WO2014194850A1 - 发现信号检测方法和设备 - Google Patents

发现信号检测方法和设备 Download PDF

Info

Publication number
WO2014194850A1
WO2014194850A1 PCT/CN2014/079314 CN2014079314W WO2014194850A1 WO 2014194850 A1 WO2014194850 A1 WO 2014194850A1 CN 2014079314 W CN2014079314 W CN 2014079314W WO 2014194850 A1 WO2014194850 A1 WO 2014194850A1
Authority
WO
WIPO (PCT)
Prior art keywords
target area
information
physical resource
discovery signal
discovery
Prior art date
Application number
PCT/CN2014/079314
Other languages
English (en)
French (fr)
Inventor
陈文洪
高秋彬
赵锐
彭莹
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014194850A1 publication Critical patent/WO2014194850A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and device for detecting a discovery signal. Background technique
  • FIG. 1 the data communication process between two User Equipments (UEs) is shown in FIG. 1. Services such as voice and data of the two UEs interact through their respective Evolved NodeBs (eNBs) and the core network.
  • eNBs Evolved NodeBs
  • a device-to-device that is, a UE direct-through technology, refers to a method in which a neighboring UE can transmit data through a direct link in a short range without using a central node (ie, a base station). Forward, as shown in Figure 2.
  • D2D technology's short-range communication characteristics and direct communication methods have the following advantages:
  • the UE short-distance direct communication mode can achieve higher data rate, lower delay and lower power consumption; the use of widely distributed UEs in the network and the short-distance characteristics of the D2D communication link can realize efficient use of spectrum resources;
  • the direct communication method of D2D can adapt to the local data sharing requirements of services such as wireless peer-to-peer (P2P), and provide data services with flexible adaptability;
  • P2P wireless peer-to-peer
  • LTE D2D direct communication can utilize a large number of widely distributed UEs in the network to extend the coverage of the network.
  • Long Term Evolution (LTE) D2D technology refers to the D2D discovery and communication process controlled by the LTE network operating in the LTE licensed band.
  • the advantages of D2D technology can be fully utilized, and the control of LTE network can also overcome some problems of traditional D2D technology, such as uncontrollable interference.
  • the introduction of LTE D2D features will enable LTE technology to evolve from pure wireless mobile cellular communication technology to Universal Connectivity Technology.
  • the discovery between the D2D User Equipment (UE) is implemented by the discovery signal.
  • the discovery signal can carry certain identification information, such as device information, application information, service type, etc., and the UE is found to identify the discovered UE through the information.
  • the discovery signal is generally transmitted in a dedicated discovery subframe, and the discovery signals of different UEs may occupy different frequency domain resources.
  • the discovery resource can be scheduled by the base station, for example, which subframes are configured as discovery subframes, and which frequency domain resources can be used to transmit discovery signals.
  • the discovery signal needs to be guaranteed to be found within the LTE network coverage, and it is also necessary to ensure that there is no network coverage.
  • Figure 3 - Figure 5 show three typical discovery scenarios: intra-cell discovery, inter-cell discovery, and no network coverage discovery.
  • the UE obtains the synchronization with the network side, and the UE can obtain mutual synchronization according to the synchronization with the network side to perform mutual discovery on the synchronized discovery resources, and discover that the used resources can also be Obtained on the network side.
  • the two cells may be out of synchronization, if they are synchronized with the network side, the two UEs may be out of synchronization, and the discovery cannot be directly performed, and the UE may not know.
  • Discovery resources used by neighboring cells since the two cells may be out of synchronization, if they are synchronized with the network side, the two UEs may be out of synchronization, and the discovery cannot be directly performed, and the UE may not know. Discovery resources used by neighboring cells.
  • the UEs are also asynchronous, and need to be synchronized first to discover.
  • the role of the cluster head in synchronization is similar to that of the base station when there is network coverage.
  • An embodiment of the present invention provides a method and a device for detecting a discovery signal, which are used to find out how the UE detects when the UE and the discovered UE are not synchronized, or when the UE is found to be in the network coverage. The problem of the UE's discovery signal was found.
  • a discovery signal detection method comprising:
  • the UE detects that the synchronization signal of the neighboring area is a neighboring cell or a neighboring cluster;
  • the UE is selected to select a target area from the neighboring areas corresponding to the detected synchronization signals
  • the discovery UE determines physical resource information used by the UE in each target area to send a discovery signal
  • the UE And determining, by the UE, the discovery signal transmission timing information of the UE in the target area according to the downlink synchronization timing information of the target area, determining the discovery signal transmission timing information, and the UE used in the target area to send the discovery signal.
  • a physical resource corresponding to the physical resource information, and the discovery signal sent by the UE is detected on the physical resource.
  • a UE, the UE includes:
  • a synchronization signal detecting unit configured to detect a synchronization signal of a neighboring area, where the neighboring area is a neighboring cell or a neighboring cluster;
  • a target area selecting unit configured to select a target area from adjacent areas corresponding to the detected synchronization signals
  • a physical resource determining unit configured to determine physical resource information used by the UE in each target area to send a discovery signal
  • a discovery signal detecting unit configured to determine, according to downlink synchronization timing information of the target area, discovery signal transmission timing information of the UE in the target area, determine the discovery signal transmission timing information, and send the UE in the target area
  • the physical resource corresponding to the physical resource information used by the discovery signal, and the discovery signal sent by the UE is detected on the physical resource.
  • the UE is found to detect the synchronization signal of the neighboring area, and all or part of the neighboring areas are selected as the target area from the neighboring areas corresponding to the detected synchronization signals, and the UE in each target area is determined to send the discovery signal.
  • the used physical resource information for each target area, determining the discovery signal transmission timing information of the UE in the target area according to the downlink synchronization timing information of the target area, determining the discovery signal transmission timing information, and sending the UE in the target area
  • the physical resource corresponding to the physical resource information used by the discovery signal is detected, and the discovery signal sent by the UE in the target area is detected on the physical resource.
  • the UE and the discovered UE belong to two cells that are not synchronized or the UE is found to be in the network coverage
  • the UE is found to be able to obtain the discovered UE by detecting the synchronization signal of the cell where the UE is found.
  • the discovery signal sends timing information, and then determines the physical resource used by the discovered UE to send the discovery signal according to the discovery signal transmission timing information, and detects the discovery signal sent by the discovered UE on the physical resource, so that the solution solves the discovery of the UE.
  • the two UEs that are found to be unsynchronized by the UE or the discovered UE and the discovered UE are not within the network coverage, find out how the UE detects the discovery signal of the discovered UE.
  • FIG. 1 is a schematic diagram of data flow of UE communication in a cellular network in the prior art
  • FIG. 2 is a schematic diagram of data flow of UE direct connection communication in the prior art
  • FIG. 3 is a schematic diagram of UE discovery in a cell in the prior art
  • FIG. 5 is a schematic diagram of UE discovery without network coverage in the prior art
  • FIG. 6 is a schematic flowchart of a method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of physical resources used to determine discovery signals of UEs in different cells according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another device according to an embodiment of the present invention. detailed description In order to solve the problem of how the UE detects the discovery signal of the discovered UE when the UE is found to be unsynchronized or the UE is found to be out of synchronization, and the UE is found to be in the network coverage, the embodiment of the present invention provides a Discover signal detection methods.
  • the discovery signal detection method provided by the embodiment of the present invention includes the following steps:
  • Step 60 The UE detects the synchronization signal of the neighboring area, where the neighboring area is a neighboring cell or a neighboring cluster.
  • the synchronization signal may include a Primary Synchronized Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronized Signal
  • SSS Secondary Synchronization Signal
  • the neighboring cell is a neighboring cell
  • the synchronization signal of the neighboring cell is sent by the base station of the neighboring cell.
  • the synchronization signal of the neighboring cluster is sent by the UE as the cluster head in the neighboring cluster.
  • a cluster refers to an area composed of a group of UEs that are temporally synchronized and geographically adjacent to each other, and a UE that transmits a synchronization signal in a configured cluster is a cluster head of the cluster.
  • the UE may be configured to determine downlink synchronization timing information of the corresponding neighboring area according to the detected synchronization signal of each neighboring area, where the downlink synchronization timing information includes at least information about a starting position of the subframe, and may also include information such as a subframe number and a frame number.
  • Step 61 The UE selects all or part of the neighboring areas from the neighboring areas corresponding to the detected synchronization signals as the target area.
  • Step 62 The UE is determined to determine the physical resource information used by the UE in each target area to send the discovery signal.
  • the signal transmission timing information is used to determine the physical resource corresponding to the physical resource information used by the UE in the target area to transmit the discovery signal, and the discovery signal sent by the UE is detected on the physical resource.
  • the UE finds that some neighboring areas are selected as the target areas from the neighboring areas corresponding to the detected synchronization signals, and the specific implementation may be as follows:
  • the detected synchronizations are A part of the adjacent area corresponding to the signal is selected as the target area.
  • the above target area selection principle can be:
  • the neighboring area with the synchronization signal receiving strength or the downlink RSRP strength greater than the preset threshold is selected as the target area, and the threshold may be preset or indicated by the network side device of the cell where the UE is located or the cluster head of the cluster in which the UE is located;
  • the preset threshold is a value not less than 0; or,
  • the difference between the received signal strength is within the set range as the target area; or the neighboring area with the largest downlink RSRP strength and the difference between the downlink RSRP strength and the downlink RSRP strength of the adjacent area are within the set range
  • the area is used as the target area; the setting range may be specifically within a certain numerical interval, or greater than a certain value, or not less than a certain value, etc.; or, the setting range may be preset or by discovering a network of a cell in which the UE is located Indicate the side device or the cluster head of the cluster;
  • the setting range may be within a certain numerical interval or greater than a certain value. , or not less than a certain value, etc.; the setting range may be preset or indicated by the cluster side of the network side device or the cluster in which the cell in which the UE is located is found.
  • the UE determines that the UE uses the physical resource information used by the UE in each target area to send the discovery signal, and specifically includes at least one of the following solutions:
  • Solution 1 The UE receives the indication information of the physical resource used by the UE in the one or more areas of the serving cell or the cluster head of the cluster to send the discovery signal, and obtains the UE in each target area from the indication information. Sending physical resource information used by the discovery signal;
  • the indication information includes the identifier information of one or more areas and the physical resource information used by the UE corresponding to each identifier information to send a discovery signal, and obtains a discovery signal by the UE in each target area from the indication information.
  • the physical resource information used can be implemented as follows:
  • the identification information of the corresponding target area is obtained from the detected synchronization signal of each target area, and the physical resource information used by the UE corresponding to the identification information of each target area to transmit the discovery signal is read from the received indication information.
  • Solution 2 The UE obtains the downlink broadcast information of the corresponding target area according to the downlink synchronization timing information of each target area, and obtains the physical resource information used by the UE in the corresponding target area to send the discovery signal from the received downlink broadcast information.
  • the UE is configured to receive the downlink broadcast information of the corresponding target area according to the downlink synchronization timing information of each target area, and the specific implementation may be as follows:
  • the UE determines, according to the downlink synchronization timing information and the Physical Broadcasting Channel (PBCH) information of each target area, the resource location of receiving the downlink broadcast information of the corresponding target area, according to the resource location and the detected corresponding target area.
  • the identification information of the target area in the synchronization signal receives downlink broadcast information corresponding to the target area.
  • PBCH Physical Broadcasting Channel
  • Solution 3 The UE determines the physical resource information used by the UE to send the discovery signal to the UE in each target area.
  • Option 1 - Scheme 3 can be used separately, that is, through one of the schemes to obtain complete physical resource information, It is a combination of multiple schemes to obtain complete physical resource information. For example, part of the physical resource information (such as a subframe) can be obtained through scheme 1, and other parts of the physical resource information are obtained through scheme 3 (such as bandwidth).
  • the discovery signal sending timing information of the UE in the target area is determined according to the downlink synchronization timing information of the target area, and the specific implementation may be as follows:
  • the discovery signal transmission timing information of the UE in the target area for example, starting the subframe in the downlink synchronization timing information of the target area.
  • the position is added to the timing offset to obtain a subframe start position in the target area, that is, the discovery signal transmission timing information of the UE in the target area includes a subframe start position in the target area.
  • the timing offset may be a value greater than 0 or less than 0, and the timing offset may be preset or indicated by a network side device of the cell in which the UE is located or a cluster head of the cluster in which the UE is located.
  • the discovery signal transmission timing information includes at least information about a start position of the subframe; the physical resource information includes at least a subframe number and a bandwidth; and in step 63, determining the discovery signal transmission timing information and the UE in the target area sending the discovery signal
  • the physical resources corresponding to the physical resource information used may be implemented as follows:
  • Determining by using the subframe start position included in the discovery signal transmission timing information as a reference, determining a subframe set corresponding to the subframe number included in the physical resource information used by the UE in the target area to transmit the discovery signal, and using the subframe set
  • the physical resource block (PRB) in the bandwidth included in the physical resource information is determined as the physical resource corresponding to the discovery signal transmission timing information and the physical resource information used by the UE in the target area to transmit the discovery signal.
  • PRB physical resource block
  • the subframe set corresponding to the subframe number included in the physical resource information used by the UE in the target area to transmit the discovery signal is ⁇ 3, 4, 5 ⁇ , and the PHY used by the UE in the target area to send the discovery signal
  • the resource information includes a bandwidth of 10-100 MHz, and the PRB in 10-100 MHz in subframe 3, the PRB in 10-100 MHz in subframe 4, and the PRB in 10-1000 MHz in subframe 5 are determined as
  • the discovery signal transmission timing information is a physical resource corresponding to the physical resource information used by the UE in the target area to transmit the discovery signal.
  • the downlink synchronization timing information and the discovery signal transmission timing information may further include information such as a subframe number and a frame number, and the physical resource information used for transmitting the discovery signal may further include information such as a transmission period.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • UE A is a discovery UE
  • UE B is a discovered UE
  • respective service cells of UE A and UE B are cell A and cell B, respectively, and cells A and B are asynchronous.
  • Step 1 UE B acquires the discovery signal transmission timing according to the downlink synchronization timing of its serving cell (here assumed to be sent The current signal transmission timing and the downlink synchronization timing of the serving cell B have an offset of T), and the physical resource information used for transmitting the discovery signal is obtained from the downlink broadcast signal of the serving cell B, including the subframe index, the transmission period, and the bandwidth. information.
  • the UE B selects a resource unit on the bandwidth in the subframe corresponding to the subframe index, and periodically sends a discovery signal according to the sending period on the selected resource unit.
  • Step 2 UE A detects downlink synchronization signals sent by surrounding cells, and obtains downlink synchronization timing information of surrounding cells A, B, C, and D according to the detected downlink synchronization signals, including subframes of cells, B, C, and D. Start position (time) and subframe number and frame number information.
  • the process of this step is similar to the process of detecting a multi-cell synchronization signal in the current LTE system.
  • Step 3 UE A selects a cell with an RSRP strength higher than a preset value as a target cell according to the downlink RSRP strength of the measured cells in the cells A, B, C, and D, and assumes the selected target cell. For cells A, B, C.
  • Step 4 The UE A determines, according to the downlink synchronization timing information of each target cell and the bandwidth included in the PBCH, the resource location of receiving the downlink broadcast information of the corresponding target cell. And combining the cell identifier (Cell lD) of each target cell obtained during synchronization signal detection, receiving and detecting downlink broadcast information of each target cell.
  • the UE A obtains the physical resource information used by the UE in the corresponding target cell to send the discovery signal, including the subframe index, the bandwidth information, the sending period, and the like, from the downlink broadcast information of each target cell.
  • Step 5 For each target cell, B, C, the UE obtains the discovery signal transmission timing information of the UE in the target cell according to the downlink synchronization timing information of the target cell (assuming that the discovery signal transmission timing and the downlink synchronization timing of the serving cell are Offset of T).
  • the UE A determines the physical resource information (including the subframe index, the sending period, and the bandwidth information) used by the UE in the target cell to send the discovery signal, and the discovery signal sending timing information of the UE in the target cell, and determines the target cell.
  • the UE transmits the physical resource used by the discovery signal, and detects the discovery signal sent by the UE in the target cell on the physical resource, as shown in FIG. 7 .
  • Step 6 The UE A detects the discovery signal sent by the UE B on the physical resource used by the UE in the cell B to send the discovery signal, and performs the identification of the UE B.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • both UE A and the discovered UE B are outside the network coverage, and UE A and UE B respectively detect synchronization signals of two different clusters and B, and synchronize with other UEs in clusters A and B. .
  • Step 1 UE B uses the downlink synchronization timing of the cluster in which it is located as the discovery signal transmission timing, and periodically transmits the discovery signal on the predefined physical resources.
  • the predefined physical resources include the subframe used for the discovery signal and the occupied bandwidth, and are the same predefined in UE A and UE B.
  • Step 2 UE A detects a synchronization signal sent by the UE as a cluster head in each cluster, according to the detected synchronization.
  • the signal obtains downlink synchronization timing information of the corresponding cluster.
  • the process of this step is similar to the process of detecting a multi-cell synchronization signal in the current LTE system.
  • Step 3 UE A selects a part of the cluster as the target cluster from the clusters corresponding to the detected synchronization signals.
  • the specific principle is to select a cluster with the highest receiving strength of the synchronization signal, and a cluster whose synchronization signal receiving strength and the synchronization signal receiving strength of the cluster do not exceed the set threshold as a target cluster, and the threshold is defined in advance at the UE side. (for example, 6dB).
  • the target cluster contains only clusters A and B.
  • Step 4 The UE A uses the predefined physical resource information as the physical resource information used by the UE in each target cluster to send the discovery signal, that is, the fixed subframe and the bandwidth.
  • Step 5 For each target cluster, UE A uses the downlink synchronization timing information of the target cluster as the discovery signal transmission timing of the UE in the target cluster, and combines the physical resource information used by the UE in the target cluster to send the discovery signal, including the sub- Frame and bandwidth, etc., determining a physical resource used by the UE in the target cluster to send a discovery signal, and detecting a discovery signal sent by the UE in the target cluster on the physical resource, and specifically determining a physical resource used by the discovery signal. 7 is similar.
  • Step 6 UE A detects the discovery signal of UE B on the physical resource used by the UE in the cluster B to send the discovery signal, and performs the identification of UE B.
  • an embodiment of the present invention provides a UE, where the UE includes:
  • a synchronization signal detecting unit 80 configured to detect a synchronization signal of a neighboring area, where the neighboring area is a neighboring cell or a neighboring cluster;
  • the target area selecting unit 81 is configured to select all or part of the neighboring areas from the adjacent areas corresponding to the detected synchronization signals as the target area;
  • the physical resource determining unit 82 is configured to determine physical resource information used by the UE in each target area to send the discovery signal.
  • the discovery signal detecting unit 83 is configured to determine discovery signal transmission timing information of the UE in the target area according to the downlink synchronization timing information of the target area, and determine the discovery signal transmission timing information and the UE in the target area.
  • the physical resource corresponding to the physical resource information used by the discovery signal is sent, and the discovery signal sent by the UE is detected on the physical resource.
  • the target area selection unit 81 is configured to:
  • the adjacent proximity of each detected synchronization signal Select a part of the neighboring area as the target area in the area.
  • the target area selection principle used by the target area selection unit 81 is: Selecting at least one adjacent area with the highest received signal strength or the highest downlink RSRP strength as the target area; or
  • the physical resource determining unit 82 includes at least one of a first determining unit, a second determining unit, and a third determining unit:
  • the first determining unit is configured to receive indication information of a physical resource used by the UE in the one or more areas of the serving cell or the cluster head of the cluster to send the discovery signal, and obtain each target from the indication information.
  • the second determining unit is configured to receive downlink broadcast information of the corresponding target area according to the downlink synchronization timing information of each target area, and obtain, by using the received downlink broadcast information, the UE used in the corresponding target area to send the discovery signal.
  • Physical resource information
  • the third determining unit is configured to determine the preset physical resource information as the physical resource information used by the UE in each target area to send the discovery signal.
  • the first determining unit is configured to:
  • the indication information of the physical resource used by the UE in the one or more areas sent by the serving cell or the cluster head of the cluster to send the discovery signal where the indication information includes the identification information of one or more areas and each identification information.
  • Corresponding UE sends physical resource information used by the discovery signal;
  • the identification information of the corresponding target area is obtained from the detected synchronization signal of each target area, and the physical resource information used by the UE corresponding to the identification information of each target area to transmit the discovery signal is read from the indication information.
  • the second determining unit is configured to:
  • the information receives the downlink broadcast information corresponding to the target area, and obtains physical resource information used by the UE in the corresponding target area to send the discovery signal from the received downlink broadcast information.
  • the discovery signal detecting unit 83 is configured to:
  • the discovery signal transmission timing information of the UE in the target area is obtained according to the downlink synchronization timing information of the target area and a preset timing offset amount.
  • the discovery signal detecting unit 83 is configured to:
  • the information that the discovery signal transmission timing information includes at least the start position of the subframe, where the physical resource information includes at least the subframe number and the bandwidth, and the start position of the subframe included in the discovery signal transmission timing information is used as a reference. Determining, by the subframe in the target area, the subframe set corresponding to the subframe number included in the physical resource information used by the discovery signal, and the physical resource block PRB in the bandwidth included in the physical resource information in the subframe set, The physical resource corresponding to the physical resource information used by the UE in the target area for transmitting the discovery signal is determined as the discovery signal transmission timing information.
  • an embodiment of the present invention provides a UE, where the UE includes: a memory 91 and a processor 92;
  • the processor 92 is configured with a computer program for executing the method flow in the embodiment of the present invention; a memory 91 for storing the code of the computer program, which may be used to configure the processor 92; 92 may include a baseband processing component, a radio frequency processing component, and the like according to actual needs, for transmitting related information.
  • processor 92 is used to:
  • Detecting a synchronization signal of a neighboring area where the neighboring area is a neighboring cell or a neighboring cluster;
  • the physical resource corresponding to the information, and the discovery signal sent by the UE is detected on the physical resource.
  • the processor 92 receives the power RSRP strength according to the detected reception strength of each synchronization signal or the detected downlink reference signal corresponding to each synchronization signal, according to a preset target region selection principle, from the detected A part of the adjacent area corresponding to each synchronization signal is selected as the target area.
  • the target area selection principle used by the processor 92 is:
  • the processor 92 receives the indication information of the physical resource used by the UE in the one or more areas of the serving cell or the cluster head of the cluster to send the discovery signal, and obtains the information in the target area from the indication information.
  • the UE sends the physical resource information used by the discovery signal, and receives the downlink broadcast information of the corresponding target area according to the downlink synchronization timing information of each target area, and obtains the discovery signal sent by the UE in the corresponding target area from the received downlink broadcast information.
  • Physical resource information used The physical resource information that is set in advance is determined as physical resource information used by the UE in each target area to transmit a discovery signal.
  • the processor 92 receives the indication information of the physical resource used by the UE in the one or more areas of the serving cell or the cluster head of the cluster to send the discovery signal, where the indication information includes one or more areas.
  • the processor 92 determines, according to the downlink synchronization timing information of each target area and the physical broadcast channel PBCH information, the resource location of receiving the downlink broadcast information of the corresponding target area, according to the resource location and the detected synchronization signal of the corresponding target area.
  • the identification information of the target area in the medium receives the downlink broadcast information corresponding to the target area, and obtains the physical resource information used by the UE in the corresponding target area to send the discovery signal from the received downlink broadcast information.
  • the processor 92 determines the downlink synchronization timing information of the target area as the discovery signal transmission timing information of the UE in the target area; or, according to the downlink synchronization timing information of the target area and a preset timing offset Obtaining discovery signal transmission timing information of the UE in the target area.
  • the processor 92 when the discovery signal transmission timing information includes at least the information of the start position of the subframe, and when the physical resource information includes at least the subframe number and the bandwidth, the subframe included in the timing information is sent by using the discovery signal. Determining, by using a starting position as a reference, a subframe set corresponding to a subframe number included in the physical resource information used by the UE in the target area to send the discovery signal, where the physical resource information in the subframe set is included in the bandwidth
  • the physical resource block PRB determines a physical resource corresponding to the discovery signal transmission timing information and the physical resource information used by the UE in the target area to transmit the discovery signal.
  • the beneficial effects of the present invention include:
  • the UE is found to detect the synchronization signal of the neighboring area, and all or part of the neighboring areas are selected as the target area from the neighboring areas corresponding to the detected synchronization signals, and the UE in each target area is determined to send the discovery signal.
  • Physical resource information used, for each target area, according to the downlink synchronization timing of the target area Determining the discovery signal transmission timing information of the UE in the target area, determining the discovery signal transmission timing information and the physical resource corresponding to the physical resource information used by the UE in the target area to send the discovery signal, and detecting the physical resource on the physical resource
  • the UE in the target area is the discovery signal sent by the UE.
  • the UE when the UE and the discovered UE belong to two cells that are not synchronized, it is found that the UE can obtain the discovery signal sending timing information of the discovered UE by detecting the synchronization signal of the cell where the UE is found, and then send according to the discovery signal.
  • the timing information determines the physical resource used by the discovered UE to send the discovery signal, and detects the discovery signal sent by the discovered UE on the physical resource; when the UE is found and the discovered UE is not under the network coverage, the UE is found to be detected by the UE.
  • the synchronization signal of the cluster in which the UE is located is found to obtain the discovery signal transmission timing information of the discovered UE, and then the physical resource used by the discovered UE to send the discovery signal is determined according to the discovery signal transmission timing information, and the discovered UE is detected on the physical resource.
  • the discovery signal shows that the solution solves the problem of how the UE detects the discovery signal of the discovered UE when the UE and the discovered UE belong to two cells that are not synchronized or when the UE is found to be in the network coverage.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种发现信号检测方法和设备,涉及无线通信领域,用于解决在发现UE和被发现UE属于不同步的两个小区或者发现UE和被发现UE没有在网络覆盖内时,发现UE如何检测被发现UE的发现信号的问题。本方案中,在发现UE和被发现UE 属于不同步的两个小区或者发现UE和被发现UE没有在网络覆盖下时,发现UE可以通过检测被发现UE所在小区的同步信号得到被发现UE的发现信号发送定时信息,进而根据发现信号发送定时信息确定被发现UE发送发现信号所使用的物理资源,并在该物理资源上检测被发现UE发送的发现信号,从而解决了发现UE如何检测被发现UE的发现信号的问题。

Description

发现信号检测方法和设备 本申请要求在 2013年 6月 7日提交中国专利局、 申请号为 201310226578.4、 发明名称 为"发现信号检测方法和设备"的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。
技术领域
本发明涉及无线通信领域, 尤其涉及一种发现信号检测方法和设备。 背景技术
传统的蜂窝通信技术中, 两个用户设备 ( User Equipment, UE )之间的数据通信流程 如图 1所示。两个 UE的语音和数据等业务经过各自驻留的演进基站( Evolved NodeB , eNB ) 以及核心网进行交互。
设备到设备(Device-to-Device, D2D ), 即 UE直通技术, 是指邻近的 UE可以在近距 离范围内通过直连链路进行数据传输的方式, 不需要通过中心节点 (即基站)进行转发, 如图 2所示。 D2D技术本身的短距离通信特点和直接通信方式使其具有如下优势:
UE近距离直接通信方式可实现较高的数据速率、 较低的延迟和较低的功耗; 利用网络中广泛分布的 UE以及 D2D通信链路的短距离特点,可以实现频谱资源的有 效利用;
D2D的直接通信方式能够适应如无线点对点 (Peer to Peer, P2P )等业务的本地数据 共享需求, 提供具有灵活适应能力的数据服务;
D2D直接通信能够利用网络中数量庞大且分布广泛的 UE以拓展网络的覆盖范围。 长期演进( Long Term Evolution, LTE ) D2D技术是指工作在 LTE授权频段上的受 LTE 网络控制的 D2D发现和通信过程。 一方面可以充分发挥 D2D技术的优势, 同时 LTE网络 的控制也可以克服传统 D2D技术的一些问题, 例如千扰不可控等。 LTE D2D特性的引入 将使 LTE技术从单纯的无线移动蜂窝通信技术向着通用连接技术(Universal Connectivity Technology ) 的方向演进。
D2D用户设备 ( User Equipment, UE ) 间的发现靠发现信号来实现, 发现信号可以携 带一定的识别信息, 比如设备信息、 应用信息、 服务类型等, 发现 UE通过这些信息来识 别被发现 UE。发现信号一般在专用的发现子帧中传输, 不同 UE的发现信号可以占用不同 的频域资源。 在有网络覆盖时, 发现资源可以由基站进行调度, 比如配置哪些子帧是发现 子帧, 哪些频域资源可以用于传输发现信号。 在没有网络覆盖时, 发现子帧和频域资源一 般是预定义好的。 发现信号需要保证在 LTE网络覆盖内能够发现, 也需要保证没有网络覆 盖情况下的发现。
图 3-图 5给出了三种典型的发现场景:小区内发现、小区间发现和无网络覆盖的发现。 对于小区内发现的情况, UE都获得了与网络侧的同步, UE可以根据各自与网络侧的同步, 获取相互间的同步从而在同步的发现资源上进行相互发现, 发现所用的资源也可以从网络 侧获得。 对于小区间发现的情况, 由于两个小区之间可能是不同步的, 如果按照各自与网 络侧的同步, 则两个 UE间可能是不同步的, 无法直接进行发现, 同时 UE也可能不知道 邻小区所用的发现资源。 对于无网络的情况, UE 间同样是异步的, 需要首先获得同步, 才能进行发现。一般无网络情况下,在一个相互临近的簇内会有一个簇头来发送同步信号, 以使周围的 UE能够通过与它的同步获得相互同步, 进而进行发现。 这里簇头在同步方面 的作用和有网络覆盖时基站的作用是类似的。
综上, 在有网络覆盖时的小区间相互发现场景中, 如果相邻小区间是不同步的, 则属 于不同小区的 UE无法通过与网络侧的同步获得相互间的同步, 因此不同小区的 UE不能 检测到彼此的发现信号。 在无网络覆盖时, 不同簇内的 UE也是不同步的, 因此不同簇内 的 UE也不能检测到彼此的发现信号。 发明内容
本发明实施例提供一种发现信号检测方法和设备, 用于解决在发现 UE和被发现 UE 属于不同步的两个小区或者发现 UE和被发现 UE没有在网络覆盖内时, 发现 UE如何检 测被发现 UE的发现信号的问题。
一种发现信号检测方法, 该方法包括:
发现 UE检测邻近区域的同步信号, 所述邻近区域为邻近小区或邻近簇;
发现 UE从检测到的各同步信号对应的邻近区域中选取目标区域;
发现 UE确定各目标区域内的 UE发送发现信号所使用的物理资源信息;
发现 UE对于各目标区域, 根据该目标区域的下行同步定时信息确定该目标区域内的 UE的发现信号发送定时信息,确定该发现信号发送定时信息和该目标区域内的 UE发送发 现信号所使用的物理资源信息对应的物理资源,在该物理资源上检测 UE发送的发现信号。
一种 UE, 该 UE包括:
同步信号检测单元, 用于检测邻近区域的同步信号, 所述邻近区域为邻近小区或邻近 簇;
目标区域选取单元, 用于从检测到的各同步信号对应的邻近区域中选取目标区域; 物理资源确定单元, 用于确定各目标区域内的 UE发送发现信号所使用的物理资源信 息;
发现信号检测单元, 用于对于各目标区域, 根据该目标区域的下行同步定时信息确定 该目标区域内的 UE的发现信号发送定时信息, 确定该发现信号发送定时信息和该目标区 域内的 UE发送发现信号所使用的物理资源信息对应的物理资源,在该物理资源上检测 UE 发送的发现信号。
本发明实施例提供的方案中, 发现 UE检测邻近区域的同步信号, 从检测到的各同步 信号对应的邻近区域中选取全部或部分邻近区域作为目标区域, 确定各目标区域内的 UE 发送发现信号所使用的物理资源信息, 对于各目标区域, 根据该目标区域的下行同步定时 信息确定该目标区域内的 UE的发现信号发送定时信息, 确定该发现信号发送定时信息和 该目标区域内的 UE发送发现信号所使用的物理资源信息对应的物理资源, 在该物理资源 上检测该目标区域内的 UE即被发现 UE发送的发现信号。 釆用本方案, 在发现 UE和被 发现 UE属于不同步的两个小区或者发现 UE和被发现 UE没有在网络覆盖下时, 发现 UE 可以通过检测被发现 UE所在小区的同步信号得到被发现 UE的发现信号发送定时信息, 进而根据发现信号发送定时信息确定被发现 UE发送发现信号所使用的物理资源, 并在该 物理资源上检测被发现 UE发送的发现信号, 可见本方案解决了在发现 UE和被发现 UE 属于不同步的两个小区或者发现 UE和被发现 UE没有在网络覆盖内时, 发现 UE如何检 测被发现 UE的发现信号的问题。 附图说明
图 1为现有技术中的蜂窝网络中 UE通信的数据流程示意图;
图 2为现有技术中的 UE直连通信的数据流程示意图;
图 3为现有技术中的小区内 UE发现示意图;
图 4为现有技术中的小区间 UE发现示意图;
图 5为现有技术中的无网络覆盖的 UE发现示意图;
图 6为本发明实施例提供的方法流程示意图;
图 7为本发明实施例中确定不同小区 UE的发现信号所用的物理资源的示意图; 图 8为本发明实施例提供的设备结构示意图;
图 9为本发明实施例提供的另一设备结构示意图。 具体实施方式 为了解决在发现 UE和被发现 UE属于不同步的两个小区或者发现 UE和被发现 UE没 有在网络覆盖内时, 发现 UE如何检测被发现 UE的发现信号的问题, 本发明实施例提供 一种发现信号检测方法。
参见图 6, 本发明实施例提供的发现信号检测方法, 包括以下步骤:
步骤 60: 发现 UE检测邻近区域的同步信号, 该邻近区域为邻近小区或邻近簇; 这里, 同步信号可以包括主同步信号( Primary Synchronized Signal, PSS )和辅同步信 号 (Secondary Synchronization Signal, SSS )。 在该邻近区域为邻近小区时, 邻近小区的同 步信号为该邻近小区的基站发送的, 在该邻近区域为邻近簇时, 邻近簇的同步信号为该邻 近簇内作为簇头的 UE发送的。 簇是指由时间上同步且位置上相互邻近的一组 UE构成的 区域, 配置的簇内发送同步信号的 UE为该簇的簇头。 发现 UE可以分别根据检测到的各 邻近区域的同步信号确定对应邻近区域的下行同步定时信息, 该下行同步定时信息至少包 括子帧起始位置的信息, 还可以包括子帧编号、 帧编号等信息。
步骤 61 : 发现 UE从检测到的各同步信号对应的邻近区域中选取全部或部分邻近区域 作为目标区域;
步骤 62: 发现 UE确定各目标区域内的 UE发送发现信号所使用的物理资源信息; 步骤 63: 发现 UE对于各目标区域, 根据该目标区域的下行同步定时信息确定该目标 区域内的 UE的发现信号发送定时信息, 确定该发现信号发送定时信息和该目标区域内的 UE发送发现信号所使用的物理资源信息对应的物理资源,在该物理资源上检测 UE发送的 发现信号。
具体的,步骤 61中, 发现 UE从检测到的各同步信号对应的邻近区域中选取部分邻近 区域作为目标区域, 具体实现可以如下:
发现 UE根据检测到的各同步信号的接收强度或者检测到的各同步信号对应的邻近区 域的下行参考信号接收功率(RSRP )强度, 按照预先设定的目标区域选取原则, 从检测到 的各同步信号对应的邻近区域中选取部分邻近区域作为目标区域。
例如, 上述目标区域选取原则可以为:
选取同步信号接收强度最大或下行 RSRP 强度最大的至少一个邻近区域作为目标区 域; 或者,
选取同步信号接收强度或下行 RSRP强度大于预设门限值的邻近区域作为目标区域, 该门限值可以预先设定或者由发现 UE所在小区的网络侧设备或所在簇的簇头进行指示; 该预设门限值为不小于 0的数值; 或者,
选取同步信号接收强度最大的邻近区域、 以及同步信号接收强度与该邻近区域的同步 信号接收强度的差值在设定范围内的邻近区域作为目标区域; 或选取下行 RSRP强度最大 的邻近区域、 以及下行 RSRP强度与该邻近区域的下行 RSRP强度的差值在设定范围内的 邻近区域作为目标区域; 该设定范围具体可是在某个数值区间内, 或大于某个数值, 或不 小于某个数值等; 或者, 该设定范围可以预先设定或者由发现 UE所在小区的网络侧设备 或所在簇的簇头进行指示;
选取下行同步定时与发现 UE的服务小区或者所在簇的下行同步定时的差值在设定范 围内的邻近区域作为目标区域;该设定范围具体可是在某个数值区间内 ,或大于某个数值, 或不小于某个数值等; 该设定范围可以预先设定或者由发现 UE所在小区的网络侧设备或 所在簇的簇头进行指示。
具体的, 步骤 62中,发现 UE确定各目标区域内的 UE发送发现信号所使用的物理资 源信息, 具体包括如下方案中的至少一个:
方案一: 发现 UE接收自身的服务小区或者所在簇的簇头发送的一个或多个区域内的 UE发送发现信号所使用的物理资源的指示信息,从该指示信息中获得各目标区域内的 UE 发送发现信号所使用的物理资源信息;
本方案中, 在上述指示信息中包含一个或多个区域的标识信息以及各标识信息对应的 UE发送发现信号所使用的物理资源信息;从该指示信息中获得各目标区域内的 UE发送发 现信号所使用的物理资源信息, 具体实现可以如下:
从检测到的各目标区域的同步信号中获取对应目标区域的标识信息, 从接收到的指示 信息中读取各目标区域的标识信息对应的 UE发送发现信号所使用的物理资源信息。
方案二: 发现 UE分别根据各目标区域的下行同步定时信息, 接收对应目标区域的下 行广播信息, 从接收到的下行广播信息中获得对应目标区域内的 UE发送发现信号所使用 的物理资源信息;
具体的, 发现 UE分别根据各目标区域的下行同步定时信息, 接收对应目标区域的下 行广播信息, 具体实现可以如下:
发现 UE 分别根据各目标区域的下行同步定时信息和物理广播信道 (Physical Broadcasting Channel, PBCH )信息, 确定接收对应目标区域的下行广播信息的资源位置, 根据该资源位置和检测到的对应目标区域的同步信号中的目标区域的标识信息, 接收对应 目标区域的下行广播信息。
方案三: 发现 UE将预先设定的物理资源信息, 确定为各目标区域内的 UE发送发现 信号所使用的物理资源信息。
方案一-方案三可以单独使用, 即通过其中一种方案获得完整的物理资源信息, 也可以 是多个方案结合使用从而获得完整的物理资源信息, 比如部分的物理资源信息(比如子帧 ) 可以通过方案一得到, 其他部分的物理资源信息通过方案三得到 (比如带宽)。
具体的, 步骤 63中,根据该目标区域的下行同步定时信息确定该目标区域内的 UE的 发现信号发送定时信息, 具体实现可以如下:
将该目标区域的下行同步定时信息确定为该目标区域内的 UE的发现信号发送定时信 息; 或者,
根据该目标区域的下行同步定时信息和预先设定的定时偏移量, 得到该目标区域内的 UE 的发现信号发送定时信息, 比如, 将该目标区域的下行同步定时信息中的子帧起始位 置与该定时偏移量相加, 得到该目标区域内的子帧起始位置, 即该目标区域内的 UE的发 现信号发送定时信息包含该目标区域内的子帧起始位置。 该定时偏移量可以是大于 0或小 于 0的数值, 该定时偏移量可以预先设定或者由发现 UE所在小区的网络侧设备或所在簇 的簇头进行指示。
具体的, 发现信号发送定时信息至少包括子帧起始位置的信息; 物理资源信息至少包 括子帧号和带宽; 步骤 63中, 确定该发现信号发送定时信息和该目标区域内的 UE发送发 现信号所使用的物理资源信息对应的物理资源, 具体实现可以如下:
以该发现信号发送定时信息包括的子帧起始位置为基准, 确定该目标区域内的 UE发 送发现信号所使用的物理资源信息包括的子帧号所对应的子帧集合, 将该子帧集合中的该 物理资源信息包括的带宽内的物理资源块( PRB ),确定为该发现信号发送定时信息和该目 标区域内的 UE发送发现信号所使用的物理资源信息对应的物理资源。 例如, 该目标区域 内的 UE发送发现信号所使用的物理资源信息包括的子帧号所对应的子帧集合为 {3,4,5} , 该目标区域内的 UE发送发现信号所使用的物理资源信息包括的带宽为 10-lOOMHz, 则将 子帧 3 中的 10-lOOMHz 内的 PRB、 子帧 4中的 10-100MHz 内的 PRB以及子帧 5 中的 10-lOOMHz内的 PRB , 确定为该发现信号发送定时信息和该目标区域内的 UE发送发现信 号所使用的物理资源信息对应的物理资源。
下行同步定时信息和发现信号发送定时信息还可以包含子帧编号和帧编号等信息, 发 送发现信号使用的物理资源信息还可以包含发送周期等信息。
下面结合具体实施例对本发明进行说明:
实施例一:
本实施例中, 假设 UE A为发现 UE, UE B为被发现 UE, UE A和 UE B各自的服务 小区分别为小区 A和小区 B , 且小区 A和 B是不同步的。
步骤一: UE B根据其服务小区的下行同步定时获取发现信号发送定时 (这里假设发 现信号发送定时和服务小区 B的下行同步定时有 T的偏移), 并从其服务小区 B的下行广 播信号中获得发送发现信号所使用的物理资源信息, 包括子帧索引、发送周期和带宽信息。 UE B在该子帧索引对应的子帧内的该带宽上选择资源单元, 并在选取的资源单元上按照 该发送周期周期性的发送发现信号。
步骤二: UE A检测周围各个小区发送的下行同步信号, 根据检测到的下行同步信号 得到周围小区 A、 B、 C、 D各自的下行同步定时信息, 包括小区 、 B、 C、 D的子帧起 始位置(时刻)以及子帧编号和帧编号信息。 该步骤的过程与目前 LTE系统中检测多小区 同步信号的过程类似。
步骤三: UE A从小区 A、 B、 C、 D中, 根据测量得到的这几个小区的下行 RSRP强 度,选择 RSRP强度高于某个预设值的小区作为目标小区,假设选取的目标小区为小区 A、 B、 C。
步骤四: UE A分别根据各目标小区的下行同步定时信息和 PBCH中包含的带宽等信 息, 确定接收对应目标小区的下行广播信息的资源位置。 并结合同步信号检测时获得的各 目标小区的小区标识(Cell lD ), 接收并检测各目标小区的下行广播信息。 UE A从各目标 小区的下行广播信息中获得对应目标小区内的 UE发送发现信号所使用的物理资源信息, 包括子帧索引、 带宽信息、 发送周期等。
步骤五: 针对各目标小区 、 B、 C, UE根据该目标小区的下行同步定时信息, 得到 该目标小区内的 UE的发现信号发送定时信息 (假设发现信号发送定时和服务小区的下行 同步定时有 T的偏移)。 UE A根据该目标小区内的 UE发送发现信号所使用的物理资源信 息(包括子帧索引、 发送周期及带宽信息), 以及该目标小区内的 UE的发现信号发送定时 信息, 确定该目标小区内的 UE发送发现信号使用的物理资源, 并在该物理资源上检测该 目标小区内的 UE发送的发现信号, 以图 7为例。
步骤六: UE A在小区 B内的 UE发送发现信号使用的物理资源上检测到 UE B发送的 发现信号, 进行 UE B的识别。
实施例二:
本实施例中, 假设发现 UE A和被发现 UE B都在网络覆盖外, UE A和 UE B各自检 测到两个不同簇 、 B的同步信号, 与簇 A、 B内的其他 UE进行了同步。
步骤一: UE B 将其所在簇的下行同步定时作为发现信号发送定时, 在预定义的物理 资源上周期性发送发现信号。 预定义的物理资源包括发现信号所用的子帧以及所占用的带 宽, 且在 UE A和 UE B中是相同的预定义。
步骤二: UE A检测周围各个簇中作为簇头的 UE发送的同步信号,根据检测到的同步 信号得到对应簇的下行同步定时信息。该步骤的过程与目前 LTE系统中检测多小区同步信 号的过程类似。
步骤三: UE A从检测到的各同步信号对应的簇中, 选择部分的簇作为目标簇。 具体 原则为选择同步信号接收强度最大的簇、 以及同步信号接收强度与该簇的同步信号接收强 度的差值不超过设定门限值的簇作为目标簇, 该门限值预先在 UE端定义(比如为 6dB )。 假设目标簇只包含簇 A和 B。
步骤四: UE A将预定义的物理资源信息,作为各个目标簇内 UE发送发现信号使用的 物理资源信息, 即 支设固定的子帧和带宽。
步骤五: 针对各个目标簇, UE A将该目标簇的下行同步定时信息作为该目标簇内 UE 的发现信号发送定时, 并结合该目标簇内 UE发送发现信号所使用的物理资源信息, 包括 子帧及带宽等, 确定该目标簇内的 UE发送发现信号使用的物理资源, 并在该物理资源上 检测该目标簇内的 UE发送的发现信号, 具体确定发现信号使用的物理资源的方法与图 7 类似。
步骤六: UE A在簇 B内的 UE发送发现信号使用的物理资源上检测到 UE B的发现信 号, 进行 UE B的识别。
参见图 8, 本发明实施例提供一种 UE, 该 UE包括:
同步信号检测单元 80, 用于检测邻近区域的同步信号, 所述邻近区域为邻近小区或邻 近簇;
目标区域选取单元 81 ,用于从检测到的各同步信号对应的邻近区域中选取全部或部分 邻近区域作为目标区域;
物理资源确定单元 82, 用于确定各目标区域内的 UE发送发现信号所使用的物理资源 信息;
发现信号检测单元 83 , 用于对于各目标区域, 根据该目标区域的下行同步定时信息确 定该目标区域内的 UE的发现信号发送定时信息, 确定该发现信号发送定时信息和该目标 区域内的 UE发送发现信号所使用的物理资源信息对应的物理资源, 在该物理资源上检测 UE发送的发现信号。
进一步的, 所述目标区域选取单元 81用于:
根据检测到的各同步信号的接收强度或者检测到的各同步信号对应的邻近区域的下 行参考信号接收功率 RSRP强度, 按照预先设定的目标区域选取原则, 从检测到的各同步 信号对应的邻近区域中选取部分邻近区域作为目标区域。
进一步的, 所述目标区域选取单元 81使用的目标区域选取原则为: 选取同步信号接收强度最大或下行 RSRP 强度最大的至少一个邻近区域作为目标区 域; 或者,
选取同步信号接收强度或下行 RSRP强度大于预设门限值的邻近区域作为目标区域; 或者,
选取同步信号接收强度或下行 RSRP强度最大的邻近区域、 以及与该邻近区域的同步 信号接收强度或下行 RSRP强度的差值在设定范围内的邻近区域作为目标区域; 或者, 选取与发现 UE的服务小区或者所在簇的下行同步定时的差值在设定范围内的邻近区 域作为目标区域。
进一步的, 所述物理资源确定单元 82 包括第一确定单元、 第二确定单元、 第三确定 单元中的至少一个:
所述第一确定单元, 用于接收自身的服务小区或者所在簇的簇头发送的一个或多个区 域内的 UE发送发现信号所使用的物理资源的指示信息, 从该指示信息中获得各目标区域 内的 UE发送发现信号所使用的物理资源信息;
所述第二确定单元, 用于分别根据各目标区域的下行同步定时信息, 接收对应目标区 域的下行广播信息, 从接收到的下行广播信息中获得对应目标区域内的 UE发送发现信号 所使用的物理资源信息;
所述第三确定单元, 用于将预先设定的物理资源信息, 确定为各目标区域内的 UE发 送发现信号所使用的物理资源信息。
进一步的, 所述第一确定单元用于:
接收自身的服务小区或者所在簇的簇头发送的一个或多个区域内的 UE发送发现信号 所使用的物理资源的指示信息, 该指示信息中包含一个或多个区域的标识信息以及各标识 信息对应的 UE发送发现信号所使用的物理资源信息;
从检测到的各目标区域的同步信号中获取对应目标区域的标识信息, 从所述指示信息 中读取各目标区域的标识信息对应的 UE发送发现信号所使用的物理资源信息。
进一步的, 所述第二确定单元用于:
分别根据各目标区域的下行同步定时信息和物理广播信道 PBCH信息, 确定接收对应 目标区域的下行广播信息的资源位置, 根据该资源位置和检测到的对应目标区域的同步信 号中的目标区域的标识信息, 接收对应目标区域的下行广播信息, 从接收到的下行广播信 息中获得对应目标区域内的 UE发送发现信号所使用的物理资源信息。
进一步的, 所述发现信号检测单元 83用于:
将该目标区域的下行同步定时信息确定为该目标区域内的 UE的发现信号发送定时信 息; 或者,
根据该目标区域的下行同步定时信息和预先设定的定时偏移量, 得到该目标区域内的 UE的发现信号发送定时信息。
进一步的, 所述发现信号检测单元 83用于:
在所述发现信号发送定时信息至少包括子帧起始位置的信息, 所述物理资源信息至少 包括子帧号和带宽时, 以所述发现信号发送定时信息包括的子帧起始位置为基准, 确定所 述目标区域内的 UE发送发现信号所使用的物理资源信息包括的子帧号所对应的子帧集 合, 将该子帧集合中的该物理资源信息包括的带宽内的物理资源块 PRB , 确定为该发现信 号发送定时信息和该目标区域内的 UE发送发现信号所使用的物理资源信息对应的物理资 源。
参见图 9, 本发明实施例提供一种 UE, 该 UE包括: 存储器 91和处理器 92;
其中, 处理器 92被配置了用于执行本发明实施例中所述方法流程的计算机程序; 存 储器 91 , 用于存储所述计算机程序的代码, 可以被用于配置所述处理器 92; 处理器 92可 以根据实际需要包括基带处理部件、 射频处理部件等设备, 用于传输相关信息。
具体地: 处理器 92用于:
检测邻近区域的同步信号, 所述邻近区域为邻近小区或邻近簇;
从检测到的各同步信号对应的邻近区域中选取全部或部分邻近区域作为目标区域; 确定各目标区域内的 UE发送发现信号所使用的物理资源信息;
对于各目标区域, 根据该目标区域的下行同步定时信息确定该目标区域内的 UE的发 现信号发送定时信息, 确定该发现信号发送定时信息和该目标区域内的 UE发送发现信号 所使用的物理资源信息对应的物理资源, 在该物理资源上检测 UE发送的发现信号。
进一步的, 处理器 92根据检测到的各同步信号的接收强度或者检测到的各同步信号 对应的邻近区域的下行参考信号接收功率 RSRP强度,按照预先设定的目标区域选取原则, 从检测到的各同步信号对应的邻近区域中选取部分邻近区域作为目标区域。
进一步的, 处理器 92使用的目标区域选取原则为:
选取同步信号接收强度最大或下行 RSRP 强度最大的至少一个邻近区域作为目标区 域; 或者,
选取同步信号接收强度或下行 RSRP强度大于预设门限值的邻近区域作为目标区域; 或者,
选取同步信号接收强度或下行 RSRP强度最大的邻近区域、 以及与该邻近区域的同步 信号接收强度或下行 RSRP强度的差值在设定范围内的邻近区域作为目标区域; 或者, 选取与发现 UE的服务小区或者所在簇的下行同步定时的差值在设定范围内的邻近区 域作为目标区域。
进一步的, 处理器 92接收自身的服务小区或者所在簇的簇头发送的一个或多个区域 内的 UE发送发现信号所使用的物理资源的指示信息, 从该指示信息中获得各目标区域内 的 UE发送发现信号所使用的物理资源信息; 分别根据各目标区域的下行同步定时信息, 接收对应目标区域的下行广播信息,从接收到的下行广播信息中获得对应目标区域内的 UE 发送发现信号所使用的物理资源信息; 将预先设定的物理资源信息, 确定为各目标区域内 的 UE发送发现信号所使用的物理资源信息。
进一步的, 处理器 92接收自身的服务小区或者所在簇的簇头发送的一个或多个区域 内的 UE发送发现信号所使用的物理资源的指示信息, 该指示信息中包含一个或多个区域 的标识信息以及各标识信息对应的 UE发送发现信号所使用的物理资源信息; 从检测到的 各目标区域的同步信号中获取对应目标区域的标识信息, 从所述指示信息中读取各目标区 域的标识信息对应的 UE发送发现信号所使用的物理资源信息。
进一步的, 处理器 92 分别根据各目标区域的下行同步定时信息和物理广播信道 PBCH信息, 确定接收对应目标区域的下行广播信息的资源位置, 根据该资源位置和检测 到的对应目标区域的同步信号中的目标区域的标识信息, 接收对应目标区域的下行广播信 息, 从接收到的下行广播信息中获得对应目标区域内的 UE发送发现信号所使用的物理资 源信息。
进一步的, 处理器 92将该目标区域的下行同步定时信息确定为该目标区域内的 UE的 发现信号发送定时信息; 或者, 根据该目标区域的下行同步定时信息和预先设定的定时偏 移量, 得到该目标区域内的 UE的发现信号发送定时信息。
进一步的, 处理器 92在所述发现信号发送定时信息至少包括子帧起始位置的信息, 所述物理资源信息至少包括子帧号和带宽时, 以所述发现信号发送定时信息包括的子帧起 始位置为基准, 确定所述目标区域内的 UE发送发现信号所使用的物理资源信息包括的子 帧号所对应的子帧集合, 将该子帧集合中的该物理资源信息包括的带宽内的物理资源块 PRB , 确定为该发现信号发送定时信息和该目标区域内的 UE发送发现信号所使用的物理 资源信息对应的物理资源。
综上, 本发明的有益效果包括:
本发明实施例提供的方案中, 发现 UE检测邻近区域的同步信号, 从检测到的各同步 信号对应的邻近区域中选取全部或部分邻近区域作为目标区域, 确定各目标区域内的 UE 发送发现信号所使用的物理资源信息, 对于各目标区域, 根据该目标区域的下行同步定时 信息确定该目标区域内的 UE的发现信号发送定时信息, 确定该发现信号发送定时信息和 该目标区域内的 UE发送发现信号所使用的物理资源信息对应的物理资源, 在该物理资源 上检测该目标区域内的 UE即被发现 UE发送的发现信号。 釆用本方案, 在发现 UE和被 发现 UE属于不同步的两个小区时, 发现 UE可以通过检测被发现 UE所在小区的同步信 号得到被发现 UE的发现信号发送定时信息, 进而根据发现信号发送定时信息确定被发现 UE发送发现信号所使用的物理资源, 并在该物理资源上检测被发现 UE发送的发现信号; 在发现 UE和被发现 UE没有在网络覆盖下时,发现 UE可以通过检测被发现 UE所在簇的 同步信号得到被发现 UE的发现信号发送定时信息, 进而根据发现信号发送定时信息确定 被发现 UE发送发现信号所使用的物理资源, 并在该物理资源上检测被发现 UE发送的发 现信号, 可见本方案解决了在发现 UE和被发现 UE属于不同步的两个小区或者发现 UE 和被发现 UE没有在网络覆盖内时, 发现 UE如何检测被发现 UE的发现信号的问题。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种发现信号检测方法, 其特征在于, 该方法包括:
发现用户设备 UE检测邻近区域的同步信号, 所述邻近区域为邻近小区或邻近簇; 发现 UE从检测到的各同步信号对应的邻近区域中选取目标区域;
发现 UE确定各目标区域内的 UE发送发现信号所使用的物理资源信息;
发现 UE对于各目标区域, 根据该目标区域的下行同步定时信息确定该目标区域内的 UE的发现信号发送定时信息,确定该发现信号发送定时信息和该目标区域内的 UE发送发 现信号所使用的物理资源信息对应的物理资源,在该物理资源上检测 UE发送的发现信号。
2、如权利要求 1所述的方法, 其特征在于, 所述发现 UE从检测到的各同步信号对应 的邻近区域中选取部分邻近区域作为目标区域, 具体包括:
发现 UE根据检测到的各同步信号的接收强度或者检测到的各同步信号对应的邻近区 域的下行参考信号接收功率 RSRP强度, 按照预先设定的目标区域选取原则, 从检测到的 各同步信号对应的邻近区域中选取部分邻近区域作为目标区域。
3、 如权利要求 2所述的方法, 其特征在于, 所述目标区域选取原则为:
选取同步信号接收强度最大或下行 RSRP 强度最大的至少一个邻近区域作为目标区 域; 或者,
选取同步信号接收强度或下行 RSRP强度大于预设门限值的邻近区域作为目标区域; 或者,
选取同步信号接收强度或下行 RSRP强度最大的邻近区域、 以及与该邻近区域的同步 信号接收强度或下行 RSRP强度的差值在设定范围内的邻近区域作为目标区域; 或者, 选取与发现 UE的服务小区或者所在簇的下行同步定时的差值在设定范围内的邻近区 域作为目标区域。
4、 如权利要求 1所述的方法, 其特征在于, 所述发现 UE确定各目标区域内的 UE发 送发现信号所使用的物理资源信息, 具体包括如下方案中的至少一个:
方案一: 发现 UE接收自身的服务小区或者所在簇的簇头发送的一个或多个区域内的 UE发送发现信号所使用的物理资源的指示信息,从该指示信息中获得各目标区域内的 UE 发送发现信号所使用的物理资源信息;
方案二: 发现 UE分别根据各目标区域的下行同步定时信息, 接收对应目标区域的下 行广播信息, 从接收到的下行广播信息中获得对应目标区域内的 UE发送发现信号所使用 的物理资源信息; 方案三: 发现 UE将预先设定的物理资源信息, 确定为各目标区域内的 UE发送发现 信号所使用的物理资源信息。
5、 如权利要求 4 所述的方法, 其特征在于, 所述指示信息中包含一个或多个区域的 标识信息以及各标识信息对应的 UE发送发现信号所使用的物理资源信息; 所述从该指示 信息中获得各目标区域内的 UE发送发现信号所使用的物理资源信息, 具体包括:
从检测到的各目标区域的同步信号中获取对应目标区域的标识信息, 从所述指示信息 中读取各目标区域的标识信息对应的 UE发送发现信号所使用的物理资源信息。
6、如权利要求 4所述的方法, 其特征在于, 所述发现 UE分别根据各目标区域的下行 同步定时信息, 接收对应目标区域的下行广播信息, 具体包括:
发现 UE分别根据各目标区域的下行同步定时信息和物理广播信道 PBCH信息, 确定 接收对应目标区域的下行广播信息的资源位置, 根据该资源位置和检测到的对应目标区域 的同步信号中的目标区域的标识信息, 接收对应目标区域的下行广播信息。
7、 如权利要求 1 所述的方法, 其特征在于, 所述根据该目标区域的下行同步定时信 息确定该目标区域内的 UE的发现信号发送定时信息, 具体包括:
将该目标区域的下行同步定时信息确定为该目标区域内的 UE的发现信号发送定时信 息; 或者,
根据该目标区域的下行同步定时信息和预先设定的定时偏移量, 得到该目标区域内的 UE的发现信号发送定时信息。
8、如权利要求 1-7中任一所述的方法, 其特征在于, 所述发现信号发送定时信息至少 包括子帧起始位置的信息; 所述物理资源信息至少包括子帧号、 和带宽;
所述确定该发现信号发送定时信息和该目标区域内的 UE发送发现信号所使用的物理 资源信息对应的物理资源, 具体包括:
以该发现信号发送定时信息包括的子帧起始位置为基准, 确定该目标区域内的 UE发 送发现信号所使用的物理资源信息包括的子帧号所对应的子帧集合, 将该子帧集合中的该 物理资源信息包括的带宽内的物理资源块 PRB , 确定为该发现信号发送定时信息和该目标 区域内的 UE发送发现信号所使用的物理资源信息对应的物理资源。
9、 一种用户设备 UE, 其特征在于, 该 UE包括:
同步信号检测单元, 用于检测邻近区域的同步信号, 所述邻近区域为邻近小区或邻近 簇;
目标区域选取单元, 用于从检测到的各同步信号对应的邻近区域中选取目标区域; 物理资源确定单元, 用于确定各目标区域内的 UE发送发现信号所使用的物理资源信 息;
发现信号检测单元, 用于对于各目标区域, 根据该目标区域的下行同步定时信息确定 该目标区域内的 UE的发现信号发送定时信息, 确定该发现信号发送定时信息和该目标区 域内的 UE发送发现信号所使用的物理资源信息对应的物理资源,在该物理资源上检测 UE 发送的发现信号。
10、 如权利要求 9所述的 UE, 其特征在于, 所述目标区域选取单元用于: 根据检测到的各同步信号的接收强度或者检测到的各同步信号对应的邻近区域的下 行参考信号接收功率 RSRP强度, 按照预先设定的目标区域选取原则, 从检测到的各同步 信号对应的邻近区域中选取部分邻近区域作为目标区域。
11、 如权利要求 10所述的 UE, 其特征在于, 所述目标区域选取单元使用的目标区域 选取原则为:
选取同步信号接收强度最大或下行 RSRP 强度最大的至少一个邻近区域作为目标区 域; 或者,
选取同步信号接收强度或下行 RSRP强度大于预设门限值的邻近区域作为目标区域; 或者,
选取同步信号接收强度或下行 RSRP强度最大的邻近区域、 以及与该邻近区域的同步 信号接收强度或下行 RSRP强度的差值在设定范围内的邻近区域作为目标区域; 或者, 选取与发现 UE的服务小区或者所在簇的下行同步定时的差值在设定范围内的邻近区 域作为目标区域。
12、 如权利要求 9所述的 UE, 其特征在于, 所述物理资源确定单元包括第一确定单 元、 第二确定单元、 第三确定单元中的至少一个:
所述第一确定单元, 用于接收自身的服务小区或者所在簇的簇头发送的一个或多个区 域内的 UE发送发现信号所使用的物理资源的指示信息, 从该指示信息中获得各目标区域 内的 UE发送发现信号所使用的物理资源信息;
所述第二确定单元, 用于分别根据各目标区域的下行同步定时信息, 接收对应目标区 域的下行广播信息, 从接收到的下行广播信息中获得对应目标区域内的 UE发送发现信号 所使用的物理资源信息;
所述第三确定单元, 用于将预先设定的物理资源信息, 确定为各目标区域内的 UE发 送发现信号所使用的物理资源信息。
13、 如权利要求 12所述的 UE, 其特征在于, 所述第一确定单元用于:
接收自身的服务小区或者所在簇的簇头发送的一个或多个区域内的 UE发送发现信号 所使用的物理资源的指示信息, 该指示信息中包含一个或多个区域的标识信息以及各标识 信息对应的 UE发送发现信号所使用的物理资源信息;
从检测到的各目标区域的同步信号中获取对应目标区域的标识信息, 从所述指示信息 中读取各目标区域的标识信息对应的 UE发送发现信号所使用的物理资源信息。
14、 如权利要求 12所述的 UE, 其特征在于, 所述第二确定单元用于:
分别根据各目标区域的下行同步定时信息和物理广播信道 PBCH信息, 确定接收对应 目标区域的下行广播信息的资源位置, 根据该资源位置和检测到的对应目标区域的同步信 号中的目标区域的标识信息, 接收对应目标区域的下行广播信息, 从接收到的下行广播信 息中获得对应目标区域内的 UE发送发现信号所使用的物理资源信息。
15、 如权利要求 9述的 UE, 其特征在于, 所述发现信号检测单元用于:
将该目标区域的下行同步定时信息确定为该目标区域内的 UE的发现信号发送定时信 息; 或者,
根据该目标区域的下行同步定时信息和预先设定的定时偏移量, 得到该目标区域内的 UE的发现信号发送定时信息。
16、 如权利要求 9-15中任一所述的 UE, 其特征在于, 所述发现信号检测单元用于: 在所述发现信号发送定时信息至少包括子帧起始位置的信息, 所述物理资源信息至少 包括子帧号和带宽时, 以所述发现信号发送定时信息包括的子帧起始位置为基准, 确定所 述目标区域内的 UE发送发现信号所使用的物理资源信息包括的子帧号所对应的子帧集 合, 将该子帧集合中的该物理资源信息包括的带宽内的物理资源块 PRB, 确定为该发现信 号发送定时信息和该目标区域内的 UE发送发现信号所使用的物理资源信息对应的物理资 源。
PCT/CN2014/079314 2013-06-07 2014-06-06 发现信号检测方法和设备 WO2014194850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310226578.4 2013-06-07
CN201310226578.4A CN104244316B (zh) 2013-06-07 2013-06-07 发现信号检测方法和设备

Publications (1)

Publication Number Publication Date
WO2014194850A1 true WO2014194850A1 (zh) 2014-12-11

Family

ID=52007580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079314 WO2014194850A1 (zh) 2013-06-07 2014-06-06 发现信号检测方法和设备

Country Status (3)

Country Link
CN (1) CN104244316B (zh)
TW (1) TWI545981B (zh)
WO (1) WO2014194850A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101387B (zh) * 2014-05-06 2019-04-02 电信科学技术研究院 一种同步处理方法及用户设备
US10512033B2 (en) * 2015-01-29 2019-12-17 Qualcomm Incorporated Timing information for discovery in unlicensed spectrum
CN107683594B (zh) * 2015-06-22 2021-07-09 索尼公司 通信控制设备、通信控制方法、网络交换机、路由控制方法以及通信系统
CN108243436B (zh) * 2016-12-26 2021-01-05 展讯通信(上海)有限公司 时偏校准方法、装置及移动终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547984A (zh) * 2012-02-23 2012-07-04 华为技术有限公司 一种设备到设备通信中寻呼的方法及装置
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法
WO2013049959A1 (en) * 2011-10-02 2013-04-11 Renesas Mobile Corporation Signaling for device-to-device wireless communication
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255075B1 (ko) * 2009-02-27 2013-04-15 한국전자통신연구원 이종 액세스 네트워크의 스캐닝 시작 정보 전송 방법 및 장치
US8437308B2 (en) * 2009-11-05 2013-05-07 Telefonaktiebolaget L M Ericsson (Publ) Handover measurements in a mobile communication system
CN102857901A (zh) * 2012-09-12 2013-01-02 中兴通讯股份有限公司 终端的发现、发现处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049959A1 (en) * 2011-10-02 2013-04-11 Renesas Mobile Corporation Signaling for device-to-device wireless communication
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
CN102547984A (zh) * 2012-02-23 2012-07-04 华为技术有限公司 一种设备到设备通信中寻呼的方法及装置
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法

Also Published As

Publication number Publication date
CN104244316A (zh) 2014-12-24
TWI545981B (zh) 2016-08-11
CN104244316B (zh) 2018-01-19
TW201448641A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
US11665688B2 (en) Coordination between prose BSR and cellular BSR
JP6475885B2 (ja) 無線基地局、ユーザ端末及びプロセッサ
KR101811359B1 (ko) D2d 신호의 전송 방법 및 장치
KR101988506B1 (ko) 무선 이동통신 시스템에서 디스커버리 신호를 송/수신하는 방법 및 장치
EP3024258B1 (en) User device, base station, discovery signal reception method, and discovery signal transmission method
JP6820976B2 (ja) セル同期および同期セルインジケーション
US10912062B2 (en) Method and wireless device for providing device-to-device communication
EP3198744B1 (en) Discovery signal design
US10368261B2 (en) Synchronization method and apparatus for D2D communication
US20140254429A1 (en) Signaling for device-to-device wireless communication
JP6350836B2 (ja) 情報伝送方法、基地局、およびユーザ機器
EP3142421B1 (en) Device to device proximity service for terminals served by different cells
WO2015032271A1 (zh) 一种多载波中参考运营的信令发送方法、系统和网络侧
EP3183922B1 (en) Enabling interference mitigation for over-the-air synchronization
JP6681998B2 (ja) 情報設定方法および装置
AU2015297069B2 (en) Methods for adapting over-the-air synchronization to radio conditions
EP3179823A1 (en) Communication control method and user terminal
TWI545981B (zh) Discovery of signal detection methods and equipment
CN110169138B (zh) 系统信息中的寻呼和控制信道的显式配置
WO2016070682A1 (zh) D2d通信的同步处理方法及装置
KR102061775B1 (ko) 동기 신호를 송신하는 방법 및 장치
CN110461036B (zh) 一种发射、接收同步信号的方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807195

Country of ref document: EP

Kind code of ref document: A1