The plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
 基材1aの表面は、隣接する層との密着性、保持性等を高めるため、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。 The surface of the substrate 1a is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.
 上記基材1aは、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。また、基材1aには、帯電防止能を付与するため、上記の基材1a上に金属、合金、これらの酸化物等からなる厚さが30~500Å程度の導電性物質の蒸着層を設けることができる。基材に帯電防止剤を添加することによっても帯電防止能を付与することができる。基材1aは単層又は2種以上の複層でもよい。 The base material 1a can be used by appropriately selecting the same type or different types, and a blend of several types can be used as necessary. In addition, in order to impart antistatic ability to the base material 1a, a conductive material vapor deposition layer having a thickness of about 30 to 500 mm made of metal, alloy, oxide thereof, or the like is provided on the base material 1a. be able to. Antistatic ability can also be imparted by adding an antistatic agent to the substrate. The substrate 1a may be a single layer or a multilayer of two or more.
 基材1aの厚さは適宜に決定でき、一般的には5μm以上200μm以下程度であり、好ましくは35μm以上120μm以下である。 The thickness of the substrate 1a can be appropriately determined, and is generally about 5 μm to 200 μm, preferably 35 μm to 120 μm.
 なお、基材1aには、本発明の効果等を損なわない範囲で、各種添加剤(例えば、着色剤、充填剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、難燃剤等)が含まれていてもよい。 In addition, various additives (for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.) are added to the substrate 1a as long as the effects of the present invention are not impaired. May be included.
 (粘着剤層)
 粘着剤層1bの形成に用いる粘着剤は、裏面研削の際にアンダーフィル材を介して半導体ウェハをしっかり保持するとともに、裏面研削後にアンダーフィル材付きの半導体ウェハをダイシングテープへ移行させる際にアンダーフィル材付きの半導体ウェハを剥離可能に制御できるものであれば特に制限されない。例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性接着剤を用いることができる。上記感圧性接着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。
(Adhesive layer)
The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 1b firmly holds the semiconductor wafer via the underfill material during back surface grinding, and is used when the semiconductor wafer with the underfill material is transferred to a dicing tape after back surface grinding. There is no particular limitation as long as the semiconductor wafer with the fill material can be controlled to be peelable. For example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. As the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer from the viewpoint of cleanability of an electronic component that is difficult to contaminate semiconductor wafers, glass, etc., with an organic solvent such as ultrapure water or alcohol. Is preferred.
 上記アクリル系ポリマーとしては、アクリル酸エステルを主モノマー成分として用いたものが挙げられる。上記アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include those using acrylic acid ester as a main monomer component. Examples of the acrylic esters include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, in particular, linear or branched alkyl esters having 4 to 18 carbon atoms, etc.) and Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, acrylic polymers such as one or more was used as a monomer component of the cyclohexyl ester etc.). In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 上記アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、上記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。このようなモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどがあげられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer includes units corresponding to the other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance, and the like. You may go out. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; The Sulfonic acid groups such as lensulfonic acid, allylsulfonic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acrylamidepropanesulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalenesulfonic acid Containing monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 さらに、上記アクリル系ポリマーは、架橋させるため、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。このような多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどがあげられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) Examples include acrylates. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 上記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、さらに好ましくは40万~300万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, the content of the low molecular weight substance is preferably small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
 また、上記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法があげられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、上記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1~5重量部配合するのが好ましい。さらに、粘着剤には、必要により、上記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer or the like that is a base polymer. Specific examples of the external crosslinking method include a method in which a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. Generally, about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, is preferably added to 100 parts by weight of the base polymer. Furthermore, additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary, in addition to the above components.
 粘着剤層1bは放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線等の放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、アンダーフィル材付きの半導体ウェハの剥離を容易に行うことができる。放射線としては、X線、紫外線、電子線、α線、β線、中性子線等が挙げられる。 The pressure-sensitive adhesive layer 1b can be formed of a radiation curable pressure-sensitive adhesive. The radiation-curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays and can easily reduce its adhesive strength, and can easily peel a semiconductor wafer with an underfill material. Examples of radiation include X-rays, ultraviolet rays, electron beams, α rays, β rays, and neutron rays.
 放射線硬化型粘着剤は、炭素-炭素二重結合等の放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、上記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化性粘着剤を例示できる。 As the radiation curable pressure-sensitive adhesive, those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of the radiation curable pressure-sensitive adhesive include additive-type radiation curable pressure-sensitive adhesives in which radiation-curable monomer components and oligomer components are blended with general pressure-sensitive pressure-sensitive adhesives such as the above-mentioned acrylic pressure-sensitive adhesives and rubber-based pressure-sensitive adhesives. An agent can be illustrated.
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどがあげられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その重量平均分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、上記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples thereof include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate and the like. Examples of the radiation curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a weight average molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation curable monomer component or oligomer component can be appropriately determined in such an amount that the adhesive force of the pressure-sensitive adhesive layer can be reduced depending on the type of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、放射線硬化型粘着剤としては、上記説明した添加型の放射線硬化性粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖または主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化性粘着剤があげられる。内在型の放射線硬化性粘着剤は、低分子成分であるオリゴマー成分等を含有する必要がなく、または多くは含まないため、経時的にオリゴマー成分等が粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。 In addition to the additive-type radiation curable adhesive described above, the radiation curable pressure-sensitive adhesive has a carbon-carbon double bond as a base polymer in the polymer side chain or main chain or at the main chain terminal. Intrinsic radiation curable adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so they are stable without the oligomer components, etc. moving through the adhesive over time. This is preferable because an adhesive layer having a layered structure can be formed.
 上記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。このようなベースポリマーしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、上記例示したアクリル系ポリマーがあげられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. Such a base polymer is preferably one having an acrylic polymer as a basic skeleton. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 上記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基および炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合または付加反応させる方法があげられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. Examples of the method include condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボキシル基とエポキシ基、カルボキシル基とアジリジル基、ヒドロキシル基とイソシアネート基などがあげられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、上記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと上記化合物のいずれの側にあってもよいが、上記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、上記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネートなどがあげられる。また、アクリル系ポリマーとしては、上記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。 Examples of combinations of these functional groups include carboxyl group and epoxy group, carboxyl group and aziridyl group, hydroxyl group and isocyanate group. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the above compound as long as the acrylic polymer having the carbon-carbon double bond is generated by the combination of these functional groups. In the above preferred combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, those obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
 上記内在型の放射線硬化性粘着剤は、上記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に上記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic radiation-curable pressure-sensitive adhesive, a base polymer having a carbon-carbon double bond (particularly an acrylic polymer) can be used alone, but the radiation-curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
 上記放射線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させることが好ましい。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1-オンなどのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェニル-1,2―プロパンジオン-2-(O-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3′-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The radiation curable pressure-sensitive adhesive preferably contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α′-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropan-1-one; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; Naphthalene Aromatic sulfonyl chloride compounds such as sulfonyl chloride; photoactive oxime compounds such as 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 なお、放射線照射の際に、酸素による硬化阻害が起こる場合は、放射線硬化型の粘着剤層1bの表面よりなんらかの方法で酸素(空気)を遮断するのが望ましい。例えば、上記粘着剤層1bの表面をセパレータで被覆する方法や、窒素ガス雰囲気中で紫外線等の放射線の照射を行う方法等が挙げられる。 In addition, when curing inhibition by oxygen occurs during irradiation, it is desirable to block oxygen (air) from the surface of the radiation-curing pressure-sensitive adhesive layer 1b by some method. For example, a method of covering the surface of the pressure-sensitive adhesive layer 1b with a separator, a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.
 なお、粘着剤層1bには、本発明の効果等を損なわない範囲で、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤等)が含まれていてもよい。 In the pressure-sensitive adhesive layer 1b, various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an antiaging agent, Antioxidants, surfactants, crosslinking agents, etc.) may be included.
 粘着剤層1bの厚さは特に限定されないが、半導体ウェハの研削面の欠け防止、アンダーフィル材2の固定保持の両立性等の観点から1~50μm程度であるのが好ましい。好ましくは5~40μm、さらには好ましくは10~30μmである。 The thickness of the pressure-sensitive adhesive layer 1b is not particularly limited, but is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the ground surface of the semiconductor wafer and compatibility of fixing and holding the underfill material 2. The thickness is preferably 5 to 40 μm, more preferably 10 to 30 μm.
 (アンダーフィル材)
 本実施形態におけるアンダーフィル材2は、表面実装(例えばフリップチップ実装等)された半導体素子と被着体との間の空間を充填する封止用フィルムとして好適に用いることができる。
(Underfill material)
The underfill material 2 in the present embodiment can be suitably used as a sealing film that fills a space between a surface-mounted (for example, flip chip mounted) semiconductor element and an adherend.
 アンダーフィル材は特定のフラックス成分を含む。その他のフラックス成分以外の構成材料としては、必要に応じて樹脂成分、熱硬化促進触媒、架橋剤、他の有機系添加剤等の有機成分(溶媒を除く。)や、無機充填剤、他の無機系添加剤等の無機成分等が挙げられる。樹脂成分としては、熱可塑性樹脂と熱硬化性樹脂とを併用したものが挙げられる。また、熱可塑性樹脂や熱硬化性樹脂単独でも使用可能である。 The underfill material contains a specific flux component. Other constituent materials other than the flux component include organic components (excluding solvents) such as resin components, thermosetting accelerators, crosslinking agents, and other organic additives, inorganic fillers, and other materials as necessary. Examples include inorganic components such as inorganic additives. Examples of the resin component include those in which a thermoplastic resin and a thermosetting resin are used in combination. A thermoplastic resin or a thermosetting resin can be used alone.
 (フラックス成分)
 アンダーフィル材2は、はんだバンプの表面の酸化膜を除去して半導体素子の実装を容易にするために、フラックス成分を含む。フラックス成分は、分子量が300以上であり、かつ分子内にエステル結合を少なくとも1つ有する芳香族化合物(以下、「特定芳香族化合物」ともいう。)である。このような特定芳香族化合物としては、フェノールフタレイン、ローズマリー酸、5-カルボキシフルオレセイン、6-カルボキシフルオレセイン、コーリーラクトン、クロタリンが挙げられる。これらの中でも、耐熱保存性、非移行性及び入手容易性の観点から、フェノールフタレインが好ましい。
(Flux component)
The underfill material 2 includes a flux component in order to remove the oxide film on the surface of the solder bump and facilitate mounting of the semiconductor element. The flux component is an aromatic compound (hereinafter also referred to as “specific aromatic compound”) having a molecular weight of 300 or more and having at least one ester bond in the molecule. Examples of such a specific aromatic compound include phenolphthalein, rosemary acid, 5-carboxyfluorescein, 6-carboxyfluorescein, Corey lactone, and crotaline. Among these, phenolphthalein is preferable from the viewpoints of heat resistant storage stability, non-migration, and availability.
 フラックス成分は、エステル結合を有することが必要である。反応性が低く化学的に安定なエステル結合を含むことにより、意図しない反応の抑制することができ、耐熱保存性の向上に効果的である。 The flux component must have an ester bond. By including a chemically stable ester bond with low reactivity, an unintended reaction can be suppressed, which is effective in improving heat-resistant storage stability.
 アンダーフィル材2は、本発明の作用効果を損なわない限り、上記の特定芳香族化合物以外にも他のフラックス成分を含んでいてもよい。他のフラックス成分としては特に限定されず、従来公知のフラックス作用を有する化合物を用いることができ、例えば、ジフェノール酸、アジピン酸、アセチルサリチル酸、安息香酸、ベンジル酸、アゼライン酸、ベンジル安息香酸、マロン酸、2,2-ビス(ヒドロキシメチル)プロピオン酸、サリチル酸、o-メトキシ安息香酸(o-アニス酸)、m-ヒドロキシ安息香酸、コハク酸、2,6-ジメトキシメチルパラクレゾール、安息香酸ヒドラジド、カルボヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、サリチル酸ヒドラジド、イミノジ酢酸ジヒドラジド、イタコン酸ジヒドラジド、クエン酸トリヒドラジド、チオカルボヒドラジド、ベンゾフェノンヒドラゾン、4,4’-オキシビスベンゼンスルホニルヒドラジド及びアジピン酸ジヒドラジド等が挙げられる。 The underfill material 2 may contain other flux components in addition to the specific aromatic compound as long as the effects of the present invention are not impaired. The other flux component is not particularly limited, and a conventionally known compound having a flux action can be used, for example, diphenolic acid, adipic acid, acetylsalicylic acid, benzoic acid, benzylic acid, azelaic acid, benzylbenzoic acid, Malonic acid, 2,2-bis (hydroxymethyl) propionic acid, salicylic acid, o-methoxybenzoic acid (o-anisic acid), m-hydroxybenzoic acid, succinic acid, 2,6-dimethoxymethylparacresol, benzoic acid hydrazide , Carbohydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, salicylic acid hydrazide, iminodiacetic acid dihydrazide, itaconic acid dihydrazide, citric acid trihydrazide, thiocarbohydrazide, benzophenone hydrazone, 4,4'-oxybisbenze Such sulfonyl hydrazide and adipic acid dihydrazide and the like.
 フラックス成分の添加量(複数種のフラックス成分を含む場合は合計量)は上記フラックス作用が発揮される程度であればよく、前記アンダーフィル材中の前記フラックス成分の重量と前記フラックス成分以外の成分の重量との合計重量に対して前記フラックス成分の重量が占める割合は1重量%以上50重量%以下であることが好ましく、1重量%以上25重量%以下であることがより好ましく、1重量%以上10重量%以下であることがさらに好ましい。上記下限以上とすることでアンダーフィル材が十分なフラックス活性を発揮するとともに、上記上限以下とすることでアンダーフィル材のそもそもの封止樹脂としての機能を確保することができる。 The amount of the flux component added (the total amount when plural kinds of flux components are included) may be such that the above-mentioned flux action is exerted, and the weight of the flux component in the underfill material and the components other than the flux component The ratio of the weight of the flux component to the total weight with respect to the total weight of is preferably 1% to 50% by weight, more preferably 1% to 25% by weight, and more preferably 1% by weight. More preferably, the content is 10% by weight or less. By setting it to the above lower limit or more, the underfill material exhibits a sufficient flux activity, and by setting it to the upper limit or less, the function of the underfill material as a sealing resin can be secured.
 アンダーフィル材を100℃で1時間加熱した後のフラックス成分の初期含有量に対する重量減少率は50%未満であることが好ましく、40%未満であることがより好ましく、30%未満であることがさらに好ましい。100℃で1時間という熱履歴を負荷した後の重量減少率を上記上限未満に抑制することで、チップオンウェハプロセス等のアンダーフィル材に熱履歴が負荷されるプロセスであっても、優れた耐熱保存性を発揮し、アンダーフィル材が所望のフラックス活性を発揮することができる。 The weight reduction rate with respect to the initial content of the flux component after heating the underfill material at 100 ° C. for 1 hour is preferably less than 50%, more preferably less than 40%, and less than 30%. Further preferred. Even if it is a process in which a thermal history is loaded on an underfill material such as a chip-on-wafer process by suppressing the weight reduction rate after loading a thermal history of 1 hour at 100 ° C. to less than the above upper limit The heat resistant storage stability is exhibited, and the underfill material can exhibit a desired flux activity.
 前記アンダーフィル材と粘着剤層とを積層した積層体を50℃で72時間静置した後の前記アンダーフィル材における前記フラックス成分の初期含有量に対する重量減少率が50%未満であることが好ましく、40%未満であることがより好ましく、30%未満であることがさらに好ましい。これにより、例えばアンダーフィル材と粘着剤層を備える裏面研削用テープとを一体化させて用いる場合であっても、フラックス成分の粘着剤層への移行が抑制されているので、優れた非移行性を発揮することができる。 It is preferable that the weight reduction rate with respect to the initial content of the flux component in the underfill material after leaving the laminated body in which the underfill material and the pressure-sensitive adhesive layer are laminated at 50 ° C. for 72 hours is less than 50%. , Less than 40%, more preferably less than 30%. As a result, for example, even when an underfill material and a back surface grinding tape having an adhesive layer are used in an integrated manner, the transition of the flux component to the adhesive layer is suppressed, so that excellent non-migration Can demonstrate its sexuality.
 (熱可塑性樹脂)
 前記熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロン等のポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBT等の飽和ポリエステル樹脂、ポリアミドイミド樹脂、又はフッ素樹脂等が挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体素子の信頼性を確保できるアクリル樹脂が特に好ましい。
(Thermoplastic resin)
Examples of the thermoplastic resin include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor element is particularly preferable.
 前記アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、へキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はエイコシル基等が挙げられる。 The acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. Examples include polymers as components. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2 -Ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, or eicosyl group.
 また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸等の様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸等の様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等の様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸等の様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェート等の様な燐酸基含有モノマー、アクリロニトリル等のようなシアノ基含有モノマー等が挙げられる。 In addition, the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Carboxyl group-containing monomers, maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as acryloyloxynaphthalenesulfonic acid, phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate, and cyano group-containing monomers such as acrylonitrile.
 (熱硬化性樹脂)
 前記熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、又は熱硬化性ポリイミド樹脂等が挙げられる。これらの樹脂は、単独で又は2種以上を併用して用いることができる。特に、半導体素子を腐食させるイオン性不純物等の含有が少ないエポキシ樹脂が好ましい。また、エポキシ樹脂の硬化剤としてはフェノール樹脂が好ましい。
(Thermosetting resin)
Examples of the thermosetting resin include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin. These resins can be used alone or in combination of two or more. In particular, an epoxy resin containing a small amount of ionic impurities or the like that corrode semiconductor elements is preferable. Moreover, as a hardening | curing agent of an epoxy resin, a phenol resin is preferable.
 前記エポキシ樹脂は、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性等に優れるからである。 The epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type. Biphenyl type, naphthalene type, fluorene type, phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., bifunctional epoxy resin or polyfunctional epoxy resin, or hydantoin type, trisglycidyl isocyanurate Type or glycidylamine type epoxy resin is used. These can be used alone or in combination of two or more. Of these epoxy resins, novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like.
 さらに、前記フェノール樹脂は、前記エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。半導体装置の接続信頼性を向上させることができるからである。 Further, the phenol resin acts as a curing agent for the epoxy resin, for example, a novolac type phenol resin such as a phenol novolac resin, a phenol aralkyl resin, a cresol novolac resin, a tert-butylphenol novolac resin, a nonylphenol novolac resin, Examples include resol-type phenolic resins and polyoxystyrenes such as polyparaoxystyrene. These can be used alone or in combination of two or more. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
 前記エポキシ樹脂とフェノール樹脂の配合割合は、例えば、前記エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5~2.0当量になるように配合することが好適である。より好適なのは、0.8~1.2当量である。すなわち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、エポキシ樹脂硬化物の特性が劣化し易くなるからである。 The compounding ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.
 なお、本発明においては、エポキシ樹脂、フェノール樹脂及びアクリル樹脂を用いたアンダーフィル材が特に好ましい。これらの樹脂は、イオン性不純物が少なく耐熱性が高いので、半導体素子の信頼性を確保できる。この場合の配合比は、アクリル樹脂成分100重量部に対して、エポキシ樹脂とフェノール樹脂の混合量が50~500重量部である。 In the present invention, an underfill material using an epoxy resin, a phenol resin and an acrylic resin is particularly preferable. Since these resins have few ionic impurities and high heat resistance, the reliability of the semiconductor element can be ensured. In this case, the mixing ratio of the epoxy resin and the phenol resin is 50 to 500 parts by weight with respect to 100 parts by weight of the acrylic resin component.
 (熱硬化促進触媒)
 エポキシ樹脂とフェノール樹脂の熱硬化促進触媒としては、特に制限されず、公知の熱硬化促進触媒の中から適宜選択して用いることができる。熱硬化促進触媒は単独で又は2種以上を組み合わせて用いることができる。熱硬化促進触媒としては、例えば、アミン系硬化促進剤、リン系硬化促進剤、イミダゾール系硬化促進剤、ホウ素系硬化促進剤、リン-ホウ素系硬化促進剤などを用いることができる。
(Thermosetting catalyst)
The thermosetting acceleration catalyst for epoxy resin and phenol resin is not particularly limited, and can be appropriately selected from known thermosetting acceleration catalysts. A thermosetting acceleration | stimulation catalyst can be used individually or in combination of 2 or more types. As the thermosetting acceleration catalyst, for example, an amine-based curing accelerator, a phosphorus-based curing accelerator, an imidazole-based curing accelerator, a boron-based curing accelerator, a phosphorus-boron-based curing accelerator, or the like can be used.
 (架橋剤)
 本実施形態のアンダーフィル材2を予めある程度架橋をさせておく場合には、作製に際し、重合体の分子鎖末端の官能基等と反応する多官能性化合物を架橋剤として添加させておくのがよい。これにより、高温下での接着特性を向上させ、耐熱性の改善を図ることができる。
(Crosslinking agent)
When the underfill material 2 of the present embodiment is previously crosslinked to some extent, a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer is added as a crosslinking agent during the production. Good. Thereby, the adhesive property under high temperature can be improved and heat resistance can be improved.
 前記架橋剤としては、特に、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、p-フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、多価アルコールとジイソシアネートの付加物等のポリイソシアネート化合物がより好ましい。架橋剤の添加量としては、前記の重合体100重量部に対し、通常0.05~7重量部とするのが好ましい。架橋剤の量が7重量部より多いと、接着力が低下するので好ましくない。その一方、0.05重量部より少ないと、凝集力が不足するので好ましくない。また、この様なポリイソシアネート化合物と共に、必要に応じて、エポキシ樹脂等の他の多官能性化合物を一緒に含ませるようにしてもよい。 The cross-linking agent is particularly preferably a polyisocyanate compound such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, an adduct of polyhydric alcohol and diisocyanate. The addition amount of the crosslinking agent is usually preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.
 (無機充填剤)
 また、アンダーフィル材2には、無機充填剤を適宜配合することができる。無機充填剤の配合は、導電性の付与や熱伝導性の向上、貯蔵弾性率の調節等を可能にする。
(Inorganic filler)
The underfill material 2 can be appropriately mixed with an inorganic filler. The blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the storage elastic modulus, and the like.
 前記無機充填剤としては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、アルミニウム、銅、銀、金、ニッケル、クロム、鉛、錫、亜鉛、パラジウム、はんだ等の金属、又は合金類、その他カーボン等からなる種々の無機粉末が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。なかでも、シリカ、特に溶融シリカが好適に用いられる。 Examples of the inorganic filler include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina, beryllium oxide, silicon carbide, silicon nitride, and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead. , Various inorganic powders made of metals such as tin, zinc, palladium, solder, or alloys, and other carbon. These can be used alone or in combination of two or more. Among these, silica, particularly fused silica is preferably used.
 無機充填剤の平均粒径は特に限定されないものの、0.005~10μmの範囲内であることが好ましく、0.01~5μmの範囲内であることがより好ましく、さらに好ましくは0.05~2.0μmである。上記無機充填剤の平均粒径が0.005μmを下回ると、粒子の凝集が発生しやすくなり、アンダーフィル材の形成が困難となる場合がある。また、アンダーフィル材の可撓性が低下する原因にもなる。一方、上記平均粒径が10μmを超えると、アンダーフィル材と被着体との接合部への無機粒子の噛み込みが発生しやすくなるため、半導体装置の接続信頼性が低下するおそれがある。また、粒子の粗大化によりヘイズが上昇するおそれがある。なお、本発明においては、平均粒径が相互に異なる無機充填剤同士を組み合わせて使用してもよい。また、平均粒径は、光度式の粒度分布計(HORIBA製、装置名;LA-910)により求めた値である。 The average particle size of the inorganic filler is not particularly limited, but is preferably in the range of 0.005 to 10 μm, more preferably in the range of 0.01 to 5 μm, and still more preferably 0.05 to 2 0.0 μm. When the average particle size of the inorganic filler is less than 0.005 μm, the particles are likely to aggregate and it may be difficult to form the underfill material. In addition, the flexibility of the underfill material is reduced. On the other hand, when the average particle diameter exceeds 10 μm, the inorganic particles tend to be caught in the joint portion between the underfill material and the adherend, so that the connection reliability of the semiconductor device may be lowered. Moreover, there exists a possibility that haze may raise by the coarsening of a particle | grain. In the present invention, inorganic fillers having different average particle sizes may be used in combination. The average particle size is a value determined by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
 前記無機充填剤の配合量は、樹脂成分100重量部に対し10~400重量部であることが好ましく、50~250重量部がより好ましい。無機充填剤の配合量が10重量部未満であると、貯蔵弾性率が低下しパッケージの応力信頼性が大きく損なわれる場合がある。一方、400重量部を超えると、アンダーフィル材2の流動性が低下し基板や半導体素子の凹凸に十分に埋まり込まずにボイドやクラックの原因となる場合がある。 The blending amount of the inorganic filler is preferably 10 to 400 parts by weight, more preferably 50 to 250 parts by weight with respect to 100 parts by weight of the resin component. If the blending amount of the inorganic filler is less than 10 parts by weight, the storage elastic modulus may be lowered and the stress reliability of the package may be greatly impaired. On the other hand, if it exceeds 400 parts by weight, the fluidity of the underfill material 2 may be reduced, and may not be sufficiently embedded in the irregularities of the substrate or semiconductor element, causing voids or cracks.
 (他の添加剤)
 なお、アンダーフィル材2には、前記無機充填剤以外に、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤又はイオントラップ剤等が挙げられる。前記難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。これらは、単独で、又は2種以上を併用して用いることができる。前記シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。これらの化合物は、単独で又は2種以上を併用して用いることができる。前記イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。
(Other additives)
In addition to the said inorganic filler, other additives can be suitably mix | blended with the underfill material 2 as needed. Examples of other additives include flame retardants, silane coupling agents, ion trapping agents, and the like. Examples of the flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more. Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more. Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
 (アンダーフィル材の他の性状)
 本実施形態において、熱硬化処理前の上記アンダーフィル材は100~200℃での粘度として20000Pa・s以下となる領域を有することが好ましく、100Pa・s以上10000Pa・s以下となる領域を有することがより好ましい。上記温度範囲において所定の粘度領域を有することにより、接続部材4(図2A参照)のアンダーフィル材2への進入を容易にすることができる。また、半導体素子5の電気的接続の際のボイドの発生、及び半導体素子5と被着体16との間の空間からのアンダーフィル材2のはみ出しを防止することができる(図2F参照)。
(Other properties of underfill material)
In the present embodiment, the underfill material before the thermosetting treatment preferably has a region where the viscosity at 100 to 200 ° C. is 20000 Pa · s or less, and has a region which is 100 Pa · s or more and 10,000 Pa · s or less. Is more preferable. By having a predetermined viscosity region in the above temperature range, the connection member 4 (see FIG. 2A) can easily enter the underfill material 2. In addition, it is possible to prevent generation of voids during electrical connection of the semiconductor element 5 and protrusion of the underfill material 2 from the space between the semiconductor element 5 and the adherend 16 (see FIG. 2F).
 熱硬化処理前の上記アンダーフィル材の100~200℃における最低粘度は0.1Pa・s以上10000Pa・s以下であることが好ましく、1Pa・s以上5000Pa・s以下がより好ましく、10Pa・s以上3000Pa・s以下がさらに好ましい。これにより、アンダーフィル材と半導体ウェハとの貼り合わせの際に、接続部材のアンダーフィル材への進入を容易にすることができる。また、半導体素子の電気的接続の際のボイドの発生、及び半導体素子と被着体との間の空間からのアンダーフィル材のはみ出しを防止することができる。 The minimum viscosity at 100 to 200 ° C. of the underfill material before the thermosetting treatment is preferably 0.1 Pa · s or more and 10,000 Pa · s or less, more preferably 1 Pa · s or more and 5000 Pa · s or less, and 10 Pa · s or more. 3000 Pa · s or less is more preferable. Thereby, when bonding an underfill material and a semiconductor wafer, the approach to the underfill material of a connection member can be made easy. In addition, generation of voids during electrical connection of the semiconductor elements and protrusion of the underfill material from the space between the semiconductor elements and the adherend can be prevented.
 また、熱硬化前の上記アンダーフィル材2の23℃における粘度は、0.01MPa・s以上100MPa・s以下であることが好ましく、0.1MPa・s以上10MPa・s以下であることがより好ましい。熱硬化前のアンダーフィル材が上記範囲の粘度を有することで、裏面研削の際の半導体ウェハ3(図2B参照)の保持性や作業の際の取り扱い性を向上させることができる。なお、上記最低粘度及び粘度の測定は、実施例に記載の手順にて行うことができる。 Further, the viscosity at 23 ° C. of the underfill material 2 before thermosetting is preferably 0.01 MPa · s or more and 100 MPa · s or less, and more preferably 0.1 MPa · s or more and 10 MPa · s or less. . When the underfill material before thermosetting has a viscosity in the above range, the retainability of the semiconductor wafer 3 (see FIG. 2B) during back grinding and the handleability during work can be improved. In addition, the measurement of the said minimum viscosity and a viscosity can be performed in the procedure as described in an Example.
 さらに、熱硬化前の上記アンダーフィル材2の温度23℃、湿度70%の条件下における吸水率は、1重量%以下であることが好ましく、0.5重量%以下であることがより好ましい。アンダーフィル材2が上記のような吸水率を有することにより、アンダーフィル材2への水分の吸収が抑制され、半導体素子5の実装時のボイドの発生をより効率的に抑制することができる。なお、上記吸水率の下限は小さいほど好ましく、実質的に0重量%が好ましく、0重量%であることがより好ましい。 Furthermore, the water absorption rate under the conditions of a temperature of 23 ° C. and a humidity of 70% of the underfill material 2 before thermosetting is preferably 1% by weight or less, and more preferably 0.5% by weight or less. When the underfill material 2 has a water absorption rate as described above, absorption of moisture into the underfill material 2 is suppressed, and generation of voids when the semiconductor element 5 is mounted can be more efficiently suppressed. The lower limit of the water absorption rate is preferably as small as possible, substantially 0% by weight is preferable, and 0% by weight is more preferable.
 アンダーフィル材2の厚さ(複層の場合は総厚)は特に限定されないものの、アンダーフィル材2の強度や半導体素子5と被着体16との間の空間の充填性を考慮すると10μm以上100μm以下程度であってもよい。なお、アンダーフィル材2の厚さは、半導体素子5と被着体16との間のギャップや接続部材の高さを考慮して適宜設定すればよい。 Although the thickness of the underfill material 2 (total thickness in the case of multiple layers) is not particularly limited, in consideration of the strength of the underfill material 2 and the filling of the space between the semiconductor element 5 and the adherend 16, it is 10 μm or more. It may be about 100 μm or less. Note that the thickness of the underfill material 2 may be appropriately set in consideration of the gap between the semiconductor element 5 and the adherend 16 and the height of the connection member.
 積層シート10のアンダーフィル材2は、セパレータにより保護されていることが好ましい(図示せず)。セパレータは、実用に供するまでアンダーフィル材2を保護する保護材としての機能を有している。セパレータは積層シートのアンダーフィル材2上に半導体ウェハ3を貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等も使用可能である。 The underfill material 2 of the laminated sheet 10 is preferably protected by a separator (not shown). The separator has a function as a protective material that protects the underfill material 2 until it is practically used. The separator is peeled off when the semiconductor wafer 3 is stuck on the underfill material 2 of the laminated sheet. As the separator, a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, or a long-chain alkyl acrylate release agent can be used.
 (積層シートの製造方法)
 本実施の形態に係る積層シート10は、例えば裏面研削用テープ1及びアンダーフィル材2を別々に作製しておき、最後にこれらを貼り合わせることにより作成することができる。具体的には、以下のような手順に従って作製することができる。
(Laminated sheet manufacturing method)
The laminated sheet 10 according to the present embodiment can be produced, for example, by separately producing the back grinding tape 1 and the underfill material 2 and finally bonding them together. Specifically, it can be produced according to the following procedure.
 まず、基材1aは、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。 First, the base material 1a can be formed by a conventionally known film forming method. Examples of the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
 次に、粘着剤層形成用の粘着剤組成物を調製する。粘着剤組成物には、粘着剤層の項で説明したような樹脂や添加物等が配合されている。調製した粘着剤組成物を基材1a上に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層1bを形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、上記乾燥条件で塗布膜を乾燥させて粘着剤層1bを形成してもよい。その後、基材1a上に粘着剤層1bをセパレータと共に貼り合わせる。これにより、基材1a及び粘着剤層1bを備える裏面研削用テープ1が作製される。 Next, an adhesive composition for forming an adhesive layer is prepared. Resin, additive, etc. which were demonstrated by the term of the adhesive layer are mix | blended with the adhesive composition. After the prepared pressure-sensitive adhesive composition is applied on the substrate 1a to form a coating film, the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form the pressure-sensitive adhesive layer 1b. . It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed. Moreover, after apply | coating an adhesive composition on a separator and forming a coating film, the coating film may be dried on the said dry conditions, and the adhesive layer 1b may be formed. Then, the adhesive layer 1b is bonded together with a separator on the base material 1a. Thereby, the tape 1 for back surface grinding provided with the base material 1a and the adhesive layer 1b is produced.
 アンダーフィル材2は、例えば、以下のようにして作製される。まず、アンダーフィル材2の形成材料である接着剤組成物を調製する。当該接着剤組成物には、アンダーフィル材の項で説明したとおり、熱可塑性成分やエポキシ樹脂、各種の添加剤等が配合されている。 The underfill material 2 is produced as follows, for example. First, an adhesive composition that is a material for forming the underfill material 2 is prepared. As described in the section of the underfill material, the adhesive composition contains a thermoplastic component, an epoxy resin, various additives, and the like.
 次に、調製した接着剤組成物を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ、アンダーフィル材を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度70~160℃、乾燥時間1~5分間の範囲内で行われる。また、セパレータ上に接着剤組成物を塗布して塗布膜を形成した後、上記乾燥条件で塗布膜を乾燥させてアンダーフィル材を形成してもよい。その後、基材セパレータ上にアンダーフィル材をセパレータと共に貼り合わせる。 Next, after applying the prepared adhesive composition on the base separator so as to have a predetermined thickness to form a coating film, the coating film is dried under a predetermined condition to form an underfill material. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes are performed. Moreover, after apply | coating an adhesive composition on a separator and forming a coating film, an underfill material may be formed by drying a coating film on the said drying conditions. Then, an underfill material is bonded together with a separator on a base material separator.
 続いて、裏面研削用テープ1及びアンダーフィル材2からそれぞれセパレータを剥離し、アンダーフィル材と粘着剤層とが貼り合わせ面となる様にして両者を貼り合わせる。貼り合わせは、例えば圧着により行うことができる。このとき、ラミネート温度は特に限定されず、例えば30~100℃が好ましく、40~80℃がより好ましい。また、線圧は特に限定されず、例えば0.98~196N/cmが好ましく、9.8~98N/cmがより好ましい。次に、アンダーフィル材上の基材セパレータを剥離し、本実施の形態に係る積層シートが得られる。 Subsequently, the separator is peeled off from the back surface grinding tape 1 and the underfill material 2 respectively, and both are bonded so that the underfill material and the pressure-sensitive adhesive layer become a bonding surface. Bonding can be performed by, for example, pressure bonding. At this time, the laminating temperature is not particularly limited, and is preferably 30 to 100 ° C., for example, and more preferably 40 to 80 ° C. Further, the linear pressure is not particularly limited, and for example, 0.98 to 196 N / cm is preferable, and 9.8 to 98 N / cm is more preferable. Next, the base material separator on the underfill material is peeled off to obtain the laminated sheet according to the present embodiment.
 [貼合せ工程]
 貼合せ工程では、半導体ウェハ3の接続部材4が形成された回路面3aと上記積層シート10のアンダーフィル材2とを貼り合わせる(図2A参照)。
[Lamination process]
In the bonding step, the circuit surface 3a on which the connection member 4 of the semiconductor wafer 3 is formed and the underfill material 2 of the laminated sheet 10 are bonded together (see FIG. 2A).
 (半導体ウェハ)
 半導体ウェハ3の回路面3aには、複数の接続部材4が形成されている(図2A参照)。バンプや導電材等の接続部材の材質としては、特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等のはんだ類(合金)や、金系金属材、銅系金属材などが挙げられる。接続部材の高さも用途に応じて定められ、一般的には15~100μm程度である。もちろん、半導体ウェハ3における個々の接続部材の高さは同一でも異なっていてもよい。
(Semiconductor wafer)
A plurality of connection members 4 are formed on the circuit surface 3a of the semiconductor wafer 3 (see FIG. 2A). There are no particular restrictions on the material of the connecting member such as a bump or a conductive material, for example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, Examples thereof include solders (alloys) such as a tin-zinc-bismuth metal material, a gold metal material, and a copper metal material. The height of the connecting member is also determined according to the application, and is generally about 15 to 100 μm. Of course, the height of each connection member in the semiconductor wafer 3 may be the same or different.
 本実施形態に係る半導体装置の製造方法において、アンダーフィル材の厚さとしては、半導体ウェハ表面に形成された接続部材の高さX(μm)と前記アンダーフィル材の厚さY(μm)とが、下記の関係を満たすことが好ましい。
   0.5≦Y/X≦2
In the method for manufacturing a semiconductor device according to the present embodiment, the thickness of the underfill material includes a height X (μm) of the connecting member formed on the surface of the semiconductor wafer and a thickness Y (μm) of the underfill material. However, it is preferable to satisfy | fill the following relationship.
0.5 ≦ Y / X ≦ 2
 前記接続部材の高さX(μm)と前記硬化フィルムの厚さY(μm)とが上記関係を満たすことにより、半導体素子と被着体との間の空間を十分に充填することができると共に、当該空間からのアンダーフィル材の過剰のはみ出しを防止することができ、アンダーフィル材による半導体素子の汚染等を防止することができる。なお、各接続部材の高さが異なる場合は、最も高い接続部材の高さを基準とする。 When the height X (μm) of the connecting member and the thickness Y (μm) of the cured film satisfy the above relationship, the space between the semiconductor element and the adherend can be sufficiently filled. Further, excessive protrusion of the underfill material from the space can be prevented, and contamination of the semiconductor element by the underfill material can be prevented. In addition, when the height of each connection member differs, the height of the highest connection member is used as a reference.
 (貼り合わせ)
 まず、積層シート10のアンダーフィル材2上に任意に設けられたセパレータを適宜に剥離し、図2Aに示すように、前記半導体ウェハ3の接続部材4が形成された回路面3aとアンダーフィル材2とを対向させ、前記アンダーフィル材2と前記半導体ウェハ3とを貼り合わせる(マウント)。
(Lamination)
First, a separator arbitrarily provided on the underfill material 2 of the laminated sheet 10 is appropriately peeled off, and as shown in FIG. 2A, the circuit surface 3a on which the connection member 4 of the semiconductor wafer 3 is formed and the underfill material. 2 and the underfill material 2 and the semiconductor wafer 3 are bonded together (mounting).
 貼り合わせの方法は特に限定されないが、圧着による方法が好ましい。圧着は通常、圧着ロール等の公知の押圧手段により、好ましくは0.1~1MPa、より好ましくは0.3~0.7MPaの圧力を負荷して押圧しながら行われる。この際、40~100℃程度に加熱しながら圧着させてもよい。また、密着性を高めるために、減圧下(1~1000Pa)で圧着することも好ましい。 The method of bonding is not particularly limited, but a method by pressure bonding is preferable. The crimping is usually performed while applying a pressure of 0.1 to 1 MPa, more preferably 0.3 to 0.7 MPa by a known pressing means such as a crimping roll. At this time, pressure bonding may be performed while heating to about 40 to 100 ° C. In order to improve the adhesion, it is also preferable to perform pressure bonding under reduced pressure (1 to 1000 Pa).
 [研削工程]
 研削工程では、上記半導体ウェハ3の回路面3aとは反対側の面(すなわち、裏面)3bを研削する(図2B参照)。半導体ウェハ3の裏面研削に用いる薄型加工機としては特に限定されず、例えば研削機(バックグラインダー)、研磨パッド等を例示できる。また、エッチング等の化学的方法にて裏面研削を行ってもよい。裏面研削は、半導体ウェハが所望の厚さ(例えば、700~25μm)になるまで行われる。
[Grinding process]
In the grinding step, the surface (that is, the back surface) 3b opposite to the circuit surface 3a of the semiconductor wafer 3 is ground (see FIG. 2B). The thin processing machine used for back surface grinding of the semiconductor wafer 3 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer has a desired thickness (for example, 700 to 25 μm).
 [固定工程]
 研削工程後、アンダーフィル材2を貼り付けた状態で半導体ウェハ3を裏面研削用テープ1から剥離し、半導体ウェハ3とダイシングテープ11とを貼り合わせる(図2C参照)。このとき、半導体ウェハ3の裏面3bとダイシングテープ11の粘着剤層11bとが対向するように貼り合わせる。従って、半導体ウェハ3の回路面3aに貼り合わされたアンダーフィル材2は露出した状態となる。なお、ダイシングテープ11は、基材11a上に粘着剤層11bが積層された構造を有する。基材11a及び粘着剤層11bとしては、上記裏面研削用テープ1の基材1a及び粘着剤層1bの項で示した成分及び製法を用いて好適に作製することができる。
[Fixing process]
After the grinding step, the semiconductor wafer 3 is peeled from the back surface grinding tape 1 with the underfill material 2 attached, and the semiconductor wafer 3 and the dicing tape 11 are attached (see FIG. 2C). At this time, bonding is performed so that the back surface 3b of the semiconductor wafer 3 and the adhesive layer 11b of the dicing tape 11 face each other. Therefore, the underfill material 2 bonded to the circuit surface 3a of the semiconductor wafer 3 is exposed. The dicing tape 11 has a structure in which an adhesive layer 11b is laminated on a substrate 11a. The base material 11a and the pressure-sensitive adhesive layer 11b can be suitably produced by using the components and the production methods shown in the paragraphs of the base material 1a and the pressure-sensitive adhesive layer 1b of the back grinding tape 1.
 半導体ウェハ3の裏面研削用テープ1からの剥離の際、粘着剤層1bが放射線硬化性を有する場合には、粘着剤層1bに放射線を照射して粘着剤層1bを硬化させることで、剥離を容易に行うことができる。放射線の照射量は、用いる放射線の種類や粘着剤層の硬化度等を考慮して適宜設定すればよい。 When the pressure-sensitive adhesive layer 1b has radiation curability when the semiconductor wafer 3 is peeled from the back surface grinding tape 1, the pressure-sensitive adhesive layer 1b is irradiated with radiation to cure the pressure-sensitive adhesive layer 1b. Can be easily performed. The radiation dose may be appropriately set in consideration of the type of radiation used, the degree of cure of the pressure-sensitive adhesive layer, and the like.
 本実施形態の積層シートでは、上記アンダーフィル材の上記裏面研削用テープからの剥離力が0.03~0.10N/20mmであることが好ましい。このような軽剥離力により、裏面研削用テープからの剥離の際のアンダーフィル材の破断や変形を防止することができるとともに、半導体ウェハの変形を防止することができる。 In the laminated sheet of the present embodiment, it is preferable that the peeling force of the underfill material from the back surface grinding tape is 0.03 to 0.10 N / 20 mm. Such a light peeling force can prevent breakage and deformation of the underfill material at the time of peeling from the back surface grinding tape, and can also prevent deformation of the semiconductor wafer.
 上記剥離力の測定は、積層シートから幅20mmのサンプル片を切り出し、これを40℃のホットプレート上に載置されたシリコンミラーウェハに貼り付ける。約30分間放置して、引張試験機を用い剥離力を測定する。測定条件は、剥離角度:90°、引張速度:300mm/minとする。なお、剥離力の測定は、温度23℃、相対湿度50%の環境下で行う。ただし、粘着剤層が紫外線硬化型である場合は、前記と同様の条件でシリコンミラーウェハに貼り付け、約30分間放置した後、紫外線の照射条件を下記の通りとして積層シート側から紫外線照射を行い、そのときの剥離力の測定を行う。 The measurement of the peeling force is performed by cutting a sample piece having a width of 20 mm from the laminated sheet and attaching it to a silicon mirror wafer placed on a 40 ° C. hot plate. Leave for about 30 minutes and measure the peel force using a tensile tester. The measurement conditions are peeling angle: 90 ° and tensile speed: 300 mm / min. Note that the peel force is measured in an environment at a temperature of 23 ° C. and a relative humidity of 50%. However, when the pressure-sensitive adhesive layer is an ultraviolet curable type, it is affixed to a silicon mirror wafer under the same conditions as described above, and is allowed to stand for about 30 minutes. And the peel strength at that time is measured.
 <紫外線の照射条件>
 紫外線(UV)照射装置:高圧水銀灯
 紫外線照射積算光量:500mJ/cm
 出力:75W
 照射強度:150mW/cm
<Ultraviolet irradiation conditions>
Ultraviolet (UV) irradiation device: high-pressure mercury lamp UV irradiation integrated light quantity: 500 mJ / cm 2
Output: 75W
Irradiation intensity: 150 mW / cm 2
 [ダイシング工程]
 ダイシング工程では、直接光や間接光、赤外線等により求めたダイシング位置に基づき、図2Dに示すように半導体ウェハ3及びアンダーフィル材2をダイシングしてダイシングされたアンダーフィル材付きの半導体素子5を形成する。ダイシング工程を経ることで、半導体ウェハ3を所定のサイズに切断して個片化(小片化)し、半導体チップ(半導体素子)5を製造する。ここで得られる半導体チップ5は同形状に切断されたアンダーフィル材2と一体になっている。ダイシングは、半導体ウェハ3のアンダーフィル材2を貼り合わせた回路面3aから常法に従い行われる。
[Dicing process]
In the dicing process, the semiconductor element 5 with the underfill material diced by dicing the semiconductor wafer 3 and the underfill material 2 as shown in FIG. Form. By passing through a dicing process, the semiconductor wafer 3 is cut into a predetermined size and divided into pieces (small pieces), and a semiconductor chip (semiconductor element) 5 is manufactured. The semiconductor chip 5 obtained here is integrated with the underfill material 2 cut into the same shape. Dicing is performed according to a conventional method from the circuit surface 3a on which the underfill material 2 of the semiconductor wafer 3 is bonded.
 本工程では、例えば、ダイシングブレードによりダイシングテープ11まで切込みを行うフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウェハは、ダイシングテープ11により優れた密着性で接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウェハの破損も抑制できる。なお、アンダーフィル材がエポキシ樹脂を含む樹脂組成物により形成されていると、ダイシングにより切断されても、その切断面においてアンダーフィル材のアンダーフィル材の糊はみ出しが生じるのを抑制又は防止することができる。その結果、切断面同士が再付着(ブロッキング)することを抑制又は防止することができ、後述のピックアップを一層良好に行うことができる。 In this step, for example, a cutting method called full cut in which cutting is performed up to the dicing tape 11 with a dicing blade can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer is bonded and fixed with excellent adhesion by the dicing tape 11, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer can also be suppressed. In addition, when the underfill material is formed of a resin composition containing an epoxy resin, even if the underfill material is cut by dicing, the underfill material of the underfill material is prevented or prevented from protruding on the cut surface. Can do. As a result, it is possible to suppress or prevent the cut surfaces from reattaching (blocking), and the pickup described later can be performed more satisfactorily.
 なお、ダイシング工程に続いてダイシングテープのエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介してダイシングテープを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さくダイシングテープを支持する内リングとを有している。このエキスパンド工程により、後述のピックアップ工程において、隣り合う半導体チップ同士が接触して破損するのを防ぐことが出来る。 In addition, when expanding a dicing tape following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus. The expanding apparatus includes a donut-shaped outer ring that can push down the dicing tape through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing tape. By this expanding process, it is possible to prevent adjacent semiconductor chips from coming into contact with each other and being damaged in a pickup process described later.
 [ピックアップ工程]
 ダイシングテープ11に接着固定された半導体チップ5を回収するために、図2Eに示すように、アンダーフィル材2付きの半導体チップ5のピックアップを行って、半導体チップ5とアンダーフィル材2の積層体Aをダイシングテープ11より剥離する。
[Pickup process]
In order to collect the semiconductor chip 5 bonded and fixed to the dicing tape 11, the semiconductor chip 5 with the underfill material 2 is picked up as shown in FIG. A is peeled off from the dicing tape 11.
 ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップをダイシングテープの基材側からニードルによって突き上げ、突き上げられた半導体チップをピックアップ装置によってピックアップする方法等が挙げられる。なお、ピックアップされた半導体チップ5は、回路面3aに貼り合わされたアンダーフィル材2と一体となって積層体Aを構成している。 The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, a method of pushing up individual semiconductor chips from the base material side of the dicing tape with a needle and picking up the pushed-up semiconductor chips with a pickup device can be mentioned. The picked-up semiconductor chip 5 constitutes a laminate A integrally with the underfill material 2 bonded to the circuit surface 3a.
 ピックアップは、粘着剤層11bが紫外線硬化型の場合、該粘着剤層11bに紫外線を照射した後に行う。これにより、粘着剤層11bの半導体チップ5に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間等の条件は特に限定されず、適宜必要に応じて設定すればよい。また、紫外線照射に使用する光源としては、例えば低圧水銀ランプ、低圧高出力ランプ、中圧水銀ランプ、無電極水銀ランプ、キセノン・フラッシュ・ランプ、エキシマ・ランプ、紫外LED等を用いることができる。 When the pressure-sensitive adhesive layer 11b is an ultraviolet curable type, the pickup is performed after the pressure-sensitive adhesive layer 11b is irradiated with ultraviolet light. Thereby, the adhesive force with respect to the semiconductor chip 5 of the adhesive layer 11b falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip 5. Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary. Moreover, as a light source used for ultraviolet irradiation, for example, a low-pressure mercury lamp, a low-pressure high-power lamp, a medium-pressure mercury lamp, an electrodeless mercury lamp, a xenon flash lamp, an excimer lamp, an ultraviolet LED, or the like can be used.
 [実装工程]
 実装工程では、半導体素子5の実装位置を直接光や間接光、赤外線等により予め求めておき、求めた実装位置に従って、被着体16と半導体素子5の間の空間をアンダーフィル材2で充填しつつ接続部材4を介して半導体素子5と被着体16とを電気的に接続する(図2F参照)。具体的には、積層体Aの半導体チップ5を、半導体チップ5の回路面3aが被着体16と対向する形態で、被着体16に常法に従い固定させる。例えば、半導体チップ5に形成されているバンプ(接続部材)4を、被着体16の接続パッドに被着された接合用の導電材17(はんだなど)に接触させて押圧しながら導電材を溶融させることにより、半導体チップ5と被着体16との電気的接続を確保し、半導体チップ5を被着体16に固定させることができる。半導体チップ5の回路面3aにはアンダーフィル材2が貼り付けられているので、半導体チップ5と被着体16との電気的接続と同時に、半導体チップ5と被着体16との間の空間がアンダーフィル材2により充填されることになる。
[Mounting process]
In the mounting process, the mounting position of the semiconductor element 5 is obtained in advance by direct light, indirect light, infrared light, or the like, and the space between the adherend 16 and the semiconductor element 5 is filled with the underfill material 2 according to the obtained mounting position. However, the semiconductor element 5 and the adherend 16 are electrically connected through the connection member 4 (see FIG. 2F). Specifically, the semiconductor chip 5 of the stacked body A is fixed to the adherend 16 according to a conventional method with the circuit surface 3a of the semiconductor chip 5 facing the adherend 16. For example, bumps (connection members) 4 formed on the semiconductor chip 5 are brought into contact with a bonding conductive material 17 (solder or the like) attached to the connection pads of the adherend 16 while pressing the conductive material. By melting, the electrical connection between the semiconductor chip 5 and the adherend 16 can be secured, and the semiconductor chip 5 can be fixed to the adherend 16. Since the underfill material 2 is affixed to the circuit surface 3 a of the semiconductor chip 5, the space between the semiconductor chip 5 and the adherend 16 as well as the electrical connection between the semiconductor chip 5 and the adherend 16. Is filled with the underfill material 2.
 一般的に、実装工程における加熱条件としては100~300℃であり、加圧条件としては0.5~500Nである。また、実装工程での熱圧着処理を多段階で行ってもよい。例えば、150℃、100Nで10秒間処理した後、300℃、100~200Nで10秒間処理するという手順を採用することができる。多段階で熱圧着処理を行うことにより、接続部材とパッド間の樹脂を効率よく除去し、より良好な金属間接合を得ることが出来る。 Generally, the heating condition in the mounting process is 100 to 300 ° C., and the pressurizing condition is 0.5 to 500 N. Moreover, you may perform the thermocompression-bonding process in a mounting process in multistep. For example, a procedure of treating at 150 ° C. and 100 N for 10 seconds and then treating at 300 ° C. and 100 to 200 N for 10 seconds can be employed. By performing thermocompression bonding in multiple stages, the resin between the connection member and the pad can be efficiently removed, and a better metal-to-metal bond can be obtained.
 被着体16としては、半導体ウェハ、リードフレームや回路基板(配線回路基板など)等の各種基板、他の半導体素子を用いることができる。基板の材質としては、特に限定されるものではないが、セラミック基板や、プラスチック基板が挙げられる。プラスチック基板としては、例えば、エポキシ基板、ビスマレイミドトリアジン基板、ポリイミド基板、ガラスエポキシ基板等が挙げられる。1つの被着体に実装する半導体素子の数も限定されず、1つ又は複数個のいずれであってもよい。アンダーフィル材2は、半導体ウェハに多数の半導体チップを実装するチップオンウェハプロセスにも好適に適用することができる。 As the adherend 16, various substrates such as a semiconductor wafer, a lead frame, a circuit board (such as a wiring circuit board), and other semiconductor elements can be used. The material of the substrate is not particularly limited, and examples thereof include a ceramic substrate and a plastic substrate. Examples of the plastic substrate include an epoxy substrate, a bismaleimide triazine substrate, a polyimide substrate, and a glass epoxy substrate. The number of semiconductor elements to be mounted on one adherend is not limited, and may be one or plural. The underfill material 2 can be suitably applied to a chip-on-wafer process in which a large number of semiconductor chips are mounted on a semiconductor wafer.
 なお、実装工程では、接続部材及び導電材の一方又は両方を溶融させて、半導体チップ5の接続部材形成面3aのバンプ4と、被着体16の表面の導電材17とを接続させているが、このバンプ4及び導電材17の溶融時の温度としては、通常、260℃程度(例えば、250℃~300℃)となっている。本実施形態に係る積層シートは、アンダーフィル材2をエポキシ樹脂等により形成することにより、この実装工程における高温にも耐えられる耐熱性を有するものとすることができる。 In the mounting process, one or both of the connection member and the conductive material are melted to connect the bumps 4 on the connection member forming surface 3a of the semiconductor chip 5 and the conductive material 17 on the surface of the adherend 16. However, the temperature at the time of melting the bump 4 and the conductive material 17 is usually about 260 ° C. (for example, 250 ° C. to 300 ° C.). The laminated sheet according to the present embodiment can have heat resistance that can withstand high temperatures in this mounting process by forming the underfill material 2 with an epoxy resin or the like.
 [アンダーフィル材硬化工程]
 半導体素子5と被着体16との電気的接続を行った後は、アンダーフィル材2を加熱により硬化させる。これにより、半導体素子5の表面を保護することができるとともに、半導体素子5と被着体16との間の接続信頼性を確保することができる。アンダーフィル材の硬化のための加熱温度としては特に限定されず、150~250℃程度であればよい。なお、実装工程における加熱処理によりアンダーフィル材が硬化する場合、本工程は省略することができる。
[Underfill material curing process]
After the electrical connection between the semiconductor element 5 and the adherend 16 is performed, the underfill material 2 is cured by heating. Thereby, the surface of the semiconductor element 5 can be protected, and the connection reliability between the semiconductor element 5 and the adherend 16 can be ensured. The heating temperature for curing the underfill material is not particularly limited, and may be about 150 to 250 ° C. In addition, when an underfill material hardens | cures by the heat processing in a mounting process, this process can be abbreviate | omitted.
 [封止工程]
 次に、実装された半導体チップ5を備える半導体装置20全体を保護するために封止工程を行ってもよい。封止工程は、封止樹脂を用いて行われる。このときの封止条件としては特に限定されないが、通常、175℃で60秒間~90秒間の加熱を行うことにより、封止樹脂の熱硬化が行われるが、本発明はこれに限定されず、例えば165℃~185℃で、数分間キュアすることができる。
[Sealing process]
Next, a sealing step may be performed in order to protect the entire semiconductor device 20 including the mounted semiconductor chip 5. The sealing step is performed using a sealing resin. The sealing conditions at this time are not particularly limited. Usually, the sealing resin is thermally cured by heating at 175 ° C. for 60 seconds to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 ° C. to 185 ° C. for several minutes.
 前記封止樹脂としては、絶縁性を有する樹脂(絶縁樹脂)であれば特に制限されず、公知の封止樹脂等の封止材から適宜選択して用いることができるが、弾性を有する絶縁樹脂がより好ましい。封止樹脂としては、例えば、エポキシ樹脂を含む樹脂組成物等が挙げられる。エポキシ樹脂としては、前記に例示のエポキシ樹脂等が挙げられる。また、エポキシ樹脂を含む樹脂組成物による封止樹脂としては、樹脂成分として、エポキシ樹脂以外に、エポキシ樹脂以外の熱硬化性樹脂(フェノール樹脂など)や、熱可塑性樹脂などが含まれていてもよい。なお、フェノール樹脂としては、エポキシ樹脂の硬化剤としても利用することができ、このようなフェノール樹脂としては、前記に例示のフェノール樹脂などが挙げられる。 The sealing resin is not particularly limited as long as it is an insulating resin (insulating resin), and can be appropriately selected from sealing materials such as known sealing resins. Is more preferable. As sealing resin, the resin composition containing an epoxy resin etc. are mentioned, for example. Examples of the epoxy resin include the epoxy resins exemplified above. Moreover, as a sealing resin by the resin composition containing an epoxy resin, in addition to an epoxy resin, a thermosetting resin other than an epoxy resin (such as a phenol resin) or a thermoplastic resin may be included as a resin component. Good. In addition, as a phenol resin, it can utilize also as a hardening | curing agent of an epoxy resin, As such a phenol resin, the phenol resin illustrated above etc. are mentioned.
 [半導体装置]
 次に、当該積層シートを用いて得られる半導体装置について図面を参照しつつ説明する(図2F参照)。本実施形態に係る半導体装置20では、半導体素子5と被着体16とが、半導体素子5上に形成されたバンプ(接続部材)4及び被着体16上に設けられた導電材17を介して電気的に接続されている。また、半導体素子5と被着体16との間には、その空間を充填するようにアンダーフィル材2が配置されている。半導体装置20は、所定のアンダーフィル材2及び光照射による位置合わせを採用する上記製造方法にて得られるので、半導体素子5と被着体16との間で良好な電気的接続が達成されている。従って、半導体素子5の表面保護、半導体素子5と被着体16との間の空間の充填、及び半導体素子5と被着体16との間の電気的接続がそれぞれ十分なレベルとなり、半導体装置20として高い信頼性を発揮することができる。
[Semiconductor device]
Next, a semiconductor device obtained using the laminated sheet will be described with reference to the drawing (see FIG. 2F). In the semiconductor device 20 according to the present embodiment, the semiconductor element 5 and the adherend 16 are connected via the bump (connection member) 4 formed on the semiconductor element 5 and the conductive material 17 provided on the adherend 16. Are electrically connected. An underfill material 2 is disposed between the semiconductor element 5 and the adherend 16 so as to fill the space. Since the semiconductor device 20 is obtained by the above manufacturing method that employs the predetermined underfill material 2 and alignment by light irradiation, good electrical connection is achieved between the semiconductor element 5 and the adherend 16. Yes. Accordingly, the surface protection of the semiconductor element 5, the filling of the space between the semiconductor element 5 and the adherend 16, and the electrical connection between the semiconductor element 5 and the adherend 16 become sufficient levels, respectively, and the semiconductor device High reliability can be demonstrated as 20.
<第2実施形態>
 第1実施形態では片面に回路が形成された半導体ウェハを用いているのに対し、本実施形態では両面に回路が形成された半導体ウェハを用いて半導体装置を製造する。また、本実施形態で用いる半導体ウェハは目的とする厚さを有していることから、研削工程は省略される。従って、第2実施形態での積層シートとしては、ダイシングテープと該ダイシングテープ上に積層された所定のアンダーフィル材とを備える積層シートを用いる。第2実施形態での位置整合工程より前の代表的な工程として、上記積層シートを準備する準備工程、接続部材を有する回路面が両面に形成された半導体ウェハと上記積層シートのアンダーフィル材とを貼り合わせる貼合せ工程、上記半導体ウェハをダイシングして上記アンダーフィル材付きの半導体素子を形成するダイシング工程、上記アンダーフィル材付きの半導体素子を上記積層シートから剥離するピックアップ工程が挙げられる。その後、位置整合工程以降の工程を行って半導体装置を製造する。
Second Embodiment
In the first embodiment, a semiconductor wafer having a circuit formed on one side is used, whereas in the present embodiment, a semiconductor device is manufactured using a semiconductor wafer having a circuit formed on both sides. Further, since the semiconductor wafer used in this embodiment has a target thickness, the grinding step is omitted. Therefore, a laminated sheet including a dicing tape and a predetermined underfill material laminated on the dicing tape is used as the laminated sheet in the second embodiment. As a representative process prior to the position alignment process in the second embodiment, a preparation process for preparing the laminated sheet, a semiconductor wafer on which circuit surfaces having connection members are formed on both sides, and an underfill material for the laminated sheet, A bonding step of bonding the semiconductor wafer, a dicing step of dicing the semiconductor wafer to form a semiconductor element with the underfill material, and a pickup step of peeling the semiconductor element with the underfill material from the laminated sheet. Thereafter, the semiconductor device is manufactured by performing the steps after the position alignment step.
 [準備工程]
 準備工程では、ダイシングテープ41と該ダイシングテープ41上に積層された所定のアンダーフィル材42とを備える積層シートを準備する(図3A参照)。ダイシングテープ41は、基材41aと、基材41a上に積層された粘着剤層41bとを備えている。なお、アンダーフィル材42は、粘着剤層41b上に積層されている。このようなダイシングテープ41の基材41a及び粘着剤層41b、並びにアンダーフィル材42としては、第1実施形態と同様のものを用いることができる。
[Preparation process]
In the preparation step, a laminated sheet including a dicing tape 41 and a predetermined underfill material 42 laminated on the dicing tape 41 is prepared (see FIG. 3A). The dicing tape 41 includes a base material 41a and an adhesive layer 41b laminated on the base material 41a. The underfill material 42 is laminated on the pressure-sensitive adhesive layer 41b. As the base material 41a and the pressure-sensitive adhesive layer 41b of the dicing tape 41 and the underfill material 42, the same materials as those in the first embodiment can be used.
 [貼合せ工程]
 貼合せ工程では、図3Aに示すように、接続部材44を有する回路面が両面に形成された半導体ウェハ43と上記積層シートのアンダーフィル材42とを貼り合わせる。なお、所定の厚さに薄型化された半導体ウェハの強度は弱いことから、補強のために半導体ウェハを仮固定材を介してサポートガラス等の支持体に固定することがある(図示せず)。この場合は、半導体ウェハとアンダーフィル材との貼り合わせ後に、仮固定材とともに支持体を剥離する工程を含んでいてもよい。半導体ウェハ43のいずれの回路面とアンダーフィル材42とを貼り合わせるかは、目的とする半導体装置の構造に応じて変更すればよい。
[Lamination process]
In the laminating step, as shown in FIG. 3A, the semiconductor wafer 43 having the circuit surface having the connection member 44 formed on both sides and the underfill material 42 of the laminated sheet are bonded together. In addition, since the strength of the semiconductor wafer thinned to a predetermined thickness is weak, the semiconductor wafer may be fixed to a support such as support glass via a temporary fixing material (not shown) for reinforcement. . In this case, the process of peeling a support body with a temporary fixing material after bonding a semiconductor wafer and an underfill material may be included. Which circuit surface of the semiconductor wafer 43 and the underfill material 42 are bonded together may be changed according to the structure of the target semiconductor device.
 半導体ウェハ43としては、両面に接続部材44を有する回路面が形成されており、所定の厚さを有している点を除き、第1実施形態の半導体ウェハと同様である。半導体ウェハ43の両面の接続部材44同士は電気的に接続されていてもよく、接続されていなくてもよい。接続部材44同士の電気的接続には、TSV形式と呼ばれるビアを介しての接続による接続等が挙げられる。貼り合わせ条件としては、第1実施形態における貼り合わせ条件を好適に採用することができる。 The semiconductor wafer 43 is the same as the semiconductor wafer of the first embodiment except that the circuit surface having the connection member 44 is formed on both surfaces and has a predetermined thickness. The connection members 44 on both surfaces of the semiconductor wafer 43 may be electrically connected or may not be connected. Examples of the electrical connection between the connection members 44 include a connection through a via called a TSV format. As the bonding conditions, the bonding conditions in the first embodiment can be suitably employed.
 [ダイシング工程]
 ダイシング工程では、上記半導体ウェハ43及びアンダーフィル材42をダイシングして上記アンダーフィル材付きの半導体素子45を形成する(図3B参照)。ダイシング条件としては、第1実施形態における諸条件を好適に採用することができる。なお、ダイシングは、半導体ウェハ43の露出した回路面に対して行うので、ダイシング位置の検出は容易であるものの、必要に応じて光を照射してダイシング位置を確認した後、ダイシングを行ってもよい。
[Dicing process]
In the dicing process, the semiconductor wafer 43 and the underfill material 42 are diced to form the semiconductor element 45 with the underfill material (see FIG. 3B). As the dicing conditions, the conditions in the first embodiment can be suitably employed. In addition, since dicing is performed on the exposed circuit surface of the semiconductor wafer 43, it is easy to detect the dicing position. However, dicing may be performed after confirming the dicing position by irradiating light as necessary. Good.
 [ピックアップ工程]
 ピックアップ工程では、上記アンダーフィル材42付きの半導体素子45を上記ダイシングテープ41から剥離する(図3C)。ピックアップ条件としては、第1実施形態における諸条件を好適に採用することができる。
[Pickup process]
In the pickup process, the semiconductor element 45 with the underfill material 42 is peeled from the dicing tape 41 (FIG. 3C). As the pickup conditions, various conditions in the first embodiment can be suitably employed.
 本実施形態の積層シートでは、上記アンダーフィル材の上記ダイシングテープからの剥離力が0.03~0.10N/20mmであることが好ましい。これにより、アンダーフィル材付き半導体素子のピックアップを容易に行うことができる。 In the laminated sheet of this embodiment, it is preferable that the peeling force of the underfill material from the dicing tape is 0.03 to 0.10 N / 20 mm. Thereby, it is possible to easily pick up a semiconductor element with an underfill material.
 [実装工程]
 実装工程では、被着体66と半導体素子45の間の空間をアンダーフィル材42で充填しつつ接続部材44を介して半導体素子45と被着体66とを電気的に接続する(図3D参照)。実装工程における条件は、第1実施形態における諸条件を好適に採用することができる。これにより、本実施形態に係る半導体装置60を製造することができる。
[Mounting process]
In the mounting process, the semiconductor element 45 and the adherend 66 are electrically connected via the connection member 44 while the space between the adherend 66 and the semiconductor element 45 is filled with the underfill material 42 (see FIG. 3D). ). Various conditions in the first embodiment can be suitably employed as the conditions in the mounting process. Thereby, the semiconductor device 60 according to the present embodiment can be manufactured.
 以降、第1実施形態と同様に、必要に応じてアンダーフィル材硬化工程及び封止工程を行ってもよい。 Thereafter, similarly to the first embodiment, an underfill material curing step and a sealing step may be performed as necessary.
<第3実施形態>
 第1実施形態では積層シートの構成部材として裏面研削用テープを用いたが、本実施形態では該裏面研削用テープの粘着剤層を設けずに基材単独を用いる。従って、本実施形態の積層シートとしては、基材上にアンダーフィル材が積層された状態となる。本実施形態では研削工程は任意に行うことができるものの、ピックアップ工程前の紫外線照射は粘着剤層の省略により行わない。これらの点を除けば、第1実施形態と同様の工程を経ることで所定の半導体装置を製造することができる。
<Third Embodiment>
In the first embodiment, the back surface grinding tape is used as a constituent member of the laminated sheet, but in this embodiment, the base material alone is used without providing the adhesive layer of the back surface grinding tape. Therefore, the laminated sheet of the present embodiment is in a state where the underfill material is laminated on the base material. In this embodiment, although the grinding process can be performed arbitrarily, ultraviolet irradiation before the pick-up process is not performed by omitting the adhesive layer. Except for these points, a predetermined semiconductor device can be manufactured through the same steps as in the first embodiment.
<その他の実施形態>
 第1実施形態から第3実施形態では、ダイシング工程においてダイシングブレードを用いるダイシングを採用しているが、これに代えて、レーザー照射により半導体ウェハ内部に改質部分を形成し、この改質部分に沿って半導体ウェハを分割して個片化するいわゆるステルスダイシングを採用してもよい。
<Other embodiments>
In the first to third embodiments, dicing using a dicing blade is employed in the dicing process. Instead, a modified portion is formed inside the semiconductor wafer by laser irradiation, and the modified portion is formed on the modified portion. So-called stealth dicing may be employed in which the semiconductor wafer is divided into pieces along the semiconductor wafer.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.
[実施例1~3及び比較例1~2]
 (積層シートの作製)
 以下の成分を表1に示す割合でメチルエチルケトンに溶解して、固形分濃度が25.4~60.6重量%となる接着剤組成物の溶液を調製した。
[Examples 1 to 3 and Comparative Examples 1 and 2]
(Production of laminated sheet)
The following components were dissolved in methyl ethyl ketone in the proportions shown in Table 1 to prepare an adhesive composition solution having a solid content concentration of 25.4 to 60.6% by weight.
 アクリルポリマー:アクリル酸エチル-メチルメタクリレートを主成分とするアクリル酸エステル系ポリマー(商品名「パラクロンW-197CM」、根上工業株式会社製)
 エポキシ樹脂1:商品名「エピコート1004」、JER株式会社製
 エポキシ樹脂2:商品名「エピコート828」、JER株式会社製
 フェノール樹脂:商品名「ミレックスXLC-4L」、三井化学株式会社製
 フラックス(実施例1~3):フェノールフタレイン
 フラックス(比較例1):2-フェノキシ安息香酸
 フラックス(比較例2):商品名「リカシッドMH-700」、新日本理化株式会社製
 無機充填剤:球状シリカ(商品名「SO-25R」、株式会社アドマテックス製)
 熱硬化促進触媒:イミダゾール触媒(商品名「2PHZ-PW」、四国化成株式会社製)
Acrylic polymer: Acrylate polymer based on ethyl acrylate-methyl methacrylate (trade name “Paracron W-197CM”, manufactured by Negami Kogyo Co., Ltd.)
Epoxy resin 1: Trade name “Epicoat 1004”, JER Corporation Epoxy resin 2: Trade name “Epicoat 828”, JER Corporation Phenol resin: Trade name “Mirex XLC-4L”, Mitsui Chemicals, Inc. Examples 1 to 3): Phenolphthalein flux (Comparative Example 1): 2-phenoxybenzoic acid flux (Comparative Example 2): Trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd. Inorganic filler: Spherical silica ( Product name “SO-25R” (manufactured by Admatechs)
Thermosetting catalyst: Imidazole catalyst (trade name “2PHZ-PW”, manufactured by Shikoku Kasei Co., Ltd.)
 この接着剤組成物の溶液を、剥離ライナ(セパレータ)としてシリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させることにより、厚さ35μmのアンダーフィル材を作製した。 By applying this adhesive composition solution on a release film made of a polyethylene terephthalate film having a thickness of 50 μm subjected to silicone release treatment as a release liner (separator), and then drying at 130 ° C. for 2 minutes, An underfill material having a thickness of 35 μm was produced.
 <耐熱保存性(フラックス成分の消失ないし変性)の評価>
 作製したアンダーフィル材に対して以下の処理を施し、試料a及びbを調製した。
 試料a:大気雰囲気下、室温で1時間静置
 試料b:大気雰囲気下、100℃で1時間静置
<Evaluation of heat-resistant storage stability (disappearance or modification of flux components)>
Samples a and b were prepared by applying the following treatment to the produced underfill material.
Sample a: left in an air atmosphere at room temperature for 1 hour Sample b: left in an air atmosphere at 100 ° C. for 1 hour
 次いで、試料a及びbをそれぞれ約1cm角程度に切断し、切断片をスクリュー管にとって秤量した。ここにテトラヒドロフランを5mL加え、室温にて12時間以上振とうして試料を膨潤させたのち、リン酸緩衝液/アセトニトリル混合溶液を15mL加えてポリマー類を再沈させた。上澄み液をデカンテーションで採取し、これをメンブレンフィルター(孔径:0.2μm)でろ過した。ろ液を溶離液で希釈してサンプル液とし、このサンプル液について高速液体クロマトグラフィー(HPLC)測定を以下の条件で行った。 Next, samples a and b were each cut into about 1 cm square, and the cut pieces were weighed against a screw tube. 5 mL of tetrahydrofuran was added thereto, and the sample was swollen by shaking at room temperature for 12 hours or more, and then 15 mL of a phosphate buffer / acetonitrile mixed solution was added to reprecipitate the polymers. The supernatant was collected by decantation and filtered through a membrane filter (pore size: 0.2 μm). The filtrate was diluted with an eluent to obtain a sample solution, and high performance liquid chromatography (HPLC) measurement was performed on the sample solution under the following conditions.
 <測定装置>
 HPLC:Agilent Technologies,1100
 <測定条件>
 カラム:Inertsil ODS-3(4.6mm×250mm、5μm)
 溶離液組成:リン酸緩衝液/アセトニトリルのグラジエント条件
 流量:1.0mL/min
 検出器:DAD(190nm~400nm、230nm、280nm抽出)
 カラム温度:40℃
 注入量:10μL
<Measurement device>
HPLC: Agilent Technologies, 1100
<Measurement conditions>
Column: Inertsil ODS-3 (4.6 mm × 250 mm, 5 μm)
Eluent composition: Gradient condition of phosphate buffer / acetonitrile Flow rate: 1.0 mL / min
Detector: DAD (190 nm to 400 nm, 230 nm, 280 nm extraction)
Column temperature: 40 ° C
Injection volume: 10 μL
 標準品(フラックス成分)の調整濃度とピーク面積より検量線を作成しておき、試料a及びbからのサンプル液のHPLC測定のピークの面積から各試料中のフラックス成分重量を算出した。算出した各フラックス成分重量を、秤量した処理前の切断片に含まれるフラックス成分重量(配合量から求めた。)で除して規格化し、試料aからの規格化したフラックス成分重量Wを初期含有量、試料bからの規格化したフラックス成分重量Wを熱履歴負荷後の含有量として下記式に基づく重量減少率を算出した。重量減少率が50重量%未満であるものを「○」、50重量%以上であるものを「×」として評価した。該測定では、消失ないし変性したフラックス成分は、HPLC測定でのピークとして現れないか、又は本来とは異なるピークとして現れ、初期の形態を維持するフラックス成分のピークに含まれなくなることから、この点に基づきフラックス成分の消失ないし変性を判断した。評価結果を表1に示す。
    重量減少率={(W-W)/W}×100(%)
A calibration curve was prepared from the adjusted concentration and peak area of the standard product (flux component), and the flux component weight in each sample was calculated from the peak area of the HPLC measurement of the sample liquid from samples a and b. Each calculated flux component weight is divided by the flux component weight (calculated from the blended amount) contained in the weighed cut piece before processing, and normalized, and the normalized flux component weight Wa from the sample a is initially set. content was calculated weight loss based on the following equation normalized flux component weight W b as content after thermal history loads from the sample b. A case where the weight reduction rate was less than 50% by weight was evaluated as “◯”, and a case where the weight loss rate was 50% by weight or more was evaluated as “x”. In this measurement, the disappeared or denatured flux component does not appear as a peak in the HPLC measurement, or appears as a different peak from the original and is not included in the peak of the flux component that maintains the initial form. Based on this, the disappearance or modification of the flux component was judged. The evaluation results are shown in Table 1.
Weight reduction rate = {(W a −W b ) / W a } × 100 (%)
 <非移行性(フラックス成分の粘着剤層への移行)の評価>
 作製したアンダーフィル材に対して以下の処理を施し、試料c及びdを調製した。
 試料c:大気雰囲気下、50℃で72時間静置
 試料d:作製したアンダーフィル材を、アクリル系粘着剤で形成された粘着剤層を備える裏面研削用テープ(商品名「UB3083D」、日東電工株式会社製)の粘着剤層上にハンドローラーを用いて貼り合わせて積層シートを作製し、この積層シートを大気雰囲気下、50℃で72時間静置
<Evaluation of non-migration (transfer of flux component to adhesive layer)>
The following treatment was performed on the produced underfill material to prepare samples c and d.
Sample c: Standing at 50 ° C. for 72 hours in the air atmosphere Sample d: Tape for back surface grinding having a pressure-sensitive adhesive layer formed of an acrylic pressure-sensitive adhesive (trade name “UB3083D”, Nitto Denko) A laminated sheet is prepared by using a hand roller to attach the laminated sheet onto a pressure-sensitive adhesive layer (manufactured by Co., Ltd.), and the laminated sheet is allowed to stand at 50 ° C. for 72 hours in an air atmosphere.
 次いで、裏面研削用テープの粘着力を弱めるために裏面研削用テープ側から紫外線を照射し、試料c及びdをそれぞれ約1cm角程度に切断し、切断片をスクリュー管にとって秤量した。なお、試料dについては、積層シートからアンダーフィル材を剥離し、剥離したアンダーフィル材から切断片を得た。切断片を投入したスクリュー管にテトラヒドロフランを5mL加え、室温にて12時間以上振とうして試料を膨潤させたのち、リン酸緩衝液/アセトニトリル混合溶液を15mL加えてポリマー類を再沈させた。上澄み液をデカンテーションで採取し、これをメンブレンフィルター(孔径:0.2μm)でろ過した。ろ液を溶離液で希釈してサンプル液とし、このサンプル液について高速液体クロマトグラフィー(HPLC)測定を以下の条件で行った。 Next, in order to weaken the adhesive strength of the back surface grinding tape, ultraviolet rays were irradiated from the back surface grinding tape side, the samples c and d were each cut into about 1 cm square, and the cut pieces were weighed against a screw tube. For sample d, the underfill material was peeled from the laminated sheet, and a cut piece was obtained from the peeled underfill material. 5 mL of tetrahydrofuran was added to the screw tube into which the cut pieces were put, and the sample was swollen at room temperature for 12 hours or more, and then 15 mL of a phosphate buffer / acetonitrile mixed solution was added to reprecipitate the polymers. The supernatant was collected by decantation and filtered through a membrane filter (pore size: 0.2 μm). The filtrate was diluted with an eluent to obtain a sample solution, and high performance liquid chromatography (HPLC) measurement was performed on the sample solution under the following conditions.
 <測定装置>
 HPLC:Agilent Technologies,1100
 <測定条件>
 カラム:Inertsil ODS-3(4.6mm×250mm、5μm)
 溶離液組成:リン酸緩衝液/アセトニトリルのグラジエント条件
 流量:1.0mL/min
 検出器:DAD(190nm~400nm、230nm、280nm抽出)
 カラム温度:40℃
 注入量:10μL
<Measurement device>
HPLC: Agilent Technologies, 1100
<Measurement conditions>
Column: Inertsil ODS-3 (4.6 mm × 250 mm, 5 μm)
Eluent composition: Gradient condition of phosphate buffer / acetonitrile Flow rate: 1.0 mL / min
Detector: DAD (190 nm to 400 nm, 230 nm, 280 nm extraction)
Column temperature: 40 ° C
Injection volume: 10 μL
 標準品(フラックス成分)の調整濃度とピーク面積より検量線を作成しておき、試料c及びdからのサンプル液のHPLC測定のピークの面積から各試料中のフラックス成分重量を算出した。算出した各フラックス成分重量を、秤量した処理前の切断片に含まれるフラックス成分重量(配合量から求めた。)で除して規格化し、試料cからの規格化したフラックス成分重量Wを初期含有量、試料dからの規格化したフラックス成分重量Wを熱履歴負荷後の含有量として下記式に基づく重量減少率を算出した。重量減少率が50重量%未満であるものを「○」、50重量%以上であるものを「×」として評価した。評価結果を表1に示す。
    重量減少率={(W-W)/W}×100(%)
A calibration curve was created from the adjusted concentration of the standard product (flux component) and the peak area, and the flux component weight in each sample was calculated from the peak area of the HPLC measurement of the sample liquid from samples c and d. The calculated flux component weight is divided by the flux component weight (obtained from the blending amount) contained in the weighed cut pieces before processing, and normalized, and the normalized flux component weight W c from the sample c is initially set. content was calculated weight loss based on the following equation normalized flux component weight W d as content after thermal history load from sample d. A case where the weight reduction rate was less than 50% by weight was evaluated as “◯”, and a case where the weight loss rate was 50% by weight or more was evaluated as “x”. The evaluation results are shown in Table 1.
Weight reduction rate = {(W c −W d ) / W c } × 100 (%)
<100℃~200℃における最低粘度の測定>
 レオメーター(HAAKE社製、RS-1)を用いて、パラレルプレート法により測定した。詳細には、ギャップ100μm、回転プレート直径20mm、回転速度5s-1、昇温速度10℃/分の条件とし、80℃から昇温させ、アンダーフィル材の硬化反応により粘度が上昇して、最終的に回転プレートが回転できなくなる温度(なお、全ての実施例及び比較例で200℃以上であった。)まで測定を行った。その際の100℃から200℃までの範囲での粘度の最低値を最低粘度とした。結果を表1に示す。
<Measurement of minimum viscosity at 100 ° C. to 200 ° C.>
Measurement was performed by a parallel plate method using a rheometer (manufactured by HAAKE, RS-1). Specifically, the conditions are a gap of 100 μm, a rotating plate diameter of 20 mm, a rotation speed of 5 s −1 , a temperature increase rate of 10 ° C./min, the temperature is increased from 80 ° C., and the viscosity increases due to the curing reaction of the underfill material. In particular, the measurement was performed up to a temperature at which the rotating plate could not rotate (it was 200 ° C. or higher in all Examples and Comparative Examples). The lowest viscosity in the range from 100 ° C. to 200 ° C. at that time was defined as the lowest viscosity. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1から分かるように、全ての実施例において耐熱保存性及び非移行性は良好であり、アンダーフィル材に熱履歴が負荷されたり、他の粘着剤層と積層されたりしても、要求されるフラックス活性を発揮することができることが分かる。一方、比較例1では、耐熱保存性は良好であったものの、粘着剤層への移行が生じ非移行性が劣っていた。比較例2では、耐熱保存性、非移行性ともに劣っていた。 As can be seen from Table 1, the heat-resistant storage stability and non-migration properties are good in all examples, and it is required even when the underfill material is loaded with a heat history or laminated with another adhesive layer. It can be seen that the flux activity can be exhibited. On the other hand, in Comparative Example 1, although the heat resistant storage stability was good, the transfer to the pressure-sensitive adhesive layer occurred and the non-migration was poor. In Comparative Example 2, both the heat resistant storage stability and the non-migration property were inferior.
    1  裏面研削用テープ
    1a、11a、41a  基材
    1b、11b、41b  粘着剤層
    2、42  アンダーフィル材
    3、43  半導体ウェハ
    5、45  半導体チップ(半導体素子)
    16、66  被着体
    10 積層シート
    11、41 ダイシングテープ
    20、60 半導体装置
DESCRIPTION OF SYMBOLS 1 Back surface grinding tape 1a, 11a, 41a Base material 1b, 11b, 41b Adhesive layer 2, 42 Underfill material 3, 43 Semiconductor wafer 5, 45 Semiconductor chip (semiconductor element)
16, 66 Substrate 10 Laminated sheet 11, 41 Dicing tape 20, 60 Semiconductor device

Claims (7)

  1.  フラックス成分として、分子量が300以上であり、かつ分子内にエステル結合を少なくとも1つ有する芳香族化合物を含むアンダーフィル材。 An underfill material containing an aromatic compound having a molecular weight of 300 or more as a flux component and having at least one ester bond in the molecule.
  2.  前記アンダーフィル材を100℃で1時間加熱した後の前記フラックス成分の初期含有量に対する重量減少率が50%未満である請求項1に記載のアンダーフィル材。 The underfill material according to claim 1, wherein a weight reduction rate with respect to an initial content of the flux component after heating the underfill material at 100 ° C for 1 hour is less than 50%.
  3.  前記アンダーフィル材と粘着剤層とを積層した積層体を50℃で72時間静置した後の前記アンダーフィル材における前記フラックス成分の初期含有量に対する重量減少率が50%未満である請求項1又は2に記載のアンダーフィル材。 2. The weight reduction rate with respect to the initial content of the flux component in the underfill material after the laminated body in which the underfill material and the pressure-sensitive adhesive layer are laminated for 72 hours at 50 ° C. is less than 50%. Or the underfill material of 2.
  4.  前記アンダーフィル材中の前記フラックス成分の重量と前記フラックス成分以外の成分の重量との合計重量に対して前記フラックス成分の重量が占める割合は1重量%以上50重量%以下である請求項1~3のいずれか1項に記載のアンダーフィル材。 The ratio of the weight of the flux component to the total weight of the weight of the flux component and the weight of components other than the flux component in the underfill material is 1% by weight to 50% by weight. 4. The underfill material according to any one of 3 above.
  5.  基材及び該基材上に設けられた粘着剤層を有する粘着テープと、
     前記粘着剤層上に積層された請求項1~4のいずれか1項に記載のアンダーフィル材と
     を備える積層シート。
    A pressure-sensitive adhesive tape having a base material and a pressure-sensitive adhesive layer provided on the base material;
    A laminated sheet comprising the underfill material according to any one of claims 1 to 4 laminated on the pressure-sensitive adhesive layer.
  6.  前記粘着テープは、半導体ウェハの裏面研削用テープ又はダイシングテープである請求項5に記載の積層シート。 6. The laminated sheet according to claim 5, wherein the adhesive tape is a semiconductor wafer back surface grinding tape or a dicing tape.
  7.  被着体と、該被着体と電気的に接続された半導体素子と、該被着体と該半導体素子との間の空間を充填するアンダーフィル材とを備える半導体装置の製造方法であって、
     請求項1~4のいずれか1項に記載のアンダーフィル材が前記半導体素子に貼り合わされたアンダーフィル材付き半導体素子を準備する工程と、
     前記被着体と前記半導体素子の間の空間を前記アンダーフィル材で充填しつつ前記半導体素子と前記被着体とを電気的に接続する接続工程と
     を含む半導体装置の製造方法。
     
     
     
    A method of manufacturing a semiconductor device comprising: an adherend; a semiconductor element electrically connected to the adherend; and an underfill material that fills a space between the adherend and the semiconductor element. ,
    Preparing a semiconductor element with an underfill material in which the underfill material according to any one of claims 1 to 4 is bonded to the semiconductor element;
    And a connecting step of electrically connecting the semiconductor element and the adherend while filling a space between the adherend and the semiconductor element with the underfill material.


PCT/JP2014/062145 2013-06-07 2014-05-02 Underfill material, laminate sheet, and method for manufacturing semiconductor device WO2014196297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-120957 2013-06-07
JP2013120957A JP6147103B2 (en) 2013-06-07 2013-06-07 Underfill material, laminated sheet, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2014196297A1 true WO2014196297A1 (en) 2014-12-11

Family

ID=52007950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062145 WO2014196297A1 (en) 2013-06-07 2014-05-02 Underfill material, laminate sheet, and method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP6147103B2 (en)
TW (1) TW201512380A (en)
WO (1) WO2014196297A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930197B1 (en) * 2015-09-01 2018-12-17 린텍 가부시키가이샤 Adhesive sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049114A (en) * 1999-08-05 2001-02-20 Hitachi Chem Co Ltd Resin composition and adhesive film
JP2009537684A (en) * 2006-05-22 2009-10-29 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Low shrinkage epoxy-cation curable composition
JP2012241162A (en) * 2011-05-23 2012-12-10 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet and material for protection of semiconductor device, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049114A (en) * 1999-08-05 2001-02-20 Hitachi Chem Co Ltd Resin composition and adhesive film
JP2009537684A (en) * 2006-05-22 2009-10-29 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Low shrinkage epoxy-cation curable composition
JP2012241162A (en) * 2011-05-23 2012-12-10 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet and material for protection of semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
TW201512380A (en) 2015-04-01
JP2014239151A (en) 2014-12-18
JP6147103B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2014171404A1 (en) Thermosetting resin composition and semiconductor device manufacturing method
JP6157890B2 (en) Underfill material, sealing sheet, and method for manufacturing semiconductor device
JP5976573B2 (en) Reinforcing sheet and method for manufacturing secondary mounting semiconductor device
US10014235B2 (en) Underfill material, laminated sheet and method for producing semiconductor device
US20130157415A1 (en) Method for producing semiconductor device
JP5961015B2 (en) Underfill material and method for manufacturing semiconductor device
KR20130059292A (en) Method for manufacturing semiconductor device
WO2015174184A1 (en) Method for producing semiconductor device
JP5827878B2 (en) Manufacturing method of semiconductor device
JP6407684B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device
WO2015174183A1 (en) Sheet-like resin composition, multilayer sheet and method for manufacturing semiconductor device
JP5907717B2 (en) Manufacturing method of semiconductor device
JP6147103B2 (en) Underfill material, laminated sheet, and method of manufacturing semiconductor device
JP6587519B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device
WO2015046082A1 (en) Method for producing semiconductor device
WO2016084707A1 (en) Sheet-like resin composition, laminate sheet, and semiconductor device production method
JP5889625B2 (en) Manufacturing method of semiconductor device
JP2013127997A (en) Semiconductor device manufacturing method
WO2015046073A1 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14808245

Country of ref document: EP

Kind code of ref document: A1