WO2014195572A1 - Appareil pour la protection d'anodes et de cathodes dans un système de cellules d'électrolyse - Google Patents
Appareil pour la protection d'anodes et de cathodes dans un système de cellules d'électrolyse Download PDFInfo
- Publication number
- WO2014195572A1 WO2014195572A1 PCT/FI2014/050413 FI2014050413W WO2014195572A1 WO 2014195572 A1 WO2014195572 A1 WO 2014195572A1 FI 2014050413 W FI2014050413 W FI 2014050413W WO 2014195572 A1 WO2014195572 A1 WO 2014195572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hanger bar
- electrode assembly
- electrode
- lug
- unit
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
Definitions
- the invention relates to the electrolytic processing of metals. Examples of electrolytic recov ⁇ ery of metals are electrorefining and electrowinning .
- the invention relates to an apparatus for protection of anodes and cathodes in a system of electrolysis cells.
- electrorefining (ER) and electrowinning (EW) electrodes are immersed in an electrolyte and an electric current is passed between them.
- the anode is made positive and the cathode made negative so that an electric current passes through the electrolyte from anode to cathode.
- the metal anode is soluble. That is to say that the metal enters into the electrolyte under the influence of the potential be ⁇ tween the anode and cathode.
- the anode is made of copper and the copper enters the electrolyte from the anode.
- the metal, now in the electrolyte is transported through the electrolyte to the cathode where it is deposited.
- the cathode may be of the same metal as the metal that is being deposited or it may be of a different metal.
- a cathode made of copper it was at one time common to employ a cathode made of copper.
- a stainless steel cathode is now commonly em ⁇ ployed which quickly becomes coated with copper and which from then on essentially performs as a copper cathode.
- the deposited copper is mechanically removed from the stainless steel cathode and the cathode re ⁇ used.
- the copper deposited on the cathode is highly pure. Impurities which were in the anode metal fall out as a solid as the anode is dissolved and may con ⁇ tain useful by-products, for example, gold.
- metals purified by ER include gold, silver, lead, cobalt, nickel, tin and other metals.
- Electrowinning differs from electrore- fining in that the metal sought is imported into the cells via, for example, pipelines, and is already con ⁇ tained within the electrolyte.
- sulfuric acid is typically employed to dissolve copper from an oxide form of copper ore and the resulting liquid, after concentration, is imported into an electrowinning cell to have the copper extracted.
- An anode and cathode are immersed in the electrolyte and a current is passed between them, again with the anode being positive and the cathode being negative.
- the anode is not soluble but is made of an inert material.
- a lead alloy an ⁇ ode is used in the case of copper.
- the cathode may be of the same metal that is being extracted from the electrolyte or it may be of a different material.
- copper cathodes may be used although stainless steel cathodes are commonly employed which quickly become coated in copper.
- the metal to be won leaves the electrolyte solution and is deposit ⁇ ed in a very pure form on the cathode.
- the electrolyte is changed by this process having given up a large proportion of its metal content.
- met- als obtained by electrowinning include lead, gold, silver, zinc, chromium, cobalt, manganese, aluminum and other metals.
- the electrolyte is a molten material rather than an aqueous solution.
- the cell voltage is gener ⁇ ally about 0.3V and in copper electrowinning is about 2.0V.
- the current density is about 300 A/m 2 and the area of each electrode at present is about 1 m 2 .
- These figures differ considerably for dif ⁇ ferent metals and widely varying current densities may be used for the same metal but the invention applies to the electrorefining and electrowinning of all metals.
- the starting point is an anode jux ⁇ taposed to a cathode in an electrolyte contained in a tank.
- the anodes and cathodes may be plates which hang from a supporting hanger bar.
- the plates may also have protrusions or lugs on both sides of the plates, which enable the plates to be hung from supporting bars, for example, power supply busbars.
- many cathode plates and many anode plates may be used, interleaved, with all the anode plates connected in parallel and all the cathode plates connected in parallel contained within a single tank of electrolyte. Electrically this still looks like a single cell and in the industry it is therefore commonly called a cell.
- "cell" is almost universally used to mean a tank filled with anodes and cathodes in parallel.
- tank can mean the same as "cell ", above, or it can mean the vessel alone, de ⁇ pending on the context.
- tankhouses “tanks” are con- nected in series. A typical ER tankhouse might there ⁇ fore require an electrical supply of the order of 36,000 Amps at 200 Volts.
- a tank- house 100 comprises a plurality of tanks such as tanks 110, 120 and 130. Each tank comprises one cell.
- a cell is composed of many cathodes such as cathodes 126A and 126B in parallel and many anodes such as anodes 124A and 124B in parallel.
- the cathodes in tank 110 are connected to busbar 112.
- the anodes in tank 120 are connected to busbar 122.
- Busbars are connected to a power supply such as power supply 102.
- An anode busbar of tank 110 is connected to a positive terminal 104 of power supply 102, whereas a cathode busbar of tank 130 is connected to a negative terminal 106 of power sup ⁇ ply 102.
- tanks 110, 120 and 130 are con- nected in series so that cathode busbars and anode busbars are connected in adjacent tanks such as tanks 110 and 120.
- Power supply 102 acts as a Direct Current (DC) voltage source and the DC voltage source is con ⁇ nected across the series circuit formed by tanks such as tanks 110, 120 and 130 to force the desired current through tanks such as tanks 110, 120 and 130. The to ⁇ tal current is maintained at a desired value.
- DC Direct Current
- the current should divide equally between the cathodes such as cathodes 126A and 126B.
- the cathodes such as cathodes 126A and 126B.
- FIG. 2 il ⁇ lustrates a cross section of an electrolysis cell 200 comprising a blade 212, which may be an anode blade or a cathode blade, in prior art.
- Blade 212 is immersed in electrolyte 202.
- an electrical connection to blade 212 is made through protrusions or lugs on both sides of blade 212 on the upper side of blade 212.
- Blade 212 may comprise or be connected to a hanger bar 210.
- the protrusions on both sides may also be seen to form hanger bar 210.
- right side of hanger bar 210 rests on a busbar 220 so that there is a contact area 222 between busbar 220 and hanger bar 210.
- Contact area 222 causes busbar 220 and hanger bar 210 to form a part of an electrical circuit (not shown) .
- a disconnection of contact area 222 is typically caused by corrosion or burning of contact area 222 or by a foreign obstacle becoming jammed between hanger bar 210 and busbar 220.
- left side of busbar 220 rests on an insulated support- ing bar 230.
- Supporting bar 230 may also be a busbar so that the electrode 212 is electrically connected through two paths so as to reduce the effect of a bad contact to one of the sides of hanger bar 210.
- a short circuit results in an unusually large amount of cur- rent flowing in cathode 126A and anode 124A shorted together. Methods conventionally employed to detect short circuits are less than ideal.
- One method is to detect the overheating of the electrodes resulting from the short circuit. This is less than satisfactory because damage to the elec ⁇ trode, the hanger bar of the electrode or the busbar connected to the hanger bar may have resulted before the short is detected.
- An objective of the invention is to make available within the hanger bar and blade assembly an autonomous power source for the control and actuation of an electronic system for the protection of said hanger bar and blade assembly.
- the power source may also be used for powering a communication system which permits the transfer of data from and to the hanger bar and blade assembly.
- the method of control permits energy to be extracted from the main current supply to the tank and stored on the hanger bar and electrode assembly for subsequent use as an on-board power source for the local control of the hanger bar and blade assembly.
- a further objective of the invention is to endow a hanger-bar and blade assembly with the capa ⁇ bility to protect itself against situations which may cause it damage. This capability may be completely self-contained.
- the invention is an electrode assembly for electrolytic processing of a metal in an electrolysis cell, the electrode assembly comprising: an electrode blade com ⁇ prising a metallic hanger bar portion; a first lug for supporting the metallic hanger bar portion on a first power supply bar; a second lug for supporting the me ⁇ tallic hanger bar portion in a horizontal position to- gether with the first lug; an insulating piece connecting the metallic hanger bar portion to the first lug; an electrical switch unit controlling electrical current supply between the first lug and the metallic hanger bar portion based on control signals transmit ⁇ ted to a terminal of the electrical switch unit; a control unit comprising a memory and at least one pro- cessor configured to transmit the control signals to the terminal of the electrical switch unit; and a pow ⁇ er storage unit configured to supply power to the con ⁇ trol unit, the power storage unit being charged from the first lug and the metallic hanger bar portion when the electrical switch unit switches off electrical current supply between the first lug and the
- the invention is an electrode tank comprising: a plurality of electrode assemblies, the electrodes be ⁇ ing anodes and cathodes; and a computer unit config ⁇ ured to determine electrical currents between the first lugs and the metallic hanger bars portions in the plurality of electrode assemblies, to determine a difference between a sum of all cathode currents and all anode currents and a current at a central rectifi ⁇ er providing power supply to the electrode tank, and to cause a change in the control signals to the elec- trical switch units to increase or decrease electrical current supply between the first lugs and the metallic hanger bars portions in the plurality of electrode as ⁇ semblies .
- the invention is an electrode tank comprising: at least three anodes and at least two interleaved cathodes, the at least three anodes and the at least two interleaved cathodes being electrode blades; a busbar supplying a positive voltage or a negative voltage to at least one electrode blade; an electrical switch unit controlling electrical current supply be ⁇ tween the busbar and the at least one electrode blade based on control signals transmitted to a terminal of the electrical switch unit; a control unit comprising a memory and at least one processor configured to transmit the control signals to the terminal of the electrical switch unit; and a power storage unit con ⁇ figured to supply power to the control unit, the power storage unit being charged from the busbar and the at least one electrode blade when the electrical switch unit switches off electrical current supply between the busbar and the at least one electrode blade based on a control signal to switch off electrical current supply .
- the present invention provides a method of cre- ating an on-board power supply for the electronic con ⁇ trol and communication system of a self-protecting anode or cathode.
- the series semiconductor devices which control the flow between the hanger bar and the blade are momentarily turned off. While turned off, the an- ode-cathode voltage of the cell appears across the power semiconductor device.
- the power semiconductor device terminals may be used as a power source to charge a storage element, which may be a capacitor. This storage element may then be used as a source of power for the electronic control and com ⁇ munication systems.
- the power sem ⁇ iconductor device may again be turned off for a brief instant to recharge the capacitor.
- the presence of this on-board power supply per ⁇ mits the techniques and technology disclosed in prior art to be applied autonomously to the hanger bar and blade assembly.
- current sensing is employed within the hanger bar and blade assembly so that the development of an adverse situation can be detected and appropriate ac ⁇ tion taken to protect the electrode.
- This action is likely to be the turning off of the series power semi ⁇ conductor device or the regulation of its ability to conduct so that the current flowing through the elec ⁇ trode blade is maintained at a safe level.
- the autonomously-powered electronic control sys ⁇ tem on the hanger bar and blade assembly communicates measurement data collected from the assembly to a net ⁇ work node, which may be located in a central control room.
- the elec ⁇ trode tank may be referred to as an electrolytic cell, for example, an electrowinning cell or an electrore- fining cell.
- the elec ⁇ trode tank comprises electrolyte.
- a blade of the electrode blade is at least partly immersed in electrolyte .
- the con ⁇ trol signals comprise at least two voltages.
- the con ⁇ trol signals may comprise different voltages.
- the voltages may be supplied to the terminal of the elec ⁇ trical switch unit.
- the terminal may be a gate.
- the gate may be the gate of a plurality of MOSFETs such as power MOSFETs.
- the con- trol signals transmitted to the terminal of the elec ⁇ trical switch unit may comprise gate voltages to a plurality of power MOSFETs comprised in the electrical switch unit.
- the control signal to switch off electri ⁇ cal current supply may comprise a gate voltage to the plurality of power MOSFETs comprised in the electrical switch unit, where the gate voltage is below a thresh ⁇ old voltage.
- the gate voltages may be referred to gate-to-source voltages, where the source may be the first lug or the metallic hanger bar portion.
- the gate voltages may be referred to gate-to-source voltages, where the source may be the busbar or the at least one electrode blade.
- the elec ⁇ trical switch unit controlling electrical current sup ⁇ ply between the busbar and the at least one electrode blade is placed on at least one contact surface be- tween the busbar and the at least one electrode blade.
- the con ⁇ trol signals may comprise analog or digital control signals .
- the power supply to the control unit from the first lug or the second lug goes through a rectifier such as a diode.
- the power storage unit comprises a capacitor.
- the power storage unit comprises a rechargeable battery.
- the con ⁇ trol unit further comprises a transmitter configured to transmit messages to a remote computer and to re ⁇ ceive messages from the remote computer, the received messages comprising at least one message to determine the control signal.
- the elec ⁇ trical switch unit comprises a plurality of Metal- Oxide-Semiconductor Field-Effect Transistors.
- the sources of the plurality of the Metal-Oxide- Semiconductor Field-Effect Transistors are connected to the metallic hanger bar portion, the drains of the plurality of the Metal-Oxide-Semiconductor Field- Effect Transistors are connected to the first lug and the gates of the plurality of the Metal-Oxide- Semiconductor Field-Effect Transistors are connected to the terminal of the electrical switch unit.
- the drains of the plurality of the Metal-Oxide- Semiconductor Field-Effect Transistors are connected to the metallic hanger bar portion, the sources of the plurality of the Metal-Oxide-Semiconductor Field- Effect Transistors are connected to the first lug and the gates of the plurality of the Metal-Oxide- Semiconductor Field-Effect Transistors are connected to the terminal of the electrical switch unit.
- the plu ⁇ rality of Metal-Oxide-Semiconductor Field-Effect Transistors are power Metal-Oxide-Semiconductor Field- Effect Transistors.
- the se ⁇ cond lug supports the metallic hanger bar portion on a second power supply bar.
- the elec- trode assembly further comprises: a current measuring unit configured to measure current strength between the metallic hanger bar portion and the first lug; and the at least one processor configured to receive the measured current strength from the current measuring unit.
- the elec ⁇ trode assembly further comprises: the at least one processor configured to compare the measured current strength to a predefined threshold value and to change the control signal to limit electrical current supply between the first lug and the metallic hanger bar por ⁇ tion in response to the measured current strength ex ⁇ ceeding the predefined threshold value.
- the pre- defined threshold value indicates a short circuit cur ⁇ rent .
- the pre ⁇ defined threshold value is received from a remote com ⁇ puter unit.
- the re- mote computer unit is configured to determine electri ⁇ cal currents between the first lugs and the metallic hanger bars portions in a plurality of electrode as ⁇ semblies, to determine a difference between a sum of all cathode currents and all anode currents and a cur- rent at a central rectifier providing power supply to the electrode tank, to transmit a control message to the control unit based on the difference, the control message comprising the predefined threshold value.
- the metal is copper
- the elec ⁇ trode is an anode.
- the elec ⁇ trode is a cathode.
- the elec ⁇ trolytic processing is electrowinning or electrorefin- ing .
- every cathode or every anode in an ER or EW sys ⁇ tem can be made to draw an identical predetermined value of current without any outside control or need for auxiliary power supply or communication system.
- cathodes may be installed in an electrolysis system knowing the exact value of cur ⁇ rent that they will draw from the adjacent anodes at all times. This value of current can be preset if the electrodes do not include a communication system or may be adjusted after loading in the tank if they are endowed with a communication arrangement.
- An electrode assembly or an electrolytic tank to which the invention is related may comprise at least one of the embodiments of the invention described hereinbe ⁇ fore .
- the benefit of the present invention is that it is possible to provide electrode assemblies with local control units which are easily powered from the electrodes. No separate power supply wiring is re ⁇ quired for electrode specific control units.
- Fig. 1 is a block diagram illustrating a system comprising a plurality of electrolysis cells, that is, tanks and a power source in prior art;
- Fig. 2 illustrates a cross section of an electrolysis cell comprising an anode or a cathode blade immersed in electrolyte in prior art
- Fig. 3 illustrates an anode blade or a cath ⁇ ode blade supported from a hanger bar and a hanger bar assembly comprising a locally powered control unit for a double contact busbar arrangement in one embodiment of the invention
- Fig. 4 illustrates an anode blade or a cath ⁇ ode blade supported from a hanger bar and a hanger bar assembly comprising a control unit for a single con ⁇ tact busbar arrangement in one embodiment of the in ⁇ vention ;
- Fig. 5 illustrates an electrical circuit com- prising power supply from a busbar, a power semiconductor device for switching, and an anode and a cathode, a capacitor, and a control unit with power supply from the busbar in one embodiment of the invention
- Fig. 6A illustrates voltage available for charging the capacitor of Figure 5 in electrorefining in one embodiment of the invention
- Fig. 6B illustrates voltage available for charging the capacitor of Figure 5 in electrowinning in one embodiment of the invention
- Fig. 7 shows a switch area for a shoe and cuff type of switches based on the power semiconductor device of Figure 5 in one embodiment of the invention
- Fig. 8A shows an active-contact version of a switch based on the power semiconductor device of Fig- ure 5 in one embodiment of the invention
- Fig. 8B shows an active-contact version of a switch based on the power semiconductor device of Figure 5 in one embodiment of the invention
- Fig. 8C shows an active-contact version of a switch based on the power semiconductor device of Figure 5 in one embodiment of the invention.
- Fig. 9 illustrates an electrical circuit com ⁇ prising power supply from a busbar, a power semiconductor device for switching, and an anode and a cath- ode, a capacitor, and a control unit with power supply from the busbar in one embodiment of the invention.
- Figure 3 illustrates an anode blade or a cathode blade supported from a hanger bar and a hanger bar assembly comprising a locally powered control unit for a double contact busbar arrangement in one embodi- ment of the invention.
- the components in Figure 3 are not drawn to correspond to their sizes and forms in an actual implementation. Their sizes and forms are just for illustrative purposes.
- FIG. 3 there is a blade 300, which may be an anode or a cathode of an electrolytic cell.
- a hanger bar 310 To blade 300 is connected a hanger bar 310.
- Hanger bar 310 may also be formed of an upper portion of blade 300.
- At the left hand end of hanger bar 310 there is a conducting left lug 314L attached mechanically to hanger bar 310 through insulating connecting piece 312L.
- a conducting right lug 314R attached mechanically to hanger bar 310 through insulating connecting piece 312R.
- Insulating connecting pieces 312L and 312R ena- ble conducting lugs 314L and 314R to be electrically separated from hanger bar 310, but mechanically con ⁇ nected to a single assembly with hanger bar 310 that supports blade 300.
- Conducting lugs 314L and 314R are fixed to insulating connecting pieces 312L and 312R, respectively, using bolts or screws.
- Insulating con ⁇ necting pieces 312L and 312R are fixed using bolts or screws to respective left and right ends of hanger bar 310.
- the arrangement in Figure 3 may be seen to be symmetric with respect to a Y-axis (not shown) in the middle or Figure 3, which may imply that both ends of the hanger bar 310 rest on conducting busbars.
- a hanger bar such as hanger bar 310 rests on a conducting busbar. If blade 300 is a cathode, current passes from blade 300 to hanger bar 310. If blade 300 is an anode, current passes from hanger bar 310 to blade 300. The path of current from hanger bar 310 to busbars 316L and 316R is via respective switch units 320L and 320R and conducting lugs 314L and 314R, if blade 300 is a cathode. The path of current is in inverse direction, if blade 300 is an anode.
- Switch units 320L and 320R are power semiconductor switches, each of which may, for example, comprise a plurality of power Metal-Oxide- Semiconductor Field-Effect Transistors (MOSFETs) . Switch units 320L and 320R are controlled using re ⁇ spective control signals transmitted to switch units 320L and 320R.
- MOSFETs Metal-Oxide- Semiconductor Field-Effect Transistors
- the control signal may be control volt ⁇ ages supplied to switch units 320L and 320R. Control voltages may be supplied to the gates of the plurality of power MOSFETs.
- the power MOSFETs are oriented de ⁇ pending on whether blade 300 is an anode or cathode to permit current to flow between lug 314L or 314R and hanger bar 310 when the power MOSFETs are in the on- state and to block such current flow when the power MOSFETs are in the off-state.
- Switch units 320L and 320R contain a sufficient number of power MOSFETs in parallel that the resistance of switch units 320L and 320R in the power MOSFETs on-state is very low so that when carrying the maximum desired electrode current the voltage drop across the switch units 320L and 320R is small compared with the voltage drop between the cathodes and anodes of a cell.
- the power MOSFETs in switch units 320L and 320R are thermally connected to a mass in the form of at least one of hanger bar 310, lug 314L and lug 314R.
- the thermal connection enables to sink heat from the power MOSFETs into the mass for cooling purposes since the mass is metal.
- the sinking of heat makes it possible to oper ⁇ ate the power MOSFETs semiconductor devices in the linear regime and hence they can regulate the current flow in the electrode.
- Control unit 340 may comprise at least one processor and a memory. Control unit is communicatively connected to switch units 320L and 320R. Control unit 340 may also be communicatively connected to a tankhouse control unit (not shown) . The connection to tankhouse control unit may be wired or wireless. In case of the connection being wireless control unit 340 may further comprise at least one an ⁇ tenna and a transmitter and a receiver. The at least one antenna may be housed in a cable tube such as ca ⁇ ble tube 344 or 346. Control unit 340 may comprise a display (not shown) , for example, at least one led to indicate, for example, the state of control unit 340 or current strength across switch units 320L and 320R.
- control unit 340 may also be communicatively connected to a plurality of voltmeters that measure a voltage drop in hanger bar 310 between two points.
- a first point may be located within 0 - 10 centimeters from the center of hanger bar 310 or substantially near the center of hanger bar 310 and a second point may be located with ⁇ in 0 - 20 centimeters from a left or right side of hanger bar 310 or substantially at the left or right end of the hanger bar 310.
- the plurality of voltmeters may transmit the measured voltages to control unit 340 which may use the measurements to determine current in hanger bar 310.
- Control unit 340 may also be communi- catively connected to at least one temperature sensors arranged to measure the temperature at a location on hanger bar 310 or blade 300. Control unit 340 may be configured to transmit a control signal to switch units 320L and 320R to change resistance across switch units 320L and 320R so that correction for a change of resistance due to temperature change may be applied.
- Control unit 340 comprises an energy storage device 350.
- Energy storage device 350 may comprise a capacitor, for example, foil, electro ⁇ lytic, super-capacitor or ultra-capacitor.
- the energy storage device may also comprise a rechargeable stor ⁇ age battery as an alternative or a supplement to the capacitor.
- Control unit 340 may be electrically con- nected using wires to switch units 320L and 320R.
- the wires are used to transmit switching or other command signals from control unit 340 to switch units 320L and 320R, for example, in case of linear control.
- both switch units 320L and 320R comprise a separate control unit similar to control unit 340.
- lug 314L and 314R may be used as alternatives to sup ⁇ port back up in case of contact failure between either lug 314L and busbar 316L or lug 314R and busbar 316R. This forms a two-contact system.
- the power MOSFETs are bidirectional.
- the power MOSFETs may be in anti-series.
- FIG. 3 there are current sensing units 330L and 330R, which may be implemented using Hall el- ements.
- Current sensing units 330L and 330R may also be implemented using open-loop or closed loop sensors that employ a magnetic circuit or using any other ap ⁇ intestinalte means for current sensing.
- Current sensing unit 330L is connected to control unit 340 using wires in cable tube 344.
- current sensing unit 330R is connected to control unit 340 using wires in cable tube 346.
- Current sensing units 330L and 330R may be arranged to transmit signals indicating pres ⁇ ence of current in hanger bar 310.
- Current sensing units 330L and 330R may be arranged to transmit sig ⁇ nals indicating current strength in hanger bar 310 to control unit 340.
- Current sensing units 330L and 330R sense the presence of current or current strength at their respective positions around hanger bar 310 or at the surface of hanger bar 310. If current strength in ⁇ dicated by current sensing unit 330L or current sens ⁇ ing unit 330R to control unit 340 exceeds a predefined threshold value indicating short-circuit, control unit 340 may transmit a control signal to switch units 320L and 320R to turn switch units 320L and 320R off in or ⁇ der to protect blade 300 and hanger bar 310 from dam ⁇ age.
- control unit 340 may transmit control signals to switch units 320L and 320R to put switch unit 320L and 320R into linear mode to regulate current. In one em- bodiment of the invention, control unit 340 may also transmit control signals to switch units 320L and 320R to put switch unit 320L and 320R into linear mode in normal operation to limit current to a strength that is required for the electrowinning or electrorefining process to continue normally but does not consume ex ⁇ tra energy.
- Figure 4 illustrates an anode blade or a cathode blade supported from a hanger bar and a hanger bar assembly comprising a control unit for a single contact busbar arrangement in one embodiment of the invention .
- busbar 316L has been replaced with a physical insulating support.
- con ⁇ trol unit 340 of Figure 3 is co-located with switch unit 320R as control unit 400.
- Control unit 400 is similar to control unit 340 with the distinction of lack of switch unit 320L and current sensing unit 330L.
- Control unit 340 may be incorporated in same housing with switch unit 320R.
- Figure 5 illustrates an electrical circuit comprising power supply from a busbar, a power semi- conductor device for switching, and an anode and a cathode, a capacitor, and a control unit with power supply from the busbar in one embodiment of the inven ⁇ tion.
- Figure 5 shows a schematic outline of the elec ⁇ trical connections for a single-contact system.
- an anode self-protection system is illus ⁇ trated.
- the direc ⁇ tion of current flow will be reversed as will the ori ⁇ entation of components in the system to take account of changed voltage polarities.
- Control unit 500 comprises at least one proces ⁇ sor 552, a memory 554, an input-output controller 558, a transceiver 560 and a message bus 556.
- To transceiv ⁇ er 560 may be connected at least one antenna (not shown) .
- Transceiver 560 may be configured to transmit 560 and receive 562 signals from a tankhouse control unit (not shown) .
- Transceiver 562 may be communica- tively connected to the tankhouse control unit.
- Con ⁇ trol unit 500 is supplied power via terminals 502 and 504. Terminal 502 is held at a positive potential and terminal 504 is held at a negative potential.
- hanger bar 520 is supplied current from lug 510 through switch unit 512.
- Switch unit 512 may be a power MOSFET.
- Lug 510 is connected to a busbar (not shown) that is a positive voltage source for lug 510.
- busbar not shown
- switch unit 512 is switched on or switch 512 is in power MOSFET linear regime.
- current flows from hanger bar 520 through a resistance comprising the anode blade connected to hanger bar 520, the resistance of electrolyte and the resistance of cathode blade 540. These resistances are illustrated in Figure 5 in the form of resistor 522.
- Capacitor 516 is connected to negative terminal 504 and positive terminal 502. Positive terminal 502 is held at a positive potential by being connected to lug 510 which is connected to the busbar acting as positive voltage source. Negative terminal 504 is held at a negative potential by being connected to hanger bar 520 so that switch unit 512 is switched off. Capacitor 516 is the power source for the control unit 500 and possible electrical devices powered via control unit 500.
- Capacitor 516 is charged by momentarily turning off switch unit 512 by transmitting a switch off control signal, for example, by holding gate voltage for switch unit 512 via gate drive 518 at a voltage that causes switch unit 512 to turn off.
- the gate voltage to switch unit 512 may be provided via input-output controller that controls a gate driver 518 to supply gate voltage on a level de ⁇ termined by the at least one processor 552. As the re- suit of switching switch unit 512 off, a voltage ap ⁇ pears across switch unit 512. Capacitor is charged through diode 514, which prevents capacitor 516 from being discharged through switch unit 512 when switch unit 512 is switched on.
- diode 514 An anode of diode 514 is electrically connected to lug 510, whereas a cathode of diode 514 is connected to positive terminal 502 of control unit 500.
- switch unit 512 After capacitor 516 is charged, switch unit 512 is switched on so that normal opera- tion of electrowinning or electrorefining may resume.
- a power MOSFET instead of diode 514 a power MOSFET may be used in the well-known manner of a synchronous rectifier in which diode 514 be ⁇ comes the body-drain diode of the power MOSFET and the channel of the MOSFET is turned on when this diode is expected to be in conduction, that is, when switch unit 512 is turned off.
- Control unit 500 is configured to monitor the voltage across capacitor 516 and re ⁇ peats the charging process when the voltage falls be- low a predetermined threshold voltage.
- hanger bar 520 is provided with a current sensing unit, for exam ⁇ ple, a Hall element 530.
- Current sensing unit may be supplied a reference voltage V C c via electrical connec- tion 534 by control unit 500.
- current sensing unit may output a current strength signal V 0U T to con ⁇ trol unit 500 using electrical connection 532 between current sensing unit 530 and control unit 500.
- Current sensing unit 530 may also be connected electrically to a ground.
- Figure 6A illustrates voltage available for charging the capacitor of Figure 5 in electrorefining in one embodiment of the invention.
- the cathodes such as cathode 620 are assigned a voltage of 0V.
- the anodes such as anode 622 are at a voltage of the order of 0.25V.
- a gap 614 represents an electrical isolation between a hanger bar of a cathode and the lug connected to the hanger bar. Gap 614 is bridged by a semiconductor switch unit such as switch unit 320R which is now considered to be in the off state.
- the floating cathode hanger bar such as hanger bar 310 is in fact connected to the anodes on either side by the electrolyte, which is illustrat ⁇ ed by way of resistors 602, 604, 606 and 608, and a capacitor connected across gap 614 can be charged to 0.25V.
- a gap 612 between an anode hanger bar and the lug connected to anode hanger bar can be charged to 0.25V.
- anodes and cathodes in an electrorefining system may be controlled as disclosed in association with Figure 5.
- the voltage of the capacitor 516 of Figure 5 will fall as capacitor 516 is discharged.
- control unit 500 will have a supply available to it in the range of, for example, 0.25V to 0.15V. It will be appreciated by those skilled in the art that this is a perfectly adequate voltage for operating a switched-mode boost converter from which may be derived supplies of a higher volt ⁇ age .
- Figure 6B illustrates voltage available for charging the capacitor of Figure 5 in electrowinning in one embodiment of the invention.
- Figure 6B repeats the description in associa ⁇ tion with Figure 6A for an electrowinning system.
- cathodes such as cathode 670 con ⁇ nected to a cathode busbar.
- an- odes such as anode 672 connected to an anode busbar.
- a gap 664 represents an electrical isolation between a hanger bar of a cathode and the lug connected to the hanger bar.
- a gap 662 represents an electrical isola ⁇ tion between a hanger bar of an anode and the lug con- nected to the hanger bar.
- the floating cathode hanger bar such as hanger bar 310 is connected to the anodes on either side by the electrolyte, which is illustrat- ed by way of resistors 652, 654, 656 and 658.
- the main difference between Figures 6A and 6B is that the an ⁇ odes such as anode 672 will be at a voltage of about 2.0V with respect to the cathodes such as cathode 670. Hence, 2.0V may be available across gaps 664 and 662 for charging capacitor 516.
- the anode and cathode in an electrowinning cell are of dissimilar metals and hence a net over potential will exist be ⁇ tween the cathode and anode which will tend to dimin- ish the voltage available so that the voltage availa ⁇ ble may be reduced to the same value as that available in the case of electrorefining .
- protection for the associated electrode is ob- tained by switching off switch unit 512 when current strength rises to an unacceptable level. In this case the current dropped by the electrode may be picked up by other electrodes.
- a margin of overcurrent may be allowed on all electrodes. Without the margin there may be a cascade effect on electrodes and all electrodes will turn off.
- the sum of all the cathode currents and the sum of all the anode currents must equal the value of the current at a central rectifier providing power supply to the electrolyte tanks of the tankhouse in series. This may imply that if a cathode or anode ceases to conduct for some reason, for example, due to a bad contact between a lug and its busbar, that the target current for all the anodes and all the cathodes must be altered.
- the al- tering of target current for all anodes and cathodes in a tank is achieved by issuing a control signal from a tankhouse control unit to control units associated with electrodes such as control unit 500.
- Control unit 500 may then transmit a control signal to switch units such as switch unit 512, which in turn controls power MOSFET drain current in a plurality of power MOSFETs based on the control signal.
- the control signal may be a gate voltage for the plurality of power MOSFETs.
- Figure 7 shows alternative versions of a switch which does not require a split hanger bar.
- associat- ed with hanger bar 700 there is a shoe 702, which has a switch area 704 that comprises a plurality of elec ⁇ trical switch components.
- Hanger bar 734 has a notch (not shown) cut in the hanger bar 734 to maintain hanger bar 734 is to remain at the same elevation as it occupied prior to the fitting of a shoe or cuff.
- the elec- trical switch components are controlled by a control unit such as control unit 500.
- the electrical switch components may be power MOSFETs.
- Figure 8A shows an active-contact version of a switch based on the power semiconductor device of Figure 5 in one embodiment of the invention.
- Figure 8A there is a portion of hanger bar 800.
- Below hanger bar 800 there is a switch component area 810 compris ⁇ ing a plurality of electrical switch components.
- the switch component area 810 may be attached to hanger bar 800.
- Figure 8B shows an active-contact version of a switch based on the power semiconductor device of Figure 5 in one embodiment of the invention.
- Figure 8B there is a portion of hanger bar 800.
- the switch component ar- ea 812 may be a layer in a busbar 820 connected elec ⁇ trically to hanger bar 800.
- Figure 8C shows an active-contact version of a switch based on the power semiconductor device of Figure 5 in one embodiment of the invention.
- switch component area 812 is controlled by a control unit 830 which is associated with an electrolyte tank (not shown) .
- Control unit is functionally similar to control unit 500 of Figure 5.
- the hanger bar 800 may be removed so that control unit 830 remains associated with the electro ⁇ lyte tank.
- the control circuit may be op ⁇ erated from a supply from the tank side rather than from a storage element located on the electrode. It will be seen that in this configuration the anodes and cathodes need no modification.
- Figure 9 illustrates an electrical circuit comprising power supply from a busbar, a power semi- conductor device for switching, and an anode and a cathode, a capacitor, and a control unit with power supply from the busbar in one embodiment of the inven ⁇ tion.
- the control unit 500 is supplied power from busbar 910 instead of lug 510.
- hanger bar 520 does not have separate electrically in ⁇ sulated lugs, but hanger bar 520 is directly connected to busbar 910.
- Switch unit 512 is arranged to be a switch component area in busbar 910 that electrical current between busbar 910 and hanger bar 520 crosses when switch unit 512 is switched on or switch 512 is in power MOSFET linear regime. The switch area is at a contact interface between busbar 910 and hanger bar 520.
- Switch unit 512 may be a power MOSFET.
- Busbar 910 is a positive voltage source in Figure 9.
- inventions described hereinbefore may be used in any combination with each other. Several of the embodiments may be combined to ⁇ gether to form a further embodiment of the invention.
- a system or an apparatus to which the invention is related may comprise at least one of the embodiments of the invention described hereinbefore.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14734523.5A EP3004428B1 (fr) | 2013-06-05 | 2014-05-27 | Appareil pour la protection d'anodes et de cathodes dans un système de cellules d'électrolyse |
MX2015016637A MX362416B (es) | 2013-06-05 | 2014-05-27 | Aparato para la proteccion de anodos y catodos en un sistema de celdas de electrolisis. |
ES14734523.5T ES2634658T3 (es) | 2013-06-05 | 2014-05-27 | Aparato para la protección de ánodos y cátodos en un sistema de celdas de electrólisis |
US14/895,694 US10400344B2 (en) | 2013-06-05 | 2014-05-30 | Apparatus for protection of anodes and cathodes in a system of electrolysis cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20135626 | 2013-06-05 | ||
FI20135626A FI124587B (en) | 2013-06-05 | 2013-06-05 | A device for protecting anodes and cathodes in an electrolytic cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014195572A1 true WO2014195572A1 (fr) | 2014-12-11 |
Family
ID=51059487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI2014/050413 WO2014195572A1 (fr) | 2013-06-05 | 2014-05-27 | Appareil pour la protection d'anodes et de cathodes dans un système de cellules d'électrolyse |
Country Status (7)
Country | Link |
---|---|
US (1) | US10400344B2 (fr) |
EP (1) | EP3004428B1 (fr) |
CL (1) | CL2015003534A1 (fr) |
ES (1) | ES2634658T3 (fr) |
FI (1) | FI124587B (fr) |
MX (1) | MX362416B (fr) |
WO (1) | WO2014195572A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20151809A1 (it) * | 2015-07-01 | 2017-01-01 | Industrie De Nora Spa | Struttura di elettrodo per elettrodeposizione di metalli non ferrosi |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI687550B (zh) * | 2014-08-01 | 2020-03-11 | 義大利商第諾拉工業公司 | 金屬電煉電解槽之單位電池及其陽極元件,和從電解浴初步萃取金屬用之電解槽,以及從含亞銅離子和/或銅離子之溶液取得銅之製法 |
GB201518048D0 (en) | 2015-10-12 | 2015-11-25 | Barker Michael H And Grant Duncan A | Anode for a metal electrowinning process |
GB201607716D0 (en) | 2016-05-04 | 2016-06-15 | Barker Michael H | Equipment for decopperising an electrorefining process and way of operating the process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060213766A1 (en) * | 2004-03-17 | 2006-09-28 | Kennecott Utah Copper Corporation | Wireless Monitoring of Two or More Electrolytic Cells Using One Monitoring Device |
WO2011123896A1 (fr) * | 2010-04-07 | 2011-10-13 | Mipac Pty Ltd | Dispositif de surveillance |
WO2012020243A1 (fr) * | 2010-08-11 | 2012-02-16 | Duncan Grant | Appareil destiné à être utilisé en électroaffinage et en électroextraction |
WO2012087400A1 (fr) * | 2010-12-23 | 2012-06-28 | Ge-Hitachi Nuclear Energy Americas Llc | Ensembles de cathode modulaires et procédé d'utilisation de ceux-ci pour une réduction électrochimique |
WO2013038352A1 (fr) * | 2011-09-16 | 2013-03-21 | Labra Vargas Aldo Ivan | Système composé d'un moyen de suspension d'anode et d'une anode à géométrie améliorée |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2508523A (en) | 1946-09-11 | 1950-05-23 | Krebs & Co | Device for the protection of the cathodes of electrolytic cells |
CH318436A (it) | 1953-03-02 | 1957-01-15 | Oronzio De Nora Impianti | Procedimento di protezione dei catodi di celle elettrolitiche e relativo dispositivo per la sua attuazione |
US4391695A (en) | 1981-02-03 | 1983-07-05 | Conradty Gmbh Metallelektroden Kg | Coated metal anode or the electrolytic recovery of metals |
DE3640020C1 (de) * | 1986-11-24 | 1988-02-18 | Heraeus Elektroden | Elektrolysezelle zur elektrolytischen Abscheidung von Metallen |
US6398939B1 (en) | 2001-03-09 | 2002-06-04 | Phelps Dodge Corporation | Method and apparatus for controlling flow in an electrodeposition process |
AU2005224673B2 (en) * | 2004-03-17 | 2010-03-04 | Kennecott Utah Copper Llc | Wireless electrolytic cell monitoring powered by ultra low bus voltage |
US20080210552A1 (en) * | 2007-03-01 | 2008-09-04 | Giovanni Del Signore | Small portable electrolytic sodium hypochlorite on site generators |
JP2008280564A (ja) | 2007-05-09 | 2008-11-20 | Koji Sasaki | 電気分解装置 |
FI124249B (fi) * | 2007-11-30 | 2014-05-15 | Outotec Oyj | Menetelmä ja järjestely elektrolyysialtaan elektrolyysiprosessin tilan seuraamiseksi ja esittämiseksi |
-
2013
- 2013-06-05 FI FI20135626A patent/FI124587B/en not_active IP Right Cessation
-
2014
- 2014-05-27 MX MX2015016637A patent/MX362416B/es active IP Right Grant
- 2014-05-27 WO PCT/FI2014/050413 patent/WO2014195572A1/fr active Application Filing
- 2014-05-27 ES ES14734523.5T patent/ES2634658T3/es active Active
- 2014-05-27 EP EP14734523.5A patent/EP3004428B1/fr active Active
- 2014-05-30 US US14/895,694 patent/US10400344B2/en active Active
-
2015
- 2015-12-03 CL CL2015003534A patent/CL2015003534A1/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060213766A1 (en) * | 2004-03-17 | 2006-09-28 | Kennecott Utah Copper Corporation | Wireless Monitoring of Two or More Electrolytic Cells Using One Monitoring Device |
WO2011123896A1 (fr) * | 2010-04-07 | 2011-10-13 | Mipac Pty Ltd | Dispositif de surveillance |
WO2012020243A1 (fr) * | 2010-08-11 | 2012-02-16 | Duncan Grant | Appareil destiné à être utilisé en électroaffinage et en électroextraction |
WO2012087400A1 (fr) * | 2010-12-23 | 2012-06-28 | Ge-Hitachi Nuclear Energy Americas Llc | Ensembles de cathode modulaires et procédé d'utilisation de ceux-ci pour une réduction électrochimique |
WO2013038352A1 (fr) * | 2011-09-16 | 2013-03-21 | Labra Vargas Aldo Ivan | Système composé d'un moyen de suspension d'anode et d'une anode à géométrie améliorée |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20151809A1 (it) * | 2015-07-01 | 2017-01-01 | Industrie De Nora Spa | Struttura di elettrodo per elettrodeposizione di metalli non ferrosi |
WO2017001612A1 (fr) * | 2015-07-01 | 2017-01-05 | Industrie De Nora S.P.A. | Structure d'électrode pour l'électrodéposition de métaux non ferreux |
CN107709623A (zh) * | 2015-07-01 | 2018-02-16 | 德诺拉工业有限公司 | 用于有色金属的电沉积的电极结构 |
US20180179652A1 (en) * | 2015-07-01 | 2018-06-28 | Industrie De Nora S.P.A. | Electrode structure for the electrodeposition of non-ferrous metals |
TWI692548B (zh) * | 2015-07-01 | 2020-05-01 | 義大利商第諾拉工業公司 | 金屬電沉積用之電極結構 |
US10655236B2 (en) | 2015-07-01 | 2020-05-19 | Industrie De Nora S.P.A. | Electrode structure for the electrodeposition of non-ferrous metals |
EA035731B1 (ru) * | 2015-07-01 | 2020-07-31 | Индустрие Де Нора С.П.А. | Электродная конструкция для электроосаждения цветных металлов |
Also Published As
Publication number | Publication date |
---|---|
FI20135626A (fi) | 2014-10-31 |
US10400344B2 (en) | 2019-09-03 |
EP3004428A1 (fr) | 2016-04-13 |
US20160138177A1 (en) | 2016-05-19 |
FI124587B (en) | 2014-10-31 |
EP3004428B1 (fr) | 2017-05-10 |
ES2634658T3 (es) | 2017-09-28 |
MX362416B (es) | 2019-01-16 |
CL2015003534A1 (es) | 2016-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014195572A1 (fr) | Appareil pour la protection d'anodes et de cathodes dans un système de cellules d'électrolyse | |
CN103108997B (zh) | 用于在电精炼和电解冶金中使用的装置 | |
US9692225B2 (en) | Hybrid DC breaker | |
CN108427038A (zh) | 一种多路输入光伏逆变器对地绝缘阻抗检测方法 | |
US10309023B2 (en) | Anode structure for metal electrowinning cells | |
US20140118982A1 (en) | Switch arrangements and battery arrangements | |
JP2013533390A5 (fr) | ||
WO2014131945A1 (fr) | Mesure du courant électrique dans une électrode individuelle d'un système d'électrolyse | |
CN112928353A (zh) | 一种动力电池串联化成分容设备 | |
CN102368630A (zh) | 一种两组直流电源的无缝无环流切换系统 | |
EP3367405A1 (fr) | Dispositif de protection | |
US12068596B2 (en) | Short-circuit mitigation device | |
US20140295243A1 (en) | Connector for producing an electrically conductive connection between at least three terminals of battery cells | |
CN209764998U (zh) | 一种蓄电池组绝缘下降定位监察装置 | |
CN113567502A (zh) | 电子开关电路中的湿气检测 | |
CN214542335U (zh) | 一种动力电池串联化成设备 | |
CN208142291U (zh) | 一种新型聚合物锂电池 | |
CN214542334U (zh) | 一种动力电池串联化成分容设备 | |
CN219303744U (zh) | 锂电池防冷凝水控制系统 | |
CN114415500A (zh) | 一种铝箔末级化成电解电源的反馈系统及其反馈方法 | |
SE527979C2 (sv) | Ändelektrod för bipolärt batteri, biolärt batteri och förfarande för framställning av ändelektrod | |
CN114285013A (zh) | 一种用于bess系统的电力电子开关装置的实现方法 | |
CN113571779A (zh) | 一种双端子结构高倍率ups铅酸电池 | |
CN117678143A (zh) | 备用电源系统、移动体、备用电源系统的控制方法以及程序 | |
SU1033582A1 (ru) | Установка дл нанесени гальванических покрытий |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14734523 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14895694 Country of ref document: US Ref document number: MX/A/2015/016637 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014734523 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014734523 Country of ref document: EP |