WO2014196230A1 - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
WO2014196230A1
WO2014196230A1 PCT/JP2014/054611 JP2014054611W WO2014196230A1 WO 2014196230 A1 WO2014196230 A1 WO 2014196230A1 JP 2014054611 W JP2014054611 W JP 2014054611W WO 2014196230 A1 WO2014196230 A1 WO 2014196230A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
lid
melt
electrochemical device
width
Prior art date
Application number
PCT/JP2014/054611
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 河井
直人 萩原
響太郎 真野
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2014525223A priority Critical patent/JPWO2014196230A1/en
Publication of WO2014196230A1 publication Critical patent/WO2014196230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical device in which a storage element is accommodated.
  • An electrochemical device such as an electric double layer capacitor or a lithium ion capacitor is generally configured by storing a storage element or an electrolyte in a case.
  • Such an electrochemical device is manufactured by housing a power storage element or the like in a case and then bonding a lid (lid) to the case.
  • seam welding which is welding by resistance heating using a seam (welding terminal)
  • electrochemical devices have been miniaturized, and laser welding that can cope with the miniaturization of electrochemical devices has attracted attention.
  • Patent Document 1 discloses a technique for sealing a battery case and a lid by laser welding.
  • the depth with respect to the width of the weld solidified portion is defined.
  • Patent Document 2 discloses laser welding of different materials. Also in this document, the depth of the weld solidification part is prescribed
  • JP 2005-040853 A Japanese Patent Laid-Open No. 11-239888
  • the strength and sealing performance of the welding depend on the melting degree of the material (the shape of the weld solidified portion), and it becomes a problem whether the melting is insufficient or excessive.
  • the degree of melting in laser welding since the cross section of the melted and solidified portion is a triangle with the width irradiated with the laser as the base, it is common to define the ratio of the base to the height. For example, Patent Document 1 also defines the height of a triangle with respect to the base.
  • the welding strength is determined by the amount to be melted (penetration width), there is a possibility that the welding width is insufficient to maintain the sealing performance according to the provisions of the technology.
  • the melted and solidified part must penetrate through the part irradiated with the laser.
  • the welding width and the depth of the melt-solidified portion are regulated, and welding may not be possible depending on the size of the case and the thickness of the part.
  • an object of the present invention is to provide an electrochemical device that is reliably welded.
  • an electrochemical device includes a case, a welding ring, a lid, a melt-solidified part, a power storage element, and an electrolytic solution.
  • the case has a bottom and a frame-like wall along the outer edge of the bottom.
  • the welding ring is joined to the case and forms a liquid chamber together with the case.
  • the lid seals the liquid chamber.
  • the melt-solidified portion is a melt-solidified portion of the lid and the weld ring, and is formed from the lid to the weld ring, does not reach the case, and is cross-sectionally orthogonal to the wall portion.
  • the shape of the solidified part gradually decreases in width with the melting depth.
  • the power storage element is accommodated in the liquid chamber.
  • the electrolytic solution is accommodated in the liquid chamber.
  • FIG. 1 is a perspective view of an electrochemical device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line S11-S11 of the same electrochemical device. It is a disassembled perspective view of the case of the same electrochemical device. It is sectional drawing which shows the fusion
  • An electrochemical device includes a case, a welding ring, a lid, a melt-solidified portion, a power storage element, and an electrolytic solution.
  • the case has a bottom and a frame-like wall along the outer edge of the bottom.
  • the welding ring is joined to the case and forms a liquid chamber together with the case.
  • the lid seals the liquid chamber.
  • the melt-solidified portion is a melt-solidified portion of the lid and the weld ring, and is formed from the lid to the weld ring, does not reach the case, and is cross-sectionally orthogonal to the wall portion.
  • the shape of the solidified part gradually decreases in width with the melting depth.
  • the power storage element is accommodated in the liquid chamber.
  • the electrolytic solution is accommodated in the liquid chamber.
  • the lid and the weld ring are welded.
  • the weld solidified portion reaches the case, the case is damaged by heat during welding, and the airtightness of the liquid chamber may be insufficient. That is, the melted and solidified portion is formed from the lid to the weld ring, and can reliably join the lid and the weld ring when it does not reach the case.
  • the second width is the first width.
  • the cross-sectional shape is 0.3 times or more and 0.9 times or less.
  • the penetration by laser welding is insufficient and the second width is less than 0.3 times the first width, the weld will be destroyed by a slight impact, the airtightness of the liquid chamber will be reduced, and the resistance of the electrochemical device will increase. And capacity reduction occurs.
  • gas is generated due to decomposition of the electrolytic solution, etc., the pressure in the liquid chamber rises, the welded portion is destroyed, and the contents may jump out.
  • the second width exceeds 0.9 times the first width, ambient air will be taken in during welding to create a burrow, from which the pin pole will be vacated and the liquid chamber The airtightness of the is reduced.
  • the welded portion protrudes outside the case, and the lid is cut at the boundary between the welded portion and the lid.
  • the melt-solidified portion having the above-described cross-sectional shape has an appropriate amount of penetration, and the lid and the weld ring can be reliably joined.
  • the melt-solidified part may have a funnel-like cross-sectional shape.
  • the weld bead By making the melt-solidified part into a funnel-shaped cross section, the weld bead can be deepened without being exposed to the inside of the liquid chamber, and the weld strength can be increased without exposing the weld bead. be able to. Moreover, since the distortion of the weld ring can be suppressed by reducing the amount of penetration of the weld ring, it is possible to prevent poor welding due to deformation of the weld ring or the like.
  • the case is made of ceramic
  • the weld ring and the lid are made of Kovar
  • the welding ring may be brazed to the case.
  • the case and the weld ring are joined by brazing, and the weld ring and the lid are joined by laser welding, so that the airtightness of the liquid chamber is maintained.
  • the welding ring may be plated with Au plating, Ni plating, or the like.
  • the melt-solidified part may be formed by laser irradiation of a fiber laser.
  • the weld ring and lid can be welded by irradiating a fiber laser onto the lid area overlapping the weld ring.
  • FIG. 1 is a perspective view of an electrochemical device 10 according to this embodiment
  • FIG. 2 is a cross-sectional view of the electrochemical device 10 taken along line S11-S11 (FIG. 1).
  • the electrochemical device 10 includes a case 11, a lid 12, a power storage element 13, a positive electrode wiring 14, a positive electrode terminal 15, a negative electrode wiring 16, a negative electrode terminal 17, a welding ring 18, a positive electrode adhesive layer 19, and a negative electrode. It has an adhesive layer 20 and a melt-solidified part 21.
  • the electrochemical device 10 includes a lid 12 and a weld ring 18 that are welded by a melt-solidified portion 21, and an electric storage element 13 and an electrolysis element in a liquid chamber 11 a formed by the case 11, the weld ring 18 and the lid 12. The liquid is enclosed.
  • the positive electrode wiring 14 electrically connects the positive electrode of the power storage element 13 and the positive electrode terminal
  • the negative electrode wiring 16 electrically connects the negative electrode of the power storage element 13 and the negative electrode terminal 17.
  • FIG. 3 is an exploded perspective view of the case 11.
  • the case 11 includes a bottom portion 11b and a wall portion 11c.
  • the bottom portion 11b is a plate-like portion constituting the bottom of the liquid chamber 11a, and a via 11d for the positive electrode wiring 14 is provided.
  • the wall part 11c is a frame-shaped part which comprises the side wall of the liquid chamber 11a and follows the outer edge of the bottom part 11b.
  • the case 11 may be made of a ceramic such as HTCC (High Temperature Co-fired Ceramics) or LTCC (Low Temperature Co-fired Ceramics).
  • the case 11 can be formed in a concave shape so as to constitute the liquid chamber 11a.
  • the case 11 can have other shapes such as a rectangular parallelepiped shape or a cylindrical shape as shown in FIG.
  • the lid 12 is joined to the case 11 via the welding ring 18 to seal the liquid chamber 11a.
  • the lid 12 can be made of a conductive material such as various metals, and can be made of, for example, Kovar (iron-nickel-cobalt alloy).
  • the lid 12 is welded to the weld ring by the melted and solidified portion 21, and details thereof will be described later.
  • the electricity storage element 13 is accommodated in the liquid chamber 11a, and accumulates (accumulates) electric charge or releases (discharges) electric charge. As shown in FIG. 2, the storage element 13 has a first electrode sheet 13a, a second electrode sheet 13b, and a separate sheet 13c, and the separate sheet 13c is sandwiched between the first electrode sheet 13a and the second electrode sheet 13b. It can be.
  • the constituent materials of the first electrode sheet 13a, the second electrode sheet 13b, and the separate sheet 13c can be appropriately selected according to necessary characteristics.
  • the first electrode sheet 13a and the second electrode sheet 13b are made of a material containing an active material selected from activated carbon, graphite, PAS (Polyacenic Semiconductor), and the separate sheet 13c is made of glass. It can be a porous sheet mainly composed of fiber, cellulose fiber, plastic fiber or the like.
  • the materials of the first electrode sheet 13 a, the second electrode sheet 13 b, and the separate sheet 13 c may be the same or different depending on the type of the electrochemical device 10.
  • the electrochemical device 10 is an electric double layer capacitor
  • the first electrode sheet 13a and the second electrode sheet 13b can be made of the same material.
  • the electrochemical device 10 is a lithium ion capacitor
  • the first electrode is used.
  • the material of the sheet 13a and the second electrode sheet 13b can be different.
  • the electrolyte solution accommodated in the liquid chamber 11a together with the electricity storage element 13 can be arbitrarily selected.
  • the electrolytic solution can be an electrolytic solution in which an electrolyte salt is dissolved in a solvent.
  • the electrochemical device 10 is a lithium ion capacitor, the lithium salt is dissolved in a solvent. Electrolyte solution.
  • the positive electrode wiring 14 electrically connects the positive electrode (first electrode sheet 13a) of the power storage element 13 and the positive electrode terminal 15.
  • the positive electrode wiring 14 can be made of any conductive material. Specifically, the positive electrode wiring 14 passes through the inside of the case 11 from the positive electrode terminal 15 to immediately below the power storage element 13, contacts the positive electrode adhesive layer 19 via the via 11 d, and stores electricity via the positive electrode adhesive layer 19. It can be electrically connected to the element 13.
  • the positive electrode terminal 15 is connected to the positive electrode of the electricity storage element 13 by the positive electrode wiring 14, and is used for connection to the outside, for example, a mounting substrate.
  • the positive electrode terminal 15 can be made of an arbitrary conductive material, and can be formed from the side surface of the case 11 toward the lower surface side as shown in FIG.
  • the negative electrode wiring 16 electrically connects the power storage element 13 (second electrode sheet 13b) and the negative electrode terminal 17.
  • the negative electrode wiring 16 can be formed from the negative electrode terminal 17 along the outer periphery of the case 11 and connected to the welding ring 18.
  • the negative electrode wiring 16 is electrically connected to the second electrode sheet 13b through the conductive welding ring 18, the lid 12, and the negative electrode adhesive layer 20.
  • the negative electrode wiring 16 can be made of any conductive material.
  • the negative electrode terminal 17 is connected to the negative electrode of the electricity storage element 13 by the negative electrode wiring 16, and is used for connection to the outside, for example, a mounting substrate.
  • the negative electrode terminal 17 can be made of an arbitrary conductive material, and can be formed from the side surface of the case 11 toward the lower surface side as shown in FIG.
  • the welding ring 18 connects the case 11 and the lid 12 to seal the liquid chamber 11a, and electrically connects the lid 12 and the negative electrode wiring 16.
  • the welding ring 18 is joined to the case 11 by bonding (brazing) with a brazing material (gold-copper alloy or the like), and is welded to the lid 12 by a melt-solidified portion 21.
  • the welding ring 18 can be made of a conductive material such as Kovar (iron-nickel-cobalt alloy).
  • the welding ring 18 may be plated with Ni plating, Au plating, or the like.
  • the positive electrode adhesive layer 19 bonds the first electrode sheet 13 a to the case 11 and electrically connects the first electrode sheet 13 a and the positive electrode wiring 14.
  • the positive electrode adhesive layer 19 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles.
  • the conductive particles are, for example, carbon particles (carbon black), graphite particles (graphite particles), and the like, and the synthetic resin can be a thermosetting resin such as a phenol resin or an epoxy resin.
  • the negative electrode adhesive layer 20 adheres the second electrode sheet 13 b to the lid 12 and electrically connects the second electrode sheet 13 b and the lid 12.
  • the negative electrode adhesive layer 20 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles, like the positive electrode adhesive layer 19.
  • the negative electrode adhesive layer 20 and the positive electrode adhesive layer 19 can be made of the same type of conductive adhesive, or can be made of other types of conductive adhesive.
  • the melt-solidified portion 21 is a portion where the constituent materials of the lid 12 and the weld ring 18 are melted and solidified, and can be formed by laser welding described later.
  • FIG. 4 is an enlarged view of the melt-solidified portion 21 in FIG. 2, and is a cross-sectional view orthogonal to the wall portion 11c.
  • the melt-solidified portion 21 is formed from the lid 12 to the welding ring 18. If the melted and solidified portion 21 does not reach the weld ring 18, the effect of joining the lid 12 to the weld ring 18 does not occur. On the other hand, when the melted and solidified portion 21 reaches the case 11, the case 11 is damaged.
  • the melting depth of the melt-solidified portion 21 is preferably half or less of the thickness of the weld ring 18.
  • FIG. 5 is a plan view showing a region where the melt-solidified portion 21 is formed.
  • the melt-solidified portion 21 can be formed in a region where the weld ring 18 and the lid 12 overlap, that is, can be formed in an annular shape around the liquid chamber 11a.
  • the melt-solidified part 21 has a shape in which the width of the cross section gradually decreases with the melting depth.
  • FIG. 6 is a cross-sectional view showing a cross-sectional shape of the melt-solidified portion 21.
  • the melt-solidified portion 21 can have a cross-sectional shape that has a triangular shape with the surface of the lid 12 as a base.
  • the melt-solidified portion 21 has a cross-sectional shape in which the width reduction ratio at the shallow melting depth (the width reduction amount with respect to the melting depth) is larger than the width reduction ratio at the deep melting depth. It can be a shape (funnel shape).
  • the weld bead By forming the melted and solidified portion 21 into the shape shown in FIG. 6B, the weld bead can be deepened without being exposed to the inside of the liquid chamber 11a, and welding can be performed without exposing the weld bead. Strength can be increased. Moreover, since the distortion of the welding ring 18 can be suppressed by reducing the amount of penetration of the welding ring 18, it becomes possible to prevent poor welding due to deformation of the welding ring 18 or the like.
  • the shape of the melt-solidified portion 21 is formed by performing laser irradiation on the surface of the lid 12, and the shape of the melt-solidified portion 21 varies depending on the laser irradiation conditions.
  • FIG. 7 is a plan view showing the width of the melt-solidified portion 21, and is a partially enlarged view of FIG.
  • melting solidification part 21 be 1st width
  • the width of the melt-solidified portion 21 is the widest on the surface of the lid 12, but the width of the melt-solidified portion 21 may be the widest at a position deeper than the surface of the lid 12.
  • the width of the melt-solidified portion 21 at the half of the welding depth is defined as a second width T2.
  • the melt-solidified portion 21 has a shape in which the width T2 is not less than 0.3 times and not more than 0.9 times the width T1.
  • the welding is broken by a slight impact, the airtightness of the liquid chamber 11a is lowered, the resistance of the electrochemical device 10 is increased, and the capacity is decreased. Occurs. Also, when reflow soldering or overcharge occurs, gas is generated due to decomposition of the electrolytic solution, etc., the pressure in the liquid chamber rises, the welded portion is destroyed, and the contents may jump out. On the other hand, if there is too much penetration due to welding and the width T2 exceeds 0.9 times the width T1, the surrounding outside air is taken in during welding to form a burrow, from which a pin pole is opened, and the liquid chamber 11a is airtight. descend.
  • the melt-solidified part 21 can be formed as follows. It is assumed that the storage element 13 and the electrolytic solution are accommodated in the liquid chamber 11a before welding.
  • FIG. 8 is a schematic diagram showing a method for forming the melt-solidified portion 21. As shown in the figure, the laser L is irradiated to the lid 12 placed on the welding ring 18. By moving (scanning) the region (spot) irradiated with the laser L at a predetermined speed, the melted and solidified portion 21 is formed on the scanning path.
  • the fiber laser can be used as the laser to irradiate.
  • the shape of the melt-solidified portion 21 can be adjusted by the output of the laser to be irradiated, the scanning speed, and the focal length (spot diameter). Specifically, in the case of a fiber laser, the melt-solidified portion 21 can be formed by setting the output to 300 W and the irradiation time to 60 ms.
  • the lid 12 is welded to the weld ring 18 by the melt-solidified portion 21.
  • the melt-solidified portion 21 has the shape described above, it is possible to ensure the airtightness of the liquid chamber 11a and improve the reliability of the electrochemical device 10. Furthermore, since the melt-solidified portion 21 is formed by laser welding, this embodiment is suitable for downsizing the electrochemical device 10.

Abstract

[Problem] To provide a securely welded electrochemical device. [Solution] This electrochemical device is provided with a case, a welding ring, a lid, a melt-solidified portion, a power storage element, and an electrolyte. The case has a bottom and frame-shape walls along the outer periphery of the bottom. The welding ring is joined to the case and forms a liquid chamber together with the case. The lid seals the liquid chamber. The melt-solidified portion of the welding ring and the lid is formed from the lid to the welding ring but without reaching the case, and, in a cross-section passing through and perpendicular to the wall, the shape of the melt-solidified portion gradually narrows with the melting depth. The power storage element is housed in the liquid chamber. The electrolyte is housed in the liquid chamber.

Description

電気化学デバイスElectrochemical devices
 本発明は、内部に蓄電素子が収容された電気化学デバイスに関する。 The present invention relates to an electrochemical device in which a storage element is accommodated.
 電気二重層キャパシタやリチウムイオンキャパシタといった電気化学デバイスは、蓄電素子や電解液がケース内に収容されて構成されているものが一般的である。このような電気化学デバイスは、ケース内に蓄電素子等が収容された後、リッド(蓋)がケースに接合されることによって製造される。 An electrochemical device such as an electric double layer capacitor or a lithium ion capacitor is generally configured by storing a storage element or an electrolyte in a case. Such an electrochemical device is manufactured by housing a power storage element or the like in a case and then bonding a lid (lid) to the case.
 リッドのケースへの接合は、シーム(溶接端子)を利用した抵抗加熱による溶接であるシーム溶接がこれまでの主流であった。しかしながら近年では、電気化学デバイスの小型化が進み、電気化学デバイスの小型化に対応可能なレーザー溶接が注目されている。 For joining the lid to the case, seam welding, which is welding by resistance heating using a seam (welding terminal), has been the mainstream so far. However, in recent years, electrochemical devices have been miniaturized, and laser welding that can cope with the miniaturization of electrochemical devices has attracted attention.
 例えば特許文献1には、電池ケースと蓋とをレーザー溶接によって封止する技術が開示されている。この文献では、良好な溶接を可能とするため、溶接凝固部の幅に対する深さが規定されている。また、特許文献2には、異種材料のレーザー溶接について開示されている。この文献においても、溶接凝固部の深さが規定されている。 For example, Patent Document 1 discloses a technique for sealing a battery case and a lid by laser welding. In this document, in order to enable good welding, the depth with respect to the width of the weld solidified portion is defined. Patent Document 2 discloses laser welding of different materials. Also in this document, the depth of the weld solidification part is prescribed | regulated.
特開2005-040853号公報JP 2005-040853 A 特開平11-239888号公報Japanese Patent Laid-Open No. 11-239888
 ここで、溶接の強度や封止性は、材料の溶け具合(溶接凝固部の形状)に左右され、溶融が不足しても過剰であっても問題となる。レーザー溶接の溶け具合の指標としては、溶融凝固部の断面がレーザーを照射した幅を底辺とした三角形となることから、この底辺と高さの比率を規定することが一般的である。例えば特許文献1においても底辺に対する三角形の高さが規定されている。しかしながら、溶接強度は溶ける量(溶け込み幅)によって決まるため、当該技術の規定では溶接幅が封止性を保つには不十分となるおそれがある
Here, the strength and sealing performance of the welding depend on the melting degree of the material (the shape of the weld solidified portion), and it becomes a problem whether the melting is insufficient or excessive. As an indicator of the degree of melting in laser welding, since the cross section of the melted and solidified portion is a triangle with the width irradiated with the laser as the base, it is common to define the ratio of the base to the height. For example, Patent Document 1 also defines the height of a triangle with respect to the base. However, since the welding strength is determined by the amount to be melted (penetration width), there is a possibility that the welding width is insufficient to maintain the sealing performance according to the provisions of the technology.
 また、リッドとケースとを確実に接合するためには、両者が互いに溶け込む必要があるので、溶融凝固部はレーザーを照射した部品から突き抜ける必要がある。しかしながら、上記のような規定方法では、溶接幅と溶融凝固部の深さが規定され、ケースの大きさや部品の厚さによっては溶接ができない場合がある。 Also, in order to securely join the lid and the case, it is necessary for both to melt together, so the melted and solidified part must penetrate through the part irradiated with the laser. However, in the above-described defining method, the welding width and the depth of the melt-solidified portion are regulated, and welding may not be possible depending on the size of the case and the thickness of the part.
 以上のような事情に鑑み、本発明の目的は、確実に溶接された電気化学デバイスを提供することにある。 In view of the above circumstances, an object of the present invention is to provide an electrochemical device that is reliably welded.
 上記目的を達成するため、本発明の一形態に係る電気化学デバイスは、ケースと、溶接リングと、リッドと、溶融凝固部と、蓄電素子と、電解液とを具備する。
 上記ケースは、底部と上記底部の外縁に沿う枠状の壁部を有する。
 上記溶接リングは、上記ケースに接合され、上記ケースと共に液室を形成する。
 上記リッドは、上記液室を封止する。
 上記溶融凝固部は、上記リッドと上記溶接リングの溶融凝固部であって、上記リッドから上記溶接リングにわたって形成され、上記ケースには到達せず、上記壁部を通り直交する断面において、上記溶接凝固部の形状は、幅が溶融深度と共に漸減する。
 上記蓄電素子は、上記液室に収容されている。
 上記電解液は、上記液室に収容されている。
In order to achieve the above object, an electrochemical device according to an embodiment of the present invention includes a case, a welding ring, a lid, a melt-solidified part, a power storage element, and an electrolytic solution.
The case has a bottom and a frame-like wall along the outer edge of the bottom.
The welding ring is joined to the case and forms a liquid chamber together with the case.
The lid seals the liquid chamber.
The melt-solidified portion is a melt-solidified portion of the lid and the weld ring, and is formed from the lid to the weld ring, does not reach the case, and is cross-sectionally orthogonal to the wall portion. The shape of the solidified part gradually decreases in width with the melting depth.
The power storage element is accommodated in the liquid chamber.
The electrolytic solution is accommodated in the liquid chamber.
本発明の実施形態に係る電気化学デバイスの斜視図である。1 is a perspective view of an electrochemical device according to an embodiment of the present invention. 同電気化学デバイスのS11-S11線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line S11-S11 of the same electrochemical device. 同電気化学デバイスのケースの分解斜視図である。It is a disassembled perspective view of the case of the same electrochemical device. 同電気化学デバイスの溶融凝固部を示す断面図である。It is sectional drawing which shows the fusion | melting solidification part of the same electrochemical device. 同電気化学デバイスの溶融凝固部を示す平面図である。It is a top view which shows the fusion | melting solidification part of the same electrochemical device. 同電気化学デバイスの溶融凝固部を示す模式図である。It is a schematic diagram which shows the melt solidification part of the same electrochemical device. 同電気化学デバイスの溶融凝固部を示す模式図である。It is a schematic diagram which shows the melt solidification part of the same electrochemical device. 同電気化学デバイスの溶融凝固部を形成するレーザー溶接を示す模式図である。It is a schematic diagram which shows the laser welding which forms the fusion | melting solidification part of the same electrochemical device.
 本発明の一実施形態に係る電気化学デバイスは、ケースと、溶接リングと、リッドと、溶融凝固部と、蓄電素子と、電解液とを具備する。
 上記ケースは、底部と上記底部の外縁に沿う枠状の壁部を有する。
 上記溶接リングは、上記ケースに接合され、上記ケースと共に液室を形成する。
 上記リッドは、上記液室を封止する。
 上記溶融凝固部は、上記リッドと上記溶接リングの溶融凝固部であって、上記リッドから上記溶接リングにわたって形成され、上記ケースには到達せず、上記壁部を通り直交する断面において、上記溶接凝固部の形状は、幅が溶融深度と共に漸減する。
 上記蓄電素子は、上記液室に収容されている。
 上記電解液は、上記液室に収容されている。
An electrochemical device according to an embodiment of the present invention includes a case, a welding ring, a lid, a melt-solidified portion, a power storage element, and an electrolytic solution.
The case has a bottom and a frame-like wall along the outer edge of the bottom.
The welding ring is joined to the case and forms a liquid chamber together with the case.
The lid seals the liquid chamber.
The melt-solidified portion is a melt-solidified portion of the lid and the weld ring, and is formed from the lid to the weld ring, does not reach the case, and is cross-sectionally orthogonal to the wall portion. The shape of the solidified part gradually decreases in width with the melting depth.
The power storage element is accommodated in the liquid chamber.
The electrolytic solution is accommodated in the liquid chamber.
 溶融凝固部が、リッドから溶接リングにわたって形成されることにより、リッドと溶接リングが溶接される。一方で、溶接凝固部がケースに到達すると、溶接時の熱によってケースに破損が生じ、液室の気密性が不十分となるおそれがある。即ち、溶融凝固部は、リッドから溶接リングにわたって形成され、ケースに到達しない場合に、リッドと溶接リングを確実に接合することが可能である。 When the melt-solidified part is formed from the lid to the weld ring, the lid and the weld ring are welded. On the other hand, when the weld solidified portion reaches the case, the case is damaged by heat during welding, and the airtightness of the liquid chamber may be insufficient. That is, the melted and solidified portion is formed from the lid to the weld ring, and can reliably join the lid and the weld ring when it does not reach the case.
 上記溶融凝固部は、最も幅の広い位置における幅を第1の幅とし、溶融深さの半分の位置における幅を第2の幅としたときに、上記第2の幅が上記第1の幅の0.3倍以上0.9倍以下である断面形状を有する。 When the width at the widest position is the first width and the width at the half of the melt depth is the second width, the second width is the first width. The cross-sectional shape is 0.3 times or more and 0.9 times or less.
 レーザー溶接による溶け込みが不足し、第2の幅が第1の幅の0.3倍未満となると、僅かな衝撃で溶接が破壊され、液室の気密性が低下し、電気化学デバイスの抵抗上昇や容量低下が生じる。またリフローはんだ付けの際や過充電の状況になった場合、電解液等の分解によりガスが発生し、液室内の圧力が上昇して溶接部が破壊され、内容物が飛び出すおそれがある。一方、レーザー溶接による溶け込みが多過ぎ、第2の幅が第1の幅の0.9倍を超えると、溶接時に周囲の外気が取り込まれて巣穴が生じ、そこからピンポールが空いて液室の気密性が低下する。また溶接による溶け込みが過剰な場合、溶接部がケースの外側にはみ出し、溶接部とリッドの境界でリッドが切断される。これに対し、上記断面形状を有する溶融凝固部は溶け込みが適量であり、リッドと溶接リングを確実に接合することが可能である。 If the penetration by laser welding is insufficient and the second width is less than 0.3 times the first width, the weld will be destroyed by a slight impact, the airtightness of the liquid chamber will be reduced, and the resistance of the electrochemical device will increase. And capacity reduction occurs. In addition, when reflow soldering or overcharge occurs, gas is generated due to decomposition of the electrolytic solution, etc., the pressure in the liquid chamber rises, the welded portion is destroyed, and the contents may jump out. On the other hand, if there is too much penetration by laser welding and the second width exceeds 0.9 times the first width, ambient air will be taken in during welding to create a burrow, from which the pin pole will be vacated and the liquid chamber The airtightness of the is reduced. If the penetration due to welding is excessive, the welded portion protrudes outside the case, and the lid is cut at the boundary between the welded portion and the lid. On the other hand, the melt-solidified portion having the above-described cross-sectional shape has an appropriate amount of penetration, and the lid and the weld ring can be reliably joined.
 上記溶融凝固部は、漏斗状の断面形状を有してもよい。 The melt-solidified part may have a funnel-like cross-sectional shape.
 溶融凝固部を断面形状が漏斗状となる形状とすることにより、溶接ビードが液室内部へ露出することなく溶接深さを深くすることが可能であり、溶接ビードの露出無しで溶接強度を上げることができる。また、溶接リングの溶け込み量が減少することにより溶接リングの歪を抑えることができるので、溶接リングの変形等による溶接不良を防ぐことが可能となる。 By making the melt-solidified part into a funnel-shaped cross section, the weld bead can be deepened without being exposed to the inside of the liquid chamber, and the weld strength can be increased without exposing the weld bead. be able to. Moreover, since the distortion of the weld ring can be suppressed by reducing the amount of penetration of the weld ring, it is possible to prevent poor welding due to deformation of the weld ring or the like.
 上記ケースはセラミックからなり、
 上記溶接リング及び上記リッドはコバールからなり、
 上記溶接リングは、上記ケースにロウ付けされていてもよい。
The case is made of ceramic,
The weld ring and the lid are made of Kovar,
The welding ring may be brazed to the case.
 この構成によれば、ケースと溶接リングはロウ付けによって接合され、溶接リングとリッドはレーザー溶接によって接合されることにより液室の気密性が維持される。なお、溶接リングには、AuメッキやNiメッキ等のメッキが施されていてもよい。 According to this configuration, the case and the weld ring are joined by brazing, and the weld ring and the lid are joined by laser welding, so that the airtightness of the liquid chamber is maintained. Note that the welding ring may be plated with Au plating, Ni plating, or the like.
 上記溶融凝固部は、ファイバーレーザーのレーザー照射によって形成されたものであってもよい。 The melt-solidified part may be formed by laser irradiation of a fiber laser.
 溶接リングとリッドは、溶接リングと重複するリッドの領域にファイバーレーザーを照射することによって溶接することが可能である。 ¡The weld ring and lid can be welded by irradiating a fiber laser onto the lid area overlapping the weld ring.
 [電気化学デバイスの構成]
 図1は、本実施形態に係る電気化学デバイス10の斜視図であり、図2は電気化学デバイス10のS11-S11線(図1)に沿う断面図である。これらの図に示すように、電気化学デバイス10は、ケース11、リッド12、蓄電素子13、正極配線14、正極端子15、負極配線16、負極端子17、溶接リング18、正極接着層19、負極接着層20及び溶融凝固部21を有する。
[Configuration of electrochemical device]
FIG. 1 is a perspective view of an electrochemical device 10 according to this embodiment, and FIG. 2 is a cross-sectional view of the electrochemical device 10 taken along line S11-S11 (FIG. 1). As shown in these drawings, the electrochemical device 10 includes a case 11, a lid 12, a power storage element 13, a positive electrode wiring 14, a positive electrode terminal 15, a negative electrode wiring 16, a negative electrode terminal 17, a welding ring 18, a positive electrode adhesive layer 19, and a negative electrode. It has an adhesive layer 20 and a melt-solidified part 21.
 図2に示すように、電気化学デバイス10は、リッド12と溶接リング18が溶融凝固部21によって溶接され、ケース11、溶接リング18及びリッド12によって形成された液室11aに蓄電素子13及び電解液が封入されて構成されている。正極配線14は蓄電素子13の正極と正極端子15を電気的に接続し、負極配線16は蓄電素子13の負極と負極端子17を電気的に接続している。 As shown in FIG. 2, the electrochemical device 10 includes a lid 12 and a weld ring 18 that are welded by a melt-solidified portion 21, and an electric storage element 13 and an electrolysis element in a liquid chamber 11 a formed by the case 11, the weld ring 18 and the lid 12. The liquid is enclosed. The positive electrode wiring 14 electrically connects the positive electrode of the power storage element 13 and the positive electrode terminal 15, and the negative electrode wiring 16 electrically connects the negative electrode of the power storage element 13 and the negative electrode terminal 17.
 ケース11は、リッド12及び溶接リング18と共に液室11aを形成する。図3は、ケース11の分解斜視図である。同図に示すようにケース11は、底部11bと壁部11cからなる。底部11bは、液室11aの底を構成する板状の部分であり、正極配線14用のビア11dが設けられている。壁部11cは、液室11aの側壁を構成し、底部11bの外縁に沿う枠状の部分である。 The case 11 forms a liquid chamber 11 a together with the lid 12 and the welding ring 18. FIG. 3 is an exploded perspective view of the case 11. As shown in the figure, the case 11 includes a bottom portion 11b and a wall portion 11c. The bottom portion 11b is a plate-like portion constituting the bottom of the liquid chamber 11a, and a via 11d for the positive electrode wiring 14 is provided. The wall part 11c is a frame-shaped part which comprises the side wall of the liquid chamber 11a and follows the outer edge of the bottom part 11b.
 ケース11は、HTCC(High Temperature Co-fired Ceramics)やLTCC(Low Temperature Co-fired Ceramics)等のセラミックからなるものとすることができる。ケース11は液室11aを構成するように凹状に形成されるものとすることができ、例えば図1に示すような直方体形状あるいは円柱形状等、他の形状とすることも可能である。 The case 11 may be made of a ceramic such as HTCC (High Temperature Co-fired Ceramics) or LTCC (Low Temperature Co-fired Ceramics). The case 11 can be formed in a concave shape so as to constitute the liquid chamber 11a. For example, the case 11 can have other shapes such as a rectangular parallelepiped shape or a cylindrical shape as shown in FIG.
 リッド12は、溶接リング18を介してケース11と接合され、液室11aを封止する。リッド12は、各種金属等の導電性材料からなるものとすることができ、例えばコバール(鉄-ニッケル-コバルト合金)からなるものとすることができる。リッド12は溶融凝固部21によって溶接リングに溶接され、この詳細については後述する。 The lid 12 is joined to the case 11 via the welding ring 18 to seal the liquid chamber 11a. The lid 12 can be made of a conductive material such as various metals, and can be made of, for example, Kovar (iron-nickel-cobalt alloy). The lid 12 is welded to the weld ring by the melted and solidified portion 21, and details thereof will be described later.
 蓄電素子13は、液室11aに収容され、電荷を蓄積し(蓄電)あるいは放出(放電する)。図2に示すように蓄電素子13は、第1電極シート13a、第2電極シート13b及びセパレートシート13cを有し、第1電極シート13a及び第2電極シート13bによってセパレートシート13cが挟まれた構成とすることができる。 The electricity storage element 13 is accommodated in the liquid chamber 11a, and accumulates (accumulates) electric charge or releases (discharges) electric charge. As shown in FIG. 2, the storage element 13 has a first electrode sheet 13a, a second electrode sheet 13b, and a separate sheet 13c, and the separate sheet 13c is sandwiched between the first electrode sheet 13a and the second electrode sheet 13b. It can be.
 第1電極シート13a、第2電極シート13b及びセパレートシート13cの構成材料は、必要な特性に応じて適宜選択することができる。例えば、第1電極シート13a及び第2電極シート13bは、活性炭、黒鉛(グラファイト)、PAS(Polyacenic Semiconductor:ポリアセン系有機半導体)等から選択される活物質を含む材料からなり、セパレートシート13cはガラス繊維、セルロール繊維、プラスチック繊維等を主材料とする多孔質シートであるものとすることができる。 The constituent materials of the first electrode sheet 13a, the second electrode sheet 13b, and the separate sheet 13c can be appropriately selected according to necessary characteristics. For example, the first electrode sheet 13a and the second electrode sheet 13b are made of a material containing an active material selected from activated carbon, graphite, PAS (Polyacenic Semiconductor), and the separate sheet 13c is made of glass. It can be a porous sheet mainly composed of fiber, cellulose fiber, plastic fiber or the like.
 第1電極シート13a、第2電極シート13b及びセパレートシート13cの材料は、電気化学デバイス10の種類によって同じ場合と異なる場合とがある。例えば、電気化学デバイス10が電気二重層キャパシタの場合は第1電極シート13aと第2電極シート13bの材料は同じものとすることができ、電気化学デバイス10がリチウムイオンキャパシタの場合は第1電極シート13aと第2電極シート13bの材料は異なるものとすることができる。 The materials of the first electrode sheet 13 a, the second electrode sheet 13 b, and the separate sheet 13 c may be the same or different depending on the type of the electrochemical device 10. For example, when the electrochemical device 10 is an electric double layer capacitor, the first electrode sheet 13a and the second electrode sheet 13b can be made of the same material. When the electrochemical device 10 is a lithium ion capacitor, the first electrode is used. The material of the sheet 13a and the second electrode sheet 13b can be different.
 蓄電素子13と共に液室11aに収容される電解液は、任意に選択することが可能である。電解液は、例えば、電気化学デバイス10が電気二重層キャパシタの場合は電解質塩が溶媒に溶解した電解液とすることができ、電気化学デバイス10がリチウムイオンキャパシタの場合はリチウム塩が溶媒に溶解した電解液とすることができる。 The electrolyte solution accommodated in the liquid chamber 11a together with the electricity storage element 13 can be arbitrarily selected. For example, when the electrochemical device 10 is an electric double layer capacitor, the electrolytic solution can be an electrolytic solution in which an electrolyte salt is dissolved in a solvent. When the electrochemical device 10 is a lithium ion capacitor, the lithium salt is dissolved in a solvent. Electrolyte solution.
 正極配線14は、蓄電素子13の正極(第1電極シート13a)と正極端子15とを電気的に接続する。正極配線14は任意の導電性材料からなるものとすることができる。具体的には、正極配線14は、正極端子15から蓄電素子13の直下までケース11の内部を通過し、ビア11dを経由して正極接着層19に接触し、正極接着層19を介して蓄電素子13に電気的に接続されるものとすることができる。 The positive electrode wiring 14 electrically connects the positive electrode (first electrode sheet 13a) of the power storage element 13 and the positive electrode terminal 15. The positive electrode wiring 14 can be made of any conductive material. Specifically, the positive electrode wiring 14 passes through the inside of the case 11 from the positive electrode terminal 15 to immediately below the power storage element 13, contacts the positive electrode adhesive layer 19 via the via 11 d, and stores electricity via the positive electrode adhesive layer 19. It can be electrically connected to the element 13.
 正極端子15は、蓄電素子13の正極と正極配線14によって接続され、外部、例えば実装基板との接続に用いられる。正極端子15は、任意の導電性材料からなるものとすることができ、図2に示すように、ケース11の側面から下面側に向けて形成されるものとすることができる。 The positive electrode terminal 15 is connected to the positive electrode of the electricity storage element 13 by the positive electrode wiring 14, and is used for connection to the outside, for example, a mounting substrate. The positive electrode terminal 15 can be made of an arbitrary conductive material, and can be formed from the side surface of the case 11 toward the lower surface side as shown in FIG.
 負極配線16は、蓄電素子13(の第2電極シート13b)と負極端子17とを電気的に接続する。具体的には、負極配線16は、負極端子17からケース11の外周に沿って形成され、溶接リング18に接続されるものとすることができる。負極配線16は、導電性を有する溶接リング18、リッド12及び負極接着層20を介して第2電極シート13bに電気的に接続される。負極配線16は任意の導電性材料からなるものとすることができる。 The negative electrode wiring 16 electrically connects the power storage element 13 (second electrode sheet 13b) and the negative electrode terminal 17. Specifically, the negative electrode wiring 16 can be formed from the negative electrode terminal 17 along the outer periphery of the case 11 and connected to the welding ring 18. The negative electrode wiring 16 is electrically connected to the second electrode sheet 13b through the conductive welding ring 18, the lid 12, and the negative electrode adhesive layer 20. The negative electrode wiring 16 can be made of any conductive material.
 負極端子17は、蓄電素子13の負極と負極配線16によって接続され、外部、例えば実装基板との接続に用いられる。負極端子17は、任意の導電性材料からなるものとすることができ、図2に示すように、ケース11の側面から下面側に向けて形成されるものとすることができる。 The negative electrode terminal 17 is connected to the negative electrode of the electricity storage element 13 by the negative electrode wiring 16, and is used for connection to the outside, for example, a mounting substrate. The negative electrode terminal 17 can be made of an arbitrary conductive material, and can be formed from the side surface of the case 11 toward the lower surface side as shown in FIG.
 溶接リング18は、ケース11とリッド12を接続して液室11aを封止すると共に、リッド12と負極配線16とを電気的に接続する。溶接リング18はロウ材(金-銅合金等)による接着(ロウ付け)によってケース11に接合され、溶融凝固部21によってリッド12と溶接されている。溶接リング18は、コバール(鉄-ニッケル-コバルト合金)等の導電性材料からなるものとすることができる。なお、溶接リング18には、NiメッキやAuメッキ等のメッキが施されていてもよい。 The welding ring 18 connects the case 11 and the lid 12 to seal the liquid chamber 11a, and electrically connects the lid 12 and the negative electrode wiring 16. The welding ring 18 is joined to the case 11 by bonding (brazing) with a brazing material (gold-copper alloy or the like), and is welded to the lid 12 by a melt-solidified portion 21. The welding ring 18 can be made of a conductive material such as Kovar (iron-nickel-cobalt alloy). The welding ring 18 may be plated with Ni plating, Au plating, or the like.
 正極接着層19は、第1電極シート13aをケース11に接着すると共に、第1電極シート13aと正極配線14を電気的に接続する。正極接着層19は、導電性接着材が硬化したものであり、導電性接着材は、導電性粒子を含有する合成樹脂であるものとすることができる。導電性粒子は例えば、炭素粒子(カーボンブラック)や黒鉛粒子(グラファイト粒子)等であり、合成樹脂はフェノール樹脂あるいはエポキシ系樹脂等の熱硬化性樹脂であるものとすることができる。 The positive electrode adhesive layer 19 bonds the first electrode sheet 13 a to the case 11 and electrically connects the first electrode sheet 13 a and the positive electrode wiring 14. The positive electrode adhesive layer 19 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles. The conductive particles are, for example, carbon particles (carbon black), graphite particles (graphite particles), and the like, and the synthetic resin can be a thermosetting resin such as a phenol resin or an epoxy resin.
 負極接着層20は、第2電極シート13bをリッド12に接着すると共に、第2電極シート13bとリッド12を電気的に接続する。負極接着層20は、導電性接着材が硬化したものであり、導電性接着材は正極接着層19のものと同様に、導電性粒子を含有する合成樹脂であるものとすることができる。なお負極接着層20と正極接着層19は、同種の導電性接着材からなるものとすることもでき、他種の導電性接着材からなるものとすることもできる。 The negative electrode adhesive layer 20 adheres the second electrode sheet 13 b to the lid 12 and electrically connects the second electrode sheet 13 b and the lid 12. The negative electrode adhesive layer 20 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles, like the positive electrode adhesive layer 19. The negative electrode adhesive layer 20 and the positive electrode adhesive layer 19 can be made of the same type of conductive adhesive, or can be made of other types of conductive adhesive.
 [溶融凝固部について]
 上述のように、リッド12と溶接リング18は溶融凝固部21によって溶接されている。溶融凝固部21は、リッド12及び溶接リング18の構成材料が溶融凝固した部分であり、後述するレーザー溶接によって形成することができる。
[Melting and solidification part]
As described above, the lid 12 and the weld ring 18 are welded by the melt-solidified portion 21. The melt-solidified portion 21 is a portion where the constituent materials of the lid 12 and the weld ring 18 are melted and solidified, and can be formed by laser welding described later.
 図4は図2における溶融凝固部21の拡大図であり、壁部11cと直交する断面図である。図4(a)又は図4(b)に示すように溶融凝固部21は、リッド12から溶接リング18にわたって形成されている。溶融凝固部21が溶接リング18に到達していないと、リッド12を溶接リング18に接合する効果が生じない。一方、溶融凝固部21がケース11まで到達すると、ケース11に破損が生じる。具体的には、溶融凝固部21の溶融深さは、溶接リング18の厚みの半分以下が好適である。 FIG. 4 is an enlarged view of the melt-solidified portion 21 in FIG. 2, and is a cross-sectional view orthogonal to the wall portion 11c. As shown in FIG. 4A or FIG. 4B, the melt-solidified portion 21 is formed from the lid 12 to the welding ring 18. If the melted and solidified portion 21 does not reach the weld ring 18, the effect of joining the lid 12 to the weld ring 18 does not occur. On the other hand, when the melted and solidified portion 21 reaches the case 11, the case 11 is damaged. Specifically, the melting depth of the melt-solidified portion 21 is preferably half or less of the thickness of the weld ring 18.
 図5は溶融凝固部21の形成領域を示す平面図である。同図に示すように溶融凝固部21は、溶接リング18とリッド12が重複する領域に形成され、即ち液室11aの周囲において環状に形成されるものとすることができる。 FIG. 5 is a plan view showing a region where the melt-solidified portion 21 is formed. As shown in the figure, the melt-solidified portion 21 can be formed in a region where the weld ring 18 and the lid 12 overlap, that is, can be formed in an annular shape around the liquid chamber 11a.
 溶融凝固部21は、断面の幅が溶融深度と共に漸減する形状を有する。図6は、溶融凝固部21の断面形状を示す断面図である。溶融凝固部21は、図6(a)に示すように、断面形状がリッド12の表面を底辺とする三角形状となる形状を有するものとすることができる。また、溶融凝固部21は、図6(b)に示すように、断面形状が、浅い溶融深度における幅の減少割合(溶融深度に対する幅の減少量)が深い溶融深度における幅の減少割合より大きい形状(漏斗状形状)であるものとすることができる。 The melt-solidified part 21 has a shape in which the width of the cross section gradually decreases with the melting depth. FIG. 6 is a cross-sectional view showing a cross-sectional shape of the melt-solidified portion 21. As shown in FIG. 6A, the melt-solidified portion 21 can have a cross-sectional shape that has a triangular shape with the surface of the lid 12 as a base. In addition, as shown in FIG. 6B, the melt-solidified portion 21 has a cross-sectional shape in which the width reduction ratio at the shallow melting depth (the width reduction amount with respect to the melting depth) is larger than the width reduction ratio at the deep melting depth. It can be a shape (funnel shape).
 溶融凝固部21を図6(b)に示す形状とすることにより、溶接ビードが液室11aの内部へ露出することなく溶接深さを深くすることが可能であり、溶接ビードの露出無しで溶接強度を上げることができる。また、溶接リング18の溶け込み量が減少することにより溶接リング18の歪を抑えることができるので、溶接リング18の変形等による溶接不良を防ぐことが可能となる。溶融凝固部21の形状は、リッド12の表面に対してレーザー照射を行うことによって形成され、レーザー照射条件によって、溶融凝固部21の形状も異なる。 By forming the melted and solidified portion 21 into the shape shown in FIG. 6B, the weld bead can be deepened without being exposed to the inside of the liquid chamber 11a, and welding can be performed without exposing the weld bead. Strength can be increased. Moreover, since the distortion of the welding ring 18 can be suppressed by reducing the amount of penetration of the welding ring 18, it becomes possible to prevent poor welding due to deformation of the welding ring 18 or the like. The shape of the melt-solidified portion 21 is formed by performing laser irradiation on the surface of the lid 12, and the shape of the melt-solidified portion 21 varies depending on the laser irradiation conditions.
 図7は、溶融凝固部21の幅を示す平面図であり、図5の部分拡大図である。図6及び図7に示すように、溶融凝固部21の最も幅の広い位置における幅を第1の幅T1とする。なお、これらの図では、リッド12の表面における溶融凝固部21の幅が最も広いが、リッド12の表面より深い位置において溶融凝固部21の幅が最も広い場合もある。また、図6に示すように、溶接深さの半分の位置における溶融凝固部21の幅を第2の幅T2とする。ここで、溶融凝固部21は、幅T2が幅T1の0.3倍以上0.9倍以下となる形状を有する。 FIG. 7 is a plan view showing the width of the melt-solidified portion 21, and is a partially enlarged view of FIG. As shown in FIG.6 and FIG.7, let the width | variety in the widest position of the fusion | melting solidification part 21 be 1st width | variety T1. In these figures, the width of the melt-solidified portion 21 is the widest on the surface of the lid 12, but the width of the melt-solidified portion 21 may be the widest at a position deeper than the surface of the lid 12. Further, as shown in FIG. 6, the width of the melt-solidified portion 21 at the half of the welding depth is defined as a second width T2. Here, the melt-solidified portion 21 has a shape in which the width T2 is not less than 0.3 times and not more than 0.9 times the width T1.
 溶接による溶け込みが不足し、幅T2が幅T1の0.3倍未満となると、僅かな衝撃で溶接が破壊され、液室11aの気密性が低下し、電気化学デバイス10の抵抗上昇や容量低下が生じる。またリフローはんだ付けの際や過充電の状況になった場合、電解液等の分解によりガスが発生し、液室内の圧力が上昇して溶接部が破壊され、内容物が飛び出すおそれがある。一方、溶接による溶け込みが多過ぎ、幅T2が幅T1の0.9倍を超えると、溶接時に周囲の外気が取り込まれて巣穴が生じ、そこからピンポールが空いて液室11aの気密性が低下する。また溶接による溶け込みが過剰な場合、溶接部がケース11の外側にはみ出し、溶接部とリッド12の境界でリッド12が切断される。これに対し、幅T2が幅T1の0.3倍以上0.9倍以下であると、溶接による溶け込みが適度となり、これらの問題が生じない。 When the penetration due to welding is insufficient and the width T2 is less than 0.3 times the width T1, the welding is broken by a slight impact, the airtightness of the liquid chamber 11a is lowered, the resistance of the electrochemical device 10 is increased, and the capacity is decreased. Occurs. Also, when reflow soldering or overcharge occurs, gas is generated due to decomposition of the electrolytic solution, etc., the pressure in the liquid chamber rises, the welded portion is destroyed, and the contents may jump out. On the other hand, if there is too much penetration due to welding and the width T2 exceeds 0.9 times the width T1, the surrounding outside air is taken in during welding to form a burrow, from which a pin pole is opened, and the liquid chamber 11a is airtight. descend. When the penetration due to welding is excessive, the welded portion protrudes outside the case 11, and the lid 12 is cut at the boundary between the welded portion and the lid 12. On the other hand, when the width T2 is not less than 0.3 times and not more than 0.9 times the width T1, penetration by welding becomes appropriate, and these problems do not occur.
 [溶融凝固部の形成方法]
 溶融凝固部21は次のようにして形成することが可能である。なお、液室11aには溶接前に、蓄電素子13と電解液が収容されているものとする。図8は溶融凝固部21の形成方法を示す模式図である。同図に示すように、溶接リング18上に載置されたリッド12に対してレーザーLを照射する。レーザーLが照射されている領域(スポット)を所定の速度で移動(走査)させることにより、走査経路上に溶融凝固部21が形成される。
[Method for forming melt-solidified part]
The melt-solidified part 21 can be formed as follows. It is assumed that the storage element 13 and the electrolytic solution are accommodated in the liquid chamber 11a before welding. FIG. 8 is a schematic diagram showing a method for forming the melt-solidified portion 21. As shown in the figure, the laser L is irradiated to the lid 12 placed on the welding ring 18. By moving (scanning) the region (spot) irradiated with the laser L at a predetermined speed, the melted and solidified portion 21 is formed on the scanning path.
 照射するレーザーは、ファイバーレーザーを利用することができる。溶融凝固部21の形状は、照射するレーザーの出力、走査速度及び焦点距離(スポット径)によって調整することが可能である。具体的には、ファイバーレーザーの場合、出力300W、照射時間60msとすることによって溶融凝固部21を形成することが可能である。 The fiber laser can be used as the laser to irradiate. The shape of the melt-solidified portion 21 can be adjusted by the output of the laser to be irradiated, the scanning speed, and the focal length (spot diameter). Specifically, in the case of a fiber laser, the melt-solidified portion 21 can be formed by setting the output to 300 W and the irradiation time to 60 ms.
 以上のように、本実施形態においては、リッド12は溶融凝固部21によって溶接リング18に溶接されている。溶融凝固部21が上述した形状となるように溶接することにより、液室11aの気密性を確保し、電気化学デバイス10の信頼性を向上させることが可能である。さらに、溶融凝固部21をレーザー溶接によって形成するため、本実施形態は電気化学デバイス10の小型化に適している。 As described above, in the present embodiment, the lid 12 is welded to the weld ring 18 by the melt-solidified portion 21. By welding so that the melt-solidified portion 21 has the shape described above, it is possible to ensure the airtightness of the liquid chamber 11a and improve the reliability of the electrochemical device 10. Furthermore, since the melt-solidified portion 21 is formed by laser welding, this embodiment is suitable for downsizing the electrochemical device 10.
 10…電気化学デバイス
 11…ケース
 12…リッド
 13…蓄電素子
 18…溶接リング
 21…溶接部
 
 
 
DESCRIPTION OF SYMBOLS 10 ... Electrochemical device 11 ... Case 12 ... Lid 13 ... Power storage element 18 ... Welding ring 21 ... Welding part

Claims (5)

  1.  底部と前記底部の外縁に沿う枠状の壁部を有するケースと、
     前記ケースに接合され、前記ケースと共に液室を形成する溶接リングと、
     前記液室を封止するリッドと、
     前記リッドと前記溶接リングの溶融凝固部であって、前記リッドから前記溶接リングにわたって形成され、前記ケースには到達せず、前記壁部を通り直交する断面において、前記溶接凝固部の形状は、幅が溶融深度と共に漸減する溶融凝固部と、
     前記液室に収容された蓄電素子と、
     前記液室に収容された電解液と
     を具備する電気化学デバイス。
    A case having a bottom and a frame-like wall along the outer edge of the bottom;
    A welding ring joined to the case and forming a liquid chamber with the case;
    A lid for sealing the liquid chamber;
    In the melt-solidified part of the lid and the weld ring, which is formed from the lid to the weld ring, does not reach the case, and in a cross section that passes through the wall and is orthogonal, the shape of the weld-solidified part is: A melt-solidified portion whose width gradually decreases with the melting depth;
    A power storage element housed in the liquid chamber;
    An electrochemical device comprising: an electrolytic solution housed in the liquid chamber.
  2.  請求項1に記載の電気化学デバイスであって、
     前記溶融凝固部は、最も幅の広い位置における幅を第1の幅とし、溶融深さの半分の位置における幅を第2の幅としたときに、前記第2の幅が前記第1の幅の0.3倍以上0.9倍以下である断面形状を有する
     電気化学デバイス。
    The electrochemical device according to claim 1,
    When the width at the widest position is the first width and the width at the half of the melt depth is the second width, the second width is the first width. An electrochemical device having a cross-sectional shape that is not less than 0.3 times and not more than 0.9 times.
  3.  請求項1又は2に記載の電気化学デバイスであって、
     前記溶融凝固部は、漏斗状の断面形状を有する
     電気化学デバイス。
    The electrochemical device according to claim 1 or 2,
    The melt-solidified part is an electrochemical device having a funnel-shaped cross-sectional shape.
  4.  請求項1から3のうちいずれか一項に記載の電気化学デバイスであって、
     前記ケースはセラミックからなり、
     前記溶接リング及び前記リッドはコバールからなり、
     前記溶接リングは、前記ケースにロウ付けされている
     電気化学デバイス。
    The electrochemical device according to any one of claims 1 to 3,
    The case is made of ceramic,
    The welding ring and the lid are made of Kovar,
    The welding ring is an electrochemical device brazed to the case.
  5.  請求項1から4のうちいずれか一項に記載の電気化学デバイスであって、
     前記溶融凝固部は、ファイバーレーザーのレーザー照射によって形成された
     電気化学デバイス。
     
     
     
    The electrochemical device according to any one of claims 1 to 4,
    The melt-solidified part is an electrochemical device formed by laser irradiation of a fiber laser.


PCT/JP2014/054611 2013-06-07 2014-02-26 Electrochemical device WO2014196230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014525223A JPWO2014196230A1 (en) 2013-06-07 2014-02-26 Electrochemical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013120338 2013-06-07
JP2013-120338 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014196230A1 true WO2014196230A1 (en) 2014-12-11

Family

ID=52007886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054611 WO2014196230A1 (en) 2013-06-07 2014-02-26 Electrochemical device

Country Status (2)

Country Link
JP (1) JPWO2014196230A1 (en)
WO (1) WO2014196230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028490A (en) * 2010-07-22 2012-02-09 Taiyo Yuden Co Ltd Electrochemical device
JP2012028491A (en) * 2010-07-22 2012-02-09 Taiyo Yuden Co Ltd Electrochemical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229491A (en) * 1985-04-03 1986-10-13 Mitsubishi Electric Corp Processing head for laser welding
JP2929447B2 (en) * 1994-07-25 1999-08-03 川崎重工業株式会社 Welding method
JP2003088969A (en) * 2001-09-18 2003-03-25 Hitachi Zosen Corp Thick plate lap welding method and equipment
JP5600838B2 (en) * 2010-07-12 2014-10-08 国立大学法人広島大学 Laser welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028490A (en) * 2010-07-22 2012-02-09 Taiyo Yuden Co Ltd Electrochemical device
JP2012028491A (en) * 2010-07-22 2012-02-09 Taiyo Yuden Co Ltd Electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Also Published As

Publication number Publication date
JPWO2014196230A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6806217B2 (en) Rechargeable battery
JP5121279B2 (en) Manufacturing method of sealed battery
CN102427909B (en) Method of manufacturig battery
WO2011016200A1 (en) Hermetically sealed battery and method for manufacturing the same
CN104641487B (en) Rectangular secondary cell
JP5058562B2 (en) Sealed battery
TW200814401A (en) Sealed battery
JP5260990B2 (en) Sealed battery and method for manufacturing the same
JP2011092995A (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JP2013237102A (en) Device case and method of manufacturing the same
CN105591047B (en) Electrochemical cell
US5279623A (en) Method of fabricating flat type electrochemical device
CN103109337A (en) Electrochemical device
JP2011129266A (en) Manufacturing method of square shape sealed battery
US20190363318A1 (en) Battery module and method for manufacturing same
JP6768418B2 (en) Square secondary battery
JP6147207B2 (en) Battery and battery manufacturing method
JP2015041526A (en) Method for welding lid body and case body of power storage device
JP2005190776A (en) Sealed type battery
CN104064703B (en) Sealed secondary battery and manufacturing method of sealed secondary battery
WO2014196230A1 (en) Electrochemical device
US20220131240A1 (en) Battery and manufacturing method for battery
JP2004327453A (en) Square sealed storage battery and its manufacturing method
JP2018157082A (en) Electronic device and method of manufacturing the same
JP2015109140A (en) Manufacturing method of sealed battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014525223

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807995

Country of ref document: EP

Kind code of ref document: A1