WO2014196080A1 - Railroad vehicle capable of reducing lateral force and lateral force reduction method - Google Patents

Railroad vehicle capable of reducing lateral force and lateral force reduction method Download PDF

Info

Publication number
WO2014196080A1
WO2014196080A1 PCT/JP2013/065858 JP2013065858W WO2014196080A1 WO 2014196080 A1 WO2014196080 A1 WO 2014196080A1 JP 2013065858 W JP2013065858 W JP 2013065858W WO 2014196080 A1 WO2014196080 A1 WO 2014196080A1
Authority
WO
WIPO (PCT)
Prior art keywords
air spring
moment
carriage
vehicle body
vehicle
Prior art date
Application number
PCT/JP2013/065858
Other languages
French (fr)
Japanese (ja)
Inventor
理優 成川
克行 岩崎
隆夫 渡邊
敬 高平
憲次郎 合田
正隆 干鯛
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/065858 priority Critical patent/WO2014196080A1/en
Priority to JP2015521253A priority patent/JP6067850B2/en
Priority to GB1520260.9A priority patent/GB2530677B/en
Priority to DE112013007135.5T priority patent/DE112013007135B4/en
Publication of WO2014196080A1 publication Critical patent/WO2014196080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • B61F5/10Bolster supports or mountings incorporating fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies

Definitions

  • the present invention relates to a railway vehicle including a mechanism that can reduce a lateral pressure generated between a carriage supporting the railway vehicle and a track when passing a curve.
  • a general railcar bogie is composed of a wheel shaft having wheels at both ends of an axle, a shaft box body that rotatably holds the wheel shaft, and a bogie frame that forms the frame of the bogie.
  • the axle box body is elastically supported in the front-rear, left-right, and up-down directions with respect to the carriage frame by the axle box support device.
  • an air spring is provided between the upper surface of the carriage frame and the lower surface of the vehicle body, and the vehicle body is elastically supported by the air spring in the front-rear, left-right, and upper-lower directions.
  • the support rigidity in the front-rear direction of the axle box body by the axle box support device is relatively large, so that when the railway vehicle passes the curve, the wheel shaft cannot sufficiently follow the curve, and the wheel is pushed toward the sleeper by the rail. Lateral pressure, which is a force, tends to occur. This lateral pressure promotes wear of the wheels and rails and causes noise due to squeezing between the wheels and rails, so how to reduce them is an important issue.
  • Patent Document 1 discloses a railcar bogie that can reduce the lateral pressure when passing a curve.
  • the steering device 6 for a bogie for a railcar has two front and rear wheel shafts 3 provided so as to be rotatable at an angle with respect to the bogie frame 2 in a symmetrical manner with respect to the bogie.
  • the apparatus 6 captures the relative rotation angle ( ⁇ ,) of the carriage frame 2 with respect to the vehicle body 1 and provides the relative rotation angle ( ⁇ ,) of the wheel shaft 3 with respect to the carriage frame 2.
  • the steering device 6 is configured to operate so as to give the wheel shaft a rotation that is 20 to 35% greater than the theoretical relative rotation angle, and the link mechanism of the steering device 6 is arranged horizontally. The same steering operation is given to the front and rear wheel shafts of the carriage.
  • the railcar bogie shown in Patent Document 1 has a rotating shaft that is concentric with the center of rotation of the bogie frame, a steering beam that rotates in the same manner as the vehicle body on a curved track, and the left and right side beams in the longitudinal direction of the bogie frame
  • a connecting rod for connecting the shaft box body.
  • This railcar bogie constitutes a so-called steering bogie that captures the relative rotation angle of the bogie relative to the vehicle body and steers the wheel shaft, and employs a complicated structure, which increases costs, reduces durability and increases reliability. It also causes a decline in sex.
  • the relaxation curve section connecting the straight line and the circular curve there is a possibility that the rotation of the steering beam will be delayed and the turning angle of the carriage required for steering will be insufficient, and the steering will not be performed sufficiently, reducing the lateral pressure reduction effect. is there.
  • the connecting rod is directly connected to the axle box, there is a problem that unsprung mass increases and the influence on the track becomes large.
  • an object of the present invention is to reduce the lateral pressure without using an unsprung mass that may increase the track maintenance cost or using a complicated device (configuration) that can increase the maintenance cost.
  • it is intended to provide a railway vehicle and a lateral pressure reduction method that can suppress wear of wheels and rails and reduce noise such as squeak noise between them.
  • a railway vehicle includes a vehicle body on which passengers or the like get on, a carriage provided with an air spring that elastically supports the vehicle body, and an air spring that controls rigidity in the front-rear direction of the air spring.
  • the lateral pressure reducing method for a railway vehicle according to the present invention is characterized by detecting the traveling direction of the vehicle and controlling the longitudinal stiffness of an air spring provided in a carriage that supports the vehicle.
  • FIG. 1 is a plan view of a railway vehicle according to a first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the state of the air spring of the front carriage when passing the curve in the first embodiment.
  • FIG. 3 is a cross-sectional view showing the state of the air spring of the rear carriage when passing the curve in the first embodiment.
  • FIG. 4 is a diagram illustrating a moment due to an air spring reaction force generated between the vehicle body and the carriage when passing through a curve.
  • FIG. 5 is a diagram showing a breakdown of the steering moment and the resistance moment acting on the carriage and the balance thereof when passing the curve.
  • FIG. 6 is a diagram illustrating the lateral pressure reduction effect according to the first embodiment.
  • FIG. 1 is a plan view of a railway vehicle according to a first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the state of the air spring of the front carriage when passing the curve in the first embodiment.
  • FIG. 3 is a cross-sectional view showing the state of the
  • FIG. 7 is a cross-sectional view illustrating the state of the air spring of the front carriage when passing a curve according to a modification in which the support structure for the plate is changed in the first embodiment.
  • FIG. 8 is a cross-sectional view showing the state of the air spring of the rear carriage when passing a curve according to a modified example in which the support structure for the plate is changed in the first embodiment.
  • FIG. 9 is a plan view of a railcar bogie according to the second embodiment.
  • FIG. 10 is a cross-sectional view illustrating a state structure of an air spring of a front carriage when passing a curve in the second embodiment.
  • FIG. 11 is a cross-sectional view illustrating a state structure of an air spring of a rear carriage when passing a curve in the second embodiment.
  • FIG. 12 is a plan view of a railway vehicle carriage according to a third embodiment.
  • FIG. 13 is a plan view in the case where the second embodiment of the present invention is applied to a two-point air spring support type connected vehicle according to the fourth embodiment.
  • FIG. 14 is a diagram illustrating the breakdown and balance of the steering moment and the resistance moment acting on the carriage when the two-point air spring support type connected vehicle according to the fourth embodiment passes through a curve.
  • FIG. 15 is a plan view in which a second embodiment of the present invention is applied to a four-point air spring support type connected vehicle according to a fifth embodiment.
  • FIG. 16 is a diagram showing a balance between a steering moment and a resistance moment acting on the carriage when the four-point air spring support type connected vehicle according to the fifth embodiment passes through a curve.
  • FIG. 17 is a side view of a normal railway vehicle.
  • FIG. 17 shows a side view of a general railway vehicle.
  • the railway vehicle 1 includes a vehicle body 1 on which passengers and cargo are mounted, and a carriage 2 that supports the vehicle body 1.
  • the bogie 2 is provided on the bogie frame 3 that forms the skeleton, the wheel shaft 5 having wheels at both ends of the axle, the shaft box 4 that rotatably holds the wheel shaft 5, and the upper surface of the bogie frame 3. It consists of an air spring 6 or the like.
  • the axle box body 4 is elastically supported in the front and rear, left and right (sleepers), and up and down directions with respect to the carriage frame 3 by the axle box support device.
  • the vehicle body 1 is front and rear by air springs 6 provided in the carriage 2. Elastically supported in left and right (sleepers) and up and down directions.
  • the central portion of the carriage frame 3 is provided with a portion (not shown) into which a center pin (not shown) extending downward from the lower surface of the vehicle body is inserted. Swivels in a substantially horizontal plane around this central pin.
  • FIG. 1 is a plan view schematically showing a railway vehicle according to the present embodiment.
  • the vehicle body 1 is supported by a front carriage 2a via an air spring 6a and a rear carriage 2b via an air spring 6b.
  • air spring displacement suppression devices 95a and 95b are respectively provided before and after the air springs 6a and 6b, and the actuators 81a and 81b are controlled by the control shown in FIG.
  • the device 7 is switched according to the traveling direction of the railway vehicle.
  • the control device 7 may be provided under the floor of the vehicle body 1 or in an equipment room in the vehicle body 1.
  • the air spring displacement suppressing device includes a contact plate 84a that suppresses deformation of the diaphragm 63 that constitutes the air spring 6, and an actuator 81a that controls the interval (gap) between the contact plate 84a and the diaphragm 63a.
  • FIG. 2 and 3 are cross-sectional views showing the structure around the air spring according to this embodiment.
  • the traveling direction of the railway vehicle is indicated by an arrow E or arrow F.
  • FIG. 2 shows an operating state of the air spring displacement suppressing device 95a of the front carriage 2a
  • FIG. The operating state of the air spring displacement suppression device 95b of the rear carriage 2b is shown.
  • the air spring 6a includes an upper plate 61a, a lower plate 62a, a diaphragm 63a connecting the upper plate 61a and the lower plate 62a, and a metal plate 64a and a rubber 65a disposed below the lower plate 62a. It is composed of laminated rubber 66a and the like.
  • the metal plate 64a and the rubber 65a are annular plate members having an opening at the center, and a cylindrical laminated rubber 66a having a space at the center is formed by alternately laminating them.
  • the inside of the diaphragm 63a is filled with high-pressure air.
  • a pair of air spring displacement suppression devices 95 a that can extend and contract in the longitudinal direction of the vehicle 1 face each other across the air spring 6 a along the longitudinal direction of the vehicle body 1. It is equipped with.
  • the air spring displacement suppression device 95a is mainly connected to the contact plate 84a that suppresses the displacement of the diaphragm 63a that constitutes the air spring, and the distance (gap) between the contact plate 84a and the diaphragm 63a. And an actuator 81a for controlling the motor.
  • the plate 84a includes a contact portion 82a made of a low friction coefficient member that is in contact with the diaphragm 63a, and a support portion 83a that supports the contact portion 82a and is connected to the actuator 81a.
  • the distance (gap) between the contact portion 82a of the contact plate 84a and the diaphragm 63a can be controlled by the expansion and contraction of the actuator 81a based on a command from the control device 7 shown in FIG.
  • the operation based on the arrangement and structure of the air springs and actuators and the command from the control device 7 is the same for the rear carriage 2b shown in FIG.
  • FIG. 4 schematically shows moments due to the air spring reaction force acting on the carriage 2 when passing the curve.
  • the carriage 2a becomes the front carriage and the carriage 2b becomes the rear carriage.
  • the carriage turns following the curvature of the curved line, and thus has a relative rotation angle with respect to the vehicle body 1.
  • the upper ends (upper surface plates 61a and 61b) of the air springs 6a and 6b positioned on the left and right of the carriage 2 in a state of turning with respect to the vehicle body 1 follow the vehicle body 1 and the lower ends of the air springs 6a and 6b.
  • the air springs 6a and 6b are deformed in the front-rear direction (the direction of the arrow 100). Since the air springs 6a and 6b deformed in the front-rear direction try to restore the original shape, an air spring reaction force is generated from the vehicle body 1 to the carriage 2.
  • the reaction force of the air spring 6a generated in the front carriage 2a passing through the curve is the direction indicated by the left and right arrows A and A ', and similarly, the reaction force of the air spring 6b generated in the rear carriage 2b is the left and right respectively. As shown by arrows B and B '.
  • the moment C acting on the front carriage 2a is opposite (opposite) to the turning direction of the front carriage 2a when traveling from a straight line to a curve, and therefore acts as a resistance moment that prevents the front carriage 2a from turning.
  • the moment D acting on the rear carriage 2b is in the same direction as the turning direction of the rear carriage 2b when the railway vehicle travels from a straight line to a curve, it acts as a steering moment that promotes the turning of the rear carriage 2b.
  • FIG. 5 shows a breakdown of the moments acting on each carriage when passing a curve and the balance thereof.
  • the steering moment generated in the front carriage 2a is the moment K due to the lateral pressure H and the moment ⁇ due to other factors such as the longitudinal creep force.
  • the resistance moment generated in the front carriage 2a is a moment C caused by the air spring reaction forces A and A ′ and a moment ⁇ caused by other factors such as a longitudinal creep force.
  • the steering moment generated in the rear carriage 2b is a moment J caused by the lateral pressure G, a moment D caused by the air spring reaction forces B and B ′, and a moment ⁇ caused by other factors such as a longitudinal creep force.
  • the resistance moment generated in the rear carriage 2b is a moment ⁇ due to other factors such as a longitudinal creep force.
  • each carriage When the railway vehicle passes through the curve, each carriage is maintained in a state (posture) having a relative rotation (turning) angle with respect to the vehicle body. Therefore, in each carriage, each moment in the steering (turning) direction is changed. A state is maintained in which the steering moment that is the sum and the resistance moment that is the sum of the moments opposite to the turning direction are balanced. That is, in the steady state when passing the curve, in the front carriage 2a, the steering moment (moment in the steering direction) that is the sum of the moment ⁇ and the moment K and the resistance moment (the steering direction and the sum of the moment ⁇ and the moment C). The reverse moment) is balanced.
  • the steering moment that is the sum of the moment J, the moment D, and the moment ⁇ is balanced with the moment ⁇ that is the resistance moment.
  • the relationship between the sum of the moments serving as the steering moment and the sum of the moments serving as the resistance moments is also common to the embodiments described later.
  • the moment J caused by the lateral pressure G and the moment D caused by the air spring reaction forces B and B ′ are in the same direction. Also in the rear carriage 2b, the balance between the steering moment and the resistance moment is maintained. Therefore, if the moment D that is the steering moment is increased, the moment J that is the steering moment due to the lateral pressure G is reduced, and the rear carriage 2b. As a result, the lateral pressure G can be reduced. That is, in the front carriage 2a, the lateral pressure H can be reduced by reducing the longitudinal rigidity of the air spring 6a, and in the rear carriage 2b, the lateral pressure G can be reduced by increasing the longitudinal rigidity of the air spring 6b. it can.
  • the lateral pressure H is reduced by reducing the moment C acting on the front carriage 2a by setting the front and rear rigidity of the air spring 6a in the front carriage 2a to an allowable minimum value when passing the curve.
  • the lateral pressure G is reduced by increasing the longitudinal rigidity of the air spring 6b in the rear carriage 2b and increasing the moment D acting on the rear carriage 2b.
  • the initial values of the longitudinal rigidity of the air springs 6a, 6b are
  • the front-rear rigidity when not in contact is set to a minimum value within a range that does not deteriorate the riding comfort even during curve driving. Therefore, when a contraction command is sent from the control device 7 to the actuator 81a and the contact plate 84a is separated from the diaphragm 63a, the longitudinal rigidity of the air spring 6a becomes this initial value.
  • the longitudinal rigidity of the air spring 6a becomes the initial value, and the moments caused by the air spring reaction forces A and A ′ that become resistance moments from the relationship between the steering moment and the resistance moment shown in FIG. Since C is reduced, the steering moment K due to the lateral pressure H that becomes the steering moment is reduced accordingly.
  • the rear carriage 2b the balance between the steering moment and the resistance moment is maintained, so that the front-rear rigidity of the air spring 6b is increased and the moment D caused by the air spring reaction forces B and B ′, which are steering moments.
  • the moment J due to the lateral pressure G which is the steering moment
  • the lateral pressure G of the rear carriage 2b can be reduced.
  • the control device 7 sends a contraction command to the actuator 81a on the front carriage side, and sends the command to the actuator 81b on the rear carriage side.
  • an extension command is sent out, and this state is maintained until the terminal arrives at the turn-back station. Therefore, the power consumption required for the operation of the actuator can be reduced by providing the lock device that holds the contraction and extension of each actuator as the actuators 81a and 81b contract and extend.
  • the traveling direction of the railway vehicle may be detected not only at the start of the turn-back operation, but also by the control device 7 using a speed detector on the vehicle, a signal received from the ground device, or a GPS or the like. It is only necessary to adjust the longitudinal rigidity of the air spring that elastically supports the vehicle body to an optimal value by controlling the actuator as the air spring displacement suppressing device in the direction of reducing the lateral pressure generated when passing the curve.
  • the lock device moves the actuators 81a and 81b between the contracted position when the actuator is not operated and the extended position of the operation. Fix in the middle position.
  • the longitudinal rigidity of the air springs 6a and 6b when the actuators 81a and 81b are fixed at the intermediate positions is set to a general value larger than the above-described minimum value so as not to hinder the running performance. I have to.
  • the actuator 81a is contracted, and the distance between the abutment plate 84a and the diaphragm 63a increases, so that the air spring 6a is displaced back and forth when passing the curve.
  • the diaphragm 63a and the contact plate 84a do not abut (contact), and the longitudinal rigidity of the air spring 6a becomes the above-described initial value, and the moment C (see FIG. 4) that prevents turning does not increase.
  • the actuator 81b is extended, and the distance (gap) between the contact plate 84b and the diaphragm 63b is reduced.
  • the side surface of the diaphragm 63b contacts the contact portion 82b, the deformation of the diaphragm 63b is suppressed, the air reaction force increases, and the moment D that promotes turning (see FIG. 4). ) Is increased.
  • the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b are effectively reduced, so that the wear of the rails and wheels can be suppressed and squeak noise generated between the two can be reduced.
  • the contact parts 82a and 82b attached to the contact plates 84a and 84b are made of a material having a low coefficient of friction such as a resin having self-lubricating properties, the wear of the diaphragms 63a and 63b can be suppressed. Further, when the shapes of the contact portions 82a and 82b are matched with the outer shapes (doughnut-shaped curved surfaces) of the diaphragms 63a and 63b, the wear of the diaphragms 63a and 63b can be further suppressed.
  • the life of the diaphragms 63a and 63b (replacement cycle) can be suppressed from being shortened with respect to the operation of increasing the longitudinal stiffness of the air spring by the actuators 81a and 81b. Can do.
  • the operation when the traveling direction of the railway vehicle is the arrow E has been described above. However, when the traveling direction is the arrow F in FIG. 1 and the carriage 2a is the rear carriage and the carriage 2b is the front carriage, the actuator 81 is opposite ( The control device 7 outputs a command to extend the actuator 81a and contract the actuator 81b.
  • FIG. 6 shows an example of the effect of reducing the lateral pressure according to this embodiment.
  • the horizontal axis is the kilometer (m) in which the relaxation curve is set before and after the circular curve
  • the vertical axis is the lateral pressure (KN).
  • KN lateral pressure
  • the contact plate 84 is translated in the longitudinal direction of the vehicle by the expansion and contraction of the actuators 81a and 81b.
  • An abutting plate 84a is provided around the shaft 85a by extending and contracting a shaft 85a disposed in a direction along the shaft 85a, a bracket 86a fixed to the lower surface of the vehicle body 1, and an actuator 81a installed on the lower surface of the vehicle body.
  • FIG. 7 shows that the actuator 81a contracts on the front carriage 2b side and the contact portion 82a of the contact plate 84a moves from the diaphragm 63a when passing through a curve when the traveling direction of the railway vehicle is an arrow E (see FIG. 4).
  • the state rotated in the direction of leaving is shown.
  • FIG. 8 shows a state where the actuator 81b is extended on the rear carriage 2b side and the contact portion 82b of the abutting plate 84b is rotated in a direction facing and approaching the diaphragm 63b, contrary to the front carriage 2b side. ing.
  • the upper ends of the contact plates 84a and 84b are rotatably connected to the brackets 86a and 86b by the shafts 85a and 85b, and the tips of the actuators 81a and 81b can be rotated at the lower ends of the contact plates 84a and 84b. Since they are connected, the abutment plates 84a and 84b can be reliably positioned at the optimum positions even by the small actuators 81a and 81b having a small output. As a result, the degree of freedom of design in the vicinity of the air springs 6a and 6b can be increased, power consumption required for the operation of the actuators 81a and 81b can be reduced, and further weight reduction can be promoted.
  • FIG. 9 is a plan view schematically showing the railway vehicle according to the present embodiment.
  • this railway vehicle is an air spring displacement suppression device including a control device 7 and actuators 81a and 81b. 95a and 95b are provided.
  • the air spring displacement suppression devices 95a and 95b shown in FIG. 10 and FIG. 11 are different from those of the first embodiment, and by providing one for each air spring 6a and 6b, the longitudinal rigidity thereof can be changed. It is possible.
  • FIG. 10 shows the state of the air spring displacement suppressing device 95a provided in the front carriage 2a when passing the curve when the traveling direction of the railway vehicle is an arrow E (see FIG. 9), and FIG. The states of the air spring displacement suppressing device 95b provided in the rear carriage 2b are respectively shown.
  • the air spring displacement control device 95a includes an actuator 81a that can be vertically expanded and contracted in a central space of a cylindrical laminated rubber 66a inside the air spring 6a, and an upper portion of the laminated rubber 66a that constitutes the air spring 6a.
  • the stopper plate 88a is provided on the bottom plate 62a.
  • the actuator 81a provided in the space provided in the central portion of the laminated rubber 66a has an internal stopper 87a at the tip.
  • the stopper abutment plate 88a is a disk-shaped member having a space at the center thereof, and when the actuator 81a extends in the vertical direction, the internal stopper 87a is fitted into the center portion of the stopper abutment plate 88a, and is laminated. The displacement of the rubber 66a in the front-rear direction is suppressed.
  • the internal stopper 87a includes a stepped outer peripheral surface that is coaxially provided with a portion having a small outer diameter on a portion having a large outer diameter. A portion having a small outer diameter is fitted into the space at the center of the stopper abutment plate 88a.
  • the space at the center of the stopper abutment plate 88a into which the internal stopper 87a is inserted is an opening with a hem that expands the inner diameter downward, and the outer diameter of the lower surface of the opening is smaller than the outer diameter of the inner stopper 87a.
  • the actuator 81a When the actuator 81a is retracted (contracted) downward, the small diameter portion of the internal stopper 87a does not engage (interfere) with the stopper abutment plate 88a, and the laminated rubber 66a can be displaced in the front-rear direction.
  • FIG. 11 shows a state on the rear carriage 2b side.
  • the air spring displacement control device 95b employs the same configuration as the air spring displacement control device 95a, but extends upward by the actuator 81b. In this state, the internal stopper 87b is held in a state of entering the stopper abutment plate 88b, and the displacement of the air spring 6 in the front-rear direction is suppressed.
  • the actuators 81a and 81b used in the present embodiment are configured in a cylindrical shape and have a configuration that allows air to pass therethrough.
  • the actuators 81a and 81b also function as supply pipelines when supplying compressed air to the air springs 6a and 6b.
  • the control device 7 detects the traveling direction of the railway vehicle, contracts the actuator 81a of the front carriage 2a, and extends the actuator 81b of the rear carriage 2b.
  • the actuator 81a contracts, the distance between the internal stopper 87a and the stopper abutment plate 88a increases, and the internal stopper 87a and the stopper abutment plate 88a. Is disengaged.
  • the longitudinal stiffness of the air springs 6a, 6b is expressed by the sum of the longitudinal stiffness of the diaphragms 63a, 63b and the longitudinal stiffness of the laminated rubber 66a, 66b (series stiffness). Therefore, when the stiffness of the laminated rubber 66b is infinite, The longitudinal rigidity of the air spring 6b can be increased compared to the longitudinal rigidity of the air spring 6a.
  • the factors that cause the steering moment and the resistance moment acting on the front carriage 2a and the rear carriage 2b and the breakdown thereof are the same as those in FIG. Therefore, also in the present embodiment, the front and rear rigidity of the air spring 6a of the front carriage 2a and the front and rear rigidity of the air spring 6b of the rear carriage 2b are switched depending on the traveling direction of the railway vehicle by the operation of the actuators 81a and 81b.
  • the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b can be reduced.
  • the moment c caused by the air spring reaction forces A and A ′, which become resistance moments, can be reduced by contracting the actuator 81a and maintaining the longitudinal rigidity of the air spring 6a to be small.
  • the moment K due to the lateral pressure H that becomes the steering moment is also reduced, so that the lateral pressure H that causes the moment K is also reduced as a result.
  • the longitudinal stiffness of the air spring 6a becomes the initial value, and the moment C caused by the air spring reaction forces A and A ′ that become the resistance moment is obtained from the relationship between the steering moment and the resistance moment shown in FIG. Therefore, the steering moment K due to the lateral pressure H that becomes the steering moment is reduced accordingly.
  • the steering moment (sum of the moments in the steering (turning) direction) and the resistance moment (sum of the moments opposite to the steering direction) are balanced. For this reason, since the direction of the moment J caused by the lateral pressure G and the direction of the moment D caused by the air spring reaction forces B and B ′ are the same, if the moment D is increased, the moment J caused by the lateral pressure G is increased. Can be small.
  • the moment D due to the air spring reaction forces B and B ′ can be increased.
  • the moment J is reduced by an amount commensurate with the increase in the moment D, which is the steering moment, so that the lateral pressure G that causes the moment J is also reduced as a result.
  • the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b are effectively reduced, wear of the rails and wheels can be suppressed, and squeak noise generated between the two can be reduced.
  • the expansion and contraction operations of the actuators 81a and 81b are opposite (reverse) to the above-described example, the actuator 81a expands, and the actuator 81b contracts.
  • the control device 7 sends a command to do so.
  • this embodiment does not require an actuator mounting space on the lower surface of the vehicle body, so that it is possible to arrange other devices in the vicinity of the air spring on the lower surface of the vehicle body. The effect can also be expected. Note that the initial stiffness values of the air springs 6a and 6b are set in the same manner as in the first embodiment.
  • FIG. 12 is a plan view of a vehicle schematically showing the railway vehicle bogie according to the present embodiment, and includes a control device 7 and supply / exhaust valves 89a and 89b.
  • the carriage 2a when the traveling direction of the railway vehicle is an arrow E, the carriage 2a is a front carriage and the carriage 2b is a rear carriage.
  • the traveling direction is an arrow F, the carriage 2a becomes a rear carriage, and the carriage 2b becomes a front carriage.
  • the control device 7 detects the traveling direction of the railway vehicle and operates the air supply / exhaust valves 89a and 89b that adjust the air pressure of the air springs 6a and 6b. That is, for the air spring 6a of the front carriage 2a, the internal pressure of the diaphragm 63a is exhausted to lower the internal pressure, and for the air spring 6b of the rear carriage 2b, air is supplied to the inside of the diaphragm 63b and the internal pressure is reduced. To increase. The longitudinal rigidity of the air spring 6a of the front carriage 2a in which the internal pressure is reduced is reduced, and the longitudinal rigidity of the air spring 6b of the rear carriage 2b in which the internal pressure is increased is increased.
  • the steering moment (sum of the moments in the steering (turning) direction) and the resistance moment (the moments opposite to the steering direction). Is balanced). Therefore, in the front carriage 2a, the direction of the moment K due to the lateral pressure H and the direction of the moment C due to the air spring reaction forces A and A ′ are opposite (reverse) directions, so the moment C that is the resistance moment can be reduced. For example, the moment K caused by the lateral pressure H is reduced. Since the moment K is reduced, the lateral pressure H causing the moment K is consequently reduced.
  • the direction of the moment J due to the lateral pressure G and the direction of the moment D due to the air spring reaction forces B and B ′ are the same direction. From the moment J, the moment amount commensurate with the increase in the moment D is reduced, and the moment J becomes smaller. Since the moment J is reduced, the lateral pressure G causing the moment J is consequently reduced. As described above, since the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b are effectively reduced, wear of the rails and wheels can be suppressed, and squeak noise generated between the two can be reduced.
  • the traveling direction of the railway vehicle is the arrow E
  • the carriage 2a is the rear carriage and the carriage 2b is the front carriage
  • the air spring 6a is supplied.
  • the control device 7 issues a command to exhaust the air spring 6b.
  • the initial stiffness values of the air springs 6a and 6b are set in the same manner as in the first embodiment.
  • the present embodiment does not require an actuator and a contact plate, and therefore has an effect of increasing the design freedom of the underfloor device and an effect of promoting weight reduction.
  • Examples 1 to 3 are intended for bogie vehicles that support both ends in the longitudinal direction of the vehicle body with two trolleys. However, in Example 4, a trolley is arranged below the connecting portion between the vehicle and the vehicle. In an articulated vehicle in which the end of one vehicle body is placed on top of two air springs provided in the carriage, and the end of the other vehicle is placed on the end of this one vehicle body. It is applied.
  • FIGS. 13 and 14 illustrate a case where the apparatus configuration of the second embodiment is applied to a two-point air spring support type connected vehicle according to the present embodiment.
  • FIG. 13 is a plan view showing the articulated carriage 2 and the vehicle body 1 of the two-point air spring support system.
  • both ends in the width direction of the pillow beam 91 extending from the frame of one vehicle body 1a toward the other vehicle 1b are above the pair of air springs 6 provided in the articulated carriage 2. It is mounted on.
  • the connecting device 90 of the car body 1b is connected to the upper part of the pillow beam 91 of the car body 1a and the lower surface of the pillow beam 91 of the car body 1a constituting the connecting part is provided in the articulated carriage 2.
  • the air spring 6 is elastically supported.
  • the vehicle body 1a When the traveling direction of the railway vehicle is an arrow E, the vehicle body 1a is the front vehicle body and the vehicle body 1b is the rear vehicle body, and when the traveling direction is the arrow F, the vehicle body 1a is the rear vehicle body and the vehicle body 1b. Is the front car body.
  • the connecting cart 2 turns in the horizontal plane below the connecting portion between the vehicle body 1a and the vehicle body 1b when passing through the curve, so that the space between the connecting cart 2, the vehicle body 1a, and the vehicle body 1b. Produces a relative angle. Furthermore, since the front and rear displacement corresponding to this relative angle occurs in the air spring 6, an air spring reaction force acting on the articulated carriage 2 from the vehicle body 1a is generated.
  • the air spring reaction force acting on the articulated carriage 2 from the vehicle body 1a is in the directions of the arrows L and L ', and the moment M caused by the air spring reaction force acts on the articulation vehicle 2 from the vehicle body 1a.
  • the moment M acts as a steering moment that promotes turning of the carriage.
  • the moment M acts as a resistance moment that prevents the bogie from turning.
  • FIG. 14 shows a balance of moments acting on the articulated carriage 2 of the air spring two-point support method when passing the curve.
  • the moments forming the steering moment are the moment P caused by the lateral pressure N and the moment M caused by the air spring reaction forces L and L '.
  • Moment ⁇ due to other factors such as longitudinal creep force.
  • each moment forming the resistance moment is a moment ⁇ due to other factors such as a longitudinal creep force.
  • the moment in the same direction as the steering moment is due to the moment P ′ due to the lateral pressure N ′ and other factors such as creep force.
  • the moment ⁇ ′ and the moment in the same direction as the resistance moment are the moment M due to the air spring reaction forces L and L ′ and the moment ⁇ ′ due to other factors such as the longitudinal creep force.
  • the steering moment (the sum of the moments in the steering (turning) direction) and the resistance moment (the sum of the moments opposite to the steering direction) are balanced.
  • the traveling direction of the railway vehicle is the direction of arrow E and the vehicle body 1a is the front vehicle body
  • the direction of the moment P due to the lateral pressure N and the direction of the moment M due to the air spring reaction forces L and L ′ are the same direction. Therefore, if the moment M is increased, a moment commensurate with this increase is subtracted from the moment P. If the moment P is reduced, the lateral pressure N causing the moment P is consequently reduced.
  • the traveling direction of the railway vehicle is the direction of the arrow F and the vehicle body 1b is the front vehicle body
  • the direction of the moment P ′ due to the lateral pressure N ′ and the moment M due to the air spring reaction forces L and L ′ Since the direction is the opposite (reverse) direction, if the moment M is reduced, the moment P ′ due to the lateral pressure N ′ is also reduced, and the lateral pressure N ′ causing the moment P ′ can be reduced as a result.
  • the vehicle body 1a supported by the air spring 6 becomes the front vehicle body (when the traveling direction is the arrow E)
  • the vehicle body 1b not supported by the air spring 6 is increased by increasing the longitudinal rigidity of the air spring 6.
  • the traveling direction is the arrow F
  • the lateral pressure N acting on the carriage 2 can be reduced by reducing the longitudinal rigidity of the air spring 6.
  • the control device 7 issues a command to extend the actuator 81 and increases the longitudinal rigidity of the air spring 6.
  • the direction of the moment P due to the lateral pressure N acting on the carriage 2 and the direction of the moment M due to the longitudinal stiffness of the air spring 6 are equal, so the longitudinal stiffness of the air spring increases, and the moment P increases as the moment M increases. Therefore, the lateral pressure N that causes the moment P is reduced.
  • the knitted vehicle advances in the direction of arrow E and travels in the direction of travel.
  • the longitudinal rigidity of all the air springs at the four connecting portions is increased.
  • the lateral pressure N can be reduced.
  • the control device 7 issues a command to contract the actuator 81, and the longitudinal rigidity of the air springs 6 at the four connecting portions is increased. Make it smaller.
  • the longitudinal rigidity of the air spring 6 decreases, the moment M in the same direction as the resistance moment decreases.
  • FIG. 15 is a plan view showing the articulated carriage 2 and the vehicle body 1 of a four-point air spring support system. 15 and 16, the case where the apparatus configuration of the second embodiment is applied to a four-point air spring support type connected vehicle will be described.
  • a total of four air springs that is, one set of two air springs 6a and two sets of two air springs 6b, are placed on the upper surface of one carriage 2.
  • One end of the vehicle body 1a in the longitudinal direction is placed on the air spring 6a and elastically supported, and the other end in the longitudinal direction of the vehicle body 1b is placed on the air spring 6b and elastically supported.
  • the vehicle body 1a and the vehicle body 1b are connected by a connecting device 92 provided at one end of the vehicle body 1a and a connecting device 90 provided at the other end of the vehicle body 1b.
  • the vehicle body 1a becomes the front vehicle body and the vehicle body 1b becomes the rear vehicle body.
  • the vehicle body 1a becomes the rear vehicle body, and the vehicle body 1b becomes the front vehicle body.
  • the connecting cart 2 turns along the curve, so that a relative angle is generated between the connecting cart 2 and the vehicle body 1a and the vehicle body 1b, and the air spring 6 is Displaces (deforms) in the front-rear direction. The displacement of the air spring 6 generates an air spring reaction force acting on the articulated carriage 2 from the vehicle bodies 1a, 1b.
  • the reaction force of the air spring 6a applied to the articulated carriage 2 is in the directions of arrows Q and Q ', and a moment R is generated in the articulated carriage 2.
  • the reaction force of the air spring 6 b applied to the articulated carriage 2 is in the directions of arrows S and S ′, and a moment T is generated in the articulated carriage 2.
  • FIG. 16 shows a balance of moments acting on the articulated carriage 2 of the air spring four-point support system when passing the curve.
  • the moment in the same direction as the steering moment is the moment V due to the lateral pressure U
  • the moment R due to the air spring reaction forces Q and Q ' the vertical moment.
  • the moment ⁇ is due to other factors such as creep force
  • the moment in the same direction as the resistance moment is moment T due to air spring reaction forces S and S ′ and moment ⁇ due to other factors such as longitudinal creep force.
  • the moment in the same direction as the steering moment is the moment V ′ due to the lateral pressure U ′ and the air spring reaction forces S and S ′.
  • the moment T due to the moment and the moment ⁇ ′ due to other factors such as the longitudinal creep force.
  • the moment in the same direction as the resistance moment is the moment R due to the air spring reaction force Q, Q ′, the longitudinal creep force, etc. Is the moment ⁇ ′ due to other factors.
  • the direction of the moment V by the lateral pressure U is equal to the direction of the moment R by the air springs 6a reaction forces Q and Q ', and the rear vehicle body 1b Is opposite (reverse) to the direction of the moment T due to the air spring reaction forces S and S ′ of the air spring 6b that supports Since the steering moment (the sum of the moments in the steering (turning) direction) and the resistance moment (the sum of the moments opposite to the steering direction) are balanced, increasing the moment R in the same direction as the steering moment Accordingly, the moment V caused by the lateral pressure U in the same direction as the steering moment is reduced accordingly, and as a result, the lateral pressure U causing the moment V can be reduced.
  • the direction of the moment V ′ due to the lateral pressure U ′ depends on the air spring reaction forces S and S of the air spring 6b that supports the front vehicle body 1b. It is equal to the direction of the moment T by ', and is opposite (reverse) to the direction of the moment R by the air spring reaction force Q, Q' of the air spring 6a that supports the rear vehicle body 1a.
  • the lateral pressure acting on the articulated carriage 2 is reduced by increasing the longitudinal rigidity of the air spring that supports the front vehicle body and reducing the rigidity of the air spring that supports the rear vehicle body according to the traveling direction of the railway vehicle. Can be made. Therefore, when the railway vehicle travels in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the control device 7 sends an extension command for increasing the longitudinal rigidity of the air spring 6a on the traveling direction side to the actuator 81a. Then, a contraction command for reducing the longitudinal rigidity of the air spring 6b on the side opposite to the traveling direction side is sent to the actuator 81b.
  • the longitudinal rigidity of the air spring 6a is increased, and the longitudinal rigidity of the air spring 6b is reduced.
  • the direction of the moment V due to the lateral pressure U acting on the articulated carriage 2 is equal to the direction of the moment R due to the air spring 6a. Therefore, if the moment R increases, the moment V due to the lateral pressure U decreases. The lateral pressure U causing V is reduced.
  • the control device 7 sends an extension command for increasing the longitudinal rigidity of the air spring 6b on the traveling direction side to the actuator 81a.
  • a contraction command for reducing the longitudinal rigidity of the air spring 6a on the opposite side to the traveling direction is sent to 81b.
  • the resistance of the air spring related to the steering moment is reduced by reducing the longitudinal stiffness of the air spring according to the traveling direction when passing the curve.
  • the longitudinal stiffness of the air spring related to the moment may be increased. Note that the initial stiffness values of the air springs 6a and 6b are set in the same manner as in the first embodiment.
  • the second embodiment is applied to the articulated carriage 2 of the air spring four-point support system, but the first and third embodiments can also be applied to such an articulated vehicle.
  • the change of the internal pressure of the air spring and the operation of the actuator may be switchable throughout the knitting.
  • the front and rear rigidity of the air spring on the front side in the traveling direction is reduced and the front and rear rigidity of the air spring on the rear side in the traveling direction is increased.
  • the present invention is not limited to this, and various modifications are possible.
  • the front and rear rigidity initial values of the front and rear air springs 6a and 6b in the traveling direction are within a range not deteriorating riding comfort and running stability, including during straight running and curved running.
  • the optimal value is set in advance.
  • the control signal is not output from the control device 7 to the actuators 81a and 81b, the diaphragms 63a and 53b are not touched even if the front and rear air springs 6a and 6b are displaced in the front-rear direction.
  • the actuators 81a and 81b are fixed at positions where the front and rear rigidity of the air spring 6 is not changed without coming into contact with 84a and 84b.
  • the front carriage 2a and the rear carriage The front and rear rigidity of the air springs 6a and 6b in 2b is determined in real time on the basis of the travel position information received from the ground element, the position information by GPS, the route information including the radius (R) of the curve, and the like database.
  • an optimum value of the expansion amount or contraction amount of each actuator 81a, 81b may be called and given as a command value.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the traveling direction of the railway vehicle is detected by the speed detector on the vehicle, the ground device, the start of the turning operation, and further by the GPS or the like, and the direction in which the lateral pressure generated when passing the curve is reduced.
  • an actuator that controls an actuator as an air spring displacement suppressing device and adjusts the longitudinal stiffness of the air spring that elastically supports the vehicle body to an optimal value is included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

When a railroad vehicle passes a curve, switching between longitudinal rigidities (rigidities with respect to displacement in a longitudinal direction) of air springs (6a, 6b) is performed according to the direction of travel. With regard to the air spring (6a) in which the direction of a reaction moment acting on a truck acts on a direction (C) in which the turning of the truck is impeded, the longitudinal rigidity is relatively decreased, and with regard to the air spring (6b) in which the direction of the reaction moment acting on the truck acts on a direction (J) in which the turning of a vehicle body is accelerated, the longitudinal rigidity is relatively increased. By merely adding a mechanism for switching between the longitudinal rigidities of the air spring (6a, 6b) according to the direction of travel as described above, the influence of lateral force (H, G) on a track is minimized without causing a large cost increase and an increase in unsprung mass.

Description

横圧を低減できる鉄道車両および横圧低減方法Railway vehicle and lateral pressure reduction method capable of reducing lateral pressure
 本発明は、曲線を通過する際に、鉄道車両を支持する台車と軌道との間に生じる横圧を低減できる機構を備える鉄道車両に関する。 The present invention relates to a railway vehicle including a mechanism that can reduce a lateral pressure generated between a carriage supporting the railway vehicle and a track when passing a curve.
 一般的な鉄道車両用台車は、車軸の両端部に車輪を有する輪軸と、輪軸を回転自由に保持する軸箱体と、台車の骨格をなす台車枠と、から構成されている。軸箱体は、軸箱支持装置によって台車枠に対して前後、左右、上下方向に弾性支持されている。また、台車枠の上面と車体の下面との間には空気ばねが備えられており、この空気ばねによって、車体は台車に対して前後、左右、上下の各方向に弾性支持されている。 A general railcar bogie is composed of a wheel shaft having wheels at both ends of an axle, a shaft box body that rotatably holds the wheel shaft, and a bogie frame that forms the frame of the bogie. The axle box body is elastically supported in the front-rear, left-right, and up-down directions with respect to the carriage frame by the axle box support device. In addition, an air spring is provided between the upper surface of the carriage frame and the lower surface of the vehicle body, and the vehicle body is elastically supported by the air spring in the front-rear, left-right, and upper-lower directions.
 軸箱支持装置による軸箱体の前後方向の支持剛性は比較的大きいので、鉄道車両が曲線を通過する時に輪軸が十分に曲線に追従することができず、車輪がレールにより枕木方向に押される力である横圧が発生しやすい。この横圧は、車輪およびレールの摩耗を促進したり、車輪とレールと間のきしみによる騒音の原因になるため、これをいかに低減するかが重要な課題となっている。 The support rigidity in the front-rear direction of the axle box body by the axle box support device is relatively large, so that when the railway vehicle passes the curve, the wheel shaft cannot sufficiently follow the curve, and the wheel is pushed toward the sleeper by the rail. Lateral pressure, which is a force, tends to occur. This lateral pressure promotes wear of the wheels and rails and causes noise due to squeezing between the wheels and rails, so how to reduce them is an important issue.
 特許文献1に、曲線通過時の横圧を低減できる鉄道車両用台車が開示されている。特許文献1の要約には、「鉄道車両用台車の操舵装置6は、台車枠2に対してある角度回動可能に設けられた前後2本の車輪軸3を、台車に対して対称的に回動させるものである。同装置6は、車体1に対する台車枠2の相対回動角度(α、)をとらえ、台車枠2に対する車輪軸3の相対回動角度(β、)をもたらす。そして、理論的相対回動角度の20~35%増しの回動を車輪軸に与えるべく操舵装置6が動作するように構成されている。また、操舵装置6のリンク機構を水平配置としたので、台車の前後の車輪軸に同等な操舵操作を与える。」と記載されている。 Patent Document 1 discloses a railcar bogie that can reduce the lateral pressure when passing a curve. The summary of Patent Document 1 states that “the steering device 6 for a bogie for a railcar has two front and rear wheel shafts 3 provided so as to be rotatable at an angle with respect to the bogie frame 2 in a symmetrical manner with respect to the bogie. The apparatus 6 captures the relative rotation angle (α,) of the carriage frame 2 with respect to the vehicle body 1 and provides the relative rotation angle (β,) of the wheel shaft 3 with respect to the carriage frame 2. The steering device 6 is configured to operate so as to give the wheel shaft a rotation that is 20 to 35% greater than the theoretical relative rotation angle, and the link mechanism of the steering device 6 is arranged horizontally. The same steering operation is given to the front and rear wheel shafts of the carriage. "
特開平10-203364号公報JP-A-10-203364
 特許文献1に示される鉄道車両用台車は、台車枠の回転中心と同心の回転軸を有し、曲線軌道では車体と同様の回転運動をする操舵梁と、台車枠の左右の側梁前後方向中央付近に各々回転中心を持つ台車枠左右の一対の水平テコと、操舵梁と水平テコを連結するリンクと、水平テコの回転中心から左右に等距離の点と台車装置の左右同じ側の前後の軸箱体とを連結する連結棒と、から構成されている。 The railcar bogie shown in Patent Document 1 has a rotating shaft that is concentric with the center of rotation of the bogie frame, a steering beam that rotates in the same manner as the vehicle body on a curved track, and the left and right side beams in the longitudinal direction of the bogie frame A pair of horizontal levers on the left and right sides of the carriage frame each having a center of rotation near the center, a link connecting the steering beam and the horizontal lever, a point equidistant from the horizontal lever's center of rotation to the left and right, and front and rear of the same side And a connecting rod for connecting the shaft box body.
 この鉄道車両用台車は、車体に対する台車の相対回動角度をとらえて輪軸を操舵する、いわゆる操舵台車を構成しており、複雑な構造を採用しているため、コスト上昇や耐久性低下、信頼性低下の原因ともなる。しかも、直線と円曲線を接続する緩和曲線区間では、操舵梁の回転動作の遅れや操舵に必要な台車の旋回角度が不足し、操舵が十分に行えず横圧低減効果が減少する可能性がある。
 また、連結棒が軸箱と直結しているため、ばね下質量が増大し、軌道へ与える影響が大きくなるという問題もある。
This railcar bogie constitutes a so-called steering bogie that captures the relative rotation angle of the bogie relative to the vehicle body and steers the wheel shaft, and employs a complicated structure, which increases costs, reduces durability and increases reliability. It also causes a decline in sex. In addition, in the relaxation curve section connecting the straight line and the circular curve, there is a possibility that the rotation of the steering beam will be delayed and the turning angle of the carriage required for steering will be insufficient, and the steering will not be performed sufficiently, reducing the lateral pressure reduction effect. is there.
Further, since the connecting rod is directly connected to the axle box, there is a problem that unsprung mass increases and the influence on the track becomes large.
 そこで、本発明の課題は、軌道保守コストを高める可能性があるばね下質量を大きくしたり、保守コストを上昇させる要因となり得る複雑な装置(構成)を用いることなく、横圧を低減することによって、車輪やレールの摩耗を抑制し、さには、両者間のきしみ音等の騒音を低減することができる鉄道車両及び横圧低減方法を提供することである。 Accordingly, an object of the present invention is to reduce the lateral pressure without using an unsprung mass that may increase the track maintenance cost or using a complicated device (configuration) that can increase the maintenance cost. Thus, it is intended to provide a railway vehicle and a lateral pressure reduction method that can suppress wear of wheels and rails and reduce noise such as squeak noise between them.
 上記の課題を解決するため、本発明の鉄道車両は、乗客等が乗車する車体と、前記車体を弾性支持する空気ばねを備えた台車と、前記空気ばねの前後方向の剛性を制御する空気ばね変位抑制装置と、前記車体と前記台車とからなる鉄道車両の進行方向を検知して前記空気ばね変位抑制装置を制御する制御装置とを備えることを特徴とする。
 また、本発明の鉄道車両の横圧低減方法は、車両の進行方向を検知し、前記車両を支持する台車に備えられる空気ばねの前後剛性を制御することを特徴とする。
In order to solve the above-described problems, a railway vehicle according to the present invention includes a vehicle body on which passengers or the like get on, a carriage provided with an air spring that elastically supports the vehicle body, and an air spring that controls rigidity in the front-rear direction of the air spring. A displacement suppression device and a control device that controls the air spring displacement suppression device by detecting a traveling direction of a railway vehicle including the vehicle body and the carriage.
In addition, the lateral pressure reducing method for a railway vehicle according to the present invention is characterized by detecting the traveling direction of the vehicle and controlling the longitudinal stiffness of an air spring provided in a carriage that supports the vehicle.
 上記の構成により、ばね下質量を大きくしないで、さらに、保守コストを上昇させる要因となり得る複雑な装置(構成)を用いることなく、横圧を低減することによって、車輪やレールの摩耗を抑制するとともに両者間のきしみ音等の騒音を低減し、さらに、軌道の保守コストを小さくできる鉄道車両および鉄道車両の横圧低減方法を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
With the above configuration, the wear of wheels and rails is suppressed by reducing the lateral pressure without increasing the unsprung mass and without using a complicated device (configuration) that can increase maintenance costs. At the same time, it is possible to provide a railway vehicle and a method of reducing the lateral pressure of the railway vehicle that can reduce noise such as squeak noise between the two and further reduce the track maintenance cost.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
図1は、実施例1による鉄道車両の平面図である。FIG. 1 is a plan view of a railway vehicle according to a first embodiment. 図2は、実施例1において、曲線通過時の前台車の空気ばねの状態を示す断面図である。FIG. 2 is a cross-sectional view illustrating the state of the air spring of the front carriage when passing the curve in the first embodiment. 図3は、実施例1において、曲線通過時の後台車の空気ばねの状態を示す断面図である。FIG. 3 is a cross-sectional view showing the state of the air spring of the rear carriage when passing the curve in the first embodiment. 図4は、曲線通過時において、車体と台車との間で生じる空気ばね反力によるモーメントを示す図である。FIG. 4 is a diagram illustrating a moment due to an air spring reaction force generated between the vehicle body and the carriage when passing through a curve. 図5は、曲線通過時において、台車に作用する操舵モーメントと抵抗モーメントの内訳とその釣り合いを示す図である。FIG. 5 is a diagram showing a breakdown of the steering moment and the resistance moment acting on the carriage and the balance thereof when passing the curve. 図6は、実施例1による横圧低減効果を示す図である。FIG. 6 is a diagram illustrating the lateral pressure reduction effect according to the first embodiment. 図7は、実施例1において、当板の支持構造を変更した変形例による、曲線通過時の前台車の空気ばねの状態を示す断面図である。FIG. 7 is a cross-sectional view illustrating the state of the air spring of the front carriage when passing a curve according to a modification in which the support structure for the plate is changed in the first embodiment. 図8は、実施例1において、当板の支持構造を変更した変形例による、曲線通過時の後台車の空気ばねの状態を示す断面図である。FIG. 8 is a cross-sectional view showing the state of the air spring of the rear carriage when passing a curve according to a modified example in which the support structure for the plate is changed in the first embodiment. 図9は、実施例2による鉄道車両台車の平面図である。FIG. 9 is a plan view of a railcar bogie according to the second embodiment. 図10は、実施例2において、曲線通過時の前台車の空気ばねの状態構造を示す断面図である。FIG. 10 is a cross-sectional view illustrating a state structure of an air spring of a front carriage when passing a curve in the second embodiment. 図11は、実施例2において、曲線通過時の後台車の空気ばねの状態構造を示す断面図である。FIG. 11 is a cross-sectional view illustrating a state structure of an air spring of a rear carriage when passing a curve in the second embodiment. 図12は、実施例3による鉄道車両用台車の平面図である。FIG. 12 is a plan view of a railway vehicle carriage according to a third embodiment. 図13は、実施例4による2点空気ばね支持方式の連接車両に、本発明の実施例2を適用した場合の平面図である。FIG. 13 is a plan view in the case where the second embodiment of the present invention is applied to a two-point air spring support type connected vehicle according to the fourth embodiment. 図14は、実施例4による2点空気ばね支持方式の連接車両の曲線通過時において、台車に作用する操舵モーメントと抵抗モーメントの内訳と釣り合いを示す図である。FIG. 14 is a diagram illustrating the breakdown and balance of the steering moment and the resistance moment acting on the carriage when the two-point air spring support type connected vehicle according to the fourth embodiment passes through a curve. 図15は、実施例5による4点空気ばね支持方式の連接車両に、本発明の実施例2を適用した平面図である。FIG. 15 is a plan view in which a second embodiment of the present invention is applied to a four-point air spring support type connected vehicle according to a fifth embodiment. 図16は、実施例5による4点空気ばね支持方式の連接車両の曲線通過時において、台車に作用する操舵モーメントと抵抗モーメントの釣り合いを示す図である。FIG. 16 is a diagram showing a balance between a steering moment and a resistance moment acting on the carriage when the four-point air spring support type connected vehicle according to the fifth embodiment passes through a curve. 図17は、通常の鉄道車両の側面図である。FIG. 17 is a side view of a normal railway vehicle.
 以下、本発明の実施例を、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施例1]
 本発明の実施例1について説明する。
 図17に、一般的な鉄道車両の側面図を示す。鉄道車両1は、乗客や貨物を搭載する車体1と、この車体1を支持する台車2とから構成されている。台車2は、その骨格をなす台車枠3と、車軸の両端部に車輪を有す輪軸5と、輪軸5を回転可能に保持している軸箱体4と、台車枠3の上面に備えられる空気ばね6などから構成されている。
[Example 1]
Example 1 of the present invention will be described.
FIG. 17 shows a side view of a general railway vehicle. The railway vehicle 1 includes a vehicle body 1 on which passengers and cargo are mounted, and a carriage 2 that supports the vehicle body 1. The bogie 2 is provided on the bogie frame 3 that forms the skeleton, the wheel shaft 5 having wheels at both ends of the axle, the shaft box 4 that rotatably holds the wheel shaft 5, and the upper surface of the bogie frame 3. It consists of an air spring 6 or the like.
 軸箱体4は、台車枠3に対して軸箱支持装置によって前後、左右(枕木)、上下の各方向に弾性支持されており、車体1は台車2に備えられる空気ばね6によって、前後、左右(枕木)、上下の各方向に弾性支持されている。
 台車枠3の中央部には、車体の下面から下方に延伸する中心ピン(図示なし)が挿入される部位(図示なし)が備えられており、鉄道車両が曲線等を進行する際、台車2はこの中心ピン周りに略水平面内で旋回する。
The axle box body 4 is elastically supported in the front and rear, left and right (sleepers), and up and down directions with respect to the carriage frame 3 by the axle box support device. The vehicle body 1 is front and rear by air springs 6 provided in the carriage 2. Elastically supported in left and right (sleepers) and up and down directions.
The central portion of the carriage frame 3 is provided with a portion (not shown) into which a center pin (not shown) extending downward from the lower surface of the vehicle body is inserted. Swivels in a substantially horizontal plane around this central pin.
 図1は、本実施例による鉄道車両を模式的に示す平面図である。車体1は、空気ばね6aを介して前台車2aと、空気ばね6bを介して後台車2bと、によって支持されている。図2、図3を用いて後述するように、空気ばね6a、6bの前後には、それぞれ空気ばね変位抑制装置95a、95bが備えられており、各アクチュエータ81a、81bを、図1に示す制御装置7により、鉄道車両の進行方向に応じて切り替えるようにしている。なお、制御装置7は、車体1の床下に備えても、車体1の車内の機器室に備えてもよい。 FIG. 1 is a plan view schematically showing a railway vehicle according to the present embodiment. The vehicle body 1 is supported by a front carriage 2a via an air spring 6a and a rear carriage 2b via an air spring 6b. As will be described later with reference to FIGS. 2 and 3, air spring displacement suppression devices 95a and 95b are respectively provided before and after the air springs 6a and 6b, and the actuators 81a and 81b are controlled by the control shown in FIG. The device 7 is switched according to the traveling direction of the railway vehicle. The control device 7 may be provided under the floor of the vehicle body 1 or in an equipment room in the vehicle body 1.
 空気ばね変位抑制装置95a、95bは、略同一構成であるので、図2を用いて、空気ばね変位抑制装置95aの構成について説明する。
 空気ばね6aの前後(車両1の長手方向に沿う方向)に空気ばねを挟んで対向する態様で備えられている。空気ばね変位抑制装置は、空気ばね6を構成するダイアフラム63の変形を抑制する当板84aと、当板84aとダイアフラム63aとの間隔(隙間)を制御するアクチュエータ81aと、から構成されている。
Since the air spring displacement suppression devices 95a and 95b have substantially the same configuration, the configuration of the air spring displacement suppression device 95a will be described with reference to FIG.
It is provided in such a manner that the air spring is opposed to the front and rear of the air spring 6a (the direction along the longitudinal direction of the vehicle 1). The air spring displacement suppressing device includes a contact plate 84a that suppresses deformation of the diaphragm 63 that constitutes the air spring 6, and an actuator 81a that controls the interval (gap) between the contact plate 84a and the diaphragm 63a.
 なお、図1において、鉄道車両の進行方向が矢印Eとなるとき、台車2aが前台車となり、台車2bが後台車となる。一方、進行方向が矢印Fとなるとき、台車2aが後台車となり、台車2bが前台車となる。本実施例を含め、以下の実施例では、鉄道車両の進行方向に依らず同様の作用効果が得られるので、矢印Eの場合の一方の進行方向についてのみ説明する。 In FIG. 1, when the traveling direction of the railway vehicle is an arrow E, the carriage 2a becomes the front carriage and the carriage 2b becomes the rear carriage. On the other hand, when the traveling direction is an arrow F, the carriage 2a becomes the rear carriage and the carriage 2b becomes the front carriage. In the following embodiments, including this embodiment, the same operation and effect can be obtained regardless of the traveling direction of the railway vehicle. Therefore, only one traveling direction in the case of arrow E will be described.
 図2及び図3は、本実施例による空気ばね周りの構造を示す断面図である。鉄道車両の進行方向を矢印E、または、矢印Fで示しており、鉄道車両が曲線を通過する時において、図2は前台車2aの空気ばね変位抑制装置95aの動作状態を示し、図3は後台車2bの空気ばね変位抑制装置95bの動作状態を示している。 2 and 3 are cross-sectional views showing the structure around the air spring according to this embodiment. The traveling direction of the railway vehicle is indicated by an arrow E or arrow F. When the railway vehicle passes a curve, FIG. 2 shows an operating state of the air spring displacement suppressing device 95a of the front carriage 2a, and FIG. The operating state of the air spring displacement suppression device 95b of the rear carriage 2b is shown.
 図2において、空気ばね6aは、上面板61a、下面板62a、上面板61aと下面板62aとを接続するダイアフラム63a、そして、下面板62aの下方に配置される金属板64aとゴム65aからなる積層ゴム66aなどから構成されている。金属板64aおよびゴム65aは中央部に開口部を有する円環状の板材であり、これらが交互に積層されて中央部に空間を備える円筒状の積層ゴム66aが構成されている。ダイアフラム63aの内部には高圧空気が充填されている。また、車体1の下面の空気ばね6aの近傍には、車両長手方向に伸縮可能な一組の空気ばね変位抑制装置95aが、車体1の前後方向に沿って空気ばね6aを挟んで対向する態様で備えられている。 In FIG. 2, the air spring 6a includes an upper plate 61a, a lower plate 62a, a diaphragm 63a connecting the upper plate 61a and the lower plate 62a, and a metal plate 64a and a rubber 65a disposed below the lower plate 62a. It is composed of laminated rubber 66a and the like. The metal plate 64a and the rubber 65a are annular plate members having an opening at the center, and a cylindrical laminated rubber 66a having a space at the center is formed by alternately laminating them. The inside of the diaphragm 63a is filled with high-pressure air. Further, in the vicinity of the air spring 6 a on the lower surface of the vehicle body 1, a pair of air spring displacement suppression devices 95 a that can extend and contract in the longitudinal direction of the vehicle 1 face each other across the air spring 6 a along the longitudinal direction of the vehicle body 1. It is equipped with.
 空気ばね変位抑制装置95aは、主に、空気ばねを構成するダイアフラム63aの変位を抑制する当板84aと、この当板84aに接続されるととともに当板84aとダイアフラム63aとの間隔(隙間)を制御するアクチュエータ81aとから構成されている。当板84aは、ダイアフラム63aに当接される低摩擦係数の部材からなる接触部82aと、接触部82aを支持するとともにアクチュエータ81aに接続される支持部83aとから構成されている。 The air spring displacement suppression device 95a is mainly connected to the contact plate 84a that suppresses the displacement of the diaphragm 63a that constitutes the air spring, and the distance (gap) between the contact plate 84a and the diaphragm 63a. And an actuator 81a for controlling the motor. The plate 84a includes a contact portion 82a made of a low friction coefficient member that is in contact with the diaphragm 63a, and a support portion 83a that supports the contact portion 82a and is connected to the actuator 81a.
 図1に示される制御装置7からの指令に基づいて、アクチュエータ81aが伸縮することにより、当板84aの接触部82aとダイアフラム63aとの間の距離(隙間)を制御することができる。空気ばねやアクチュエータ等の配置形態や構造、制御装置7からの指令に基づく作動は、図3に示す後台車2bについても同様である。 1, the distance (gap) between the contact portion 82a of the contact plate 84a and the diaphragm 63a can be controlled by the expansion and contraction of the actuator 81a based on a command from the control device 7 shown in FIG. The operation based on the arrangement and structure of the air springs and actuators and the command from the control device 7 is the same for the rear carriage 2b shown in FIG.
 図3に示すように、アクチュエータ81bを伸長させ、接触部82bをダイアフラム63bに接近させた状態で、台車2aが旋回して空気ばね6bに前後変位が発生すると、変形したダイアフラム63bの側面が接触部82bに接触(当接)する。これに伴い、ダイアフラム63bの変位が抑制されるとともに、ダイアフラム63bの空気反力が増加するため、空気ばね6bの前後変位に対する剛性(以下、前後剛性という。)が高められる。 As shown in FIG. 3, when the carriage 2a turns and the air spring 6b is displaced forward and backward with the actuator 81b extended and the contact portion 82b approaching the diaphragm 63b, the side surface of the deformed diaphragm 63b comes into contact. Contact (contact) the portion 82b. As a result, the displacement of the diaphragm 63b is suppressed and the air reaction force of the diaphragm 63b is increased, so that the rigidity against the longitudinal displacement of the air spring 6b (hereinafter referred to as the longitudinal rigidity) is enhanced.
 図4に、曲線通過時に台車2に作用する空気ばね反力によるモーメントを模式的に表したものを示す。鉄道車両が矢印Eの向きに進行する時、台車2aは前台車となり、台車2bは後台車となる。
 鉄道車両が直線から曲線に進行するとき、台車は曲線の曲率に追従して旋回するので、車体1に対して相対的な回転角度を持つ。その結果、車体1に対して旋回した状態の台車2の左右に位置する空気ばね6a、6bの上端部(上面板61a、61b)は車体1に追随するとともに、空気ばね6a、6bの下端部(下面板62a、62bおよび積層ゴム66a、66b)は台車2に追随するので、空気ばね6a、6bは前後方向(矢印100の方向)に変形する。前後方向に変形した空気ばね6a、6bは、元の形状に復元しようとするため、車体1から台車2に対して空気ばね反力が生じる。
 曲線を通過中の前台車2aに生じる、空気ばね6aの反力は、左右それぞれ矢印A、A’に示す方向であり、同様に、後台車2bに生じる空気ばね6bの反力は、左右それぞれ矢印B、B’のようになる。
FIG. 4 schematically shows moments due to the air spring reaction force acting on the carriage 2 when passing the curve. When the railway vehicle travels in the direction of arrow E, the carriage 2a becomes the front carriage and the carriage 2b becomes the rear carriage.
When the railway vehicle travels from a straight line to a curved line, the carriage turns following the curvature of the curved line, and thus has a relative rotation angle with respect to the vehicle body 1. As a result, the upper ends ( upper surface plates 61a and 61b) of the air springs 6a and 6b positioned on the left and right of the carriage 2 in a state of turning with respect to the vehicle body 1 follow the vehicle body 1 and the lower ends of the air springs 6a and 6b. Since (the bottom plates 62a and 62b and the laminated rubber 66a and 66b) follow the carriage 2, the air springs 6a and 6b are deformed in the front-rear direction (the direction of the arrow 100). Since the air springs 6a and 6b deformed in the front-rear direction try to restore the original shape, an air spring reaction force is generated from the vehicle body 1 to the carriage 2.
The reaction force of the air spring 6a generated in the front carriage 2a passing through the curve is the direction indicated by the left and right arrows A and A ', and similarly, the reaction force of the air spring 6b generated in the rear carriage 2b is the left and right respectively. As shown by arrows B and B '.
 これら空気ばね反力A(A’)、B(B’)は、前台車2a、後台車2bを旋回させようとするモーメント、あるいは、旋回方向と逆向きの抵抗モーメントを生じる。
 すなわち、前台車2aに生じる空気ばね6aに起因するモーメントCは、図4において反時計周りのモーメントであり、後台車2bに生じる空気ばね6bに起因するモーメントDは、図4において時計周りのモーメントである。
These air spring reaction forces A (A ′) and B (B ′) generate a moment for turning the front carriage 2a and the rear carriage 2b, or a resistance moment opposite to the turning direction.
That is, the moment C caused by the air spring 6a generated in the front carriage 2a is a counterclockwise moment in FIG. 4, and the moment D caused by the air spring 6b generated in the rear carriage 2b is a clockwise moment in FIG. It is.
 このとき、前台車2aに作用するモーメントCは、直線から曲線に進行するときの前台車2aの旋回方向と反対(逆)向きであるため、前台車2aの旋回を妨げる抵抗モーメントとして作用する。一方、後台車2bに作用するモーメントDは、鉄道車両が直線から曲線に進行するときの後台車2bの旋回方向と同じ向きであるため、後台車2bの旋回を促進する操舵モーメントとして作用する。 At this time, the moment C acting on the front carriage 2a is opposite (opposite) to the turning direction of the front carriage 2a when traveling from a straight line to a curve, and therefore acts as a resistance moment that prevents the front carriage 2a from turning. On the other hand, since the moment D acting on the rear carriage 2b is in the same direction as the turning direction of the rear carriage 2b when the railway vehicle travels from a straight line to a curve, it acts as a steering moment that promotes the turning of the rear carriage 2b.
 図5に、曲線通過時の各台車に作用するモーメントの内訳とその釣り合いを示す。
 前台車2aに生じる操舵モーメントは、横圧HによるモーメントKと、縦クリープ力等の他の要因によるモーメントαである。また、前台車2aに生じる抵抗モーメントは、空気ばね反力A、A’に起因するモーメントCと、縦クリープ力等の他の要因によるモーメントβである。
 一方、後台車2bに生じる操舵モーメントは、横圧GによるモーメントJと、空気ばね反力B、B’に起因するモーメントDと、縦クリープ力等の他の要因によるモーメントγである。また、後台車2bに生じる抵抗モーメントは、縦クリープ力等の他の要因によるモーメントδである。
FIG. 5 shows a breakdown of the moments acting on each carriage when passing a curve and the balance thereof.
The steering moment generated in the front carriage 2a is the moment K due to the lateral pressure H and the moment α due to other factors such as the longitudinal creep force. Further, the resistance moment generated in the front carriage 2a is a moment C caused by the air spring reaction forces A and A ′ and a moment β caused by other factors such as a longitudinal creep force.
On the other hand, the steering moment generated in the rear carriage 2b is a moment J caused by the lateral pressure G, a moment D caused by the air spring reaction forces B and B ′, and a moment γ caused by other factors such as a longitudinal creep force. Further, the resistance moment generated in the rear carriage 2b is a moment δ due to other factors such as a longitudinal creep force.
 鉄道車両が曲線を通過する際、各台車は車体に対して相対的な回転(旋回)角度を有した状態(姿勢)で維持されるため、各台車において、操舵(旋回)方向の各モーメントの和である操舵モーメントと、旋回方向と逆向きの各モーメントの和である抵抗モーメントとが釣り合った状態が維持される。
 つまり、曲線通過時の定常状態において、前台車2aでは、モーメントαとモーメントKの和である操舵モーメント(操舵方向のモーメント)と、モーメントβとモーメントCとの和である抵抗モーメント(操舵方向と逆向きのモーメント)が釣り合うことになる。
When the railway vehicle passes through the curve, each carriage is maintained in a state (posture) having a relative rotation (turning) angle with respect to the vehicle body. Therefore, in each carriage, each moment in the steering (turning) direction is changed. A state is maintained in which the steering moment that is the sum and the resistance moment that is the sum of the moments opposite to the turning direction are balanced.
That is, in the steady state when passing the curve, in the front carriage 2a, the steering moment (moment in the steering direction) that is the sum of the moment α and the moment K and the resistance moment (the steering direction and the sum of the moment β and the moment C). The reverse moment) is balanced.
 同様に、後台車2bでは、モーメントJとモーメントDとモーメントγとの和である操舵モーメントと、抵抗モーメントであるモーメントδが釣り合うことになる。このように、曲線を通過中の各台車において、操舵モーメントとなる各モーメントの和と、抵抗モーメントとなる各モーメントの和が釣り合う関係にあることは、後述する各実施例においても共通である。 Similarly, in the rear carriage 2b, the steering moment that is the sum of the moment J, the moment D, and the moment γ is balanced with the moment δ that is the resistance moment. In this way, in each truck passing through the curve, the relationship between the sum of the moments serving as the steering moment and the sum of the moments serving as the resistance moments is also common to the embodiments described later.
 ここで、前台車2aでは、横圧HによるモーメントKと、空気ばね反力A、A’によるモーメントCとが互いに反対(逆)向きである。このため、前台車2aに作用する操舵モーメントと抵抗モーメントとは釣り合い状態が維持されるので、抵抗モーメントであるモーメントCを低減すれば、横圧Hによる操舵モーメントであるモーメントKが低減される。すなわち、モーメントKが低減されれば、モーメントKを生じさせている横圧H自体を結果的に低減することができる。 Here, in the front carriage 2a, the moment K caused by the lateral pressure H and the moment C caused by the air spring reaction forces A and A 'are opposite (reverse). Therefore, a balanced state is maintained between the steering moment and the resistance moment acting on the front carriage 2a. Therefore, if the moment C that is the resistance moment is reduced, the moment K that is the steering moment due to the lateral pressure H is reduced. That is, if the moment K is reduced, the lateral pressure H itself that causes the moment K can be reduced as a result.
 一方、後台車2bでは、横圧GによるモーメントJと、空気ばね反力B、B’によるモーメントDとが同じ向きである。後台車2bにおいても、操舵モーメントと抵抗モーメントとは釣り合い状態が維持されるので、操舵モーメントであるモーメントDを増大させれば、横圧Gによる操舵モーメントであるモーメントJが低減され、後台車2bの横圧Gを結果的に低減することができる。
 つまり、前台車2aでは空気ばね6aの前後剛性を小さくすることで横圧Hを低減することができ、後台車2bでは空気ばね6bの前後剛性を大きくすることで横圧Gを低減することができる。
On the other hand, in the rear carriage 2b, the moment J caused by the lateral pressure G and the moment D caused by the air spring reaction forces B and B ′ are in the same direction. Also in the rear carriage 2b, the balance between the steering moment and the resistance moment is maintained. Therefore, if the moment D that is the steering moment is increased, the moment J that is the steering moment due to the lateral pressure G is reduced, and the rear carriage 2b. As a result, the lateral pressure G can be reduced.
That is, in the front carriage 2a, the lateral pressure H can be reduced by reducing the longitudinal rigidity of the air spring 6a, and in the rear carriage 2b, the lateral pressure G can be reduced by increasing the longitudinal rigidity of the air spring 6b. it can.
 そこで、本実施例において、曲線通過時に、前台車2aにおける空気ばね6aの前後剛性を許容できる最小値とすることにより、前台車2aに作用するモーメントCを小さくして横圧Hを低減させる。同時に後台車2bにおける空気ばね6bの前後剛性を大きくして、後台車2bに作用するモーメントDを増大させることによって横圧Gを低減させる。 Therefore, in this embodiment, the lateral pressure H is reduced by reducing the moment C acting on the front carriage 2a by setting the front and rear rigidity of the air spring 6a in the front carriage 2a to an allowable minimum value when passing the curve. At the same time, the lateral pressure G is reduced by increasing the longitudinal rigidity of the air spring 6b in the rear carriage 2b and increasing the moment D acting on the rear carriage 2b.
 図2及び図3を参照しながら、実施例1の鉄道車両に備えられる台車が横圧を低減するメカニズム(作用)を説明する。
 鉄道車両の進行方向を図1における矢印Eの方向とすると、制御装置7は鉄道車両の進行方向を検知し、車体1を支持する前台車2aの空気ばね変位抑制装置95aを構成するアクチュエータ81aに対しては収縮するように、そして、後台車2bの空気ばね変位抑制装置95bのアクチュエータ81bに対しては伸長するように指令信号を出す。
With reference to FIGS. 2 and 3, a mechanism (action) in which the carriage provided in the railway vehicle of the first embodiment reduces the lateral pressure will be described.
If the traveling direction of the railway vehicle is the direction of arrow E in FIG. 1, the control device 7 detects the traveling direction of the railway vehicle, and the actuator 81a constituting the air spring displacement suppressing device 95a of the front carriage 2a that supports the vehicle body 1 is applied. On the other hand, a command signal is issued so as to contract and to extend to the actuator 81b of the air spring displacement suppressing device 95b of the rear carriage 2b.
 この実施例では、前台車2a、後台車2bのいずれにおいても、空気ばね6a、6bの前後剛性の初期値(空気ばね6a、6bにおいて、ダイアフラム63a、63bと、接触部82a、82bと、が接触していない場合の前後剛性)は、曲線走行時においても乗り心地を悪化させない範囲の最小値に設定されている。したがって、制御装置7からアクチュエータ81aに収縮指令が送出され、当板84aがダイアフラム63aから離隔したときは、空気ばね6aの前後剛性は、この初期値となる。 In this embodiment, in both the front carriage 2a and the rear carriage 2b, the initial values of the longitudinal rigidity of the air springs 6a, 6b (in the air springs 6a, 6b, the diaphragms 63a, 63b and the contact portions 82a, 82b are The front-rear rigidity when not in contact is set to a minimum value within a range that does not deteriorate the riding comfort even during curve driving. Therefore, when a contraction command is sent from the control device 7 to the actuator 81a and the contact plate 84a is separated from the diaphragm 63a, the longitudinal rigidity of the air spring 6a becomes this initial value.
 一方、制御装置7からアクチュエータ81bに伸長指令が送出されたときは、当板84bがダイアフラム63bに向けて伸長して近接することにより、空気ばね6bが前後方向に変位すると、ダイアフラム63bの側面が当板84bに当接して、ダイアフラム63bの変形が抑制されて空気反力が増大するので、空気ばね6の前後剛性が高められる。 On the other hand, when an extension command is sent from the control device 7 to the actuator 81b, the side surface of the diaphragm 63b is moved when the air spring 6b is displaced in the front-rear direction because the contact plate 84b extends toward and approaches the diaphragm 63b. Abutting against the abutting plate 84b, deformation of the diaphragm 63b is suppressed and the air reaction force increases, so that the longitudinal rigidity of the air spring 6 is increased.
 これにより、前台車2aにおいては、空気ばね6aの前後剛性が初期値となり、図5に示す操舵モーメントと抵抗モーメントの関係から、抵抗モーメントとなる、空気ばね反力A、A’に起因するモーメントCが低減されるので、操舵モーメントとなる横圧Hによる操舵モーメントKがその分低減されることになる。
 一方、後台車2bにおいても、操舵モーメントと抵抗モーメントとは釣り合い状態が維持されるので、空気ばね6bの前後剛性を高め、操舵モーメントである、空気ばね反力B、B’に起因するモーメントDを増大させることにより、結果として、操舵モーメントである、横圧GによるモーメントJが低減され、後台車2bの横圧Gを低減することができる。
As a result, in the front carriage 2a, the longitudinal rigidity of the air spring 6a becomes the initial value, and the moments caused by the air spring reaction forces A and A ′ that become resistance moments from the relationship between the steering moment and the resistance moment shown in FIG. Since C is reduced, the steering moment K due to the lateral pressure H that becomes the steering moment is reduced accordingly.
On the other hand, in the rear carriage 2b, the balance between the steering moment and the resistance moment is maintained, so that the front-rear rigidity of the air spring 6b is increased and the moment D caused by the air spring reaction forces B and B ′, which are steering moments. As a result, the moment J due to the lateral pressure G, which is the steering moment, is reduced, and the lateral pressure G of the rear carriage 2b can be reduced.
 なお、この実施例では、制御装置7は、例えば、始発となる折り返し駅で進行方向を切り替えるたびに、前台車となる側のアクチュエータ81aに対して収縮指令、後台車となる側のアクチュエータ81bに対して伸長指令を送出し、終着となる折り返し駅に到着するまで、その状態を保持するようにしている。したがって、アクチュエータ81a、81bの収縮、伸長に伴い、各アクチュエータの収縮、伸長を保持するロック装置を備えることによって、アクチュエータの作動に必要な消費電力を低減することができる。 In this embodiment, for example, every time the traveling direction is switched at the first turning station, the control device 7 sends a contraction command to the actuator 81a on the front carriage side, and sends the command to the actuator 81b on the rear carriage side. On the other hand, an extension command is sent out, and this state is maintained until the terminal arrives at the turn-back station. Therefore, the power consumption required for the operation of the actuator can be reduced by providing the lock device that holds the contraction and extension of each actuator as the actuators 81a and 81b contract and extend.
 鉄道車両の進行方向については、折り返し運転開始時のみならず、制御装置7が、車上の速度検出器、地上装置から受信した信号、さらには、GPS等により検知すればよく、その進行方向における曲線通過時に発生する横圧を低減する方向に、空気ばね変位抑制装置としてのアクチュエータを制御して、車体を弾性支持する空気ばねの前後剛性を最適な値に調整するのであればよい。 The traveling direction of the railway vehicle may be detected not only at the start of the turn-back operation, but also by the control device 7 using a speed detector on the vehicle, a signal received from the ground device, or a GPS or the like. It is only necessary to adjust the longitudinal rigidity of the air spring that elastically supports the vehicle body to an optimal value by controlling the actuator as the air spring displacement suppressing device in the direction of reducing the lateral pressure generated when passing the curve.
 さらに、制御装置7の故障等により、収縮および伸長のいずれの指令信号も出力されないときは、このロック装置は、アクチュエータ81a、81bを、アクチュエータ非作動時の収縮位置と、作動の伸長位置との中間位置に固定する。 Further, when neither a contraction nor an extension command signal is output due to a failure of the control device 7 or the like, the lock device moves the actuators 81a and 81b between the contracted position when the actuator is not operated and the extended position of the operation. Fix in the middle position.
 これにより、空気ばね6a、6bが曲線走行時などに前後方向に変位しても、当板84a、84bがダイアフラム63a、63bの変形を抑制する力が、アクチュエータが伸長位置にある時に比べて緩和されるので、各アクチュエータ81a、81bが中間位置に固定された際の空気ばね6a、6bの前後剛性は、上述した最小値より大きい一般的な値に設定され、走行性能に支障を与えないようにしている。 As a result, even if the air springs 6a and 6b are displaced in the front-rear direction when traveling in a curved line, etc., the force of the contact plates 84a and 84b suppressing deformation of the diaphragms 63a and 63b is less than when the actuator is in the extended position. Therefore, the longitudinal rigidity of the air springs 6a and 6b when the actuators 81a and 81b are fixed at the intermediate positions is set to a general value larger than the above-described minimum value so as not to hinder the running performance. I have to.
 このように、前台車2aの空気ばね6aにおいては、アクチュエータ81aが収縮しており、当板84aとダイアフラム63aとの間の距離が拡大するため、曲線通過時に空気ばね6aが前後に変位しても、ダイアフラム63aと当板84aは当接(接触)せず、空気ばね6aの前後剛性は、上述の初期値となり、旋回を妨げるモーメントC(図4参照)は増大しない。 Thus, in the air spring 6a of the front carriage 2a, the actuator 81a is contracted, and the distance between the abutment plate 84a and the diaphragm 63a increases, so that the air spring 6a is displaced back and forth when passing the curve. However, the diaphragm 63a and the contact plate 84a do not abut (contact), and the longitudinal rigidity of the air spring 6a becomes the above-described initial value, and the moment C (see FIG. 4) that prevents turning does not increase.
 これに対し、後台車2b側の空気ばね6bにおいては、アクチュエータ81bが伸長しており、当板84bとダイアフラム63bとの間の距離(隙間)が縮小している。このため、空気ばねの前後方向変位に伴って、ダイアフラム63bの側面が接触部82bに接触し、ダイアフラム63bの変形が抑制されて空気反力が増大し、旋回を助長するモーメントD(図4参照)が増大される。
 以上の作用により、前台車2aの横圧Hおよび後台車2bの横圧Gは効果的に低減されるので、レールおよび車輪の摩耗を抑制するとともに、両者間で生じるきしみ音を低減できる。
On the other hand, in the air spring 6b on the rear carriage 2b side, the actuator 81b is extended, and the distance (gap) between the contact plate 84b and the diaphragm 63b is reduced. For this reason, with the displacement of the air spring in the front-rear direction, the side surface of the diaphragm 63b contacts the contact portion 82b, the deformation of the diaphragm 63b is suppressed, the air reaction force increases, and the moment D that promotes turning (see FIG. 4). ) Is increased.
With the above operation, the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b are effectively reduced, so that the wear of the rails and wheels can be suppressed and squeak noise generated between the two can be reduced.
 なお、当板84a、84bに取り付けられる接触部82a、82bは、自己潤滑性を有する樹脂など、低摩擦係数の素材で形成されているため、ダイアフラム63a、63bの摩耗を抑制することができる。さらに、接触部82a、82bの形状を、ダイアフラム63a、63bの外形(ドーナツ状の曲面)に合わせると、ダイアフラム63a、63bの摩耗をさらに抑制することができる。
 上述したダイアフラム63a、63bの摩耗を抑制する方法によって、アクチュエータ81a、81bによる空気ばねの前後剛性を高める操作に対して、ダイアフラム63a、63bの寿命(交換周期)が短期化するのを抑制することができる。
In addition, since the contact parts 82a and 82b attached to the contact plates 84a and 84b are made of a material having a low coefficient of friction such as a resin having self-lubricating properties, the wear of the diaphragms 63a and 63b can be suppressed. Further, when the shapes of the contact portions 82a and 82b are matched with the outer shapes (doughnut-shaped curved surfaces) of the diaphragms 63a and 63b, the wear of the diaphragms 63a and 63b can be further suppressed.
By suppressing the wear of the diaphragms 63a and 63b as described above, the life of the diaphragms 63a and 63b (replacement cycle) can be suppressed from being shortened with respect to the operation of increasing the longitudinal stiffness of the air spring by the actuators 81a and 81b. Can do.
 以上、鉄道車両の進行方向が矢印Eのときの動作を説明したが、図1において進行方向が矢印Fとなり、台車2aが後台車、台車2bが前台車となるときは、アクチュエータ81は反対(逆)の動作となり、アクチュエータ81aを伸長させ、アクチュエータ81bを収縮させるよう、制御装置7が指令を出力する。 The operation when the traveling direction of the railway vehicle is the arrow E has been described above. However, when the traveling direction is the arrow F in FIG. 1 and the carriage 2a is the rear carriage and the carriage 2b is the front carriage, the actuator 81 is opposite ( The control device 7 outputs a command to extend the actuator 81a and contract the actuator 81b.
 図6に、本実施例による横圧の低減効果の一例を示す。図6において、横軸は、円曲線の前後に緩和曲線が設定されたキロ程(m)であり、縦軸は横圧(KN)である。本図から明らかなように、緩和曲線、円曲線ともに通常台車に対して横圧を低減可能になる。 FIG. 6 shows an example of the effect of reducing the lateral pressure according to this embodiment. In FIG. 6, the horizontal axis is the kilometer (m) in which the relaxation curve is set before and after the circular curve, and the vertical axis is the lateral pressure (KN). As is apparent from this figure, the lateral pressure can be reduced with respect to the normal carriage for both the relaxation curve and the circular curve.
 図2及び図3に示す構成では、アクチュエータ81a、81bの伸縮により当板84が車両長手方向に並進移動する構成としているが、図7に示すように、当板84aの上端部に枕木方向に沿う方向に配設された軸85aと、軸85aを備えるとともに、車体1の下面に固定されたブラケット86aと、車体下面に設置されたアクチュエータ81aの伸縮によって、当板84aが軸85aを中心に回動してダイアフラム63aと当板84a間の距離を変更可能とする構成としても、図2及び図3で示した構成と同様の効果を得ることができる。 In the configuration shown in FIGS. 2 and 3, the contact plate 84 is translated in the longitudinal direction of the vehicle by the expansion and contraction of the actuators 81a and 81b. However, as shown in FIG. An abutting plate 84a is provided around the shaft 85a by extending and contracting a shaft 85a disposed in a direction along the shaft 85a, a bracket 86a fixed to the lower surface of the vehicle body 1, and an actuator 81a installed on the lower surface of the vehicle body. Even if the configuration is such that the distance between the diaphragm 63a and the contact plate 84a can be changed by rotating, the same effect as the configuration shown in FIGS. 2 and 3 can be obtained.
 なお、図7は、鉄道車両の進行方向を矢印E(図4参照)としたときの曲線通過時において、前台車2b側でアクチュエータ81aが収縮し、当板84aの接触部82aがダイアフラム63aから離れる方向に回動した状態を示している。
 一方、図8は、前台車2b側とは逆に、後台車2b側でアクチュエータ81bが伸長し、当板84bの接触部82bがダイアフラム63bに接近して対向する方向に回動した状態を示している。
FIG. 7 shows that the actuator 81a contracts on the front carriage 2b side and the contact portion 82a of the contact plate 84a moves from the diaphragm 63a when passing through a curve when the traveling direction of the railway vehicle is an arrow E (see FIG. 4). The state rotated in the direction of leaving is shown.
On the other hand, FIG. 8 shows a state where the actuator 81b is extended on the rear carriage 2b side and the contact portion 82b of the abutting plate 84b is rotated in a direction facing and approaching the diaphragm 63b, contrary to the front carriage 2b side. ing.
 このように、当板84a、84bの上端部が、軸85a、85bによって回転自在にブラケット86a、86bに連結され、当板84a、84bの下端部にアクチュエータ81a、81bの先端を回動可能に連結しているため、出力の小さい小型のアクチュエータ81a、81bによっても、当板84a、84bを最適位置に確実に位置決めすることができる。これによって、空気ばね6a、6b近傍の設計の自由度を高めることができるとともに、アクチュエータ81a、81bの作動に必要な消費電力を低減でき、さらに、軽量化を促進できる。 In this way, the upper ends of the contact plates 84a and 84b are rotatably connected to the brackets 86a and 86b by the shafts 85a and 85b, and the tips of the actuators 81a and 81b can be rotated at the lower ends of the contact plates 84a and 84b. Since they are connected, the abutment plates 84a and 84b can be reliably positioned at the optimum positions even by the small actuators 81a and 81b having a small output. As a result, the degree of freedom of design in the vicinity of the air springs 6a and 6b can be increased, power consumption required for the operation of the actuators 81a and 81b can be reduced, and further weight reduction can be promoted.
[実施例2]
 次に、本発明の実施例2について説明する。図9は、本実施例による鉄道車両を模式的に示す平面図であり、図10、図11に示すように、この鉄道車両は、制御装置7とアクチュエータ81a、81bからなる空気ばね変位抑制装置95a、95bを備えている。図10、図11に示す空気ばね変位抑制装置95a、95bは、実施例1のものとは異なり、各空気ばね6a、6bに対し、それぞれ1個設けることで、その前後剛性を変更することが可能となっている。
[Example 2]
Next, a second embodiment of the present invention will be described. FIG. 9 is a plan view schematically showing the railway vehicle according to the present embodiment. As shown in FIGS. 10 and 11, this railway vehicle is an air spring displacement suppression device including a control device 7 and actuators 81a and 81b. 95a and 95b are provided. The air spring displacement suppression devices 95a and 95b shown in FIG. 10 and FIG. 11 are different from those of the first embodiment, and by providing one for each air spring 6a and 6b, the longitudinal rigidity thereof can be changed. It is possible.
 図10は、鉄道車両の進行方向を矢印E(図9参照)としたときの曲線通過時における前台車2aに備えられる空気ばね変位抑制装置95aの状態を、図11は、これに対応して、後台車2bに備えられる空気ばね変位抑制装置95bの状態をそれぞれ示したものである。
 空気ばね変位制御装置95aは、空気ばね6aの内部の円筒状の積層ゴム66aの中央部の空間に備えられる上下方向に伸縮可能なアクチュエータ81aと、空気ばね6aを構成する積層ゴム66aの上部の下面板62aに備えられるストッパ当板88aとから構成されている。
FIG. 10 shows the state of the air spring displacement suppressing device 95a provided in the front carriage 2a when passing the curve when the traveling direction of the railway vehicle is an arrow E (see FIG. 9), and FIG. The states of the air spring displacement suppressing device 95b provided in the rear carriage 2b are respectively shown.
The air spring displacement control device 95a includes an actuator 81a that can be vertically expanded and contracted in a central space of a cylindrical laminated rubber 66a inside the air spring 6a, and an upper portion of the laminated rubber 66a that constitutes the air spring 6a. The stopper plate 88a is provided on the bottom plate 62a.
 積層ゴム66aの中央部に設けられた空間に備えられるアクチュエータ81aは、その先端部に内部ストッパ87aを備えている。ストッパ当板88aは、その中央部に空間を有す円板状の部材であり、アクチュエータ81aが上下方向に延伸した際に、内部ストッパ87aがストッパ当板88aの中央部に嵌入されて、積層ゴム66aの前後方向の変位が抑制される。 The actuator 81a provided in the space provided in the central portion of the laminated rubber 66a has an internal stopper 87a at the tip. The stopper abutment plate 88a is a disk-shaped member having a space at the center thereof, and when the actuator 81a extends in the vertical direction, the internal stopper 87a is fitted into the center portion of the stopper abutment plate 88a, and is laminated. The displacement of the rubber 66a in the front-rear direction is suppressed.
 内部ストッパ87aは、外径の大きな部位の上に同軸に外径の小さい部位を備えた段付き形状の外周面を備えている。外径の小さい部位がストッパ当板88aの中央部の空間に嵌入される。内部ストッパ87aが嵌入されるストッパ当板88aの中央部の空間は、下方に向けてその内径を大きくした裾広がりの開口部とし、この開口部の下面の外径を内部ストッパ87aの外径より大きく設定することにより、確実に嵌入できるようにしてもよい。
 アクチュエータ81aが下方に退避(収縮)しているときは、内部ストッパ87aの小径部はストッパ当板88aと係合(干渉)することはなく、積層ゴム66aは前後方向に変位可能である。
The internal stopper 87a includes a stepped outer peripheral surface that is coaxially provided with a portion having a small outer diameter on a portion having a large outer diameter. A portion having a small outer diameter is fitted into the space at the center of the stopper abutment plate 88a. The space at the center of the stopper abutment plate 88a into which the internal stopper 87a is inserted is an opening with a hem that expands the inner diameter downward, and the outer diameter of the lower surface of the opening is smaller than the outer diameter of the inner stopper 87a. By setting it large, you may enable it to insert reliably.
When the actuator 81a is retracted (contracted) downward, the small diameter portion of the internal stopper 87a does not engage (interfere) with the stopper abutment plate 88a, and the laminated rubber 66a can be displaced in the front-rear direction.
 また、図11は、後台車2b側の状態を示したもので、空気ばね変位制御装置95bは、空気ばね変位制御装置95aと同様の構成を採用しているが、アクチュエータ81bにより、上方に伸長されて内部ストッパ87bがストッパ当板88bの内部に進入した態様で保持されており、空気ばね6の前後方向の変位が抑制されている状態を示している。
 なお、本実施例で使用されるアクチュエータ81a、81bは、筒状に構成されており、その内部を空気が通過できる構成を備えている。アクチュエータ81a、81bは、空気ばね6a、6bに圧縮空気を供給する際の供給管路としても機能している。
FIG. 11 shows a state on the rear carriage 2b side. The air spring displacement control device 95b employs the same configuration as the air spring displacement control device 95a, but extends upward by the actuator 81b. In this state, the internal stopper 87b is held in a state of entering the stopper abutment plate 88b, and the displacement of the air spring 6 in the front-rear direction is suppressed.
The actuators 81a and 81b used in the present embodiment are configured in a cylindrical shape and have a configuration that allows air to pass therethrough. The actuators 81a and 81b also function as supply pipelines when supplying compressed air to the air springs 6a and 6b.
 図10に示すように、アクチュエータ81a、81bを伸長させたり、退避(収縮)させることにより、内部ストッパ87a、87bの外周(面)と、ストッパ当板88a、88bの内周(面)とを、係合(嵌入)したり、係合を解除することによって、空気ばね6a、6bの前後方向の剛性を変更することができる。 As shown in FIG. 10, by extending or retracting (shrinking) the actuators 81a and 81b, the outer periphery (surface) of the internal stoppers 87a and 87b and the inner periphery (surface) of the stopper abutment plates 88a and 88b The rigidity in the front-rear direction of the air springs 6a and 6b can be changed by engaging (inserting) or releasing the engagement.
 次に、図10及び図11を参照しながら図9に示される実施例2の作用を説明する。
 図9において、鉄道車両の進行方向を矢印Eとすると、制御装置7は鉄道車両の進行方向を検知し、前台車2aのアクチュエータ81aを収縮するとともに、後台車2bのアクチュエータ81bを伸長する。このとき、前台車2aの空気ばね6aにおいては、図10に示されるように、アクチュエータ81aの収縮に伴い、内部ストッパ87aとストッパ当板88aの距離が拡大し、内部ストッパ87aとストッパ当板88aとの係合が解除される。このため、曲線通過時に空気ばね6aが前後に変位しても、内部ストッパ87aとストッパ当板88aとは接触(当接)せず、空気ばね6aの初期の前後剛性が維持される。
Next, the operation of the second embodiment shown in FIG. 9 will be described with reference to FIGS.
In FIG. 9, when the traveling direction of the railway vehicle is an arrow E, the control device 7 detects the traveling direction of the railway vehicle, contracts the actuator 81a of the front carriage 2a, and extends the actuator 81b of the rear carriage 2b. At this time, in the air spring 6a of the front carriage 2a, as shown in FIG. 10, as the actuator 81a contracts, the distance between the internal stopper 87a and the stopper abutment plate 88a increases, and the internal stopper 87a and the stopper abutment plate 88a. Is disengaged. For this reason, even if the air spring 6a is displaced back and forth when passing the curve, the internal stopper 87a and the stopper abutment plate 88a do not contact (abut), and the initial longitudinal rigidity of the air spring 6a is maintained.
 一方、後台車2bの空気ばね6bにおいては、図11に示されるように、アクチュエータ81bの伸長に伴い、内部ストッパ87bとストッパ当板88bの距離が縮小し、内部ストッパ87aとストッパ当板88aとが係合する。そのため、曲線通過時に空気ばね6bが前後に変位(変形)すると、内部ストッパ87bとストッパ当板88bが接触(当接)する。内部ストッパ87bとストッパ当板88bが接触すると、積層ゴム66bのせん断変形が拘束されるため、積層ゴム66bの剛性が無限大相当に大きくなる。 On the other hand, in the air spring 6b of the rear carriage 2b, as shown in FIG. 11, with the extension of the actuator 81b, the distance between the internal stopper 87b and the stopper abutment plate 88b decreases, and the internal stopper 87a and the stopper abutment plate 88a Engage. For this reason, when the air spring 6b is displaced (deformed) back and forth when passing the curve, the internal stopper 87b and the stopper abutment plate 88b come into contact (contact). When the internal stopper 87b and the stopper abutment plate 88b come into contact with each other, the shear deformation of the laminated rubber 66b is constrained, so that the rigidity of the laminated rubber 66b increases to infinity.
 空気ばね6a、6bの前後剛性は、ダイアフラム63a、63bの前後剛性と積層ゴム66a、66bの前後剛性の和(直列剛性)で表されるため、積層ゴム66bの剛性が無限大相当となると、空気ばね6bの前後剛性は空気ばね6aの前後剛性に比較して大きくすることができる。 The longitudinal stiffness of the air springs 6a, 6b is expressed by the sum of the longitudinal stiffness of the diaphragms 63a, 63b and the longitudinal stiffness of the laminated rubber 66a, 66b (series stiffness). Therefore, when the stiffness of the laminated rubber 66b is infinite, The longitudinal rigidity of the air spring 6b can be increased compared to the longitudinal rigidity of the air spring 6a.
 本実施例においても、前台車2aと後台車2bとに作用する操舵モーメントと抵抗モーメントを生じさせる要因、そしてそれらの内訳は、図5と同様である。
 したがって、本実施例においても、アクチュエータ81a、81bの動作によって、前台車2aの空気ばね6aの前後剛性と、後台車2bの空気ばね6bの前後剛性とを、鉄道車両の進行方向によって切り替えることによって、前台車2aの横圧Hおよび後台車2bの横圧Gを低減することができる。
Also in this embodiment, the factors that cause the steering moment and the resistance moment acting on the front carriage 2a and the rear carriage 2b and the breakdown thereof are the same as those in FIG.
Therefore, also in the present embodiment, the front and rear rigidity of the air spring 6a of the front carriage 2a and the front and rear rigidity of the air spring 6b of the rear carriage 2b are switched depending on the traveling direction of the railway vehicle by the operation of the actuators 81a and 81b. The lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b can be reduced.
 つまり、曲線を通過する前台車2aにおいて、操舵モーメント(操舵(旋回)方向の各モーメントの和)と、抵抗モーメント(操舵方向と逆向きの各モーメントの和)と釣り合っている。このため、横圧Hに起因するモーメントKの向きと、空気ばね反力A、A’によるモーメントCの向きとは互いに反対(逆)向きなので、抵抗モーメントであるモーメントCを低減すれば、抵抗モーメントに釣り合っている操舵モーメントであるモーメントKも低減される。 That is, in the front carriage 2a passing through the curve, the steering moment (the sum of the moments in the steering (turning) direction) and the resistance moment (the sum of the moments opposite to the steering direction) are balanced. For this reason, the direction of the moment K caused by the lateral pressure H and the direction of the moment C caused by the air spring reaction forces A and A ′ are opposite (reverse) directions. Moment K, which is a steering moment balanced with the moment, is also reduced.
 アクチュエータ81aを収縮して空気ばね6aの前後剛性を小さく維持することによって、抵抗モーメントとなる空気ばね反力A、A’に起因するモーメントcを低減することができる。この抵抗モーメントCの低減に伴って、操舵モーメントとなる横圧HによるモーメントKも低減されるため、モーメントKを生じさせる原因である横圧Hも、結果的に低減される。 The moment c caused by the air spring reaction forces A and A ′, which become resistance moments, can be reduced by contracting the actuator 81a and maintaining the longitudinal rigidity of the air spring 6a to be small. Along with the reduction of the resistance moment C, the moment K due to the lateral pressure H that becomes the steering moment is also reduced, so that the lateral pressure H that causes the moment K is also reduced as a result.
 これにより、前台車2aにおいては、空気ばね6aの前後剛性が初期値となり、図5に示す操舵モーメントと抵抗モーメントの関係から、抵抗モーメントとなる空気ばね反力A、A’に起因するモーメントCが低減されるので、操舵モーメントとなる横圧Hによる操舵モーメントKがその分低減されることになる。 As a result, in the front carriage 2a, the longitudinal stiffness of the air spring 6a becomes the initial value, and the moment C caused by the air spring reaction forces A and A ′ that become the resistance moment is obtained from the relationship between the steering moment and the resistance moment shown in FIG. Therefore, the steering moment K due to the lateral pressure H that becomes the steering moment is reduced accordingly.
 一方、後台車2bにおいても、操舵モーメントと抵抗モーメントとは釣り合い状態が維持されるので、空気ばね6bの前後剛性を高め、操舵モーメントである、空気ばね反力B、B’に起因するモーメントDを増大させることにより、結果として、操舵モーメントである、横圧GによるモーメントJが低減され、後台車2bの横圧Gを低減することができる。 On the other hand, also in the rear carriage 2b, the balance between the steering moment and the resistance moment is maintained, so that the front-rear rigidity of the air spring 6b is increased and the moment D caused by the air spring reaction forces B and B ′, which are steering moments. As a result, the moment J due to the lateral pressure G, which is the steering moment, is reduced, and the lateral pressure G of the rear carriage 2b can be reduced.
 さらに、曲線を通過する後台車2bにおいても、同様に、操舵モーメント(操舵(旋回)方向の各モーメントの和)、抵抗モーメント(操舵方向と逆向きの各モーメントの和)とは釣り合っている。このため、横圧Gに起因するモーメントJの向きと、空気ばね反力B、B’によるモーメントDの向きとが同じ向きなので、モーメントDを大きくすれば、横圧Gに起因するモーメントJを小さくすることができる。 Further, also in the rear carriage 2b passing through the curve, the steering moment (sum of the moments in the steering (turning) direction) and the resistance moment (sum of the moments opposite to the steering direction) are balanced. For this reason, since the direction of the moment J caused by the lateral pressure G and the direction of the moment D caused by the air spring reaction forces B and B ′ are the same, if the moment D is increased, the moment J caused by the lateral pressure G is increased. Can be small.
 このように、アクチュエータ81bを伸長して空気ばね6bの前後剛性を大きく維持することによって、空気ばね反力B、B’によるモーメントDを大きくすることができる。その結果、この操舵モーメントであるモーメントDの増加に見合う分だけ、モーメントJが低減されるため、モーメントJを生じさせる原因である横圧Gも結果的に低減される。
 以上により、前台車2aの横圧Hおよび後台車2bの横圧Gは効果的に低減されるので、レールおよび車輪の摩耗を抑制するとともに、両者間で生じるきしみ音を低減できる。
Thus, by extending the actuator 81b and maintaining the front / rear rigidity of the air spring 6b to be large, the moment D due to the air spring reaction forces B and B ′ can be increased. As a result, the moment J is reduced by an amount commensurate with the increase in the moment D, which is the steering moment, so that the lateral pressure G that causes the moment J is also reduced as a result.
As described above, since the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b are effectively reduced, wear of the rails and wheels can be suppressed, and squeak noise generated between the two can be reduced.
 鉄道車両の進行方向が矢印Eのときのアクチュエータ81a、81bの動作と、最終的に横圧Gおよび横圧Hとが低減される作用効果を説明したが、図9において進行方向が矢印Fとなり、台車2aが後台車、台車2bが前台車となるときは、アクチュエータ81a、81bの伸長および収縮動作は前述した例とは反対(逆)の動作となり、アクチュエータ81aは伸長し、アクチュエータ81bは収縮するよう制御装置7は指令を送出する。 The operation of the actuators 81a and 81b when the traveling direction of the railway vehicle is the arrow E and the effect of reducing the lateral pressure G and the lateral pressure H are explained. However, the traveling direction becomes the arrow F in FIG. When the carriage 2a is the rear carriage and the carriage 2b is the front carriage, the expansion and contraction operations of the actuators 81a and 81b are opposite (reverse) to the above-described example, the actuator 81a expands, and the actuator 81b contracts. The control device 7 sends a command to do so.
 本実施例は、実施例1とは異なり、車体下面にアクチュエータの取付けスペースを必要としないため、車体下面の空気ばね近傍に他の機器を配置することが可能になるなど設計の自由度を高める効果も期待できる。
 なお、空気ばね6a、6bの前後剛性初期値については、実施例1と同様に設定されている。
Unlike the first embodiment, this embodiment does not require an actuator mounting space on the lower surface of the vehicle body, so that it is possible to arrange other devices in the vicinity of the air spring on the lower surface of the vehicle body. The effect can also be expected.
Note that the initial stiffness values of the air springs 6a and 6b are set in the same manner as in the first embodiment.
[実施例3]
 本発明の実施例3を説明する。
 図12は、本実施例による鉄道車両台車を模式的に示す車両の平面図であり、制御装置7と給排気弁89a、89bとを備えている。図12において、鉄道車両の進行方向が矢印Eとなるとき、台車2aは前台車となり、台車2bは後台車となる。進行方向が矢印Fとなるとき、台車2aは後台車となり、台車2bは前台車となる。
[Example 3]
A third embodiment of the present invention will be described.
FIG. 12 is a plan view of a vehicle schematically showing the railway vehicle bogie according to the present embodiment, and includes a control device 7 and supply / exhaust valves 89a and 89b. In FIG. 12, when the traveling direction of the railway vehicle is an arrow E, the carriage 2a is a front carriage and the carriage 2b is a rear carriage. When the traveling direction is an arrow F, the carriage 2a becomes a rear carriage, and the carriage 2b becomes a front carriage.
 鉄道車両の進行方向を矢印Eとすると、制御装置7は鉄道車両の進行方向を検知し、空気ばね6a、6bの空気圧力を調整する給排気弁89a、89bを作動させる。
 すなわち、前台車2aの空気ばね6aについては、そのダイアフラム63aの内部空気を排気して内圧を低下させるとともに、後台車2bの空気ばね6bについては、そのダイアフラム63bの内部に空気を給気し内圧を高める。
 内圧が低下した前台車2aの空気ばね6aの前後剛性は小さくなり、内圧が高められた後台車2bの空気ばね6bの前後剛性は大きくなる。
When the traveling direction of the railway vehicle is indicated by an arrow E, the control device 7 detects the traveling direction of the railway vehicle and operates the air supply / exhaust valves 89a and 89b that adjust the air pressure of the air springs 6a and 6b.
That is, for the air spring 6a of the front carriage 2a, the internal pressure of the diaphragm 63a is exhausted to lower the internal pressure, and for the air spring 6b of the rear carriage 2b, air is supplied to the inside of the diaphragm 63b and the internal pressure is reduced. To increase.
The longitudinal rigidity of the air spring 6a of the front carriage 2a in which the internal pressure is reduced is reduced, and the longitudinal rigidity of the air spring 6b of the rear carriage 2b in which the internal pressure is increased is increased.
 図5に示すように、実施例1、2と同様、前台車2aおよび後台車2bでは操舵モーメント(操舵(旋回)方向の各モーメントの和)と、抵抗モーメント(操舵方向と逆向きの各モーメントの和)が釣り合っている。
 したがって、前台車2aでは、横圧HによるモーメントKの向きと、空気ばね反力A、A’によるモーメントCの向きとが反対(逆)向きであるので、抵抗モーメントであるモーメントCを低減すれば、横圧Hに起因するモーメントKが低減される。モーメントKが低減されるので、モーメントKの原因となっている横圧Hが結果的に低減される。
As shown in FIG. 5, as in the first and second embodiments, in the front carriage 2a and the rear carriage 2b, the steering moment (sum of the moments in the steering (turning) direction) and the resistance moment (the moments opposite to the steering direction). Is balanced).
Therefore, in the front carriage 2a, the direction of the moment K due to the lateral pressure H and the direction of the moment C due to the air spring reaction forces A and A ′ are opposite (reverse) directions, so the moment C that is the resistance moment can be reduced. For example, the moment K caused by the lateral pressure H is reduced. Since the moment K is reduced, the lateral pressure H causing the moment K is consequently reduced.
 一方、後台車2bでは、横圧GによるモーメントJの向きと、空気ばね反力B、B’によるモーメントDの向きが同じ方向であるので、モーメントDを大きくすれば、横圧Gに起因するモーメントJから、モーメントDの増加に見合うモーメント量が減じられて、モーメントJが小さくなる。モーメントJが低減されるので、モーメントJの原因となっている横圧Gが結果的に低減される。
 以上により、前台車2aの横圧Hおよび後台車2bの横圧Gは効果的に低減されるので、レールおよび車輪の摩耗を抑制するとともに、両者間で生じるきしみ音を低減できる。
On the other hand, in the rear carriage 2b, the direction of the moment J due to the lateral pressure G and the direction of the moment D due to the air spring reaction forces B and B ′ are the same direction. From the moment J, the moment amount commensurate with the increase in the moment D is reduced, and the moment J becomes smaller. Since the moment J is reduced, the lateral pressure G causing the moment J is consequently reduced.
As described above, since the lateral pressure H of the front carriage 2a and the lateral pressure G of the rear carriage 2b are effectively reduced, wear of the rails and wheels can be suppressed, and squeak noise generated between the two can be reduced.
 鉄道車両の進行方向が矢印Eのときの動作を説明したが、図12において進行方向が矢印Fとなり、台車2aが後台車、台車2bが前台車となるときは、空気ばね6aを給気し、空気ばね6bを排気するように、制御装置7は指令を出す。なお、空気ばね6a、6bの前後剛性初期値については、実施例1と同様に設定されている。
 本実施例は、実施例1、2とは異なり、アクチュエータおよび当板を必要としないため、床下機器の設計自由度を高める効果や、軽量化を促進できる効果を奏する。
The operation when the traveling direction of the railway vehicle is the arrow E has been described. When the traveling direction is the arrow F in FIG. 12 and the carriage 2a is the rear carriage and the carriage 2b is the front carriage, the air spring 6a is supplied. The control device 7 issues a command to exhaust the air spring 6b. Note that the initial stiffness values of the air springs 6a and 6b are set in the same manner as in the first embodiment.
Unlike the first and second embodiments, the present embodiment does not require an actuator and a contact plate, and therefore has an effect of increasing the design freedom of the underfloor device and an effect of promoting weight reduction.
[実施例4]
 実施例1~3は、車体の長手方向の両端部を2台の台車で支えるボギー車両を対象としているが、実施例4は、車両と車両との連結部の下方に台車を配置し、この台車に備えられる2個の空気ばねの上部に、一方の車体の端部を載置し、この一方の車体の端部の上に、他方の車両の端部を載置する形態の連接車両に適用したものである。
 図13及び図14に、実施例2の装置構成を、本実施例に関わる2点空気ばね支持方式の連接車両に適用した場合を説明する。
[Example 4]
Examples 1 to 3 are intended for bogie vehicles that support both ends in the longitudinal direction of the vehicle body with two trolleys. However, in Example 4, a trolley is arranged below the connecting portion between the vehicle and the vehicle. In an articulated vehicle in which the end of one vehicle body is placed on top of two air springs provided in the carriage, and the end of the other vehicle is placed on the end of this one vehicle body. It is applied.
FIGS. 13 and 14 illustrate a case where the apparatus configuration of the second embodiment is applied to a two-point air spring support type connected vehicle according to the present embodiment.
 図13は、2点空気ばね支持方式の連接台車2と車体1を示す平面図である。2点空気ばね支持方式では、一方の車体1aの台枠から他方の車両1bに向けて延伸する枕梁91の幅方向の両端部が、連接台車2に備えられる1対の空気ばね6の上に載置されている。そして、この枕梁91の幅方向(枕木方向)の中央部に、他方の車体1bの台枠から一方の車体1aに向けて延伸する態様で備えられる連結装置90が連結されている。
 つまり、車体1aの枕梁91の上部に、車体1bの連結装置90が載置される態様で連結されるとともに、連結部を構成する車体1aの枕梁91の下面が、連接台車2に備えられる空気ばね6によって弾性支持されている。
FIG. 13 is a plan view showing the articulated carriage 2 and the vehicle body 1 of the two-point air spring support system. In the two-point air spring support system, both ends in the width direction of the pillow beam 91 extending from the frame of one vehicle body 1a toward the other vehicle 1b are above the pair of air springs 6 provided in the articulated carriage 2. It is mounted on. And the connection apparatus 90 with which the center part of the width direction (sleeper direction) of this pillow beam 91 is equipped with the aspect extended toward the one vehicle body 1a from the frame of the other vehicle body 1b is connected.
In other words, the connecting device 90 of the car body 1b is connected to the upper part of the pillow beam 91 of the car body 1a and the lower surface of the pillow beam 91 of the car body 1a constituting the connecting part is provided in the articulated carriage 2. The air spring 6 is elastically supported.
 鉄道車両の進行方向が矢印Eとなるとき、連接台車2からみると、車体1aが前車体、車体1bが後車体となり、進行方向が矢印Fとなるときは、車体1aが後車体、車体1bが前車体となる。
 実施例1などで説明したように、曲線通過時において、連接台車2は車体1aと車体1bとの連結部の下方において水平面内で旋回するため、連接台車2と車体1aおよび車体1bとの間に相対角度が生じる。さらに、空気ばね6には、この相対角度に対応する前後変位が生じるため、車体1aから連接台車2に作用する空気ばね反力が生じる。
When the traveling direction of the railway vehicle is an arrow E, the vehicle body 1a is the front vehicle body and the vehicle body 1b is the rear vehicle body, and when the traveling direction is the arrow F, the vehicle body 1a is the rear vehicle body and the vehicle body 1b. Is the front car body.
As described in the first embodiment and the like, the connecting cart 2 turns in the horizontal plane below the connecting portion between the vehicle body 1a and the vehicle body 1b when passing through the curve, so that the space between the connecting cart 2, the vehicle body 1a, and the vehicle body 1b. Produces a relative angle. Furthermore, since the front and rear displacement corresponding to this relative angle occurs in the air spring 6, an air spring reaction force acting on the articulated carriage 2 from the vehicle body 1a is generated.
 車体1aから連接台車2に作用する空気ばね反力は矢印L、L’の向きであり、車体1aから連接台車2に空気ばね反力に起因するモーメントMが作用する。
 鉄道車両が矢印Eの向きに進行し、車体1aが前車体となるときは、モーメントMは台車の旋回を助長する操舵モーメントとして作用する。一方、鉄道車両が矢印Fの向きに進行し、車体1aが後車体となるときは、モーメントMは台車の旋回を妨げる抵抗モーメントとして作用する。
The air spring reaction force acting on the articulated carriage 2 from the vehicle body 1a is in the directions of the arrows L and L ', and the moment M caused by the air spring reaction force acts on the articulation vehicle 2 from the vehicle body 1a.
When the railway vehicle travels in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the moment M acts as a steering moment that promotes turning of the carriage. On the other hand, when the railway vehicle travels in the direction of arrow F and the vehicle body 1a becomes the rear vehicle body, the moment M acts as a resistance moment that prevents the bogie from turning.
 図14に、曲線通過時の空気ばね2点支持方式の連接台車2に作用するモーメントの釣り合いを示す。鉄道車両が矢印Eの向きに進行し、車体1aが前車体となるとき、操舵モーメントをなす各モーメントは、横圧NによるモーメントPと、空気ばね反力L、L’に起因するモーメントMと、縦クリープ力等の他の要因によるモーメントεである。一方、抵抗モーメントをなす各モーメントは、縦クリープ力等の他の要因によるモーメントζである。このとき、実施例1と同様に、操舵モーメント(操舵(旋回)方向の各モーメントの和)と、抵抗モーメント(操舵方向と逆向きの各モーメントの和)のモーメントζとは、釣り合っている。 FIG. 14 shows a balance of moments acting on the articulated carriage 2 of the air spring two-point support method when passing the curve. When the railway vehicle travels in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the moments forming the steering moment are the moment P caused by the lateral pressure N and the moment M caused by the air spring reaction forces L and L '. , Moment ε due to other factors such as longitudinal creep force. On the other hand, each moment forming the resistance moment is a moment ζ due to other factors such as a longitudinal creep force. At this time, as in the first embodiment, the steering moment (the sum of the moments in the steering (turning) direction) and the moment ζ of the resistance moment (the sum of the moments opposite to the steering direction) are balanced.
 また、鉄道車両が矢印Fの向きに進行し、車体1bが前車体となる場合は、操舵モーメントと同方向のモーメントは、横圧N’によるモーメントP’と、クリープ力等の他の要因によるモーメントε’であり、抵抗モーメントと同方向のモーメントは、空気ばね反力L、L’に起因するモーメントMと、縦クリープ力等の他の要因によるモーメントζ’である。このとき、操舵モーメント(操舵(旋回)方向の各モーメントの和)と、抵抗モーメント(操舵方向と逆向きの各モーメントの和)とは、釣り合っている。 Further, when the railway vehicle travels in the direction of arrow F and the vehicle body 1b becomes the front vehicle body, the moment in the same direction as the steering moment is due to the moment P ′ due to the lateral pressure N ′ and other factors such as creep force. The moment ε ′ and the moment in the same direction as the resistance moment are the moment M due to the air spring reaction forces L and L ′ and the moment ζ ′ due to other factors such as the longitudinal creep force. At this time, the steering moment (the sum of the moments in the steering (turning) direction) and the resistance moment (the sum of the moments opposite to the steering direction) are balanced.
 鉄道車両の進行方向が矢印Eの向きで、車体1aが前車体となる場合には、横圧NによるモーメントPの向きと、空気ばね反力L、L’によるモーメントMの向きとが同じ方向であるので、モーメントMを増大させれば、この増大分に見合うモーメントがモーメントPから減算される。モーメントPが低減されれば、モーメントPを生じさせている横圧Nが結果的に低減される。
 同様に、鉄道車両の進行方向が矢印Fの向きで、車体1bが前車体となる場合には、横圧N’によるモーメントP’の向きと、空気ばね反力L、L’によるモーメントMの向きと反対(逆)向きなので、モーメントMを低減すれば、横圧N’によるモーメントP’も低減され、モーメントP’を生じさせている横圧N’を結果的に低減することができる。
When the traveling direction of the railway vehicle is the direction of arrow E and the vehicle body 1a is the front vehicle body, the direction of the moment P due to the lateral pressure N and the direction of the moment M due to the air spring reaction forces L and L ′ are the same direction. Therefore, if the moment M is increased, a moment commensurate with this increase is subtracted from the moment P. If the moment P is reduced, the lateral pressure N causing the moment P is consequently reduced.
Similarly, when the traveling direction of the railway vehicle is the direction of the arrow F and the vehicle body 1b is the front vehicle body, the direction of the moment P ′ due to the lateral pressure N ′ and the moment M due to the air spring reaction forces L and L ′. Since the direction is the opposite (reverse) direction, if the moment M is reduced, the moment P ′ due to the lateral pressure N ′ is also reduced, and the lateral pressure N ′ causing the moment P ′ can be reduced as a result.
 つまり、空気ばね6により支持される車体1aが前車体(進行方向が矢印Eのとき)となる時には、空気ばね6の前後剛性を増大させることで、空気ばね6により支持されない車体1bが前車体(進行方向が矢印Fのとき)となる時には空気ばね6の前後剛性を減少させることで、台車2に作用する横圧Nを低減することができる。 That is, when the vehicle body 1a supported by the air spring 6 becomes the front vehicle body (when the traveling direction is the arrow E), the vehicle body 1b not supported by the air spring 6 is increased by increasing the longitudinal rigidity of the air spring 6. When the traveling direction is the arrow F, the lateral pressure N acting on the carriage 2 can be reduced by reducing the longitudinal rigidity of the air spring 6.
 そこで、鉄道車両が矢印Eの向きに進む時であって、車体1aが前車体となるときには、制御装置7はアクチュエータ81を伸長させるよう指令を出し、空気ばね6の前後剛性を大きくする。このとき、台車2に作用する横圧NによるモーメントPと、空気ばね6の前後剛性に起因するモーメントMの向きは等しいため、空気ばね前後剛性が増加し、モーメントMが増大するとモーメントPが小さくなるため、モーメントPを生じさせる横圧Nが小さくなる。 Therefore, when the railway vehicle advances in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the control device 7 issues a command to extend the actuator 81 and increases the longitudinal rigidity of the air spring 6. At this time, the direction of the moment P due to the lateral pressure N acting on the carriage 2 and the direction of the moment M due to the longitudinal stiffness of the air spring 6 are equal, so the longitudinal stiffness of the air spring increases, and the moment P increases as the moment M increases. Therefore, the lateral pressure N that causes the moment P is reduced.
 なお、例えば、5両の車両からなる編成車両であって、この編成車両中の4ヶ所に図13に示す連結部構成を備えている場合、この編成車両が矢印Eの向きに進み、進行方向の側の車体が空気ばねに支持される場合は、4ヶ所の連結部の全ての空気ばねの前後剛性を大きくする。この制御によって、横圧Nを低減することができる。 Note that, for example, in the case of a knitted vehicle composed of five vehicles and provided with the connecting portion configuration shown in FIG. 13 at four locations in the knitted vehicle, the knitted vehicle advances in the direction of arrow E and travels in the direction of travel. When the side body is supported by the air spring, the longitudinal rigidity of all the air springs at the four connecting portions is increased. By this control, the lateral pressure N can be reduced.
 一方、鉄道車両が矢印Fの向きに進み、車体1bが前車体となる場合には、制御装置7はアクチュエータ81を収縮させるよう指令を出し、4ヶ所の連結部の空気ばね6の前後剛性を小さくする。空気ばね6の前後剛性が低下すると、抵抗モーメントと同方向のモーメントMが低減する。 On the other hand, when the railway vehicle advances in the direction of arrow F and the vehicle body 1b becomes the front vehicle body, the control device 7 issues a command to contract the actuator 81, and the longitudinal rigidity of the air springs 6 at the four connecting portions is increased. Make it smaller. When the longitudinal rigidity of the air spring 6 decreases, the moment M in the same direction as the resistance moment decreases.
 このとき、連接台車2に作用する横圧N’によるモーメントP’と、空気ばね6の前後剛性に起因するモーメントMの向きが反対であるため、空気ばね前後剛性が低減しモーメントMが減少すると、横圧によるモーメントP’がその分低減されるので、横圧N’も低減される。 At this time, the moment P ′ due to the lateral pressure N ′ acting on the articulated carriage 2 and the direction of the moment M due to the longitudinal stiffness of the air spring 6 are opposite, so that the longitudinal stiffness of the air spring is reduced and the moment M is reduced. Since the moment P ′ due to the lateral pressure is reduced accordingly, the lateral pressure N ′ is also reduced.
[実施例5]
 図15は、4点空気ばね支持方式の連接台車2と車体1を示す平面図である。図15及び図16に、実施例2の装置構成を4点空気ばね支持方式の連接車両に適用した場合を説明する。
 4点空気ばね支持方式は、1台の台車2の上面に、2個1組の空気ばね6aと、2個1組の空気ばね6bの計4個の空気ばねが載置されている。車体1aの長手方向の一方の端部は空気ばね6a上に載置されて弾性支持されており、車体1bの長手方向の他方の端部は空気ばね6b上に載置されて弾性支持されている。
 車体1aと車体1bとは、車体1aの一方の端部に備えられる連結装置92と、車体1bの他方の端部に備えられる連結装置90とによって連結されている。
[Example 5]
FIG. 15 is a plan view showing the articulated carriage 2 and the vehicle body 1 of a four-point air spring support system. 15 and 16, the case where the apparatus configuration of the second embodiment is applied to a four-point air spring support type connected vehicle will be described.
In the four-point air spring support system, a total of four air springs, that is, one set of two air springs 6a and two sets of two air springs 6b, are placed on the upper surface of one carriage 2. One end of the vehicle body 1a in the longitudinal direction is placed on the air spring 6a and elastically supported, and the other end in the longitudinal direction of the vehicle body 1b is placed on the air spring 6b and elastically supported. Yes.
The vehicle body 1a and the vehicle body 1b are connected by a connecting device 92 provided at one end of the vehicle body 1a and a connecting device 90 provided at the other end of the vehicle body 1b.
 鉄道車両が矢印Eの向きに進行する時、車体1aが前車体となり、車体1bが後車体となる。一方、鉄道車両が矢印Fの向きに進行する時、車体1aが後車体となり、車体1bが前車体となる。
 鉄道車両が矢印Eの向きに曲線を進行する場合、連接台車2は曲線に沿って旋回するため、連接台車2と、車体1aおよび車体1bとの間に相対角度が生じるとともに、空気ばね6は前後方向に変位(変形)する。空気ばね6の変位は、車体1a、1bから連接台車2へ作用する空気ばね反力を生じる。
 車体1aにおいては、連接台車2に加わる空気ばね6aの反力は、矢印Q、Q’の方向となり、連接台車2にモーメントRが生じる。
 一方、後車体1bにおいては、連接台車2に加わる空気ばね6bの反力は、矢印S、S’の方向となり、連接台車2にモーメントTが生じる。
When the railway vehicle travels in the direction of arrow E, the vehicle body 1a becomes the front vehicle body and the vehicle body 1b becomes the rear vehicle body. On the other hand, when the railway vehicle travels in the direction of arrow F, the vehicle body 1a becomes the rear vehicle body, and the vehicle body 1b becomes the front vehicle body.
When the railway vehicle travels along a curve in the direction of arrow E, the connecting cart 2 turns along the curve, so that a relative angle is generated between the connecting cart 2 and the vehicle body 1a and the vehicle body 1b, and the air spring 6 is Displaces (deforms) in the front-rear direction. The displacement of the air spring 6 generates an air spring reaction force acting on the articulated carriage 2 from the vehicle bodies 1a, 1b.
In the vehicle body 1a, the reaction force of the air spring 6a applied to the articulated carriage 2 is in the directions of arrows Q and Q ', and a moment R is generated in the articulated carriage 2.
On the other hand, in the rear vehicle body 1 b, the reaction force of the air spring 6 b applied to the articulated carriage 2 is in the directions of arrows S and S ′, and a moment T is generated in the articulated carriage 2.
 図16に、曲線通過時の空気ばね4点支持方式の連接台車2に作用するモーメントの釣り合いを示す。
 鉄道車両が矢印Eの向きに進行し、車体1aが前車体となるときには、操舵モーメントと同方向のモーメントは、横圧UによるモーメントVと、空気ばね反力Q、Q’によるモーメントR、縦クリープ力等の他の要因によるモーメントηであり、抵抗モーメントと同方向のモーメントは、空気ばね反力S、S’によるモーメントTと、縦クリープ力等の他の要因によるモーメントθである。
FIG. 16 shows a balance of moments acting on the articulated carriage 2 of the air spring four-point support system when passing the curve.
When the railway vehicle travels in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the moment in the same direction as the steering moment is the moment V due to the lateral pressure U, the moment R due to the air spring reaction forces Q and Q ', the vertical moment. The moment η is due to other factors such as creep force, and the moment in the same direction as the resistance moment is moment T due to air spring reaction forces S and S ′ and moment θ due to other factors such as longitudinal creep force.
 一方、鉄道車両が矢印Fの向きに進行し、車体1bが前車体となるときには、操舵モーメントと同方向のモーメントは、横圧U’によるモーメントV’と、空気ばね反力S、S’に起因するモーメントTと、縦クリープ力等の他の要因によるモーメントη’とであり、抵抗モーメントと同方向のモーメントは、空気ばね反力Q、Q’に起因するモーメントRと、縦クリープ力等の他の要因によるモーメントθ’である。 On the other hand, when the railway vehicle travels in the direction of arrow F and the vehicle body 1b becomes the front vehicle body, the moment in the same direction as the steering moment is the moment V ′ due to the lateral pressure U ′ and the air spring reaction forces S and S ′. The moment T due to the moment and the moment η ′ due to other factors such as the longitudinal creep force. The moment in the same direction as the resistance moment is the moment R due to the air spring reaction force Q, Q ′, the longitudinal creep force, etc. Is the moment θ ′ due to other factors.
 鉄道車両が矢印Eの方向に進行し、車体1aが前車体となるとき、横圧UによるモーメントVの向きは、空気ばね6a反力Q、Q’によるモーメントRの向きと等しく、後車体1bを支持する空気ばね6bの空気ばね反力S、S’によるモーメントTの向きに対して反対(逆)向きとなる。
 操舵モーメント(操舵(旋回)方向の各モーメントの和)と、抵抗モーメント(操舵方向と逆向きの各モーメントの和)とは釣り合っているので、操舵モーメントと同方向のモーメントRを大きくすることで、その分、同じく操舵モーメントと同方向の横圧Uに起因するモーメントVが小さくなるので、結果的にモーメントVを生じさせている横圧Uを低減することができる。
When the railway vehicle travels in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the direction of the moment V by the lateral pressure U is equal to the direction of the moment R by the air springs 6a reaction forces Q and Q ', and the rear vehicle body 1b Is opposite (reverse) to the direction of the moment T due to the air spring reaction forces S and S ′ of the air spring 6b that supports
Since the steering moment (the sum of the moments in the steering (turning) direction) and the resistance moment (the sum of the moments opposite to the steering direction) are balanced, increasing the moment R in the same direction as the steering moment Accordingly, the moment V caused by the lateral pressure U in the same direction as the steering moment is reduced accordingly, and as a result, the lateral pressure U causing the moment V can be reduced.
 さらに、抵抗モーメントと同方向のモーメントTを低減すると、抵抗モーメントの和自体が小さくなるとともに、この抵抗モーメントと同方向のモーメントの和に釣り合うよう、操舵モーメントと同方向のモーメントの和も小さくなる。
 したがって、操舵モーメントの和の一部である操舵モーメントの横圧Uに起因するモーメントVが低減されるので、モーメントVを生じさせている横圧Uを低減することができる。
Further, when the moment T in the same direction as the resistance moment is reduced, the sum of the resistance moment itself is reduced, and the sum of the moments in the same direction as the steering moment is also reduced to balance the sum of the resistance moment and the moment in the same direction. .
Therefore, since the moment V resulting from the lateral pressure U of the steering moment, which is a part of the sum of the steering moments, is reduced, the lateral pressure U causing the moment V can be reduced.
 鉄道車両が矢印Fの方向に進行し、車体1bが前車体となるにとき、横圧U’によるモーメントV’の向きは、前車体1bを支持する空気ばね6bの空気ばね反力S、S’によるモーメントTの向きに等しく、後車体1aを支持する空気ばね6aの空気ばね反力Q、Q’によるモーメントRの向きに対して反対(逆)向きとなる。 When the railway vehicle travels in the direction of the arrow F and the vehicle body 1b becomes the front vehicle body, the direction of the moment V ′ due to the lateral pressure U ′ depends on the air spring reaction forces S and S of the air spring 6b that supports the front vehicle body 1b. It is equal to the direction of the moment T by ', and is opposite (reverse) to the direction of the moment R by the air spring reaction force Q, Q' of the air spring 6a that supports the rear vehicle body 1a.
 操舵モーメント方向のモーメントの和と、抵抗モーメント方向のモーメントの和は釣り合っているので、操舵モーメント方向のモーメントTを大きくすること、操舵モーメント方向のモーメントであって、横圧U’によるモーメントV’が小さくなるので、モーメントVを生じさせている横圧U’を結果的に低減することができる。 Since the sum of the moments in the steering moment direction and the sum of the moments in the resistance moment direction are balanced, increasing the moment T in the steering moment direction, the moment in the steering moment direction, and the moment V ′ due to the lateral pressure U ′ As a result, the lateral pressure U ′ causing the moment V can be reduced as a result.
 さらに、抵抗モーメント方向のモーメントであるモーメントRを低減すると、抵抗モーメント方向のモーメントの和自体が小さくなるとともに、これに釣り合う操舵モーメント方向のモーメントの和も小さくなる。したがって、操舵モーメントと同方向のモーメントである、操舵モーメントの横圧U’に起因するモーメントV’が低減されるので、モーメントV’を生じさせている横圧U’を低減することができる。 Furthermore, when the moment R, which is the moment in the resistance moment direction, is reduced, the sum of the moments in the resistance moment direction itself decreases, and the sum of the moments in the steering moment direction that matches this also decreases. Therefore, since the moment V 'caused by the lateral pressure U' of the steering moment, which is a moment in the same direction as the steering moment, is reduced, the lateral pressure U 'causing the moment V' can be reduced.
 つまり、鉄道車両の進行方向に応じて、前車体を支持する空気ばねの前後剛性を増加させ、後車体を支持する空気ばねの剛性を低減させることで、連接台車2に作用する横圧を低減させることができる。
 そこで、鉄道車両が矢印Eの方向に進行し、車体1aが前車体となるときは、制御装置7は、アクチュエータ81aに対して進行方向側の空気ばね6aの前後剛性を大きくする伸長指令を送出し、アクチュエータ81bに対して進行方向側と反対側の空気ばね6bの前後剛性を小さくする収縮指令を送出する。
In other words, the lateral pressure acting on the articulated carriage 2 is reduced by increasing the longitudinal rigidity of the air spring that supports the front vehicle body and reducing the rigidity of the air spring that supports the rear vehicle body according to the traveling direction of the railway vehicle. Can be made.
Therefore, when the railway vehicle travels in the direction of arrow E and the vehicle body 1a becomes the front vehicle body, the control device 7 sends an extension command for increasing the longitudinal rigidity of the air spring 6a on the traveling direction side to the actuator 81a. Then, a contraction command for reducing the longitudinal rigidity of the air spring 6b on the side opposite to the traveling direction side is sent to the actuator 81b.
 上記の制御により、空気ばね6aの前後剛性を増加させ、空気ばね6bの前後剛性を低減する。このとき、連接台車2に作用する横圧UによるモーメントVの向きと、空気ばね6aによるモーメントRの向きは等しいため、モーメントRが増大すると、横圧UによるモーメントVが低減されるため、モーメントVを生じさせている横圧Uが低減される。 By the above control, the longitudinal rigidity of the air spring 6a is increased, and the longitudinal rigidity of the air spring 6b is reduced. At this time, the direction of the moment V due to the lateral pressure U acting on the articulated carriage 2 is equal to the direction of the moment R due to the air spring 6a. Therefore, if the moment R increases, the moment V due to the lateral pressure U decreases. The lateral pressure U causing V is reduced.
 鉄道車両が矢印Fの方向に進行し、車体1bが前車体となるときには、制御装置7は、アクチュエータ81aに対して進行方向側の空気ばね6bの前後剛性を大きくする伸長指令を送出し、アクチュエータ81bに対して進行方向側と反対側の空気ばね6aの前後剛性を小さくする収縮指令を送出する。
 上記の制御により、連接台車2に作用する横圧U’によるモーメントV’と、空気ばね6bの空気ばね反力S,S’によるモーメントTの向きは等しいため、空気ばね6bの前後剛性が増加しモーメントTを大きくすると、横圧U’によるモーメントV’が小さくなるため、モーメントV’を生じさせている横圧U’が結果的に低減される。
 以上により、横圧Uおよび横圧U’は効果的に低減されるので、レールおよび車輪の摩耗を抑制するとともに、両者間で生じるきしみ音を低減できる。
When the railway vehicle travels in the direction of arrow F and the vehicle body 1b becomes the front vehicle body, the control device 7 sends an extension command for increasing the longitudinal rigidity of the air spring 6b on the traveling direction side to the actuator 81a. A contraction command for reducing the longitudinal rigidity of the air spring 6a on the opposite side to the traveling direction is sent to 81b.
By the above control, the direction of the moment V ′ due to the lateral pressure U ′ acting on the articulated carriage 2 is equal to the direction of the moment T due to the air spring reaction force S, S ′ of the air spring 6b, so that the longitudinal rigidity of the air spring 6b is increased. When the moment T is increased, the moment V ′ due to the lateral pressure U ′ is reduced, so that the lateral pressure U ′ causing the moment V ′ is consequently reduced.
As described above, since the lateral pressure U and the lateral pressure U ′ are effectively reduced, it is possible to suppress wear of the rail and the wheel and to reduce squeak noise generated between them.
 以上説明したように、鉄道車両の連結部に台車が配置される連接車両であっても、曲線通過時における進行方向に応じて、操舵モーメントに関係する空気ばねの前後剛性を小さくして、抵抗モーメントに関係する空気ばねの前後剛性を大きくすればよい。なお、空気ばね6a、6bの前後剛性初期値については、実施例1と同様に設定されている。 As described above, even in an articulated vehicle in which a carriage is arranged at the connecting portion of the railcar, the resistance of the air spring related to the steering moment is reduced by reducing the longitudinal stiffness of the air spring according to the traveling direction when passing the curve. The longitudinal stiffness of the air spring related to the moment may be increased. Note that the initial stiffness values of the air springs 6a and 6b are set in the same manner as in the first embodiment.
 本実施例では、空気ばね4点支持方式の連接台車2に、第2の実施例を適用したが、第1、第3の実施例も、こうした連接車両に適用可能である。
 また、複数の鉄道車両が連結されて編成を構成している場合、空気ばねの内圧の変更及びアクチュエータの動作を、編成全体で切り替え可能なものとしてもよい。
In the present embodiment, the second embodiment is applied to the articulated carriage 2 of the air spring four-point support system, but the first and third embodiments can also be applied to such an articulated vehicle.
In addition, when a plurality of railway vehicles are connected to form a knitting, the change of the internal pressure of the air spring and the operation of the actuator may be switchable throughout the knitting.
 各実施例では、進行方向前側となる側の空気ばねの前後剛性を小さくし、進行方向後側となる空気ばねの前後剛性を大きくしたが、これに限らず、様々な変更が可能である。 In each embodiment, the front and rear rigidity of the air spring on the front side in the traveling direction is reduced and the front and rear rigidity of the air spring on the rear side in the traveling direction is increased. However, the present invention is not limited to this, and various modifications are possible.
 すなわち、例えば、実施例1において、進行方向の前側および後側の空気ばね6a、6bの前後剛性初期値を、直線走行時、曲線走行時を含め、乗り心地や走行安定性を悪化させない範囲で、予め最適な値に設定しておく。一方、制御装置7からアクチュエータ81a、81bへの制御信号が出力されないときは、進行方向の前側および後側の空気ばね6a、6bが前後方向に変位しても、ダイアフラム63a、53bが、当板84a、84bに当接しないで、空気ばね6の前後剛性が変更されない位置にアクチュエータ81a、81bを固定しておく。 That is, for example, in the first embodiment, the front and rear rigidity initial values of the front and rear air springs 6a and 6b in the traveling direction are within a range not deteriorating riding comfort and running stability, including during straight running and curved running. The optimal value is set in advance. On the other hand, when the control signal is not output from the control device 7 to the actuators 81a and 81b, the diaphragms 63a and 53b are not touched even if the front and rear air springs 6a and 6b are displaced in the front-rear direction. The actuators 81a and 81b are fixed at positions where the front and rear rigidity of the air spring 6 is not changed without coming into contact with 84a and 84b.
 そして、進行方向の後側の空気ばねに係るアクチュエータのみに、空気ばねの前後剛性を高める指令を送出するようにすれば、進行方向の前側の空気ばねのダイアフラムが当板に当接することなく、空気ばねの前後剛性は変更されない。この構成は、制御装置7による制御を簡略化し、アクチュエータの低コスト化、長寿命化を図ることができる。このような変更は、実施例2~5にも同様に適用できる。 And, if only a command to increase the longitudinal rigidity of the air spring is sent only to the actuator related to the air spring on the rear side in the traveling direction, the diaphragm of the air spring on the front side in the traveling direction does not contact the contact plate, The longitudinal stiffness of the air spring is not changed. This configuration simplifies the control by the control device 7, and can reduce the cost and the life of the actuator. Such a change can be similarly applied to the second to fifth embodiments.
 さらに、曲線通過時に発生する横圧は、曲線の曲率半径(R)、運行速度のみならず、車両の形式や仕様、さらには、乗客数等にも影響を受けるため、前台車2a、後台車2bにおける空気ばね6a、6bの前後剛性を、それぞれ、地上子から受信した走行位置情報やGPSによる位置情報、曲線の半径(R)等を含む路線情報、ダイアグラム等のデータベースに基づいて、リアルタイムに、各アクチュエータ81a、81bの伸長量あるいは収縮量の最適値を呼び出し、指令値として与えるようにしてもよい。 Further, since the lateral pressure generated when passing through the curve is affected not only by the curvature radius (R) of the curve and the operation speed, but also by the type and specifications of the vehicle and the number of passengers, the front carriage 2a and the rear carriage The front and rear rigidity of the air springs 6a and 6b in 2b is determined in real time on the basis of the travel position information received from the ground element, the position information by GPS, the route information including the radius (R) of the curve, and the like database. Alternatively, an optimum value of the expansion amount or contraction amount of each actuator 81a, 81b may be called and given as a command value.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 要するに、本発明には、鉄道車両の進行方向を、車上の速度検出器、地上装置、折り返し運転開始時、さらには、GPS等により検知して、曲線通過時に発生する横圧を低減する方向に、空気ばね変位抑制装置としてのアクチュエータを制御して、車体を弾性支持する空気ばねの前後剛性を最適な値に調整するものが含まれる。 In short, according to the present invention, the traveling direction of the railway vehicle is detected by the speed detector on the vehicle, the ground device, the start of the turning operation, and further by the GPS or the like, and the direction in which the lateral pressure generated when passing the curve is reduced. In addition, an actuator that controls an actuator as an air spring displacement suppressing device and adjusts the longitudinal stiffness of the air spring that elastically supports the vehicle body to an optimal value is included.
1   車体
2   台車
3   台車枠
4   軸箱体
5   輪軸
6   空気ばね
7   制御装置
61  上面板
62  下面板
63  ダイアフラム
66  積層ゴム
81  アクチュエータ
84  当板
87  内部ストッパ
88  ストッパ当板
89  給排気弁
90  連結装置
91  枕ハリ
92  連結装置受け
95  空気ばね変位抑制装置
DESCRIPTION OF SYMBOLS 1 Car body 2 Bogie 3 Bogie frame 4 Shaft box 5 Wheel shaft 6 Air spring 7 Control device 61 Upper surface plate 62 Lower surface plate 63 Diaphragm 66 Laminated rubber 81 Actuator 84 Contact plate 87 Internal stopper 88 Stopper contact plate 89 Supply / exhaust valve 90 Connecting device 91 Pillow tension 92 Connecting device receiver 95 Air spring displacement suppression device

Claims (8)

  1.  乗客等が乗車する車体と、
     前記車体を弾性支持する空気ばねを備えた台車と、
     前記空気ばねの前後方向の剛性を制御する空気ばね変位抑制装置と、
     前記車体と前記台車とからなる鉄道車両の進行方向を検知して前記空気ばね変位抑制装置を制御する制御装置と、を備えること
    を特徴とする鉄道車両。
    A vehicle body on which passengers get on,
    A carriage provided with an air spring for elastically supporting the vehicle body;
    An air spring displacement suppressing device for controlling the rigidity in the front-rear direction of the air spring;
    A railway vehicle comprising: a control device that detects a traveling direction of the railway vehicle including the vehicle body and the carriage and controls the air spring displacement suppression device.
  2.  請求項1に記載される鉄道車両において、
     前記空気ばね変位抑制装置は、
     前記空気ばねを挟む態様で、前記車体の前後方向に沿って対向して配置されており、
     前記空気ばねのダイアフラムに当接する当板と、
     前記当板に接続されるとともに、前記ダイアフラムと前記当板との間隔を調整するアクチュエータと、
    から構成されていること
    を特徴とする鉄道車両。
    In the railway vehicle according to claim 1,
    The air spring displacement suppression device is:
    In an aspect that sandwiches the air spring, it is arranged to face along the front-rear direction of the vehicle body,
    A contact plate that contacts the diaphragm of the air spring;
    An actuator connected to the abutment plate and adjusting a distance between the diaphragm and the abutment plate;
    A railway vehicle characterized by comprising:
  3.  請求項1に記載される鉄道車両において、
     前記空気ばね変位抑制装置は、
     前記空気ばねを構成する積層ゴムの内部に備えられるとともに先端部にストッパを有すアクチュエータと、
     前記積層ゴムの上部に備えられ、且つ、前記ストッパが係合される開口部を有す当板と、
    から構成されること
    を特徴とする鉄道車両。
    In the railway vehicle according to claim 1,
    The air spring displacement suppression device is:
    An actuator provided inside the laminated rubber constituting the air spring and having a stopper at the tip;
    A contact plate provided at the top of the laminated rubber and having an opening with which the stopper is engaged;
    A railway vehicle comprising:
  4.  請求項1に記載される鉄道車両において、
     前記空気ばね変位抑制装置は、
     前記空気ばねの空気圧力を調整する給排気弁を
    有すること
    を特徴とする鉄道車両。
    In the railway vehicle according to claim 1,
    The air spring displacement suppression device is:
    A railway vehicle comprising a supply / exhaust valve for adjusting an air pressure of the air spring.
  5.  請求項2から請求項4のいずれかの一項に記載される鉄道車両は、
     前記車体の長手方向の両端部を前記台車によって支持されるボギー車両であること
    を特徴とする鉄道車両。
    The railway vehicle according to any one of claims 2 to 4,
    The railway vehicle is a bogie vehicle in which both ends in the longitudinal direction of the vehicle body are supported by the carriage.
  6.  請求項3に記載される鉄道車両は、
     前記台車は2点の前記空気ばねを備えており、
     一方の前記車両の端部が他方の前記車両の端部の上部に載置されるとともに、
    前記他方の前記車両の前記端部が前記台車の前記空気ばねの上部に載置される2点支持式連接車両であること
    を特徴とする鉄道車両。
    The railway vehicle according to claim 3 is:
    The carriage has two air springs,
    An end of one of the vehicles is placed on top of an end of the other vehicle;
    A railway vehicle characterized in that the other end of the vehicle is a two-point support articulated vehicle mounted on an upper portion of the air spring of the carriage.
  7.  請求項3に記載される鉄道車両は、
     前記台車は4点の前記空気ばねを備えており、
     一方の前記車体の端部が2点の前記空気ばねに上に載置されるとともに、他方の前記車体の端部が2点の前記空気ばねに上に載置される4点支持式連接車両であること
    を特徴とする鉄道車両。
    The railway vehicle according to claim 3 is:
    The carriage has four air springs,
    A four-point support articulated vehicle in which one end of the vehicle body is placed on the two air springs and the other end of the vehicle body is placed on the two air springs A railway vehicle characterized by being.
  8.  車両の進行方向を検知し、
     前記車両を支持する台車に備えられる空気ばねの前後剛性を制御すること
    を特徴とする請求項1に記載の鉄道車両の横圧低減方法。
    Detect the direction of travel of the vehicle,
    The lateral pressure reduction method for a railway vehicle according to claim 1, wherein front-rear rigidity of an air spring provided in a carriage that supports the vehicle is controlled.
PCT/JP2013/065858 2013-06-07 2013-06-07 Railroad vehicle capable of reducing lateral force and lateral force reduction method WO2014196080A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/065858 WO2014196080A1 (en) 2013-06-07 2013-06-07 Railroad vehicle capable of reducing lateral force and lateral force reduction method
JP2015521253A JP6067850B2 (en) 2013-06-07 2013-06-07 Railway vehicle and lateral pressure reduction method capable of reducing lateral pressure
GB1520260.9A GB2530677B (en) 2013-06-07 2013-06-07 A railway vehicle and method that reduces lateral force
DE112013007135.5T DE112013007135B4 (en) 2013-06-07 2013-06-07 Rail vehicle that can reduce side force, and method for reducing side force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065858 WO2014196080A1 (en) 2013-06-07 2013-06-07 Railroad vehicle capable of reducing lateral force and lateral force reduction method

Publications (1)

Publication Number Publication Date
WO2014196080A1 true WO2014196080A1 (en) 2014-12-11

Family

ID=52007751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065858 WO2014196080A1 (en) 2013-06-07 2013-06-07 Railroad vehicle capable of reducing lateral force and lateral force reduction method

Country Status (4)

Country Link
JP (1) JP6067850B2 (en)
DE (1) DE112013007135B4 (en)
GB (1) GB2530677B (en)
WO (1) WO2014196080A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145170A (en) * 2014-02-03 2015-08-13 株式会社総合車両製作所 Railway vehicle truck
CN114396425A (en) * 2022-02-18 2022-04-26 中国商用飞机有限责任公司 Roller device with adjustable supporting rigidity

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4011742A4 (en) * 2019-08-09 2023-08-23 Hitachi, Ltd. Bogie for railway vehicle
DE102019218017A1 (en) * 2019-11-22 2021-05-27 Contitech Luftfedersysteme Gmbh Secondary suspension of a rail vehicle
FR3130243B1 (en) * 2021-12-10 2023-12-15 Speedinnov Electronic control system for the secondary suspensions of a railway vehicle and associated railway vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427659A (en) * 1990-05-23 1992-01-30 Toyo Tire & Rubber Co Ltd Air spring for vehicle
JPH04300773A (en) * 1991-03-27 1992-10-23 Central Japan Railway Co Method and device for controlling axle box supporting rigidity of truck on railway rolling stock
JPH10246265A (en) * 1997-03-04 1998-09-14 Sumitomo Electric Ind Ltd Air spring
JP2002293235A (en) * 2001-03-30 2002-10-09 Railway Technical Res Inst Rolling stock structure
JP2003276600A (en) * 2002-03-27 2003-10-02 Railway Technical Res Inst Truck steering type rolling stock
JP2004025935A (en) * 2002-06-21 2004-01-29 Nippon Sharyo Seizo Kaisha Ltd Articulation structure of railway vehicle
JP2011162156A (en) * 2010-02-15 2011-08-25 Central Japan Railway Co Air spring device for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448445B2 (en) * 1997-01-17 2003-09-22 財団法人鉄道総合技術研究所 Steering device for bogies for railway vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427659A (en) * 1990-05-23 1992-01-30 Toyo Tire & Rubber Co Ltd Air spring for vehicle
JPH04300773A (en) * 1991-03-27 1992-10-23 Central Japan Railway Co Method and device for controlling axle box supporting rigidity of truck on railway rolling stock
JPH10246265A (en) * 1997-03-04 1998-09-14 Sumitomo Electric Ind Ltd Air spring
JP2002293235A (en) * 2001-03-30 2002-10-09 Railway Technical Res Inst Rolling stock structure
JP2003276600A (en) * 2002-03-27 2003-10-02 Railway Technical Res Inst Truck steering type rolling stock
JP2004025935A (en) * 2002-06-21 2004-01-29 Nippon Sharyo Seizo Kaisha Ltd Articulation structure of railway vehicle
JP2011162156A (en) * 2010-02-15 2011-08-25 Central Japan Railway Co Air spring device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145170A (en) * 2014-02-03 2015-08-13 株式会社総合車両製作所 Railway vehicle truck
CN114396425A (en) * 2022-02-18 2022-04-26 中国商用飞机有限责任公司 Roller device with adjustable supporting rigidity
CN114396425B (en) * 2022-02-18 2023-02-03 中国商用飞机有限责任公司 Roller device with adjustable supporting rigidity

Also Published As

Publication number Publication date
GB2530677B (en) 2020-02-26
GB2530677A (en) 2016-03-30
JP6067850B2 (en) 2017-01-25
GB201520260D0 (en) 2015-12-30
DE112013007135T5 (en) 2016-03-10
JPWO2014196080A1 (en) 2017-02-23
DE112013007135B4 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP6086973B2 (en) Track-type vehicle and vehicle body tilt control method
JP6067850B2 (en) Railway vehicle and lateral pressure reduction method capable of reducing lateral pressure
CN102448790B (en) Vehicle having roll compensation
KR101324854B1 (en) Track-guided vehicle wheel truck
CA2842147C (en) Railway vehicle steering truck
US10974741B2 (en) Actuator for controlling a wheelset of a rail vehicle
JP2002104183A (en) Rolling stock
EP2727790B1 (en) Running gear unit with adjustable wheel contact force
KR20120105425A (en) Actuator having multiple effects
WO2018096699A1 (en) Railroad car truck
CN102616246A (en) Jib-type axle box positioning device for bogie
WO2010095285A1 (en) Low-floor vehicle
JPH10287241A (en) Car body tilt control device for rolling stock and its car body tilt control method
JP2014144710A (en) Railroad type vehicle
CN202541564U (en) Rotary arm type axle box locator of bogie
JP2015020616A (en) Axle box support device for railway vehicle
JP2015522462A (en) Rail vehicle
JP5836073B2 (en) Bogie bogie and track system vehicle equipped with the bogie bogie
JP5126904B2 (en) Rail car axle box support device
JP5937000B2 (en) Car body left-right motion damper device and railway vehicle
JP6492362B2 (en) Body tilt control device
JP2006062512A (en) Air spring height adjusting mechanism for rolling stock and control method of the air spring height adjusting mechanism
JP2013216284A (en) Vibration suppression control device and vibration suppression control method
JP2023159783A (en) Railway vehicle bogie
WO2021029139A1 (en) Bogie for railway vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521253

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1520260

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130607

WWE Wipo information: entry into national phase

Ref document number: 112013007135

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886171

Country of ref document: EP

Kind code of ref document: A1