WO2014193050A1 - Continuous solid-state polymerization device and method - Google Patents

Continuous solid-state polymerization device and method Download PDF

Info

Publication number
WO2014193050A1
WO2014193050A1 PCT/KR2013/009439 KR2013009439W WO2014193050A1 WO 2014193050 A1 WO2014193050 A1 WO 2014193050A1 KR 2013009439 W KR2013009439 W KR 2013009439W WO 2014193050 A1 WO2014193050 A1 WO 2014193050A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
prepolymer
feeder
polymer
solid
Prior art date
Application number
PCT/KR2013/009439
Other languages
French (fr)
Korean (ko)
Inventor
박경균
임상균
전민아
배신효
유형국
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130076080A external-priority patent/KR101880774B1/en
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014193050A1 publication Critical patent/WO2014193050A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/28Moving reactors, e.g. rotary drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Definitions

  • the present invention relates to a continuous solid state polymerization apparatus and method. More specifically, the present invention relates to a continuous solid phase polymerization apparatus and method which prevents the formation of stagnant sections of the prepolymer and enables continuous solid phase polymerization in a vacuum without an inert gas.
  • polymer (polymer) compositions having high heat resistance characteristics have been widely used in automobile parts, electrical appliances, mechanical parts, beverage containers, fibers, films, tire cords, and the like.
  • the polymer include aliphatic polyamide polymers such as nylon 66 and nylon 6, aromatic polyamide polymers (high heat resistant nylon resin) such as nylon 6T, nylon 9T, nylon 10T, and nylon 12T, and polyethylene terephthalate (PET) resins. Polyester resin, polycarbonate (PC) resin, etc. can be illustrated.
  • the intrinsic viscosity (IV) of a polymer usually, in order to improve the high heat resistance and high impact characteristic of a polymer, it is necessary to raise the intrinsic viscosity (IV) of a polymer.
  • IV intrinsic viscosity
  • a condensation polymerization process of a molten resin called a melting process may be performed.
  • this melting process results in high shear during polycondensation and transfer due to the high viscosity of the polymer (especially the crystalline polymer), which may result in decomposition of the product.
  • the temperature of the polymer should be operated and produced by raising the temperature higher than the melting temperature. Therefore, it is not economical due to the enormous energy consumption, especially in the high heat resistant resin having a high melting temperature.
  • the polymer may be carbonized in the long term operation so that a large amount of contamination may be included in the final product, and the product may be discolored and may not be used in a product requiring high whiteness.
  • SSP solid-state polymerization
  • Conventional solid phase polymerization includes a process in which an amorphous polymer chip, a prepolymer, or the like is introduced into a solid phase polymerization reactor and heated for several hours to several tens of hours while circulating and supplying an inert gas.
  • the inert gas nitrogen heated above the glass transition temperature of the polymer and below the melting temperature, for example, in the range of about 130 to about 250 ° C.
  • the reason why the inert gas is used for the solid phase polymerization is that if an active gas such as oxygen is present in the system in which the polymerization is carried out, some products may cause serious yellowing and browning problems as polymerization proceeds at a high temperature. to be. That is, by circulating the inert gas in the reactor, the inlet of the active gas can be minimized, and reaction by-products such as water, aldehyde, glycol, and phenol generated in the process can be discharged together.
  • the purity of the circulating inert gas gradually decreases, and as a result, the polymer may discolor, or the reaction rate may decrease due to the high by-product concentration or the polymerization may be reversed. Can be. Therefore, the inert gas must remove by-products before re-entry. As such, the conventional solid phase polymerization method requires a lot of energy and cost in order to remove by-products such as water contained in an inert gas stream and maintain purity, which is disadvantageous in that it is not economical.
  • the conventional continuous solid-phase polymerization equipment is a hopper type (International Patent Publication No. WO1998-023666, etc.) and a horizontal circular reactor system (Japanese Patent Laid-Open No. 10-87821, etc.).
  • the hopper type uses a vertical reactor having a cylindrical upper part and a bottom of a reverse conical shape, injects a prepolymer to the upper part, and simultaneously inputs an inert gas heated near the bottom of the inverse conical lower part of the reactor to the floor.
  • the final product (polymer) is discharged and the inert gas containing impurities generated during the reaction is discharged upwards.
  • the horizontal circular reactor system uses a horizontal circular reactor having a screw or disk-shaped stirring blade inside, and inputs a prepolymer toward the inlet, and simultaneously mixes by using a stirring blade while introducing a heated inert gas.
  • the polymer is discharged toward the outlet opposite the inlet, and the inert gas containing impurities is discharged to the upper side of the reactor outlet.
  • the continuous reaction plant is more stable than the batch type and has a short cycle time, so it has high lot productivity, and can be produced in a small sized plant, thereby reducing investment cost, energy loss, and lowering product cost.
  • the molecular weight distribution can be somewhat wider than the batch type, and thus, when molding a final product, the cycle time required for one molding can be increased, thereby reducing the productivity of the molded product.
  • an empty space must exist between the tip portion of the stirring blade tip and the inner wall of the reactor during solid phase polymerization.
  • inert gas is generally used because it is difficult to continuously supply / discharge raw materials in a vacuum state, but the heating and cooling of the gas must be repeated, and a separate inert gas is needed to recover only pure inert gas from which by-products are removed. Purification process is required. For this reason, there is a disadvantage that the energy efficiency is not good compared to the rotary batch solid-state polymerization reactor.
  • the continuous solid-state polymerization apparatus comprises a feeder for continuously input the prepolymer; A horizontal reactor connected to the feeder through a first connection part to receive a prepolymer from the feeder to perform solid phase polymerization, and to rotate the reactor itself; And a chamber connected to the horizontal reactor via a second connection to receive and discharge the polymer that has undergone solid phase polymerization discharged from the horizontal reactor, wherein the feeder, the horizontal reactor, and the chamber are in a vacuum state. It is characterized by.
  • the continuous solid-state polymerization apparatus may include a sealing member for preventing the leakage and inflow of gas and liquid in the first connection portion and the second connection portion.
  • the sealing member may be a magnetic fluid seal.
  • a vacuum pump can be connected to the chamber.
  • a vacuum pump may be further connected to the feeder.
  • the transverse reactor may include a preheating section, a heating section, and a cooling section.
  • the continuous solid phase polymerization apparatus may include a first hopper to which a prepolymer is introduced from the outside and maintains atmospheric pressure; And a second hopper connected to the first hopper to discharge the prepolymer discharged from the first hopper at atmospheric pressure, and introducing the prepolymer into the feeder in a vacuum state.
  • the continuous solid-state polymerization device the polymer discharged from the chamber in the vacuum state connected to the chamber is introduced, it may further include a third hopper for discharging the polymer to the outside at atmospheric pressure. .
  • the prepolymer may have an intrinsic viscosity (IV) of about 0.09 to about 0.49 dL / g.
  • the polymer having completed the solid state polymerization may have an intrinsic viscosity (IV) of about 0.5 to about 1.5 dL / g.
  • the continuous solid phase polymerization method is a solid phase polymerization method using a continuous solid phase polymerization apparatus, the step of introducing a prepolymer into the feeder; Solid-phase polymerization of the prepolymer introduced in the horizontal reactor; And discharging the solid phase polymerized polymer into the chamber, wherein the steps are performed continuously.
  • the solid phase polymerization may be carried out under a pressure of about 0.1 to about 100 torr.
  • the present invention has the effect of providing an economical continuous solid phase polymerization apparatus and method capable of preventing the formation of stagnant sections of the prepolymer and capable of continuously solid phase polymerizing in a vacuum without the use of an inert gas.
  • FIG. 1 is a schematic diagram of a continuous solid-state polymerization apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a continuous solid-state polymerization apparatus according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a continuous solid-state polymerization apparatus according to an embodiment of the present invention.
  • the feeder 10 for continuously input the prepolymer is connected to the feeder 10 via a first connection
  • the feeder 10 Solid phase polymerization is carried out by accommodating the prepolymer, and is connected to the horizontal reactor 20 in which the reactor itself rotates, and connected to the horizontal reactor 20 through a second connection, and the solid phase discharged from the horizontal reactor 20.
  • It comprises a chamber 30 for receiving and discharging the polymer is completed, the feeder 10, the horizontal reactor 20, and the chamber 30 is characterized in that the vacuum state.
  • the continuous solid-state polymerization device is a first sealing member 40 to prevent the leakage and inflow of gas and liquid in the first connection portion and the second connection portion in order to maintain a vacuum state And surround the second connection portion.
  • the vacuum state refers to a low pressure or a reduced pressure lower than the normal pressure (about 760 torr), and may be, for example, about 0.1 to about 100 torr pressure.
  • the solid phase polymerization can be applied without limitation to resin products utilizing condensation polymerization.
  • the continuous solid-state polymerization apparatus and method of the present invention are aliphatic polyamide polymers and copolymers thereof such as nylon 46, nylon 66, nylon 6, nylon 6,10, nylon 6T, nylon 9T, nylon 10T.
  • Aromatic polyamide polymers such as nylon 12T and copolymers thereof (high heat resistant nylon resin), copolymers of aromatic polyamides and aliphatic polyamides such as nylon 6T / 66 and nylon 6T / 46/66, polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • polyester resins such as resins, polycarbonate (PC) resins, and the like, but is not limited thereto.
  • the solid phase polymerization is generally performed using a prepolymer, but for a polymer having a high molecular weight (intrinsic viscosity), in order to have a higher molecular weight to improve heat resistance, the solid phase Polymerization can also be extended.
  • the prepolymer is a powder having a low apparent specific gravity (e.g., about 0.3 to about 0.5) that can be obtained by rapidly depressurizing (flash process) a conventional prepolymerized solution phase prepolymer under high pressure.
  • Wet cakes having low order polymers of various shapes and sizes eg, from about 30 ⁇ m to about 3 mm), such as chips, particles, etc., containing from about 1 to about 30% by weight of water or organic solvents. It may be in the form, but is not limited thereto.
  • the prepolymer the intrinsic viscosity (IV) measured using a Ubbelodhde viscometer at about 25 ° C.
  • the intrinsic viscosity of the prepolymer may be about 0.11 to about 0.15 dL / g.
  • the prepolymer or the like in the reactor may be attached to reduce or prevent the formation of stagnant sections, and good solid phase polymerization may be performed.
  • feeder 10 As the feeder 10 used in the present invention, a conventional feeder capable of continuously supplying a prepolymer to a continuous solid-phase polymerization reactor may be used.
  • feeder may be used to mean not only a feeder but also a hopper, a chamber, and the like connected thereto.
  • the feeder may be, for example, a loss in weight type quantitative feeder (screw feeder, etc.), a volumetric feeder, or the like, but is not limited thereto.
  • the screw feeder may be continuously fed in such a way that the screw rotational speed of the feeder is automatically adjusted to maintain the input target value input to the controller.
  • the horizontal reactor 20 used in the present invention is a space in which an input part is connected to the feeder 10 and the first connection part to receive a prepolymer from the feeder 10 to perform solid phase polymerization, and the reactor itself has a horizontal axis. Rotation as a reference is characterized in that the stagnation section in which the polymer can be stagnant is removed.
  • a rotary kiln dryer type reactor may be used as the horizontal reactor 20.
  • a flat, hook type, elbow of about 60 to about 120 ° may be formed on the inner wall of the reactor.
  • Rotary kiln-type reactors equipped with flights having various shapes and heights (eg, about 10 to about 800 mm), such as elbows, can be used.
  • the flight allows the polymer at the bottom of the reactor to continuously mix towards the top of the packed bed.
  • the number of flights to be installed may vary depending on the scale of the reactor, but may be about 2 to about 16, preferably about 6 to about 12.
  • a flight of about 90 ° elbow can be arranged so that the flight can pull up the polymer as long as possible, and if necessary, the angle of the elbow flight It can be designed by adjusting.
  • the horizontal reactor 20 may have a diameter (inner diameter) of about 15 to about 240 cm, and may be about 2 to about 20 m in length, but is not limited thereto.
  • the transverse reactor 20 can form a slope such that the polymer can flow toward the outlet through gravity flow and reactor rotation.
  • the inclination angle may be, for example, about 0.05 to about 3.0 degrees, preferably about 0.2 to about 1.0 degrees, such that the inlet side of the reactor is located higher than the outlet side.
  • the rotational speed (tip speed) of the horizontal reactor 20 may vary depending on the size of the reactor, the required residence time of the polymer used, for example, about 0.03 to about 0.6 m / sec, Preferably about 0.06 to about 0.3 m / sec. Within this range it is possible to reduce or prevent the formation of stagnant sections of the polymer.
  • the input rate of the prepolymer may vary depending on the size of the reactor, the required residence time of the polymer used, and may be about 0.1 to about 1,500 kg / hr.
  • the chamber 30 used in the present invention is a discharge portion of the horizontal reactor 20 is connected through a second connection portion, the polymer in which the solid-phase polymerization is completed in the horizontal reactor 20 is collected, discharged, the conventional solid phase
  • a discharge chamber used in the polymerization reactor can be used.
  • a chamber capable of maintaining a vacuum state by a vacuum pump can be used.
  • the sealing member 40 used in the present invention leaks gas and liquid from the first and second connections to which the fixed feeder 10 and the chamber 30 and the horizontal reactor 20 which rotate are connected. By preventing the inflow, it is to maintain the feeder 10, the horizontal reactor 20 and the chamber 30 in a vacuum state and to minimize the inflow of air.
  • the sealing member 40 may be a magnetic fluid seal.
  • the magnetic fluid seal induces magnetic force formation between a stationary magnet and a rotating part rotating at the center thereof, so that when the magnetic fluid (ferro fluid) is injected, the magnetic fluid is O- between the pole piece and the rotating shaft. It is a device for sealing by forming a film such as a ring. Since the magnetic fluid seal is non-contact, there is almost no friction during rotation.
  • a high vacuum seal magnetic fluid seal
  • a high vacuum seal capable of maintaining a degree of vacuum up to about 10 ⁇ 7 torr may be used.
  • the maximum allowable vacuum leak of the feeder 10, the lateral reactor 20 and the chamber 30 is determined by the feeder 10, the lateral reactor 20 and the chamber prior to the start of the reaction.
  • the connection system including (30) is empty and the vacuum is secured by using the vacuum pump to about 1 torr, the pressure is kept about 1 hour while the inlet valve of the vacuum pump is closed. 0.7 torr liter / sec.
  • FIG. 2 is a schematic diagram of a continuous solid-state polymerization apparatus according to another embodiment of the present invention.
  • a vacuum pump 50 may be connected to the chamber 30 or the feeder 10 and the chamber 30.
  • the vacuum pump 50 used in the present invention maintains the feeder 10, the horizontal reactor 20 and the chamber 30 in a vacuum state, and by-products such as gasified unreacted monomers, oligomers, water vapor, and the like. Can be discharged to the outside.
  • a conventional vacuum pump may be used.
  • a dry vacuum pump, a manual vacuum pump, an oil vane type vacuum pump, or the like may be used.
  • a vacuum ejector, a vacuum booster, or the like may be connected to the front end of the vacuum pump 50 and used. For example, about one or about two vacuum ejectors, vacuum boosters, etc. may be connected in series, and a vacuum pump 50 may be connected to a rear end thereof.
  • the steam and the like may be cooled and partial condensation in a compressed state through the vacuum booster, etc., and then introduced and discharged into the final vacuum pump 50. More specifically, the steam and the like is discharged from the horizontal reactor 20, after filtering the solid product discharged together with the vacuum pipe through the cyclone and the like first, the pure water vapor jacketed gas cooler (duplex cooler) After the first cooling through a cooler, such as, the first and second stages of the vacuum booster (booster) is cooled and partially condensed in a compressed state, it may be introduced into the final vacuum pump 50 and discharged. Water vapor discharged to the discharge portion of the vacuum pump 50 may be recovered in its entirety using a condenser, a scrubber, or the like utilizing cooling water.
  • the horizontal reactor 20 may include a pre-heating section, a main heating section, and a cooling section. Each of the sections may be performed in a separate facility, but in the present invention, the preheating, heating, and cooling processes may be performed in one reactor, thereby facilitating maintaining a vacuum state.
  • each section may vary depending on the polymer used, the reactor size, etc., but the preheating section may range from about one quarter of the total length of the reactor from the input of the transverse reactor 20, The heating section may range from about 2/4 of the total length of the reactor following the preheating section, and the cooling section may be the outlet of the transverse reactor 20 in the range of about 1/4 of the total length of the reactor following the heating section. have.
  • each of the above sections may be configured by installing a jacket (temperature control system) such as a jacket through which a heat medium, cooling water, etc. are circulated, an inner coil, and the like, respectively.
  • the preheating section forms a preheating circulator 22 in the preheating section (including the reactor 20 and the feeder 10), which is about 210 ° C. or less, preferably about 150 to about It can be formed by circulating a hot oil of about 210 °C.
  • the heating section forms a heating circulator 24 in the heating section, the heating oil of the heating circulator 24 of about 200 to about 300 °C, preferably about 210 to about 260 °C It can be formed by circulating.
  • the temperature of the heat medium used in the preheating circulator 22 and the heating circulator 24 may vary depending on the type of polymer to be subjected to the solid state polymerization.
  • the cooling section is formed by forming a cooling circulator 26 in the cooling section, spraying at room temperature air through the spray nozzle of the cooling circulator 26, or circulating a refrigerant such as cooling water. Can be. If necessary, a lattice dumping flight may be installed on the inner wall of the reactor 20 in the cooling section so that the polymer to be cooled can be easily advanced toward the discharge portion.
  • the continuous solid-state polymerization apparatus of the present invention is connected to the first hopper 12 to which the prepolymer is introduced from the outside and maintains the atmospheric pressure, and the first hopper 12 is connected to the first at normal pressure.
  • the prepolymer discharged from the hopper 12 is introduced, and about one or more, preferably about two or more second hoppers 14a, 14b for introducing the prepolymer into the feeder 10 in a vacuum state. It may further include.
  • the second hoppers 14a and 14b may selectively receive the prepolymers from the first hopper 12 according to the residual amount of the prepolymers, and continuous feeding may be performed when two or more hoppers are alternately operated.
  • the second hopper 14a, 14b closes the pipe for supplying the prepolymer to the feeder 10, opens an upper vent to change the internal pressure from vacuum to atmospheric pressure, or the first
  • the pipe receiving the prepolymer from the hopper 12 may be closed, and the gas may be discharged to the vacuum pump 50 to change the internal pressure from normal pressure to vacuum.
  • one of the second hoppers 14a or 14b feeds the prepolymer to the feeder 10 in a vacuum and the other second
  • the hopper 14a or 14b receives the prepolymer from the first hopper 12 at atmospheric pressure, and when there is almost no residual amount of prepolymer in the one second hopper 14a or 14b, it is immediately replaced and vacuumed.
  • the feeder 10 can be prepared (stand-by) to supply the prepolymer. By repeating this process, the precopolymer can be continuously added without affecting the vacuum state of the horizontal reactor 20.
  • the polymer is a solid-phase polymerized polymer discharged from the chamber 30 is discharged from the chamber 30 is connected to the chamber 30, the agent for discharging the polymer to the outside at atmospheric pressure It may further include three hoppers (32a, 32b).
  • the third hoppers 32a and 32b may change the internal pressure to a vacuum state or a normal pressure in the same manner as the second hoppers 14a and 14b, and may be in a vacuum state from the chamber 30 to maintain the vacuum state.
  • the connection with the chamber 30 may be blocked to change the atmospheric pressure and discharge the polymer to the outside without affecting the vacuum state of the reactor.
  • the polymer having completed the solid phase polymerization may have an intrinsic viscosity (IV) of about 0.5 to about 1.5 dL / g, but is not limited thereto.
  • Continuous solid phase polymerization method is a solid phase polymerization method using the continuous solid phase polymerization apparatus, the step of introducing a prepolymer into the feeder (10); Solid-phase polymerization of the prepolymer introduced in the horizontal reactor (20); And discharging the solid phase polymerized polymer into the chamber 30, wherein the steps are performed continuously.
  • the prepolymer may be introduced into the feeder 10 through the first and second hoppers 12, 14a, and 14b, and the polymer having completed the solid phase polymerization may be added to the third hopper ( 32a, 32b) may be discharged to the outside.
  • the solid phase polymerization may be performed through a preheating section, a heating section, and a cooling section of the horizontal reactor 20.
  • the solid phase polymerization may be carried out under a pressure of about 0.1 to about 100 torr, preferably about 3 to about 50 torr. In the above range, the whiteness of the polymerized polymer product without the inert gas may be excellent.
  • the solid phase polymerization method is continuously performed in a vacuum state without the use of an inert gas, it is possible to save the cost of recovery and recycling of the inert gas, and to prevent deterioration of quality due to the active gas.
  • a cylindrical horizontal rotary kiln reactor having an inner diameter of 600 mm and an axial length of 7,000 mm was used, and a slope of 0.2 ° such that the outlet side was lowered compared to the inlet.
  • the prepolymer was used as a feeder 10, using a screw feeder in which a hot oil of 80 ° C.
  • the lateral reactor 20 was fed continuously at a constant rate of hr.
  • the reactor 20 was circulated at a constant temperature of 170 ° C. through a preheating jacket 22 installed on the outer wall of the reactor 20 to form a preheating section (length: 1,500 mm), and the heating jacket 24
  • the heat medium at 245 ° C. was circulated to form a heating section (length: 4,000 mm).
  • the polymer was allowed to have an average residence time of 4.5 to 5.0 hours in the preheating section and the heating section, and then continuously moved to the cooling section (length: 1,500 mm) formed by the cooling jacket 26.
  • the pressure inside the reactor was maintained in a vacuum condition through a vacuum pump system 50 installed with a vacuum booster (vacuum booster) in front of the manual vacuum pump to maintain a vacuum of 5 torr level.
  • the cooling section is installed in the cooling jacket 26 including a hollow circular air supply chamber (chamber) in a space spaced apart from the outer wall of the reactor 20 by the chamber at room temperature air introduced from the outside Through the method of spraying to the outer wall surface of the reactor 20 through the reactor outer wall and the polymer inside to cool.
  • the rotation speed (tip speed) of the reactor 20 was 0.19 m / sec (6 RPM).
  • a cylindrical horizontal rotary kiln reactor having an inner diameter of 600 mm and an axial length of 7,000 mm was used, and a slope of 0.2 ° such that the outlet side was lowered compared to the inlet.
  • a prepolymer a low dimensional polymer of polycarbonate resin having an intrinsic viscosity (IV) of 0.23 dL / g was dissolved in chloroform at a certain concentration, and a powder having an average particle diameter of 1.0 mm that was crystallized using a mixed solvent of acetone / methanol was used. .
  • the prepolymer is used as a feeder 10, and a constant temperature of 10 kg / hr is used by using a screw feeder in which a hot oil of 80 ° C. is circulated through a jacket (not shown) installed on the outer wall of the feeder.
  • the transverse reactor 20 was fed continuously at a rate.
  • the reactor 20 was circulated at a constant temperature of 200 ° C. through the preheating jacket 22 installed on the outer wall of the reactor 20 to form a preheating section (length: 1,500 mm), and the heating jacket 24
  • the heat medium at 240 ° C. was circulated to form a heating section (length: 4,000 mm).
  • the polymer was allowed to have an average residence time of 4.5 to 5.0 hours in the preheating section and the heating section, and then continuously moved to the cooling section (length: 1,500 mm) formed by the cooling jacket 26.
  • the pressure inside the reactor was maintained in a vacuum condition through a vacuum pump system 50 installed with a vacuum booster (vacuum booster) in front of the manual vacuum pump to maintain a vacuum of 5 torr level.
  • the cooling section is installed in the cooling jacket 26 including a hollow circular air supply chamber (chamber) in a space spaced apart from the outer wall of the reactor 20 by the chamber at room temperature air introduced from the outside Through the method of spraying to the outer wall surface of the reactor 20 through the reactor outer wall and the polymer inside to cool.
  • the rotation speed (tip speed) of the reactor 20 was 0.19 m / sec (6 RPM).
  • a horizontal reactor 20 of Figs. 1 and 2 a cylindrical horizontal rotary kiln reactor having an inner diameter of 600 mm and an axial length of 7,000 mm was used, and a slope of 0.2 ° such that the outlet side was lowered compared to the inlet.
  • a low dimensional polymer of particulate polyethylene terephthalate resin having an average particle size of 2 mm and an intrinsic viscosity (IV) of 0.30 dL / g was used.
  • the prepolymer is used as a feeder 10, and a constant temperature of 10 kg / hr is used by using a screw feeder in which a hot oil of 80 ° C.
  • the transverse reactor 20 was fed continuously at a rate.
  • the reactor 20 was circulated at a constant temperature of 220 ° C. through a preheating jacket 22 installed on the outer wall of the reactor 20 to form a preheating section (length: 1,500 mm), and a heating jacket 24
  • the heating medium (length: 4,000 mm) was formed by circulating the heat medium at 260 ° C.).
  • the polymer was allowed to have an average residence time of 4.5 to 5.0 hours in the preheating section and the heating section, and then continuously moved to the cooling section (length: 1,500 mm) formed by the cooling jacket 26.
  • the pressure inside the reactor was maintained in a vacuum condition through a vacuum pump system 50 installed with a vacuum booster (vacuum booster) in front of the manual vacuum pump to maintain a vacuum of 5 torr level.
  • the cooling section is installed in the cooling jacket 26 including a hollow circular air supply chamber (chamber) in a space spaced apart from the outer wall of the reactor 20 by the chamber at room temperature air introduced from the outside Through the method of spraying to the outer wall surface of the reactor 20 through the reactor outer wall and the polymer inside to cool.
  • the rotation speed (tip speed) of the reactor 20 was 0.19 m / sec (6 RPM).

Abstract

A continuous solid-state polymerization device of the present invention comprises: a feeder for continuously injecting a prepolymer; a horizontal reactor, connected through a first connection part to the feeder, for receiving the prepolymer from the feeder and performing a solid-state polymerization, the reactor itself being rotated; a chamber, connected through a second connection part to the horizontal reactor, for receiving and discharging a polymer, of which the solid-state polymerization has been completed, discharged from the horizontal reactor; and a sealing member for sealing the first connection part and the second connection part, wherein the feeder, the horizontal reactor and the chamber are in a vacuum state. The continuous solid-state polymerization prevents formation of a congested section of a prepolymer, and can continuously perform solid-state polymerization in a vacuum state without an inert gas.

Description

연속식 고상중합 장치 및 방법Continuous solid state polymerization apparatus and method
본 발명은 연속식 고상중합 장치 및 방법에 관한 것이다. 보다 구체적으로 본 발명은 예비중합체의 정체 구간 형성을 방지하고, 불활성 가스 없이, 진공 상태에서 연속적으로 고상중합이 가능한 연속식 고상중합 장치 및 방법에 관한 것이다.The present invention relates to a continuous solid state polymerization apparatus and method. More specifically, the present invention relates to a continuous solid phase polymerization apparatus and method which prevents the formation of stagnant sections of the prepolymer and enables continuous solid phase polymerization in a vacuum without an inert gas.
최근 자동차 부품, 전기, 전자제품, 기계부품, 음료용기, 섬유, 필름, 타이어 코드 등에 고내열 특성을 갖는 고분자(중합체) 조성물이 널리 사용되고 있다. 상기 중합체로는 나일론(Nylon) 66, 나일론 6 등의 지방족 폴리아미드 중합체, 나일론 6T, 나일론 9T, 나일론 10T, 나일론 12T 등의 방향족 폴리아미드 중합체(고내열 나일론 수지), 폴리에틸렌테레프탈레이트(PET) 수지 등의 폴리에스테르 수지, 폴리카보네이트(PC) 수지 등을 예시할 수 있다.Recently, polymer (polymer) compositions having high heat resistance characteristics have been widely used in automobile parts, electrical appliances, mechanical parts, beverage containers, fibers, films, tire cords, and the like. Examples of the polymer include aliphatic polyamide polymers such as nylon 66 and nylon 6, aromatic polyamide polymers (high heat resistant nylon resin) such as nylon 6T, nylon 9T, nylon 10T, and nylon 12T, and polyethylene terephthalate (PET) resins. Polyester resin, polycarbonate (PC) resin, etc. can be illustrated.
통상적으로 중합체의 고내열, 고충격 특성을 향상시키기 위해서는 중합체의 고유점도(IV)를 높이는 것이 필요하다. 예를 들어, 약 0.5 dL/g 이상의 높은 고유점도를 가지는 중합체를 얻기 위한 방법으로서, 용융 공정이라고 불리는 용융된 수지의 중축합(condensation polymerization) 과정을 수행할 수 있다.Usually, in order to improve the high heat resistance and high impact characteristic of a polymer, it is necessary to raise the intrinsic viscosity (IV) of a polymer. For example, as a method for obtaining a polymer having a high intrinsic viscosity of about 0.5 dL / g or more, a condensation polymerization process of a molten resin called a melting process may be performed.
그러나, 이러한 용융 공정은 중합체(특히, 결정성 고분자)의 높은 점성으로 인해 중축합 및 이송 중 높은 전단(shear)이 발생되고, 이로 인해, 생성물이 분해될 우려가 있다. 이를 해소하기 위해서는 상기 용융 공정 중, 중합물의 온도를 용융온도 이상으로 높게 올려 운전 및 생산해야 하므로, 특히 용융온도가 높은 고내열성 수지에서는 엄청난 에너지 사용량 등에 의해 경제적이지 못하다. 또한, 장기 운전 시 중합물이 탄화되어 최종 제품에 탄화 이물(contamination)이 다량 포함될 수 있고, 제품이 변색(discoloraton) 되어 높은 백색도를 요구하는 제품에 사용되지 못할 수 있다.However, this melting process results in high shear during polycondensation and transfer due to the high viscosity of the polymer (especially the crystalline polymer), which may result in decomposition of the product. In order to solve this problem, during the melting process, the temperature of the polymer should be operated and produced by raising the temperature higher than the melting temperature. Therefore, it is not economical due to the enormous energy consumption, especially in the high heat resistant resin having a high melting temperature. In addition, the polymer may be carbonized in the long term operation so that a large amount of contamination may be included in the final product, and the product may be discolored and may not be used in a product requiring high whiteness.
상기 문제점을 해결하기 위해 통상적으로 사용되는 기법이 고상중합(solid-state polymerization: SSP)이다. 종래의 고상중합은 무정형 상태인 중합체 칩(chip), 예비중합체(prepolymer) 등을 고상중합 반응기에 투입한 뒤, 불활성 가스를 순환 공급하면서, 수 시간에서 수십 시간 동안 가열하는 공정을 포함한다.A commonly used technique to solve this problem is solid-state polymerization (SSP). Conventional solid phase polymerization includes a process in which an amorphous polymer chip, a prepolymer, or the like is introduced into a solid phase polymerization reactor and heated for several hours to several tens of hours while circulating and supplying an inert gas.
상기 불활성 가스로는, 중합체의 유리전이온도 이상 용융온도 미만, 예를 들면, 약 130 내지 약 250℃ 범위로 가열한 질소가 주로 사용된다. 상기 고상중합에 불활성 가스를 사용하는 이유는 중합이 수행되는 계 내에 산소와 같은 활성 가스가 존재할 경우, 고온 상태에서 중합이 진행되면서 일부 제품에서는 심각한 황변, 갈변 등의 변색 문제가 발생될 수 있기 때문이다. 즉, 반응기에 불활성 가스를 순환시킴으로써, 활성 가스 유입을 최소화하고, 상기 공정 중 발생하는 물, 알데히드, 글리콜, 페놀 등의 반응 부산물을 함께 배출할 수 있다. 그러나, 상기 부산물이 고상중합 반응기로 재순환될 경우, 순환되는 불활성 가스의 순도가 점차적으로 저하되고, 그 결과, 중합체가 변색되거나, 높은 부산물의 농도에 의해 반응속도가 저하되거나 중합반응이 역으로 진행될 수 있다. 따라서, 불활성 가스는 재투입 전에 부산물을 제거하여야 한다. 이와 같이, 종래의 고상중합 방식은 불활성 가스 기류에 포함된 물 등의 부산물을 제거하고 순도를 유지하기 위해, 많은 에너지와 비용을 필요로 하여, 경제적이지 못하다는 단점이 있다.As the inert gas, nitrogen heated above the glass transition temperature of the polymer and below the melting temperature, for example, in the range of about 130 to about 250 ° C, is mainly used. The reason why the inert gas is used for the solid phase polymerization is that if an active gas such as oxygen is present in the system in which the polymerization is carried out, some products may cause serious yellowing and browning problems as polymerization proceeds at a high temperature. to be. That is, by circulating the inert gas in the reactor, the inlet of the active gas can be minimized, and reaction by-products such as water, aldehyde, glycol, and phenol generated in the process can be discharged together. However, when the by-products are recycled to the solid-phase polymerization reactor, the purity of the circulating inert gas gradually decreases, and as a result, the polymer may discolor, or the reaction rate may decrease due to the high by-product concentration or the polymerization may be reversed. Can be. Therefore, the inert gas must remove by-products before re-entry. As such, the conventional solid phase polymerization method requires a lot of energy and cost in order to remove by-products such as water contained in an inert gas stream and maintain purity, which is disadvantageous in that it is not economical.
종래의 배치(batch)식 고상중합 반응설비로는, 수직형의 반응기 상부에 회전날개를 장착해 교반하면서 반응을 진행하는 고정식과 상, 하부 모두 원추형으로 되어있는 반응기를 활용해 예비중합체를 투입한 후 밀봉하고 진공 상태에서 반응기 몸체 전체를 회전시키면서 반응을 진행하는 회전형(tumbler) 방식(일본특허공개 JPA2001-270940호 등)이 있다.Conventional batch solid phase polymerization reaction equipment is equipped with a rotary blade on top of a vertical reactor, and a prepolymer is introduced by utilizing a fixed reactor that performs a reaction while stirring and a reactor that is conical in both a phase and a bottom. Thereafter, there is a tumbler method (Japanese Patent Laid-Open No. JPA2001-270940, etc.) which proceeds while sealing and rotating the entire reactor body in a vacuum state.
또한, 종래의 연속식 고상중합 반응설비로는, 호퍼(hopper)형(국제공개특허 WO1998-023666호 등)과 수평 원형 반응기 방식(일본특개평 10-87821호 등)이 있다. 상기 호퍼형은 원통상의 상부와 역원추상의 바닥부를 가지는 수직형의 반응기를 사용하여, 상부에 예비중합체를 투입하고, 동시에 반응기 하부 역원추상의 바닥 부근에서 가열된 불활성 가스를 투입하여, 바닥으로 최종 제품(중합체)이 배출되고 상부로 반응 중 발생된 불순물을 함유한 불활성 가스가 배출되도록 구성된 것이다. 상기 수평 원형 반응기 방식은 내부에 스크류나 디스크형의 교반 날개를 가진 횡형의 원형 반응기를 사용하여, 입구 쪽으로 예비중합체를 투입하고, 동시에 가열된 불활성 가스를 투입하며 교반 날개를 활용해 믹싱하여, 제품(중합체)은 입구 반대 방향의 배출구 쪽으로 배출하고, 불순물을 함유한 불활성 가스는 반응기 배출구 쪽 상부로 배출 되도록 구성된 것이다.In addition, the conventional continuous solid-phase polymerization equipment is a hopper type (International Patent Publication No. WO1998-023666, etc.) and a horizontal circular reactor system (Japanese Patent Laid-Open No. 10-87821, etc.). The hopper type uses a vertical reactor having a cylindrical upper part and a bottom of a reverse conical shape, injects a prepolymer to the upper part, and simultaneously inputs an inert gas heated near the bottom of the inverse conical lower part of the reactor to the floor. The final product (polymer) is discharged and the inert gas containing impurities generated during the reaction is discharged upwards. The horizontal circular reactor system uses a horizontal circular reactor having a screw or disk-shaped stirring blade inside, and inputs a prepolymer toward the inlet, and simultaneously mixes by using a stirring blade while introducing a heated inert gas. The polymer is discharged toward the outlet opposite the inlet, and the inert gas containing impurities is discharged to the upper side of the reactor outlet.
배치식 반응설비는 연속식 반응설비에 비하여 예비중합체의 열이력을 동등하게 유지할 수 있기 때문에 균일한 고유점도(IV)를 얻을 수 있으나, 배치 로트(lot) 당 생산량이 적고, 사이클 타임(cycle time)이 길며, 반응을 위해 지속적으로 승온 및 냉각 과정을 반복해야 하므로 에너지 손실이 커서 제품의 원가가 높아지는 단점이 있다.Batch reaction equipment can maintain a uniform intrinsic viscosity (IV) because the thermal history of the prepolymer can be maintained equal to that of the continuous reaction equipment, but the production per batch lot is small, and the cycle time ) And long temperature and cooling process must be repeated for the reaction, so the energy cost is high and the cost of the product increases.
연속식 반응설비는 배치식에 비하여 안정적(steady state)이고 사이클 타임이 짧아 높은 로트 생산성을 가지며, 작은 크기의 설비로도 양산이 가능하여, 투자비 및 에너지 손실이 적고 제품 원가를 낮출 수 있다. 그러나, 배치식 대비 분자량 분포가 다소 넓어질 수 있으며, 이에 따라, 최종 제품으로 몰드 성형 시, 1개 몰딩에 필요한 사이클 타임이 길어져 몰드 제품의 생산성이 저하될 수 있다. 또한, 반응기 몸체가 고정되고, 교반 날개가 회전하는 횡형 반응기의 경우, 고상중합 시, 교반 날개 끝단부의 팁(tip) 부분 면과 반응기 내벽 사이에 설비의 열팽창 문제로 빈 공간이 존재하여야 한다. 그러나, 상기 공간에 중합체가 유동이 거의 없는 정체 구간(stagnant zone)이 형성될 수 있고, 이로 인해 탄화 이물(contamination) 등이 생성되어 제품 품질이 저하될 우려가 있으며, 예비중합체의 분쇄로 인한 입도변화의 원인이 될 수 있다. 또한, 연속식은 진공 상태에서 연속적으로 원료를 공급/배출 시키는 것이 어렵기 때문에 통상적으로 불활성 가스를 사용하나, 가스의 가열과 냉각을 반복해야 하며 부산물을 제거한 순수한 불활성 가스만을 회수하기 위해서는 별도의 불활성 가스의 정제공정이 필요하다. 이로 인해, 회전형 배치식 고상중합 반응설비에 비해 에너지 효율이 좋지 않다는 단점이 있다.The continuous reaction plant is more stable than the batch type and has a short cycle time, so it has high lot productivity, and can be produced in a small sized plant, thereby reducing investment cost, energy loss, and lowering product cost. However, the molecular weight distribution can be somewhat wider than the batch type, and thus, when molding a final product, the cycle time required for one molding can be increased, thereby reducing the productivity of the molded product. In addition, in the case of a horizontal reactor in which the reactor body is fixed and the stirring blade is rotated, an empty space must exist between the tip portion of the stirring blade tip and the inner wall of the reactor during solid phase polymerization. However, a stagnant zone in which the polymer is hardly flown in the space may be formed, which may result in deterioration of product quality due to generation of contamination and the like, and particle size due to pulverization of the prepolymer. It can cause change. In addition, in the continuous type, inert gas is generally used because it is difficult to continuously supply / discharge raw materials in a vacuum state, but the heating and cooling of the gas must be repeated, and a separate inert gas is needed to recover only pure inert gas from which by-products are removed. Purification process is required. For this reason, there is a disadvantage that the energy efficiency is not good compared to the rotary batch solid-state polymerization reactor.
따라서, 예비중합체의 정체 구간 형성을 방지할 수 있고, 진공 상태에서 반응이 가능한 연속식 고상중합 장치(반응기)의 개발이 필요한 실정이다.Therefore, it is necessary to develop a continuous solid-state polymerization apparatus (reactor) capable of preventing the formation of stagnant sections of the prepolymer and reacting in a vacuum state.
본 발명의 목적은 예비중합체의 정체 구간 형성을 방지할 수 있는 연속식 고상중합 장치 및 방법을 제공하기 위한 것이다.It is an object of the present invention to provide a continuous solid phase polymerization apparatus and method capable of preventing the formation of stagnant sections of the prepolymer.
본 발명의 다른 목적은 불활성 가스의 사용 없이, 진공 상태에서 연속적으로 고상중합할 수 있는 경제적인 연속식 고상중합 장치 및 방법을 제공하기 위한 것이다.It is another object of the present invention to provide an economical continuous solid phase polymerization apparatus and method capable of continuously solid phase polymerizing in a vacuum without the use of an inert gas.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 하나의 관점은 연속식 고상중합 장치에 관한 것이다. 상기 연속식 고상중합 장치는 연속적으로 예비중합체를 투입하기 위한 피더; 상기 피더에 제1 연결부를 통해 연결되어, 상기 피더로부터 예비중합체를 수용하여 고상중합이 수행되며, 반응기 자체가 회전하는 횡형 반응기; 및 상기 횡형 반응기에 제2 연결부를 통해 연결되어, 상기 횡형 반응기로부터 배출된 고상중합이 완료된 중합체를 수용하고 배출하기 위한 챔버;를 포함하며, 상기 피더, 상기 횡형 반응기, 및 상기 챔버는 진공 상태인 것을 특징으로 한다.One aspect of the invention relates to a continuous solid state polymerization apparatus. The continuous solid-state polymerization apparatus comprises a feeder for continuously input the prepolymer; A horizontal reactor connected to the feeder through a first connection part to receive a prepolymer from the feeder to perform solid phase polymerization, and to rotate the reactor itself; And a chamber connected to the horizontal reactor via a second connection to receive and discharge the polymer that has undergone solid phase polymerization discharged from the horizontal reactor, wherein the feeder, the horizontal reactor, and the chamber are in a vacuum state. It is characterized by.
구체예에서, 상기 연속식 고상중합 장치는 상기 제1 연결부 및 상기 제2 연결부에서 기체 및 액체가 누출 및 유입되는 것을 방지하기 위한 밀봉 부재를 포함할 수 있다.In an embodiment, the continuous solid-state polymerization apparatus may include a sealing member for preventing the leakage and inflow of gas and liquid in the first connection portion and the second connection portion.
바람직하게는 상기 밀봉 부재는 자성유체씰(magnetic fluid seal)일 수 있다.Preferably, the sealing member may be a magnetic fluid seal.
구체예에서, 상기 챔버에 진공 펌프가 연결될 수 있다.In an embodiment, a vacuum pump can be connected to the chamber.
구체예에서, 상기 피더에 진공 펌프가 더욱 연결될 수 있다.In embodiments, a vacuum pump may be further connected to the feeder.
구체예에서, 상기 횡형 반응기는 예비 가열 구간, 가열 구간, 및 냉각 구간을 포함할 수 있다.In embodiments, the transverse reactor may include a preheating section, a heating section, and a cooling section.
구체예에서, 상기 연속식 고상중합 장치는, 외부에서 예비중합체가 투입되고 상압을 유지하는 제1 호퍼; 및 상기 제1 호퍼와 연결되어 상압에서 제1 호퍼로부터 배출되는 상기 예비중합체가 투입되고, 진공 상태에서 상기 피더로 상기 예비중합체를 투입하는 제2 호퍼를 더욱 포함할 수 있다.In an embodiment, the continuous solid phase polymerization apparatus may include a first hopper to which a prepolymer is introduced from the outside and maintains atmospheric pressure; And a second hopper connected to the first hopper to discharge the prepolymer discharged from the first hopper at atmospheric pressure, and introducing the prepolymer into the feeder in a vacuum state.
구체예에서, 상기 연속식 고상중합 장치는, 상기 챔버와 연결되어 진공 상태에서 상기 챔버로부터 배출되는 상기 중합체가 투입되고, 상압에서 외부로 상기 중합체를 배출하기 위한 제3 호퍼를 더욱 포함할 수 있다.In embodiments, the continuous solid-state polymerization device, the polymer discharged from the chamber in the vacuum state connected to the chamber is introduced, it may further include a third hopper for discharging the polymer to the outside at atmospheric pressure. .
구체예에서, 상기 예비중합체는 고유점도(IV)가 약 0.09 내지 약 0.49 dL/g일 수 있다.In embodiments, the prepolymer may have an intrinsic viscosity (IV) of about 0.09 to about 0.49 dL / g.
구체예에서, 상기 고상중합이 완료된 중합체는 고유점도(IV)가 약 0.5 내지 약 1.5 dL/g일 수 있다.In embodiments, the polymer having completed the solid state polymerization may have an intrinsic viscosity (IV) of about 0.5 to about 1.5 dL / g.
본 발명의 다른 관점은 연속식 고상중합 방법에 관한 것이다. 상기 연속식 고상중합 방법은 연속식 고상중합 장치를 사용하는 고상중합방법이며, 상기 피더에 예비중합체를 투입하는 단계; 투입된 예비중합체를 상기 횡형 반응기에서 고상중합시키는 단계; 및 고상중합된 중합체를 상기 챔버로 배출하는 단계를 포함하며, 상기 단계들은 연속적으로 수행되는 것을 특징으로 한다.Another aspect of the invention relates to a continuous solid phase polymerization method. The continuous solid phase polymerization method is a solid phase polymerization method using a continuous solid phase polymerization apparatus, the step of introducing a prepolymer into the feeder; Solid-phase polymerization of the prepolymer introduced in the horizontal reactor; And discharging the solid phase polymerized polymer into the chamber, wherein the steps are performed continuously.
구체예에서, 상기 고상중합은 약 0.1 내지 약 100 torr의 압력 하에서 수행될 수 있다.In embodiments, the solid phase polymerization may be carried out under a pressure of about 0.1 to about 100 torr.
본 발명은 예비중합체의 정체 구간 형성을 방지할 수 있고, 불활성 가스의 사용 없이, 진공 상태에서 연속적으로 고상중합할 수 있는 경제적인 연속식 고상중합 장치 및 방법을 제공하는 발명의 효과를 갖는다.The present invention has the effect of providing an economical continuous solid phase polymerization apparatus and method capable of preventing the formation of stagnant sections of the prepolymer and capable of continuously solid phase polymerizing in a vacuum without the use of an inert gas.
도 1은 본 발명의 일 실시예에 따른 연속식 고상중합 장치의 개략도이다.1 is a schematic diagram of a continuous solid-state polymerization apparatus according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 연속식 고상중합 장치의 개략도이다.2 is a schematic diagram of a continuous solid-state polymerization apparatus according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명하면, 다음과 같다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.
도 1은 본 발명의 일 실시예에 따른 연속식 고상중합 장치의 개략도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 연속식 고상중합 장치는, 연속적으로 예비중합체를 투입하기 위한 피더(10), 상기 피더(10)에 제1 연결부를 통해 연결되어, 상기 피더(10)로부터 예비중합체를 수용하여 고상중합이 수행되며, 반응기 자체가 회전하는 횡형 반응기(20), 및 상기 횡형 반응기(20)에 제2 연결부를 통해 연결되어, 상기 횡형 반응기(20)로부터 배출된 고상중합이 완료된 중합체를 수용하고 배출하기 위한 챔버(30)를 포함하며, 상기 피더(10), 상기 횡형 반응기(20), 및 상기 챔버(30)는 진공 상태인 것을 특징으로 한다.1 is a schematic diagram of a continuous solid-state polymerization apparatus according to an embodiment of the present invention. As shown in Figure 1, the continuous solid-state polymerization apparatus according to the present invention, the feeder 10 for continuously input the prepolymer, is connected to the feeder 10 via a first connection, the feeder 10 Solid phase polymerization is carried out by accommodating the prepolymer, and is connected to the horizontal reactor 20 in which the reactor itself rotates, and connected to the horizontal reactor 20 through a second connection, and the solid phase discharged from the horizontal reactor 20. It comprises a chamber 30 for receiving and discharging the polymer is completed, the feeder 10, the horizontal reactor 20, and the chamber 30 is characterized in that the vacuum state.
일 구체예에서, 상기 연속식 고상중합 장치는 진공 상태를 유지하기 위하여, 상기 제1 연결부 및 상기 제2 연결부에서 기체 및 액체가 누출 및 유입되는 것을 방지할 수 있는 밀봉 부재(40)를 제1 및 제2 연결부를 둘러싸도록 포함할 수 있다.In one embodiment, the continuous solid-state polymerization device is a first sealing member 40 to prevent the leakage and inflow of gas and liquid in the first connection portion and the second connection portion in order to maintain a vacuum state And surround the second connection portion.
본 발명에서 상기 진공 상태는 상압(약 760 torr)보다 낮은 저압 또는 감압 상태를 의미하며, 예를 들면, 약 0.1 내지 약 100 torr 압력 하의 상태일 수 있다.In the present invention, the vacuum state refers to a low pressure or a reduced pressure lower than the normal pressure (about 760 torr), and may be, for example, about 0.1 to about 100 torr pressure.
본 발명에서, 상기 고상중합은 축합중합을 활용하는 수지 제품에 제한 없이 적용할 수 있다. 예를 들면, 본 발명의 연속식 고상중합 장치 및 방법은 나일론 46, 나일론(Nylon) 66, 나일론 6 , 나일론 6,10 등의 지방족 폴리아미드 중합체 및 이의 공중합체, 나일론 6T, 나일론 9T, 나일론 10T, 나일론 12T 등의 방향족 폴리아미드 중합체 및 이의 공중합체(고내열 나일론 수지), 나일론 6T/66, 나일론 6T/46/66 등의 방향족 폴리아미드와 지방족 폴리아미드의 공중합체, 폴리에틸렌테레프탈레이트(PET) 수지 등의 폴리에스테르 수지, 폴리카보네이트(PC) 수지 등에 적용될 수 있으나, 이에 제한되지 않는다.In the present invention, the solid phase polymerization can be applied without limitation to resin products utilizing condensation polymerization. For example, the continuous solid-state polymerization apparatus and method of the present invention are aliphatic polyamide polymers and copolymers thereof such as nylon 46, nylon 66, nylon 6, nylon 6,10, nylon 6T, nylon 9T, nylon 10T. , Aromatic polyamide polymers such as nylon 12T and copolymers thereof (high heat resistant nylon resin), copolymers of aromatic polyamides and aliphatic polyamides such as nylon 6T / 66 and nylon 6T / 46/66, polyethylene terephthalate (PET) It may be applied to polyester resins such as resins, polycarbonate (PC) resins, and the like, but is not limited thereto.
또한, 상기 고상중합은 일반적으로 예비중합체(prepolymer)를 사용하여 수행되는 것이나, 이미 높은 분자량(고유점도)를 갖는 중합체에 대하여, 내열성을 향상시키기 위해 더욱 높은 분자량 가지도록 하기 위한 방법으로, 상기 고상중합을 확대 적용할 수도 있다.In addition, the solid phase polymerization is generally performed using a prepolymer, but for a polymer having a high molecular weight (intrinsic viscosity), in order to have a higher molecular weight to improve heat resistance, the solid phase Polymerization can also be extended.
본 발명에서, 상기 예비중합체는 통상적인 예비중합이 완료된 용액상 예비중합체를 고압 하에서 급격히 압력을 제거(flash 공정)함으로써 얻을 수 있는 낮은 겉보기 비중(예를 들면, 약 0.3 내지 약 0.5)을 갖는 분체, 칩, 입자 등의 다양한 형태 및 크기(예를 들면, 약 30 ㎛ 내지 약 3 mm)를 갖는 저차 중합체가 약 1 내지 약 30 중량%의 수분이나 유기용매를 함유하고 있는 웨트 케이크(wet cake) 형태일 수 있으나, 이에 제한되지 않는다. 예를 들면, 상기 예비중합체로는, 황산 용액(약 98%)에 녹인 후, 약 25℃에서 우베로드(Ubbelodhde) 점도계를 사용하여 측정한 고유점도(IV)가 약 0.09 내지 약 0.49 dL/g인 중합체를 사용할 수 있다. 바람직하게는 상기 예비중합체의 고유점도는 약 0.11 내지 약 0.15 dL/g일 수 있다. 상기 범위에서 반응기 내 예비중합체 등이 부착되어 정체 구간을 형성하는 것을 줄이거나 방지할 수 있고, 양호한 고상중합이 수행될 수 있다.In the present invention, the prepolymer is a powder having a low apparent specific gravity (e.g., about 0.3 to about 0.5) that can be obtained by rapidly depressurizing (flash process) a conventional prepolymerized solution phase prepolymer under high pressure. Wet cakes having low order polymers of various shapes and sizes (eg, from about 30 μm to about 3 mm), such as chips, particles, etc., containing from about 1 to about 30% by weight of water or organic solvents. It may be in the form, but is not limited thereto. For example, as the prepolymer, the intrinsic viscosity (IV) measured using a Ubbelodhde viscometer at about 25 ° C. after dissolving in a sulfuric acid solution (about 98%) is about 0.09 to about 0.49 dL / g. Phosphorus polymer can be used. Preferably, the intrinsic viscosity of the prepolymer may be about 0.11 to about 0.15 dL / g. In the above range, the prepolymer or the like in the reactor may be attached to reduce or prevent the formation of stagnant sections, and good solid phase polymerization may be performed.
본 발명에 사용되는 피더(10)로는 연속식 고상중합 반응기에 예비중합체를 연속적으로 공급할 수 있는 통상의 피더(feeder)를 사용할 수 있다. 본 발명의 명세서에서 "피더"는 피더뿐만 아니라 이와 연결되는 호퍼, 챔버 등을 포함하는 의미로 사용될 수 있다. 상기 피더로는 예를 들면, 로스 인 웨이트(Loss in Weight) 방식의 정량 피더(스크류 피더 등), 부피제어 피더(volumetric feeder) 등을 사용할 수 있으나, 이에 제한되지 않는다.As the feeder 10 used in the present invention, a conventional feeder capable of continuously supplying a prepolymer to a continuous solid-phase polymerization reactor may be used. In the present specification, "feeder" may be used to mean not only a feeder but also a hopper, a chamber, and the like connected thereto. The feeder may be, for example, a loss in weight type quantitative feeder (screw feeder, etc.), a volumetric feeder, or the like, but is not limited thereto.
구체예에서, 상기 스크류 피더는 콘트롤러에 입력한 투입 목표 값을 유지하기 위해서 피더의 스크류 회전속도가 자동으로 조절되는 방식으로 연속 공급을 진행할 수 있다.In an embodiment, the screw feeder may be continuously fed in such a way that the screw rotational speed of the feeder is automatically adjusted to maintain the input target value input to the controller.
본 발명에 사용되는 횡형 반응기(20)는 투입부가 상기 피더(10)와 제1 연결부를 통해 연결되어 상기 피더(10)로부터 예비중합체를 수용하여 고상중합이 수행되는 공간이며, 반응기 자체가 수평축을 기준으로 회전하도록 하여 중합체가 정체될 수 있는 정체 구간을 제거한 것을 특징으로 한다. 상기 횡형 반응기(20)로는 로터리 킬른(rotary kiln dryer)형 반응기를 사용할 수 있으며, 예를 들면, 반응기 내부 벽면에 플래트(flat)형, 후크(hook)형, 약 60 내지 약 120˚의 엘보우(elbow)형 등의 다양한 모양과 높이(예를 들면, 약 10 내지 약 800 mm)를 갖는 플라이트(flight)를 설치한 로터리 킬른형 반응기을 사용할 수 있다. 상기 플라이트는 반응기 하부에 있는 중합체가 충진층의 상부 쪽으로 지속적으로 섞이도록 하는 것이다. 설치되는 플라이트의 개수는 반응기의 크기(scale)에 따라 달라질 수 있으나, 약 2 내지 약 16개, 바람직하게는 약 6 내지 약 12개일 수 있다. 예를 들면, 상기 횡형 반응기(20)의 투입구에서 중간 이전 부분에는 플라이트가 중합체를 최대한 길게 끌고 올라갈 수 있도록, 약 90˚ 엘보우형의 플라이트를 배치할 수 있으며, 필요에 따라, 엘보우형 플라이트의 각도를 조절하여 설계할 수 있다.The horizontal reactor 20 used in the present invention is a space in which an input part is connected to the feeder 10 and the first connection part to receive a prepolymer from the feeder 10 to perform solid phase polymerization, and the reactor itself has a horizontal axis. Rotation as a reference is characterized in that the stagnation section in which the polymer can be stagnant is removed. A rotary kiln dryer type reactor may be used as the horizontal reactor 20. For example, a flat, hook type, elbow of about 60 to about 120 ° may be formed on the inner wall of the reactor. Rotary kiln-type reactors equipped with flights having various shapes and heights (eg, about 10 to about 800 mm), such as elbows, can be used. The flight allows the polymer at the bottom of the reactor to continuously mix towards the top of the packed bed. The number of flights to be installed may vary depending on the scale of the reactor, but may be about 2 to about 16, preferably about 6 to about 12. For example, in the middle of the inlet of the transverse reactor 20, a flight of about 90 ° elbow can be arranged so that the flight can pull up the polymer as long as possible, and if necessary, the angle of the elbow flight It can be designed by adjusting.
구체예에서, 상기 횡형 반응기(20)는 직경(내경)이 약 15 내지 약 240 cm일 수 있고, 길이가 약 2 내지 약 20 m일 수 있으나, 이에 제한되지 않는다.In embodiments, the horizontal reactor 20 may have a diameter (inner diameter) of about 15 to about 240 cm, and may be about 2 to about 20 m in length, but is not limited thereto.
구체예에서, 상기 횡형 반응기(20)는 중력 유동(gravity flow) 및 반응기 회전을 통하여 중합체가 배출구 쪽으로 유동할 수 있도록, 경사(slope)를 형성할 수 있다. 상기 경사 각도는 반응기의 투입구 쪽이 배출구 쪽보다 높이 위치하도록, 예를 들면, 약 0.05 내지 약 3.0˚, 바람직하게는 약 0.2 내지 약 1.0˚일 수 있다.In an embodiment, the transverse reactor 20 can form a slope such that the polymer can flow toward the outlet through gravity flow and reactor rotation. The inclination angle may be, for example, about 0.05 to about 3.0 degrees, preferably about 0.2 to about 1.0 degrees, such that the inlet side of the reactor is located higher than the outlet side.
또한, 상기 횡형 반응기(20)의 회전속도(선단속도(tip speed))는 반응기의 크기, 사용되는 중합체의 필요 체류시간 등에 따라 달라질 수 있으나, 예를 들면, 약 0.03 내지 약 0.6 m/sec, 바람직하게는 약 0.06 내지 약 0.3 m/sec일 수 있다. 상기 범위에서 중합체의 정체 구간 형성을 줄이거나 방지할 수 있다.In addition, the rotational speed (tip speed) of the horizontal reactor 20 may vary depending on the size of the reactor, the required residence time of the polymer used, for example, about 0.03 to about 0.6 m / sec, Preferably about 0.06 to about 0.3 m / sec. Within this range it is possible to reduce or prevent the formation of stagnant sections of the polymer.
또한, 상기 횡형 반응기(20)에서, 상기 예비중합체의 투입 속도는 반응기의 크기, 사용되는 중합체의 필요 체류시간 등에 따라 달라질 수 있으나, 약 0.1 내지 약 1,500 kg/hr일 수 있다.In addition, in the horizontal reactor 20, the input rate of the prepolymer may vary depending on the size of the reactor, the required residence time of the polymer used, and may be about 0.1 to about 1,500 kg / hr.
본 발명에 사용되는 챔버(30)는 상기 횡형 반응기(20)의 배출부가 제2 연결부를 통해 연결되며, 상기 횡형 반응기(20)에서 고상중합이 완료된 중합체가 모이고, 배출되는 곳으로서, 통상의 고상중합 반응기에 사용되는 배출 챔버(chamber)를 사용할 수 있다. 예를 들면, 진공 펌프에 의해 진공상태를 유지할 수 있는 챔버를 사용할 수 있다.The chamber 30 used in the present invention is a discharge portion of the horizontal reactor 20 is connected through a second connection portion, the polymer in which the solid-phase polymerization is completed in the horizontal reactor 20 is collected, discharged, the conventional solid phase A discharge chamber used in the polymerization reactor can be used. For example, a chamber capable of maintaining a vacuum state by a vacuum pump can be used.
본 발명에 사용되는 밀봉 부재(40)는 고정되어 있는 상기 피더(10) 및 상기 챔버(30)와 회전하는 상기 횡형 반응기(20)가 연결되는 제1 및 제2 연결부로부터 기체 및 액체가 누출 및 유입되는 것을 방지함으로써, 상기 피더(10), 상기 횡형 반응기(20) 및 상기 챔버(30)를 진공 상태로 유지하고 공기 유입을 최소화하기 위한 것이다.The sealing member 40 used in the present invention leaks gas and liquid from the first and second connections to which the fixed feeder 10 and the chamber 30 and the horizontal reactor 20 which rotate are connected. By preventing the inflow, it is to maintain the feeder 10, the horizontal reactor 20 and the chamber 30 in a vacuum state and to minimize the inflow of air.
구체예에서, 상기 밀봉 부재(40)는 자성유체씰(magnetic fluid seal)일 수 있다. 상기 자성유체씰은 정지되어 있는 자석과 그 중심에서 회전하는 회전부 사이에 자력 형성을 유도하여 자성유체(magnetic fluid, ferro fluid) 주입 시, 자성유체가 자극 부재(pole piece)와 회전축 사이에서 O-링과 같은 막을 형성함으로써 씰링을 하는 장치이다. 이러한 자성유체씰은 비접촉식이므로 회전 시에 마찰이 거의 없는 장점이 있다. 바람직하게는 진공도를 최대 약 10-7 torr까지 유지할 수 있는 고진공용 씰(자성유체씰)을 사용할 수 있다.In an embodiment, the sealing member 40 may be a magnetic fluid seal. The magnetic fluid seal induces magnetic force formation between a stationary magnet and a rotating part rotating at the center thereof, so that when the magnetic fluid (ferro fluid) is injected, the magnetic fluid is O- between the pole piece and the rotating shaft. It is a device for sealing by forming a film such as a ring. Since the magnetic fluid seal is non-contact, there is almost no friction during rotation. Preferably, a high vacuum seal (magnetic fluid seal) capable of maintaining a degree of vacuum up to about 10 −7 torr may be used.
구체예에서, 상기 피더(10), 상기 횡형 반응기(20) 및 상기 챔버(30)의 최대 허용 진공 누출량(leakage)은, 반응 시작 전 상기 피더(10), 상기 횡형 반응기(20) 및 상기 챔버(30)를 포함하는 모든 연결계가 비어있는 상태에서 약 1 torr까지 진공 펌프를 활용해 진공을 확보한 뒤, 진공 펌프의 흡입부 밸브를 잠근 상태에서 압력을 약 1시간 정도 체류시켰을 때, 최대 약 0.7 torr liter/sec일 수 있다.In an embodiment, the maximum allowable vacuum leak of the feeder 10, the lateral reactor 20 and the chamber 30 is determined by the feeder 10, the lateral reactor 20 and the chamber prior to the start of the reaction. When the connection system including (30) is empty and the vacuum is secured by using the vacuum pump to about 1 torr, the pressure is kept about 1 hour while the inlet valve of the vacuum pump is closed. 0.7 torr liter / sec.
도 2는 본 발명의 다른 실시예에 따른 연속식 고상중합 장치의 개략도이다. 도 2에 도시된 바와 같이, 본 발명의 연속식 고상중합 장치는 상기 챔버(30), 또는 상기 피더(10) 및 챔버(30)에 진공 펌프(50)가 연결될 수 있다.2 is a schematic diagram of a continuous solid-state polymerization apparatus according to another embodiment of the present invention. As shown in FIG. 2, in the continuous solid-state polymerization apparatus of the present invention, a vacuum pump 50 may be connected to the chamber 30 or the feeder 10 and the chamber 30.
본 발명에 사용되는 진공 펌프(50)는 상기 피더(10), 상기 횡형 반응기(20) 및 상기 챔버(30)를 진공 상태로 유지하며, 기체화된 미반응 단량체, 올리고머, 수증기 등의 부산물 등을 외부로 배출할 수 있는 것이다. 상기 진공 펌프(50)로는 통상의 진공 펌프를 사용할 수 있으며, 예를 들면, 건식 진공펌프, 수공식 진공펌프, 오일 베인(oil vane) 타입 진공펌프 등을 사용할 수 있다. 또한, 필요 진공도에 따라서, 진공 이젝터(ejector), 진공 부스터(booster) 등을 진공 펌프(50)의 전단부에 연결하여 사용할 수도 있다. 예를 들면, 상기 진공 이젝터, 진공 부스터 등을 직렬로 약 1개 또는 약 2개 연결하고, 그 후단부에 진공 펌프(50)를 연결하여 사용할 수 있다.The vacuum pump 50 used in the present invention maintains the feeder 10, the horizontal reactor 20 and the chamber 30 in a vacuum state, and by-products such as gasified unreacted monomers, oligomers, water vapor, and the like. Can be discharged to the outside. As the vacuum pump 50, a conventional vacuum pump may be used. For example, a dry vacuum pump, a manual vacuum pump, an oil vane type vacuum pump, or the like may be used. In addition, depending on the required degree of vacuum, a vacuum ejector, a vacuum booster, or the like may be connected to the front end of the vacuum pump 50 and used. For example, about one or about two vacuum ejectors, vacuum boosters, etc. may be connected in series, and a vacuum pump 50 may be connected to a rear end thereof.
구체예에서, 상기 수증기 등은 상기 진공 부스터 등을 통해 압축이 된 상태로 냉각 및 부분 응축(partial condensation)된 후 최종 진공 펌프(50)로 유입되어 배출될 수 있다. 보다 구체적으로, 상기 수증기 등은 상기 횡형 반응기(20)에서 배출된 후, 사이클론 등을 거쳐 진공 배관으로 함께 배출된 고상 제품을 1차로 걸러 낸 후, 순수한 수증기는 쟈켓 배관형 가스 쿨러(duplex cooler) 등의 냉각기를 통해 1차 냉각되고, 약 1~2단의 진공 부스터(booster)를 통과해 압축이 된 상태로 냉각 및 부분 응축된 후, 최종 진공 펌프(50)로 유입되어 배출될 수 있다. 진공 펌프(50)의 토출부로 배출된 수증기 등은 냉각수를 활용한 응축기, 스크러버(scrubber) 등을 사용하여 전량 회수될 수 있다.In embodiments, the steam and the like may be cooled and partial condensation in a compressed state through the vacuum booster, etc., and then introduced and discharged into the final vacuum pump 50. More specifically, the steam and the like is discharged from the horizontal reactor 20, after filtering the solid product discharged together with the vacuum pipe through the cyclone and the like first, the pure water vapor jacketed gas cooler (duplex cooler) After the first cooling through a cooler, such as, the first and second stages of the vacuum booster (booster) is cooled and partially condensed in a compressed state, it may be introduced into the final vacuum pump 50 and discharged. Water vapor discharged to the discharge portion of the vacuum pump 50 may be recovered in its entirety using a condenser, a scrubber, or the like utilizing cooling water.
도 2에 도시된 바와 같이, 상기 횡형 반응기(20)는 예비 가열(pre-heating) 구간, 가열(main-heating) 구간, 및 냉각(cooling) 구간을 포함할 수 있다. 상기 각 구간은 별도의 설비에서 진행될 수 있는 것이나, 본 발명에서는 상기 예비 가열, 가열, 및 냉각 공정을 하나의 반응기에서 수행할 수 있도록 구성하여, 진공 상태 유지를 용이하게 하였다.As shown in FIG. 2, the horizontal reactor 20 may include a pre-heating section, a main heating section, and a cooling section. Each of the sections may be performed in a separate facility, but in the present invention, the preheating, heating, and cooling processes may be performed in one reactor, thereby facilitating maintaining a vacuum state.
구체예에서, 상기 각 구간의 범위는 사용되는 중합체, 반응기 크기 등에 의해 달라질 수 있으나, 상기 예비 가열 구간은 횡형 반응기(20)의 투입부로부터 반응기 전체 길이의 약 1/4 범위일 수 있고, 상기 가열 구간은 상기 예비 가열 구간 다음의 반응기 전체 길이의 약 2/4 범위일 수 있으며, 상기 냉각 구간은 상기 가열 구간 다음 반응기 전체 길이의 약 1/4 범위의 상기 횡형 반응기(20)의 배출부일 수 있다.In embodiments, the range of each section may vary depending on the polymer used, the reactor size, etc., but the preheating section may range from about one quarter of the total length of the reactor from the input of the transverse reactor 20, The heating section may range from about 2/4 of the total length of the reactor following the preheating section, and the cooling section may be the outlet of the transverse reactor 20 in the range of about 1/4 of the total length of the reactor following the heating section. have.
상기 각 구간은 열매체, 냉각수 등이 순환되는 자켓(jacket), 내부 코일 등의 순환기(온도제어 시스템)를 반응기 외벽, 내벽 등에 각각 설치하여 구성할 수 있다. 예를 들면, 상기 예비 가열 구간은 예비 가열용 순환기(22)를 예비 가열 구간 부분(반응기(20) 및 피더(10) 포함)에 형성하고, 여기에 약 210℃ 이하, 바람직하게는 약 150 내지 약 210℃의 열매체(hot oil)를 순환시켜 형성할 수 있다. 또한, 상기 가열 구간은 가열용 순환기(24)을 가열 구간 부분에 형성하고, 상기 가열용 순환기(24)에 약 200 내지 약 300℃, 바람직하게는 약 210 내지 약 260℃의 열매체(hot oil)를 순환시켜 형성할 수 있다. 단, 상기 예비 가열용 순환기(22) 및 가열용 순환기(24)에 사용되는 열매체의 온도는 고상중합 하고자 하는 중합체의 종류에 따라 달라질 수 있다.Each of the above sections may be configured by installing a jacket (temperature control system) such as a jacket through which a heat medium, cooling water, etc. are circulated, an inner coil, and the like, respectively. For example, the preheating section forms a preheating circulator 22 in the preheating section (including the reactor 20 and the feeder 10), which is about 210 ° C. or less, preferably about 150 to about It can be formed by circulating a hot oil of about 210 ℃. In addition, the heating section forms a heating circulator 24 in the heating section, the heating oil of the heating circulator 24 of about 200 to about 300 ℃, preferably about 210 to about 260 ℃ It can be formed by circulating. However, the temperature of the heat medium used in the preheating circulator 22 and the heating circulator 24 may vary depending on the type of polymer to be subjected to the solid state polymerization.
또한, 상기 냉각 구간은 냉각용 순환기(26)를 냉각 구간 부분에 형성하고, 여기에 상온의 공기를 설치된 냉각용 순환기(26)의 스프레이 노즐을 통해 스프레이 하거나, 냉각수 등의 냉매를 순환시켜 형성할 수 있다. 필요에 따라, 상기 냉각 구간의 반응기(20) 내벽에는 냉각되는 중합체가 배출부 쪽으로 쉽게 전진할 수 있도록 격자 모양의 덤핑(dumping) 플라이트가 설치될 수도 있다.In addition, the cooling section is formed by forming a cooling circulator 26 in the cooling section, spraying at room temperature air through the spray nozzle of the cooling circulator 26, or circulating a refrigerant such as cooling water. Can be. If necessary, a lattice dumping flight may be installed on the inner wall of the reactor 20 in the cooling section so that the polymer to be cooled can be easily advanced toward the discharge portion.
도 2에 도시된 바와 같이, 본 발명의 연속식 고상중합 장치는 외부에서 예비중합체가 투입되고 상압을 유지하는 제1 호퍼(12), 및 상기 제1 호퍼(12)와 연결되어 상압에서 제1 호퍼(12)로부터 배출되는 상기 예비중합체가 투입되고, 진공 상태에서 상기 피더(10)로 상기 예비중합체를 투입하는 약 1개 이상, 바람직하게는 약 2개 이상의 제2 호퍼(14a, 14b)를 더욱 포함할 수 있다. 상기 제2 호퍼(14a, 14b)는 예비중합체의 잔류량에 따라 선택적으로 제1 호퍼(12)로부터 예비중합체를 받을 수 있으며, 2개 이상의 호퍼를 번갈아 가며 운전할 경우, 연속형 피딩이 가능하다. 예를 들면, 상기 제2 호퍼(14a, 14b)는 상기 피더(10)로 예비중합체를 공급하는 배관을 닫고, 상부 벤트(vent)를 열어 내부 압력을 진공 상태에서 상압으로 바꾸거나, 상기 제1 호퍼(12)로부터 예비중합체를 공급받는 배관을 닫고, 진공 펌프(50)로 가스를 배출하여 내부 압력을 상압에서 진공 상태로 바꾸는 것이 가능한 것이다. 따라서, 2개 이상의 제2 호퍼(14a, 14b)를 사용할 경우, 둘 중 하나의 제2 호퍼(14a 또는 14 b)는 진공 상태에서 피더(10)로 예비중합체를 공급하고, 다른 하나의 제2 호퍼(14a 또는 14 b)는 상압에서 상기 제1 호퍼(12)로부터 예비중합체를 받아, 상기 하나의 제2 호퍼(14a 또는 14b)에 예비중합체 잔량이 거의 남아있지 않을 때, 바로 교체하여 진공 상태에서 상기 피더(10)로 예비중합체를 공급할 수 있도록 준비(stand-by)할 수 있다. 이와 같은 과정을 반복하여, 횡형 반응기(20)의 진공 상태에 영향을 주지 않고, 예비공중합체를 연속적으로 투입할 수 있는 것이다.As shown in FIG. 2, the continuous solid-state polymerization apparatus of the present invention is connected to the first hopper 12 to which the prepolymer is introduced from the outside and maintains the atmospheric pressure, and the first hopper 12 is connected to the first at normal pressure. The prepolymer discharged from the hopper 12 is introduced, and about one or more, preferably about two or more second hoppers 14a, 14b for introducing the prepolymer into the feeder 10 in a vacuum state. It may further include. The second hoppers 14a and 14b may selectively receive the prepolymers from the first hopper 12 according to the residual amount of the prepolymers, and continuous feeding may be performed when two or more hoppers are alternately operated. For example, the second hopper 14a, 14b closes the pipe for supplying the prepolymer to the feeder 10, opens an upper vent to change the internal pressure from vacuum to atmospheric pressure, or the first The pipe receiving the prepolymer from the hopper 12 may be closed, and the gas may be discharged to the vacuum pump 50 to change the internal pressure from normal pressure to vacuum. Thus, when using two or more second hoppers 14a and 14b, one of the second hoppers 14a or 14b feeds the prepolymer to the feeder 10 in a vacuum and the other second The hopper 14a or 14b receives the prepolymer from the first hopper 12 at atmospheric pressure, and when there is almost no residual amount of prepolymer in the one second hopper 14a or 14b, it is immediately replaced and vacuumed. In the feeder 10 can be prepared (stand-by) to supply the prepolymer. By repeating this process, the precopolymer can be continuously added without affecting the vacuum state of the horizontal reactor 20.
또한, 상기 연속식 고상중합 장치는, 상기 챔버(30)와 연결되어 진공 상태에서 상기 챔버(30)로부터 배출되는 상기 고상중합이 완료된 중합체가 투입되고, 상압에서 외부로 상기 중합체를 배출하기 위한 제3 호퍼(32a, 32b)를 더욱 포함할 수 있다. 상기 제3 호퍼(32a, 32b)는 상기 제2 호퍼(14a, 14b)와 동일한 방식으로 내부 압력을 진공 상태 또는 상압으로 변경할 수 있는 것으로서, 진공상태를 유지해야 하는 챔버(30)로부터 진공 상태에서, 고상중합이 완료된 중합체를 이송받은 후, 챔버(30)와 연결을 차단하여 반응기의 진공 상태에 영향을 주지 않는 상태에서, 상압으로 변경하고 외부로 중합체를 배출할 수 있다.In addition, the continuous solid-state polymerization apparatus, the polymer is a solid-phase polymerized polymer discharged from the chamber 30 is discharged from the chamber 30 is connected to the chamber 30, the agent for discharging the polymer to the outside at atmospheric pressure It may further include three hoppers (32a, 32b). The third hoppers 32a and 32b may change the internal pressure to a vacuum state or a normal pressure in the same manner as the second hoppers 14a and 14b, and may be in a vacuum state from the chamber 30 to maintain the vacuum state. After the transfer of the polymer in which the solid state polymerization is completed, the connection with the chamber 30 may be blocked to change the atmospheric pressure and discharge the polymer to the outside without affecting the vacuum state of the reactor.
구체예에서, 상기 고상중합이 완료된 중합체는 고유점도(IV)가 약 0.5 내지 약 1.5 dL/g일 수 있으나, 이에 제한되지 않는다.In an embodiment, the polymer having completed the solid phase polymerization may have an intrinsic viscosity (IV) of about 0.5 to about 1.5 dL / g, but is not limited thereto.
본 발명에 따른 연속식 고상중합 방법은 상기 연속식 고상중합 장치를 사용하는 고상중합방법이며, 상기 피더(10)에 예비중합체를 투입하는 단계; 투입된 예비중합체를 상기 횡형 반응기(20)에서 고상중합시키는 단계; 및 고상중합된 중합체를 상기 챔버(30)로 배출하는 단계를 포함하며, 상기 단계들은 연속적으로 수행되는 것을 특징으로 한다.Continuous solid phase polymerization method according to the present invention is a solid phase polymerization method using the continuous solid phase polymerization apparatus, the step of introducing a prepolymer into the feeder (10); Solid-phase polymerization of the prepolymer introduced in the horizontal reactor (20); And discharging the solid phase polymerized polymer into the chamber 30, wherein the steps are performed continuously.
여기서, 상기 예비중합체는 제1 및 제2 호퍼(12, 14a, 14b)를 통해 상기 피더(10)에 투입될 수 있고, 고상중합이 완료된 중합체는 상기 챔버(30)에서, 상기 제3 호퍼(32a, 32b)로 이송된 후, 외부로 배출될 수 있다.Here, the prepolymer may be introduced into the feeder 10 through the first and second hoppers 12, 14a, and 14b, and the polymer having completed the solid phase polymerization may be added to the third hopper ( 32a, 32b) may be discharged to the outside.
또한, 상기 고상중합은 상기 횡형 반응기(20)의 예비 가열 구간, 가열 구간, 및 냉각 구간을 거치며 수행될 수 있다.In addition, the solid phase polymerization may be performed through a preheating section, a heating section, and a cooling section of the horizontal reactor 20.
구체예에서, 상기 고상중합은 약 0.1 내지 약 100 torr, 바람직하게는 약 3 내지 약 50 torr의 압력 하에서 수행될 수 있다. 상기 범위에서 불활성 가스 없이도 고상 중합된 중합체 제품의 백색도 등이 우수할 수 있다.In embodiments, the solid phase polymerization may be carried out under a pressure of about 0.1 to about 100 torr, preferably about 3 to about 50 torr. In the above range, the whiteness of the polymerized polymer product without the inert gas may be excellent.
상기 고상중합방법은 불활성 가스의 사용 없이, 진공 상태에서 연속적으로 수행되므로, 불활성 가스의 회수 및 재활용 비용을 아낄 수 있고, 활성 가스에 의한 품질 저하를 방지할 수 있다.Since the solid phase polymerization method is continuously performed in a vacuum state without the use of an inert gas, it is possible to save the cost of recovery and recycling of the inert gas, and to prevent deterioration of quality due to the active gas.
이하, 본 발명의 바람직한 실시 예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
실시예Example
실시예 1Example 1
도 1 및 2의 횡형 반응기(20)로서, 내경이 600 mm, 축방향 길이가 7,000 mm인 원통의 횡형 회전식 가마 반응기를 사용하였으며, 투입구에 비해 배출구 쪽이 낮아지도록 0.2˚의 기울기를 갖도록 하였다. 예비 중합체로서, 평균 입자크기 0.7 mm 및 고유점도(IV) 0.2 dL/g인 입자형 폴리아미드 수지의 저차원 중합체가 수분(water)을 5 중량% 포함하고 있는, 혼합 겉보기 비중이 0.33인 웨트 케이크(wet cake)을 사용하였다. 상기 예비 중합체를 피더(10)로서, 80℃의 열매체(hot oil)가 피더(10) 외벽에 설치된 쟈켓(미도시)을 통해서 순환되고 있는 스크류형 피더(screw feeder)를 사용하여, 10 kg/hr의 일정 속도로 연속적으로 상기 횡형 반응기(20)에 공급하였다. 상기 반응기(20)는 반응기(20)의 외부 벽에 설치된 예비 가열용 자켓(22)을 통해서 170℃의 일정한 온도로 순환시켜 예비 가열 구간(길이: 1,500 mm)을 형성하였고, 가열용 자켓(24)을 통해 245℃의 열매체를 순환시켜 가열 구간(길이: 4,000 mm)을 형성하였다. 중합체가 상기 예비 가열 구간 및 가열 구간에서 평균 체류시간을 4.5 ~ 5.0 시간을 갖도록 한 후, 냉각용 자켓(26)에 의해 형성된 냉각 구간(길이: 1,500 mm)으로 연속해서 이동하도록 하였다. 이때, 반응기 내부의 압력은 5 torr 수준의 진공이 유지되도록 진공 부스터(vacuum booster)를 수공식 진공 펌프 앞에 설치한 진공 펌프 시스템(50)을 통해 진공 조건을 유지하였다. 또한, 상기 냉각 구간은 반응기(20)의 외벽과 일정한 간격이 떨어진 공간에 속이 빈 원형의 공기 공급 챔버(chamber)를 포함하는 냉각용 자켓(26)을 설치하고 외부로부터 유입한 상온의 공기를 챔버를 통해서 반응기(20) 외벽 표면으로 분사시키는 방법을 통해서 반응기 외벽과 내부의 중합체를 냉각시켰다. 또한, 상기 반응기(20)의 회전 속도(선단 속도)는 0.19 m/sec(6 RPM)이었다.As a horizontal reactor 20 of Figs. 1 and 2, a cylindrical horizontal rotary kiln reactor having an inner diameter of 600 mm and an axial length of 7,000 mm was used, and a slope of 0.2 ° such that the outlet side was lowered compared to the inlet. Wet cake with a mixed apparent specific gravity of 0.33, wherein the low dimensional polymer of the particulate polyamide resin having an average particle size of 0.7 mm and an intrinsic viscosity (IV) of 0.2 dL / g comprises 5% by weight of water as a prepolymer. (wet cake) was used. The prepolymer was used as a feeder 10, using a screw feeder in which a hot oil of 80 ° C. was circulated through a jacket (not shown) installed on the outer wall of the feeder 10, and 10 kg / The lateral reactor 20 was fed continuously at a constant rate of hr. The reactor 20 was circulated at a constant temperature of 170 ° C. through a preheating jacket 22 installed on the outer wall of the reactor 20 to form a preheating section (length: 1,500 mm), and the heating jacket 24 The heat medium at 245 ° C. was circulated to form a heating section (length: 4,000 mm). The polymer was allowed to have an average residence time of 4.5 to 5.0 hours in the preheating section and the heating section, and then continuously moved to the cooling section (length: 1,500 mm) formed by the cooling jacket 26. At this time, the pressure inside the reactor was maintained in a vacuum condition through a vacuum pump system 50 installed with a vacuum booster (vacuum booster) in front of the manual vacuum pump to maintain a vacuum of 5 torr level. In addition, the cooling section is installed in the cooling jacket 26 including a hollow circular air supply chamber (chamber) in a space spaced apart from the outer wall of the reactor 20 by the chamber at room temperature air introduced from the outside Through the method of spraying to the outer wall surface of the reactor 20 through the reactor outer wall and the polymer inside to cool. In addition, the rotation speed (tip speed) of the reactor 20 was 0.19 m / sec (6 RPM).
실시예 2Example 2
도 1 및 2의 횡형 반응기(20)로서, 내경이 600 mm, 축방향 길이가 7,000 mm인 원통의 횡형 회전식 가마 반응기를 사용하였으며, 투입구에 비해 배출구 쪽이 낮아지도록 0.2˚의 기울기를 갖도록 하였다. 예비 중합체로서, 고유점도(IV) 0.23 dL/g인 폴리카보네이트 수지의 저차원 중합체를 클로로포름에 일정농도로 녹인 후 아세톤/메탄올의 혼합 비용매를 사용하여 결정화 시킨 평균입경 1.0mm의 분체를 사용하였다. 상기 예비 중합체를 피더(10)로서, 80℃의 열매체(hot oil)가 피더 외벽에 설치된 쟈켓(미도시)을 통해서 순환되고 있는 스크류형 피더(screw feeder)를 사용하여, 10 kg/hr의 일정 속도로 연속적으로 상기 횡형 반응기(20)에 공급하였다. 상기 반응기(20)는 반응기(20)의 외부 벽에 설치된 예비 가열용 자켓(22)을 통해서 200℃의 일정한 온도로 순환시켜 예비 가열 구간(길이: 1,500 mm)을 형성하였고, 가열용 자켓(24)을 통해 240℃의 열매체를 순환시켜 가열 구간(길이: 4,000 mm)을 형성하였다. 중합체가 상기 예비 가열 구간 및 가열 구간에서 평균 체류시간을 4.5 ~ 5.0 시간을 갖도록 한 후, 냉각용 자켓(26)에 의해 형성된 냉각 구간(길이: 1,500 mm)으로 연속해서 이동하도록 하였다. 이때, 반응기 내부의 압력은 5 torr 수준의 진공이 유지되도록 진공 부스터(vacuum booster)를 수공식 진공 펌프 앞에 설치한 진공 펌프 시스템(50)을 통해 진공 조건을 유지하였다. 또한, 상기 냉각 구간은 반응기(20)의 외벽과 일정한 간격이 떨어진 공간에 속이 빈 원형의 공기 공급 챔버(chamber)를 포함하는 냉각용 자켓(26)을 설치하고 외부로부터 유입한 상온의 공기를 챔버를 통해서 반응기(20) 외벽 표면으로 분사시키는 방법을 통해서 반응기 외벽과 내부의 중합체를 냉각시켰다. 또한, 상기 반응기(20)의 회전 속도(선단 속도)는 0.19 m/sec(6 RPM)이었다.As a horizontal reactor 20 of Figs. 1 and 2, a cylindrical horizontal rotary kiln reactor having an inner diameter of 600 mm and an axial length of 7,000 mm was used, and a slope of 0.2 ° such that the outlet side was lowered compared to the inlet. As a prepolymer, a low dimensional polymer of polycarbonate resin having an intrinsic viscosity (IV) of 0.23 dL / g was dissolved in chloroform at a certain concentration, and a powder having an average particle diameter of 1.0 mm that was crystallized using a mixed solvent of acetone / methanol was used. . The prepolymer is used as a feeder 10, and a constant temperature of 10 kg / hr is used by using a screw feeder in which a hot oil of 80 ° C. is circulated through a jacket (not shown) installed on the outer wall of the feeder. The transverse reactor 20 was fed continuously at a rate. The reactor 20 was circulated at a constant temperature of 200 ° C. through the preheating jacket 22 installed on the outer wall of the reactor 20 to form a preheating section (length: 1,500 mm), and the heating jacket 24 The heat medium at 240 ° C. was circulated to form a heating section (length: 4,000 mm). The polymer was allowed to have an average residence time of 4.5 to 5.0 hours in the preheating section and the heating section, and then continuously moved to the cooling section (length: 1,500 mm) formed by the cooling jacket 26. At this time, the pressure inside the reactor was maintained in a vacuum condition through a vacuum pump system 50 installed with a vacuum booster (vacuum booster) in front of the manual vacuum pump to maintain a vacuum of 5 torr level. In addition, the cooling section is installed in the cooling jacket 26 including a hollow circular air supply chamber (chamber) in a space spaced apart from the outer wall of the reactor 20 by the chamber at room temperature air introduced from the outside Through the method of spraying to the outer wall surface of the reactor 20 through the reactor outer wall and the polymer inside to cool. In addition, the rotation speed (tip speed) of the reactor 20 was 0.19 m / sec (6 RPM).
실시예 3Example 3
도 1 및 2의 횡형 반응기(20)로서, 내경이 600 mm, 축방향 길이가 7,000 mm인 원통의 횡형 회전식 가마 반응기를 사용하였으며, 투입구에 비해 배출구 쪽이 낮아지도록 0.2˚의 기울기를 갖도록 하였다. 예비 중합체로서, 평균 입자크기 2 mm 및 고유점도(IV) 0.30 dL/g인 입자형 폴리에틸렌테레프탈레이트 수지의 저차원 중합체를 사용하였다. 상기 예비 중합체를 피더(10)로서, 80℃의 열매체(hot oil)가 피더 외벽에 설치된 쟈켓(미도시)을 통해서 순환되고 있는 스크류형 피더(screw feeder)를 사용하여, 10 kg/hr의 일정 속도로 연속적으로 상기 횡형 반응기(20)에 공급하였다. 상기 반응기(20)는 반응기(20)의 외부 벽에 설치된 예비 가열용 자켓(22)을 통해서 220℃의 일정한 온도로 순환시켜 예비 가열 구간(길이: 1,500 mm)을 형성하였고, 가열용 자켓(24)을 통해 260℃의 열매체를 순환시켜 가열 구간(길이: 4,000 mm)을 형성하였다. 중합체가 상기 예비 가열 구간 및 가열 구간에서 평균 체류시간을 4.5 ~ 5.0 시간을 갖도록 한 후, 냉각용 자켓(26)에 의해 형성된 냉각 구간(길이: 1,500 mm)으로 연속해서 이동하도록 하였다. 이때, 반응기 내부의 압력은 5 torr 수준의 진공이 유지되도록 진공 부스터(vacuum booster)를 수공식 진공 펌프 앞에 설치한 진공 펌프 시스템(50)을 통해 진공 조건을 유지하였다. 또한, 상기 냉각 구간은 반응기(20)의 외벽과 일정한 간격이 떨어진 공간에 속이 빈 원형의 공기 공급 챔버(chamber)를 포함하는 냉각용 자켓(26)을 설치하고 외부로부터 유입한 상온의 공기를 챔버를 통해서 반응기(20) 외벽 표면으로 분사시키는 방법을 통해서 반응기 외벽과 내부의 중합체를 냉각시켰다. 또한, 상기 반응기(20)의 회전 속도(선단 속도)는 0.19 m/sec(6 RPM)이었다.As a horizontal reactor 20 of Figs. 1 and 2, a cylindrical horizontal rotary kiln reactor having an inner diameter of 600 mm and an axial length of 7,000 mm was used, and a slope of 0.2 ° such that the outlet side was lowered compared to the inlet. As the prepolymer, a low dimensional polymer of particulate polyethylene terephthalate resin having an average particle size of 2 mm and an intrinsic viscosity (IV) of 0.30 dL / g was used. The prepolymer is used as a feeder 10, and a constant temperature of 10 kg / hr is used by using a screw feeder in which a hot oil of 80 ° C. is circulated through a jacket (not shown) installed on the outer wall of the feeder. The transverse reactor 20 was fed continuously at a rate. The reactor 20 was circulated at a constant temperature of 220 ° C. through a preheating jacket 22 installed on the outer wall of the reactor 20 to form a preheating section (length: 1,500 mm), and a heating jacket 24 The heating medium (length: 4,000 mm) was formed by circulating the heat medium at 260 ° C.). The polymer was allowed to have an average residence time of 4.5 to 5.0 hours in the preheating section and the heating section, and then continuously moved to the cooling section (length: 1,500 mm) formed by the cooling jacket 26. At this time, the pressure inside the reactor was maintained in a vacuum condition through a vacuum pump system 50 installed with a vacuum booster (vacuum booster) in front of the manual vacuum pump to maintain a vacuum of 5 torr level. In addition, the cooling section is installed in the cooling jacket 26 including a hollow circular air supply chamber (chamber) in a space spaced apart from the outer wall of the reactor 20 by the chamber at room temperature air introduced from the outside Through the method of spraying to the outer wall surface of the reactor 20 through the reactor outer wall and the polymer inside to cool. In addition, the rotation speed (tip speed) of the reactor 20 was 0.19 m / sec (6 RPM).
실험예Experimental Example
고상중합이 완료된 폴리아미드의 고유점도, 색상 및 백색도를 측정하고, 반응 후, 반응기 내벽의 중합체 부착성을 확인하여 하기 표 1에 나타내었다.The intrinsic viscosity, color and whiteness of the polyamide having completed the solid phase polymerization were measured, and after the reaction, the polymer adhesion of the inner wall of the reactor was confirmed and shown in Table 1 below.
물성 평가 방법Property evaluation method
(1) 부착성 확인: 반응기 표면에 3 kg/cm2G 압력의 air로 blowing 후 표면 상태를 육안으로 확인하였다.(1) Confirmation of adhesion: After blowing with air of 3 kg / cm 2 G pressure on the surface of the reactor was confirmed the surface state visually.
◎ : 부착성 거의 없음(air blowing 전 소량 부착되어있으나 air로 제거가능)◎: Almost no adhesion (Small amount is attached before air blowing but can be removed by air)
○ : Air blowing 후 부착이 소량 있으나 손으로 쉽게 제거가능○: Small amount of attachment after air blowing but can be easily removed by hand
△ : Air로 blowing 후 부착이 있으며, 기구로 물리적인 힘을 가해 쉽게 제거가능 수준△: It is attached after blowing by air and can be easily removed by applying physical force with the instrument.
× : Air로 blowing 후 부착이 있으며, 기구로 물리적인 힘을 가해도 쉽게 제거되지 않으며 solvent로 cleaning을 해야 제거되는 수준×: It is attached after blowing by air, and it is not easily removed even if physical force is applied by the instrument.
(2) 고유 점도(IV) 측정: 황산 용액(98%)에 녹인 후, 25℃에서 우베로드(Ubbelodhde) 점도계를 사용하여 측정하였다.(2) Intrinsic Viscosity (IV) Determination: After dissolving in sulfuric acid solution (98%), it was measured using a Ubbelodhde viscometer at 25 ° C.
(3) 색상 및 백색도 측정: 각각 3개의 샘플을 채취하여, 고체 시료 샘플 홀더에 담고, KONICA MINOLTA사의 CM-2600d Spectrophtometer를 사용하여 샘플 당 5회의 색상(SCI)(백색도(whiteness: L) 및 황색도(yellowness: b*))을 총 15회 측정하고 평균치를 계산하였다. (3) Color and Whiteness Measurements: Three samples each were taken and placed in a solid sample sample holder and 5 colors (SCI) per sample (whiteness (L) and yellow) using a CM-2600d Spectrophtometer from KONICA MINOLTA. The yellowness (b *)) was measured 15 times in total and the average value was calculated.
(4) 수평균분자량(Mn), 중량평균분자량(Mw) 및 다분산도(PDI) 측정: GPC(Gel Permeation Chromatography)를 사용하여 측정하였다.(4) Number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity (PDI) measurement: Measured using GPC (Gel Permeation Chromatography).
표 1
실시예 1 실시예 2 실시예 3
고유점도 (dL/g) 0.98 0.93 0.89
Mn (g/mol) 9.6k 12.1k 11.1k
Mw (g/mol) 32.6k 27.9k 23.3k
PDI 3.4 2.3 2.1
백색도(L) 90 92 93
황색도(b*) 6.72 5.42 4.71
부착성
Table 1
Example 1 Example 2 Example 3
Intrinsic Viscosity (dL / g) 0.98 0.93 0.89
Mn (g / mol) 9.6k 12.1k 11.1k
Mw (g / mol) 32.6k 27.9k 23.3k
PDI 3.4 2.3 2.1
Whiteness (L) 90 92 93
Yellowness (b *) 6.72 5.42 4.71
Adhesion
상기 표 1의 결과로부터, 본 발명의 연속식 고상중합 장치를 사용하여 중합체를 고상중합할 경우, 불활성 가스 없이도, 상업적으로 의미있는 고유점도인 0.8 내지 1.2 dL/g를 갖는 중합체를 백색도 및 황색도 저하 없이 경제적으로 제조할 수 있음을 알 수 있다.From the results of Table 1, when the polymer is solid-phase polymerized using the continuous solid-state polymerization apparatus of the present invention, the polymer having a commercially significant intrinsic viscosity of 0.8 to 1.2 dL / g without inert gas, white and yellow It can be seen that it can be produced economically without deterioration.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (12)

  1. 연속적으로 예비중합체를 투입하기 위한 피더;A feeder for continuously feeding the prepolymer;
    상기 피더에 제1 연결부를 통해 연결되어, 상기 피더로부터 예비중합체를 수용하여 고상중합이 수행되며, 반응기 자체가 회전하는 횡형 반응기; 및A horizontal reactor connected to the feeder through a first connection part to receive a prepolymer from the feeder to perform solid phase polymerization, and to rotate the reactor itself; And
    상기 횡형 반응기에 제2 연결부를 통해 연결되어, 상기 횡형 반응기로부터 배출된 고상중합이 완료된 중합체를 수용하고 배출하기 위한 챔버를 포함하며,A chamber connected to the horizontal reactor via a second connection to receive and discharge the polymer that has undergone solid phase polymerization discharged from the horizontal reactor,
    상기 피더, 상기 횡형 반응기, 및 상기 챔버는 진공 상태인 것을 특징으로 하는 연속식 고상중합 장치.And the feeder, the horizontal reactor, and the chamber are in a vacuum state.
  2. 제1항에 있어서, 상기 연속식 고상중합 장치는 상기 제1 연결부 및 상기 제2 연결부에서 기체 및 액체가 누출 및 유입되는 것을 방지하기 위한 밀봉 부재를 포함하는 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid state polymerization apparatus according to claim 1, wherein the continuous solid state polymerization apparatus includes a sealing member for preventing leakage of gas and liquid from the first connection portion and the second connection portion.
  3. 제2항에 있어서, 상기 밀봉 부재는 자성유체씰(magnetic fluid seal)인 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus according to claim 2, wherein the sealing member is a magnetic fluid seal.
  4. 제1항에 있어서, 상기 챔버에 진공 펌프가 연결되는 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus according to claim 1, wherein a vacuum pump is connected to the chamber.
  5. 제1항에 있어서, 상기 피더에 진공 펌프가 더욱 연결되는 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus according to claim 1, wherein a vacuum pump is further connected to the feeder.
  6. 제1항에 있어서, 상기 횡형 반응기는 예비 가열 구간, 가열 구간, 및 냉각 구간을 포함하는 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus according to claim 1, wherein the horizontal reactor includes a preheating section, a heating section, and a cooling section.
  7. 제1항에 있어서, 상기 연속식 고상중합 장치는,According to claim 1, The continuous solid-state polymerization device,
    외부에서 예비중합체가 투입되고 상압을 유지하는 제1 호퍼; 및A first hopper to which the prepolymer is introduced from the outside and maintains atmospheric pressure; And
    상기 제1 호퍼와 연결되어 상압에서 제1 호퍼로부터 배출되는 상기 예비중합체가 투입되고, 진공 상태에서 상기 피더로 상기 예비중합체를 투입하는 제2 호퍼를 더욱 포함하는 것을 특징으로 하는 연속식 고상중합 장치.And a second hopper connected to the first hopper to discharge the prepolymer discharged from the first hopper at atmospheric pressure and to introduce the prepolymer into the feeder in a vacuum state. .
  8. 제1항에 있어서, 상기 연속식 고상중합 장치는, 상기 챔버와 연결되어 진공 상태에서 상기 챔버로부터 배출되는 상기 중합체가 투입되고, 상압에서 외부로 상기 중합체를 배출하기 위한 제3 호퍼를 더욱 포함하는 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus of claim 1, further comprising a third hopper connected to the chamber to discharge the polymer from the chamber in a vacuum state, and discharge the polymer to the outside at atmospheric pressure. Continuous solid-state polymerization apparatus, characterized in that.
  9. 제1항에 있어서, 상기 예비중합체는 고유점도(IV)가 약 0.09 내지 약 0.49 dL/g인 중합체인 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus according to claim 1, wherein the prepolymer is a polymer having an intrinsic viscosity (IV) of about 0.09 to about 0.49 dL / g.
  10. 제1항에 있어서, 상기 고상중합이 완료된 중합체는 고유점도(IV)가 약 0.5 내지 약 1.5 dL/g인 것을 특징으로 하는 연속식 고상중합 장치.The continuous solid-state polymerization apparatus according to claim 1, wherein the polymer in which the solid phase polymerization is completed has an intrinsic viscosity (IV) of about 0.5 to about 1.5 dL / g.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 연속식 고상중합 장치를 사용하는 고상중합방법이며,A solid state polymerization method using the continuous solid state polymerization device according to any one of claims 1 to 10,
    상기 피더에 예비중합체를 투입하는 단계;Injecting a prepolymer into the feeder;
    투입된 예비중합체를 상기 횡형 반응기에서 고상중합시키는 단계; 및Solid-phase polymerization of the prepolymer introduced in the horizontal reactor; And
    고상중합된 중합체를 상기 챔버로 배출하는 단계를 포함하며,Discharging the solid phase polymerized polymer into the chamber,
    상기 단계들은 연속적으로 수행되는 것을 특징으로 하는 연속식 고상중합 방법.Continuous solid phase polymerization method, characterized in that the steps are carried out continuously.
  12. 제11항에 있어서, 상기 고상중합은 약 0.1 내지 약 100 torr의 압력 하에서 수행되는 것을 특징으로 하는 연속식 고상중합 방법.12. The process of claim 11 wherein the solid phase polymerization is carried out under a pressure of about 0.1 to about 100 torr.
PCT/KR2013/009439 2013-05-31 2013-10-22 Continuous solid-state polymerization device and method WO2014193050A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130062739 2013-05-31
KR10-2013-0062739 2013-05-31
KR10-2013-0076080 2013-06-28
KR1020130076080A KR101880774B1 (en) 2013-05-31 2013-06-28 Apparatus and method for continuous solid state polymerization

Publications (1)

Publication Number Publication Date
WO2014193050A1 true WO2014193050A1 (en) 2014-12-04

Family

ID=51989043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009439 WO2014193050A1 (en) 2013-05-31 2013-10-22 Continuous solid-state polymerization device and method

Country Status (1)

Country Link
WO (1) WO2014193050A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040111175A (en) * 2003-06-18 2004-12-31 미츠비시 가스 가가쿠 가부시키가이샤 Batchwise heating apparatus
KR20060030587A (en) * 2004-10-06 2006-04-11 에스케이케미칼주식회사 Method of solid-state polymerization of polyethyleneterephthalate
KR20060074756A (en) * 2004-12-28 2006-07-03 에스케이케미칼주식회사 Method of solid-state polymerization of polyethyleneterephthalate
JP2006225535A (en) * 2005-02-18 2006-08-31 Toray Ind Inc Method for producing thermoplastic resin composition
KR20100078829A (en) * 2008-12-30 2010-07-08 호남석유화학 주식회사 Preparation method for round shaped polycarbonate fine powder, and a high molecular weight aromatic polycarbonate obtained thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040111175A (en) * 2003-06-18 2004-12-31 미츠비시 가스 가가쿠 가부시키가이샤 Batchwise heating apparatus
KR20060030587A (en) * 2004-10-06 2006-04-11 에스케이케미칼주식회사 Method of solid-state polymerization of polyethyleneterephthalate
KR20060074756A (en) * 2004-12-28 2006-07-03 에스케이케미칼주식회사 Method of solid-state polymerization of polyethyleneterephthalate
JP2006225535A (en) * 2005-02-18 2006-08-31 Toray Ind Inc Method for producing thermoplastic resin composition
KR20100078829A (en) * 2008-12-30 2010-07-08 호남석유화학 주식회사 Preparation method for round shaped polycarbonate fine powder, and a high molecular weight aromatic polycarbonate obtained thereby

Similar Documents

Publication Publication Date Title
WO2014204055A1 (en) Continuous solid-state polymerisation device and method
WO2015005539A1 (en) Continuous solid-state polymerization device and method
WO2020111619A1 (en) Method for producing wholly aromatic liquid crystalline polyester fibers having improved spinning properties
WO2013066003A1 (en) Wholly aromatic liquid crystal polyester resin compound and product having antistatic properties
CN108943660A (en) A kind of blowing technology of plastic bottle
WO2020175736A1 (en) Thermoplastic polyurethane yarn
TWI675691B (en) Method for removing volatile compounds from viscous products with a thin-film evaporator, and polylactide resin
WO2014193050A1 (en) Continuous solid-state polymerization device and method
WO2020130255A1 (en) Method and apparatus for producing aromatic vinyl compound-vinyl cyan compound copolymer
WO2023054830A1 (en) Method for producing terephthalic acid by using high degree of polymerization of polyethylene terephthalate having intrinsic viscosity of 0.75 dl/g or more
WO2010076947A2 (en) Method for preparing fine spherical polycarbonate powders and method for preparing high molecular weight polycarbonate resin using same
TR201809138T4 (en) Apparatus and method for the direct production of polyester melt molded articles with a drying / degassing device.
KR101880774B1 (en) Apparatus and method for continuous solid state polymerization
WO2012121472A1 (en) Method for preparing wholly aromatic liquid crystalline polyester resin and resin prepared by the method, and compound including the resin
WO2015002419A1 (en) Centrifugal spinning apparatus
WO2011087263A2 (en) Production method for a wholly aromatic liquid-crystal polyester resin, a wholly aromatic liquid-crystal polyester resin produced by means of the method, and a compound of the wholly aromatic liquid-crystal polyester resin
JP2010534276A (en) Method for producing poly (trimethylene terephthalate)
WO2015047021A1 (en) Bulk pvc composition, bulk pvc polymerization method and apparatus
WO2018164541A1 (en) Method for manufacturing thermoplastic polymer particles
US7358328B2 (en) Method and device for increasing the intrinsic viscosity of polyester material by means of solid phase polymerisation
WO2018164540A1 (en) Thermoplastic polymer particles
WO2020122366A1 (en) Process for polymerizing polyether ketone ketone, and polyether ketone ketone polymerized thereby
WO2018164542A1 (en) Polylactic acid particles and manufacturing method therefor
WO2020130289A1 (en) Method for preparing polyether ketone ketone mixture resin composition, and polyether ketone ketone prepared thereby
KR20110064481A (en) Apparatus for solid state polymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885689

Country of ref document: EP

Kind code of ref document: A1