WO2014193207A1 - The gas-discharge electron gun - Google Patents

The gas-discharge electron gun Download PDF

Info

Publication number
WO2014193207A1
WO2014193207A1 PCT/LV2013/000013 LV2013000013W WO2014193207A1 WO 2014193207 A1 WO2014193207 A1 WO 2014193207A1 LV 2013000013 W LV2013000013 W LV 2013000013W WO 2014193207 A1 WO2014193207 A1 WO 2014193207A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
discharge
electron
gun
chamber
Prior art date
Application number
PCT/LV2013/000013
Other languages
French (fr)
Russian (ru)
Inventor
Анатолий КРАВЦОВ
Боpис ТУГАЙ
Виталий МЕЛЬНИК
Original Assignee
Kravtsov Anatoly
Tugai Borys
Melnyk Vitalii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kravtsov Anatoly, Tugai Borys, Melnyk Vitalii filed Critical Kravtsov Anatoly
Publication of WO2014193207A1 publication Critical patent/WO2014193207A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/301Arrangements enabling beams to pass between regions of different pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/077Electron guns using discharge in gases or vapours as electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06366Gas discharge electron sources

Definitions

  • the present invention relates to electronic equipment, and more particularly to gas-discharge electron guns for technological purposes and can be used for electron beam melting, evaporation and other thermal processes carried out in vacuum using powerful electron beams.
  • Gas-discharge electron guns are known in which a high-voltage glow discharge with a cold cathode is used to generate and form an electron beam (MA Zavyalov, Yu.E. Kreindel, AA Novikov, LP Shanturin. Plasma processes in technological electronic cannons, M., Energoatomizdat, 1989, 97-145 s, USSR AS (jNb 222572, H017314 publ. 06/15/84, ac. 3509251/21, H01j3 / 02 publ. 10.07.2000).
  • the electron beam emission in such guns is carried out as a result of the bombardment of the surface of a cold metal cathode by positive ions coming from a plasma localized at the anode.
  • the electrons are accelerated and, depending on the configuration of the electric field determined by the concave surface of the cathode, are formed into a converging beam, which, using magnetic focusing lenses, is output into the technological chamber (material heat treatment zone).
  • the discharge current, and, therefore, at a constant accelerating voltage, the beam power is determined by the pressure in the interelectrode discharge gap, which, depending on the size of the electrode system, the combustion regime of the discharge, and the kind of gas used, can be several tens of Pa.
  • the gas-discharge gun When carrying out technological processes in the pressure range below those, the gas-discharge gun is usually pumped out together with the technological chamber, and the discharge current is controlled by an adjustable gas inlet into the gun. Moreover, the pressure range in the process chamber during effective pumping may be 10 " 1 - 10 " 2 Pa.
  • a gas-discharge electron gun with a cold cathode was selected (patent application RUN ° 2006123882, H01j37 / 06 publ. January 10, 2008).
  • a beam line with a minimum transverse size is used, which reduces the gas conductivity and allows vacuum separation of the gun with the process chamber by 1 - 1.5 orders of magnitude.
  • Such a dependence of the gas discharge gun in vacuum on the process chamber narrows the range of working pressures when performing technological processes and impairs the stability of the guns during sudden changes in pressure in the process chamber.
  • the aim of the invention is to expand the range of operating pressures when used for thermal processes of gas-discharge electron guns and increase the stability of their work.
  • This goal is achieved by the fact that in a gas-discharge electron gun containing a cold concave cathode located in a sealed enclosure on a high-voltage insulator, an anode coaxial to it with a hole for outputting an electron beam, a beam path connected to the anode with two focusing lenses and beam deflection coils fixed to it, between with a focusing lens and deflection coils there is a gas ballast chamber enclosing the beam line, equipped with a pumping nozzle and openings connected to the beam line, across -screw size of not more than 5 - 6 mm, and their total conductivity exceeds the conductivity of the gas between the gas ballast lucheprovoda chamber and its cut.
  • the gas ballast chamber may be located between the focusing lenses.
  • gas evacuation during its operation is carried out mainly through the gas ballast chamber, the conductivity of the gas through which is greater than through the beam line in the section between the gas ballast chamber and its cut. Since the conductivity of the gas through the ballast chamber is determined mainly by the throughput of the holes in the wall of the beam path, their total gas conductivity exceeds the conductivity of the beam path. Due to the need to prevent the occurrence of a gas discharge in the cavity of the ballast chamber as a result of gas ionization by beam electrons, the transverse size of the holes in the beam path is limited to 5–6 mm, which corresponds to 2–3 Debye shielding radii for a low-pressure discharge plasma. The required total conductivity of the holes is ensured by their longitudinal size and quantity.
  • the gas ballast chamber In order to reduce the scattering of the electron beam in the gas along the path through the beam line in the gun, designed for carrying out technological processes in low vacuum (about 1 Pa and above), the gas ballast chamber should be placed closer to the beam exit from the beam line.
  • the gun When the gun is operating in a high vacuum, and especially if it is necessary to increase the specific power of the beam, it is advisable to install the ballast chamber between the focusing lenses, thereby ensuring low pressure in a significant part of the beam path due to pumping gas into the technological chamber of the installation.
  • the gas ballast chamber plays the role of a ballast volume, smoothing these oscillations and preventing their influence on the pressure in the gun, which increases the stability of its operation.
  • Fig.1 shows a diagram of a gas-discharge electron gun with a gas ballast chamber located between the lens and the deflecting coils
  • Fig. 2 is a diagram of a gun with a gas ballast chamber located between focusing lenses.
  • the proposed gas-discharge electron gun contains a sealed housing 1, in which a cold metal cathode 3 is attached to the high-voltage insulator 2, an anode 4 is attached coaxially to the casing, and a cylindrical beam path 5 is connected to the anode.
  • Two magnetic focusing lenses 6, 7 and deflecting coils 8 are installed on the beam path
  • the gas ballast chamber 9 is located between the lens 7 and the coils 8 or between the lenses 6 and 7 (Fig. 2).
  • the gas ballast chamber is connected to the beam path through the holes 10.
  • the work of the proposed gas discharge electron gun is as follows. With continuous pumping of gas from a gun through a gas ballast the chamber and the process chamber of the vacuum unit, as well as the inlet of the working gas through channel 1 1 (for example, hydrogen, oxygen, etc.), the necessary working pressure is set in the gun. When an accelerating voltage of 25-30 kV is applied to the cathode, a high-voltage glow discharge forms, forming an electron beam. The magnitude of the discharge current, and, consequently, of the beam current is controlled by a change in the pressure in the gun (the value of the gas flow entering through channel 1 1) in the range of units Pa. Using magnetic focusing lenses 6, 7, the electron beam is output to the process chamber and focuses on the object of heat treatment. The beam deflection and scanning according to the corresponding program is carried out using deflecting coils 8.
  • a prototype gas discharge gun with a power of up to 100 kW at an accelerating voltage of 30 kV was developed.
  • the test of the gun was carried out on an electron beam installation for melting silicon.
  • the installation chamber was pumped out with a steam-oil pump with a capacity of 4000 l / s.
  • a turbomolecular pump with a capacity of 500 l / s was used.
  • the pressure in the process chamber could be maintained at a predetermined level in the range of 10 - 10 " Pa.
  • the operation of the gun was characterized by good stability.
  • the proposed gas-discharge electron gun is intended mainly for electron beam melting of materials and can be used for other thermal processes carried out in vacuum using various gases, including reactive ones. Separate pumping of the gun through the ballast chamber provides a wider range of pressures in the heat treatment zone of materials (from 10 Pa to 10 "2 Pa), which greatly expands the technical capabilities of this type of electron guns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The proposed invention relates to electronic technology, more specifically - to gas-discharge electron guns for processing applications and can be used for electron beam melting, evaporation and other thermal processes performed in a vacuum using high- power electron beams. The goal of the proposed invention is to expand the range of working pressures when using gas-discharge electron beam guns for thermal processes and increase the consistency of their operation. The goal specified is achieved as follows: the gas-discharge electron gun, containing (in a sealed case (1) on a high-voltage insulator (2) ) a cold concave cathode (3), a coaxial anode (4) with an opening for the electron beam passage, a beam guide (5) attached to the anode with two focusing lenses (6, 7) and beam deflection coils (8) fixed on it, has a gas-ballast chamber (9) between a focusing lens and deflection coils that covers the beam guide and is equipped with a connecting branch for degassing and connected with the beam guide by openings (10), which transverse dimensions do not exceed 5 - 6 mm, and their total gas conductivity exceeds the beam guide conductivity between the gas-ballast chamber and its section.

Description

Газоразрядная электронная пушка  Gas discharge electron gun
Предлагаемое изобретение относится к электронной технике, а более конкретно к газоразрядным электронным пушкам технологического назначения и может быть применено для электронно-лучевой плавки, испарения и других термических процессов, проводимых в вакууме с использованием мощных электронных пучков. The present invention relates to electronic equipment, and more particularly to gas-discharge electron guns for technological purposes and can be used for electron beam melting, evaporation and other thermal processes carried out in vacuum using powerful electron beams.
Известны газоразрядные электронные пушки, в которых для генерации и формирования электронного пучка используется высоковольтный тлеющий разряд с холодным катодом (М.А. Завьялов, Ю.Е. Крейндель, А.А. Новиков, Л.П. Шантурин. Плазменные процессы в технологических электронных пушках, М., Энергоатомиздат, 1989, 97-145 с, а.с. СССР jNb 222572, Н017314 опубл. 15.06.84 г., ас. 3509251/21 , H01j3/02 опубл. 10.07.2000 г.). Эмиссия электронного пучка в таких пушках осуществляется в результате бомбардировки поверхности холодного металлического катода положительными ионами поступающими из плазмы, локализованной у анода. В области катодного падения потенциала электроны ускоряются и в зависимости от конфигурации электрического поля, определяемого вогнутой поверхностью катода, формируются в сходящийся пучок, который с помощью магнитных фокусирующих линз выводится в технологическую камеру (зону термообработки материалов). Ток разряда, а, следовательно, при неизменном ускоряющем напряжении, мощность пучка, определяется величиной давления в межэлектродном разрядном промежутке, которое в зависимости от размеров электродной системы, режимов горения разряда, рода используемого газа может составлять единицы- десятки Па.  Gas-discharge electron guns are known in which a high-voltage glow discharge with a cold cathode is used to generate and form an electron beam (MA Zavyalov, Yu.E. Kreindel, AA Novikov, LP Shanturin. Plasma processes in technological electronic cannons, M., Energoatomizdat, 1989, 97-145 s, USSR AS (jNb 222572, H017314 publ. 06/15/84, ac. 3509251/21, H01j3 / 02 publ. 10.07.2000). The electron beam emission in such guns is carried out as a result of the bombardment of the surface of a cold metal cathode by positive ions coming from a plasma localized at the anode. In the region of the cathodic potential drop, the electrons are accelerated and, depending on the configuration of the electric field determined by the concave surface of the cathode, are formed into a converging beam, which, using magnetic focusing lenses, is output into the technological chamber (material heat treatment zone). The discharge current, and, therefore, at a constant accelerating voltage, the beam power, is determined by the pressure in the interelectrode discharge gap, which, depending on the size of the electrode system, the combustion regime of the discharge, and the kind of gas used, can be several tens of Pa.
При проведении технологических процессов в диапазоне давлений ниже приведенных, откачка газоразрядной пушки обычно осуществляется совместно с технологической камерой, а ток разряда контролируется регулируемым напуском газа в пушку. При этом диапазон давлений в технологической камере при эффективной откачке может составлять 10" 1 - 10" 2 Па. When carrying out technological processes in the pressure range below those, the gas-discharge gun is usually pumped out together with the technological chamber, and the discharge current is controlled by an adjustable gas inlet into the gun. Moreover, the pressure range in the process chamber during effective pumping may be 10 " 1 - 10 " 2 Pa.
В качестве прототипа предлагаемого изобретения выбрана газоразрядная электронная пушка с холодным катодом (заявка на изобретение RUN°2006123882, H01j37/06 опубл. 10.01.2008 г.). Для проведения электронного пучка в пушке используется лучепровод с минимальным поперечным размером, что уменьшает проводимость газа и позволяет разделить по вакууму пушку с технологической камерой на 1 - 1,5 порядка. Такая зависимость газоразрядной пушки по вакууму от технологической камеры сужает диапазон рабочих давлений при выполнении технологических процессов и ухудшает стабильность работы пушек при резких изменениях давления в технологической камере. As a prototype of the invention, a gas-discharge electron gun with a cold cathode was selected (patent application RUN ° 2006123882, H01j37 / 06 publ. January 10, 2008). To conduct an electron beam in the gun, a beam line with a minimum transverse size is used, which reduces the gas conductivity and allows vacuum separation of the gun with the process chamber by 1 - 1.5 orders of magnitude. Such a dependence of the gas discharge gun in vacuum on the process chamber narrows the range of working pressures when performing technological processes and impairs the stability of the guns during sudden changes in pressure in the process chamber.
Целью предлагаемого изобретения является расширение диапазона рабочих давлений при использовании для термических процессов газоразрядных электронных пушек и повышение стабильности их работы.  The aim of the invention is to expand the range of operating pressures when used for thermal processes of gas-discharge electron guns and increase the stability of their work.
Указанная цель достигается тем, что в газоразрядной электронной пушке, содержащей расположенные в герметичном корпусе на высоковольтном изоляторе холодный вогнутый катод, соосный ему анод с отверстием для вывода электронного пучка, присоединенный к аноду лучепровод с закрепленными на нем двумя фокусирующими линзами и катушками отклонения пучка, между фокусирующей линзой и катушками отклонения расположена охватывающая лучепровод газобалластная камера, оснащенная патрубком для откачки и соединенная с лучепроводом отверстиями, поперечный размер которых не превышает 5 - 6 мм, а их суммарная проводимость для газа превышает проводимость лучепровода между газобалластной камерой и его срезом.  This goal is achieved by the fact that in a gas-discharge electron gun containing a cold concave cathode located in a sealed enclosure on a high-voltage insulator, an anode coaxial to it with a hole for outputting an electron beam, a beam path connected to the anode with two focusing lenses and beam deflection coils fixed to it, between with a focusing lens and deflection coils there is a gas ballast chamber enclosing the beam line, equipped with a pumping nozzle and openings connected to the beam line, across -screw size of not more than 5 - 6 mm, and their total conductivity exceeds the conductivity of the gas between the gas ballast lucheprovoda chamber and its cut.
При необходимости газобалластная камера может быть расположена между фокусирующими линзами.  If necessary, the gas ballast chamber may be located between the focusing lenses.
В предлагаемой пушке откачка газа в процессе ее работы осуществляется в основном через газобалластную камеру, проводимость газа через которую больше чем через лучепровод на участке между газобалластной камерой и его срезом. Так как проводимость газа через балластную камеру определяется в основном пропускной способностью отверстий в стенке лучепровода, то их суммарная проводимость газа превышает проводимость лучепровода. Из-за необходимости предотвращения возникновения в полости балластной камеры газового разряда в результате ионизации газа электронами пучка, поперечный размер отверстий в стенке лучепровода ограничен в пределах 5 - 6 мм, что соответствует 2 - 3 дебаевским радиусам экранирования для плазмы разряда низкого давления. Необходимая суммарная проводимость отверстий при этом обеспечивается продольным их размером и количеством. In the proposed gun, gas evacuation during its operation is carried out mainly through the gas ballast chamber, the conductivity of the gas through which is greater than through the beam line in the section between the gas ballast chamber and its cut. Since the conductivity of the gas through the ballast chamber is determined mainly by the throughput of the holes in the wall of the beam path, their total gas conductivity exceeds the conductivity of the beam path. Due to the need to prevent the occurrence of a gas discharge in the cavity of the ballast chamber as a result of gas ionization by beam electrons, the transverse size of the holes in the beam path is limited to 5–6 mm, which corresponds to 2–3 Debye shielding radii for a low-pressure discharge plasma. The required total conductivity of the holes is ensured by their longitudinal size and quantity.
С целью уменьшения рассеяния электронного пучка в газе на пути прохождения через лучепровод в пушке, предназначенной для проведения технологических процессов в низком вакууме (около 1 Па и выше), газобалластная камера должна размещаться ближе к выходу пучка из лучепровода. При работе пушки в высоком вакууме, и особенно при необходимости повышения удельной мощности пучка, балластную камеру целесообразно устанавливать между фокусирующими линзами, обеспечивая этим на значительном участке лучепровода низкое давление за счет откачки газа в технологическую камеру установки.  In order to reduce the scattering of the electron beam in the gas along the path through the beam line in the gun, designed for carrying out technological processes in low vacuum (about 1 Pa and above), the gas ballast chamber should be placed closer to the beam exit from the beam line. When the gun is operating in a high vacuum, and especially if it is necessary to increase the specific power of the beam, it is advisable to install the ballast chamber between the focusing lenses, thereby ensuring low pressure in a significant part of the beam path due to pumping gas into the technological chamber of the installation.
При резких изменениях (колебаниях) давления в технологической камере установки газобалластная камера выполняет роль балластного объема, сглаживающего эти колебания и предотвращающего их влияние на давление в пушке, что повышает стабильность ее работы.  In case of sharp changes (fluctuations) in pressure in the technological chamber of the installation, the gas ballast chamber plays the role of a ballast volume, smoothing these oscillations and preventing their influence on the pressure in the gun, which increases the stability of its operation.
Сущность изобретения поясняется чертежами, где на фиг.1 изображена схема газоразрядной электронной пушки с газобалластной камерой, расположенной между линзой и отклоняющими катушками, а на фиг. 2 - схема пушки с газобалластной камерой, расположенной между фокусирующими линзами.  The invention is illustrated by drawings, where in Fig.1 shows a diagram of a gas-discharge electron gun with a gas ballast chamber located between the lens and the deflecting coils, and in Fig. 2 is a diagram of a gun with a gas ballast chamber located between focusing lenses.
Предлагаемая газоразрядная электронная пушка содержит герметичный корпус 1, в котором на высоковольтном изоляторе 2 закреплен холодный металлический катод 3, соосно катоду к корпусу присоединен анод 4, а к аноду цилиндрический лучепровод 5. На лучепроводе установлены две магнитные фокусирующие линзы 6, 7 и отклоняющие катушки 8. Газобалластная камера 9 располагается между линзой 7 и катушками 8 или между линзами 6 и 7 (фиг. 2). Газобалластная камера соединена с лучепроводом через отверстия 10. В аноде 4 выполнен канал 11 для подачи рабочего газа в пушку.  The proposed gas-discharge electron gun contains a sealed housing 1, in which a cold metal cathode 3 is attached to the high-voltage insulator 2, an anode 4 is attached coaxially to the casing, and a cylindrical beam path 5 is connected to the anode. Two magnetic focusing lenses 6, 7 and deflecting coils 8 are installed on the beam path The gas ballast chamber 9 is located between the lens 7 and the coils 8 or between the lenses 6 and 7 (Fig. 2). The gas ballast chamber is connected to the beam path through the holes 10. In the anode 4 there is a channel 11 for supplying working gas to the gun.
Работа предлагаемой газоразрядной электронной пушки осуществляется следующим образом. При непрерывной откачке газа из пушки через газобалластную камеру и технологическую камеру вакуумной установки, а также напуске рабочего газа через канал 1 1 (например, водород, кислород и др.) в пушке устанавливается необходимое рабочее давление. При подаче на катод ускоряющего напряжения 25 - 30 кВ загорается высоковольтный тлеющий разряд, формирующий электронный пучок. Величина тока разряда, а, следовательно, и тока пучка регулируется изменением давления в пушке (величиной потока газа, поступающего через канал 1 1) в диапазоне единиц Па. С помощью магнитных фокусирующих линз 6, 7 электронный пучок выводится в технологическую камеру и фокусируется на объекте термической обработки. Отклонение пучка и сканирование по соответствующей программе осуществляется с помощью отклоняющих катушек 8. The work of the proposed gas discharge electron gun is as follows. With continuous pumping of gas from a gun through a gas ballast the chamber and the process chamber of the vacuum unit, as well as the inlet of the working gas through channel 1 1 (for example, hydrogen, oxygen, etc.), the necessary working pressure is set in the gun. When an accelerating voltage of 25-30 kV is applied to the cathode, a high-voltage glow discharge forms, forming an electron beam. The magnitude of the discharge current, and, consequently, of the beam current is controlled by a change in the pressure in the gun (the value of the gas flow entering through channel 1 1) in the range of units Pa. Using magnetic focusing lenses 6, 7, the electron beam is output to the process chamber and focuses on the object of heat treatment. The beam deflection and scanning according to the corresponding program is carried out using deflecting coils 8.
Был разработан опытный образец газоразрядной пушки мощностью до 100 кВт при ускоряющем напряжении 30 кВ. Испытание пушки проводилось на электронно- лучевой установке для плавки кремния. Откачка камеры установки осуществлялась паромасляным насосом производительностью 4000 л/с. Для дополнительной откачки пушки через балластную камеру использовался турбомолекулярный насос производительностью 500 л/с. При различных режимах работы пушки и состоянии плавящегося материала давление в технологической камере могло поддерживаться на заданном уровне в диапазоне 10 - 10" Па. Работа пушки отличалась хорошей стабильностью. A prototype gas discharge gun with a power of up to 100 kW at an accelerating voltage of 30 kV was developed. The test of the gun was carried out on an electron beam installation for melting silicon. The installation chamber was pumped out with a steam-oil pump with a capacity of 4000 l / s. For additional pumping of the gun through the ballast chamber, a turbomolecular pump with a capacity of 500 l / s was used. Under various modes of operation of the gun and the condition of the melting material, the pressure in the process chamber could be maintained at a predetermined level in the range of 10 - 10 " Pa. The operation of the gun was characterized by good stability.
Предлагаемая газоразрядная электронная пушка предназначена в основном для электронно-лучевой плавки материалов и может использоваться для других термических процессов, проводимых в вакууме с использованием различных газов, включая реактивные. Раздельная откачка пушки через балластную камеру обеспечивает более широкий диапазон давлений в зоне термообработки материалов (от 10 Па до 10"2 Па), что значительно расширяет технические возможности электронных пушек этого типа. The proposed gas-discharge electron gun is intended mainly for electron beam melting of materials and can be used for other thermal processes carried out in vacuum using various gases, including reactive ones. Separate pumping of the gun through the ballast chamber provides a wider range of pressures in the heat treatment zone of materials (from 10 Pa to 10 "2 Pa), which greatly expands the technical capabilities of this type of electron guns.

Claims

ПРЕТЕНЗИИ
1. Газоразрядная электронная пушка, содержащая расположенный в герметичном корпусе на высоковольтном изоляторе холодный вогнутый катод, соосный ему анод с отверстием для вывода электронного пучка, присоединенный к аноду лучепровод с закрепленными на нем двумя фокусирующими линзами и катушками отклонения пучка, отличающаяся тем, что между фокусирующей линзой и катушками отклонения расположена охватывающая лучепровод газобалластная камера, оснащенная патрубком для откачки и соединенная с лучепроводом отверстиями, диаметр или поперечный размер которых не превышает 5 - 6 мм, а их суммарная проводимость для газа превышает проводимость лучепровода между газобалластной камерой и его срезом. 1. A gas-discharge electron gun containing a cold concave cathode located in a sealed housing on a high-voltage insulator, an anode coaxial to it with an opening for outputting an electron beam, a beam path connected to the anode with two focusing lenses and beam deflection coils fixed to it, characterized in that between the focusing a gas ballast chamber enclosing the beam line equipped with a nozzle for pumping and connected to the beam line with holes, diameter or cross th size of not more than 5 - 6 mm, and their total conductivity exceeds the conductivity of the gas between the gas ballast lucheprovoda chamber and its cut.
2. Газоразрядная электронная пушка по п.1 отличающаяся тем, что газобалластная камера расположена между фокусирующими линзами.  2. A gas-discharge electron gun according to claim 1, characterized in that the gas-ballast chamber is located between the focusing lenses.
PCT/LV2013/000013 2013-05-31 2013-11-27 The gas-discharge electron gun WO2014193207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LVP-13-73A LV14938B (en) 2013-05-31 2013-05-31 Gaseous-discharge electron gun
LVP-13-73 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014193207A1 true WO2014193207A1 (en) 2014-12-04

Family

ID=49958646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/LV2013/000013 WO2014193207A1 (en) 2013-05-31 2013-11-27 The gas-discharge electron gun

Country Status (2)

Country Link
LV (1) LV14938B (en)
WO (1) WO2014193207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505325A (en) * 2014-12-15 2015-04-08 中国航空工业集团公司北京航空制造工程研究所 Electronic gun device for high-voltage gas discharge
CN105992449A (en) * 2015-02-26 2016-10-05 李晓粉 Beam leading-out device of accelerator
LV15213B (en) * 2016-10-21 2017-04-20 Kepp Eu, Sia Gaseous-discharge electron-beam gun

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271556A (en) * 1963-10-31 1966-09-06 Lockheed Aircraft Corp Atmospheric charged particle beam welding
US3308325A (en) * 1962-09-08 1967-03-07 Bendix Balzers Vacuum Inc Electron beam tube with ion shield
UA18148U (en) * 2006-07-04 2006-10-16 Mykola Petrovych Kondratii Gas-discharge electron gun
RU2006123882A (en) 2006-07-03 2008-01-10 Открытое акционерное общество "Чепецкий механический завод" (ОАО ЧМЗ) (RU) DISCHARGE ELECTRON GUN

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308325A (en) * 1962-09-08 1967-03-07 Bendix Balzers Vacuum Inc Electron beam tube with ion shield
US3271556A (en) * 1963-10-31 1966-09-06 Lockheed Aircraft Corp Atmospheric charged particle beam welding
RU2006123882A (en) 2006-07-03 2008-01-10 Открытое акционерное общество "Чепецкий механический завод" (ОАО ЧМЗ) (RU) DISCHARGE ELECTRON GUN
UA18148U (en) * 2006-07-04 2006-10-16 Mykola Petrovych Kondratii Gas-discharge electron gun

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENBNOVETSKY S V ET AL: "High-voltage, glow-discharge electron sources and possibilities of its application in industry for realizing different technological operations", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 31, no. 5, 1 October 2003 (2003-10-01), pages 987 - 993, XP011102610, ISSN: 0093-3813, DOI: 10.1109/TPS.2003.818444 *
ZAVYALOV, M.A.; KREYNDEL, Y.E.; NOVIKOV, A.A.; SHANTURIN, L.P.: "Plasma processes in the processing electron guns", 1989, M., ENERGOATOMIZDAT, pages: 97 - 145

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505325A (en) * 2014-12-15 2015-04-08 中国航空工业集团公司北京航空制造工程研究所 Electronic gun device for high-voltage gas discharge
CN105992449A (en) * 2015-02-26 2016-10-05 李晓粉 Beam leading-out device of accelerator
LV15213B (en) * 2016-10-21 2017-04-20 Kepp Eu, Sia Gaseous-discharge electron-beam gun
EP3312869A1 (en) * 2016-10-21 2018-04-25 Kepp Eu, Sia The gas-discharge electron gun

Also Published As

Publication number Publication date
LV14938A (en) 2014-12-20
LV14938B (en) 2015-02-20

Similar Documents

Publication Publication Date Title
RU2557078C2 (en) Electronic beam generator
US6849854B2 (en) Ion source
US5017835A (en) High-frequency ion source
JP2019071291A (en) Ionization device and mass spectrometer therewith
US8796649B2 (en) Ion implanter
WO2014193207A1 (en) The gas-discharge electron gun
Kazakov et al. Parameters and characteristics of a pulsed constricted arc discharge operating in a forevacuum-pressure plasma-cathode electron beam source
US7009342B2 (en) Plasma electron-emitting source
KR100876052B1 (en) Neutralizer-type high frequency electron source
RU2323502C1 (en) Gaseous-discharge electron gun
RU2709793C1 (en) Electron-beam gun with increased service life
US11367587B2 (en) Gas field ionization source
Aksenov et al. An apparatus based on a plasma emitter for electron-beam transportation to air
RU2740146C1 (en) Ion source (ion gun)
RU2792344C9 (en) Gas-discharge electron gun controlled by an ion source with closed electron drift
RU159300U1 (en) ELECTRONIC SOURCE WITH PLASMA EMITTER
UA90536C2 (en) Gas-discharge electron gun
RU2496283C1 (en) Generator of wide-aperture flow of gas-discharge plasma
UA120300C2 (en) GAS DISCHARGE ELECTRONIC GUN AND METHOD OF CONTROLLING ITS CURRENT
UA115998U (en) GAS DISCHARGE ELECTRONIC GUN
RU2454046C1 (en) Plasma electron emitter
UA123969U (en) GAS RELEASE ELECTRONIC CAN
Belchenko et al. Long-term performance of CW negative hydrogen ion source at BINP tandem accelerator
RU2192687C2 (en) Electron-beam installation
Burdovitsin et al. Low-energy plasma-cathode electron gun with a perforated emission electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13821528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13821528

Country of ref document: EP

Kind code of ref document: A1