JP2015041526A - Method for welding lid body and case body of power storage device - Google Patents

Method for welding lid body and case body of power storage device Download PDF

Info

Publication number
JP2015041526A
JP2015041526A JP2013172231A JP2013172231A JP2015041526A JP 2015041526 A JP2015041526 A JP 2015041526A JP 2013172231 A JP2013172231 A JP 2013172231A JP 2013172231 A JP2013172231 A JP 2013172231A JP 2015041526 A JP2015041526 A JP 2015041526A
Authority
JP
Japan
Prior art keywords
lid
case
welding
main body
case main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013172231A
Other languages
Japanese (ja)
Inventor
真也 奥田
Shinya Okuda
真也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013172231A priority Critical patent/JP2015041526A/en
Publication of JP2015041526A publication Critical patent/JP2015041526A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure airtightness (sealability) of a case by closing pin holes with a case body, a lid body and a separate member even if the pin holes are generated when the case body and the lid body are beam-welded.SOLUTION: In a method for welding a lid body 14 and a case body 13 of a secondary battery 10 (power storage battery), the lid body 14 closing an opening 13a is beam-welded to the case body 13 in a state where an electrode assembly 12 is housed in the case body 13 having the opening 13a capable of inserting the electrode assembly 12 thereinto. Then, beam irradiation is performed on an abutting part between the lid body 14 and the case body 13 from the outside thereof in a state where a place to be welded of the lid body 14 is arranged at a welding position abutting with the case body 13 and under such a condition, a thermoplastic material 24 capable of being molten by heat resulting from welding is arranged on the inner side than the abutting part between the lid body 14 and the case body 13.

Description

本発明は、蓄電装置の蓋体とケース本体との溶接方法に係り、詳しくは電極組立体を挿入可能な開口部を有するケース本体内に前記電極組立体を収容した状態で、前記開口部を塞ぐ蓋体を前記ケース本体にビーム溶接する蓄電装置の蓋体とケース本体との溶接方法に関する。   The present invention relates to a method for welding a lid of a power storage device to a case body, and more specifically, in a state where the electrode assembly is accommodated in a case body having an opening into which the electrode assembly can be inserted. The present invention relates to a welding method between a lid body of a power storage device and a case body, which beam-welds a lid body to be closed to the case body.

二次電池やキャパシタのような蓄電装置は再充電が可能であり、繰り返し使用することができるため電源として広く利用されている。一般に、容量の大きな蓄電装置は電極組立体を収容するケースを備え、そのケース内に電極組立体が収容されている。従来、二次電池のケースは、ケース本体と蓋体とは別部品として構成され、ケース本体内に電極組立体を収容した後、ケース本体の開口部を覆うように蓋体がレーザ溶接によりに溶接される。ケース本体と蓋体とをレーザ溶接で溶接する場合、ケース本体と蓋体との境界に発生するピンホールが製品の歩留まりを低下させる。   Power storage devices such as secondary batteries and capacitors are widely used as power sources because they can be recharged and can be used repeatedly. In general, a power storage device with a large capacity includes a case for accommodating an electrode assembly, and the electrode assembly is accommodated in the case. Conventionally, a case of a secondary battery is configured as a separate part from a case body and a lid body, and after the electrode assembly is accommodated in the case body, the lid body is formed by laser welding so as to cover the opening of the case body. Welded. When the case main body and the lid body are welded by laser welding, the pinhole generated at the boundary between the case main body and the lid body reduces the yield of the product.

従来、図7に示すように、金属製の円筒缶50の開口部を金属製の蓋52で塞ぎ、蓋52の中心には端子ピン54が封口ガラス56を介して固着され、円筒缶50と蓋52との接合部58のケース内方部分に全周にわたって粘着性封口剤60が塗着されて接合部58が気密に一次シールされた密閉型電池の封口構造が提案されている(特許文献1)。この密閉型電池は、レーザ溶接を行う前段階で、円筒缶50と蓋52との接合部58のケース内方部分全体が粘着性封口剤60によって一次シールされているので、内部の電解液が接合部58に及んで悪影響を与えることがなく、信頼性の高いレーザ溶接が可能で溶接火花が内部に印加することもないとしている。   Conventionally, as shown in FIG. 7, the opening of a metal cylindrical can 50 is closed with a metal lid 52, and a terminal pin 54 is fixed to the center of the lid 52 through a sealing glass 56, There has been proposed a sealing structure for a sealed battery in which an adhesive sealing agent 60 is applied to the inner portion of the joint portion 58 with the lid 52 over the entire circumference, and the joint portion 58 is airtightly sealed primarily (Patent Document). 1). In this sealed battery, since the entire case inner portion of the joint 58 between the cylindrical can 50 and the lid 52 is primarily sealed by the adhesive sealant 60 before the laser welding, the internal electrolyte solution It is assumed that laser welding with high reliability is possible without adversely affecting the joint 58, and no welding spark is applied to the inside.

実開昭61−174169号公報Japanese Utility Model Publication No. 61-174169

特許文献1の粘着性封口剤60の目的は、溶接の際に内部の電解液が接合部58の隙間に達するのを防止することであり、レーザ溶接時にピンホールが発生した場合にそのピンホールにより気密性が損なわれることを防止する役割を果たすものではなく、レーザ溶接時にピンホールが発生した場合に関しては何ら記載はない。   The purpose of the adhesive sealant 60 of Patent Document 1 is to prevent the internal electrolyte from reaching the gap of the joint 58 during welding, and when a pinhole is generated during laser welding, the pinhole is prevented. It does not play a role of preventing the airtightness from being impaired by this, and there is no description regarding a case where a pinhole is generated during laser welding.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、ケース本体と蓋体とのビーム溶接時にピンホールが発生しても、ピンホールをケース本体及び蓋体と別部材で塞ぐことによりケースの気密性(密封性)を確保することができる蓄電装置の蓋体とケース本体との溶接方法を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to separate the pinhole from the case main body and the lid body even if a pinhole is generated during beam welding between the case main body and the lid body. An object of the present invention is to provide a method for welding a lid body of a power storage device and a case main body, which can ensure airtightness (sealing property) of the case by closing with the case.

上記課題を解決する蓄電装置の蓋体とケース本体との溶接方法は、電極組立体を挿入可能な開口部を有するケース本体内に前記電極組立体を収容した状態で、前記開口部を塞ぐ蓋体を前記ケース本体にビーム溶接する蓄電装置の蓋体とケース本体との溶接方法である。そして、前記蓋体の溶接すべき箇所を前記ケース本体と当接する溶接位置に配置し、かつその状態で前記蓋体と前記ケース本体との当接部より内側に溶接に伴う熱により溶融可能な熱塑性材料が配置された状態で、前記当接部にその外側からビーム照射を行う。   A method for welding a lid of a power storage device and a case main body that solves the above problem is a lid that closes the opening in a state where the electrode assembly is accommodated in a case main body having an opening into which the electrode assembly can be inserted. This is a method of welding the lid of the power storage device and the case main body, which beam-welds the body to the case main body. And the location which should weld the said cover body is arrange | positioned in the welding position which contact | abuts with the said case main body, and it can be fuse | melted by the heat accompanying welding inside the contact part of the said cover body and the said case main body in that state In a state where the thermoplastic material is disposed, the contact portion is irradiated with a beam from the outside.

この構成によれば、蓋体とケース本体との当接部より内側に配置された熱塑性材料は、溶接時に溶接に伴う熱により少なくとも当接部に近い側が溶融する。そして、ビーム溶接時にピンホールが発生すると熱塑性材料の溶融部分が増大し、空間内の熱塑性材料全体が溶融状態となり、その一部がピンホール内に侵入し、ピンホールを塞ぐ状態になる。したがって、ケース本体と蓋体とのビーム溶接時にピンホールが発生しても、ピンホールをケース本体及び蓋体と別部材で塞ぐことによりケースの気密性(密封性)を確保することができる。   According to this configuration, the thermoplastic material disposed on the inner side of the contact portion between the lid and the case main body is melted at least on the side close to the contact portion due to heat accompanying welding during welding. When a pinhole is generated during beam welding, the melted portion of the thermoplastic material is increased, and the entire thermoplastic material in the space is in a molten state, and a part of the thermoplastic material enters the pinhole and closes the pinhole. Therefore, even if a pinhole is generated during beam welding between the case main body and the lid body, the case can be secured with airtightness (sealing performance) by closing the pinhole with a separate member from the case main body and the lid body.

前記蓋体と前記ケース本体との溶接時に、前記ケース本体内を加圧状態にすることが好ましい。この構成によれば、レーザ溶接時にピンホールが発生して熱塑性材料全体が溶融状態となった場合、溶融状態の熱塑性材料全体が加圧作用を受けることにより、溶融状態の熱塑性材料がピンホール内に確実に侵入して、ピンホールを塞ぐ状態になる。   It is preferable that the inside of the case body is in a pressurized state when welding the lid and the case body. According to this configuration, when a pinhole is generated during laser welding and the entire thermoplastic material is in a molten state, the entire thermoplastic material in a molten state is subjected to a pressurizing action, so that the molten thermoplastic material is contained in the pinhole. It will surely invade and close the pinhole.

前記加圧は、前記蓋体に形成された注液孔から圧縮気体を供給することにより行われることが好ましい。ケース本体内を加圧状態にする圧縮気体をケース本体内に供給する場合、圧縮気体供給用に専用の孔を設けてもよいが、電解液の注入孔を利用すれば、圧縮気体供給用の孔を新たに形成したり、ビーム溶接終了後にその孔を封止したりする手間も不要になり、製造コストが低下される。   The pressurization is preferably performed by supplying a compressed gas from a liquid injection hole formed in the lid. When supplying the compressed gas that pressurizes the inside of the case body into the case body, a dedicated hole for supplying the compressed gas may be provided, but if an injection hole for the electrolyte is used, the compressed gas supply There is no need to form a new hole or seal the hole after the beam welding is completed, and the manufacturing cost is reduced.

本発明によれば、ケース本体と蓋体とのビーム溶接時にピンホールが発生しても、ピンホールをケース本体及び蓋体と別部材で塞ぐことによりケースの気密性(密封性)を確保することができる。   According to the present invention, even if a pinhole is generated during beam welding between the case body and the lid, the case is sealed and sealed by securing the pinhole with a separate member from the case body and the lid. be able to.

一実施形態の二次電池の模式斜視図。The schematic perspective view of the secondary battery of one Embodiment. (a)は二次電池の模式断面図、(b)は(a)の部分拡大図。(A) is a schematic cross section of a secondary battery, (b) is the elements on larger scale of (a). (a)は電極組立体を省略した蓋体がケース本体の開口部を塞ぐ前の模式断面図、(b)は同じく蓋体とケース本体とがレーザ溶接される際の模式断面図。(A) is a schematic cross-sectional view before the lid without the electrode assembly closes the opening of the case main body, and (b) is a schematic cross-sectional view when the lid and the case main body are similarly laser-welded. (a)はブローホールが発生した部分に熱塑性材料が入り込んだ状態の模式断面図、(b)はブローホールが発生した場合の溶接欠陥を示す模式断面図。(A) is a schematic cross section in the state in which the thermoplastic material entered the part where the blowhole was generated, (b) is a schematic cross section showing a welding defect when the blowhole is generated. 蓋体とケース本体とのレーザ溶接時の蓋体の温度測定箇所を示す模式図。The schematic diagram which shows the temperature measurement location of the cover body at the time of the laser welding of a cover body and a case main body. (a),(b)はそれぞれ別の実施形態の蓋体及びケース本体を示す部分断面図。(A), (b) is a fragmentary sectional view which shows the cover body and case main body of another embodiment, respectively. 従来技術を示す一部破断正面図。The partially broken front view which shows a prior art.

以下、積層型の電極組立体を備えた二次電池に具体化した一実施形態を図1〜図5にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10は、ケース11に電極組立体12が収容されている。また、ケース11には、電解液(図示せず)も収容されている。ケース11は、電極組立体12を挿入可能な開口部13a(図2(a)に図示)を有する有底四角筒状のケース本体13と、開口部13aを塞ぐ蓋体14とからなる。ケース本体13と蓋体14とはビーム溶接としてのレーザ溶接によって溶接されている。この実施形態の二次電池10は、リチウムイオン電池である。ケース本体13及び蓋体14はアルミニウム系金属製である。アルミニウム系金属とは、アルミニウム又はアルミニウム合金を意味する。アルミニウム合金とは、例えば、アルミニウムを主成分とし、銅、マンガン、亜鉛、シリコン、マグネシウムなどが添加されたものを含み、熱処理型合金も含む。
Hereinafter, an embodiment embodied in a secondary battery provided with a stacked electrode assembly will be described with reference to FIGS.
As shown in FIG. 1, in a secondary battery 10 as a power storage device, an electrode assembly 12 is accommodated in a case 11. The case 11 also contains an electrolytic solution (not shown). The case 11 includes a bottomed square cylindrical case body 13 having an opening 13a (shown in FIG. 2A) into which the electrode assembly 12 can be inserted, and a lid 14 that closes the opening 13a. The case body 13 and the lid body 14 are welded by laser welding as beam welding. The secondary battery 10 of this embodiment is a lithium ion battery. The case body 13 and the lid body 14 are made of an aluminum-based metal. An aluminum-based metal means aluminum or an aluminum alloy. The aluminum alloy includes, for example, aluminum as a main component and added with copper, manganese, zinc, silicon, magnesium, and the like, and also includes a heat treatment type alloy.

図2(a)に示すように、電極組立体12は、複数の矩形シート状の正極及び複数の矩形シート状の負極が、正極と負極との間にシート状のセパレータが存在する状態で積層されて構成されている。正極及び負極は、金属箔の両面に活物質が塗布された活物質層を有する部分が矩形状に形成され、活物質層が形成されていないタブ12p,12nが突出形成されている。セパレータは、活物質層の幅より若干幅広に形成されている。二次電池10がリチウムイオン二次電池の場合、正極用の金属箔はアルミニウム箔が好ましく、負極用の金属箔は銅箔が好ましい。   As shown in FIG. 2A, the electrode assembly 12 is formed by laminating a plurality of rectangular sheet-like positive electrodes and a plurality of rectangular sheet-like negative electrodes with a sheet-like separator between the positive electrode and the negative electrode. Has been configured. In the positive electrode and the negative electrode, portions having an active material layer in which an active material is applied on both surfaces of a metal foil are formed in a rectangular shape, and tabs 12p and 12n on which no active material layer is formed are formed protrudingly. The separator is formed slightly wider than the width of the active material layer. When the secondary battery 10 is a lithium ion secondary battery, the metal foil for the positive electrode is preferably an aluminum foil, and the metal foil for the negative electrode is preferably a copper foil.

図2(a)に示すように、電極組立体12には、正極端子15及び負極端子16が電気的に接続されている。正極端子15は導電部材17を介して電極組立体12の正極のタブ12pに電気的に接続され、負極端子16は導電部材18を介して電極組立体12の負極のタブ12nに電気的に接続されている。また、正極端子15及び負極端子16は、蓋体14の孔14aからケース11外に突出している。正極端子15及び負極端子16には、ケース11から電気的に絶縁するためのリング状の絶縁リング19がそれぞれ取り付けられている。   As shown in FIG. 2A, a positive electrode terminal 15 and a negative electrode terminal 16 are electrically connected to the electrode assembly 12. The positive electrode terminal 15 is electrically connected to the positive electrode tab 12 p of the electrode assembly 12 via the conductive member 17, and the negative electrode terminal 16 is electrically connected to the negative electrode tab 12 n of the electrode assembly 12 via the conductive member 18. Has been. Further, the positive electrode terminal 15 and the negative electrode terminal 16 protrude outside the case 11 from the hole 14 a of the lid body 14. Each of the positive terminal 15 and the negative terminal 16 is attached with a ring-shaped insulating ring 19 for electrical insulation from the case 11.

蓋体14には、ケース11(ケース本体13)内に電解液を注入するための注液孔20が設けられており、注液孔20は封止部材21によって閉塞されている。封止部材21はアルミニウム系金属製で、蓋体14に溶接されている。   The lid body 14 is provided with a liquid injection hole 20 for injecting an electrolytic solution into the case 11 (case body 13). The liquid injection hole 20 is closed by a sealing member 21. The sealing member 21 is made of aluminum metal and is welded to the lid body 14.

蓋体14には、ケース11内の圧力が設定された圧力に上昇したときに開放する安全弁22が設けられている。安全弁22はアルミニウム系金属製で、蓋体14に形成された安全弁取り付け孔23に溶接で取り付けられている。   The lid 14 is provided with a safety valve 22 that opens when the pressure in the case 11 rises to a set pressure. The safety valve 22 is made of an aluminum-based metal, and is attached to a safety valve attachment hole 23 formed in the lid body 14 by welding.

図2及び図3に示すように、ケース本体13の上端部内周に沿って環状に段差部13bが形成され、蓋体14のケース本体13と対向する側の周縁には段差部14bが形成されている。段差部14bは高さが段差部13bの高さと同じに形成されるとともに、幅はケース本体13の肉厚より大きく形成されている。そして、蓋体14がケース本体13の上に載置された状態で、ケース本体13の段差部13bと、蓋体14の段差部14bとにより、ケース内に連通する状態の四角環状の空間Sが形成され、その空間S内に熱塑性材料24が配置されている。この状態は、蓋体14の溶接すべき箇所がケース本体13と当接する溶接位置に配置された状態であり、蓋体14とケース本体13との当接部より内側に配置された熱塑性材料24は、溶接に伴う熱により溶融可能である。熱塑性材料24としては低融点合金が好ましい。低融点合金としては例えば、Sn(錫)合金が使用される。   As shown in FIGS. 2 and 3, a stepped portion 13 b is formed in an annular shape along the inner periphery of the upper end portion of the case body 13, and a stepped portion 14 b is formed on the periphery of the lid 14 on the side facing the case body 13. ing. The step portion 14 b is formed to have the same height as the step portion 13 b and the width is formed to be greater than the thickness of the case body 13. Then, in a state where the lid body 14 is placed on the case main body 13, the square annular space S in a state of communicating with the inside of the case by the stepped portion 13 b of the case main body 13 and the stepped portion 14 b of the lid body 14. Is formed, and the thermoplastic material 24 is arranged in the space S. This state is a state in which a portion to be welded of the lid body 14 is disposed at a welding position where the lid body 14 contacts the case main body 13, and the thermoplastic material 24 disposed inside the contact portion between the lid body 14 and the case main body 13. Can be melted by heat accompanying welding. The thermoplastic material 24 is preferably a low melting point alloy. As the low melting point alloy, for example, a Sn (tin) alloy is used.

次に前記のように構成されたケース11内に電極組立体12が収容された二次電池10のケース本体13と蓋体14との溶接方法を説明する。
蓋体14をケース本体13に溶接する場合、電極組立体12をケース本体13の開口部13aからケース本体13内に挿入した後、蓋体14をケース本体13の開口部13aを塞ぐ状態に配置する。図3(a)に示すように、熱塑性材料24が段差部14bに嵌合された状態の蓋体14が、ケース本体13の開口部13a上方から下降され、図3(b)に示すように、ケース本体13の上端面が蓋体14の段差部14bの一部と当接し、熱塑性材料24が段差部13bと段差部14bとにより形成された空間S内に配置された状態になる。なお、図3(a),(b)では電極組立体12の図示を省略している。
Next, a method of welding the case body 13 and the lid body 14 of the secondary battery 10 in which the electrode assembly 12 is accommodated in the case 11 configured as described above will be described.
When the lid 14 is welded to the case main body 13, the electrode assembly 12 is inserted into the case main body 13 from the opening 13 a of the case main body 13, and then the lid 14 is arranged so as to close the opening 13 a of the case main body 13. To do. As shown in FIG. 3A, the lid body 14 in a state in which the thermoplastic material 24 is fitted to the stepped portion 14b is lowered from above the opening 13a of the case body 13, and as shown in FIG. The upper end surface of the case body 13 comes into contact with a part of the stepped portion 14b of the lid body 14, and the thermoplastic material 24 is disposed in the space S formed by the stepped portion 13b and the stepped portion 14b. In addition, illustration of the electrode assembly 12 is abbreviate | omitted in FIG. 3 (a), (b).

次に図3(b)に二点鎖線で示すように、注液孔20に圧縮気体を供給するパイプ25が接続され、パイプ25から圧縮気体が供給されてケース11内が加圧された状態で、蓋体14とケース本体13との当接部にその外側からレーザビームが照射されて、レーザ溶接が行われる。蓋体14とケース本体13との当接部より内側に配置された熱塑性材料24は、レーザ溶接時に溶接に伴う熱により少なくとも当接部に近い側が溶融する。   Next, as shown by a two-dot chain line in FIG. 3B, a pipe 25 that supplies compressed gas to the injection hole 20 is connected, and compressed gas is supplied from the pipe 25 to pressurize the inside of the case 11. Thus, the laser beam is applied to the contact portion between the lid 14 and the case body 13 from the outside, and laser welding is performed. The thermoplastic material 24 disposed on the inner side of the contact portion between the lid body 14 and the case body 13 is melted at least on the side close to the contact portion by heat accompanying welding during laser welding.

蓋体14とケース本体13との当接部に照射されたレーザビームによって発生した熱により蓋体14及びケース本体13との溶接すべき部分が溶融された状態で、溶接不良によりピンホールが発生する場合がある。熱塑性材料24が存在しない従来の溶接方法では、ピンホールが発生すると溶接完了後、ピンホールの存在によりケース11の気密性が損なわれ、二次電池10は不良品となる。   A pinhole is generated due to poor welding in a state where the portion to be welded to the lid 14 and the case body 13 is melted by the heat generated by the laser beam applied to the contact portion between the lid 14 and the case body 13. There is a case. In the conventional welding method in which the thermoplastic material 24 does not exist, the airtightness of the case 11 is impaired by the presence of the pinhole after the completion of welding when the pinhole is generated, and the secondary battery 10 becomes a defective product.

一方、熱塑性材料24が存在する場合、空間Sに配置された熱塑性材料24は、レーザ溶接時、蓋体14及びケース本体13に近い部分が溶融され、ピンホールが発生すると熱塑性材料24の溶融部分が増大し、空間S内の熱塑性材料24全体が溶融状態となる。そして、図4(a)に示すように、溶融状態の熱塑性材料24が圧縮気体の加圧作用により、ピンホール26内に侵入し、ピンホール26を塞ぐ状態になる。   On the other hand, when the thermoplastic material 24 is present, the thermoplastic material 24 disposed in the space S is melted at a portion close to the lid 14 and the case body 13 during laser welding, and when a pinhole is generated, the molten portion of the thermoplastic material 24 is melted. Increases, and the entire thermoplastic material 24 in the space S is in a molten state. And as shown to Fig.4 (a), the thermoplastic material 24 of a molten state penetrate | invades in the pinhole 26 by the pressurization effect | action of compressed gas, and will be in the state which plugs up the pinhole 26. FIG.

また、図4(b)に示すように、蓋体14とケース本体13との溶接時に、支障なく溶接が行われてピンホールが発生しない場合は、溶接途中で熱塑性材料24の一部は溶融するが、溶接終了後は元の状態となり、蓋体14とケース本体13とは溶接部27を介して溶接された状態になる。   Also, as shown in FIG. 4B, when welding the lid 14 and the case body 13 without any trouble and no pinholes are generated, a part of the thermoplastic material 24 is melted during the welding. However, after welding is completed, the original state is obtained, and the lid body 14 and the case main body 13 are welded via the welded portion 27.

溶接時にピンホール26が発生した場合、溶融状態の熱塑性材料24がピンホール26に侵入してピンホール26を塞ぐためには、溶融状態の熱塑性材料24がピンホール26に侵入する必要がある。そのためには、ピンホール26が発生した状態において熱塑性材料24のピンホール26と対応する部分が溶融状態にあり、ケース11内の圧力によりピンホール26に向かって流動する必要がある。   When the pinhole 26 is generated at the time of welding, in order for the molten thermoplastic material 24 to enter the pinhole 26 and close the pinhole 26, the molten thermoplastic material 24 needs to enter the pinhole 26. For this purpose, the portion corresponding to the pinhole 26 of the thermoplastic material 24 is in a molten state in a state where the pinhole 26 is generated, and it is necessary to flow toward the pinhole 26 by the pressure in the case 11.

レーザ溶接の際、照射されたレーザにより発生した熱の一部はケース本体13及び蓋体14の非溶接部に伝達され、その分、溶接に利用される熱量が少なくなる。そのため、溶接時にピンホール26が発生した場合に、溶融状態の熱塑性材料24が前述のようにピンホール26内に侵入してピンホール26を塞ぐ条件を満たす状態になるか否かは熱塑性材料24の融点だけでは判断できない。そのため、溶接すべきケース本体13及び蓋体14を使用してレーザ溶接を行い、蓋体14の内側周縁部の温度を測定して、測定温度に基づいてケース本体13の段差部13bや蓋体14の段差部14bの大きさ、熱塑性材料24の大きさが設定される。   During laser welding, part of the heat generated by the irradiated laser is transmitted to the non-welded portions of the case main body 13 and the lid body 14, and the amount of heat used for welding is reduced accordingly. Therefore, when the pinhole 26 is generated during welding, whether or not the molten thermoplastic material 24 enters the pinhole 26 and satisfies the condition for closing the pinhole 26 as described above is determined. It cannot be judged only by the melting point. Therefore, laser welding is performed using the case main body 13 and the lid 14 to be welded, the temperature of the inner peripheral edge of the lid 14 is measured, and the stepped portion 13b of the case main body 13 and the lid are measured based on the measured temperature. The size of the 14 step portions 14b and the size of the thermoplastic material 24 are set.

図5に示すように、蓋体14の両端子部取り付け位置(丸で示される位置)及びその中間部と対応する位置で、蓋体14の裏側(内面側)における段差部14bの近傍(蓋体14の端から1mmのところ)に熱電対を配置して、レーザ溶接時の温度を測定した。なお、段差部14bの幅は約1mmとした。レーザ溶接は図5に矢印で示すように、左端から開始して、CH1〜CH6の順にレーザビーム照射位置が移動するようにして行った。   As shown in FIG. 5, in the position corresponding to the both terminal portion attachment positions (the positions indicated by circles) of the lid body 14 and the intermediate portion thereof, in the vicinity (the lid) of the stepped portion 14 b on the back side (inner surface side) of the lid body 14. A thermocouple was placed 1 mm from the end of the body 14), and the temperature during laser welding was measured. Note that the width of the stepped portion 14b was about 1 mm. Laser welding was performed in such a manner that the laser beam irradiation position moved in the order of CH1 to CH6 starting from the left end as indicated by an arrow in FIG.

ケース本体13及び蓋体14の材質を純アルミニウムとして、レーザ出力:約3600[W]、送り速度:3[m/min]、スポット径Φ:約1.2[mm]で溶接を行った。各位置の測定温度の平均値は表1のようになった。   The case main body 13 and the lid body 14 were made of pure aluminum, and welding was performed with a laser output: about 3600 [W], a feed rate: 3 [m / min], and a spot diameter Φ: about 1.2 [mm]. Table 1 shows the average measured temperature at each position.

表1の結果から、蓋体14の端からの距離が同じであっても、位置によって最高温度が異なることが分かる。したがって、製品となる二次電池10に使用されるケース本体13及び蓋体14について、熱塑性材料24の配置位置におけるレーザ溶接時の温度変化を測定し、その結果に基づいて熱塑性材料24に使用すべき低融点合金を設定すれば適切な材料となる。 From the results in Table 1, it can be seen that the maximum temperature varies depending on the position even if the distance from the end of the lid 14 is the same. Accordingly, the case body 13 and the lid body 14 used for the secondary battery 10 as a product are measured for temperature change during laser welding at the position where the thermoplastic material 24 is disposed, and are used for the thermoplastic material 24 based on the result. If a low-melting-point alloy is set, an appropriate material is obtained.

この実施形態によれば、以下に示す効果を得ることができる。
(1)二次電池10(蓄電装置)の蓋体14とケース本体13との溶接方法は、電極組立体12を挿入可能な開口部13aを有するケース本体13内に電極組立体12を収容した状態で、開口部13aを塞ぐ蓋体14をケース本体13にビーム溶接する。蓋体14の溶接すべき箇所をケース本体13と当接する溶接位置に配置し、かつその状態で蓋体14とケース本体13との当接部より内側に溶接に伴う熱により溶融可能な熱塑性材料24が配置された状態で、蓋体14とケース本体13との当接部にその外側からビーム照射を行う。したがって、ケース本体13と蓋体14とのビーム溶接時にピンホール26が発生しても、ピンホール26をケース本体13及び蓋体14と別部材の熱塑性材料24で塞ぐことによりケース11の気密性(密封性)を確保することができる。
According to this embodiment, the following effects can be obtained.
(1) The welding method of the lid 14 and the case main body 13 of the secondary battery 10 (power storage device) accommodates the electrode assembly 12 in the case main body 13 having an opening 13a into which the electrode assembly 12 can be inserted. In this state, the lid 14 that closes the opening 13 a is beam welded to the case body 13. A thermoplastic material that can be melted by the heat accompanying welding inside the contact portion between the lid body 14 and the case body 13 at a position where the lid body 14 is to be welded is disposed at a welding position in contact with the case body 13. In the state where 24 is arranged, the beam is irradiated from the outside to the contact portion between the lid 14 and the case main body 13. Therefore, even if a pinhole 26 is generated during beam welding between the case main body 13 and the lid 14, the airtightness of the case 11 can be achieved by closing the pinhole 26 with the thermoplastic material 24, which is a separate member from the case main body 13 and the lid 14. (Sealability) can be secured.

(2)蓋体14とケース本体13との溶接時に、ケース本体13内を加圧状態にする。この構成によれば、レーザ溶接時にピンホール26が発生して熱塑性材料24全体が溶融状態となった場合、溶融状態の熱塑性材料24全体が加圧作用を受けることにより、溶融状態の熱塑性材料24がピンホール26内に確実に侵入して、ピンホール26を塞ぐ状態になる。   (2) When the lid 14 and the case body 13 are welded, the inside of the case body 13 is brought into a pressurized state. According to this configuration, when the pinhole 26 is generated during laser welding and the entire thermoplastic material 24 is in a molten state, the entire molten thermoplastic material 24 is subjected to a pressurizing action, whereby the molten thermoplastic material 24 in a molten state is obtained. Surely enters the pinhole 26 and closes the pinhole 26.

(3)加圧は、蓋体14に形成された注液孔20から圧縮気体を供給することにより行われる。ケース本体13内を加圧状態にする圧縮気体をケース本体13内に供給する場合、圧縮気体供給用に専用の孔を設けてもよいが、電解液の注液孔20を利用すれば、圧縮気体供給用の孔を新たに形成したり、ビーム溶接終了後にその孔を封止したりする手間も不要になり、製造コストも低下される。   (3) Pressurization is performed by supplying compressed gas from the liquid injection hole 20 formed in the lid body 14. In the case of supplying compressed gas that pressurizes the inside of the case body 13 into the case body 13, a dedicated hole may be provided for supplying compressed gas, but if the electrolyte injection hole 20 is used, the compressed gas is compressed. There is no need to newly form a gas supply hole or seal the hole after the end of beam welding, and the manufacturing cost is reduced.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 蓋体14とケース本体13とは、その溶接箇所がケース11の周面となるように蓋体14がケース本体13と嵌合した状態で、レーザ溶接により接合された構成に限らない。例えば、図6(a)に示すように、ケース本体13の上端部内側に形成される段差部13bの高さを蓋体14の厚さと同じに設定し、蓋体14の上面とケース本体13の上端面とが同一平面上に位置し、蓋体14の周面がケース本体13の段差部13bと当接する状態で、蓋体14とケース本体13とがレーザ溶接により溶接された構成であってもよい。この場合、溶接時に、ビームがケース11の上方から蓋体14とケース本体13との当接部に向かって照射される。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The lid body 14 and the case main body 13 are not limited to the configuration in which the lid body 14 is fitted to the case main body 13 and joined by laser welding so that the welded portion is the peripheral surface of the case 11. For example, as shown in FIG. 6A, the height of the stepped portion 13b formed inside the upper end portion of the case main body 13 is set to be the same as the thickness of the lid body 14, and the upper surface of the lid body 14 and the case main body 13 are set. The lid body 14 and the case body 13 are welded by laser welding in a state where the upper end surface of the lid body 14 is located on the same plane and the peripheral surface of the lid body 14 is in contact with the stepped portion 13b of the case body 13. May be. In this case, during welding, the beam is irradiated from above the case 11 toward the contact portion between the lid body 14 and the case body 13.

○ 蓋体14はケース本体13の開口部に嵌合された状態でケース本体13に溶接された構造に限らず、開口部と嵌合せずにケース本体13の開口側端面に載置された状態でケース本体13に溶接された構造であってもよい。例えば、図6(b)に示すように、熱塑性材料24が配置される空間Sを構成するために、蓋体14の裏面に一部がケース本体13の開口側端面と対向する状態で溝28を形成してもよい。   The lid 14 is not limited to the structure welded to the case body 13 in a state of being fitted to the opening of the case body 13, but is mounted on the opening side end surface of the case body 13 without being fitted to the opening. The structure may be welded to the case body 13. For example, as shown in FIG. 6B, in order to form a space S in which the thermoplastic material 24 is arranged, the groove 28 in a state where a part of the back surface of the lid body 14 faces the opening side end surface of the case body 13. May be formed.

○ 蓋体14とケース本体13との溶接時に、ケース本体13内を加圧状態にする圧縮気体の供給は、蓋体14に形成された注液孔20から行う代わりに、ケース本体13あるいは蓋体14に圧縮気体供給用の孔を設けて、その孔から圧縮気体を供給するようにしてもよい。しかし、注液孔20を利用する方が好ましい。   ○ When the lid 14 and the case main body 13 are welded, the supply of compressed gas that pressurizes the inside of the case main body 13 is not performed from the liquid injection hole 20 formed in the lid 14, but the case main body 13 or the lid A hole for supplying compressed gas may be provided in the body 14, and compressed gas may be supplied from the hole. However, it is preferable to use the liquid injection hole 20.

○ 蓋体14とケース本体13との溶接時に、溶融状態になった熱塑性材料24を発生したピンホール26に侵入させる力を作用させる方法として、熱塑性材料24に遠心力を作用させてもよい。例えば、レーザ溶接装置をケース本体13及び蓋体14と共にケース本体13の中心を回転中心として回転させた状態で溶接を行うようにする。   A centrifugal force may be applied to the thermoplastic material 24 as a method of applying a force that causes the molten thermoplastic material 24 to enter the generated pinhole 26 when the lid 14 and the case body 13 are welded. For example, welding is performed in a state where the laser welding apparatus is rotated around the center of the case body 13 together with the case body 13 and the lid body 14 as the center of rotation.

○ 蓋体14とケース本体13との溶接時に、溶融状態になった熱塑性材料24を発生したピンホール26に侵入させる力を作用させる方法として、ケース本体13及び蓋体14の外部を減圧状態にしてもよい。   ○ When welding the lid body 14 and the case body 13, the case body 13 and the outside of the lid body 14 are in a reduced pressure state as a method of applying a force that causes the molten thermoplastic material 24 to enter the generated pinhole 26. May be.

○ 熱塑性材料24は低融点合金に限らず、例えば、熱可塑性樹脂であってもよい。
○ ケース本体13は有底筒状に限らず、筒状で開口部13aが両側にあり、蓋体14がケース本体13の両端に存在する構成であってもよい。
The thermoplastic material 24 is not limited to a low melting point alloy, and may be a thermoplastic resin, for example.
The case main body 13 is not limited to a bottomed cylindrical shape, and may be a cylindrical shape having openings 13a on both sides, and lids 14 existing on both ends of the case main body 13.

○ 蓋体14は板状に限らず、浅い有底筒状であってもよい。
○ 熱塑性材料24は断面四角形状に限らず、他の形状、例えば三角形状であってもよい。
The lid 14 is not limited to a plate shape, and may be a shallow bottomed cylindrical shape.
The thermoplastic material 24 is not limited to a quadrangular cross section, and may have another shape, for example, a triangular shape.

○ ケース本体13及び蓋体14は、アルミニウム系金属製に限らず、例えば、ステンレス鋼製であってもよい。
○ ビーム溶接は、レーザ溶接に限らず、電子ビーム溶接であってもよい。
The case body 13 and the lid body 14 are not limited to aluminum-based metal, and may be made of, for example, stainless steel.
○ Beam welding is not limited to laser welding, but may be electron beam welding.

○ 電極組立体12は積層型に限らず、巻回型であってもよい。
○ 二次電池10は電解液が必須ではなく、電解質として電解液を使用する構成であっても、電解液を使用せずに固体電解質や高分子電解質を使用する構成であってもよい。
The electrode assembly 12 is not limited to the laminated type, and may be a wound type.
The secondary battery 10 does not require an electrolytic solution, and may be configured to use an electrolytic solution as an electrolyte, or may be configured to use a solid electrolyte or a polymer electrolyte without using an electrolytic solution.

○ 蓄電装置は、二次電池10に限らず、例えば、電気二重層キャパシタやリチウムイオンキャパシタ等のようなキャパシタであってもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
The power storage device is not limited to the secondary battery 10 and may be a capacitor such as an electric double layer capacitor or a lithium ion capacitor.
The following technical idea (invention) can be understood from the embodiment.

(1)電極組立体を挿入可能な開口部を有するケース本体内に前記電極組立体が収容され状態で、前記開口部を塞ぐ蓋体が前記ケース本体に溶接された蓄電装置であって、
前記蓋体及び前記ケース本体の溶接部の内側に、溶接に伴う熱により溶融可能な熱塑性材料が配置され、前記溶接部に形成されたピンホール内に前記熱塑性材料が侵入した状態であることを特徴とする蓄電装置。
(1) A power storage device in which the electrode assembly is housed in a case body having an opening into which the electrode assembly can be inserted, and a lid that closes the opening is welded to the case body.
A thermoplastic material that can be melted by heat accompanying welding is arranged inside the welded portion of the lid and the case body, and the thermoplastic material is in a state of entering the pinhole formed in the welded portion. A power storage device.

10…蓄電装置としての二次電池、12…電極組立体、13…ケース本体、13a…開口部、14…蓋体、20…注液孔、24…熱塑性材料。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery as an electrical storage device, 12 ... Electrode assembly, 13 ... Case main body, 13a ... Opening part, 14 ... Cover body, 20 ... Injection hole, 24 ... Thermoplastic material.

Claims (3)

電極組立体を挿入可能な開口部を有するケース本体内に前記電極組立体を収容した状態で、前記開口部を塞ぐ蓋体を前記ケース本体にビーム溶接する蓄電装置の蓋体とケース本体との溶接方法であって、
前記蓋体の溶接すべき箇所を前記ケース本体と当接する溶接位置に配置し、かつその状態で前記蓋体と前記ケース本体との当接部より内側に溶接に伴う熱により溶融可能な熱塑性材料が配置された状態で、前記当接部にその外側からビーム照射を行うことを特徴とする蓄電装置の蓋体とケース本体との溶接方法。
A power storage device lid and a case main body that beam-welds a lid that closes the opening to the case main body in a state where the electrode assembly is accommodated in a case main body having an opening into which the electrode assembly can be inserted. A welding method,
A thermoplastic material which is disposed at a welding position where the portion to be welded of the lid is in contact with the case main body and can be melted by heat accompanying welding inside the contact portion between the lid and the case main body in that state. A method of welding the lid of the power storage device and the case main body, wherein the contact portion is irradiated with a beam from the outside in a state where the contact portion is disposed.
前記蓋体と前記ケース本体との溶接時に、前記ケース本体内を加圧状態にする請求項1に記載の蓄電装置の蓋体とケース本体との溶接方法。   The method for welding the lid of the power storage device and the case main body according to claim 1, wherein the inside of the case main body is in a pressurized state at the time of welding the lid and the case main body. 前記加圧は、前記蓋体に形成された注液孔から圧縮気体を供給することにより行われる請求項2に記載の蓄電装置の蓋体とケース本体との溶接方法。   The method of welding the lid of the power storage device and the case body according to claim 2, wherein the pressurization is performed by supplying a compressed gas from a liquid injection hole formed in the lid.
JP2013172231A 2013-08-22 2013-08-22 Method for welding lid body and case body of power storage device Pending JP2015041526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172231A JP2015041526A (en) 2013-08-22 2013-08-22 Method for welding lid body and case body of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172231A JP2015041526A (en) 2013-08-22 2013-08-22 Method for welding lid body and case body of power storage device

Publications (1)

Publication Number Publication Date
JP2015041526A true JP2015041526A (en) 2015-03-02

Family

ID=52695569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172231A Pending JP2015041526A (en) 2013-08-22 2013-08-22 Method for welding lid body and case body of power storage device

Country Status (1)

Country Link
JP (1) JP2015041526A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019222345A1 (en) * 2018-05-18 2019-11-21 South 8 Technologies, Inc. Electrochemical cell cap
US10608284B2 (en) 2013-11-15 2020-03-31 The Regents Of The University Of California Electrochemical devices comprising compressed gas solvent electrolytes
US10784532B2 (en) 2018-05-18 2020-09-22 South 8 Technologies, Inc. Chemical formulations for electrochemical device
US10873070B2 (en) 2019-10-07 2020-12-22 South 8 Technologies, Inc. Method and apparatus for liquefied gas solvent delivery for electrochemical devices
US10998143B2 (en) 2016-05-27 2021-05-04 The Regents Of The University Of California Electrochemical energy storage device
CN115172854A (en) * 2022-09-06 2022-10-11 中创新航科技股份有限公司 Battery assembling method and battery production line

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608284B2 (en) 2013-11-15 2020-03-31 The Regents Of The University Of California Electrochemical devices comprising compressed gas solvent electrolytes
US10998143B2 (en) 2016-05-27 2021-05-04 The Regents Of The University Of California Electrochemical energy storage device
WO2019222345A1 (en) * 2018-05-18 2019-11-21 South 8 Technologies, Inc. Electrochemical cell cap
US10784532B2 (en) 2018-05-18 2020-09-22 South 8 Technologies, Inc. Chemical formulations for electrochemical device
US11342615B2 (en) 2018-05-18 2022-05-24 The Regents Of The University Of California Electrochemical cell cap
US10873070B2 (en) 2019-10-07 2020-12-22 South 8 Technologies, Inc. Method and apparatus for liquefied gas solvent delivery for electrochemical devices
CN115172854A (en) * 2022-09-06 2022-10-11 中创新航科技股份有限公司 Battery assembling method and battery production line
CN115172854B (en) * 2022-09-06 2022-11-25 中创新航科技股份有限公司 Battery assembling method and battery production line

Similar Documents

Publication Publication Date Title
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
KR101274806B1 (en) Rechargeable battery
US8632907B2 (en) Method and design for externally applied laser welding of internal connections in a high power electrochemical cell
JP2015041526A (en) Method for welding lid body and case body of power storage device
KR101715954B1 (en) Secondary battery
JP5777093B2 (en) Secondary battery and method for manufacturing secondary battery
JP2006012829A (en) Secondary battery
KR102553135B1 (en) Battery pack and manufacturing method for thereof
JP6117927B2 (en) Secondary battery
JP2010113929A (en) Sealed battery
US20120034511A1 (en) Sealed battery
KR20130061018A (en) Secondary battery
JP5053036B2 (en) Sealed battery
JPH10284035A (en) Explosion proof sealing plate for sealed battery and its manufacture
JP5369900B2 (en) Batteries, vehicles, and equipment using batteries
JPH11260334A (en) Explosion-proof sealing plate for sealed battery, manufacture thereof, and sealed battery using the same
JP6878878B2 (en) Rechargeable battery manufacturing method and rechargeable battery
KR20200142451A (en) Secondary battery for small device and method of manufacturing the same
JP7054454B2 (en) How to manufacture a secondary battery
JP2010118374A (en) Capacitor
JPH10284034A (en) Explosion proof sealing plate for sealed battery and its manufacture
JP5818004B2 (en) Sealing plate for sealed electrochemical devices
JP4244580B2 (en) Sealed battery
JP2013143370A5 (en)
KR20220051642A (en) Secondary Battery