WO2014194505A1 - 一种波长连接的建立方法、节点和系统 - Google Patents

一种波长连接的建立方法、节点和系统 Download PDF

Info

Publication number
WO2014194505A1
WO2014194505A1 PCT/CN2013/076860 CN2013076860W WO2014194505A1 WO 2014194505 A1 WO2014194505 A1 WO 2014194505A1 CN 2013076860 W CN2013076860 W CN 2013076860W WO 2014194505 A1 WO2014194505 A1 WO 2014194505A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
wavelength
center frequency
information
resource information
Prior art date
Application number
PCT/CN2013/076860
Other languages
English (en)
French (fr)
Inventor
张弦
林毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/076860 priority Critical patent/WO2014194505A1/zh
Priority to CN201380001930.2A priority patent/CN104094542B/zh
Publication of WO2014194505A1 publication Critical patent/WO2014194505A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Definitions

  • the present invention belongs to the field of communications, and in particular, to a method, a node, and a system for establishing a wavelength connection. Background technique
  • a wavelength division network consists of nodes and links, and the two nodes are connected by fiber links. Multiple wavelength channels can be carried in a single fiber link, and wavelength channels in different fiber links can be connected by nodes. Therefore, a particular wavelength connection can be connected from the head node through one or more fiber links to the end node.
  • the wavelength connection can be unidirectional or bidirectional. Since each fiber link can transmit multiple wavelengths, the transmission capacity is relatively large.
  • the wavelength connection needs to occupy the spectrum resources in the fiber, and the available spectrum resources in each fiber are limited.
  • the available spectral resources in the fiber are generally divided into fixed interval frequency intervals, and each grid can serve as a wavelength channel.
  • the disadvantage of this method is that the spectrum requirements of services with different bit rates may be different when different bit rate services use wavelength connection hybrid transmission. For example, 100 Gbps service requires 50 GHz, lTbps service needs 175 GHz, and needs to be in fiber.
  • the spectrum resources are divided into wavelength channels at intervals of 175 GHz to meet the needs of large-grained services. In this case, services with smaller bit rates also need to occupy large spectrum bandwidth, resulting in waste of spectrum resources.
  • the spectrum resources in the optical fiber can be divided into wavelength channels without a fixed interval, and a continuous spectrum range is allocated according to the spectrum requirement of the wavelength connection.
  • the spectral bandwidth required for each wavelength connection is related to the modulation format at both ends.
  • the spectrum resource division capabilities of its nodes may be different. For example, some nodes may support spectrum partitioning with a base unit of 12.5 GHz, while other nodes may support 6.25 GHz for the basic unit for spectrum partitioning and allocation. Another situation is the network. There may be cases where flexible nodes and inflexible nodes coexist.
  • the so-called flexible node is the node that supports the spectrum resource component according to the granularity of different spectrum widths and widths.
  • the so-called inflexible node does not support flexible spectrum bandwidth allocation. It can only divide the wavelength channel according to a larger, fixed spectrum width.
  • embodiments of the present invention provide a method, a node, and a system for establishing a wavelength connection, which are intended to solve the problem that the establishment of a wavelength connection in a network supporting a mixed spectrum granularity is error-prone in the prior art.
  • a first aspect a method for establishing a wavelength connection, comprising: receiving, by an intermediate node, a first wavelength connection establishment request message from an upstream node, where the first wavelength connection establishment request message includes the wavelength connection before the intermediate node Commonly available spectrum resource information and spectrum requirement information connected to the wavelength; the intermediate node determines, according to the spectrum requirement information of the wavelength connection, the available spectrum resource information of the outbound interface of the wavelength connected to the intermediate node, according to the Generating the common available spectrum resource information before the intermediate node with the wavelength connected to the common available spectrum resource information before the intermediate node and the available spectrum resource information of the outbound interface of the intermediate node connected to the intermediate node; The intermediate node sends a second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes the common available spectrum resource information before the wavelength connection and the spectrum requirement information of the wavelength connection.
  • the intermediate node receives the source
  • the first wavelength connection establishment feedback message of the downstream node includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node; the intermediate node is established according to the first wavelength connection
  • the feedback message determines the resource information that the intermediate node needs to be configured and configures the corresponding resource; the intermediate node sends a second wavelength connection establishment feedback message to the upstream node, and the second wavelength connection establishment feedback message includes a wavelength-connected effective spectrum. Resource information and resource configuration information of the intermediate node.
  • the determining, by the intermediate node, the available spectrum resource information that is connected to the outbound interface of the intermediate node according to the spectrum requirement information of the wavelength connection includes: The node determines, according to the spectrum requirement information of the wavelength connection and the network restriction condition, the available spectrum resource information of the outbound interface of the wavelength connection at the intermediate node.
  • the network restriction condition includes that a center frequency of the allocated spectrum resources on the same wavelength connection is consistent.
  • the common available spectrum resource information that is connected to the intermediate node before the wavelength includes the first center frequency granularity and the first center frequency
  • the first center frequency granularity is a central frequency granularity supported by the first node connected by the wavelength
  • the first central frequency is an available center commonly supported by the interface before the intermediate node at the first central frequency granularity.
  • the intermediate node determines, according to the spectrum requirement information of the wavelength connection and the network restriction condition, that the wavelength is connected to the intermediate node.
  • the available spectrum resource information of the outbound interface includes: the intermediate node determines an available frequency of the outbound interface of the intermediate node according to the spectrum requirement information of the wavelength connection; and the intermediate node determines, according to the network restriction condition, that the wavelength connection is in the middle.
  • the available spectrum resource information of the outbound interface of the node wherein the available spectrum resource information of the outbound interface connected to the intermediate node includes information of a first center frequency granularity and a second center frequency, and the second center frequency is an intermediate node.
  • the common available spectrum resource information and the wavelength connection that are connected before the intermediate node according to the wavelength are Determining, by the available spectrum resource information of the outbound interface of the intermediate node, that the wavelength is connected to the common available spectrum resource information before the downstream node includes: the intermediate node determining the third center frequency according to the first center frequency and the second center frequency
  • the third center frequency is a set of available center frequencies that are supported by the interface before the downstream node at the first center frequency granularity
  • the common available spectrum resource information before the wavelength is connected to the downstream node includes the first center frequency granularity.
  • the third center frequency Information is a set of available center frequencies that are supported by the interface before the downstream node at the first center frequency granularity
  • the wavelength is connected before the intermediate node
  • the commonly available spectrum resource information also includes a prioritization of the first common available center frequency.
  • a seventh possible implementation manner if the network restriction condition does not include that the center frequency of the allocated spectrum resource on the same wavelength connection is consistent or there is no network restriction condition
  • the common available spectrum resource information that is connected to the intermediate node before the wavelength includes a fourth center frequency granularity and a fourth center frequency, where the fourth center frequency granularity is an interface of the wavelength before the intermediate node is connected.
  • the greatest common divisor of the central frequency granularity, the fourth central frequency being the intersection of the set of central frequencies that the available frequency range of the interface before the intermediate node can cover at the fourth central frequency granularity.
  • the intermediate node determines, according to the spectrum requirement information of the wavelength connection and the network restriction condition, that the wavelength is connected to the intermediate node.
  • the available spectrum resource information of the outbound interface includes: the intermediate node determining, according to the spectrum requirement information of the wavelength connection, an available frequency range of the outbound interface of the intermediate node; the intermediate node determining, according to the network restriction condition, that the wavelength connection is in the The available spectrum resource information of the outbound interface of the intermediate node, where the available spectrum resource information of the outbound interface connected to the intermediate node includes information of a fifth central frequency granularity and a fifth central frequency, and the fifth central frequency granularity is a maximum common divisor of the fourth center frequency granularity and a center frequency granularity of the outbound interface of the intermediate node, where the fifth center frequency is an available frequency range of the outbound interface of the intermediate node at the fifth central frequency granularity A collection of central frequencies that can be covered.
  • the common available spectrum resource information and the wavelength connection that are connected before the intermediate node according to the wavelength are Determining, by the available spectrum resource information of the outbound interface of the intermediate node, the common available spectrum resource information before the wavelength connection is connected to the downstream node, where the intermediate node is connected to the common available spectrum resource information and the node before the intermediate node according to the wavelength
  • the wavelength connection is connected to the intermediate node
  • a sixth center frequency is determined by the available spectrum resource information of the port, where the sixth center frequency is a center frequency that can be covered by the available frequency range of the interface before the wavelength node connected to the downstream node at the fifth center frequency granularity
  • the intersection of the sets, the common available spectrum resource information of the wavelength connected before the downstream node includes a fifth center frequency granularity and a sixth center frequency.
  • the common available spectrum resource information that is connected to the intermediate node before the wavelength includes a common available spectrum range before the wavelength is connected to the intermediate node.
  • the spectrum requirement information of the wavelength connection includes wavelength connection center frequency granularity information and bandwidth information corresponding to the wavelength connection center frequency granularity.
  • the common available spectrum resource information that is connected to the intermediate node according to the wavelength and the available spectrum resource information that is connected to the outbound interface of the intermediate node are determined by
  • the common available spectrum resource information before the wavelength is connected to the downstream node includes: common available spectrum resource information connected to the intermediate node according to the wavelength, and available spectrum resource information of the outbound interface of the wavelength connected to the intermediate node
  • network constraints determine common available spectrum resource information for the wavelength to be connected before the downstream node.
  • the wavelength-connected effective spectrum resource information includes central frequency granularity information, center frequency information, and bandwidth information that can be used by the wavelength connection.
  • the resource configuration information of the downstream node includes a center frequency value configured by the downstream node.
  • the determining, by the intermediate node, the resource information that needs to be configured by the intermediate node according to the first wavelength connection establishment feedback message, and configuring the corresponding resource includes: the intermediate node according to the first The wavelength connection establishment feedback message and the center frequency granularity of the outbound interface of the intermediate node determine a center frequency value and a bandwidth value of the outbound interface configuration of the intermediate node; the intermediate node establishes a feedback message according to the first wavelength connection and The central frequency granularity of the ingress interface of the intermediate node determines a center frequency value and a bandwidth value of the inbound interface configuration of the intermediate node; a center frequency value and a bandwidth value configured according to an inbound interface of the intermediate node, and the middle The center frequency value and the bandwidth value of the outbound interface configuration of the node are configured to be cross-connected.
  • a method for establishing a wavelength connection includes: a first node sending a third wavelength connection establishment request message to a downstream node, where the third wavelength connection establishment request message includes the wavelength connection common to the downstream node Generating spectrum resource information and spectrum requirement information connected to the wavelength; the first node receives a third wavelength connection establishment feedback message from the downstream node, and the third wavelength connection establishment feedback message includes wavelength-connected effective spectrum resource information And the resource configuration information of the downstream node; the first node determines resource information that needs to be configured by the first node according to the third wavelength connection establishment feedback message, and configures a corresponding resource.
  • the common available spectrum resource information of the wavelength connected before the downstream node includes the seventh center.
  • Information of a frequency granularity and a seventh center frequency wherein the seventh center frequency granularity is a central frequency granularity supported by the first node, and the seventh central frequency is an interface before the downstream node is common under the seventh central frequency granularity A supported set of available center frequencies.
  • the wavelength is connected before the intermediate node
  • the common available spectrum resource information also includes a prioritization of the seventh common available center frequency.
  • the wavelength connection is common before the downstream node.
  • the available spectrum resource information includes an eighth center frequency granularity and an eighth center frequency, wherein the eighth center frequency granularity is a greatest common divisor of a center frequency granularity of the interface before the wavelength is connected to the downstream node, and the eighth center The frequency is the intersection of the set of center frequencies that can be covered by the available frequency range of the interface before the downstream node at the eighth center frequency granularity.
  • the common available spectrum resource information that is connected to the wavelength node before the downstream node includes a common available spectrum range before the wavelength connection is connected to the downstream node.
  • the spectrum requirement information of the wavelength connection includes wavelength connection center frequency granularity information and bandwidth information corresponding to the wavelength connection center frequency granularity.
  • the wavelength-connected effective spectrum resource information includes the The center frequency granularity information, center frequency information, and bandwidth information that can be used for the wavelength connection.
  • the resource configuration information of the downstream node includes a center frequency value configured by the downstream node.
  • the determining, by the first node, the resource information that needs to be configured by the first node according to the third wavelength connection establishment feedback message, and configuring the corresponding resource includes: the first node according to the third wavelength Determining a center frequency value and a bandwidth value of the outbound interface configuration of the first node by using a connection establishment feedback message and a center frequency granularity of the outbound interface of the first node; a center frequency value and a frequency configured according to the upper and lower wavelength interfaces of the first node The wide value and the center frequency value and the bandwidth value of the outbound interface configuration of the head node are configured to be cross-connected.
  • a third aspect of the method for establishing a wavelength connection comprising: receiving, by a last node, a fourth wavelength connection establishment request message from an upstream node, where the fourth wavelength connection establishment request message includes the wavelength connection being common before the last node The available spectrum resource information and the spectrum requirement information connected to the wavelength; the end node determines the effective spectrum resource information of the wavelength connection according to the common available spectrum resource information before the end node connected to the wavelength; Determining, according to the effective spectrum resource information, resource information that needs to be configured by the end node, and configuring a corresponding resource; the last node sends a fourth wavelength connection establishment feedback message to the upstream node, where the fourth wavelength connection establishment feedback message includes The effective spectrum resource information of the wavelength connection and the resource configuration information of the last node.
  • the wavelength-connected effective spectrum resource information includes central frequency granularity information, center frequency information, and bandwidth information that can be used by the wavelength connection.
  • the resource configuration information of the last node includes a center frequency value of the end node configuration.
  • the determining, by the last node, the resource information that needs to be configured by the last node according to the effective spectrum resource information, and configuring the corresponding resource includes: the last node according to the effective spectrum resource information and the The center frequency granularity of the inbound interface of the last node determines the center frequency value and the bandwidth value of the inbound interface configuration of the last node; the center frequency value and the bandwidth value configured according to the inbound interface of the last node, and the The center frequency value and the bandwidth value configuration of the upper and lower wavelength interfaces of the last node are interleaved. Pick up.
  • a node includes: a first receiving unit, configured to receive a first wavelength connection establishment request message from an upstream node, where the first wavelength connection establishment request message includes the wavelength connection before the intermediate node
  • the common available spectrum resource information and the spectrum requirement information of the wavelength connection ; the first determining unit is configured to determine, according to the spectrum requirement information of the wavelength connection, the available spectrum resource information of the outbound interface of the wavelength connection at the intermediate node Determining, according to the common available spectrum resource information before the intermediate node connected to the wavelength, and the available spectrum resource information of the outbound interface of the wavelength connection at the intermediate node, determining a common available spectrum resource before the wavelength connection in the downstream node
  • the first sending unit is configured to send a second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection before the downstream node.
  • Second connection a unit, configured to receive a first wavelength connection establishment feedback message from the downstream node, where the first wavelength connection establishment feedback message includes wavelength-connected effective spectrum resource information and resource configuration information of the downstream node; And determining, according to the first wavelength connection establishment feedback message, resource information that needs to be configured by the intermediate node, and configuring a corresponding resource, where the second sending unit is configured to send a second wavelength connection establishment feedback message to the upstream node, where The second wavelength connection establishment feedback message includes wavelength-connected effective spectrum resource information and resource configuration information of the intermediate node.
  • the second determining unit is specifically configured to determine an outbound interface configuration of the intermediate node according to the first wavelength connection establishment feedback message and a center frequency granularity of an outbound interface of the intermediate node. a center frequency value and a bandwidth value, determining a center frequency value and a bandwidth value of the inbound interface configuration of the intermediate node according to the first wavelength connection establishment feedback message and a center frequency granularity of the ingress interface of the intermediate node,
  • the cross-connection is configured according to the center frequency value and the bandwidth value of the inbound interface configuration of the intermediate node and the center frequency value and the bandwidth value of the outbound interface configuration of the intermediate node.
  • a first node includes: a third sending unit, configured to send a third wavelength connection establishment request message to a downstream node, where the third wavelength connection establishment request message includes the wavelength connection before the downstream node Commonly available spectrum resource information and spectrum demand information of the wavelength connection; a third receiving unit, configured to receive a third wavelength connection establishment feedback message from the downstream node, where the third wavelength connection establishment feedback message includes wavelength-connected effective spectrum resource information and resource configuration information of the downstream node; And a determining unit, configured to determine, according to the third wavelength connection establishment feedback message, resource information that needs to be configured by the first node, and configure a corresponding resource.
  • the third determining unit is specifically configured to determine an outbound interface configuration of the first node according to the third wavelength connection establishment feedback message and a center frequency granularity of an outbound interface of the first node.
  • the center frequency value and the bandwidth value are configured to be cross-connected according to the center frequency value and the bandwidth value of the upper and lower wavelength interface configurations of the head node and the center frequency value and the bandwidth value of the outbound interface configuration of the head node.
  • a terminal node includes: a fourth receiving unit, configured to receive a fourth wavelength connection establishment request message from an upstream node, where the fourth wavelength connection establishment request message includes the wavelength connection at the last node The first common available spectrum resource information and the spectrum requirement information of the wavelength connection; the fourth determining unit is configured to determine the effective spectrum resource of the wavelength connection according to the common available spectrum resource information that is connected before the last node by the wavelength And determining, according to the effective spectrum resource information, resource information that needs to be configured by the last node, and configuring a corresponding resource; the fourth sending unit, configured to send a fourth wavelength connection establishment feedback message to the upstream node, where the fourth wavelength is The connection establishment feedback message includes the effective spectrum resource information of the wavelength connection and the resource configuration information of the last node.
  • the fourth determining unit is specifically configured to determine, according to the effective spectrum resource information and a center frequency granularity of an ingress interface of the last node, a center frequency of an inbound interface configuration of the last node.
  • the value and the bandwidth value are cross-connected according to the center frequency value and the bandwidth value of the inbound interface configuration of the last node and the center frequency value and the bandwidth value of the upper and lower wavelength interface configurations of the last node.
  • a seventh aspect a wavelength connection establishing system, comprising: a first node and a last node of a wavelength connection, wherein the first node is configured to send a third wavelength connection establishment request message to a downstream node, and the third wavelength connection establishment request The message includes the common available spectrum resource information that is connected to the downstream node and the spectrum requirement information of the wavelength connection, and receives a third wavelength connection establishment feedback message from the downstream node, where the third wavelength connection is established.
  • the feedback message includes the effective spectrum of the wavelength connection
  • the resource information and the resource configuration information of the downstream node are determined according to the third wavelength connection establishment feedback message, the resource information that needs to be configured by the first node, and the corresponding resource are configured; the last node is configured to receive the first node from the upstream node.
  • the fourth wavelength connection establishment request message includes common available spectrum resource information of the wavelength connected before the last node and spectrum requirement information of the wavelength connection, and is connected according to the wavelength Determining the effective spectrum resource information of the wavelength connection according to the common available spectrum resource information before the last node, determining the resource information to be configured by the last node according to the effective spectrum resource information, configuring the corresponding resource, and sending the fourth wavelength connection establishment feedback Sending a message to the upstream node, the fourth wavelength connection establishment feedback message includes wavelength-connected effective spectrum resource information and resource configuration information of the last node.
  • the downstream node of the first node is the end node.
  • the first node and the last node include at least one intermediate node, where the intermediate node is configured to receive a first wavelength connection establishment request message from an upstream node, where the first The wavelength connection establishment request message includes common available spectrum resource information of the wavelength connected before the intermediate node and spectrum requirement information of the wavelength connection; determining, according to the spectrum requirement information of the wavelength connection, that the wavelength connection is in the middle The available spectrum resource information of the outbound interface of the node, determining the wavelength connection according to the common available spectrum resource information before the intermediate node connected to the wavelength and the available spectrum resource information of the outbound interface connected to the intermediate node by the wavelength Commonly available spectrum resource information before the downstream node; sending a second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes the common available spectrum resource information that the wavelength is connected before the downstream node Spectrum demand information connected to the wavelength; Receiving a first wavelength connection establishment feedback message from the downstream node, where the first wavelength connection establishment feedback message includes wavelength-connected effective spectrum resource information and resource
  • the intermediate node receives the first wavelength connection establishment request cancellation from the upstream node.
  • the first wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information before the intermediate node is connected to the intermediate node; the intermediate node determines, according to the spectrum requirement information of the wavelength connection, that the wavelength connection is available at the outbound interface of the intermediate node.
  • the wavelength connection establishment request message is sent to the downstream node, where the second wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information of the wavelength connection before the downstream node; the intermediate node receives the first wavelength connection establishment from the downstream node.
  • a feedback message, the first wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node; the intermediate node determines the intermediate node according to the first wavelength connection establishment feedback message.
  • intermediate node sending a second connection establishment wavelength feedback message to the upstream node, a second connection establishment wavelength feedback message including resource information and resource efficient spectrum wavelength intermediate node connected configuration information.
  • the intermediate node determines the common available spectrum resource information and the wavelength connection spectrum requirement information of the downstream node according to the common available spectrum resource information before the intermediate node and the spectrum requirement information of the wavelength connection, and can automatically collect the commonly available spectrum resources of the wavelength connection, and never It needs to be manually configured by the network administrator to solve the problem that the establishment of the wavelength connection in the network supporting the mixed spectrum granularity is error-prone.
  • FIG. 1 is a flowchart of a method for establishing a wavelength connection according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for establishing a wavelength connection according to an embodiment of the present invention
  • FIG. 4 is a network architecture diagram according to an embodiment of the present invention
  • FIG. 6 is a spectrum resource diagram in another optical fiber link according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a service requirement according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of still another method for establishing a wavelength connection according to an embodiment of the present invention
  • FIG. FIG. 9 is a schematic diagram of a spectrum resource according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of still another method for establishing a wavelength connection according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of another spectrum resource according to an embodiment of the present invention.
  • FIG. 13 is another spectrum resource allocation diagram according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of a node according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of another node according to an embodiment of the present invention.
  • FIG. 16 is a structural diagram of still another node according to an embodiment of the present invention.
  • FIG. 17 is a structural diagram of a system according to an embodiment of the present invention.
  • FIG. 18 is a structural diagram of still another node according to an embodiment of the present invention.
  • FIG. 19 is a structural diagram of still another node according to an embodiment of the present invention.
  • FIG. 20 is a structural diagram of a node according to still another embodiment of the present invention. detailed description
  • FIG. 1 shows a method for establishing a wavelength connection according to an embodiment of the present invention.
  • the method in this embodiment includes the following steps:
  • the intermediate node receives a first wavelength connection establishment request message from the upstream node, where the first wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information of the wavelength connection before the intermediate node.
  • the spectrum requirement information of the wavelength connection may include wavelength connection center frequency granularity information and bandwidth information corresponding to the wavelength connection center frequency granularity.
  • the common available spectrum resource information before the wavelength connection may include the information of the first center frequency granularity and the first center frequency
  • the first central frequency granularity is a central frequency granularity supported by the first node of the wavelength connection, and the first central frequency is a set of available central frequencies commonly supported by the interface before the intermediate node at the first central frequency granularity
  • the common available spectrum resource information of the wavelength connection before the intermediate node may include the fourth center frequency granularity and the fourth center frequency.
  • the fourth central frequency granularity is the greatest common divisor of the center frequency granularity of the interface before the wavelength is connected to the intermediate node, and the fourth central frequency is the center of the available frequency range of the interface before the intermediate node at the fourth central frequency granularity.
  • the common available spectrum resource information before the wavelength is connected to the intermediate node can be represented by the common available spectrum range before the wavelength is connected to the intermediate node.
  • the intermediate node determines, according to the spectrum requirement information of the wavelength connection, the available spectrum resource information of the outbound interface whose wavelength is connected to the intermediate node, and the common available spectrum resource information and the wavelength connected to the outbound interface of the intermediate node according to the wavelength connected to the intermediate node.
  • the available spectrum resource information determines the commonly available spectrum resource information before the wavelength is connected to the downstream node.
  • the intermediate node determines the available frequency range of the outbound interface of the intermediate node according to the spectrum requirement information of the wavelength connection; the intermediate node determines the wavelength connection according to the network restriction condition.
  • the available spectrum resource information of the outbound interface of the intermediate node, the available spectrum resource information of the outbound interface connected to the intermediate node includes the information of the first center frequency granularity and the second center frequency, and the second center frequency is the outbound interface of the intermediate node.
  • the intermediate node determines a third center frequency according to the first center frequency and the second center frequency, where the third center frequency is an available center frequency set commonly supported by the interface before the downstream node at the first center frequency granularity
  • the common available spectrum resource information before the wavelength is connected to the downstream node includes information of the first center frequency granularity and the third center frequency.
  • the intermediate node determines the available frequency range of the outbound interface of the intermediate node according to the spectrum requirement information of the wavelength connection;
  • the limiting condition determines the available spectrum resource information of the outbound interface of the intermediate node, and the available spectrum resource information of the outbound interface of the intermediate node includes the information of the fifth central frequency granularity and the fifth central frequency, and the fifth central frequency granularity is The fourth central frequency granularity and the greatest common divisor of the central frequency granularity of the outbound interface of the intermediate node, and the fifth central frequency is a set of central frequencies that can be covered by the available frequency range of the outbound interface of the intermediate node at the fifth central frequency granularity.
  • the intermediate node determines the sixth center frequency according to the commonly available spectrum resource information before the intermediate node connected to the wavelength and the available spectrum resource information of the outbound interface of the wavelength connection at the intermediate node, and the sixth center frequency is available for the interface before the wavelength is connected to the downstream node.
  • the frequency range is the intersection of the set of center frequencies that can be covered at the fifth center frequency granularity, and the common available spectrum resource information before the wavelength connection is connected to the downstream node includes the fifth center frequency granularity and the sixth center frequency.
  • the available spectrum resource information of the outbound interface whose wavelength is connected to the intermediate node can be represented by the available spectrum range of the outbound interface of the intermediate node; the common available spectrum resource information of the wavelength connected before the downstream node can be connected downstream by using the wavelength.
  • the node is previously represented by a common spectrum range.
  • the intermediate node sends a second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes common available spectrum resource information and wavelength requirement information of the wavelength connection before the wavelength node is connected to the downstream node.
  • the intermediate node receives a first wavelength connection establishment feedback message from the downstream node, where the first wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node.
  • the effective spectrum resource information of the wavelength connection may include the center frequency granularity that the wavelength connection can use.
  • Information, center frequency information, and bandwidth information; resource configuration information of the downstream node includes a center frequency value configured by the downstream node.
  • the intermediate node determines, according to the first wavelength connection establishment feedback message, resource information that needs to be configured by the intermediate node, and configures the corresponding resource.
  • the intermediate node determines a center frequency value and a bandwidth value of the outbound interface configuration of the intermediate node according to the first wavelength connection establishment feedback message and the center frequency granularity of the outbound interface of the intermediate node;
  • the intermediate node determines a center frequency value and a bandwidth value of the inbound interface configuration of the intermediate node according to the first wavelength connection establishment feedback message and the center frequency granularity of the ingress interface of the intermediate node;
  • the cross-connection is configured according to the center frequency value and the bandwidth value of the inbound interface configuration of the intermediate node and the center frequency value and the bandwidth value of the outbound interface configuration of the intermediate node.
  • the intermediate node sends a second wavelength connection establishment feedback message to the upstream node, where the second wavelength connection establishment feedback message includes the effective spectrum resource information of the wavelength connection and the resource configuration information of the intermediate node.
  • the common available spectrum resource information may be represented by using central frequency granularity information and central frequency information, or may be directly represented by a common available spectrum range, or may be expressed by other means, as long as it can indicate that the common use is possible.
  • the spectrum resources are all right.
  • the intermediate node determines the common available spectrum resource information and the wavelength connection spectrum requirement information of the downstream node according to the common available spectrum resource information before the intermediate node and the spectrum requirement information of the wavelength connection, and can automatically collect the common available wavelength connection.
  • the spectrum resources which do not require manual configuration by network administrators, solve the problem that the establishment of wavelength connections in a network supporting mixed frequency granularity is error-prone.
  • FIG. 2 shows a method for establishing a wavelength connection according to an embodiment of the present invention.
  • the method in this embodiment includes the following steps:
  • the first node sends a third wavelength connection establishment request message to the downstream node, where the third wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information of the wavelength connection before the downstream node.
  • the network restriction condition includes that the center frequency of the allocated spectrum resource on the same wavelength connection remains the same
  • the common available spectrum resource information before the wavelength node is connected to the downstream node includes information of the seventh center frequency granularity and the seventh center frequency, and the seventh center frequency
  • the granularity is the central frequency granularity supported by the first node
  • the seventh central frequency is the set of available central frequencies commonly supported by the interface before the downstream node at the seventh central frequency granularity.
  • the seventh center frequency includes a plurality of commonly available center frequency values
  • the common available spectrum resource information prior to the wavelength connection to the intermediate node further includes a priority of the seventh common available center frequency.
  • the common available spectrum resource information of the wavelength connection before the downstream node includes the eighth center frequency granularity and the eighth center frequency
  • the eighth center frequency granularity is the greatest common divisor of the center frequency granularity of the interface before the wavelength is connected to the downstream node
  • the eighth center frequency is the central frequency that the available frequency range of the interface before the downstream node can cover at the eighth central frequency granularity. The intersection of the collections.
  • the common available spectrum resource information prior to the wavelength connection to the downstream node includes the range of commonly available spectrum before the wavelength is connected to the downstream node.
  • the first node receives a third wavelength connection establishment feedback message from the downstream node, where the third wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node.
  • the effective spectral resource information of the wavelength connection includes central frequency granularity information, center frequency information, and bandwidth information that can be used for the wavelength connection.
  • the resource configuration information of the downstream node includes the center frequency value of the downstream node configuration.
  • the first node determines, according to the third wavelength connection establishment feedback message, the resource information that needs to be configured on the first node, and configures the corresponding resource.
  • the determining, by the first node, the resource information that needs to be configured by the first node according to the third wavelength connection establishment feedback message, and configuring the corresponding resource may include:
  • the first node establishes a feedback message according to the third wavelength connection and the center frequency granularity of the outbound interface of the first node Determining the center frequency value and the bandwidth value of the outbound interface configuration of the first node;
  • the cross-connection is configured according to the center frequency value and the bandwidth value of the upper and lower wavelength interface configurations of the head node and the center frequency value and the bandwidth value of the outbound interface configuration of the head node.
  • FIG. 3 shows a method for establishing a wavelength connection according to an embodiment of the present invention.
  • the method in this embodiment includes the following steps:
  • the last node receives a fourth wavelength connection establishment request message from the upstream node, where the fourth wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information of the wavelength connection before the last node.
  • the last node determines the effective spectrum resource information of the wavelength connection according to the commonly available spectrum resource information that is connected to the last node before the last node.
  • the effective spectral resource information of the wavelength connection includes central frequency granularity information, center frequency information, and bandwidth information that can be used for the wavelength connection.
  • the last node determines resource information that needs to be configured by the last node according to the effective spectrum resource information, and configures the corresponding resource.
  • the last node determines the resource information that the last node needs to be configured according to the effective spectrum resource information, and configures the corresponding resources, including:
  • the last node determines the center frequency value and the bandwidth value of the inbound interface configuration of the last node according to the effective spectrum resource information and the central frequency granularity of the ingress interface of the last node;
  • the cross-connection is configured according to the center frequency value and the bandwidth value of the inbound interface configuration of the last node and the center frequency value and the bandwidth value of the upper and lower wavelength interface configurations of the last node.
  • the last node sends a fourth wavelength connection establishment feedback message to the upstream node, where the fourth wavelength connection establishment feedback message includes the effective spectrum resource information of the wavelength connection and the resource configuration information of the last node.
  • the resource configuration information of the last node includes the center frequency value of the last node configuration.
  • FIG. 4 shows a network architecture diagram of an embodiment of the present invention, including a network consisting of six nodes A, B, C, D, E, and F, and lines between nodes represent fiber links.
  • Interface 1 represents an interface of the upper and lower wavelengths of node A
  • interface 8 represents an interface of the upper and lower wavelengths of node D.
  • Interface 1 and interface 8 can have upper and lower wavelengths, indicating that interface 1 and interface 8 can transmit and receive wavelengths.
  • link AB is the link between interface 2 and interface 3. If the center frequency granularity supported by interface 2 is 6.25 GHz and the center frequency granularity supported by interface 3 is 6.25 GHz, node A and node B negotiate. The center frequency granularity supported by the link AB is 6.25 GHz. If the center frequency granularity supported by the interface 2 is 6.25 GHz and the center frequency granularity supported by the interface 3 is also 12.5 GHz, the node A and the node B negotiate to obtain the link AB support. The center frequency granularity is 12.5 GHz.
  • the center frequency granularity supported by the interface mentioned later in this application is the central frequency granularity supported by the link to which the interface is connected after negotiation. That is, if the link center AB supports a center frequency granularity of 12.5 GHz, the center frequency granularity supported by interface 2 and interface 3 is 12.5 GHz.
  • the center frequency can be calculated according to the following formula:
  • center frequency step is 12.5 GHz, such as link BC and link AF in Figure 2, the spectrum resources in the fiber link are divided as shown in Figure 6:
  • the center frequency can be calculated according to the following formula:
  • the wavelength connection needs to occupy a certain spectrum bandwidth in the fiber link.
  • the spectrum bandwidth required for a wavelength connection is mainly related to the modulation format of the electrical signal carried by the wavelength. Before establishing a wavelength connection, it is necessary to determine the spectrum bandwidth required for the wavelength connection.
  • the spectrum bandwidth required for the wavelength connection is usually determined by the network controller or the first node of the wavelength connection according to constraints such as the modulation format and the head node capability of the electrical signal carried by the network, for example, the head node capability may be the spectrum supported by the head node filter. Filter step granularity.
  • the granularity of the center frequency step supported by each node may also be inconsistent. Therefore, the frequency width allocated for a certain service on different links may be inconsistent. However, as long as the allocated spectrum resources are not less than the resources that the service needs to occupy.
  • the allocated spectrum resources are described by two parameters: the center frequency and the spectrum width.
  • the center frequency of the spectrum is described by n, and the spectral width can be described by m and CFG.
  • the spectrum width is calculated as: 2m*CFG.
  • FIG. 8 shows a method for establishing a wavelength connection according to an embodiment of the present invention.
  • the available spectrum resources in the network shown in FIG. 4 are as shown in FIG. 9.
  • This embodiment needs to establish a unidirectional wavelength from interface 1 to interface 8.
  • the method of the present embodiment includes the following steps:
  • the first node A receives the wavelength connection establishment request.
  • the NMS or client notifies the first node A to establish a unidirectional wavelength connection from interface 1 to interface 8, which informs the service that it needs to occupy 12.5 GHz of spectrum bandwidth.
  • the first node A obtains the spectrum requirement for the wavelength connection.
  • the first node A determines the actual required spectrum bandwidth according to its own capability limit. In this example, it is 12.5 GHz, and the first node A performs the calculation path, assuming that the calculation result is A-B-C-D.
  • the first node A sends a wavelength connection establishment request message to the intermediate node B.
  • the node A sends a signaling Path message to the next node in the path, that is, the Node B.
  • the signaling Path message mainly includes a traffic parameter object, an explicit routing object, and a label set object, and specifies a spectrum requirement in the message. (The requirement is 12.5 GHz in this embodiment), which is carried in the traffic parameter object, and the specified path is interface 3-interface 4-interface 5-interface 6-interface 7-interface 8, carried in the explicit routing object, and specified chain
  • the subsequent steps are similar; the available spectrum resources can be represented by a set of available center frequencies or a range of frequencies. This embodiment only takes the center frequency set as an example. However, the present invention does not limit the manner in which the available spectrum resource information is represented, as long as it can indicate the spectrum resources that can be selected.
  • the intermediate node B sends a wavelength connection establishment request message to the intermediate node C.
  • the Node B receives the Path message, and according to its content, that is, the required bandwidth, the available spectrum resources, and the CFG information, combined with the available spectrum resources of the local link BC, the supported center frequency granularity (CFG), and the available center frequency. Restrictions, remove spectrum resources that are not supported locally;
  • the Node B sends a signaling Path message to the next node C of the path.
  • the specified spectrum requirement is 12.5 GHz, carried in the traffic parameter object, and the path is interface 5-interface 6-interface 7-interface 8, carried in the explicit route.
  • the available spectrum resources supported by the node to the node B ⁇ n4, n6 ⁇ (CFG 6.25), which is represented by the label set object, that is, the specified path is supported by the node B.
  • the intermediate node C sends a wavelength connection establishment request message to the last node D.
  • Node C receives the above Path message, according to its content, that is, required bandwidth, available spectrum resources, and CFG information, combined with the available spectrum resources of the local link CD, the supported center frequency granularity (CFG), and the available center frequency. Restrictions, remove spectrum resources that are not supported locally;
  • the information of the central frequency set ie ⁇ n4 ⁇ . Intersect with the received available spectrum resource information to get ⁇ n4 ⁇ .
  • Node C sends a signaling Path message to the next node D of the path.
  • the specified spectrum requirement is 12.5 GHz, carried in the traffic parameter object, and the path is interface 7-interface 8, carried in the explicit routing object, and the path is specified.
  • the last node D sends a wavelength connection establishment feedback message to the intermediate node C.
  • ETS Effective Frequency Slot
  • the last node D determines the center frequency value and the bandwidth value of the inbound interface 7 configuration of the last node D according to the effective spectrum resource information and the central frequency granularity of the inbound interface 7 of the last node, and specifically includes: according to the EFS and the locally supported CFG. Node D needs to determine the resource information actually allocated locally.
  • the intermediate node C determines the center frequency value and the bandwidth value of the outbound interface 6 of the intermediate node C according to the wavelength connection establishment feedback message from the node D and the center frequency granularity of the outbound interface 6 of the intermediate node C, which may be:
  • the above-mentioned Resv message is received, and the spectrum width m value that the node C needs to allocate on the interface 6 is obtained according to the service spectrum resource information specified by the traffic parameter object and the center frequency information allocated by the node D in the label object, and the CFG information of the interface 7. .
  • the intermediate node C determines the center frequency value and the bandwidth value of the inbound interface 5 of the intermediate node C according to the wavelength connection establishment feedback message from the node D and the center frequency granularity of the inbound interface 5 of the intermediate node C; According to the received EFS information, the node C needs to combine the CFG information on the interface 5 to determine the actually allocated spectrum resource information on the interface.
  • the center frequency value and the bandwidth value configured according to the inbound interface 5 of the intermediate node and the center of the outbound interface 6 configuration of the intermediate node
  • the frequency value and the bandwidth value are configured to be cross-connected, that is, establishing a wavelength cross-connection in the positive direction, and connecting the corresponding frequency band allocated from the interface 5 to the corresponding frequency band allocated by the interface 6;
  • the bandwidth allocated on the two interfaces is inconsistent, 50 GHz and 25 GHz respectively, but both are larger than the service demand value (12.5 GHz), so the service can be carried normally.
  • the intermediate node B sends a wavelength connection establishment feedback message to the first node A.
  • the intermediate node B determines the center frequency value and the bandwidth value of the outbound interface 4 of the intermediate node B according to the wavelength connection establishment feedback message from the intermediate node C and the center frequency granularity of the outbound interface 4 of the intermediate node B, which may be specifically: node B
  • the received Resv message is obtained according to the service spectrum resource information specified by the traffic parameter object and the center frequency information allocated by the node C in the label object, and the CFG information of the interface 5, to obtain the spectrum width m value that the Node B needs to allocate on the interface 4.
  • the intermediate node B determines the center frequency value and the bandwidth value of the inbound interface 3 configuration of the intermediate node B according to the wavelength connection establishment feedback message from the intermediate node C and the central frequency granularity of the inbound interface 3 of the intermediate node B; Based on the received EFS information, the node C needs to combine the CFG information on the interface 3 to determine the actually allocated spectrum resource information on the interface.
  • the cross connection is configured, that is, the wavelength cross connection in the positive direction is established, and the interface 3 is allocated.
  • the corresponding frequency band is connected to the corresponding frequency band allocated by interface 4;
  • the Node B sends a signaling Resv message to the previous node A in the path.
  • the information is a wavelength connection establishment feedback message, which mainly includes a traffic parameter object and a label object.
  • the first node A receives a wavelength connection establishment feedback message.
  • the first node A determines the center frequency value and the bandwidth value of the outbound interface 2 configuration of the first node A according to the wavelength connection establishment feedback message from the intermediate node B and the center frequency granularity of the outbound interface 2 of the first node A, which may specifically include: After receiving the Resv message, according to the spectrum bandwidth and center frequency information specified in the traffic parameter object and the label object, and the CFG information of the interface 3, the spectrum width m value that the node A needs to allocate on the interface 2 is obtained.
  • the laser at the transmitting end of the interface 1 needs to be adjusted to the above frequency band, and the center frequency value and the bandwidth value configured according to the upper and lower wavelength interfaces 1 of the first node A and the outbound interface 2 of the first node A are configured.
  • the center frequency value and the bandwidth value are configured to be cross-connected, and a wavelength cross-connection in the positive direction is established, that is, the corresponding frequency band from the interface 1 is connected to the corresponding frequency band of the interface 2;
  • Node A is the first node of the wavelength connection, and the unidirectional wavelength connection is established.
  • the actual service uses the spectrum resources and the allocated spectrum resources as shown in FIG.
  • TSpec object the traffic parameter object
  • the above format uses a 32-bit number to represent the spectrum bandwidth of the service demand.
  • the first four bits represent the step values of the center frequency.
  • the values can be as follows:
  • m indicates the width of the spectrum to be occupied, and needs to be combined with the CFG value to get the correct width value.
  • the above spectrum bandwidth information can also be placed in the tag request object, for example, an extended tag request object.
  • table 2 As shown in table 2:
  • LSP Enc. Type indicates the coding type of the connection
  • Switching Type indicates the exchange type of the connection
  • SFG and m have the same meaning as Table 1.
  • LSP Enc. Type is lambda (value 8), it indicates the wavelength coding type.
  • a new type of exchange is defined as flexible lambda switch (for example, Switching Type takes 151).
  • the center frequency in the tag object can be extended by the tag format defined by IETF RFC6205, as shown in Table 4:
  • Figure 11 is a diagram showing a method for establishing a wavelength connection according to an embodiment of the present invention.
  • the available spectrum resources in the network shown in Figure 4 are as shown in Figure 12.
  • the unidirectional wavelength of interface 1 to interface 8 needs to be established.
  • the method of the present embodiment includes the following steps:
  • the first node A receives the wavelength connection establishment request.
  • the network management or the client notifies the first node (node A), establishes a bidirectional wavelength connection from interface 1 to interface 8, and informs the service that the required spectrum bandwidth needs to be 12.5 GHz;
  • the first node A obtains the spectrum requirement of the wavelength connection.
  • Node A receives the above request and determines the spectrum resource bandwidth that actually needs to be requested according to its own capability limit. In this example, it is 12.5 GHz, and the calculation path is performed (assuming the calculation result is A-F-E-D).
  • the first node A sends a wavelength connection establishment request message to the intermediate node F.
  • the available frequency range of the interface is the intersection of the set of central frequencies that can be covered at the center frequency granularity before the intermediate node F, ie ⁇ n3, n4, n5, n6, n7, n8, n9 ⁇ ;
  • the available spectrum resources can be represented by a set of available center frequencies or a range of frequencies, this embodiment is only a collection of center frequencies.
  • the present invention does not limit the representation of available spectrum resource information, as long as it can indicate the spectrum resources that can be selected.
  • the intermediate node F sends a wavelength connection establishment request message to the intermediate node E.
  • Node F receives the above Path message, according to its content (ie, required bandwidth, available spectrum resources, and CFG information), combined with local (ie, link FE) available spectrum resources, supported central frequency granularity (CFG), and available The limitation of the center frequency, removing the spectrum resources that are not supported locally;
  • the greatest common divisor of the center frequency granularity of the previous interface also includes the intersection of the available frequency range of the interface before the intermediate node E at the central frequency granularity before the intermediate node E, ie ⁇ n3,n4,n5,n6,n7 ⁇ ;
  • the intermediate node E sends a wavelength connection establishment request message to the last node D.
  • Node E receives the above Path message, according to its content (ie, required bandwidth, available spectrum resources, and CFG information), combined with local (ie, link CD) available spectrum resources, supported central frequency granularity (CFG), and available The limitation of the center frequency, removing the spectrum resources that are not supported locally;
  • the intersection representation can be directly calculated.
  • the ED available spectrum resource is ⁇ nl, n2, n3, n4, n5 ⁇ , that is, the ED available spectrum resource is the available spectrum resource information of the outbound interface of the intermediate node E, including the center before the node D.
  • the available spectrum resources and the received available spectrum resource information are intersected to obtain ⁇ n3, n4, n5 ⁇ .
  • the available spectrum resources supported by the node to the node D are the common available spectrum resource information before the node D, including the central frequency granularity information before the node D, and the granularity is the greatest common divisor of the central frequency granularity of the interface before the node D.
  • the last node D sends a wavelength connection establishment feedback message to the intermediate node E.
  • Node D is the last node of the wavelength connection.
  • the spectrum resource information used by the service is selected, that is, the effective spectrum resource information of the long connection, which is hereinafter referred to as: Effective Frequency Slot;
  • the node D determines the center frequency value and the bandwidth value of the inbound interface 9 of the last node D according to the effective spectrum resource information and the center frequency granularity of the inbound interface 9 of the last node, and specifically includes: according to the EFS and the locally supported CFG. Node D needs to determine the resource information actually allocated locally.
  • the intermediate node E sends a wavelength connection establishment feedback message to the intermediate node F.
  • the intermediate node E determines the center frequency value and the bandwidth value of the inbound interface 11 of the intermediate node E according to the wavelength connection establishment feedback message from the node D and the center frequency granularity of the inbound interface 11 of the intermediate node E; For the received EFS information, the node C needs to combine the CFG information on the interface 11 to determine the actually allocated spectrum resource information on the interface.
  • the center frequency value and the bandwidth value and the center frequency value and the bandwidth value configured by the outbound interface 10 of the intermediate node are cross-connected, that is, the wavelength cross-connection in the positive direction is established, and the corresponding frequency band allocated from the interface 11 is connected to the interface 10 to be allocated.
  • the intermediate node F sends a wavelength connection establishment feedback message to the first node A.
  • the intermediate node F determines the center frequency value and the bandwidth value of the outbound interface 12 of the intermediate node F according to the wavelength connection establishment feedback message from the intermediate node E and the center frequency granularity of the outbound interface 12 of the intermediate node F, which may be: node F
  • the received Resv message is obtained according to the service spectrum resource information specified by the traffic parameter object and the center frequency information allocated by the node E in the label object, and the CFG information of the interface 11, and the spectrum width m value that the node F needs to allocate on the interface 12 is obtained.
  • the intermediate node F determines the center frequency value and the bandwidth value of the inbound interface 13 of the intermediate node F according to the wavelength connection establishment feedback message from the intermediate node E and the center frequency granularity of the inbound interface 13 of the intermediate node F; Based on the received EFS information, the node C needs to combine the CFG information on the interface 13 to determine the actually allocated spectrum resource information on the interface.
  • the cross connection is configured, that is, the wavelength cross connection in the positive direction is established, and the interface 13 is allocated.
  • the corresponding frequency band is connected to the corresponding frequency band allocated by the interface 12;
  • the first node A receives a wavelength connection establishment feedback message.
  • the first node A determines the center frequency value and the bandwidth value of the configuration of the outbound interface 14 of the first node A according to the wavelength connection establishment feedback message from the intermediate node F and the center frequency granularity of the outbound interface 14 of the first node A, which may specifically include: After receiving the Resv message, according to the spectrum bandwidth and center frequency information specified in the traffic parameter object and the label object, and the CFG information of the interface 13, the spectrum width m value that the node A needs to allocate on the interface 14 is obtained.
  • the center frequency value and the bandwidth value are configured to be cross-connected to establish a wavelength cross-connection in the positive direction, that is, the corresponding frequency band from the interface 1 is connected to the corresponding frequency band of the interface 14;
  • Node A is the first node of the wavelength connection, and the unidirectional wavelength connection is established.
  • the actual service uses the spectrum resources and the allocated spectrum resources as shown in FIG.
  • the network does not require allocation of n on the path.
  • the frequency of the spectrum resources allocated on this path varies. But because their intersections can cover business needs, they can still be used to carry services.
  • FIG. 14 shows a wavelength-connected intermediate node 1400 according to an embodiment of the present invention.
  • the node includes:
  • the first receiving unit 1401 is configured to receive a first wavelength connection establishment request message from the upstream node, where the first wavelength connection establishment request message includes common available spectrum resource information and wavelength connection spectrum requirement information before the intermediate node is connected to the wavelength;
  • the first determining unit 1402 is configured to determine, according to the spectrum requirement information of the wavelength connection, the available spectrum resource information of the outbound interface whose wavelength is connected to the intermediate node, and the common connection before the intermediate node according to the wavelength connection Determining, by using spectrum resource information and available spectrum resource information of the outbound interface of the intermediate node, the common available spectrum resource information before the wavelength is connected to the downstream node;
  • the first sending unit 1403 is configured to send a second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes common available spectrum resource information and wavelength connection spectrum requirement information before the wavelength node is connected to the downstream node;
  • the second receiving unit 1404 is configured to receive a first wavelength connection establishment feedback message from the downstream node, where the first wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node;
  • a second determining unit 1405, configured to determine resource information that the intermediate node needs to be configured according to the first wavelength connection establishment feedback message, and configure corresponding resources;
  • the second sending unit 1406 is configured to send a second wavelength connection establishment feedback message to the upstream node, where the second wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the intermediate node.
  • the second determining unit 1405 is specifically configured to determine a center frequency value and a bandwidth value of the outbound interface configuration of the intermediate node according to the first wavelength connection establishment feedback message and the center frequency granularity of the outbound interface of the intermediate node, and establish a feedback message according to the first wavelength connection.
  • the center frequency granularity of the inbound interface of the intermediate node determines the center frequency value and the bandwidth value of the inbound interface configuration of the intermediate node, and the center frequency value and the bandwidth value configured according to the inbound interface of the intermediate node and the center of the outbound interface configuration of the intermediate node
  • the frequency value and the bandwidth value are configured to be cross-connected.
  • FIG. 15 is a diagram showing a wavelength-connected head node 1500 according to an embodiment of the present invention.
  • the node includes: a third sending unit 1501, configured to send a third wavelength connection establishment request message to a downstream node, and a third wavelength connection establishment request The message includes common available spectrum resource information and wavelength requirement information of the wavelength connection before the wavelength node is connected to the downstream node;
  • the third receiving unit 1502 is configured to receive a third wavelength connection establishment feedback message from the downstream node, where the third wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node;
  • the third determining unit 1503 is configured to determine, according to the third wavelength connection establishment feedback message, resource information that needs to be configured by the first node, and configure corresponding resources.
  • the third determining unit 1503 is specifically configured to determine, according to the third wavelength connection establishment feedback message and the center frequency granularity of the outbound interface of the first node, a center frequency value and a bandwidth value of the outbound interface configuration of the first node, according to the upper and lower wavelength interface configurations of the first node.
  • the center frequency value and the bandwidth value are cross-connected with the center frequency value and the bandwidth value configuration of the outbound interface configuration of the head node.
  • FIG. 16 shows a wavelength-connected end node 1600 according to an embodiment of the present invention.
  • the node includes: a fourth receiving unit 1601, configured to receive a fourth wavelength connection establishment request message from an upstream node, and establish a fourth wavelength connection.
  • the request message includes common available spectrum resource information and wavelength requirement spectrum information of the wavelength connection before the last node;
  • the fourth determining unit 1602 is configured to determine the effective spectrum resource information of the wavelength connection according to the common available spectrum resource information that is connected before the last node according to the wavelength, determine the resource information that the last node needs to configure according to the effective spectrum resource information, and configure the corresponding resource;
  • the fourth sending unit 1603 is configured to send a fourth wavelength connection establishment feedback message to the upstream node, where the fourth wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the last node.
  • the fourth determining unit 1602 is specifically configured to determine, according to the effective spectrum resource information and the center frequency granularity of the ingress interface of the last node, a center frequency value and a bandwidth value of the inbound interface configuration of the last node, and configure a center frequency value according to the inbound interface of the last node.
  • the cross-connection is configured with the bandwidth value and the center frequency value and the bandwidth value configuration of the upper and lower wavelength interface configurations of the last node.
  • FIG. 17 is a diagram showing a wavelength connection establishing system according to an embodiment of the present invention, including a first node and a last node of a wavelength connection, wherein
  • the first node 1701 is configured to send a third wavelength connection establishment request message to the downstream node, where the third wavelength connection establishment request message includes common available spectrum resource information and wavelength connection spectrum requirement information before the wavelength node is connected, and the receiving is from the downstream node.
  • the third wavelength connection establishes a feedback message, and the third wavelength connection establishment feedback message includes the effective spectrum resource information of the wavelength connection and the resources of the downstream node.
  • the configuration information is determined according to the third wavelength connection establishment feedback message, and the resource information that needs to be configured by the first node is determined, and the corresponding resource is configured;
  • the last node 1702 is configured to receive a fourth wavelength connection establishment request message from the upstream node, where the fourth wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information of the wavelength connection before the last node, and is connected according to the wavelength. Determining the effective spectrum resource information of the wavelength connection in the common available spectrum resource information before the last node, determining the resource information to be configured by the last node according to the effective spectrum resource information, and configuring the corresponding resource, and sending the fourth wavelength connection establishment feedback message to the upstream node, The four-wavelength connection establishment feedback message includes the effective spectrum resource information of the wavelength connection and the resource configuration information of the last node.
  • the intermediate node may not be included between the first node and the last node, that is, the downstream node of the first node is the last node.
  • the first node and the last node include at least one intermediate node, where the intermediate node is configured to receive a first wavelength connection establishment request message from the upstream node, where the first wavelength connection establishment request message includes a common available spectrum resource whose wavelength is connected before the intermediate node.
  • Spectral demand information of information and wavelength connection determining available spectrum resource information of the outbound interface whose wavelength is connected at the intermediate node according to the spectrum requirement information of the wavelength connection, and connecting the common available spectrum resource information and wavelength according to the wavelength before the intermediate node to the intermediate node
  • the available spectrum resource information of the outbound interface determines the common available spectrum resource information before the wavelength is connected to the downstream node; sends the second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes the wavelength connection before the downstream node Commonly available spectrum resource information and wavelength-connected spectrum requirement information; receiving a first wavelength connection establishment feedback message from a downstream node, the first wavelength connection establishment feedback message including a wavelength-connected effective spectrum resource letter And the resource configuration information of the downstream node; determining the resource information that the intermediate node needs to be configured according to the first wavelength connection establishment feedback message, and configuring the corresponding resource; sending the second wavelength connection establishment feedback message to the upstream node, and the second wavelength connection establishment feedback message includes the wavelength
  • FIG. 18 shows a wavelength-connected intermediate node 1800 according to an embodiment of the present invention
  • the node includes: a fifth receiving unit 1801, configured to receive a first wavelength connection establishment request message from an upstream node, where the first wavelength connection establishment request message includes common available spectrum resource information and wavelength connection spectrum requirement information before the intermediate node is connected to the wavelength;
  • the processor 1802 is configured to determine, according to the spectrum requirement information of the wavelength connection, the available spectrum resource information of the outbound interface whose wavelength is connected to the intermediate node, and the common available spectrum resource information connected to the intermediate node according to the wavelength and the outbound interface of the wavelength connected to the intermediate node.
  • the available spectrum resource information determines the commonly available spectrum resource information before the wavelength is connected to the downstream node;
  • the fifth sending unit 1803 is configured to send a second wavelength connection establishment request message to the downstream node, where the second wavelength connection establishment request message includes the common available spectrum resource information and the wavelength connection spectrum requirement information of the wavelength connection before the downstream node;
  • the fifth receiving unit 1801 is configured to receive a first wavelength connection establishment feedback message from the downstream node, where the first wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node;
  • the processor 1802 is configured to determine, according to the first wavelength connection establishment feedback message, resource information that needs to be configured by the intermediate node, and configure corresponding resources;
  • the fifth sending unit 1803 is configured to send a second wavelength connection establishment feedback message to the upstream node, where the second wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the intermediate node.
  • the processor 1802 is configured to determine, according to the first wavelength connection establishment feedback message, resource information that needs to be configured by the intermediate node, and configure the corresponding resource, which may specifically include determining, according to the first wavelength connection establishment feedback message, the center frequency granularity of the outbound interface of the intermediate node.
  • the center frequency value and the bandwidth value of the outbound interface configuration of the node determine the center frequency value and the bandwidth value of the inbound interface configuration of the intermediate node according to the first wavelength connection establishment feedback message and the center frequency granularity of the ingress interface of the intermediate node, according to the middle
  • the center frequency value and the bandwidth value of the inbound interface configuration of the node and the center frequency value and the bandwidth value configuration of the outbound interface configuration of the intermediate node are cross-connected.
  • FIG. 19 shows a wavelength-connected head node 1900 according to an embodiment of the present invention
  • the node includes:
  • the sixth sending unit 1901 is configured to send a third wavelength connection establishment request message to the downstream node, where the third wavelength connection establishment request message includes common available spectrum resource information and wavelength connection spectrum requirement information before the wavelength node is connected to the downstream node;
  • the sixth receiving unit 1902 is configured to receive a third wavelength connection establishment feedback message from the downstream node, where the third wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the downstream node;
  • the processor 1903 is configured to determine, according to the third wavelength connection establishment feedback message, resource information that needs to be configured by the first node, and configure corresponding resources.
  • the processor 1903 is specifically configured to determine, according to the third wavelength connection establishment feedback message and the center frequency granularity of the outbound interface of the first node, a center frequency value and a bandwidth value of the outbound interface configuration of the first node, according to a center configured by the upper and lower wavelength interfaces of the first node.
  • the frequency value and the bandwidth value and the center frequency value and the bandwidth value configuration of the outbound interface configuration of the head node are cross-connected.
  • Figure 20 is a diagram showing a wavelength-connected end node 2000 according to an embodiment of the present invention.
  • the node includes: a seventh receiving unit 2001, configured to receive a fourth wavelength connection establishment request message from an upstream node, and establish a fourth wavelength connection.
  • the request message includes common available spectrum resource information and wavelength requirement spectrum information of the wavelength connection before the last node;
  • the processor 2002 is configured to determine the effective spectrum resource information of the wavelength connection according to the common available spectrum resource information before the last node according to the wavelength, determine the resource information that the last node needs to be configured according to the effective spectrum resource information, and configure the corresponding resource;
  • the seventh sending unit 2003 is configured to send a fourth wavelength connection establishment feedback message to the upstream node, where the fourth wavelength connection establishment feedback message includes the wavelength-connected effective spectrum resource information and the resource configuration information of the last node.
  • the processor 2002 is specifically configured to determine a center frequency value and a bandwidth value of an inbound interface configuration of the last node according to the effective spectrum resource information and a central frequency granularity of the ingress interface of the last node, and configure a center frequency value and a frequency according to the inbound interface of the last node.
  • the wide value and the center frequency value and the bandwidth value of the upper and lower wavelength interface configurations of the last node are configured to be cross-connected. It will be understood by those skilled in the art that all or part of the steps of the foregoing embodiments may be implemented by a program to instruct related hardware, and the program may be stored in a computer readable storage medium. Storage media, such as ROM/RAM, disk, CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种波长连接的建立方法,包括:末节点接收来自上游节点的第四波长连接建立请求消息,所述第四波长连接建立请求消息包括所述波长连接在所述末节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信息;所述末节点根据所述波长连接在所述末节点之前的共同可用频谱资源信息确定所述波长连接的有效频谱资源信息;所述末节点根据所述有效频谱资源信息确定所述末节点需要配置的资源信息并配置相应资源;所述末节点发送第四波长连接建立反馈消息到所述上游节点,所述第四波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述末节点的资源配置信息。

Description

说 明 书
一种波长连接的建立方法、 节点和系统
技术领域
本发明属于通信领域, 尤其涉及一种波长连接的建立方法、 节点和系统。 背景技术
波分网络由节点和链路组成, 两个节点之间由光纤链路连接起来。 在一条 光纤链路中可以 载多个波长通道, 不同光纤链路中的波长通道可以由节点连 接起来。 因此, 一个特定的波长连接, 可以从首节点经过一条或多条光纤链路, 连接到末节点, 波长连接可以是单向的, 也可以是双向的。 由于每条光纤链路 都可以传送多个波长, 因此传送容量比较大。
波长连接需要占用光纤中的频谱资源, 每条光纤中可用的频谱资源有限。 一般把光纤中的可用频谱资源划分为固定间隔的频率间隔(grid ) , 每个 grid可 以作为一个波长通道。 这种方式的缺点是, 在不同比特率的业务利用波长连接 混合传送时, 不同比特率的业务的频谱需求可能不同, 例如, lOOGbps的业务 需要 50GHz, lTbps的业务需要 175GHz , 需要把光纤中的频谱资源按照 175GHz 间隔划分波长通道, 以满足大粒度业务的需要, 此时, 比特率较小的业务也需 要占用大的频谱带宽, 从而造成频谱资源的浪费。
为了提高波分网络的频谱资源利用率, 光纤中的频谱资源可以不固定间隔 来划分波长通道,而是根据波长连接的频谱需求为其分配一段连续的频谱范围。 每个波长连接所需要的频谱带宽与两端的调制格式相关。
具有灵活频谱带宽分配能力的网络中, 可能其节点的频谱资源划分能力不 同。 例如, 某些节点可能支持以 12.5GHZ为基本单位进行频谱划分, 而其他节 点可以支持 6.25GHZ为基本单位进行频谱划分和分配。 另外一种情况就是网络 可能存在灵活节点和不灵活节点共存的情况。 所谓灵活节点也就是支持按照不 同频谱宽宽度粒度进行频谱资源分力的节点。 所谓不灵活节点就是不支持灵活 频谱带宽分配, 只能按照较大的, 某一固定频谱宽度划分波长通道, 如按照
100GHz划分波长通道。 这两种情况都被认为是支持混合频语粒度的网络。
现有技术中针对支持混合频谱粒度的网络, 需要网络管理人员通过网管软 件, 手工建立波长连接, 容易出错。
发明内容
鉴于上述问题,本发明实施例提供一种波长连接的建立方法、节点和系统, 旨在解决现有技术中针对支持混合频谱粒度的网络中波长连接的建立容易出错 的问题。
第一方面, 一种波长连接的建立方法, 包括: 中间节点接收来自上游节点 的第一波长连接建立请求消息, 所述第一波长连接建立请求消息包括所述波长 连接在所述中间节点之前的共同可用频谱资源信息和所述波长连接的频谱需求 信息; 所述中间节点根据所述波长连接的频谱需求信息确定所述波长连接在所 述中间节点的出接口的可用频谱资源信息, 根据所述波长连接在所述中间节点 之前的共同可用频谱资源信息和所述波长连接在所述中间节点的出接口的可用 频谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资源信息; 所 述中间节点发送第二波长连接建立请求消息到所述下游节点, 所述第二波长连 接建立请求消息中包括所述波长连接在下游节点之前的共同可用频谱资源信息 和所述波长连接的频谱需求信息; 所述中间节点接收来自所述下游节点的第一 波长连接建立反馈消息, 所述第一波长连接建立反馈消息包括波长连接的有效 频谱资源信息和所述下游节点的资源配置信息; 所述中间节点根据所述第一波 长连接建立反馈消息确定所述中间节点需要配置的资源信息并配置相应资源; 所述中间节点发送第二波长连接建立反馈消息到所述上游节点, 所述第二波长 连接建立反馈消息包括波长连接的有效频谱资源信息和所述中间节点的资源配 置信息。 在第一方面的第一种可能的实现方式中, 所述中间节点根据所述波长连接 的频谱需求信息确定所述波长连接在所述中间节点的出接口的可用频谱资源信 息包括: 所述中间节点根据所述波长连接的频谱需求信息以及网络限制条件确 定所述波长连接在所述中间节点的出接口的可用频谱资源信息。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述网络限制条件包括同一条波长连接上分配的频谱资源的中心频率保持一致。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所 述波长连接在所述中间节点之前的共同可用频谱资源信息包括第一中心频率粒 度和第一中心频率的信息, 所述第一中心频率粒度为所述波长连接的首节点所 支持中心频率粒度, 所述第一中心频率为中间节点之前的接口在所述第一中心 频率粒度下共同支持的可用中心频率集合。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所 述中间节点根据所述波长连接的频谱需求信息以及网络限制条件确定所述波长 连接在所述中间节点的出接口的可用频谱资源信息包括: 所述中间节点根据所 述波长连接的频谱需求信息确定中间节点的出接口的可用频率; 所述中间节点 根据网络限制条件确定所述波长连接在所述中间节点的出接口的可用频谱资源 信息, 所述波长连接在所述中间节点的出接口的可用频谱资源信息包括第一中 心频率粒度和第二中心频率的信息, 所述第二中心频率为中间节点的出接口在 所述第一中心频率粒度下支持的可用中心频率集合。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所 述根据所述波长连接在所述中间节点之前的共同可用频谱资源信息和所述波长 连接在所述中间节点的出接口的可用频谱资源信息确定所述波长连接在下游节 点之前的共同可用频谱资源信息包括: 所述中间节点根据所述第一中心频率和 所述第二中心频率确定第三中心频率, 所述第三中心频率为下游节点之前的接 口在所述第一中心频率粒度下共同支持的可用中心频率集合, 所述波长连接在 下游节点之前的共同可用频谱资源信息包括第一中心频率粒度和第三中心频率 的信息。
结合第一方面的第三种可能的实现方式, 在第六种可能的实现方式中, 如 果所述第一中心频率包括多个共同可用中心频率值, 所述波长连接在所述中间 节点之前的共同可用频谱资源信息还包括第一共同可用中心频率的优先次序。
结合第一方面的第一种可能的实现方式, 在第七种可能的实现方式中, 如 果所述网络限制条件不包括同一条波长连接上分配的频谱资源的中心频率保持 一致或者没有网络限制条件, 所述波长连接在所述中间节点之前的共同可用频 谱资源信息包括第四中心频率粒度和第四中心频率, 所述第四中心频率粒度为 所述波长连接在所述中间节点之前的接口的中心频率粒度的最大公约数, 所述 第四中心频率为中间节点之前的接口的可用频率范围在所述第四中心频率粒度 下所能覆盖的中心频率集合的交集。
结合第一方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所 述中间节点根据所述波长连接的频谱需求信息以及网络限制条件确定所述波长 连接在所述中间节点的出接口的可用频谱资源信息包括: 所述中间节点根据所 述波长连接的频谱需求信息确定中间节点的出接口的可用频率范围; 所述中间 节点根据网络限制条件确定所述波长连接在所述中间节点的出接口的可用频谱 资源信息, 所述波长连接在所述中间节点的出接口的可用频谱资源信息包括第 五中心频率粒度和第五中心频率的信息, 所述第五中心频率粒度为所述第四中 心频率粒度和所述中间节点的出接口的中心频率粒度的最大公约数, 所述第五 中心频率为中间节点的出接口的可用频率范围在所述第五中心频率粒度下所能 覆盖的中心频率集合。
结合第一方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所 述根据所述波长连接在所述中间节点之前的共同可用频谱资源信息和所述波长 连接在所述中间节点的出接口的可用频谱资源信息确定所述波长连接在下游节 点之前的共同可用频谱资源信息包括: 所述中间节点根据所述波长连接在所述 中间节点之前的共同可用频谱资源信息和所述波长连接在所述中间节点的出接 口的可用频谱资源信息确定第六中心频率, 所述第六中心频率为所述波长连接 在所述下游节点之前的接口的可用频率范围在所述第五中心频率粒度下所能覆 盖的中心频率集合的交集, 所述波长连接在下游节点之前的共同可用频谱资源 信息包括第五中心频率粒度和第六中心频率。
在第十种可能的实现方式中, 所述波长连接在所述中间节点之前的共同可 用频谱资源信息包括所述波长连接在所述中间节点之前共同可用频谱范围。
在第十一种可能的实现方式中, 所述波长连接的频谱需求信息包括波长连 接中心频率粒度信息和所述波长连接中心频率粒度下对应的频宽信息。
在第十二种可能的实现方式中, 所述根据所述波长连接在所述中间节点之 前的共同可用频谱资源信息和所述波长连接在所述中间节点的出接口的可用频 谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资源信息包括: 根据所述波长连接在所述中间节点之前的共同可用频谱资源信息、 所述波长连 接在所述中间节点的出接口的可用频谱资源信息以及网络限制条件确定所述波 长连接在下游节点之前的共同可用频谱资源信息。
在第十三种可能的实现方式中, 所述波长连接的有效频谱资源信息包括所 述波长连接可以使用的中心频率粒度信息、 中心频率信息和频宽信息。
在第十四种可能的实现方式中, 所述下游节点的资源配置信息包括所述下 游节点配置的中心频率值。
在第十五种可能的实现方式中, 所述中间节点根据所述第一波长连接建立 反馈消息确定所述中间节点需要配置的资源信息并配置相应资源包括: 所述中 间节点根据所述第一波长连接建立反馈消息和所述中间节点的出接口的中心频 率粒度确定所述中间节点的出接口配置的中心频率值和频宽值;所述中间节点 根据所述第一波长连接建立反馈消息和所述中间节点的入接口的中心频率粒度 确定所述中间节点的入接口配置的中心频率值和频宽值; 根据所述中间节点的 入接口配置的中心频率值和频宽值以及所述中间节点的出接口配置的中心频率 值和频宽值配置交叉连接。 第二方面, 一种波长连接的建立方法, 包括: 首节点发送第三波长连接建 立请求消息到下游节点, 所述第三波长连接建立请求消息包括所述波长连接在 所述下游节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信息; 所述首节点接收来自所述下游节点的第三波长连接建立反馈消息, 所述第三波 长连接建立反馈消息包括波长连接的有效频谱资源信息和所述下游节点的资源 配置信息; 所述首节点根据所述第三波长连接建立反馈消息确定所述首节点需 要配置的资源信息并配置相应资源。
在第一种可能的实现方式中, 如果网络限制条件包括同一条波长连接上分 配的频谱资源的中心频率保持一致, 所述波长连接在所述下游节点之前的共同 可用频谱资源信息包括第七中心频率粒度和第七中心频率的信息, 所述第七中 心频率粒度为所述首节点所支持中心频率粒度, 所述第七中心频率为下游节点 之前的接口在所述第七中心频率粒度下共同支持的可用中心频率集合。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 如 果所述第七中心频率包括多个共同可用中心频率值, 所述波长连接在所述中间 节点之前的共同可用频谱资源信息还包括第七共同可用中心频率的优先次序。
在第三种可能的实现方式中, 如果所述网络限制条件不包括同一条波长连 接上分配的频谱资源的中心频率保持一致或者没有网络限制条件, 所述波长连 接在所述下游节点之前的共同可用频谱资源信息包括第八中心频率粒度和第八 中心频率, 所述第八中心频率粒度为所述波长连接在所述下游节点之前的接口 的中心频率粒度的最大公约数, 所述第八中心频率为下游节点之前的接口的可 用频率范围在所述第八中心频率粒度下所能覆盖的中心频率集合的交集。
在第四种可能的实现方式中, 所述波长连接在所述下游节点之前的共同可 用频谱资源信息包括所述波长连接在所述下游节点之前共同可用频谱范围。
在第五种可能的实现方式中, 所述波长连接的频谱需求信息包括波长连接 中心频率粒度信息和所述波长连接中心频率粒度下对应的频宽信息。
在第六种可能的实现方式中, 所述波长连接的有效频谱资源信息包括所述 波长连接可以使用的中心频率粒度信息、 中心频率信息和频宽信息。 在第七种可能的实现方式中, 所述下游节点的资源配置信息包括所述下游 节点配置的中心频率值。
在第八种可能的实现方式中, 所述首节点根据所述第三波长连接建立反馈 消息确定所述首节点需要配置的资源信息并配置相应资源包括: 所述首节点根 据所述第三波长连接建立反馈消息和所述首节点的出接口的中心频率粒度确定 所述首节点的出接口配置的中心频率值和频宽值;根据所述首节点的上下波长 接口配置的中心频率值和频宽值以及所述首节点的出接口配置的中心频率值和 频宽值配置交叉连接。
第三方面一种波长连接的建立方法, 包括: 末节点接收来自上游节点的第 四波长连接建立请求消息, 所述第四波长连接建立请求消息包括所述波长连接 在所述末节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信息; 所述末节点根据所述波长连接在所述末节点之前的共同可用频谱资源信息确定 所述波长连接的有效频谱资源信息; 所述末节点根据所述有效频谱资源信息确 定所述末节点需要配置的资源信息并配置相应资源; 所述末节点发送第四波长 连接建立反馈消息到所述上游节点, 所述第四波长连接建立反馈消息包括波长 连接的有效频谱资源信息和所述末节点的资源配置信息。
在第一种可能的实现方式中, 所述波长连接的有效频谱资源信息包括所述 波长连接可以使用的中心频率粒度信息、 中心频率信息和频宽信息。
在第二种可能的实现方式中, 所述末节点的资源配置信息包括所述末节点 配置的中心频率值。
在第三种可能的实现方式中, 所述末节点根据所述有效频谱资源信息确定 所述末节点需要配置的资源信息并配置相应资源包括: 所述末节点根据所述有 效频谱资源信息和所述末节点的入接口的中心频率粒度确定所述末节点的入接 口配置的中心频率值和频宽值; 才艮据所述末节点的入接口配置的中心频率值和 频宽值以及所述末节点的上下波长接口配置的中心频率值和频宽值配置交叉连 接。
第四方面, 一种节点, 包括: 第一接收单元, 用于接收来自上游节点的第 一波长连接建立请求消息, 所述第一波长连接建立请求消息包括所述波长连接 在所述中间节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信 息; 第一确定单元, 用于根据所述波长连接的频谱需求信息确定所述波长连接 在所述中间节点的出接口的可用频谱资源信息, 根据所述波长连接在所述中间 节点之前的共同可用频谱资源信息和所述波长连接在所述中间节点的出接口的 可用频谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资源信 息; 第一发送单元, 用于发送第二波长连接建立请求消息到所述下游节点, 所 述第二波长连接建立请求消息中包括所述波长连接在下游节点之前的共同可用 频谱资源信息和所述波长连接的频谱需求信息; 第二接收单元, 用于接收来自 所述下游节点的第一波长连接建立反馈消息, 所述第一波长连接建立反馈消息 包括波长连接的有效频谱资源信息和所述下游节点的资源配置信息; 第二确定 单元, 用于根据所述第一波长连接建立反馈消息确定所述中间节点需要配置的 资源信息并配置相应资源; 第二发送单元, 用于发送第二波长连接建立反馈消 息到所述上游节点, 所述第二波长连接建立反馈消息包括波长连接的有效频谱 资源信息和所述中间节点的资源配置信息。
在第一种可能的实现方式中, 所述第二确定单元具体用于根据所述第一波 长连接建立反馈消息和所述中间节点的出接口的中心频率粒度确定所述中间节 点的出接口配置的中心频率值和频宽值, 根据所述第一波长连接建立反馈消息 和所述中间节点的入接口的中心频率粒度确定所述中间节点的入接口配置的中 心频率值和频宽值, 才艮据所述中间节点的入接口配置的中心频率值和频宽值以 及所述中间节点的出接口配置的中心频率值和频宽值配置交叉连接。
第五方面, 一种首节点, 包括: 第三发送单元, 用于发送第三波长连接建 立请求消息到下游节点, 所述第三波长连接建立请求消息包括所述波长连接在 所述下游节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信息; 第三接收单元, 用于接收来自所述下游节点的第三波长连接建立反馈消息, 所 述第三波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述下游节 点的资源配置信息; 第三确定单元, 用于根据所述第三波长连接建立反馈消息 确定所述首节点需要配置的资源信息并配置相应资源。
在第一种可能的实现方式中, 所述第三确定单元具体用于根据所述第三波 长连接建立反馈消息和所述首节点的出接口的中心频率粒度确定所述首节点的 出接口配置的中心频率值和频宽值, 根据所述首节点的上下波长接口配置的中 心频率值和频宽值以及所述首节点的出接口配置的中心频率值和频宽值配置交 叉连接。
第六方面, 一种末节点, 包括: 第四接收单元, 用于接收来自上游节点的 第四波长连接建立请求消息, 所述第四波长连接建立请求消息包括所述波长连 接在所述末节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信 息; 第四确定单元, 用于根据所述波长连接在所述末节点之前的共同可用频谱 资源信息确定所述波长连接的有效频谱资源信息, 根据所述有效频谱资源信息 确定所述末节点需要配置的资源信息并配置相应资源; 第四发送单元, 用于发 送第四波长连接建立反馈消息到所述上游节点, 所述第四波长连接建立反馈消 息包括波长连接的有效频谱资源信息和所述末节点的资源配置信息。
在第一种可能的实现方式中, 所述第四确定单元具体用于根据所述有效频 谱资源信息和所述末节点的入接口的中心频率粒度确定所述末节点的入接口配 置的中心频率值和频宽值, 才艮据所述末节点的入接口配置的中心频率值和频宽 值以及所述末节点的上下波长接口配置的中心频率值和频宽值配置交叉连接。
第七方面, 一种波长连接的建立系统, 包括波长连接的首节点和末节点, 其中所述首节点, 用于发送第三波长连接建立请求消息到下游节点, 所述第三 波长连接建立请求消息包括所述波长连接在所述下游节点之前的共同可用频谱 资源信息和所述波长连接的频谱需求信息, 接收来自所述下游节点的第三波长 连接建立反馈消息, 所述第三波长连接建立反馈消息包括波长连接的有效频谱 资源信息和所述下游节点的资源配置信息, 根据所述第三波长连接建立反馈消 息确定所述首节点需要配置的资源信息并配置相应资源; 所述末节点, 用于接 收来自上游节点的第四波长连接建立请求消息, 所述第四波长连接建立请求消 息包括所述波长连接在所述末节点之前的共同可用频谱资源信息和所述波长连 接的频谱需求信息, 根据所述波长连接在所述末节点之前的共同可用频谱资源 信息确定所述波长连接的有效频谱资源信息, 根据所述有效频谱资源信息确定 所述末节点需要配置的资源信息并配置相应资源, 发送第四波长连接建立反馈 消息到所述上游节点, 所述第四波长连接建立反馈消息包括波长连接的有效频 谱资源信息和所述末节点的资源配置信息。
在第一种可能的实现方式中, 所述首节点的下游节点为所述末节点。
在第二种可能的实现方式中, 所述首节点和所述末节点之间至少包括一个 中间节点,所述中间节点用于接收来自上游节点的第一波长连接建立请求消息, 所述第一波长连接建立请求消息包括所述波长连接在所述中间节点之前的共同 可用频谱资源信息和所述波长连接的频谱需求信息; 根据所述波长连接的频谱 需求信息确定所述波长连接在所述中间节点的出接口的可用频谱资源信息, 根 据所述波长连接在所述中间节点之前的共同可用频谱资源信息和所述波长连接 在所述中间节点的出接口的可用频谱资源信息确定所述波长连接在下游节点之 前的共同可用频谱资源信息;发送第二波长连接建立请求消息到所述下游节点, 所述第二波长连接建立请求消息中包括所述波长连接在下游节点之前的共同可 用频谱资源信息和所述波长连接的频谱需求信息; 接收来自所述下游节点的第 一波长连接建立反馈消息, 所述第一波长连接建立反馈消息包括波长连接的有 效频谱资源信息和所述下游节点的资源配置信息; 根据所述第一波长连接建立 反馈消息确定所述中间节点需要配置的资源信息并配置相应资源; 发送第二波 长连接建立反馈消息到所述上游节点, 所述第二波长连接建立反馈消息包括波 长连接的有效频谱资源信息和所述中间节点的资源配置信息。
本发明实施例中, 中间节点接收来自上游节点的第一波长连接建立请求消 息, 第一波长连接建立请求消息包括波长连接在中间节点之前的共同可用频谱 资源信息和波长连接的频谱需求信息; 中间节点根据波长连接的频谱需求信息 确定波长连接在中间节点的出接口的可用频谱资源信息, 根据波长连接在中间 节点之前的共同可用频谱资源信息和波长连接在中间节点的出接口的可用频谱 资源信息确定波长连接在下游节点之前的共同可用频谱资源信息; 中间节点发 送第二波长连接建立请求消息到下游节点, 第二波长连接建立请求消息中包括 波长连接在下游节点之前的共同可用频谱资源信息和波长连接的频谱需求信 息; 中间节点接收来自下游节点的第一波长连接建立反馈消息, 第一波长连接 建立反馈消息包括波长连接的有效频谱资源信息和下游节点的资源配置信息; 中间节点根据第一波长连接建立反馈消息确定中间节点需要配置的资源信息并 配置相应资源; 中间节点发送第二波长连接建立反馈消息到上游节点, 第二波 长连接建立反馈消息包括波长连接的有效频谱资源信息和中间节点的资源配置 信息。 中间节点根据中间节点之前的共同可用频谱资源信息和波长连接的频谱 需求信息确定下游节点之前的共同可用频谱资源信息和波长连接的频谱需求信 息, 可以自动收集波长连接的共同可用频谱资源, 从而不需要网络管理人员手 动配置, 解决了支持混合频谱粒度的网络中波长连接的建立容易出错的问题。 附图说明
图 1是本发明实施例提供的一种波长连接的建立方法的流程图; 图 2是本发明实施例提供的另一种波长连接的建立方法的流程图; 图 3是本发明实施例提供的再一种波长连接的建立方法的流程图; 图 4是本发明实施例提供的一种网络架构图;
图 5是本发明实施例提供的一种光纤链路中的频谱资源图;
图 6是本发明实施例提供的另一种光纤链路中的频谱资源图;
图 7是本发明实施例提供的一种业务的需求示意图;
图 8是本发明实施例提供的再一种波长连接的建立方法的流程图; 图 9是本发明实施例提供的一种频谱资源示意图;
图 10是本发明实施例提供的一种的频谱资源分配图;
图 11是本发明实施例提供的再一种波长连接的建立方法的流程图; 图 12是本发明实施例提供的另一种频谱资源示意图;
图 13是本发明实施例提供的另一种的频谱资源分配图;
图 14是本发明实施例提供的一种的节点结构图;
图 15是本发明实施例提供的另一种的节点结构图;
图 16是本发明实施例提供的再一种的节点结构图;
图 17是本发明实施例提供的一种的系统结构图;
图 18是本发明实施例提供的再一种的节点结构图;
图 19是本发明实施例提供的再一种的节点结构图;
图 20是本发明实施例提供的再一种的节点结构图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
为了说明本发明所述的技术方案, 下面通过具体实施例来进行说明。 图 1示出了本发明实施例提供的一种波长连接的建立方法, 本实施例中的 方法包括下述步骤:
S101 , 中间节点接收来自上游节点的第一波长连接建立请求消息, 第一波 长连接建立请求消息包括波长连接在中间节点之前的共同可用频谱资源信息和 波长连接的频谱需求信息。
波长连接的频谱需求信息可以包括波长连接中心频率粒度信息和波长连接 中心频率粒度下对应的频宽信息。
波长连接在中间节点之前的共同可用频谱资源信息和波长连接的频谱需求 信息可以有多种信息表达方式。
例如, 如果网络限制条件包括同一条波长连接上分配的频谱资源的中心频 率保持一致, 则波长连接在中间节点之前的共同可用频谱资源信息可以包括第 一中心频率粒度和第一中心频率的信息, 第一中心频率粒度为波长连接的首节 点所支持中心频率粒度, 第一中心频率为中间节点之前的接口在第一中心频率 粒度下共同支持的可用中心频率集合;
如果网络限制条件不包括同一条波长连接上分配的频谱资源的中心频率保 持一致或者没有网络限制条件, 波长连接在中间节点之前的共同可用频谱资源 信息可以包括第四中心频率粒度和第四中心频率, 第四中心频率粒度为波长连 接在中间节点之前的接口的中心频率粒度的最大公约数, 第四中心频率为中间 节点之前的接口的可用频率范围在第四中心频率粒度下所能覆盖的中心频率集 合的交集;
当然, 波长连接在中间节点之前的共同可用频谱资源信息可以使用波长连 接在中间节点之前共同可用频谱范围来表示。
S102, 中间节点根据波长连接的频谱需求信息确定波长连接在中间节点的 出接口的可用频谱资源信息, 根据波长连接在中间节点之前的的共同可用频谱 资源信息和波长连接在中间节点的出接口的可用频谱资源信息确定波长连接在 下游节点之前的共同可用频谱资源信息。
如果网络限制条件包括同一条波长连接上分配的频谱资源的中心频率保持 一致, 中间节点根据波长连接的频谱需求信息确定中间节点的出接口的可用频 率范围; 中间节点根据网络限制条件确定波长连接在中间节点的出接口的可用 频谱资源信息, 波长连接在中间节点的出接口的可用频谱资源信息包括第一中 心频率粒度和第二中心频率的信息, 第二中心频率为中间节点的出接口在第一 中心频率粒度下支持的可用中心频率集合。
中间节点根据第一中心频率和第二中心频率确定第三中心频率, 第三中心 频率为下游节点之前的接口在第一中心频率粒度下共同支持的可用中心频率集 合, 波长连接在下游节点之前的共同可用频谱资源信息包括第一中心频率粒度 和第三中心频率的信息。
如果网络限制条件不包括同一条波长连接上分配的频谱资源的中心频率保 持一致或者没有网络限制条件, 中间节点根据波长连接的频谱需求信息确定中 间节点的出接口的可用频率范围; 中间节点根据网络限制条件确定波长连接在 中间节点的出接口的可用频谱资源信息, 波长连接在中间节点的出接口的可用 频谱资源信息包括第五中心频率粒度和第五中心频率的信息, 第五中心频率粒 度为第四中心频率粒度和中间节点的出接口的中心频率粒度的最大公约数, 第 五中心频率为中间节点的出接口的可用频率范围在第五中心频率粒度下所能覆 盖的中心频率集合。
中间节点根据波长连接在中间节点之前的共同可用频谱资源信息和波长连 接在中间节点的出接口的可用频谱资源信息确定第六中心频率, 第六中心频率 为波长连接在下游节点之前的接口的可用频率范围在第五中心频率粒度下所能 覆盖的中心频率集合的交集, 波长连接在下游节点之前的共同可用频谱资源信 息包括第五中心频率粒度和第六中心频率。
当然, 波长连接在中间节点的出接口的可用频谱资源信息可以使用波长连 接在中间节点的出接口的可用频谱范围来表示; 波长连接在下游节点之前的共 同可用频谱资源信息可以使用波长连接在下游节点之前共同可用频谱范围来表 示。
5103, 中间节点发送第二波长连接建立请求消息到下游节点, 第二波长连 接建立请求消息中包括波长连接在下游节点之前的共同可用频谱资源信息和波 长连接的频谱需求信息。
5104, 中间节点接收来自下游节点的第一波长连接建立反馈消息, 第一波 长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点的资源配置 信息。
波长连接的有效频谱资源信息可以包括波长连接可以使用的中心频率粒度 信息、 中心频率信息和频宽信息; 下游节点的资源配置信息包括下游节点配置 的中心频率值。
5105 , 中间节点根据第一波长连接建立反馈消息确定中间节点需要配置的 资源信息并配置相应资源。
中间节点根据第一波长连接建立反馈消息和中间节点的出接口的中心频率 粒度确定中间节点的出接口配置的中心频率值和频宽值;
中间节点根据第一波长连接建立反馈消息和中间节点的入接口的中心频率 粒度确定中间节点的入接口配置的中心频率值和频宽值;
根据中间节点的入接口配置的中心频率值和频宽值以及中间节点的出接口 配置的中心频率值和频宽值配置交叉连接。
5106, 中间节点发送第二波长连接建立反馈消息到上游节点, 第二波长连 接建立反馈消息包括波长连接的有效频谱资源信息和中间节点的资源配置信 息。
本发明实施例中, 共同可用频谱资源信息可以使用中心频率粒度信息和中 心频率信息来表示, 也可以直接使用共同可用频谱范围来表示, 也可以使用其 它方式进行表示, 只要能够表明共同可以使用的频谱资源即可。
本实施例中, 中间节点根据中间节点之前的共同可用频谱资源信息和波长 连接的频谱需求信息确定下游节点之前的共同可用频谱资源信息和波长连接的 频谱需求信息, 可以自动收集波长连接的共同可用频谱资源, 从而不需要网络 管理人员手动配置, 解决了支持混合频语粒度的网络中波长连接的建立容易出 错的问题。
图 2示出了本发明实施例提供的一种波长连接的建立方法, 本实施例中的 方法包括下述步骤:
S201 , 首节点发送第三波长连接建立请求消息到下游节点, 第三波长连接 建立请求消息包括波长连接在下游节点之前的共同可用频谱资源信息和波长连 接的频谱需求信息。 如果网络限制条件包括同一条波长连接上分配的频谱资源的中心频率保持 一致, 波长连接在下游节点之前的共同可用频谱资源信息包括第七中心频率粒 度和第七中心频率的信息, 第七中心频率粒度为首节点所支持中心频率粒度, 第七中心频率为下游节点之前的接口在第七中心频率粒度下共同支持的可用中 心频率集合。 如果第七中心频率包括多个共同可用中心频率值, 波长连接在中 间节点之前的共同可用频谱资源信息还包括第七共同可用中心频率的优先次 序。
如果网络限制条件不包括同一条波长连接上分配的频谱资源的中心频率保 持一致或者没有网络限制条件, 波长连接在下游节点之前的共同可用频谱资源 信息包括第八中心频率粒度和第八中心频率, 第八中心频率粒度为波长连接在 下游节点之前的接口的中心频率粒度的最大公约数, 第八中心频率为下游节点 之前的接口的可用频率范围在第八中心频率粒度下所能覆盖的中心频率集合的 交集。
波长连接在下游节点之前的共同可用频谱资源信息包括波长连接在下游节 点之前共同可用频谱范围。
5202, 首节点接收来自下游节点的第三波长连接建立反馈消息, 第三波长 连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点的资源配置信 息。
波长连接的有效频谱资源信息包括波长连接可以使用的中心频率粒度信 息、 中心频率信息和频宽信息。
下游节点的资源配置信息包括下游节点配置的中心频率值。
5203 , 首节点根据第三波长连接建立反馈消息确定首节点需要配置的资源 信息并配置相应资源。
首节点根据第三波长连接建立反馈消息确定首节点需要配置的资源信息并 配置相应资源可以包括:
首节点根据第三波长连接建立反馈消息和首节点的出接口的中心频率粒度 确定首节点的出接口配置的中心频率值和频宽值;
根据首节点的上下波长接口配置的中心频率值和频宽值以及首节点的出接 口配置的中心频率值和频宽值配置交叉连接。
图 3示出了本发明实施例提供的一种波长连接的建立方法, 本实施例中的 方法包括下述步骤:
5301 , 末节点接收来自上游节点的第四波长连接建立请求消息, 第四波长 连接建立请求消息包括波长连接在末节点之前的共同可用频谱资源信息和波长 连接的频谱需求信息。
5302, 末节点根据波长连接在末节点之前的共同可用频谱资源信息确定波 长连接的有效频谱资源信息。
波长连接的有效频谱资源信息包括波长连接可以使用的中心频率粒度信 息、 中心频率信息和频宽信息。
5303 , 末节点根据有效频谱资源信息确定末节点需要配置的资源信息并配 置相应资源。
末节点根据有效频谱资源信息确定末节点需要配置的资源信息并配置相应 资源包括:
末节点根据有效频谱资源信息和末节点的入接口的中心频率粒度确定末节 点的入接口配置的中心频率值和频宽值;
根据末节点的入接口配置的中心频率值和频宽值以及末节点的上下波长接 口配置的中心频率值和频宽值配置交叉连接。
5304, 末节点发送第四波长连接建立反馈消息到上游节点, 第四波长连接 建立反馈消息包括波长连接的有效频谱资源信息和末节点的资源配置信息。
末节点的资源配置信息包括末节点配置的中心频率值。
图 4示出了本发明实施例的一种网络架构图, 包括 A、 B、 C、 D、 E、 F六个 节点组成的一个网络, 节点间的线条表示光纤链路。 接口 1表示节点 A的一个上 下波长的接口, 接口 8表示节点 D的一个上下波长的接口。 上下波长, "上" 的 意思是波长的发送端, 通常是一个激光器; "下" 的意思是波长的接收端。 接 口 1和接口 8可以上下波长, 表示接口 1和接口 8可以发送和接收波长。
图 4中链路 AB为接口 2和接口 3之间的链路,如果接口 2支持的中心频率粒度 为 6.25GHz, 接口 3支持的中心频率粒度也为 6.25GHz , 那么节点 A和节点 B协商 后得到链路 AB支持的中心频率粒度为 6.25 GHz; 如果接口 2支持的中心频率粒 度为 6.25GHz, 接口 3支持的中心频率粒度也为 12.5GHz , 那么节点 A和节点 B协 商后得到链路 AB支持的中心频率粒度为 12.5 GHz,本申请后续提到的接口支持 的中心频率粒度为协商后该接口所连接的链路支持的中心频率粒度。 即如果链 路 AB支持的中心频率粒度为 12.5 GHz ,那么接口 2和接口 3支持的中心频率粒度 均为 12.5GHz。
殳设光纤链路中的频谱资源从 193. ITHz开始划分中心频率, 如果向两边以 6.25GHz为单位步进作为中心频率。 例如图 4中的链路 AB和链路 ED ( CFG=6.25GHz ) , 则光纤链路中的频谱资源可以按照图 5所示划分:
中心频率可以按照以下公式计算:
Frequency (THz) = 193.1 THz + ( n * 6.25/1000 ) (THz)
例如, n=0时, 中心频率为 193.1THz; n=7时, 中心频率为 193.14375THz; n=-8时, 中心频率为 193.05THz。
假如中心频率步进为 12.5GHz , 例如图 2中的链路 BC和链路 AF, 那么其光 纤链路中的频谱资源则按照图 6所示划分:
中心频率可以按照以下公式计算:
Frequency (THz) = 193.1 THz + ( n * 12.5/1000 ) (THz)
例如, n=0时, 中心频率为 193.1THz; n=3时, 中心频率为 193.1375THz; n=-4时, 中心频率为 193.05THz。
如果中心频率步进为其他值,可以通过类似方法推到 n值和实际对应的中心 频率值,通用的计算公式如下:
Frequency (THz) = 193.1 THz + ( n * CFG/1000 ) (THz) 波长连接需要占用光纤链路中一定的频谱带宽, 一个波长连接需要占用的 频谱带宽主要与其承载的电信号的调制格式相关。 在建立波长连接之前, 需要 先确定该波长连接需要的频谱带宽。 波长连接所需的频谱带宽通常由网管或者 波长连接的首节点根据其承载的电信号的调制格式和首节点能力等限制条件来 确定, 例如, 所述首节点能力可以为首节点滤波器支持的频谱滤波步进粒度。 此外,如图 4所示的网络中,各个节点支持的中心频率步进的粒度也可以不一致, 因此, 不同链路上为某一个业务分配的频率宽度可能不一致。 但是, 只要分配 的频谱资源不小于业务需要占用的资源即可。
如图 7所示, 业务的需求是 37.5GHz,但是由于该链路仅支持 CFG=12.5GHz, 分配的资源必须是 CFG的 2m倍, 其中 m必须为整数。 因此, 其实际分配的最小 频谱资源为 50GHz。 分配的频谱资源由 2个参数描述: 中心频率和频谱宽度。 频 谱的中心频率用 n描述, 谱宽可以通过 m和 CFG来描述。 如图 7所示, 频谱宽度 的计算方法是: 2m*CFG。 图 5中的实际的分配资源可用 n=0,m=2 ( CFG=12.5G ) 来描述。
图 8示出了本发明实施例提供的一种波长连接的建立方法, 图 4所示的网络 中的可用频谱资源如图 9所示, 本实施例需要建立接口 1到接口 8的单向波长连 接,且要求分配的频谱资源的中心频率一致,本实施例中的方法包括下述步骤:
5801 , 首节点 A收到波长连接建立请求。
网管或客户端通知首节点 A建立接口 1到接口 8的单向波长连接, 告知业务 需要占用 12.5GHz的频谱带宽。
5802, 首节点 A获得波长连接的频谱需求。
首节点 A根据自身的能力限制确定实际需要的频谱带宽, 此例中为 12.5GHz, 首节点 A进行计算路径, 假设计算结果为 A-B-C-D。
5803 , 首节点 A向中间节点 B发送波长连接建立请求消息。
节点 A向路径中的下一个节点即节点 B发送信令 Path消息, 该信令 Path消息 主要包括流量参数对象、 显式路由对象以及标签集对象, 消息中指定频谱需求 (此实施例中需求为 12.5GHz ) , 携带在流量参数对象中, 指定路径为接口 3- 接口 4-接口 5-接口 6-接口 7-接口 8, 携带在显式路由对象中, 并指定链路 ΑΒ上的 可用的频谱资源为 {nl,n2,n3,n4,n5,n6,n7 }(CFG=6.25), 用标签集对象来表示, 也 就是说, 指定链路 AB上的可用的频谱资源为中间节点 B之前的共同可用频谱资 源信息, 包括波长连接的首节点所支持中心频率粒度信息, 即 CFG=6.25 , 还包 括中间节点 B之前的接口在所述波长连接的首节点所支持中心频率粒度下共同 支持的可用中心频率集合的信息, 即 {nl,n2,n3,n4,n5,n6,n7} ; 其中, 频语需求用 CFG和 m值描述, CFG=6.25,m=l ; 后续步骤类似; 可用频谱资源可以用可用中 心频率集合或者频谱范围来表示, 本实施例仅以中心频率集合为例。 但是本发 明不对表示可用频谱资源信息表示方式做限定, 只要能够表明可以选择的频谱 资源即可。
S804, 中间节点 B向中间节点 C发送波长连接建立请求消息。
节点 B收到上述 Path消息, 根据其内容, 即需求带宽, 可用的频谱资源, 以 及 CFG信息,结合本地即链路 BC的可用频谱资源,支持的中心频率粒度(CFG ) , 以及可用中心频率的限制条件, 去掉本地不支持的频谱资源;
其中, 因得到的 Path消息中的 CFG(=6.25)和本地的 CFG(12.5G)不一致, 因 此计算时需要用统一的 CFG来表示。 如图 4所示, 链路 BC可用资源集合为 {n2,n3,n4}(CFG=12.5),转换成 CFG=6.25 , 则为 {η4,η6,η8} , 也就是说, 链路 BC 可用资源集合为中间节点 B的出接口的可用频谱资源信息, 包括波长连接的首 节点 A所支持中心频率粒度信息, 即 CFG=6.25 , 还包括中间节点 B的出接口在 所述波长连接的首节点所支持中心频率粒度下支持的可用中心频率集合的信 息, 即 {n4,n6,n8}。 与收到的可用频谱资源信息取交集, 得到 {n4,n6}。
节点 B发送信令 Path消息到路径的下一个节点 C , 消息中指定频谱需求 12.5GHz, 携带在流量参数对象中, 以及路径为接口 5-接口 6-接口 7-接口 8 , 携 带在显式路由对象中, 并指定路径上到节点 B止所支持的可用的频谱资源 { n4, n6 }(CFG=6.25),用标签集对象来表示,也就是说,指定路径上到节点 B止所支持 的可用的频谱资源为中间接点 C之前的共同可用频谱资源信息, 包括波长连接 的首节点 A所支持中心频率粒度信息, 即 CFG=6.25 , 还包括中间节点 C之前的 接口在所述波长连接的首节点所支持中心频率粒度下共同支持的可用中心频率 集合的信息, 即 {n4,n6} ;
5805 , 中间节点 C向末节点 D发送波长连接建立请求消息。
节点 C收到上述 Path消息, 根据其内容, 即需求带宽, 可用的频谱资源, 以 及 CFG信息,结合本地即链路 CD的可用频谱资源,支持的中心频率粒度( CFG ) , 以及可用中心频率的限制条件, 去掉本地不支持的频谱资源;
其中, 因得到的 Path消息中的 CFG(6.25G)和本地的 CFG(25G)不一致, 因此 计算时需要用统一的 CFG来表示。 如图 4所示, 链路 CD可用资源集合为 {nl }(CFG=25),转换成 CFG=6.25 , 则为 {n4}, 也就是说, 链路 CD可用资源集合 中间节点 C的出接口的可用频谱资源信息,包括波长连接的首节点 A所支持中心 频率粒度信息, 即 CFG=6.25, 还包括中间节点 C的出接口在所述波长连接的首 节点所支持中心频率粒度下支持的可用中心频率集合的信息, 即 {n4 }。 与收到 的可用频谱资源信息取交集, 得到 {n4}。
节点 C发送信令 Path消息到路径的下一个节点 D , 消息中指定频谱需求 12.5GHz, 携带在流量参数对象中, 以及路径为接口 7-接口 8, 携带在显式路由 对象中, 并指定路径上到节点 C止所支持的可用的频谱资源 { n4 }(CFG=6.25), 用标签集对象来表示, 也就是说, 指定路径上到节点 C止所支持的可用的频谱 资源为中间接点 D之前的共同可用频谱资源信息,包括波长连接的首节点 A所支 持中心频率粒度信息, 即 CFG=6.25 , 还包括中间节点 D之前的接口在所述波长 连接的首节点所支持中心频率粒度下共同支持的可用中心频率集合的信息, 即 {n4} ;
5806, 末节点 D向中间节点 C发送波长连接建立反馈消息。
节点 D是本波长连接的末节点, 根据得到的可用频谱资源, 选择业务所使 用的频谱资源信息, 即为长连接的有效频谱资源信息, 后续称之为: 有效频谱 Slot( EFS, Effective Frequency Slot );本实施例中选择为: n=n4,m=l(CFG=6.25), 包括中心频率粒度信息, 即 CFG=6.25 , 中心频率信息, 即 n=n4, 频宽信息, 即 m=l。 末节点 D根据所述有效频谱资源信息和末节点的入接口 7的中心频率粒度 确定末节点 D的入接口 7配置的中心频率值和频宽值, 具体包括: 根据这个 EFS 和本地支持的 CFG, 节点 D需要确定本地实际分配的资源信息。 本实施例中为 {中心频率为 nl ,频宽为 m=l } ( CFG=25G ) ,表明实际分配的频谱资源是 50GHz。 并将接口 8的接收端配置为上述频段, 根据末节点 D的入接口 7配置的中心频率 值和频宽值以及所述末节点的上下波长接口 8配置的中心频率值和频宽值配置 交叉连接, 建立正方向的波长交叉连接, 即将来自接口 7的上述频段连接到接口 8的接收端;
节点 D向路径中的上一个节点 C发送信令 Resv消息,该信息为波长连接建立 反馈消息, 主要包括流量参数对象、 标签对象, 消息中指定 EFS n=n4,m=l(CFG=6.25GHz) , 携带在流量参数对象中, 以及正方向的中心频率 n=nl , 携带在标签对象中, 正方向的中心频率 n=nl为节点 D的资源配置信息; S807 , 中间节点 C向中间节点 B发送波长连接建立反馈消息。
中间节点 C才艮据来自节点 D的波长连接建立反馈消息和中间节点 C的出 接口 6的中心频率粒度确定中间节点 C的出接口 6配置的中心频率值和频宽值, 具体可以为:节点 c收到上述 Resv消息, 根据流量参数对象指定的业务频谱资 源信息和标签对象中节点 D分配的中心频率信息, 以及接口 7的 CFG信息, 得到节点 C在接口 6上需要分配的频谱宽度 m值。此实施例中, m=l(CFG=25G)。 同时,中间节点 C才艮据来自节点 D的波长连接建立反馈消息和中间节点 C的入 接口 5的中心频率粒度确定中间节点 C的入接口 5配置的中心频率值和频宽值; 具体可以为:根据收到的 EFS信息, 节点 C需要结合接口 5上的 CFG信息, 确 定该接口上实际分配的频谱资源信息。 本实施例中分配的资源为 {中心频率为 n2, 频宽为 m=l } ( CFG=12.5G ), 表明实际分配的资源为 25GHz。 根据中间节 点的入接口 5配置的中心频率值和频宽值以及中间节点的出接口 6配置的中心 频率值和频宽值配置交叉连接, 即建立正方向的波长交叉连接, 将来自接口 5 分配的相应频段连接到接口 6分配的对应频段;
其中, 本例中, 这两个接口上分配的带宽不一致, 分别是 50GHz和 25GHz, 但是均大于业务需求值(12.5GHz ) , 所以能够正常的承载业务。
节点 C向路径中的上一个节点 B发送信令 Resv消息,该信息为波长连接建立 反馈消息, 主要包括流量参数对象、 标签对象, 消息中指定 EFS n=n4,m=l(CFG=6.25GHz) , 携带在流量参数对象中, 以及正方向的中心频率 n=n2, 携带在标签对象中, 正方向的中心频率 n=nl为节点 C的资源配置信息;
S808 , 中间节点 B向首节点 A发送波长连接建立反馈消息。
中间节点 B根据来自中间节点 C的波长连接建立反馈消息和中间节点 B的出 接口 4的中心频率粒度确定中间节点 B的出接口 4配置的中心频率值和频宽值, 具体可以为:节点 B收到上述 Resv消息, 根据流量参数对象指定的业务频谱资源 信息和标签对象中节点 C分配的中心频率信息, 以及接口 5的 CFG信息, 得到节 点 B在接口 4上需要分配的频谱宽度 m值。此实施例中, m=l(CFG=12.5G)。同时, 中间节点 B根据来自中间节点 C的波长连接建立反馈消息和中间节点 B的入接口 3的中心频率粒度确定中间节点 B的入接口 3配置的中心频率值和频宽值; 具体 可以为:根据收到的 EFS信息, 节点 C需要结合接口 3上的 CFG信息, 确定该接口 上实际分配的频谱资源信息。 本实施例中为 {中心频率为 n4 , 频宽为 m=l } ( CFG=6.25G ) , 表明实际分配的资源为 12.5GHz。 根据中间节点的入接口 3配 置的中心频率值和频宽值以及中间节点的出接口 4配置的中心频率值和频宽值 配置交叉连接, 即建立正方向的波长交叉连接,将来自接口 3分配的相应频段连 接到接口 4分配的对应频段;
节点 B向路径中的上一个节点 A发送信令 Resv消息,该信息为波长连接建立 反馈消息, 主要包括流量参数对象、 标签对象, 消息中指定 EFS n=n4,m=l(CFG=6.25GHz) , 携带在流量参数对象中, 以及正方向的中心频率 n=n4, 携带在标签对象中, 正方向的中心频率 n=n4为节点 C的资源配置信息; S809, 首节点 A接收波长连接建立反馈消息。
首节点 A根据来自中间节点 B的波长连接建立反馈消息和首节点 A的出接 口 2的中心频率粒度确定首节点 A的出接口 2配置的中心频率值和频宽值, 具体 可以包括: 节点 A收到上述 Resv消息, 根据流量参数对象及标签对象中指定的 频谱带宽及中心频率信息, 以及接口 3的 CFG信息, 得到节点 A在接口 2上需要 分配的频谱宽度 m值。 此实施例中, m=l(CFG=6.25G), 即首节点的出接口 2配 置的中心频率值为 n=n4, 频宽值为 m=l。 由于接口 1是上下波长接口, 因此需要 把接口 1的发送端的激光器调节到上述频段, 根据首节点 A的上下波长接口 1配 置的中心频率值和频宽值以及首节点 A的出接口 2配置的中心频率值和频宽值 配置交叉连接, 并建立正方向的波长交叉连接, 即将来自接口 1的相应频段连接 到接口 2相应的频段;
节点 A是本波长连接的首节点, 单向波长连接建立完成。 本实施例中, 实 际的业务使用频谱资源和分配的频谱资源如图 10所示。 上述各步骤中, 需要定义 Path消息中的流量参数对象(TSpec对象), 可以 定义如表 1所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
CFG I Reserved | m
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
表 1 Path消息中的流量参数格式
上述格式以一个 32bit的数字来表示业务需求的频谱带宽, 前四个 bit表示中 心频率的步进值, 可以取值如下:
CFG=1, 表示 6.25GHz; CFG=2, 表示 12.5GHz
m表示需要占用的频谱宽度, 需要和 CFG值联合, 才能得到正确的宽度值。 例如, CFG=l,m=l代表宽度为 2*m*CFG (对应的带宽值) =12.5; CFG=2,m=l 代表宽度为 25GHz。
上述频谱带宽信息也可以放在标签请求对象中, 例如, 扩展标签请求对象 如表 2所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 LSP Enc. • Type Switching Type 1 G- - PID 1
1 CFG 1 Reserved 1 m 1 表 2 标签请求对象格式
LSP Enc. Type表示连接的编码类型, Switching Type表示连接的交换类型, SFG和 m的含义与表 1相同。 LSP Enc. Type为 lambda (取值 8 ) 时表示波长编码 类型, 新定义一种交换类型为 flexible lambda switch (例如, Switching Type取值 151 )
以本实施例中为例, 12.5GHz频谱带宽可以按照如下的方式表示: LSP Enc. Type=8 , Switching Type= 151, CFG= 1 , m= 1
需要定义 Resv消息中的流量参数对象 (FlowSpec对象), 用于携带 EFS信息, 可以定义如表 3:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
CFG I Reserved | m
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n I Reserved
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
表 3 Resv消息中的流量参数格式
此对象中,如果能够保证 CFG以及 mil,和 Path消息中的携带的此信息一致, 也可以只携带 n值, 因为表 3所示标签格式是用于支持固定频率间隔的 DWDM网 络的, 因此需要扩展其 C.S.=5 (用于表示 Flexible Grid ) 。 其他的字段不变。
标签对象中的中心频率可以扩展 IETF RFC6205定义的标签格式, 如表 4所 示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Grid I C. S. Identifier I n +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
表 4 标签格式
图 11示出了本发明实施例提供的一种波长连接的建立方法,图 4所示的网络 中的可用频谱资源如图 12所示, 本实施例需要建立接口 1到接口 8的单向波长连 接, 且不要求分配的频谱资源的中心频率一致, 本实施例中的方法包括下述步 骤:
51101 , 首节点 A收到波长连接建立请求。
网管或客户端通知首节点(节点 A ) , 建立接口 1到接口 8的双向波长连接, 告知业务需要占用的频谱带宽需要 12.5GHz;
51102, 首节点 A获得波长连接的频谱需求。
节点 A收到上述请求, 并根据自身的能力限制确定实际需要请求的频谱资 源带宽, 此例中为 12.5GHz, 进行计算路径(假设计算结果为 A-F-E-D ) 。
51103 , 首节点 A向中间节点 F发送波长连接建立请求消息。
节点 A向路径中的下一个节点 (节点 F )发送信令 Path消息 (主要包括流量 参数对象、 显式路由对象以及标签集对象) , 消息中指定频谱需求(12.5GHz, 携带在流量参数对象中) , 因为本节点无法用其支持的 CFG ( 12.5GHz ) 来表 示带宽需求 (m=0.5 , 非整数值)。 因此, 需要用更小的 CFG来表示。 此实施例中 表示为: CFG=6.25GHz, m=l。 注: 这个 CFG并非本地支持的 CFG, 而仅用于 表示业务需求和用作解析后续的可用频谱资源信息。 指定路径为(接口 13-接口 12-接口 11-接口 10-接口 97-接口 8, 携带在显式路由对象中) , 并指定链路 AF上 的可用的频谱资源 ( {n3,n4,n5,n6,n7,n8,n9}(CFG=6.25),用标签集对象来表示 ) , 也就是说, 指定链路 AF上的可用的频谱资源为中间节点 F之前的共同可用频谱 资源信息, 包括中间节点 F之前的中心频率粒度信息, 该粒度为中间节点 F之前 的接口的中心频率粒度的最大公约数, 即 CFG=6.25 , 还包括中间节点 F之前的 接口的可用频率范围在中间节点 F之前的中心频率粒度下所能覆盖的中心频率 集合的交集, 即 {n3,n4,n5,n6,n7,n8,n9} ;
可用频谱资源可以用可用中心频率集合或者频谱范围来表示, 本实施例仅 以中心频率集合。 但是本发明不对表示可用频谱资源信息表示方式做限定, 只 要能够表明可以选择的频谱资源即可。
S1104, 中间节点 F向中间节点 E发送波长连接建立请求消息。
节点 F收到上述 Path消息, 根据其内容(即需求带宽, 可用的频谱资源, 以 及 CFG信息) , 结合本地(即链路 FE ) 的可用频谱资源,支持的中心频率粒度 ( CFG ) , 以及可用中心频率的限制条件, 去掉本地不支持的频谱资源;
因得到的 Path消息中的 CFG(=6.25)和本地的 CFG(25G)不一致, 因此计算时 需要用统一的 CFG来表示。如图 10所示,链路 FE可用资源为 {nl }(CFG=25),转换 成 CFG=6.25 , 则为 {nl,n2,n3,n4,n5,n6,n7 } , 也就是说, 链路 FE可用资源为中间 节点 F的出接口的可用频谱资源信息, 包括中间节点 E之前的中心频率粒度信 息, 该粒度为中间节点 E之前的接口的中心频率粒度的最大公约数, 即 CFG=6.25 ,还包括中间节点 E的出接口的可用频率范围在中间节点 E之前的中心 频率粒度下所能覆盖的中心频率集合, 即 {nl,n2,n3,n4,n5,n6,n7}。 与收到的可用 频谱资源信息取交集, 得到 { n3,n4,n5,n6,n7}。 或者, 链路 FE可用频谱范围是 [ n0,n2 ] (CFG=25);与收到的可用频谱资源 【n2,nl0】 (CFG=6.25),都转换为 CFG=6.25表示后, 【 n0,n8】 (CFG=6.25),获取共同的频率范围为 【 n2,n8】 (CFG=6.25),用频率点集合同前面的方法。
节点 F发送信令 Path消息到路径的下一个节点 (节点 E ) , 消息中指定频谱 需求(12.5GHz, 携带在流量参数对象中), 以及路径为 (接口 11-接口 10-接口 9-接口 8, 携带在显式路由对象中) , 并指定路径上到节点 F止所支持的可用的 频谱资源 ({ n3,n4,n5,n6,n7 }(CFG=6.25),用标签集对象来表示) , 也就是说, 指定路径上到节点 F止所支持的可用的频谱资源为中间节点 E之前的共同可用 频谱资源信息, 包括中间节点 E之前的中心频率粒度信息, 该粒度为中间节点 E 之前的接口的中心频率粒度的最大公约数, 即 CFG=6.25 , 还包括中间节点 E之 前的接口的可用频率范围在中间节点 E之前的中心频率粒度下所能覆盖的中心 频率集合的交集, 即 { n3,n4,n5,n6,n7 } ;
SI 105 , 中间节点 E向末节点 D发送波长连接建立请求消息。
节点 E收到上述 Path消息, 根据其内容(即需求带宽, 可用的频谱资源, 以 及 CFG信息) , 结合本地(即链路 CD ) 的可用频谱资源,支持的中心频率粒度 ( CFG ) , 以及可用中心频率的限制条件, 去掉本地不支持的频谱资源;
因得到的 Path消息中的 CFG(6.25G)和本地的 CFG(6.25G)—致, 因此可直接 计算得到交集表示。 如图 4所示, ED可用频谱资源为 {nl,n2,n3,n4,n5 }, 也就是 说, ED可用频谱资源为中间节点 E的出接口的可用频谱资源信息, 包括节点 D 之前的中心频率粒度信息, 该粒度为中间节点 D之前的接口的中心频率粒度的 最大公约数, 即 CFG=6.25 , 还包括中间节点 E的出接口的可用频率范围在节点 D之前的中心频率粒度下所能覆盖的中心频率集合, 即 {nl,n2,n3,n4,n5 }。 D可用 频谱资源与收到的可用频谱资源信息取交集, 得到 {n3,n4,n5 }。
节点 E发送信令 Path消息到路径的下一个节点 (节点 D ) , 消息中指定频谱 需求(12.5GHz, 携带在流量参数对象中) , 以及路径为 (接口 9-接口 8 , 携带 在显式路由对象中) , 并指定路径上到节点 D止所支持的可用的频谱资源 ( { n3,n4,n5 }(CFG=6.25),用标签集对象来表示) , 也就是说, 指定路径上到节 点 D止所支持的可用的频谱资源为节点 D之前的共同可用频谱资源信息,包括节 点 D之前的中心频率粒度信息,该粒度为节点 D之前的接口的中心频率粒度的最 大公约数, 即 CFG=6.25 , 还包括节点 D之前的接口的可用频率范围在节点 D之 前的中心频率粒度下所能覆盖的中心频率集合的交集, 即{ n3,n4,n5 } ;
SI 106 , 末节点 D向中间节点 E发送波长连接建立反馈消息。
节点 D是本波长连接的末节点, 根据得到的可用频谱资源, 选择业务所使 用的频谱资源信息, 即为长连接的有效频谱资源信息, 后续称之为: 有效频谱 Slot ( Effective Frequency Slot ) ; 假设, 本实施例 中 选择为 : n=n5,m=l(CFG=6.25) , 包括中心频率粒度信息, 即 CFG=6.25 , 中心频率信息, 即 n=n5 , 频宽信息, 即 m=l。 末节点 D根据所述有效频谱资源信息和末节点的 入接口 9的中心频率粒度确定末节点 D的入接口 9配置的中心频率值和频宽值, 具体包括: 根据这个 EFS和本地支持的 CFG, 节点 D需要确定本地实际分配的资 源信息。 本实施例中为 {中心频率为 n5 , 频宽为 m=l } ( CFG=25G ) ,表明实际分 配的频谱资源是 12.5GHz。 并将接口 8的接收端配置为上述频段, 根据末节点 D 的入接口 9配置的中心频率值和频宽值以及所述末节点的上下波长接口 8配置的 中心频率值和频宽值配置交叉连接, 建立正方向的波长交叉连接, 即将来自接 口 9的上述频段连接到接口 8的接收端;
节点 D向路径中的上一个节点(节点 E )发送信令 Resv消息, 该信息为波长 连接建立反馈消息, 主要包括流量参数对象、 标签对象, 消息中指定 EFS : n=n5,m=l(CFG=6.25GHz) , 携带在流量参数对象中, 以及正方向的中心频率 n=n5 , 携带在标签对象中, 正方向的中心频率 n=n5为节点 D的资源配置信息; 因为标签只具有本地意义, 而且邻居节点(节点 E )知道节点 D接口 9的 CFG 信息, 因此标签对象中不需要指定 CFG信息。 后续节点类似。
S1107, 中间节点 E向中间节点 F发送波长连接建立反馈消息。
中间节点 E根据来自节点 D的波长连接建立反馈消息和中间节点 E的出接口 10的中心频率粒度确定中间节点 E的出接口 10配置的中心频率值和频宽值, 具 体可以为:节点 E收到上述 Resv消息, 根据流量参数对象指定的业务频谱资源信 息和标签对象中节点 D分配的中心频率信息, 以及接口 9的 CFG信息, 得到节点 E在接口 10上需要分配的频谱宽度 m值。 此实施例中, m=l(CFG=6.25G)。 同时, 中间节点 E根据来自节点 D的波长连接建立反馈消息和中间节点 E的入接口 11的 中心频率粒度确定中间节点 E的入接口 11配置的中心频率值和频宽值; 具体可 以为:根据收到的 EFS信息, 节点 C需要结合接口 11上的 CFG信息, 确定该接口 上实际分配的频谱资源信息。 本实施例中为 {中心频率为 nl , 频宽为 m=l } ( CFG=25G ) , 表明实际分配的资源为 50GHz。 根据中间节点的入接口 11配置 的中心频率值和频宽值以及中间节点的出接口 10配置的中心频率值和频宽值配 置交叉连接, 即建立正方向的波长交叉连接, 将来自接口 11分配的相应频段连 接到接口 10分配的对应频段;
节点 E向路径中的上一个节点(节点 F )发送信令 Resv消息, 该信息为波长 连接建立反馈消息, 主要包括流量参数对象、 标签对象, 消息中指定 EFSn=n5,m=l(CFG=6.25GHz) , 携带在流量参数对象中, 以及正方向的中心频 率 n=nl , 携带在标签对象中, 正方向的中心频率 n=nl为节点 E的资源配置信息;
51108, 中间节点 F向首节点 A发送波长连接建立反馈消息。
中间节点 F根据来自中间节点 E的波长连接建立反馈消息和中间节点 F的出 接口 12的中心频率粒度确定中间节点 F的出接口 12配置的中心频率值和频宽值, 具体可以为:节点 F收到上述 Resv消息, 根据流量参数对象指定的业务频谱资源 信息和标签对象中节点 E分配的中心频率信息, 以及接口 11的 CFG信息,得到节 点 F在接口 12上需要分配的频谱宽度 m值。 此实施例中, m=l(CFG=12.5G)。 同 时, 中间节点 F根据来自中间节点 E的波长连接建立反馈消息和中间节点 F的入 接口 13的中心频率粒度确定中间节点 F的入接口 13配置的中心频率值和频宽值; 具体可以为:根据收到的 EFS信息, 节点 C需要结合接口 13上的 CFG信息, 确定 该接口上实际分配的频谱资源信息。本实施例中为 {中心频率为 n2,频宽为 m=l } ( CFG=12.5G ) , 表明实际分配的资源为 25GHz。 根据中间节点的入接口 3配置 的中心频率值和频宽值以及中间节点的出接口 4配置的中心频率值和频宽值配 置交叉连接, 即建立正方向的波长交叉连接, 将来自接口 13分配的相应频段连 接到接口 12分配的对应频段;
节点 F向路径中的上一个节点(节点 A )发送信令 Resv消息, 该信息为波长 连接建立反馈消息, 主要包括流量参数对象、 标签对象, 消息中指定 EFSn=n5,m=l(CFG=6.25GHz) , 携带在流量参数对象中, 以及正方向的中心频 率 n=n2, 携带在标签对象中, 正方向的中心频率 n=n2为节点 F的资源配置信息;
51109, 首节点 A接收波长连接建立反馈消息。 首节点 A根据来自中间节点 F的波长连接建立反馈消息和首节点 A的出接口 14的中心频率粒度确定首节点 A的出接口 14配置的中心频率值和频宽值, 具体 可以包括: 节点 A收到上述 Resv消息, 根据流量参数对象及标签对象中指定的 频谱带宽及中心频率信息, 以及接口 13的 CFG信息, 得到节点 A在接口 14上需 要分配的频谱宽度 m值。 此实施例中, m=l(CFG=6.25G) , 即首节点的出接口 14配置的中心频率值为 n=n2, 频宽值为 m=l。 由于接口 1是上下波长接口, 因此 需要把接口 1的发送端的激光器调节到上述频段, 根据首节点 A的上下波长接口 1配置的中心频率值和频宽值以及首节点 A的出接口 14配置的中心频率值和频 宽值配置交叉连接,建立正方向的波长交叉连接, 即将来自接口 1的相应频段连 接到接口 14相应的频段;
节点 A是本波长连接的首节点, 单向波长连接建立完成。 本实施例中, 实 际的业务使用频谱资源和分配的频谱资源如图 13所示。
如图 13所示,本实施例中网络对路径上 n的分配没有要求。在这条路径上分 配的频谱资源的中心频率各不相同。 但是因为他们的交集能够覆盖业务需求, 因此仍然可以用于承载业务。 此外, 节点可以对可用标签集合排序或者给予优 先级, 来表示他们对资源选择的需求。 例如: 如果节点要求首先选择该节点可 以支持的中心频率点, 那么对于节点 F向 E点发的可用频谱资源集合是: {n3,n4, n5,n6,n7 }(CFG=6.25) ,它可以将该集合顺序换为: {n4,n3,n5,n6,n7} (CFG=6.25), 越靠前被选择的可能性也大。
图 14示出了本发明实施例提供的一种波长连接的中间节点 1400, 该节点包 括:
第一接收单元 1401 , 用于接收来自上游节点的第一波长连接建立请求消 息, 第一波长连接建立请求消息包括波长连接在中间节点之前的共同可用频谱 资源信息和波长连接的频谱需求信息;
第一确定单元 1402,用于根据波长连接的频谱需求信息确定波长连接在中 间节点的出接口的可用频谱资源信息, 根据波长连接在中间节点之前的共同可 用频谱资源信息和波长连接在中间节点的出接口的可用频谱资源信息确定波长 连接在下游节点之前的共同可用频谱资源信息;
第一发送单元 1403 , 用于发送第二波长连接建立请求消息到下游节点, 第 二波长连接建立请求消息中包括波长连接在下游节点之前的共同可用频谱资源 信息和波长连接的频谱需求信息;
第二接收单元 1404 , 用于接收来自下游节点的第一波长连接建立反馈消 息, 第一波长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点 的资源配置信息;
第二确定单元 1405 ,用于根据第一波长连接建立反馈消息确定中间节点需 要配置的资源信息并配置相应资源;
第二发送单元 1406, 用于发送第二波长连接建立反馈消息到上游节点, 第 二波长连接建立反馈消息包括波长连接的有效频谱资源信息和中间节点的资源 配置信息。
第二确定单元 1405 具体用于根据第一波长连接建立反馈消息和中间节点 的出接口的中心频率粒度确定中间节点的出接口配置的中心频率值和频宽值, 根据第一波长连接建立反馈消息和中间节点的入接口的中心频率粒度确定中间 节点的入接口配置的中心频率值和频宽值, 根据中间节点的入接口配置的中心 频率值和频宽值以及中间节点的出接口配置的中心频率值和频宽值配置交叉连 接。
图 15示出了本发明实施例提供的一种波长连接的首节点 1500,该节点包括: 第三发送单元 1501 , 用于发送第三波长连接建立请求消息到下游节点, 第 三波长连接建立请求消息包括波长连接在下游节点之前的共同可用频谱资源信 息和波长连接的频谱需求信息;
第三接收单元 1502 , 用于接收来自下游节点的第三波长连接建立反馈消 息, 第三波长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点 的资源配置信息; 第三确定单元 1503 ,用于根据第三波长连接建立反馈消息确定首节点需要 配置的资源信息并配置相应资源。
第三确定单元 1503 具体用于根据第三波长连接建立反馈消息和首节点的 出接口的中心频率粒度确定首节点的出接口配置的中心频率值和频宽值, 根据 首节点的上下波长接口配置的中心频率值和频宽值以及首节点的出接口配置的 中心频率值和频宽值配置交叉连接。
图 16示出了本发明实施例提供的一种波长连接的末节点 1600,该节点包括: 第四接收单元 1601 , 用于接收来自上游节点的第四波长连接建立请求消 息, 第四波长连接建立请求消息包括波长连接在末节点之前的共同可用频谱资 源信息和波长连接的频谱需求信息;
第四确定单元 1602,用于根据波长连接在末节点之前的共同可用频谱资源 信息确定波长连接的有效频谱资源信息, 根据有效频谱资源信息确定末节点需 要配置的资源信息并配置相应资源;
第四发送单元 1603, 用于发送第四波长连接建立反馈消息到上游节点, 第 四波长连接建立反馈消息包括波长连接的有效频谱资源信息和末节点的资源配 置信息。
第四确定单元 1602 具体用于根据有效频谱资源信息和末节点的入接口的 中心频率粒度确定末节点的入接口配置的中心频率值和频宽值, 根据末节点的 入接口配置的中心频率值和频宽值以及末节点的上下波长接口配置的中心频率 值和频宽值配置交叉连接。
图 17示出了本发明实施例提供的一种波长连接的建立系统, 包括波长连接 的首节点和末节点, 其中
首节点 1701 , 用于发送第三波长连接建立请求消息到下游节点, 第三波长 连接建立请求消息包括波长连接在下游节点之前的共同可用频谱资源信息和波 长连接的频谱需求信息, 接收来自下游节点的第三波长连接建立反馈消息, 第 三波长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点的资源 配置信息, 根据第三波长连接建立反馈消息确定首节点需要配置的资源信息并 配置相应资源;
末节点 1702, 用于接收来自上游节点的第四波长连接建立请求消息, 第四 波长连接建立请求消息包括波长连接在末节点之前的共同可用频谱资源信息和 波长连接的频谱需求信息, 根据波长连接在末节点之前的共同可用频谱资源信 息确定波长连接的有效频谱资源信息, 根据有效频谱资源信息确定末节点需要 配置的资源信息并配置相应资源,发送第四波长连接建立反馈消息到上游节点, 第四波长连接建立反馈消息包括波长连接的有效频谱资源信息和末节点的资源 配置信息。
其中, 首节点和末节点之间可以不包括中间节点, 即首节点的下游节点为 末节点。
或者首节点和末节点之间至少包括一个中间节点, 中间节点用于接收来自 上游节点的第一波长连接建立请求消息, 第一波长连接建立请求消息包括波长 连接在中间节点之前的共同可用频谱资源信息和波长连接的频谱需求信息; 根 据波长连接的频谱需求信息确定波长连接在中间节点的出接口的可用频谱资源 信息, 根据波长连接在中间节点之前的共同可用频谱资源信息和波长连接在中 间节点的出接口的可用频谱资源信息确定波长连接在下游节点之前的共同可用 频谱资源信息; 发送第二波长连接建立请求消息到下游节点, 第二波长连接建 立请求消息中包括波长连接在下游节点之前的共同可用频谱资源信息和波长连 接的频谱需求信息; 接收来自下游节点的第一波长连接建立反馈消息, 第一波 长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点的资源配置 信息; 根据第一波长连接建立反馈消息确定中间节点需要配置的资源信息并配 置相应资源; 发送第二波长连接建立反馈消息到上游节点, 第二波长连接建立 反馈消息包括波长连接的有效频谱资源信息和中间节点的资源配置信息。
图 18示出了本发明实施例提供的一种波长连接的中间节点 1800, 该节点 包括: 第五接收单元 1801 , 用于接收来自上游节点的第一波长连接建立请求消 息, 第一波长连接建立请求消息包括波长连接在中间节点之前的共同可用频谱 资源信息和波长连接的频谱需求信息;
处理器 1802,用于根据波长连接的频谱需求信息确定波长连接在中间节点 的出接口的可用频谱资源信息, 根据波长连接在中间节点之前的共同可用频谱 资源信息和波长连接在中间节点的出接口的可用频谱资源信息确定波长连接在 下游节点之前的共同可用频谱资源信息;
第五发送单元 1803 , 用于发送第二波长连接建立请求消息到下游节点, 第 二波长连接建立请求消息中包括波长连接在下游节点之前的共同可用频谱资源 信息和波长连接的频谱需求信息;
第五接收单元 1801 , 用于接收来自下游节点的第一波长连接建立反馈消 息, 第一波长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点 的资源配置信息;
处理器 1802,用于根据第一波长连接建立反馈消息确定中间节点需要配置 的资源信息并配置相应资源;
第五发送单元 1803 , 用于发送第二波长连接建立反馈消息到上游节点, 第 二波长连接建立反馈消息包括波长连接的有效频谱资源信息和中间节点的资源 配置信息。
处理器 1802 用于根据第一波长连接建立反馈消息确定中间节点需要配置 的资源信息并配置相应资源可以具体包括用于根据第一波长连接建立反馈消息 和中间节点的出接口的中心频率粒度确定中间节点的出接口配置的中心频率值 和频宽值, 根据第一波长连接建立反馈消息和中间节点的入接口的中心频率粒 度确定中间节点的入接口配置的中心频率值和频宽值, 根据中间节点的入接口 配置的中心频率值和频宽值以及中间节点的出接口配置的中心频率值和频宽值 配置交叉连接。
图 19示出了本发明实施例提供的一种波长连接的首节点 1900,该节点包括: 第六发送单元 1901 , 用于发送第三波长连接建立请求消息到下游节点, 第 三波长连接建立请求消息包括波长连接在下游节点之前的共同可用频谱资源信 息和波长连接的频谱需求信息;
第六接收单元 1902 , 用于接收来自下游节点的第三波长连接建立反馈消 息, 第三波长连接建立反馈消息包括波长连接的有效频谱资源信息和下游节点 的资源配置信息;
处理器 1903 ,用于根据第三波长连接建立反馈消息确定首节点需要配置的 资源信息并配置相应资源。
处理器 1903 具体用于根据第三波长连接建立反馈消息和首节点的出接口 的中心频率粒度确定首节点的出接口配置的中心频率值和频宽值, 根据首节点 的上下波长接口配置的中心频率值和频宽值以及首节点的出接口配置的中心频 率值和频宽值配置交叉连接。
图 20示出了本发明实施例提供的一种波长连接的末节点 2000,该节点包括: 第七接收单元 2001 , 用于接收来自上游节点的第四波长连接建立请求消 息, 第四波长连接建立请求消息包括波长连接在末节点之前的共同可用频谱资 源信息和波长连接的频谱需求信息;
处理器 2002,用于根据波长连接在末节点之前的共同可用频谱资源信息确 定波长连接的有效频谱资源信息, 根据有效频谱资源信息确定末节点需要配置 的资源信息并配置相应资源;
第七发送单元 2003 , 用于发送第四波长连接建立反馈消息到上游节点, 第 四波长连接建立反馈消息包括波长连接的有效频谱资源信息和末节点的资源配 置信息。
处理器 2002 具体用于根据有效频谱资源信息和末节点的入接口的中心频 率粒度确定末节点的入接口配置的中心频率值和频宽值, 根据末节点的入接口 配置的中心频率值和频宽值以及末节点的上下波长接口配置的中心频率值和频 宽值配置交叉连接。 本领域普通技术人员可以理解, 实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成, 所述的程序可以在存储于一计算机 可读取存储介质中, 所述的存储介质, 如 ROM/RAM、 磁盘、 光盘等。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种波长连接的建立方法, 其特征在于, 包括:
中间节点接收来自上游节点的第一波长连接建立请求消息, 所述第一波长 连接建立请求消息包括所述波长连接在所述中间节点之前的共同可用频谱资源 信息和所述波长连接的频谱需求信息;
所述中间节点根据所述波长连接的频谱需求信息确定所述波长连接在所述 中间节点的出接口的可用频谱资源信息, 根据所述波长连接在所述中间节点之 前的共同可用频谱资源信息和所述波长连接在所述中间节点的出接口的可用频 谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资源信息;
所述中间节点发送第二波长连接建立请求消息到所述下游节点, 所述第二 波长连接建立请求消息中包括所述波长连接在下游节点之前的共同可用频谱资 源信息和所述波长连接的频谱需求信息;
所述中间节点接收来自所述下游节点的第一波长连接建立反馈消息, 所述 第一波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述下游节点 的资源配置信息;
所述中间节点根据所述第一波长连接建立反馈消息确定所述中间节点需要 配置的资源信息并配置相应资源;
所述中间节点发送第二波长连接建立反馈消息到所述上游节点, 所述第二 波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述中间节点的资 源配置信息。
2、根据权利要求 1所述的方法, 其特征在于, 所述中间节点根据所述波长 连接的频谱需求信息确定所述波长连接在所述中间节点的出接口的可用频谱资 源信息包括:
所述中间节点根据所述波长连接的频谱需求信息以及网络限制条件确定所 述波长连接在所述中间节点的出接口的可用频谱资源信息。
3、根据权利要求 2所述的方法, 其特征在于, 所述网络限制条件包括同一 条波长连接上分配的频谱资源的中心频率保持一致。
4、根据权利要求 3所述的方法, 其特征在于, 所述波长连接在所述中间节 点之前的共同可用频谱资源信息包括第一中心频率粒度和第一中心频率的信 息, 所述第一中心频率粒度为所述波长连接的首节点所支持中心频率粒度, 所 述第一中心频率为中间节点之前的接口在所述第一中心频率粒度下共同支持的 可用中心频率集合。
5、根据权利要求 4所述的方法, 其特征在于, 所述中间节点根据所述波长 连接的频谱需求信息以及网络限制条件确定所述波长连接在所述中间节点的出 接口的可用频谱资源信息包括:
所述中间节点根据所述波长连接的频谱需求信息确定中间节点的出接口的 可用频率;
所述中间节点根据网络限制条件确定所述波长连接在所述中间节点的出接 口的可用频谱资源信息, 所述波长连接在所述中间节点的出接口的可用频谱资 源信息包括第一中心频率粒度和第二中心频率的信息, 所述第二中心频率为中 间节点的出接口在所述第一中心频率粒度下支持的可用中心频率集合。
6、根据权利要求 5所述的方法, 其特征在于, 所述根据所述波长连接在所 述中间节点之前的共同可用频谱资源信息和所述波长连接在所述中间节点的出 接口的可用频谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资 源信息包括:
所述中间节点根据所述第一中心频率和所述第二中心频率确定第三中心频 率, 所述第三中心频率为下游节点之前的接口在所述第一中心频率粒度下共同 支持的可用中心频率集合, 所述波长连接在下游节点之前的共同可用频谱资源 信息包括第一中心频率粒度和第三中心频率的信息。
7、根据权利要求 4所述的方法, 其特征在于: 如果所述第一中心频率包括 多个共同可用中心频率值, 所述波长连接在所述中间节点之前的共同可用频谱 资源信息还包括第一共同可用中心频率的优先次序。
8、根据权利要求 2所述的方法, 其特征在于, 如果所述网络限制条件不包 括同一条波长连接上分配的频谱资源的中心频率保持一致或者没有网络限制条 件, 所述波长连接在所述中间节点之前的共同可用频谱资源信息包括第四中心 频率粒度和第四中心频率, 所述第四中心频率粒度为所述波长连接在所述中间 节点之前的接口的中心频率粒度的最大公约数, 所述第四中心频率为中间节点 之前的接口的可用频率范围在所述第四中心频率粒度下所能覆盖的中心频率集 合的交集。
9、据权利要求 8所述的方法, 其特征在于, 所述中间节点根据所述波长连 接的频谱需求信息以及网络限制条件确定所述波长连接在所述中间节点的出接 口的可用频谱资源信息包括:
所述中间节点根据所述波长连接的频谱需求信息确定中间节点的出接口的 可用频率范围;
所述中间节点根据网络限制条件确定所述波长连接在所述中间节点的出接 口的可用频谱资源信息, 所述波长连接在所述中间节点的出接口的可用频谱资 源信息包括第五中心频率粒度和第五中心频率的信息, 所述第五中心频率粒度 为所述第四中心频率粒度和所述中间节点的出接口的中心频率粒度的最大公约 数, 所述第五中心频率为中间节点的出接口的可用频率范围在所述第五中心频 率粒度下所能覆盖的中心频率集合。
10、 据权利要求 9所述的方法, 其特征在于, 所述根据所述波长连接在所 述中间节点之前的共同可用频谱资源信息和所述波长连接在所述中间节点的出 接口的可用频谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资 源信息包括:
所述中间节点根据所述波长连接在所述中间节点之前的共同可用频谱资源 信息和所述波长连接在所述中间节点的出接口的可用频谱资源信息确定第六中 心频率, 所述第六中心频率为所述波长连接在所述下游节点之前的接口的可用 频率范围在所述第五中心频率粒度下所能覆盖的中心频率集合的交集, 所述波 长连接在下游节点之前的共同可用频谱资源信息包括第五中心频率粒度和第六 中心频率。
11、 根据权利要求 1所述的方法, 其特征在于, 所述波长连接在所述中间 节点之前的共同可用频谱资源信息包括所述波长连接在所述中间节点之前共同 可用频谱范围。
12、 根据权利要求 1所述的方法, 其特征在于, 所述波长连接的频谱需求 信息包括波长连接中心频率粒度信息和所述波长连接中心频率粒度下对应的频 宽信息。
13、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述波长连接在 所述中间节点之前的共同可用频谱资源信息和所述波长连接在所述中间节点的 出接口的可用频谱资源信息确定所述波长连接在下游节点之前的共同可用频谱 资源信息包括:
根据所述波长连接在所述中间节点之前的共同可用频谱资源信息、 所述波 长连接在所述中间节点的出接口的可用频谱资源信息以及网络限制条件确定所 述波长连接在下游节点之前的共同可用频谱资源信息。
14、 根据权利要求 1所述的方法, 其特征在于, 所述波长连接的有效频谱 资源信息包括所述波长连接可以使用的中心频率粒度信息、 中心频率信息和频 宽信息。
15、 根据权利要求 1所述的方法, 其特征在于, 所述下游节点的资源配置 信息包括所述下游节点配置的中心频率值。
16、 根据权利要求 1所述的方法, 其特征在于, 所述中间节点根据所述第 一波长连接建立反馈消息确定所述中间节点需要配置的资源信息并配置相应资 源包括:
所述中间节点根据所述第一波长连接建立反馈消息和所述中间节点的出接 口的中心频率粒度确定所述中间节点的出接口配置的中心频率值和频宽值; 所述中间节点根据所述第一波长连接建立反馈消息和所述中间节点的入接 口的中心频率粒度确定所述中间节点的入接口配置的中心频率值和频宽值; 根据所述中间节点的入接口配置的中心频率值和频宽值以及所述中间节点 的出接口配置的中心频率值和频宽值配置交叉连接。
17、 一种波长连接的建立方法, 其特征在于, 包括:
首节点发送第三波长连接建立请求消息到下游节点, 所述第三波长连接建 立请求消息包括所述波长连接在所述下游节点之前的共同可用频谱资源信息和 所述波长连接的频谱需求信息;
所述首节点接收来自所述下游节点的第三波长连接建立反馈消息, 所述第 三波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述下游节点的 资源配置信息;
所述首节点根据所述第三波长连接建立反馈消息确定所述首节点需要配置 的资源信息并配置相应资源。
18、根据权利要求 17所述的方法, 其特征在于, 如果网络限制条件包括同 一条波长连接上分配的频谱资源的中心频率保持一致, 所述波长连接在所述下 游节点之前的共同可用频谱资源信息包括第七中心频率粒度和第七中心频率的 信息, 所述第七中心频率粒度为所述首节点所支持中心频率粒度, 所述第七中 心频率为下游节点之前的接口在所述第七中心频率粒度下共同支持的可用中心 频率集合。
19、根据权利要求 18所述的方法, 其特征在于: 如果所述第七中心频率包 括多个共同可用中心频率值, 所述波长连接在所述中间节点之前的共同可用频 谱资源信息还包括第七共同可用中心频率的优先次序。
20、根据权利要求 17所述的方法, 其特征在于, 如果所述网络限制条件不 包括同一条波长连接上分配的频谱资源的中心频率保持一致或者没有网络限制 条件, 所述波长连接在所述下游节点之前的共同可用频谱资源信息包括第八中 心频率粒度和第八中心频率, 所述第八中心频率粒度为所述波长连接在所述下 游节点之前的接口的中心频率粒度的最大公约数, 所述第八中心频率为下游节 点之前的接口的可用频率范围在所述第八中心频率粒度下所能覆盖的中心频率 集合的交集。
21、根据权利要求 17所述的方法, 其特征在于, 所述波长连接在所述下游 节点之前的共同可用频谱资源信息包括所述波长连接在所述下游节点之前共同 可用频谱范围。
22、根据权利要求 17所述的方法, 其特征在于, 所述波长连接的频谱需求 信息包括波长连接中心频率粒度信息和所述波长连接中心频率粒度下对应的频 宽信息。
23、根据权利要求 17所述的方法, 其特征在于, 所述波长连接的有效频谱 资源信息包括所述波长连接可以使用的中心频率粒度信息、 中心频率信息和频 宽信息。
24、根据权利要求 17所述的方法, 其特征在于, 所述下游节点的资源配置 信息包括所述下游节点配置的中心频率值。
25、根据权利要求 17所述的方法, 其特征在于, 所述首节点根据所述第三 波长连接建立反馈消息确定所述首节点需要配置的资源信息并配置相应资源包 括:
所述首节点根据所述第三波长连接建立反馈消息和所述首节点的出接口的 中心频率粒度确定所述首节点的出接口配置的中心频率值和频宽值;
根据所述首节点的上下波长接口配置的中心频率值和频宽值以及所述首节 点的出接口配置的中心频率值和频宽值配置交叉连接。
26、 一种波长连接的建立方法, 其特征在于, 包括:
末节点接收来自上游节点的第四波长连接建立请求消息, 所述第四波长连 接建立请求消息包括所述波长连接在所述末节点之前的共同可用频谱资源信息 和所述波长连接的频谱需求信息;
所述末节点根据所述波长连接在所述末节点之前的共同可用频谱资源信息 确定所述波长连接的有效频谱资源信息;
所述末节点根据所述有效频谱资源信息确定所述末节点需要配置的资源信 息并配置相应资源;
所述末节点发送第四波长连接建立反馈消息到所述上游节点, 所述第四波 长连接建立反馈消息包括波长连接的有效频谱资源信息和所述末节点的资源配 置信息。
27、根据权利要求 26所述的方法, 其特征在于, 所述波长连接的有效频谱 资源信息包括所述波长连接可以使用的中心频率粒度信息、 中心频率信息和频 宽信息。
28、根据权利要求 26所述的方法, 其特征在于, 所述末节点的资源配置信 息包括所述末节点配置的中心频率值。
29、根据权利要求 26所述的方法, 其特征在于, 所述末节点根据所述有效 频谱资源信息确定所述末节点需要配置的资源信息并配置相应资源包括:
所述末节点根据所述有效频谱资源信息和所述末节点的入接口的中心频率 粒度确定所述末节点的入接口配置的中心频率值和频宽值;
根据所述末节点的入接口配置的中心频率值和频宽值以及所述末节点的上 下波长接口配置的中心频率值和频宽值配置交叉连接。
30、 一种节点, 其特征在于, 包括:
第一接收单元, 用于接收来自上游节点的第一波长连接建立请求消息, 所 述第一波长连接建立请求消息包括所述波长连接在所述中间节点之前的共同可 用频谱资源信息和所述波长连接的频谱需求信息;
第一确定单元, 用于根据所述波长连接的频谱需求信息确定所述波长连接 在所述中间节点的出接口的可用频谱资源信息, 根据所述波长连接在所述中间 节点之前的共同可用频谱资源信息和所述波长连接在所述中间节点的出接口的 可用频谱资源信息确定所述波长连接在下游节点之前的共同可用频谱资源信 息; 第一发送单元, 用于发送第二波长连接建立请求消息到所述下游节点, 所 述第二波长连接建立请求消息中包括所述波长连接在下游节点之前的共同可用 频谱资源信息和所述波长连接的频谱需求信息;
第二接收单元,用于接收来自所述下游节点的第一波长连接建立反馈消息, 所述第一波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述下游 节点的资源配置信息;
第二确定单元, 用于根据所述第一波长连接建立反馈消息确定所述中间节 点需要配置的资源信息并配置相应资源;
第二发送单元, 用于发送第二波长连接建立反馈消息到所述上游节点, 所 述第二波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述中间节 点的资源配置信息。
31、根据权利要求 30所述的节点, 其特征在于, 所述第二确定单元具体用 于根据所述第一波长连接建立反馈消息和所述中间节点的出接口的中心频率粒 度确定所述中间节点的出接口配置的中心频率值和频宽值, 根据所述第一波长 连接建立反馈消息和所述中间节点的入接口的中心频率粒度确定所述中间节点 的入接口配置的中心频率值和频宽值, 才艮据所述中间节点的入接口配置的中心 频率值和频宽值以及所述中间节点的出接口配置的中心频率值和频宽值配置交 叉连接。
32、 一种首节点, 其特征在于, 包括:
第三发送单元, 用于发送第三波长连接建立请求消息到下游节点, 所述第 三波长连接建立请求消息包括所述波长连接在所述下游节点之前的共同可用频 谱资源信息和所述波长连接的频谱需求信息;
第三接收单元,用于接收来自所述下游节点的第三波长连接建立反馈消息, 所述第三波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述下游 节点的资源配置信息;
第三确定单元, 用于根据所述第三波长连接建立反馈消息确定所述首节点 需要配置的资源信息并配置相应资源。
33、根据权利要求 32所述的节点, 其特征在于, 所述第三确定单元具体用 于根据所述第三波长连接建立反馈消息和所述首节点的出接口的中心频率粒度 确定所述首节点的出接口配置的中心频率值和频宽值, 根据所述首节点的上下 波长接口配置的中心频率值和频宽值以及所述首节点的出接口配置的中心频率 值和频宽值配置交叉连接。
34、 一种末节点, 其特征在于, 包括:
第四接收单元, 用于接收来自上游节点的第四波长连接建立请求消息, 所 述第四波长连接建立请求消息包括所述波长连接在所述末节点之前的共同可用 频谱资源信息和所述波长连接的频谱需求信息;
第四确定单元, 用于根据所述波长连接在所述末节点之前的共同可用频谱 资源信息确定所述波长连接的有效频谱资源信息, 根据所述有效频谱资源信息 确定所述末节点需要配置的资源信息并配置相应资源;
第四发送单元, 用于发送第四波长连接建立反馈消息到所述上游节点, 所 述第四波长连接建立反馈消息包括波长连接的有效频谱资源信息和所述末节点 的资源配置信息。
35、根据权利要求 34所述的节点, 其特征在于, 所述第四确定单元具体用 于根据所述有效频谱资源信息和所述末节点的入接口的中心频率粒度确定所述 末节点的入接口配置的中心频率值和频宽值, 才艮据所述末节点的入接口配置的 中心频率值和频宽值以及所述末节点的上下波长接口配置的中心频率值和频宽 值配置交叉连接。
36、 一种波长连接的建立系统, 其特征在于, 包括波长连接的首节点和末 节点, 其中
所述首节点, 用于发送第三波长连接建立请求消息到下游节点, 所述第三 波长连接建立请求消息包括所述波长连接在所述下游节点之前的共同可用频谱 资源信息和所述波长连接的频谱需求信息, 接收来自所述下游节点的第三波长 连接建立反馈消息, 所述第三波长连接建立反馈消息包括波长连接的有效频谱 资源信息和所述下游节点的资源配置信息, 根据所述第三波长连接建立反馈消 息确定所述首节点需要配置的资源信息并配置相应资源;
所述末节点, 用于接收来自上游节点的第四波长连接建立请求消息, 所述 第四波长连接建立请求消息包括所述波长连接在所述末节点之前的共同可用频 谱资源信息和所述波长连接的频谱需求信息, 根据所述波长连接在所述末节点 之前的共同可用频谱资源信息确定所述波长连接的有效频谱资源信息, 根据所 述有效频谱资源信息确定所述末节点需要配置的资源信息并配置相应资源, 发 送第四波长连接建立反馈消息到所述上游节点, 所述第四波长连接建立反馈消 息包括波长连接的有效频谱资源信息和所述末节点的资源配置信息。
37、根据权利要求 36所述的系统, 其特征在于, 所述首节点的下游节点为 所述末节点。
38、根据权利要求 36所述的系统, 其特征在于, 所述首节点和所述末节点 之间至少包括一个中间节点, 所述中间节点用于接收来自上游节点的第一波长 连接建立请求消息, 所述第一波长连接建立请求消息包括所述波长连接在所述 中间节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信息; 根据 所述波长连接的频谱需求信息确定所述波长连接在所述中间节点的出接口的可 用频谱资源信息, 根据所述波长连接在所述中间节点之前的共同可用频谱资源 信息和所述波长连接在所述中间节点的出接口的可用频谱资源信息确定所述波 长连接在下游节点之前的共同可用频谱资源信息; 发送第二波长连接建立请求 消息到所述下游节点, 所述第二波长连接建立请求消息中包括所述波长连接在 下游节点之前的共同可用频谱资源信息和所述波长连接的频谱需求信息; 接收 来自所述下游节点的第一波长连接建立反馈消息, 所述第一波长连接建立反馈 消息包括波长连接的有效频谱资源信息和所述下游节点的资源配置信息; 根据 所述第一波长连接建立反馈消息确定所述中间节点需要配置的资源信息并配置 相应资源; 发送第二波长连接建立反馈消息到所述上游节点, 所述第二波长连 接建立反馈消息包括波长连接的有效频谱资源信息和所述中间节点的资源配置 信息。
PCT/CN2013/076860 2013-06-06 2013-06-06 一种波长连接的建立方法、节点和系统 WO2014194505A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/076860 WO2014194505A1 (zh) 2013-06-06 2013-06-06 一种波长连接的建立方法、节点和系统
CN201380001930.2A CN104094542B (zh) 2013-06-06 2013-06-06 一种波长连接的建立方法、节点和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076860 WO2014194505A1 (zh) 2013-06-06 2013-06-06 一种波长连接的建立方法、节点和系统

Publications (1)

Publication Number Publication Date
WO2014194505A1 true WO2014194505A1 (zh) 2014-12-11

Family

ID=51640976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076860 WO2014194505A1 (zh) 2013-06-06 2013-06-06 一种波长连接的建立方法、节点和系统

Country Status (2)

Country Link
CN (1) CN104094542B (zh)
WO (1) WO2014194505A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820556A (zh) * 2009-02-26 2010-09-01 华为技术有限公司 路由协议消息发布和路由计算的方法、装置和系统
CN102439886A (zh) * 2011-10-20 2012-05-02 华为技术有限公司 路径计算的方法及装置
CN102742295A (zh) * 2011-10-27 2012-10-17 华为技术有限公司 频谱带宽可调的波长连接建立方法、设备及网络

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9270427B2 (en) * 2010-01-11 2016-02-23 Futurewei Technologies, Inc. System and method for multiplexing control and data channels in a multiple input, multiple output communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820556A (zh) * 2009-02-26 2010-09-01 华为技术有限公司 路由协议消息发布和路由计算的方法、装置和系统
CN102439886A (zh) * 2011-10-20 2012-05-02 华为技术有限公司 路径计算的方法及装置
CN102742295A (zh) * 2011-10-27 2012-10-17 华为技术有限公司 频谱带宽可调的波长连接建立方法、设备及网络

Also Published As

Publication number Publication date
CN104094542A (zh) 2014-10-08
CN104094542B (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2017156987A1 (zh) 一种灵活以太网路径建立的方法和装置
EP2747355B1 (en) Aggregation network with centralized control
US8339985B2 (en) Method and system for announcing traffic engineering parameters of composite transport groups
WO2013000328A1 (zh) 灵活栅格光网络的波长标签编码方法、处理方法及节点
US8897295B2 (en) Method and system for providing traffic engineering interworking
JP6742514B2 (ja) 階層ネットワークにおける物理パス制御
WO2012058889A1 (zh) 一种数据通信网络的开通方法及系统
WO2015113285A1 (zh) 通信网络中的控制方法、集中控制器及无线通信网络系统
WO2013000329A1 (zh) 灵活栅格光网络节点及节点间的链路属性校验方法
JP5739960B2 (ja) パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム
CN113228592B (zh) 提供传输上下文和路径上元数据以支持启用5g的网络的方法和装置
CN103532879A (zh) 综合信道控制设备
WO2012163015A1 (zh) 路径计算的方法及装置
WO2013060278A1 (zh) 一种灵活栅格光网络的波长资源编码、处理方法及节点
WO2014194505A1 (zh) 一种波长连接的建立方法、节点和系统
WO2010000202A1 (zh) 保证差分业务流量工程网络配置参数一致的方法和系统
Amokrane et al. Dynamic capacity management and traffic steering in enterprise passive optical networks
Casellas et al. IDEALIST control plane architecture for multi-domain flexi-grid optical networks
CN109698982B (zh) 控制通道实现方法、装置、设备、存储介质和处理方法
Zhang et al. GMPLS OSPF-TE Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks
WO2012167532A1 (zh) 频谱带宽可调的波长连接建立方法、设备及网络
CN115801690B (zh) 一种数据处理方法及装置、设备、存储介质
EP4109920A1 (en) Routing calculation method, device and system
Takeda et al. Layer 1 VPN architecture and its evaluation
de Dios et al. Framework and requirements for GMPLS-based control of flexi-grid dense wavelength division multiplexing (DWDM) networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886513

Country of ref document: EP

Kind code of ref document: A1