WO2014192822A1 - Bee-silk-protein aqueous solution, and production method therefor - Google Patents

Bee-silk-protein aqueous solution, and production method therefor Download PDF

Info

Publication number
WO2014192822A1
WO2014192822A1 PCT/JP2014/064155 JP2014064155W WO2014192822A1 WO 2014192822 A1 WO2014192822 A1 WO 2014192822A1 JP 2014064155 W JP2014064155 W JP 2014064155W WO 2014192822 A1 WO2014192822 A1 WO 2014192822A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
dialysis
solution
silk protein
dialyzed
Prior art date
Application number
PCT/JP2014/064155
Other languages
French (fr)
Japanese (ja)
Inventor
恒徳 亀田
Original Assignee
独立行政法人農業生物資源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業生物資源研究所 filed Critical 独立行政法人農業生物資源研究所
Priority to JP2015519908A priority Critical patent/JP6450676B2/en
Publication of WO2014192822A1 publication Critical patent/WO2014192822A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q3/00Manicure or pedicure preparations
    • A61Q3/02Nail coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43572Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from bees

Definitions

  • the present invention relates to an aqueous solution of bee silk protein and a method for producing the same.
  • Insects made of insects contain abundant fibrous proteins, and due to their unique properties, research is being conducted in fields such as clothing, medical use, and cosmetics.
  • cocoon cocoons are commonly used as natural fibers for clothing.
  • Silk protein contained in silkworms has been studied as a medical biomaterial.
  • Patent Document 1 describes the use of silkworm silk protein as a raw material for cell scaffold materials for regenerative medicine.
  • bee silk protein has been studied as a new material for use in medicine and the like because it differs in amino acid composition and properties from silkworm silk protein (for example, Patent Document 2). Since most of the beehives are generally discarded, research on bee silk protein is also important from the viewpoint of effective use of resources.
  • Patent Document 2 describes a technique related to a method for extracting a silk protein derived from a honeycomb. Specifically, (1) The honeycomb was dissolved in an aqueous solution containing an inorganic salt (inorganic salt aqueous solution) to dissolve the silk protein contained in the nest. (2) The solution was dialyzed with distilled water. (3) The silk protein in the dialysis membrane was solidified by dialysis, (4) The solidified component was removed with a filter, and (5) The dialysis internal solution after removing the solidified component The film piece was cast on a petri dish, and after drying, part of the surface of the petri dish was forcibly removed to obtain a film piece.
  • inorganic salt aqueous solution inorganic salt aqueous solution
  • Patent Document 3 describes a technique relating to a method for producing a protein film containing bee silk protein. Specifically, (1) the silkworm contained in the cocoon was dissolved by dissolving the cocoon taken out of the beehive in an inorganic salt aqueous solution, (2) the solution was dialyzed with distilled water, and inorganic It is described that the salt has been removed, (3) the silk protein in the dialysis membrane has gelled by dialysis, and (4) the dialysis membrane containing the gel has been compression-dried to create a film. .
  • Patent Document 2 describes that a film piece was obtained, but silk protein was solidified in the dialysis process. Therefore, the silk protein finally remaining in the film piece is limited to some kinds of silk protein. Therefore, a film piece having sufficient mechanical properties or flexibility could not be obtained.
  • the method of Patent Document 2 has a room for improvement in terms of operability because it requires a step of removing the solidified component with a filter.
  • the inorganic salt is not removed by dialysis, the inorganic salt remains in the material when the silk protein solution is dried and solidified to produce a solid material. If it does so, it will cause the fall of the transparency of a solid-state material, and the fall of a mechanical physical property.
  • Patent Document 2 also describes an example in which a halogenated organic solvent is used in place of the inorganic salt aqueous solution, and a film is produced without dialysis.
  • a halogenated organic solvent is used in place of the inorganic salt aqueous solution, and a film is produced without dialysis.
  • all halogenated organic solvents are expensive, and the components remaining in the film are harmful.
  • Patent Document 2 also describes that the halogenated organic solvent was replaced with water by solvent replacement, but at this time the silk protein was precipitated and a film was not formed.
  • the gel in the dialysis tube is used instead of using an aqueous solution as in Patent Document 2. For this reason, there is room for improvement in that the size and shape of the film that can be produced depend on the shape and size of the dialysis tube.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-quality aqueous solution that can be used in various applications such as film raw materials and is rich in bee silk protein. Or it aims at providing the production method of the aqueous solution. Another object of the present invention is to provide a hardened material rich in bee silk protein obtained by curing the aqueous solution.
  • a method for producing a dialyzed aqueous solution containing silk protein wherein an inorganic salt aqueous solution containing bee silk protein is used as a dialysate internal solution, and a pH of 9.0 or more is used as an external dialysate solution.
  • a production method is provided comprising the step of dialysis using an aqueous solution.
  • the dialysis internal solution can maintain an aqueous solution state even after dialysis.
  • this production method can reduce the concentration of inorganic salt in the dialyzed solution.
  • the aqueous solution of pH 9.0 or higher used in this production method is preferably an aqueous solution containing a volatile basic substance.
  • a dialyzed aqueous solution obtained through the above production method is provided.
  • the hardening material obtained through the process of hardening the said dialyzed aqueous solution is provided.
  • a method for producing a curable material wherein an inorganic salt aqueous solution containing bee silk protein is used as a dialysis internal solution, and an aqueous solution having a pH of 9.0 or more is used as an external dialysis solution
  • a production method including a step of recovering the dialysis internal solution after the dialysis step from the dialysis membrane, and a step of curing the recovered dialysis internal solution.
  • a dialyzed aqueous solution containing 0.1 wt% or more of bee silk protein, 0.0001N to 14.8N of a volatile base substance, and 20 ° C. or less is provided.
  • a method for producing a silk protein aqueous solution comprising the step of dissolving bee silk protein in a 3 to 6 mol / L calcium chloride aqueous solution.
  • a high quality aqueous solution rich in bee silk protein can be obtained.
  • a cured material containing bee silk protein having excellent mechanical properties, transparency, or flexibility can be obtained.
  • FIG. 1 is a diagram showing the result of observing the state in a dialysis membrane when a LiBr aqueous solution in which a hornet silk protein is dissolved is dialyzed with an aqueous solution having a pH of 6 to 11.
  • FIG. 2 is a diagram showing the results of examining the relationship between the ammonia concentration of the aqueous solution and the pH.
  • Figure 3 is a plot of the hornet silk protein concentration of the dialyzed aqueous solution measured by thermogravimetric analysis (TG) against the feed concentration (weight of mg dissolved per mL of 9MLiBr aqueous solution). is there.
  • TG thermogravimetric analysis
  • Figure 4 shows the dialysis of the hornet silk concentration (wt%) of the aqueous solution after dialysis when the aqueous solution of LiBr in which the hornet silk protein is dissolved is dialyzed against aqueous ammonia at 5 ° C. It is the figure plotted with respect to the concentration (N) of used ammonia water. L and S in the figure indicate a region where the aqueous solution state is maintained after dialysis and a region solidified after dialysis, respectively.
  • FIG. 5 shows the hornet silk concentration of the aqueous solution after dialysis when the aqueous solution of LiBr in which the hornet silk protein is dissolved is dialyzed with 0.01N, 0.1N, or 0.5N ammonia water and the aqueous solution state is maintained after dialysis ( wt%) is plotted against temperature during dialysis (° C.).
  • FIG. 6 is a diagram showing an electrophoresis pattern of a protein obtained by dialyzing a LiBr aqueous solution in which a hornet silk protein is dissolved with pure water at 5 ° C. to 37 ° C. In the figure, M is a marker, and C is a migration pattern of a moth wasp for comparison.
  • M is a marker
  • C is a migration pattern of a moth wasp for comparison.
  • FIG. 7 is a diagram showing an electrophoresis pattern of a protein obtained by dialysis of an aqueous solution of LiBr in which a hornet silk protein is dissolved at 0.05 N or 0.01 N.
  • FIG. 8 is a diagram showing the time until the dialyzed aqueous solution solidifies.
  • FIG. 9 is a diagram showing the results of CD measurement.
  • FIG. 10 is a photograph of the dialyzed aqueous solution being poured into a petri dish and dried.
  • FIG. 11 is a photograph of a film obtained by drying a dialyzed aqueous solution and peeling it off from a petri dish.
  • FIG. 12 shows a solid state NMR spectrum of the film.
  • FIG. 13 is a diagram showing an FT-IR spectrum of a cast film.
  • FIG. 14 is a diagram showing results of attempts to create a film at a plurality of types of drying temperatures.
  • FIG. 15 is a photograph when the film is folded.
  • FIG. 16 is a diagram in which electric capacitance values (pF) at test signal frequencies of 100 Hz, 1 kHz, and 10 kHz are plotted with respect to film thickness (mm).
  • FIG. 17 is a photograph showing the results when the soot was dissolved in a LiBr aqueous solution, dialyzed with an aqueous solution adjusted to pH with Na 2 CO 3 and then dried.
  • FIG. 18 is a photograph of a film obtained by dissolving soot in an aqueous LiBr solution, dialyzing with an aqueous solution prepared with diethylamine, and then performing a drying process.
  • FIG. 19 is a photograph of a film obtained by dissolving soot in an aqueous calcium chloride solution, followed by dialysis with ammonia water and a drying process.
  • Fig. 20 shows the concentration of calcium chloride when immersed in 10 mL of calcium chloride aqueous solution at 50, 60, and 70 ° C, and the concentration of calcium chloride, 30 minutes and 60 minutes after shaking. It is the figure which plotted dissolution rate (%).
  • FIG. 21 shows that when 20 mg of giant hornet was soaked in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at each temperature in the range of 20 to 70 ° C., 30 minutes after shaking, and 60 It is the figure which plotted the dissolution rate after a minute with respect to temperature.
  • Figure 22 shows the change in dissolution rate when 20 mg of giant hornet moth was immersed in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at 20 ° C, 30 ° C and 50 ° C.
  • FIG. 23 is a photograph of a film obtained by dissolving cross-beetle cocoons in a LiBr aqueous solution, followed by dialysis with ammonia water and a drying process.
  • FIG. 24 is a photograph of a film obtained through a drying process after dialysis of an aqueous silk fibroin solution with ammonia water.
  • FIG. 25 is a photograph of a film produced using a formwork in which the surface of a stainless steel petri dish is processed with fluorine.
  • FIG. 26 is a diagram showing the results of measuring the viscosity of a LiBr aqueous solution in which the obtained hornet silk protein is dissolved after the film is dissolved in the LiBr aqueous solution.
  • FIG. 27 is a photograph of a film regenerated after dissolving the film in an aqueous LiBr solution.
  • One embodiment of the present invention is a method for producing a dialyzed aqueous solution containing a silk protein.
  • This production method is, for example, a production method including a step of dialysis using an aqueous solution of an inorganic salt containing bee silk protein as a dialysis internal solution and a high pH aqueous solution as an external dialysis solution.
  • the dialysis internal solution can maintain an aqueous solution state even after dialysis.
  • this production method can reduce the concentration of inorganic salt in the dialyzed solution. Therefore, according to this production method, it is possible to obtain a high-quality aqueous solution rich in bee silk protein that can be used for various uses such as film raw materials from the dialyzed internal solution.
  • a cured material excellent in mechanical properties, transparency, or flexibility can be obtained.
  • a cured material having an ⁇ helix structure can be obtained by curing the dialyzed aqueous solution obtained by this method.
  • the curable material include films, fibers, nonwoven fabrics, sponges, tubes, and blocks.
  • the dialyzed aqueous solution and the curable material can be used, for example, for medical products, cosmetics, electronic devices, or textile products.
  • the high pH aqueous solution used in this production method is preferably an aqueous solution containing a volatile basic substance.
  • the method for producing a dialyzed aqueous solution containing silk protein may further include a step of recovering the dialyzed internal solution after dialysis from the dialysis membrane.
  • the step of collecting the dialysis internal solution from the dialysis membrane may include, for example, a step of recovering the dialysis internal solution from the dialysis tube or the container having the dialysis membrane. Collecting includes taking out.
  • the method for producing a dialyzed aqueous solution containing silk protein further includes a step of recovering cocoons from the honeycomb, a step of dissolving cocoons in an aqueous inorganic salt solution, or a step of removing insoluble components from an aqueous inorganic salt solution in which cocoons are dissolved. May be included.
  • the dialyzed aqueous solution obtained by this production method is, for example, a dialyzed aqueous solution containing at least 0.1 wt% of bee silk protein, 0.0001 N to 14.8 N of volatile basic substance, and 20 ° C. or less.
  • the storage period of the dialyzed aqueous solution is, for example, 0.5, 1, 2, 3, 4, 5, 10, 14, 15, 20, 25, 30, 40, or 50 days or less, or a range of any two of them. It may be within.
  • a method for producing a dialyzed aqueous solution containing silk protein is a production method including a step of dialysis using an aqueous salt solution containing silk protein as a dialysis internal solution and a high pH aqueous solution as an external dialysis solution. Also good.
  • the dialyzed aqueous solution obtained through this production method can maintain the aqueous solution state even after being stored for a long period of time. For example, in the examples described later, it has been demonstrated that a dialyzed aqueous solution containing a bee or cocoon silk protein maintains an aqueous solution state even after about one month. Therefore, a cured material can be obtained by curing the dialyzed aqueous solution after long-term storage.
  • the long period may be, for example, 15, 20, 25, 30, or 35 days or more, and may be in the range of any two of them.
  • One embodiment of the present invention is a method for producing a cured material containing a silk protein.
  • This production method is, for example, a production method including a step of dialysis using an aqueous inorganic salt solution containing bee silk protein as an internal dialysis solution and an aqueous solution having a pH of 9.0 or more as an external dialysis solution.
  • This production method may further include a step of recovering the dialyzed internal solution after the dialysis step from the dialysis membrane and a step of curing the recovered dialyzed internal solution.
  • the cured material obtained through this production method is excellent in mechanical properties, transparency, or flexibility.
  • the cured material obtained through this production method has an ⁇ helix structure.
  • the method for producing a dialyzed aqueous solution or a hardening material containing silk protein may further include a step of dissolving the honeycomb or the cocoon in the inorganic salt aqueous solution. Furthermore, you may include the process of processing the inorganic salt aqueous solution after dissolving a honeycomb or a cocoon with a filter. Thereby, even if substances other than silk adhere to the honeycomb or the cocoon, they can be removed.
  • the step of curing the dialyzed aqueous solution may include a step of drying the dialyzed aqueous solution.
  • a step of pouring the dialyzed aqueous solution into a mold and drying it may be included.
  • the mold for example, a container such as a petri dish or an instrument having a concave portion may be used.
  • the mold is preferably a fluorine-treated mold.
  • the equipment to be subjected to fluorine processing is preferably a metal material from the viewpoint of being resistant to heat during fluorine processing and from the viewpoint of easily producing a mold having an arbitrary shape.
  • the metal material may be stainless steel, for example.
  • the mold is preferably a petri dish other than a glass petri dish (for example, a polystyrene petri dish, a Teflon petri dish, a stainless petri dish, etc.) from the viewpoint of facilitating peeling of the film.
  • a glass petri dish for example, a polystyrene petri dish, a Teflon petri dish, a stainless petri dish, etc.
  • the above drying temperature is preferably less than 29 ° C., preferably 28 ° C. or less, and more preferably 27 ° C. or less from the viewpoint of preparing a cured material having excellent mechanical properties or flexibility.
  • This temperature may be, for example, 0, 5, 10, 15, 20, 25, 27, 29, 30, 35, 36, or 40 ° C., and may be within the range of any two of them. Good.
  • the drying time is preferably within 72 hours, and more preferably within 48 hours, from the viewpoint of preparing a cured material having excellent mechanical properties or flexibility. This time may be, for example, 24, 36, 48, 60, 72, 84, 96, or 120 hours, provided that the cured material has sufficient mechanical properties or flexibility, either of which 2 It may be within a range of two values.
  • the film may be a film.
  • the thickness of the film is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more, from the viewpoint of increasing mechanical properties. This thickness may be, for example, 1, 5, 10, 30, 50, 100, 150, 200, 300, 1000, or 5000 ⁇ m or more, or within a range of any two of these values.
  • the Young's modulus of the film may be, for example, 2.0, 2.4, 2.8, 3.5, or 4.0 GPa or more, or within a range of any two values thereof.
  • the tensile strength of the film may be, for example, 55, 60, 65, 68, 70, 75, 80, 85 MPa or more, or any two values thereof.
  • the elongation at break of the film may be, for example, 2.5, 3.0, 3.4, 3.8, 4.0, 5.0, 6.0% or more, or within a range of any two of them.
  • the film includes a film-like solid or gel.
  • the above-mentioned curable material can be further dissolved and used.
  • the step of dissolving the curable material in an inorganic salt aqueous solution, an inorganic salt aqueous solution in which the curable material is dissolved as a dialysis internal solution, and dialysis using an aqueous solution having a pH of 9.0 or more as an external dialysis solution A production method including a process. According to this method, as demonstrated in the examples described later, it is possible to obtain a high-quality aqueous solution that can be used for various applications such as film raw materials and is rich in bee silk protein. And if this aqueous solution is hardened, a hardening material can be obtained again.
  • One embodiment of the present invention is a method for improving the stability of an aqueous solution containing silk protein and having a pH of less than 9.0.
  • This method includes, for example, a step of dialysis using an aqueous solution having a pH of 9.0 or higher against an aqueous solution having a pH of less than 9.0 containing silk protein.
  • the stability of the dialyzed aqueous solution can be improved, the dialyzed aqueous solution containing silk protein can be used for medical products and the like even after long-term storage.
  • improving stability includes suppressing solidification.
  • the pH of the dialysis external solution is preferably 9.0 or more, more preferably 10.0 or more, from the viewpoint of further suppressing the solidification of the silk protein.
  • the pH may be, for example, 9.0, 9.5, 10, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, or 14 or more, or a range of any two of them.
  • the temperature at the time of dialysis is preferably 28 ° C. or less from the viewpoint of further suppressing the solidification of the silk protein. Further, from the viewpoint of suppressing a decrease in the molecular weight of the silk protein, it is preferably 20 ° C or lower, more preferably 15 ° C or lower, and further preferably 5.5 ° C or lower. Further, from the viewpoint of increasing the dialysis efficiency or reducing the running cost, 2 ° C. or higher is preferable, and 4 ° C. or higher is more preferable.
  • the dialysis temperature is not particularly limited as long as the dialysis internal solution and the dialysis external solution are not frozen. Dialysis temperature is, for example, -5, 0, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 12, 15, 20, 25, 28, 30 , 35, 38, or 40 ° C. or less, or any two values thereof.
  • the number of dialysis is preferably 4 times or more from the viewpoint of preparing a cured material having excellent mechanical properties, transparency, or flexibility. This number of times may be, for example, 1, 2, 3, 4, 5, 6, or 10 times, and may be within the range of any two values thereof.
  • the dialysis membrane may be, for example, a cellulose membrane or a synthetic polymer membrane.
  • the fractional molecular weight of the dialysis membrane may be, for example, 500, 1000, 5000, 10000, 12000, 14000, 16000, 18000, 20000, 50000, or 100,000, and is within the range of any two of them. Also good.
  • the dialyzed aqueous solution may be an aqueous solution in which the concentration of inorganic salt contained in the dialysis internal solution before dialysis is reduced compared to the dialysis internal solution before dialysis.
  • the dialysis is preferably performed so that the concentration of the inorganic salt contained in the dialyzed aqueous solution before dialysis in the dialyzed aqueous solution is reduced as compared with the dialyzed internal solution before dialysis.
  • the inorganic salt concentration of the dialysis external solution before dialysis is lower than the inorganic salt concentration of the dialysis internal solution before dialysis, the inorganic salt concentration of the dialysis internal solution can be reduced.
  • the amount of inorganic salt removed from the dialyzed solution by dialysis may be, for example, 70, 80, 90, 95, 97, 99, 100% or more, or a range of any two of them.
  • Dialysis can be performed so that the internal solution of the dialysis is maintained in an aqueous solution by appropriately adjusting the component concentration, pH, temperature, or the like during dialysis from the above dialysis conditions.
  • the most preferable dialysis conditions for obtaining a high-quality dialyzed aqueous solution rich in silk protein are an aqueous solution containing 2 to 3 wt% silk protein in the dialysis inner solution and 0.1 to 0.5 N ammonia water in the outer dialysis solution. This is the condition for dialysis at a temperature of 4 to 5.5 ° C.
  • the most preferable conditions for stably forming a film from the dialyzed aqueous solution are the conditions in which the drying temperature is set to 27 ° C.
  • the dialyzed aqueous solution is dried within 2 days.
  • the silk protein concentration is high, it can be stored for a long period of time, the silk protein is in a state that is not easily decomposed, the toxicity is low, Excellent mechanical properties, flexibility, or transparency when made into a curable material, ⁇ -helix structure when made into a curable material, and volatile basic substance remaining when made into a curable material It is difficult to do it, or it can be reused.
  • the concentration of silk protein in the above dialysis internal solution before dialysis is preferably 140 mg / mL or less, more preferably 52 mg / mL or less, from the viewpoint of further suppressing the solidification of the silk protein during dialysis.
  • it is preferably 15 mg / mL or more, more preferably 35 mg / mL or more.
  • the concentration of silk protein in the dialysis internal fluid is, for example, 1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100, It may be 110, 120, 130, 140, 150, 160, or 180 mg / mL, and may be within the range of any two of them.
  • the concentration of the silk protein in the dialyzed internal solution after dialysis or the dialyzed aqueous solution is preferably 6.5 wt% or less, more preferably 3.0 wt% or less from the viewpoint of further suppressing the solidification of the silk protein. Further, from the viewpoint of producing a cured material containing abundant silk protein and having excellent mechanical properties or flexibility, 1.0 wt% or more is preferable, and 2.0 wt% or more is more preferable. Thus, if the silk protein concentration in the dialysis internal solution is high, there is an effect that the drying time at the time of preparing the curable material can be saved.
  • drying time can be saved, protein denaturation during the drying time can be suppressed, so that a film having desired physical properties can be obtained more efficiently. Further, if the drying time can be saved, labor is reduced and the productivity of the cured material is improved.
  • This concentration is, for example, 0.1, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 2.75, 3.0, 3.25, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.25, 6.5, 7.0, 8.0, 9.0, Alternatively, it may be 10.0 wt%, and may be within the range of any two of them.
  • the volume of the dialysis internal solution may be, for example, 0.1, 0.5, 1, 2, 5, 10, 20, 100, 500, or 1000 mL, or may be within the range of any two of them.
  • the pH of the dialyzed solution may be, for example, less than 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, or 9.0, or a range of any two of them.
  • the dialysis external solution is preferably an aqueous solution containing a volatile basic substance from the viewpoint of obtaining a cured material having excellent mechanical properties, transparency, or flexibility.
  • a volatile compound having an amino group may be used as the volatile base substance.
  • the volatile compound having an amino group include ammonia, diethylamine, and trimethylamine.
  • the volatile base substance is preferably ammonia from the viewpoint of suppressing the solidification of silk protein under a wide range of dialysis conditions.
  • diethylamine it is preferable to take measures to prevent corrosion during the drying process to obtain a film.
  • Triethylamine is hardly soluble in water below 18.7 ° C.
  • the pH of the dialysis external solution may be adjusted by adjusting the concentration of the volatile basic substance.
  • “Volatile” includes the property of being easily vaporized. That is, volatility includes vaporization.
  • the aqueous solution containing a basic substance is cured, if the basic substance does not remain in the cured material, it may be regarded as volatile. If the volatile basic substance remains in a small amount in the cured material, the residual ratio is preferably as low as possible, for example, it may be 0.5, 0.1, 0.01, 0.001, or 0%. It may be within the range.
  • the concentration of the volatile basic substance in the dialysis external solution is preferably more than 0.0001N, more preferably 0.01 or more, and further preferably 0.1N or more from the viewpoint of further suppressing the solidification of the silk protein.
  • This concentration may be, for example, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 7.0, 8.0, 10.0, 12.0, or 14.8N, any two of them It may be within the range of values.
  • ammonia is used as a volatile base substance, if the concentration of aqueous ammonia becomes too high, the odor of ammonia becomes too strong, which may affect the human body and cause problems in terms of environment and cost.
  • the ammonia concentration is preferably less than 14.8N, and more preferably 12.0N or less.
  • the concentration of volatile basic substances in the external dialysis solution before dialysis is the same as the concentration of volatile basic substances in the internal dialysis solution before dialysis. Set higher than.
  • the pH of the external dialysis solution before dialysis may be set higher than the pH of the dialysis internal solution before dialysis.
  • the amount of the external dialysis solution may be, for example, 5, 10, 20, 100, 500, 1000, 5000, 10000, or 50000 mL, or may be in the range of any two of them. From the viewpoint of increasing the dialysis efficiency, the volume of the external dialysis solution is preferably larger than the volume of the dialysis internal solution.
  • the silk protein is, for example, a protein contained in cocoons.
  • Spiders can be obtained, for example, from a nest. For example, bee larvae spun from the inside of the nest to make a cocoon on the cap before it becomes a cocoon. The cocoon on the cap thus made can be obtained from the inside of the beehive.
  • the bee silk protein may be, for example, a fibrous protein.
  • the bee silk protein includes, for example, a protein extracted from a bee cocoon, or a protein obtained from a genetically modified organism having a gene encoding the protein (ie, a recombinant protein).
  • the bee silk protein may contain, for example, fibroin such as Silk1, 2, 3, 4, 5, or 6.
  • the silk protein may contain, for example, fibroin such as VsSilk1, 2, 3, 4, 5, or 6.
  • fibroin such as VsSilk1, 2, 3, 4, 5, or 6.
  • a protein obtained by introducing a bee silk protein gene into a host by genetic recombination technology can be used to prepare a dialyzed aqueous solution under the same dialysis conditions as above. It is possible to obtain.
  • the recombinant protein is, for example, a step of introducing a gene encoding a protein extracted from bee cocoons (for example, a gene encoding fibroin) into a host by a gene recombination technique, the gene is expressed, and the recombinant protein And a step of extracting the recombinant protein from the host.
  • the host may be, for example, an eubacterial host (for example, E. coli or the like), an archaebacterial host, or a eukaryotic host (for example, a yeast, a plant, an animal (for example, a goat) or the like).
  • the recombinant protein may also be a protein having 90% or more amino acid homology with one or more of the proteins constituting the cocoon.
  • the 90% or more may be, for example, 95% or more, 98% or more, or 100%.
  • the homology can be expressed as a value measured by NCBI BLAST. Blastp can be used as the default algorithm for comparing amino acid sequences with BLAST. Although the measurement result is quantified as Positives or Identities, Identities is preferably adopted in an embodiment of the present invention.
  • the silk protein may be, for example, a silk protein of an organism classified as a bee, a butterfly, or a spider.
  • the subordinate class is not particularly limited, and examples include bees, wasps and ants.
  • the subfamily which is a subordinate classification thereof is not particularly limited, and examples thereof include the hornet subfamily and the wasp subfamily.
  • the genus which is a subordinate classification in the vespidae subfamily is not particularly limited, and examples thereof include genus wasp, genus hornet, genus hornet, or genus Provespa.
  • Vespa examples include Vespa simillima xanthoptera, giant hornet, hornet wasp, hornet, hornet, chiros hornet, and hornet hornet.
  • the silk protein of Kirosuzu wasp can be procured relatively easily.
  • the genus Cross wasp examples include cross wasp and fern cross wasp.
  • the “bee” may be an organism classified as a bee.
  • “bee silk protein” includes, for example, silk protein of a bee family, wasp family, or ant family organism.
  • the “hornet” may be an organism classified into the wasp subfamily.
  • the “hornet silk” may be a fibrous material that constitutes a cocoon of a living organism classified into the wasp subfamily.
  • the “hornet silk protein” may be a silk protein of an organism classified into the wasp subfamily. Since the silk of organisms classified as social bees (swords (honeybees, bumblebees, wasps, cross wasps, ants)), like hornets, has a protein composition similar to hornet silk, dialysis In the process, it is considered to show the same behavior as Hornet silk.
  • the subordinate classes there are no particular restrictions on the subordinate classes, and examples thereof include the silkworm family, the scallop family, the lobster family, the lobster family, and the scorpion family.
  • silkworm silk protein of the silkworm family can be procured relatively easily.
  • the subfamily that is a subordinate classification thereof is not particularly limited, and examples thereof include the silkworm family.
  • the genus which is a subordinate classification thereof is not particularly limited, and examples thereof include the silkworm genus.
  • the silkworm genus include silkworm (Bombyx mori) and mulberry.
  • “ ⁇ ” may be a living organism classified into the silkworm family.
  • the silkworm may be, for example, a genetically modified silkworm, a rabbit, or a sericin silkworm.
  • the inorganic salt aqueous solution may be, for example, an aqueous solution of a weak acid salt or a neutral salt.
  • the inorganic salt aqueous solution may be an aqueous solution in which a halide is dissolved in a solvent.
  • the halide may be, for example, lithium halide or calcium halide.
  • the inorganic salt aqueous solution may be, for example, an aqueous solution in which lithium bromide, calcium chloride, copper ethylenediamine, sodium thiocyanate, lithium thiocyanate, magnesium nitrate, or the like is dissolved in a solvent.
  • the solvent may be, for example, distilled water or a buffer solution.
  • the inorganic salt aqueous solution is preferably an aqueous solution in which lithium bromide or calcium chloride is dissolved in water from the viewpoint of more efficiently dissolving the silk protein.
  • the concentration of the salt in the inorganic salt aqueous solution is not particularly limited.For example, 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 , 10.5, 11, 11.5, or 12 mol / L, or any of these two values. This concentration is preferably 2 mol / L or more, more preferably 4 mol / L or more, from the viewpoint of improving the dissolution rate of silk protein.
  • the temperature may be any temperature at which the silk protein is dissolved, for example, 5, 10, 15, 20, 25, 30, 35, 37, 40, 45, It may be within the range of 50, 60, 70, or 80 ° C. or less, or any two values thereof.
  • the temperature of this dissolution step is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, and further preferably 25 ° C.
  • the dissolution time may be, for example, 2, 5, 10, 15, 20, 25, 30, 60, 120, 200, 500, 1000 minutes or more, or a range of any two of them.
  • the calcium chloride concentration is preferably 3 to 6 mol / L from the viewpoint that the dissolution rate of the silk protein is particularly fast and the saturation dissolution amount of the silk protein is particularly large. ⁇ 5 mol / L is more preferred.
  • the temperature of the dissolution process is preferably 15 to 40 ° C. from a comprehensive viewpoint regarding the speed of dissolution of the silk protein, the amount of dissolution, and the suppression of degradation. 20 to 35 ° C is more preferable, and 25 to 33 ° C is more preferable.
  • One embodiment of the present invention is a method for producing a silk protein aqueous solution, comprising the step of dissolving bee silk protein in a 3 to 6 mol / L calcium chloride aqueous solution.
  • a silk protein aqueous solution can be produced particularly efficiently.
  • the silk protein has a large amount of saturated dissolution, a particularly high concentration silk protein aqueous solution can be produced.
  • the silk protein aqueous solution can be produced even at low temperatures, the degradation of the silk protein can be particularly suppressed.
  • a curable material can be produced through a step of dialyzing the silk protein aqueous solution obtained through this production method to prepare a dialyzed aqueous solution and a step of curing the dialyzed aqueous solution.
  • a dialyzed aqueous solution and a curable material according to an embodiment of the present invention are natural materials and have high biocompatibility, so that they can be particularly suitably used as raw materials for medical products and cosmetics. Moreover, it can be said that it is suitable as a raw material for medical products and cosmetics because it can be produced without using an organic solvent. For example, it can be used as an aqueous solution in which a dialyzed aqueous solution is applied to the outer surface of a human body.
  • the higher order structure of the wasp silk protein is similar to the higher order structure of keratin, it can be suitably used as a keratin site (site made of keratin) or as a protective agent.
  • the dialyzed aqueous solution can be used as a repairing or protecting agent for the damaged part of the nail.
  • the curable material when used for a medical product, for example, it can be used as a medical film, a cell scaffold material, an artificial cornea material, or the like.
  • the dialyzed aqueous solution can be used as a permanent solution, for example. This permanent liquid functions as a hair protecting agent.
  • the curable material according to one embodiment of the present invention has electrical characteristics such as insulation and low relative dielectric constant. These electrical characteristics can be exhibited even under high voltage.
  • the cured material also has strength against bending and tension, can withstand high temperatures (for example, near 200 ° C.), and the film thickness can be controlled to about 10 ⁇ m. Since the curable material which concerns on one Embodiment of this invention has such a property, it can be used conveniently as an insulating film used in an electronic device, for example.
  • the dialyzed aqueous solution according to one embodiment of the present invention can be made into a textile product using a method such as an electrospinning method.
  • a nonwoven fabric can be mentioned, for example.
  • This nonwoven fabric can be used as, for example, a filter or a cell scaffold.
  • electrospinning the mixing ratio of a dialyzed aqueous solution and a solution of polyethylene oxide is, for example, 1.2, 1.5, 2, 3, 4, 5, or 10 times the amount of the dialyzed aqueous solution relative to a solution of polyethylene oxide or the like.
  • the ratio may include a solid content, or may be within the range of any two of them.
  • the dialyzed aqueous solution according to one embodiment of the present invention may be a sol or gel depending on the dialysis temperature, the pH of the external dialysate, or the silk protein concentration.
  • the sol or gel obtained at this time is highly transparent and is different from the cloudy sol or gel obtained when dialyzed with pure water. This highly transparent sol or gel can be used, for example, for gel cosmetics.
  • the “material” may be, for example, a substance used as a component, raw material, or component of a product or an intermediate. This material may contain one or more substances. The shape and material of this material are not particularly limited.
  • “curing” includes a phenomenon in which water in an aqueous solution evaporates or vaporizes into a solid or semi-solid state. This curing includes the phenomenon of solidification, solidification, or semi-solidification. This curing may be a phenomenon accompanying evaporation or vaporization of moisture, or a phenomenon accompanying crosslinking of the polymer component.
  • Solidification includes gelation or solification.
  • the “curing material” is not particularly limited as long as it is not in an aqueous solution state, and may be, for example, solid, gel, or sol.
  • the “dialyzed aqueous solution” includes an aqueous solution after undergoing a dialysis operation.
  • the dialyzed aqueous solution may be, for example, an aqueous solution after collecting the dialyzed internal solution after the dialysis step from the dialysis membrane. At this time, the dialysis time, the component concentration of the dialysis internal solution after dialysis, or the container in which the dialyzed aqueous solution is accommodated is not particularly limited.
  • the dialyzed aqueous solution may be in an aqueous solution state, and its viscosity (15 ° C.) is, for example, 100, 50, 25, 10, 5, 1, or 0.1 cp or less, or within the range of any two of them. There may be.
  • beads YTZ balls made by Nikkato were used.
  • Example 1 When an aqueous solution containing a volatile base substance was used as an external solution for dialysis 62.5 mg of moth wasp was dissolved in 2.5 ml of 9M LiBr aqueous solution within 20 minutes at 37 ° C and then poured into a dialysis membrane.
  • a dialysis membrane a cellulose tube for dialysis (dialysis membrane 8/32, plane width 10 mm) manufactured by Adia Co., Ltd. was used. 500 ml of 0.1N aqueous ammonia was used as the external dialysis solution.
  • the dialysis temperature was set to 5 ° C., and the external liquid was changed once a day, and the total was changed four times. As a result, the dialysis internal solution maintained an aqueous solution state.
  • aqueous solutions in the range of pH 6 to pH 11 with various types of buffer solutions and aqueous ammonia are used. These were prepared and dialyzed using these as external solutions.
  • a cellulose tube for dialysis (dialysis membrane 8/32, plane width 10 mm) manufactured by Adia Co., Ltd. was used as the dialysis membrane.
  • the dialysis external solution was 500 ml, the dialysis temperature was fixed between 5 ° C. and 37 ° C., and the external solution was changed once a day for a total of 4 times.
  • the types and preparation methods of the external dialysis solution used are as follows.
  • the phosphate buffer was prepared by mixing 0.2 M sodium dihydrogen phosphate and 0.2 M disodium hydrogen phosphate.
  • Tris-hydrochloric acid buffer was prepared by mixing 0.1M tris (hydroxymethyl) aminomethane and 0.1M hydrochloric acid.
  • the glycine-sodium hydroxide buffer was prepared by mixing 0.1 M glycine and 0.1 M sodium hydroxide.
  • the carbonate-bicarbonate buffer was prepared by mixing 0.1M sodium carbonate and 0.1M sodium bicarbonate. The final concentration of all buffers was 0.1 mol / L. Further, 0.1N ammonia water was prepared. Dialysis was performed using these buffer solution and aqueous ammonia as an external solution for dialysis.
  • Figure 1 shows the results of the study.
  • the case where the aqueous solution state was maintained even after dialysis ( ⁇ ) and the case where the solution was solidified (gel; ⁇ , sol; ⁇ ) were shown separately.
  • an aqueous solution was obtained when the dialysis temperature was less than 30 ° C. and the pH was 9.0 or more.
  • solidification may occur depending on the type of buffer solution.
  • An aqueous solution was obtained in the carbonate-bicarbonate buffer solution system, but solidified in the glycine-sodium hydroxide system.
  • An aqueous solution was obtained after the pH exceeded 10 regardless of the type of buffer.
  • Hornet silk protein ⁇ concentration after dialysis (wt%) '' determined by the TG method after dialysis is the amount (mg) of Kirosuzubachi koji dissolved in 1 mL of 9M lithium bromide aqueous solution before dialysis ⁇ feeding concentration (mg / mL) ”(FIG. 3). From this figure, it can be seen that there is a linear relationship between the charged concentration (mg / mL) and the solution concentration after dialysis (wt%). By utilizing this linear relationship, it is possible to roughly approximate the charge concentration required to obtain an aqueous solution having a certain concentration after dialysis. In this example, a dialysis membrane (8/32) manufactured by Edia Co., Ltd.
  • the dialysis tube (former Sanko Junyaku) was used as the dialysis tube. Before use, the dialysis membrane had a planar width of 10 mm and a diameter of 6 mm. The plot data in this figure was obtained at a dialysis temperature of 5 ° C., and was plotted regardless of whether the state after dialysis was an aqueous solution or gel.
  • FIG. 4 shows the results of TG measurement performed on the sample in which the aqueous solution was maintained after dialysis, the concentration was determined, and plotted against the ammonia water concentration used for dialysis.
  • the region where the aqueous solution is obtained and the region that solidifies (sol or gel) during dialysis are bounded by the dotted line in the figure.
  • the L side separated by a dotted line is a region where an aqueous solution is obtained, and the S side is a region solidified during dialysis.
  • the concentration range of the hornet silk protein from which the aqueous solution is obtained increases as the ammonia water concentration increases.
  • the ammonia water concentration was 0.0001 N
  • an aqueous solution could not be obtained in the entire concentration range tested.
  • the hornet silk protein concentration was 140 mg or less (6.44 wt% or less after dialysis)
  • the dialysis internal solution was kept in an aqueous solution state at any ammonia water concentration.
  • the ammonia concentration was limited to 0.5 N, but it is thought that the concentration limit of the hornet silk protein aqueous solution will increase if the concentration is further increased.
  • the concentration of commercial ammonia water is 28%, which corresponds to 14.8N, so it can be increased to 14.8N using commercial ammonia water.
  • Example 4 Examination of Temperature, Ammonia Concentration, and Silk Protein Concentration Under the constant concentration of ammonia water in the dialysis external solution, “dissolved hornet silk protein concentration” and “dialysis temperature” are the values after dialysis. The effect on the state of the aqueous solution was examined.
  • Various samples with different concentrations were prepared by dissolving 3 mg to 150 mg of moth wasp in 1 mL of 9M lithium bromide aqueous solution. This lithium bromide aqueous solution was dialyzed under the conditions of three kinds of external dialysis solutions having different ammonia concentrations and different dialysis temperatures of 5 ° C to 37 ° C. The concentration was determined by performing TG measurement on a sample that remained in an aqueous solution state after dialysis without solidifying during dialysis.
  • FIG. 5 shows the result of plotting the determined concentration of each sample against the temperature set during dialysis.
  • the region where the aqueous solution is obtained and the region that solidifies (sol or gel) during dialysis are bordered by the dotted line in the figure.
  • the L side separated by a dotted line is a region where an aqueous solution is obtained, and the S side is a region that solidifies during dialysis. From this figure, the relationship of “hornet silk protein concentration”, “dialysis temperature”, and “dialysis aqueous ammonia water concentration” from which an aqueous solution of hornet silk can be obtained can be seen. It suggests that an aqueous solution can be obtained if prepared under conditions in the L region.
  • the ammonia water concentration is examined in the range of 0.01 to 0.5N. At concentrations lower than 0.01N, an aqueous solution was obtained at a dialysis temperature of 5 ° C even at 0.0005N. On the other hand, at a concentration higher than 0.5N, the stabilization region of the aqueous solution expands with increasing concentration, and a high-concentration hornet silk protein aqueous solution can be obtained.
  • Commercial ammonia water has a concentration of 28% and corresponds to 14.8N. Therefore, the concentration of ammonia water used for dialysis can be arbitrarily set in the range of 0.0005N to 14.8N using commercially available ammonia water. However, in reality, if the concentration of the ammonia water becomes too high, the smell of ammonia becomes too strong, which may cause problems not only for the human body but also for the environment and cost.
  • Example 5 Examination of decrease in molecular weight It is known that a protein is hydrolyzed in a highly alkaline aqueous solution. The decrease in molecular weight due to hydrolysis causes a decrease in the mechanical properties of the film obtained after drying (casting). Therefore, in order to investigate the presence or absence of molecular weight reduction due to ammonia water dialysis, electrophoretic measurement was performed. For comparison, the hornet silk protein (gel state) after dialysis when dialyzed with pure water was also dissolved in a lithium bromide aqueous solution and then subjected to electrophoresis.
  • (C) in Fig. 6 clearly shows the bands of the four major proteins that make up the cocoon.
  • bands of four kinds of main constituent proteins are clearly observed, but a plurality of bands derived from other than the main proteins are also observed. This is considered to be due to the fact that some degree of degradation progressed in the process of dialysis in pure water and that some proteins contained in the nests attached to the sputum were dissolved when the sputum was dissolved. .
  • the density of the low-molecular band increases with increasing temperature.
  • the band on the low molecular side is not derived from the soot adhesion component but derived from the soot decomposition component.
  • the difference due to dialysis temperature is small, suggesting that the degree of degradation is small.
  • FIG. 7 shows the results of measuring the difference in electrophoretic pattern of protein after dialysis according to the dialysis temperature when dialyzed with ammonia water with respect to each ammonia water concentration.
  • the results of dialysis at 20 ° C. or lower show almost no degradation of molecular chains in any ammonia concentration.
  • the physical properties of a film obtained by drying an aqueous solution described later are significantly reduced. From the above results, it can be said that the aqueous solution prepared in this example is preferably an aqueous solution obtained at a dialysis temperature of 20 ° C. or less and having almost no molecular chain decomposition.
  • Example 6 Examination of long-term stability (1) Examination of long-term stability and ammonia concentration In order to examine the long-term stability of the aqueous solution obtained in the above examples, the period from dialysis to solidification was examined. It was. First, per 1 mL of 9M LiBr aqueous solution, 6.7-150 mg of Kirosuzubee was 6.7, 16.7, 25.0, 37.5, 45.8, 54.6, 58.3, 72.9, 87.5, 100, 110, 120, 125, 130, 140, 150 mg) was dissolved in a pre-dialysis aqueous solution and dialyzed at 5 ° C.
  • ammonia water 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5N were used as the external dialysis solution.
  • dialysis the external solution was changed once a day, and the dialysis was changed four times in total.
  • the aqueous solution after dialysis was left in a refrigerator at 5 ° C., and the time until solidification was examined.
  • the results are shown in FIG.
  • the figure shows that it solidified within 2 days for more than 1 day ( ⁇ 2d), solidified within 14 days for more than 2 days ( ⁇ 14d), solidified within 1 month for more than 14 days ( ⁇ 1m), even after 1 month
  • the aqueous solution is shown as being maintained (> 1m).
  • the holding temperature was examined at a temperature higher than 5 ° C., a tendency to shorten the time until solidification was observed as the holding temperature increased. That is, the higher the holding temperature, the shorter the stabilization time of the aqueous solution.
  • the aqueous solution could be maintained for more than 1 month only at an ammonia concentration of 0.05N or more and a hornet silk concentration of 2wt% or less. Further, when the holding temperature was increased, the aqueous solution could not be maintained for more than 1 month under any conditions.
  • Example 8> In the case of Hornet silk protein produced by a genetically modified organism
  • GAGATCTGGGCCATCAAGGTTGTCTG SEQ ID NO: 1
  • GGTCGACTTAGGCGCTGCTACTACTC SEQ ID NO: 2
  • PCR was performed on the cDNA of the silk gland of Kirosuzubee (Sezutsu et al. (2007): Biosci. Biotechnol. Biochem., 71, 2725-2734.).
  • the PCR product was cloned with the pGEM T-Easy vector (Promega), and then subcloned between the BglII site and EcoRI site of the expression vector pTrcHis (Invitorogen).
  • BL21 E. coli strain is used as the host cell for expression, grown at 37 ° C in LB medium supplemented with 150 mg / mL ampicillin, and 0.5 mM IPTG is added when the cell concentration reaches 0.5-0.7 OD 600. And the culture was continued for another 5 hours. After completion of the culture, the inclusion body was treated according to the QIAexpressionist protocol, and the solidified protein product was dissolved in 9M LiBr aqueous solution. When the obtained 9M LiBr protein aqueous solution was examined by electrophoresis, it was found that it was an aqueous solution in which Vssilk 1, which is a major protein of the moth wasp, was dissolved with high purity.
  • Example 9 Production of film The peripheral part of the cocoon was taken out from the nest of the yellow wasp. After removing as much as possible the nest material (made by solidifying the wood chips) adhering to the spear, 1.5 g of the nest was dissolved in 30 mL of 9M LiBr aqueous solution. The dissolution was performed by shaking at high speed for 30 minutes at 37 ° C. After dissolution, the mixture was centrifuged (10 kG, 20 minutes) to separate insoluble components (mostly wood chips from the nest material), and then filtered to collect the filtrate. The filtrate was put in a dialysis membrane (Wako Pure Chemical Cellulose Tube, size 24) and dialyzed in 0.1N ammonia water.
  • ammonia water As the ammonia water, 28% ammonia water (manufactured by Nacalai Tesque, reagent grade) was diluted as 14.8N ammonia water and used. Dialysis was performed in a constant temperature chamber at 5 ° C., and dialysis was performed with constant agitation using 1 L or more of dialysis external solution (ammonia water). The dialysate was exchanged at least once a day, and the exchange of the external solution was repeated until the conductivity decreased to about 200-300 or less and became constant (at least 4 exchanges were performed).
  • aqueous solution had a viscosity of 3.33 cp (15 ° C.) and a concentration of 3.38 wt%. 28 mL of this aqueous solution was poured into a container having a flat bottom surface (manufactured by Toyo Kikai Co., Ltd., square No. 1 petri dish (235 mm ⁇ 85 mm ⁇ 16 mm) polystyrene) and dried (cast) in a constant temperature room at 20 ° C. The drying speed was adjusted by blowing air so that it could be dried within about 2 days (Figs. 10 and 11). The film thickness was 30 ⁇ 5 ⁇ m. The film obtained under these conditions was cut into strips having a width of 3 mm and a length of 30 mm, and the mechanical properties were measured. The results are shown in Table 1.
  • the above-mentioned physical property values are the mechanical properties (Young's modulus 2.7 GPa, tensile strength 80 MPa, elongation at break, reported by drying 6% silk fibroin aqueous solution reported by Yin et al. (Biomacromolecules, 11, 2890, 2010). 5%).
  • a container having a flat bottom surface As described above, in order to obtain a film by casting, it is preferable to use a container having a flat bottom surface.
  • the ease of peeling of the film differs depending on the material of the container.
  • Polystyrene e.g., Toyo Kikai Kagaku No. 1 Petri dish, Eiken Chemical Co., Ltd. Sterilized No. 2 Petri dish, sterilized MM Petri dish, etc.
  • Petri dishes, Teflon petri dishes, or containers with a Teflon-coated surface are easy to peel off and are convenient.
  • FIG. 12 shows a solid state NMR spectrum of the cast film produced.
  • a peak derived from the ⁇ helix appears greatly, indicating that it has a structure mainly composed of ⁇ helix.
  • the fact that a hornet silk film mainly composed of an ⁇ -helix structure is obtained is the same as the film produced by casting from the HFIP solution disclosed in Patent Document 2.
  • FIG. 13 shows the FT-IR spectrum of the produced cast film.
  • amide I band region a peak with the top at 1638 cm -1 appears.
  • the ⁇ -helix molecular chain forms a super-secondary structure (coiled coil structure) because it is shifted to the lower wavelength side by 10 cm -1 than the typical ⁇ -helix amide I band (around 1645 cm-1). (Heimburg et al., Biochemistry, 1990).
  • “Film was made” refers to a case where a continuous film was peeled off from the petri dish and removed.
  • “When the film could not be produced” refers to a case where the hornet silk film on the petri dish is cracked when it is dried, or it is cracked, crushed or torn in the process of peeling the hornet silk film from the petri dish. Point to.
  • the Hornet silk film often does not adhere to the petri dish.
  • a particularly preferable condition for forming a film is when the aqueous ammonia solution in which the hornet silk protein is dissolved is dried at 27 ° C. or less within 2 days.
  • drying time it is important to control the evaporation rate of moisture in order to prevent cracks and cracks during film processing.
  • Example 11 Electrical properties of film The capacitance C of the cast film of Hornet silk protein obtained by the procedure of Example 9 was measured. Two 2 cm ⁇ 2 cm square copper plates were prepared, and the capacitance was measured by sandwiching a film between the copper plates. A custom LCR meter (ELC-133A) was used for the measurement. The capacitance value (pF) was measured for three test signal frequencies of 100 Hz, 1 kHz and 10 kHz.
  • Figure 16 shows the capacitance values (pF) at test signal frequencies of 100 Hz, 1 kHz, and 10 kHz, with respect to the film thickness (mm), ⁇ (diamond), ⁇ (square), and ⁇ (triangle), respectively. ).
  • the hornet silk protein cast film was measured before and after drying a plurality of films having different thicknesses. Drying was performed in a vacuum dryer.
  • the electric capacity of the hornet silk film changes greatly before and after drying, and it can be seen that the electric capacity is lowered (insulation performance is improved) by drying. Furthermore, it is expected that the electric capacity is reduced by removing the residual moisture in the film. For comparison, it can be said that the hornet silk film has a low electric capacity even when compared with a general-purpose film measured under the same conditions, and can be said to be an excellent electric insulator.
  • Example 12 Film when alkaline solution other than aqueous ammonia is used An aqueous solution of pH 11 prepared with sodium carbonate Na 2 CO 3 is used as an external solution for dialysis, and a hornet silk protein aqueous solution (1.5 When 2 mL of g / 10 ml male hornet wase was poured into a circular petri dish (Eiken Petri dish AG2000) having a diameter of 55 mm ⁇ and dried (cast), a cloudy substance as shown in FIG. 17 was obtained. Since this material is brittle and easy to break, it cracked during removal from the petri dish. The cause of white turbidity is due to precipitation of sodium carbonate by drying.
  • Example 13> Film in the case of using an aqueous solution containing a volatile base substance
  • dialysis was performed using water added with diethylamine, which is a volatile base, as an external dialysis solution.
  • diethylamine which is a volatile base
  • an aqueous solution having a pH of 11.7 was obtained.
  • a 9M lithium bromide aqueous solution of killer whale wase was dialyzed.
  • the dialysis temperature was 5 ° C.
  • the aqueous solution was maintained after dialysis, and a uniform aqueous solution was obtained.
  • the concentration of the aqueous solution determined by TG measurement was 6.39%.
  • 4 ml of the obtained aqueous solution was poured into a circular petri dish having a diameter of 5.5 mm ⁇ (sterilized MM petri dish manufactured by Eiken Chemical Co., Ltd.) and dried, a transparent and flexible film as shown in FIG. 18 was obtained.
  • Example 14 Film in which soot is dissolved with an inorganic salt other than lithium bromide (1) Film production The case of dissolving soot in a calcium chloride aqueous solution was also examined.
  • 5.4M calcium chloride aqueous solution was prepared by dissolving 15 g of calcium chloride (Nacalai tesque, reagent grade) in 20 ml of water. This 5.4M calcium chloride aqueous solution was heated to 65 ° C., and 600 mg of killer whale moth was added and dissolved while stirring.
  • Figure 20 shows the concentration of calcium chloride and the concentration of calcium chloride when immersed in 10 mL of calcium chloride aqueous solution at 50, 60 and 70 ° C and shaken 30 minutes and 60 minutes after shaking. It is the figure which plotted dissolution rate (%). The dissolution rate was calculated from the absorbance of ultraviolet rays having a wavelength of 280 nm measured with a UV apparatus. From this figure, it can be seen that in the temperature range of 50 ° C. to 70 ° C., there is no difference in dissolution rate between shaking for 30 minutes and shaking for 60 minutes. This suggests that the equilibrium dissolution state has been reached with shaking within 30 minutes.
  • this figure shows that the dissolution rate (%) of soot in the equilibrium dissolution state depends on the concentration of calcium chloride. Soot was easily dissolved in the concentration range of calcium chloride of 3.0 to 6.0M, and soot was completely dissolved when the calcium chloride concentration was 4 to 5M, but the saturated dissolution concentration decreased before and after that.
  • FIG. 21 shows that when 20 mg of giant hornet was soaked in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at each temperature in the range of 20 to 70 ° C., 30 minutes after shaking, and 60 It is the figure which plotted the dissolution rate after a minute with respect to temperature. From the results at a calcium chloride concentration of 4.5M, it can be seen that the higher the temperature at the time of shaking, the smaller the difference in dissolution rate after 30 minutes and 60 minutes, and almost the same at 50 ° C or higher. From this result, it was found that the dissolution rate of soot varies depending on the shaking temperature. Next, the relationship between the dissolution rate and the shaking time was plotted against each shaking temperature, mainly at 50 ° C or less. ( Figure 22).
  • Figure 22 shows the change in dissolution rate when 20 mg of giant hornet moth is immersed in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at 20 ° C, 30 ° C and 50 ° C.
  • FIG. When 4.5M calcium chloride is shaken at 50 ° C, the dissolution rate reaches 100% within 30 minutes, but the time until the dissolution rate reaches 100% increases as the temperature decreases to 30 ° C and 20 ° C. Become. However, even at 20 ° C., it can be seen that all the soot can be dissolved by shaking for a long time.
  • Hornet Silk Koji is better dissolved in 4-5M calcium chloride aqueous solution.
  • a particularly high concentration of soot can be dissolved.
  • the dissolution temperature can be dissolved in a shorter time as the dissolution temperature increases, but decomposition of molecules due to the increase in temperature may be a problem.
  • the dissolution rate decreases as the dissolution temperature decreases, the time required for dissolution becomes longer.
  • a shorter dissolution time is preferable from the viewpoint of suppressing molecular decomposition. Considering the above, it is most preferable to dissolve at about 30 ° C.
  • Example 15 Film when using other than hornet of hornet (1)
  • Cross hornet The hornet belongs to Vespula and is different from the vespid subfamily (Vespa), but some of the constituent proteins are high. It shows homology.
  • Cross-beetles are also soluble in 9M lithium bromide aqueous solution, and then solidify (precipitate, gel or sol) during dialysis when dialysis for desalting is performed in pure water. Therefore, dialysis was attempted using an aqueous solution of 0.1N or 0.5N ammonia water as an aqueous solution of Lithium bromide.
  • soot was weighed and dissolved in 3 mL of 9M aqueous lithium bromide solution, and many insolubles remained. Since it has been confirmed by electrophoresis and NMR that all protein components of the hornet moth are dissolved in 9M lithium bromide aqueous solution, the insoluble matter is considered to be a contaminant other than the cocoon protein. Since the hornet is small, it is difficult to collect only the moth, and many foreign materials such as nests are attached to the moth. After removing insolubles by centrifugation, the solution was dialyzed in 0.5N ammonia water at 5 ° C., and an aqueous solution was obtained without solidifying during dialysis. The concentration of the aqueous solution was 4.0 to 4.4 wt%.
  • Silk fibroin Silk fibroin and sericin produced by silkworms can be dissolved in a lithium bromide aqueous solution and then dialyzed with pure water to obtain an aqueous solution without solidifying during dialysis. Therefore, for the purpose of obtaining an aqueous fibroin solution, it is not necessary to perform dialysis with aqueous ammonia, but even in the case of fibroin, an aqueous solution can be obtained by dialysis with aqueous ammonia. For example, when 3 g of refined silk fibroin was dissolved in 20 ml of 9M LiBr aqueous solution and dialyzed against 0.5N ammonia water, a clear aqueous solution was obtained. Similarly, an aqueous solution was obtained when dialyzed against 0.1N aqueous ammonia.
  • Silk fibroin aqueous solution dialyzed with pure water solidifies into a white gel when left for a long time (about 1 month) even at low temperatures (5 ° C), but is dialyzed against 0.5N or 0.1N aqueous ammonia.
  • the silk fibroin aqueous solution thus obtained did not solidify even when stored at a low temperature (5 ° C.) for more than 1 month, and the aqueous solution was maintained. Therefore, it can be said that the stability of the fibroin aqueous solution is improved by using the aqueous ammonia solution.
  • the aqueous ammonia solution of fibroin obtained was cast at 20 ° C., a transparent and flexible film as shown in FIG. 24 was obtained.
  • Example 16 Film in the case of using a fluorine-processed formwork
  • the surface of a stainless steel petri dish (manufactured by Yamada Seisakusho Co., Ltd., 75 mm ⁇ ) was coated with a fluororesin. Thereby, the inner surface of the stainless steel petri dish became gray.
  • an aqueous solution produced under the same conditions as in Example 9 was poured into this petri dish and cast, a transparent and flexible film as shown in FIG. 25 was obtained.
  • Example 17 Reuse of film (solution behavior of cast film) The reuse of the cast film produced by the method described in the above example was examined.
  • the viscosity of the aqueous lithium bromide solution was measured. For comparison, the viscosity was also measured in a state in which a moth hornet, giant hornet or moth wasp was dissolved in a 9M lithium bromide aqueous solution. The results are shown in FIG.
  • a uniform aqueous solution was obtained by the method described in the above Example, it was possible to use it as a spinning stock solution for spinning.
  • a 5 wt% solution of polyethylene oxide having a molecular weight of 900,000 is mixed at a volume ratio of 3: 1, 2: 1, 1: 1 in an aqueous ammonia solution in which 5.4 wt% Hornet silk protein prepared by the above method is dissolved.
  • electrospun electrospun
  • Example 19 About the experiment performed using the chiros wasp among the above examples 3 to 7, 9 to 11, 13, 14, 16, 18, the chiros wasp is substantially the same instead of the beetle wasp, the giant wasp, the wasp, the wasp, or the cross wasp. The experiment was conducted. As a result, almost the same result as that obtained when using a key wasp was obtained. In addition, a dialyzed aqueous solution and a film could be made by mixing a plurality of species of wasp cocoons.
  • the hornet silk protein concentration of the dialysis internal solution is 140 mg / mL or less (after dialysis) It was found that the dialysis internal solution was able to maintain a stable aqueous solution state and the degradation of the hornet silk protein in the dialysis internal solution could be suppressed.
  • a film having sufficient mechanical properties, transparency and flexibility and having an ⁇ helix structure could be produced. Furthermore, it has been found that when an aqueous solution containing a volatile basic substance is used as the dialysis external solution during dialysis, a particularly good film can be produced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Peptides Or Proteins (AREA)
  • Cosmetics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The purpose of the present invention is to acquire a high-quality aqueous solution which is rich in bee-silk protein, and which is capable of being employed for various uses, e.g. as a film starting material. Accordingly, a production method for a silk protein-containing dialyzed aqueous solution is employed, said production method including a step in which dialysis is performed using: as a dialysis inner solution, an inorganic salt aqueous solution including bee-silk protein; and, as a dialysis outer solution, an aqueous solution having a pH of at least 9.0.

Description

蜂のシルク蛋白質の水溶液とその製造方法Aqueous solution of bee silk protein and production method thereof
 本発明は、蜂のシルク蛋白質の水溶液とその製造方法に関する。 The present invention relates to an aqueous solution of bee silk protein and a method for producing the same.
 昆虫が作る繭は繊維状蛋白質を豊富に含んでおり、その特有の性質から、衣料用、医療用、化粧品用等の分野で研究が行われている。例えば、蚕の繭は、衣料用の天然繊維として一般的に利用されている。また、繭に含まれているシルク蛋白質は、医療用の生体材料として研究されている。例えば、特許文献1には、再生医療用の細胞足場材料の原料として、蚕のシルク蛋白質を利用したことが記載されている。 繭 Insects made of insects contain abundant fibrous proteins, and due to their unique properties, research is being conducted in fields such as clothing, medical use, and cosmetics. For example, cocoon cocoons are commonly used as natural fibers for clothing. Silk protein contained in silkworms has been studied as a medical biomaterial. For example, Patent Document 1 describes the use of silkworm silk protein as a raw material for cell scaffold materials for regenerative medicine.
 また、蜂のシルク蛋白質は、蚕のシルク蛋白質とはアミノ酸組成や性質が異なることから、医療等に利用するための新しい素材として研究されている(例えば、特許文献2)。蜂の巣は、一般的に大部分が廃棄されているため、資源の有効利用の観点からも、蜂のシルク蛋白質の研究は重要である。 In addition, bee silk protein has been studied as a new material for use in medicine and the like because it differs in amino acid composition and properties from silkworm silk protein (for example, Patent Document 2). Since most of the beehives are generally discarded, research on bee silk protein is also important from the viewpoint of effective use of resources.
 特許文献2には、蜂の巣由来のシルク蛋白質の抽出方法に関する技術が記載されている。具体的には、 (1)蜂の巣を、無機塩を含む水溶液(無機塩水溶液)中に溶解することで、巣に含まれるシルク蛋白質を溶解したこと、(2)その溶解液を蒸留水で透析し、無機塩を除去したこと、(3)透析によって透析膜内のシルク蛋白質が固化したこと、(4)その固化成分をフィルターで除去したこと、(5)固化成分を除去後の透析内液をシャーレに流延し、乾燥後、シャーレ表面から一部を無理やり剥がすことによってフィルム片を得たこと、が記載されている。 Patent Document 2 describes a technique related to a method for extracting a silk protein derived from a honeycomb. Specifically, (1) The honeycomb was dissolved in an aqueous solution containing an inorganic salt (inorganic salt aqueous solution) to dissolve the silk protein contained in the nest. (2) The solution was dialyzed with distilled water. (3) The silk protein in the dialysis membrane was solidified by dialysis, (4) The solidified component was removed with a filter, and (5) The dialysis internal solution after removing the solidified component The film piece was cast on a petri dish, and after drying, part of the surface of the petri dish was forcibly removed to obtain a film piece.
 特許文献3には、蜂のシルク蛋白質を含む蛋白質フィルムの製造方法に関する技術が記載されている。具体的には、(1)蜂の巣から取り出した繭を、無機塩水溶液中に溶解することで、繭に含まれるシルク蛋白質を溶解したこと、(2)その溶解液を蒸留水で透析し、無機塩を除去したこと、(3)透析によって透析膜内のシルク蛋白質がゲル化したこと、(4)ゲルを含んだ状態の透析膜を圧縮乾燥し、フィルムを作成したこと、が記載されている。 Patent Document 3 describes a technique relating to a method for producing a protein film containing bee silk protein. Specifically, (1) the silkworm contained in the cocoon was dissolved by dissolving the cocoon taken out of the beehive in an inorganic salt aqueous solution, (2) the solution was dialyzed with distilled water, and inorganic It is described that the salt has been removed, (3) the silk protein in the dialysis membrane has gelled by dialysis, and (4) the dialysis membrane containing the gel has been compression-dried to create a film. .
WO2011/021712WO2011 / 021712 特開2006-045076JP2006-045076 特開2008-173312JP2008-173312
 本願発明者らは、上述の特許文献2及び3に関して、以下に記載する点に改善の余地があると考えた。
 特許文献2にはフィルム片を得たことが記載されているが、透析工程でシルク蛋白質が固化していた。そのため、最終的にフィルム片に残っているシルク蛋白質は、一部の種類のシルク蛋白質に限られていた。従って、十分な力学物性、又は柔軟性を有するフィルム片を得ることができなかった。また、特許文献2の方法では、固化成分をフィルターで除去する工程が必要なため、操作性の面でも改善の余地を有していた。
The inventors of the present application considered that there is room for improvement with respect to the above-described Patent Documents 2 and 3 in the following points.
Patent Document 2 describes that a film piece was obtained, but silk protein was solidified in the dialysis process. Therefore, the silk protein finally remaining in the film piece is limited to some kinds of silk protein. Therefore, a film piece having sufficient mechanical properties or flexibility could not be obtained. In addition, the method of Patent Document 2 has a room for improvement in terms of operability because it requires a step of removing the solidified component with a filter.
 一方で、仮に透析で無機塩を除去しなかった場合には、シルク蛋白質の溶解液を乾燥固化して固体状素材を作製したときに、無機塩が素材内に残留してしまう。そうすると、固体状素材の透明性の低下や、力学物性の低下の原因となる。 On the other hand, if the inorganic salt is not removed by dialysis, the inorganic salt remains in the material when the silk protein solution is dried and solidified to produce a solid material. If it does so, it will cause the fall of the transparency of a solid-state material, and the fall of a mechanical physical property.
 なお、特許文献2には、無機塩水溶液に代えてハロゲン化有機溶媒を用い、透析をせずにフィルムを作成した例も記載されている。しかしながら、ハロゲン化有機溶媒はいずれも高価であり、且つフィルムに残留する成分は有害である。また、成形過程で発生する気体や廃液が人体や環境に及ぼす影響が大きいという問題がある。特許文献2には、ハロゲン化有機溶媒を溶媒置換で水に置換したことも記載されているが、このときシルク蛋白質は沈殿しておりフィルムはできていない。 Note that Patent Document 2 also describes an example in which a halogenated organic solvent is used in place of the inorganic salt aqueous solution, and a film is produced without dialysis. However, all halogenated organic solvents are expensive, and the components remaining in the film are harmful. In addition, there is a problem that the gas and waste liquid generated in the molding process have a great influence on the human body and the environment. Patent Document 2 also describes that the halogenated organic solvent was replaced with water by solvent replacement, but at this time the silk protein was precipitated and a film was not formed.
 また上記特許文献3のフィルムの作成方法では、特許文献2のように水溶液を用いるのではなく、透析チューブ内のゲルを用いている。そのため、製造できるフィルムの大きさ及び形状が、透析チューブの形状やサイズに依存してしまうという点に改善の余地を有していた。 Further, in the method for producing a film of Patent Document 3, the gel in the dialysis tube is used instead of using an aqueous solution as in Patent Document 2. For this reason, there is room for improvement in that the size and shape of the film that can be produced depend on the shape and size of the dialysis tube.
 なお、蚕のシルク蛋白質の場合には、蒸留水で透析しても固化しない。即ち、上記の固化の問題は蜂のシルク蛋白質に特有の問題といえる。 In the case of silkworm silk protein, it does not solidify even when dialyzed with distilled water. That is, the above-mentioned solidification problem is a problem peculiar to bee silk protein.
 本発明は上記事情に鑑みてなされたものであり、フィルムの原料等の各種用途に使用可能で、蜂のシルク蛋白質を豊富に含む高品質な水溶液を提供することを目的とする。又は、その水溶液の生産方法を提供することを目的とする。又は、その水溶液を硬化して得られる、蜂のシルク蛋白質を豊富に含む硬化材料を提供すること等を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-quality aqueous solution that can be used in various applications such as film raw materials and is rich in bee silk protein. Or it aims at providing the production method of the aqueous solution. Another object of the present invention is to provide a hardened material rich in bee silk protein obtained by curing the aqueous solution.
 本発明の一態様によれば、シルク蛋白質を含有する透析済水溶液の生産方法であって、透析内液として蜂のシルク蛋白質を含有する無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程を含む、生産方法が提供される。この生産方法において、透析内液は透析後でも水溶液状態を維持できる。またこの生産方法によって、透析内液の無機塩濃度を低減させることができる。そのため、この生産方法を用いれば、フィルムの原料等の各種用途に使用可能で、蜂のシルク蛋白質を豊富に含む高品質な水溶液を得ることができる。またこの水溶液を、例えばシャーレ等の型枠に入れて硬化させることで、力学物性、透明性、又は柔軟性に優れた、蜂のシルク蛋白質を含む硬化材料を得ることができる。なお、特に良質な硬化材料を作成する観点からは、この生産方法で用いるpH9.0以上の水溶液は、揮発性塩基物質を含有する水溶液であることが好ましい。 According to one aspect of the present invention, there is provided a method for producing a dialyzed aqueous solution containing silk protein, wherein an inorganic salt aqueous solution containing bee silk protein is used as a dialysate internal solution, and a pH of 9.0 or more is used as an external dialysate solution. A production method is provided comprising the step of dialysis using an aqueous solution. In this production method, the dialysis internal solution can maintain an aqueous solution state even after dialysis. In addition, this production method can reduce the concentration of inorganic salt in the dialyzed solution. Therefore, by using this production method, it is possible to obtain a high-quality aqueous solution that can be used for various uses such as film raw materials and is rich in bee silk protein. Moreover, by hardening this aqueous solution in a mold such as a petri dish, a cured material containing bee silk protein having excellent mechanical properties, transparency, or flexibility can be obtained. In addition, from the viewpoint of producing a particularly good quality curable material, the aqueous solution of pH 9.0 or higher used in this production method is preferably an aqueous solution containing a volatile basic substance.
 また本発明の一態様によれば、上記生産方法を経て得られる、透析済水溶液が提供される。また本発明の一態様によれば、上記透析済水溶液を硬化させる工程を経て得られる、硬化材料が提供される。また本発明の一態様によれば、硬化材料の生産方法であって、透析内液として蜂のシルク蛋白質を含有する無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程と、上記透析工程後の透析内液を透析膜から回収する工程と、回収後の透析内液を硬化させる工程と、を含む、生産方法が提供される。また本発明の一態様によれば、蜂のシルク蛋白質を0.1wt%以上、揮発性塩基物質を0.0001N~14.8N含み、20℃以下の透析済水溶液が提供される。また本発明の一態様によれば、蜂のシルク蛋白質を3~6mol/Lの塩化カルシウム水溶液に溶解させる工程を含む、シルク蛋白質水溶液の生産方法が提供される。 Moreover, according to one aspect of the present invention, a dialyzed aqueous solution obtained through the above production method is provided. Moreover, according to 1 aspect of this invention, the hardening material obtained through the process of hardening the said dialyzed aqueous solution is provided. Further, according to one aspect of the present invention, there is provided a method for producing a curable material, wherein an inorganic salt aqueous solution containing bee silk protein is used as a dialysis internal solution, and an aqueous solution having a pH of 9.0 or more is used as an external dialysis solution There is provided a production method including a step of recovering the dialysis internal solution after the dialysis step from the dialysis membrane, and a step of curing the recovered dialysis internal solution. According to one embodiment of the present invention, a dialyzed aqueous solution containing 0.1 wt% or more of bee silk protein, 0.0001N to 14.8N of a volatile base substance, and 20 ° C. or less is provided. According to another aspect of the present invention, there is provided a method for producing a silk protein aqueous solution, comprising the step of dissolving bee silk protein in a 3 to 6 mol / L calcium chloride aqueous solution.
 本発明によれば、蜂のシルク蛋白質を豊富に含む高品質の水溶液を得ることができる。又は、本発明によれば、力学物性、透明性、又は柔軟性に優れた、蜂のシルク蛋白質を含む硬化材料を得ることができる。 According to the present invention, a high quality aqueous solution rich in bee silk protein can be obtained. Alternatively, according to the present invention, a cured material containing bee silk protein having excellent mechanical properties, transparency, or flexibility can be obtained.
図1は、ホーネットシルク蛋白質が溶解したLiBr水溶液を、pH6~11の水溶液で透析した場合の、透析膜内の状態を観察した結果を表した図である。FIG. 1 is a diagram showing the result of observing the state in a dialysis membrane when a LiBr aqueous solution in which a hornet silk protein is dissolved is dialyzed with an aqueous solution having a pH of 6 to 11. 図2は、水溶液のアンモニア濃度とpHの関係を調べた結果を表した図である。FIG. 2 is a diagram showing the results of examining the relationship between the ammonia concentration of the aqueous solution and the pH. 図3は、熱重量分析法(TG)で測定した透析済水溶液のホーネットシルク蛋白質の濃度を、仕込み濃度(9MLiBr水溶液1mL当たりに溶解させた繭の重量(mg))に対してプロットした図である。Figure 3 is a plot of the hornet silk protein concentration of the dialyzed aqueous solution measured by thermogravimetric analysis (TG) against the feed concentration (weight of mg dissolved per mL of 9MLiBr aqueous solution). is there. 図4は、ホーネットシルク蛋白質が溶解したLiBr水溶液を5℃のアンモニア水で透析して、透析後も水溶液状態が維持された場合の透析後の水溶液のホーネットシルク濃度(wt%)を、透析に用いたアンモニア水の濃度(N)に対してプロットした図である。図中のLとSは、それぞれ、透析後に水溶液状態が維持した領域と透析後に固化した領域を示している。Figure 4 shows the dialysis of the hornet silk concentration (wt%) of the aqueous solution after dialysis when the aqueous solution of LiBr in which the hornet silk protein is dissolved is dialyzed against aqueous ammonia at 5 ° C. It is the figure plotted with respect to the concentration (N) of used ammonia water. L and S in the figure indicate a region where the aqueous solution state is maintained after dialysis and a region solidified after dialysis, respectively. 図5は、ホーネットシルク蛋白質が溶解したLiBr水溶液を0.01N、0.1N、又は0.5Nのアンモニア水で透析して、透析後も水溶液状態が維持された場合の透析後の水溶液のホーネットシルク濃度(wt%)を、透析中の温度(℃)に対してプロットした図である。FIG. 5 shows the hornet silk concentration of the aqueous solution after dialysis when the aqueous solution of LiBr in which the hornet silk protein is dissolved is dialyzed with 0.01N, 0.1N, or 0.5N ammonia water and the aqueous solution state is maintained after dialysis ( wt%) is plotted against temperature during dialysis (° C.). 図6は、ホーネットシルク蛋白質が溶解したLiBr水溶液を5℃~37℃の純水で透析して得られた蛋白質の電気泳動パターンを示した図である。図中のMはマーカー、Cはキイロスズメバチの繭の泳動パターンを比較のために示した。FIG. 6 is a diagram showing an electrophoresis pattern of a protein obtained by dialyzing a LiBr aqueous solution in which a hornet silk protein is dissolved with pure water at 5 ° C. to 37 ° C. In the figure, M is a marker, and C is a migration pattern of a moth wasp for comparison. 図7は、ホーネットシルク蛋白質が溶解したLiBr水溶液を0.05N又は0.01Nで透析して得られた蛋白質の電気泳動パターンを示した図である。FIG. 7 is a diagram showing an electrophoresis pattern of a protein obtained by dialysis of an aqueous solution of LiBr in which a hornet silk protein is dissolved at 0.05 N or 0.01 N. 図8は、透析済水溶液が固化するまでの時間を調べた図である。FIG. 8 is a diagram showing the time until the dialyzed aqueous solution solidifies. 図9は、CD測定の結果を表した図である。FIG. 9 is a diagram showing the results of CD measurement. 図10は、透析済水溶液をシャーレに注いで乾燥させているところの写真である。FIG. 10 is a photograph of the dialyzed aqueous solution being poured into a petri dish and dried. 図11は、透析済水溶液を乾燥後、シャーレから剥がして得られたフィルムの写真である。FIG. 11 is a photograph of a film obtained by drying a dialyzed aqueous solution and peeling it off from a petri dish. 図12は、フィルムの固体NMRスペクトルを示した図である。FIG. 12 shows a solid state NMR spectrum of the film. 図13は、キャストフィルムのFT-IRスペクトルを示した図である。FIG. 13 is a diagram showing an FT-IR spectrum of a cast film. 図14は、複数種類の乾燥温度でフィルム作成を試みた結果を表した図である。FIG. 14 is a diagram showing results of attempts to create a film at a plurality of types of drying temperatures. 図15は、フィルムを折り曲げたときの写真である。FIG. 15 is a photograph when the film is folded. 図16は、テスト信号周波数100Hz、1kHz、及び10kHzでの電気容量値(pF)を、フィルムの厚さ(mm)に対して、それぞれプロットした図である。FIG. 16 is a diagram in which electric capacitance values (pF) at test signal frequencies of 100 Hz, 1 kHz, and 10 kHz are plotted with respect to film thickness (mm). 図17は、繭をLiBr水溶液に溶かした後、Na2CO3でpH調製した水溶液で透析後、乾燥させたときの結果を表した写真である。FIG. 17 is a photograph showing the results when the soot was dissolved in a LiBr aqueous solution, dialyzed with an aqueous solution adjusted to pH with Na 2 CO 3 and then dried. 図18は、繭をLiBr水溶液に溶かした後、ジエチルアミンで調製した水溶液で透析後、乾燥工程を経て得られたフィルムの写真である。FIG. 18 is a photograph of a film obtained by dissolving soot in an aqueous LiBr solution, dialyzing with an aqueous solution prepared with diethylamine, and then performing a drying process. 図19は、繭を塩化カルシウム水溶液に溶かした後、アンモニア水で透析、乾燥工程を経て得られたフィルムの写真である。FIG. 19 is a photograph of a film obtained by dissolving soot in an aqueous calcium chloride solution, followed by dialysis with ammonia water and a drying process. 図20は、オオスズメバチの繭20mgを50、60及び70℃の塩化カルシウム水溶液10mLに浸して、振とうさせた時の、塩化カルシウムの濃度と、振とうしてから30分後および60分後の溶解率(%)をプロットした図である。Fig. 20 shows the concentration of calcium chloride when immersed in 10 mL of calcium chloride aqueous solution at 50, 60, and 70 ° C, and the concentration of calcium chloride, 30 minutes and 60 minutes after shaking. It is the figure which plotted dissolution rate (%). 図21は、4.5M及び3.6Mの塩化カルシウム水溶液10mLに、オオスズメバチの繭20mgを浸して、20~70℃範囲の各温度にて振とうさせた時の、振とう後30分後、および60分後の溶解率を、温度に対してプロットした図である。FIG. 21 shows that when 20 mg of giant hornet was soaked in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at each temperature in the range of 20 to 70 ° C., 30 minutes after shaking, and 60 It is the figure which plotted the dissolution rate after a minute with respect to temperature. 図22は、オオスズメバチの繭20mgを4.5M及び3.6Mの塩化カルシウム水溶液10mLに浸して、20℃、30 ℃および50℃にて振とうさせた時の、溶解率の変化を振とう時間に対してプロットした図である。Figure 22 shows the change in dissolution rate when 20 mg of giant hornet moth was immersed in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at 20 ° C, 30 ° C and 50 ° C. FIG. 図23は、クロスズメバチの繭をLiBr水溶液に溶かした後、アンモニア水で透析、乾燥工程を経て得られたフィルムの写真である。FIG. 23 is a photograph of a film obtained by dissolving cross-beetle cocoons in a LiBr aqueous solution, followed by dialysis with ammonia water and a drying process. 図24は、絹フィブロイン水溶液をアンモニア水で透析後、乾燥工程を経て得られたフィルムの写真である。FIG. 24 is a photograph of a film obtained through a drying process after dialysis of an aqueous silk fibroin solution with ammonia water. 図25は、ステンレスシャーレの表面をフッ素加工した型枠を使用して作製したフィルムの写真である。FIG. 25 is a photograph of a film produced using a formwork in which the surface of a stainless steel petri dish is processed with fluorine. 図26は、フィルムをLiBr水溶液に溶解させた後、得られたホーネットシルク蛋白質が溶解しているLiBr水溶液の粘度を測定した結果を表した図である。FIG. 26 is a diagram showing the results of measuring the viscosity of a LiBr aqueous solution in which the obtained hornet silk protein is dissolved after the film is dissolved in the LiBr aqueous solution. 図27は、フィルムをLiBr水溶液に溶解させた後、再生成したフィルムの写真である。FIG. 27 is a photograph of a film regenerated after dissolving the film in an aqueous LiBr solution.
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to avoid the repetition complexity about the same content, description is abbreviate | omitted suitably.
 (1)シルク蛋白質を含有する透析済水溶液の生産方法
 本発明の一実施形態は、シルク蛋白質を含有する透析済水溶液の生産方法である。この生産方法は、例えば、透析内液として蜂のシルク蛋白質を含有する無機塩水溶液を用い、透析外液として高pHの水溶液を用いて透析する工程を含む、生産方法である。この生産方法において、透析内液は透析後でも水溶液状態を維持できる。またこの生産方法によって、透析内液の無機塩濃度を低減させることができる。そのため、この生産方法によれば、透析後の透析内液から、フィルムの原料等の各種用途に使用可能で、蜂のシルク蛋白質を豊富に含む高品質な水溶液を得ることができる。
(1) Method for producing dialyzed aqueous solution containing silk protein One embodiment of the present invention is a method for producing a dialyzed aqueous solution containing a silk protein. This production method is, for example, a production method including a step of dialysis using an aqueous solution of an inorganic salt containing bee silk protein as a dialysis internal solution and a high pH aqueous solution as an external dialysis solution. In this production method, the dialysis internal solution can maintain an aqueous solution state even after dialysis. In addition, this production method can reduce the concentration of inorganic salt in the dialyzed solution. Therefore, according to this production method, it is possible to obtain a high-quality aqueous solution rich in bee silk protein that can be used for various uses such as film raw materials from the dialyzed internal solution.
 この方法で得られる透析済水溶液を硬化させることで、力学物性、透明性、又は柔軟性に優れた硬化材料を得ることができる。又は、この方法で得られる透析済水溶液を硬化させることで、αへリックス構造を有する硬化材料を得ることができる。硬化材料としては、例えば、フィルム、繊維、不織布、スポンジ、チューブ、又はブロックが挙げられる。また、透析済水溶液及び硬化材料は、例えば、医療用製品、化粧品、電子機器、又は繊維製品用として使用することができる。なお、特に良質な硬化材料を作成する観点からは、この生産方法で用いる高pHの水溶液は、揮発性塩基物質を含有する水溶液であることが好ましい。 By curing the dialyzed aqueous solution obtained by this method, a cured material excellent in mechanical properties, transparency, or flexibility can be obtained. Alternatively, a cured material having an α helix structure can be obtained by curing the dialyzed aqueous solution obtained by this method. Examples of the curable material include films, fibers, nonwoven fabrics, sponges, tubes, and blocks. The dialyzed aqueous solution and the curable material can be used, for example, for medical products, cosmetics, electronic devices, or textile products. In addition, from the viewpoint of producing a particularly good quality curable material, the high pH aqueous solution used in this production method is preferably an aqueous solution containing a volatile basic substance.
 シルク蛋白質を含有する透析済水溶液の生産方法は、さらに、透析後の透析内液を、透析膜から回収する工程を含んでいてもよい。透析内液を透析膜から回収する工程は、例えば、透析チューブ内、又は透析膜を有する容器内から透析内液を回収する工程を含んでいてもよい。なお、回収することは、取り出すことを含む。また、シルク蛋白質を含有する透析済水溶液の生産方法は、さらに、蜂の巣から繭を回収する工程、繭を無機塩水溶液に溶解する工程、又は繭が溶解した無機塩水溶液から不溶成分を除去する工程を含んでいてもよい。 The method for producing a dialyzed aqueous solution containing silk protein may further include a step of recovering the dialyzed internal solution after dialysis from the dialysis membrane. The step of collecting the dialysis internal solution from the dialysis membrane may include, for example, a step of recovering the dialysis internal solution from the dialysis tube or the container having the dialysis membrane. Collecting includes taking out. The method for producing a dialyzed aqueous solution containing silk protein further includes a step of recovering cocoons from the honeycomb, a step of dissolving cocoons in an aqueous inorganic salt solution, or a step of removing insoluble components from an aqueous inorganic salt solution in which cocoons are dissolved. May be included.
 この生産方法で得られる透析済水溶液は、例えば、蜂のシルク蛋白質を0.1wt%以上、揮発性塩基物質を0.0001N~14.8N含み、20℃以下の透析済水溶液である。透析済水溶液の保存期間は、例えば、0.5、1、2、3、4、5、10、14、15、20、25、30、40、又は50日以下、又はそれらいずれか2つの値の範囲内であってもよい。 The dialyzed aqueous solution obtained by this production method is, for example, a dialyzed aqueous solution containing at least 0.1 wt% of bee silk protein, 0.0001 N to 14.8 N of volatile basic substance, and 20 ° C. or less. The storage period of the dialyzed aqueous solution is, for example, 0.5, 1, 2, 3, 4, 5, 10, 14, 15, 20, 25, 30, 40, or 50 days or less, or a range of any two of them. It may be within.
 シルク蛋白質を含有する透析済水溶液の生産方法は、透析内液としてシルク蛋白質を含有する無機塩水溶液を用い、透析外液として高pHの水溶液を用いて透析する工程、を含む生産方法であってもよい。この生産方法を経て得られる透析済水溶液は、長期間保存した後であっても、水溶液状態を維持することが可能である。例えば、後述する実施例では、蜂又は蚕のシルク蛋白質を含有する透析済水溶液は、1カ月程度経過後も水溶液状態を維持していることが実証されている。そのため、上記透析済水溶液を、長期間保存後、硬化させることで、硬化材料を得ることができる。長期間は、例えば、15、20、25、30、又は35日以上であってもよく、それらいずれか2つの値の範囲内であってもよい。 A method for producing a dialyzed aqueous solution containing silk protein is a production method including a step of dialysis using an aqueous salt solution containing silk protein as a dialysis internal solution and a high pH aqueous solution as an external dialysis solution. Also good. The dialyzed aqueous solution obtained through this production method can maintain the aqueous solution state even after being stored for a long period of time. For example, in the examples described later, it has been demonstrated that a dialyzed aqueous solution containing a bee or cocoon silk protein maintains an aqueous solution state even after about one month. Therefore, a cured material can be obtained by curing the dialyzed aqueous solution after long-term storage. The long period may be, for example, 15, 20, 25, 30, or 35 days or more, and may be in the range of any two of them.
 (2)シルク蛋白質を含有する硬化材料の生産方法
 本発明の一実施形態は、シルク蛋白質を含有する硬化材料の生産方法である。この生産方法は、例えば、透析内液として蜂のシルク蛋白質を含有する無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程を含む、生産方法である。この生産方法は、さらに上記透析工程後の透析内液を透析膜から回収する工程と、回収後の透析内液を硬化させる工程とを含んでいてもよい。この生産方法を経て得られる硬化材料は、力学物性、透明性、又は、柔軟性に優れている。又は、この生産方法を経て得られる硬化材料は、αへリックス構造を有している。
(2) Method for Producing Cured Material Containing Silk Protein One embodiment of the present invention is a method for producing a cured material containing a silk protein. This production method is, for example, a production method including a step of dialysis using an aqueous inorganic salt solution containing bee silk protein as an internal dialysis solution and an aqueous solution having a pH of 9.0 or more as an external dialysis solution. This production method may further include a step of recovering the dialyzed internal solution after the dialysis step from the dialysis membrane and a step of curing the recovered dialyzed internal solution. The cured material obtained through this production method is excellent in mechanical properties, transparency, or flexibility. Alternatively, the cured material obtained through this production method has an α helix structure.
 シルク蛋白質を含有する透析済水溶液又は硬化材料の生産方法は、さらに、蜂の巣又は繭を、無機塩水溶液中に溶解する工程を含んでいてもよい。またさらに、蜂の巣又は繭を溶解させた後の無機塩水溶液をフィルターで処理する工程を含んでいてもよい。これにより、蜂の巣又は繭にシルク以外の物質が付着していたとしても、それらを除くことができる。 The method for producing a dialyzed aqueous solution or a hardening material containing silk protein may further include a step of dissolving the honeycomb or the cocoon in the inorganic salt aqueous solution. Furthermore, you may include the process of processing the inorganic salt aqueous solution after dissolving a honeycomb or a cocoon with a filter. Thereby, even if substances other than silk adhere to the honeycomb or the cocoon, they can be removed.
 透析済水溶液を硬化させる工程は、透析済水溶液を乾燥させる工程を含んでいてもよい。又は、透析済水溶液を型枠に流し込んで乾燥させる工程を含んでいてもよい。型枠は、例えば、シャーレ等の容器、又は凹状部を有する器材を使用してもよい。型枠は、フィルムを剥がしやすくする観点からは、フッ素加工をした型枠が好ましい。フッ素加工を施す器材は、フッ素加工時の熱に強い観点、及び任意の形状の型枠を作製しやすい観点からは、金属素材であることが好ましい。金属素材としては、例えば、ステンレスであってもよい。また、型枠は、フィルムを剥がしやすくする観点からは、ガラスシャーレ以外のシャーレ(例えば、ポリスチレンシャーレ、テフロンシャーレ、ステンレスシャーレ等)が好ましい。 The step of curing the dialyzed aqueous solution may include a step of drying the dialyzed aqueous solution. Alternatively, a step of pouring the dialyzed aqueous solution into a mold and drying it may be included. For the mold, for example, a container such as a petri dish or an instrument having a concave portion may be used. From the viewpoint of facilitating peeling of the film, the mold is preferably a fluorine-treated mold. The equipment to be subjected to fluorine processing is preferably a metal material from the viewpoint of being resistant to heat during fluorine processing and from the viewpoint of easily producing a mold having an arbitrary shape. The metal material may be stainless steel, for example. The mold is preferably a petri dish other than a glass petri dish (for example, a polystyrene petri dish, a Teflon petri dish, a stainless petri dish, etc.) from the viewpoint of facilitating peeling of the film.
 上記乾燥温度は、力学物性又は柔軟性に優れた硬化材料を作成する観点からは、29℃未満が好ましく、28℃以下が好ましく、27℃以下がより好ましい。この温度は、例えば、0、5、10、15、20、25、27、29、30、35、36、又は40℃であってもよく、それらいずれか2つの値の範囲内であってもよい。 The above drying temperature is preferably less than 29 ° C., preferably 28 ° C. or less, and more preferably 27 ° C. or less from the viewpoint of preparing a cured material having excellent mechanical properties or flexibility. This temperature may be, for example, 0, 5, 10, 15, 20, 25, 27, 29, 30, 35, 36, or 40 ° C., and may be within the range of any two of them. Good.
 上記乾燥の時間は、力学物性又は柔軟性に優れた硬化材料を作成する観点からは、72時間以内が好ましく、48時間以内がより好ましい。この時間は、硬化材料が力学物性又は柔軟性を十分に有していれば、例えば、24、36、48、60、72、84、96、又は120時間であってもよく、それらいずれか2つの値の範囲内であってもよい。 The drying time is preferably within 72 hours, and more preferably within 48 hours, from the viewpoint of preparing a cured material having excellent mechanical properties or flexibility. This time may be, for example, 24, 36, 48, 60, 72, 84, 96, or 120 hours, provided that the cured material has sufficient mechanical properties or flexibility, either of which 2 It may be within a range of two values.
 上記硬化材料は、フィルムであってもよい。フィルムの厚さは、力学物性を上げる観点からは、5μm以上が好ましく、25μm以上がより好ましい。この厚さは、例えば、1、5、10、30、50、100、150、200、300、1000、又は5000μm以上、又はそれらいずれか2つの値の範囲内であってもよい。フィルムのヤング率は、例えば、2.0、2.4、2.8、3.5、又は4.0GPa以上、又はそれらいずれか2つの値の範囲内であってもよい。フィルムの引張り強度は、例えば、55、60、65、68、70、75、80、又は85MPa以上、又はそれらいずれか2つの値の範囲内であってもよい。フィルムの破断伸びは、例えば、2.5、3.0、3.4、3.8、4.0、5.0、又は6.0%以上、又はそれらいずれか2つの値の範囲内であってもよい。フィルムは、フィルム状の固形物又はゲルを含む。 The film may be a film. The thickness of the film is preferably 5 μm or more, more preferably 25 μm or more, from the viewpoint of increasing mechanical properties. This thickness may be, for example, 1, 5, 10, 30, 50, 100, 150, 200, 300, 1000, or 5000 μm or more, or within a range of any two of these values. The Young's modulus of the film may be, for example, 2.0, 2.4, 2.8, 3.5, or 4.0 GPa or more, or within a range of any two values thereof. The tensile strength of the film may be, for example, 55, 60, 65, 68, 70, 75, 80, 85 MPa or more, or any two values thereof. The elongation at break of the film may be, for example, 2.5, 3.0, 3.4, 3.8, 4.0, 5.0, 6.0% or more, or within a range of any two of them. The film includes a film-like solid or gel.
 上記硬化材料は、さらに溶解して使用することができる。この場合の実施形態は、上記硬化材料を無機塩水溶液に溶解させる工程と、透析内液として硬化材料が溶解した無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程と、を含む、生産方法である。この方法によれば、後述する実施例で実証されているように、フィルムの原料等の各種用途に使用可能で、蜂のシルク蛋白質を豊富に含む高品質な水溶液を得ることができる。そして、この水溶液を硬化させれば、再度硬化材料を得ることができる。 The above-mentioned curable material can be further dissolved and used. In this embodiment, the step of dissolving the curable material in an inorganic salt aqueous solution, an inorganic salt aqueous solution in which the curable material is dissolved as a dialysis internal solution, and dialysis using an aqueous solution having a pH of 9.0 or more as an external dialysis solution A production method including a process. According to this method, as demonstrated in the examples described later, it is possible to obtain a high-quality aqueous solution that can be used for various applications such as film raw materials and is rich in bee silk protein. And if this aqueous solution is hardened, a hardening material can be obtained again.
 (3)シルク蛋白質を含有する水溶液の安定性を向上させる方法
 本発明の一実施形態は、シルク蛋白質を含有するpH9.0未満の水溶液の安定性を向上させる方法である。この方法は、例えば、シルク蛋白質を含有するpH9.0未満の水溶液に対して、pH9.0以上の水溶液を用いて透析する工程を含む、方法である。この方法によれば、透析済水溶液の安定性を向上させることができるため、長期間保存後でも、シルク蛋白質を含有する透析済水溶液を医療用製品用等の用途に使用することができる。なお、安定性を向上させることは、固化を抑制することを含む。
(3) Method for Improving Stability of Aqueous Solution Containing Silk Protein One embodiment of the present invention is a method for improving the stability of an aqueous solution containing silk protein and having a pH of less than 9.0. This method includes, for example, a step of dialysis using an aqueous solution having a pH of 9.0 or higher against an aqueous solution having a pH of less than 9.0 containing silk protein. According to this method, since the stability of the dialyzed aqueous solution can be improved, the dialyzed aqueous solution containing silk protein can be used for medical products and the like even after long-term storage. In addition, improving stability includes suppressing solidification.
 (4)透析条件
 透析外液のpHは、シルク蛋白質の固化をより抑制する観点からは、9.0以上が好ましく、pH10.0以上がより好ましい。pHは、例えば、9.0、9.5、10、10.5、11.0、11.5、12.0、12.5、13.0、13.5、又は14以上、又はそれらいずれか2つの値の範囲内であってもよい。
(4) Dialysis conditions The pH of the dialysis external solution is preferably 9.0 or more, more preferably 10.0 or more, from the viewpoint of further suppressing the solidification of the silk protein. The pH may be, for example, 9.0, 9.5, 10, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, or 14 or more, or a range of any two of them.
 透析を行うときの温度は、シルク蛋白質の固化をより抑制する観点からは、28℃以下が好ましい。また、シルク蛋白質の分子量の低下を抑制する観点からは、20℃以下が好ましく、15℃以下がより好ましく、5.5℃以下がさらに好ましい。また、透析効率を上げる観点、又はランニングコストを下げる観点からは、2℃以上が好ましく、4℃以上がより好ましい。透析温度は、透析内液及び透析外液が凍結しない温度であれば特に限定されない。透析温度は、例えば、-5、0、1、2、3、3.5、4、4.5、5、5.5、6、6.5、7、8、9、10、12、15、20、25、28、30、35、38、又は40℃以下、又はそれらいずれか2つの値の範囲内であってもよい。 The temperature at the time of dialysis is preferably 28 ° C. or less from the viewpoint of further suppressing the solidification of the silk protein. Further, from the viewpoint of suppressing a decrease in the molecular weight of the silk protein, it is preferably 20 ° C or lower, more preferably 15 ° C or lower, and further preferably 5.5 ° C or lower. Further, from the viewpoint of increasing the dialysis efficiency or reducing the running cost, 2 ° C. or higher is preferable, and 4 ° C. or higher is more preferable. The dialysis temperature is not particularly limited as long as the dialysis internal solution and the dialysis external solution are not frozen. Dialysis temperature is, for example, -5, 0, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 12, 15, 20, 25, 28, 30 , 35, 38, or 40 ° C. or less, or any two values thereof.
 透析の回数は、力学物性、透明性、又は柔軟性に優れた硬化材料を作成する観点からは、4回以上が好ましい。この回数は、例えば、1、2、3、4、5、6、又は10回であってもよく、それらいずれか2つの値の範囲内であってもよい。透析膜は、例えば、セルロース膜又は合成高分子系膜であってもよい。透析膜の分画分子量は、例えば、500、1000、5000、10000、12000、14000、16000、18000、20000、50000、又は100000であってもよく、それらいずれか2つの値の範囲内であってもよい。 The number of dialysis is preferably 4 times or more from the viewpoint of preparing a cured material having excellent mechanical properties, transparency, or flexibility. This number of times may be, for example, 1, 2, 3, 4, 5, 6, or 10 times, and may be within the range of any two values thereof. The dialysis membrane may be, for example, a cellulose membrane or a synthetic polymer membrane. The fractional molecular weight of the dialysis membrane may be, for example, 500, 1000, 5000, 10000, 12000, 14000, 16000, 18000, 20000, 50000, or 100,000, and is within the range of any two of them. Also good.
 透析済水溶液は、透析前の透析内液に比べて、透析前の透析内液に含まれていた無機塩の濃度が低減された水溶液であってもよい。透析は、透析済水溶液中の、透析前の透析内液に含まれていた無機塩の濃度が、透析前の透析内液に比べて低減されるように行われることが好ましい。透析前の透析外液の無機塩濃度が、透析前の透析内液の無機塩濃度よりも低い場合、透析内液の無機塩濃度を低減できる。透析によって透析内液から除去される無機塩量は、例えば、70、80、90、95、97、99、又は100%以上、又はそれらいずれか2つの値の範囲内であってもよい。 The dialyzed aqueous solution may be an aqueous solution in which the concentration of inorganic salt contained in the dialysis internal solution before dialysis is reduced compared to the dialysis internal solution before dialysis. The dialysis is preferably performed so that the concentration of the inorganic salt contained in the dialyzed aqueous solution before dialysis in the dialyzed aqueous solution is reduced as compared with the dialyzed internal solution before dialysis. When the inorganic salt concentration of the dialysis external solution before dialysis is lower than the inorganic salt concentration of the dialysis internal solution before dialysis, the inorganic salt concentration of the dialysis internal solution can be reduced. The amount of inorganic salt removed from the dialyzed solution by dialysis may be, for example, 70, 80, 90, 95, 97, 99, 100% or more, or a range of any two of them.
 透析時の成分濃度、pH、又は温度等を上記の透析条件の中から適宜調整することで、透析内液が水溶液状態を維持するように透析することができる。シルク蛋白質を豊富に含む高品質な透析済水溶液を得るための最も好ましい透析条件は、透析内液に2~3wt%のシルク蛋白質を含有する水溶液、透析外液に0.1~0.5Nのアンモニア水を用い、4~5.5℃の温度で透析を行う条件である。また、透析済水溶液から安定的にフィルムを作成するための最も好ましい条件は、乾燥温度を27℃以下に設定し、透析済水溶液を2日以内で乾燥させる条件である。なお、透析済水溶液を高品質と評価するための指標としては、例えば、シルク蛋白質濃度が高いこと、長期間保存可能なこと、シルク蛋白質が分解されにくい状態にあること、有害性が低いこと、硬化材料化したときに力学物性、柔軟性、もしくは透明性に優れていること、硬化材料化したときにαへリックス構造を有していること、硬化材料化したときに揮発性塩基物質が残留しにくい状態にあること、又は再利用ができること等が挙げられる。 Dialysis can be performed so that the internal solution of the dialysis is maintained in an aqueous solution by appropriately adjusting the component concentration, pH, temperature, or the like during dialysis from the above dialysis conditions. The most preferable dialysis conditions for obtaining a high-quality dialyzed aqueous solution rich in silk protein are an aqueous solution containing 2 to 3 wt% silk protein in the dialysis inner solution and 0.1 to 0.5 N ammonia water in the outer dialysis solution. This is the condition for dialysis at a temperature of 4 to 5.5 ° C. Further, the most preferable conditions for stably forming a film from the dialyzed aqueous solution are the conditions in which the drying temperature is set to 27 ° C. or lower and the dialyzed aqueous solution is dried within 2 days. In addition, as an index for evaluating the dialyzed aqueous solution as high quality, for example, the silk protein concentration is high, it can be stored for a long period of time, the silk protein is in a state that is not easily decomposed, the toxicity is low, Excellent mechanical properties, flexibility, or transparency when made into a curable material, α-helix structure when made into a curable material, and volatile basic substance remaining when made into a curable material It is difficult to do it, or it can be reused.
 (5)透析内液
 透析前の上記透析内液のシルク蛋白質の濃度は、シルク蛋白質の透析中の固化をより抑制する観点からは、140mg/mL以下が好ましく52mg/mL以下がより好ましい。また、シルク蛋白質をより豊富に含み、且つ力学物性又は柔軟性に優れた硬化材料を作成する観点からは、15mg/mL以上が好ましく、35mg/mL 以上がより好ましい。このように、透析内液中のシルク蛋白質濃度が高ければ、硬化材料作成時の乾燥時間を節約できるという効果がある。そして、乾燥時間を節約できれば乾燥時間中の蛋白質の変性が抑えられるため、所望の物性のフィルムをより効率的に得ることができる。また、乾燥時間を節約できれば、手間が減り、硬化材料の生産性が向上する。透析内液のシルク蛋白質の濃度は、例えば、1、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、80、90、100、110、120、130、140、150、160、又は180 mg/mLであってもよく、それらいずれか2つの値の範囲内であってもよい。
(5) Dialysis internal solution The concentration of silk protein in the above dialysis internal solution before dialysis is preferably 140 mg / mL or less, more preferably 52 mg / mL or less, from the viewpoint of further suppressing the solidification of the silk protein during dialysis. In addition, from the viewpoint of producing a cured material containing abundant silk protein and excellent in mechanical properties or flexibility, it is preferably 15 mg / mL or more, more preferably 35 mg / mL or more. Thus, if the silk protein concentration in the dialysis internal solution is high, there is an effect that the drying time at the time of preparing the curable material can be saved. If the drying time can be saved, protein denaturation during the drying time can be suppressed, so that a film having desired physical properties can be obtained more efficiently. Further, if the drying time can be saved, labor is reduced and the productivity of the cured material is improved. The concentration of silk protein in the dialysis internal fluid is, for example, 1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100, It may be 110, 120, 130, 140, 150, 160, or 180 mg / mL, and may be within the range of any two of them.
 透析後の透析内液、又は透析済水溶液中のシルク蛋白質の濃度は、シルク蛋白質の固化をより抑制する観点からは、6.5wt%以下が好ましく、3.0wt%以下がより好ましい。また、シルク蛋白質をより豊富に含み、且つ力学物性又は柔軟性に優れた硬化材料を作成する観点からは、1.0wt%以上が好ましく、2.0wt%以上がより好ましい。このように、透析内液中のシルク蛋白質濃度が高ければ、硬化材料作成時の乾燥時間を節約できるという効果がある。そして、乾燥時間を節約できれば乾燥時間中の蛋白質の変性が抑えられるため、所望の物性のフィルムをより効率的に得ることができる。また、乾燥時間を節約できれば、手間が減り、硬化材料の生産性が向上する。この濃度は、例えば、0.1、0.5、0.75、1.0、1.25、1.5、2.0、2.5、2.75、3.0、3.25、3.5、4.0、4.5、5.0、5.5、6.0、6.25、6.5、7.0、8.0、9.0、又は10.0wt%であってもよく、それらいずれか2つの値の範囲内であってもよい。 The concentration of the silk protein in the dialyzed internal solution after dialysis or the dialyzed aqueous solution is preferably 6.5 wt% or less, more preferably 3.0 wt% or less from the viewpoint of further suppressing the solidification of the silk protein. Further, from the viewpoint of producing a cured material containing abundant silk protein and having excellent mechanical properties or flexibility, 1.0 wt% or more is preferable, and 2.0 wt% or more is more preferable. Thus, if the silk protein concentration in the dialysis internal solution is high, there is an effect that the drying time at the time of preparing the curable material can be saved. If the drying time can be saved, protein denaturation during the drying time can be suppressed, so that a film having desired physical properties can be obtained more efficiently. Further, if the drying time can be saved, labor is reduced and the productivity of the cured material is improved. This concentration is, for example, 0.1, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 2.75, 3.0, 3.25, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.25, 6.5, 7.0, 8.0, 9.0, Alternatively, it may be 10.0 wt%, and may be within the range of any two of them.
 透析内液の液量は、例えば、0.1、0.5、1、2、5、10、20、100、500、又は1000mLであってもよく、それらいずれか2つの値の範囲内であってもよい。透析内液のpHは、例えば、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、又は9.0未満、又はそれらいずれか2つの値の範囲内であってもよい。 The volume of the dialysis internal solution may be, for example, 0.1, 0.5, 1, 2, 5, 10, 20, 100, 500, or 1000 mL, or may be within the range of any two of them. . The pH of the dialyzed solution may be, for example, less than 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, or 9.0, or a range of any two of them.
 (6)透析外液
 透析外液は、力学物性、透明性、又は柔軟性に優れた硬化材料を得る観点からは、揮発性塩基物質を含む水溶液であることが好ましい。揮発性塩基物質としては、例えば、アミノ基を有する揮発性化合物であってもよい。アミノ基を有する揮発性化合物は、例えば、アンモニア、ジエチルアミン、又はトリメチルアミン等を挙げることができる。揮発性塩基物質は、幅広い透析条件下でシルク蛋白質の固化を抑制可能な観点からは、アンモニアが好ましい。ジエチルアミンを用いる場合には、フィルムを得るための乾燥過程で腐食の防止措置を取ることが好ましい。トリエチルアミンは、18.7℃以下では水に溶けにくい。そのため、トリエチルアミンを用いた場合には、20℃以上の高温で透析やキャストを行うことが好ましい。透析外液のpHは、揮発性塩基物質の濃度を調整することによって、調整してもよい。なお「揮発性」は、気化しやすい性質を含む。即ち揮発性は、気化性を含む。塩基物質を含む水溶液が硬化した際に、硬化材料にその塩基物質が残存しないとき、揮発性とみなしてもよい。仮に揮発性塩基物質が硬化材料中に微量に残存した場合の残存率は低いほど好ましく、例えば、例えば、0.5、0.1、0.01、0.001、又は0%であってもよく、それらいずれか2つの値の範囲内であってもよい。
(6) Dialysis External Solution The dialysis external solution is preferably an aqueous solution containing a volatile basic substance from the viewpoint of obtaining a cured material having excellent mechanical properties, transparency, or flexibility. As the volatile base substance, for example, a volatile compound having an amino group may be used. Examples of the volatile compound having an amino group include ammonia, diethylamine, and trimethylamine. The volatile base substance is preferably ammonia from the viewpoint of suppressing the solidification of silk protein under a wide range of dialysis conditions. When diethylamine is used, it is preferable to take measures to prevent corrosion during the drying process to obtain a film. Triethylamine is hardly soluble in water below 18.7 ° C. Therefore, when triethylamine is used, it is preferable to perform dialysis or casting at a high temperature of 20 ° C. or higher. The pH of the dialysis external solution may be adjusted by adjusting the concentration of the volatile basic substance. “Volatile” includes the property of being easily vaporized. That is, volatility includes vaporization. When an aqueous solution containing a basic substance is cured, if the basic substance does not remain in the cured material, it may be regarded as volatile. If the volatile basic substance remains in a small amount in the cured material, the residual ratio is preferably as low as possible, for example, it may be 0.5, 0.1, 0.01, 0.001, or 0%. It may be within the range.
 透析外液中の揮発性塩基物質の濃度は、シルク蛋白質の固化をより抑制する観点からは、0.0001N超が好ましく、0.01以上がより好ましく、0.1N以上がさらに好ましい。この濃度は、例えば、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、1.0、2.0、5.0、7.0、8.0、10.0、12.0、又は14.8Nであってもよく、それらいずれか2つの値の範囲内であってもよい。揮発性塩基物質にアンモニアを使用する場合、アンモニア水の濃度が高くなりすぎるとアンモニア臭がきつくなり、人体への影響が起きたり、環境、コストの面で問題となる場合がある。これらの観点からは、アンモニアの濃度は、14.8N未満が好ましく、12.0N以下がより好ましい。なお、揮発性塩基物質を透析により透析外液から透析内液へ移動させるには、透析前の透析外液の揮発性塩基物質の濃度を、透析前の透析内液の揮発性塩基物質の濃度よりも高く設定する。また、透析前の透析外液のpHを、透析前の透析内液のpHよりも高く設定してもよい。 The concentration of the volatile basic substance in the dialysis external solution is preferably more than 0.0001N, more preferably 0.01 or more, and further preferably 0.1N or more from the viewpoint of further suppressing the solidification of the silk protein. This concentration may be, for example, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 7.0, 8.0, 10.0, 12.0, or 14.8N, any two of them It may be within the range of values. When ammonia is used as a volatile base substance, if the concentration of aqueous ammonia becomes too high, the odor of ammonia becomes too strong, which may affect the human body and cause problems in terms of environment and cost. From these viewpoints, the ammonia concentration is preferably less than 14.8N, and more preferably 12.0N or less. In order to transfer volatile basic substances from the external dialysis solution to the internal dialysis solution by dialysis, the concentration of volatile basic substances in the external dialysis solution before dialysis is the same as the concentration of volatile basic substances in the internal dialysis solution before dialysis. Set higher than. The pH of the external dialysis solution before dialysis may be set higher than the pH of the dialysis internal solution before dialysis.
 透析外液の液量は、例えば、5、10、20、100、500、1000、5000、10000、又は50000mLであってもよく、それらいずれか2つの値の範囲内であってもよい。透析効率を上げる観点からは、透析外液の液量は透析内液の液量よりも大きいことが好ましい。 The amount of the external dialysis solution may be, for example, 5, 10, 20, 100, 500, 1000, 5000, 10000, or 50000 mL, or may be in the range of any two of them. From the viewpoint of increasing the dialysis efficiency, the volume of the external dialysis solution is preferably larger than the volume of the dialysis internal solution.
 (7)シルク蛋白質
 本発明の一実施形態においてシルク蛋白質は、例えば、繭に含まれている蛋白質である。繭は、例えば、巣から得ることができる。例えば蜂の幼虫は、蛹になる前に巣穴の内側から吐糸してキャップ上の繭を作る。こうして作られるキャップ上の繭を、蜂の巣の内部から得ることができる。蜂のシルク蛋白質は、例えば、繊維状蛋白質であってもよい。また蜂のシルク蛋白質は、例えば、蜂の繭から抽出した蛋白質、又はその蛋白質をコードする遺伝子を有する遺伝子組換え生物から得られた蛋白質(即ち、組換え蛋白質)を含む。蜂のシルク蛋白質は、例えば、Silk1、2、3、4、5、又は6等のフィブロインを含んでいてもよい。蜂がキイロスズメバチの場合、シルク蛋白質は、例えば、VsSilk1、2、3、4、5、又は6等のフィブロインを含んでいてもよい。蜂の繭から抽出したシルク蛋白質に代えて、蜂のシルク蛋白質の遺伝子をホストに遺伝子組換え技術によって導入することで得られた蛋白質を用いても、上記と同様の透析条件で透析済水溶液を得ることが可能である。組換え蛋白質は、例えば、蜂の繭から抽出した蛋白質をコードする遺伝子(例えば、フィブロインをコードする遺伝子)を、遺伝子組換え技術によってホストに導入する工程、前記遺伝子を発現させて、組換え蛋白質を産生する工程、及び上記ホストから上記組換え蛋白質を抽出する工程、を含む生産方法によって得てもよい。上記ホストは、例えば、真正細菌宿主(例えば、大腸菌等)、古細菌宿主、又は真核宿主(例えば、酵母、植物、動物(例えば、ヤギ等)等)であってもよい。また組換え蛋白質は、繭を構成している蛋白質の1種以上と90%以上のアミノ酸の相同性を有する蛋白質であってもよい。上記90%以上は、例えば、95%以上、98%以上、又は100%であってもよい。上記相同性は、NCBIのBLASTによって測定された値で表すことができる。BLASTでアミノ酸配列を比較するときのアルゴリズムには、Blastpをデフォルト設定で使用できる。測定結果はPositives又はIdentitiesとして数値化されるが、本発明の一実施形態では好ましくはIdentitiesを採用する。
(7) Silk protein In one embodiment of the present invention, the silk protein is, for example, a protein contained in cocoons. Spiders can be obtained, for example, from a nest. For example, bee larvae spun from the inside of the nest to make a cocoon on the cap before it becomes a cocoon. The cocoon on the cap thus made can be obtained from the inside of the beehive. The bee silk protein may be, for example, a fibrous protein. The bee silk protein includes, for example, a protein extracted from a bee cocoon, or a protein obtained from a genetically modified organism having a gene encoding the protein (ie, a recombinant protein). The bee silk protein may contain, for example, fibroin such as Silk1, 2, 3, 4, 5, or 6. When the bee is a hornet bee, the silk protein may contain, for example, fibroin such as VsSilk1, 2, 3, 4, 5, or 6. Instead of silk protein extracted from bee cocoons, a protein obtained by introducing a bee silk protein gene into a host by genetic recombination technology can be used to prepare a dialyzed aqueous solution under the same dialysis conditions as above. It is possible to obtain. The recombinant protein is, for example, a step of introducing a gene encoding a protein extracted from bee cocoons (for example, a gene encoding fibroin) into a host by a gene recombination technique, the gene is expressed, and the recombinant protein And a step of extracting the recombinant protein from the host. The host may be, for example, an eubacterial host (for example, E. coli or the like), an archaebacterial host, or a eukaryotic host (for example, a yeast, a plant, an animal (for example, a goat) or the like). The recombinant protein may also be a protein having 90% or more amino acid homology with one or more of the proteins constituting the cocoon. The 90% or more may be, for example, 95% or more, 98% or more, or 100%. The homology can be expressed as a value measured by NCBI BLAST. Blastp can be used as the default algorithm for comparing amino acid sequences with BLAST. Although the measurement result is quantified as Positives or Identities, Identities is preferably adopted in an embodiment of the present invention.
 シルク蛋白質は、例えば、蜂目、チョウ目、又はクモ目に分類される生物のシルク蛋白質であってもよい。蜂目において、その下位の分類である科は特に限定されず、例えば、ハナバチ科、スズメバチ科、アリ科を挙げることができる。またスズメバチ科において、その下位の分類である亜科は特に限定されず、例えば、スズメバチ亜科、アシナガバチ亜科を挙げることができる。さらにスズメバチ亜科において、その下位の分類である属は特に限定されず、例えば、スズメバチ属、クロスズメバチ属、ホオナガスズメバチ属、又はヤミスズメバチ属(Provespa)を挙げることができる。スズメバチ属としては、例えば、キイロスズメバチ(Vespa simillima xanthoptera)、オオスズメバチ、コガタスズメバチ、モンスズメバチ、ヒメスズメバチ、チャイロスズメバチ、ツマグロスズメバチを挙げることができる。その中でもキイロスズメバチのシルク蛋白質は比較的容易に調達可能である。クロスズメバチ属としては、例えば、クロスズメバチ、シダクロスズメバチを挙げることができる。なお、本発明の一実施形態において「蜂」は、蜂目に分類される生物であってもよい。本発明の一実施形態において「蜂のシルク蛋白質」は、例えば、ハナバチ科、スズメバチ科、又はアリ科の生物のシルク蛋白質を含む。本発明の一実施形態において「スズメバチ」は、スズメバチ亜科に分類される生物であってもよい。本発明の一実施形態において「ホーネットシルク」は、スズメバチ亜科に分類される生物の繭を構成する繊維状物質であってもよい。本発明の一実施形態において「ホーネットシルク蛋白質」は、スズメバチ亜科に分類される生物のシルク蛋白質であってもよい。なお、スズメバチと同様に社会性蜂に分類される生物(有剣類(蜜蜂、マルハナバチ、アシナガバチ、クロスズメバチ、アリ))のシルクは、ホーネットシルクと類似の蛋白質構成を有しているので、透析工程において、ホーネットシルクと同様の挙動を示すと考えられる。 The silk protein may be, for example, a silk protein of an organism classified as a bee, a butterfly, or a spider. In the order of bees, the subordinate class is not particularly limited, and examples include bees, wasps and ants. In addition, in the hornet family, the subfamily which is a subordinate classification thereof is not particularly limited, and examples thereof include the hornet subfamily and the wasp subfamily. Furthermore, the genus which is a subordinate classification in the vespidae subfamily is not particularly limited, and examples thereof include genus wasp, genus hornet, genus hornet, or genus Provespa. Examples of the genus Vespa include Vespa simillima xanthoptera, giant hornet, hornet wasp, hornet, hornet, chiros hornet, and hornet hornet. Among them, the silk protein of Kirosuzu wasp can be procured relatively easily. Examples of the genus Cross wasp include cross wasp and fern cross wasp. In one embodiment of the present invention, the “bee” may be an organism classified as a bee. In one embodiment of the present invention, “bee silk protein” includes, for example, silk protein of a bee family, wasp family, or ant family organism. In one embodiment of the present invention, the “hornet” may be an organism classified into the wasp subfamily. In one embodiment of the present invention, the “hornet silk” may be a fibrous material that constitutes a cocoon of a living organism classified into the wasp subfamily. In one embodiment of the present invention, the “hornet silk protein” may be a silk protein of an organism classified into the wasp subfamily. Since the silk of organisms classified as social bees (swords (honeybees, bumblebees, wasps, cross wasps, ants)), like hornets, has a protein composition similar to hornet silk, dialysis In the process, it is considered to show the same behavior as Hornet silk.
 チョウ目において、その下位の分類である科は特に限定されず、例えば、カイコガ科、カレハガ科、オビガ科、イボタガ科、ヤママユガ科を挙げることができる。その中でもカイコガ科のカイコガのシルク蛋白質は比較的容易に調達可能である。またカイコガ科において、その下位の分類である亜科は特に限定されず、例えば、カイコガ亜科を挙げることができる。またカイコガ亜科において、その下位の分類である属は特に限定されず、例えば、カイコガ属を挙げることができる。カイコガ属としては、例えば、カイコガ(Bombyx mori)、クワコを挙げることができる。なお、本発明の一実施形態において「蚕」は、カイコガ科に分類される生物であってもよい。また蚕は、例えば、遺伝子組換え蚕、家蚕、セリシン蚕であってもよい。 In the Lepidoptera, there are no particular restrictions on the subordinate classes, and examples thereof include the silkworm family, the scallop family, the lobster family, the lobster family, and the scorpion family. Among them, silkworm silk protein of the silkworm family can be procured relatively easily. In the silkworm family, the subfamily that is a subordinate classification thereof is not particularly limited, and examples thereof include the silkworm family. Moreover, in the silkworm subfamily, the genus which is a subordinate classification thereof is not particularly limited, and examples thereof include the silkworm genus. Examples of the silkworm genus include silkworm (Bombyx mori) and mulberry. In one embodiment of the present invention, “蚕” may be a living organism classified into the silkworm family. The silkworm may be, for example, a genetically modified silkworm, a rabbit, or a sericin silkworm.
 (8)無機塩水溶液
 本発明の一実施形態において無機塩水溶液は、例えば、弱酸性塩、中性塩の水溶液であってもよい。また無機塩水溶液は、ハロゲン化物を溶媒に溶解した水溶液であってもよい。ハロゲン化物は、例えば、ハロゲン化リチウム、又はハロゲン化カルシウムであってもよい。また無機塩水溶液は、例えば、臭化リチウム、塩化カルシウム、銅エチレンジアミン、チオシアン酸ナトリウム、チオシアン酸リチウム、又は硝酸マグネシウム等を溶媒に溶解した水溶液であってもよい。溶媒は、例えば、蒸留水又は緩衝液であってもよい。無機塩水溶液は、シルク蛋白質をより効率的に溶解させる観点からは、臭化リチウム又は塩化カルシウムを水に溶解した水溶液が好ましい。無機塩水溶液の塩の濃度は特に限定されないが、例えば、0.5、1、2、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、又は12mol/Lであってもよく、それらいずれか2つの値の範囲内であってもよい。この濃度は、シルク蛋白質の溶解速度が向上する観点からは、2mol/L以上が好ましく、4mol/L以上がより好ましい。後述の実施例1では無機塩水溶液として9M LiBr水溶液を用いたが、7.2MのLiBr水溶液も同様の溶解性を示すことを本願発明者は確認している。上記の無機塩水溶液中にシルク蛋白質を溶解する工程において、温度はシルク蛋白質が溶解する温度であればよく、例えば、5、10、15、20、25、30、35、37、40、45、50、60、70、又は80℃以下、又はそれらいずれか2つの値の範囲内であってもよい。この溶解工程の温度は、シルク蛋白質の分子分解を特に抑制できる観点からは40℃以下が好ましく、30℃以下がより好ましく、25℃以下がさらに好ましい。溶解時間は、例えば、2、5、10、15、20、25、30、60、120、200、500、1000分以上、又はそれらいずれか2つの値の範囲内であってもよい。また、シルク蛋白質を塩化カルシウム水溶液に溶解する場合、シルク蛋白質の溶解速度が特に早く、シルク蛋白質の飽和溶解量が特に大きいという観点からは、塩化カルシウム濃度は3~6 mol/Lが好ましく、4~5 mol/Lがより好ましい。また、シルク蛋白質を塩化カルシウム水溶液に溶解する場合、シルク蛋白質の溶解速度の早さ、溶解量の多さ、分解の抑制に関する総合的な観点からは、溶解工程の温度は15~40℃が好ましく、20~35℃がより好ましく、25~33℃がさらに好ましい。
(8) Inorganic salt aqueous solution In one embodiment of the present invention, the inorganic salt aqueous solution may be, for example, an aqueous solution of a weak acid salt or a neutral salt. The inorganic salt aqueous solution may be an aqueous solution in which a halide is dissolved in a solvent. The halide may be, for example, lithium halide or calcium halide. The inorganic salt aqueous solution may be, for example, an aqueous solution in which lithium bromide, calcium chloride, copper ethylenediamine, sodium thiocyanate, lithium thiocyanate, magnesium nitrate, or the like is dissolved in a solvent. The solvent may be, for example, distilled water or a buffer solution. The inorganic salt aqueous solution is preferably an aqueous solution in which lithium bromide or calcium chloride is dissolved in water from the viewpoint of more efficiently dissolving the silk protein. The concentration of the salt in the inorganic salt aqueous solution is not particularly limited.For example, 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 , 10.5, 11, 11.5, or 12 mol / L, or any of these two values. This concentration is preferably 2 mol / L or more, more preferably 4 mol / L or more, from the viewpoint of improving the dissolution rate of silk protein. In Example 1 described later, a 9M LiBr aqueous solution was used as the inorganic salt aqueous solution, but the present inventor has confirmed that a 7.2M LiBr aqueous solution also exhibits the same solubility. In the step of dissolving the silk protein in the aqueous inorganic salt solution, the temperature may be any temperature at which the silk protein is dissolved, for example, 5, 10, 15, 20, 25, 30, 35, 37, 40, 45, It may be within the range of 50, 60, 70, or 80 ° C. or less, or any two values thereof. The temperature of this dissolution step is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, and further preferably 25 ° C. or lower from the viewpoint of particularly suppressing the molecular degradation of silk protein. The dissolution time may be, for example, 2, 5, 10, 15, 20, 25, 30, 60, 120, 200, 500, 1000 minutes or more, or a range of any two of them. When the silk protein is dissolved in the calcium chloride aqueous solution, the calcium chloride concentration is preferably 3 to 6 mol / L from the viewpoint that the dissolution rate of the silk protein is particularly fast and the saturation dissolution amount of the silk protein is particularly large. ~ 5 mol / L is more preferred. In addition, when dissolving silk protein in an aqueous calcium chloride solution, the temperature of the dissolution process is preferably 15 to 40 ° C. from a comprehensive viewpoint regarding the speed of dissolution of the silk protein, the amount of dissolution, and the suppression of degradation. 20 to 35 ° C is more preferable, and 25 to 33 ° C is more preferable.
 本発明の一実施形態は、蜂のシルク蛋白質を3~6mol/Lの塩化カルシウム水溶液に溶解させる工程を含む、シルク蛋白質水溶液の生産方法である。この生産方法は、シルク蛋白質の溶解速度が速いため、シルク蛋白質水溶液を特に効率的に生産できる。また、シルク蛋白質の飽和溶解量が大きいため、特に高濃度のシルク蛋白質水溶液を生産できる。また、低温下でもシルク蛋白質水溶液を生産できるため、シルク蛋白質の分解を特に抑制することができる。また、この生産方法を経て得られたシルク蛋白質水溶液を透析し、透析済水溶液を調製する工程と、その透析済水溶液を硬化させる工程と、を経て、硬化材料を生産できる。 One embodiment of the present invention is a method for producing a silk protein aqueous solution, comprising the step of dissolving bee silk protein in a 3 to 6 mol / L calcium chloride aqueous solution. In this production method, since the silk protein has a high dissolution rate, an aqueous silk protein solution can be produced particularly efficiently. In addition, since the silk protein has a large amount of saturated dissolution, a particularly high concentration silk protein aqueous solution can be produced. Moreover, since the silk protein aqueous solution can be produced even at low temperatures, the degradation of the silk protein can be particularly suppressed. Further, a curable material can be produced through a step of dialyzing the silk protein aqueous solution obtained through this production method to prepare a dialyzed aqueous solution and a step of curing the dialyzed aqueous solution.
 (9)用途
 本発明の一実施形態に係る透析済水溶液及び硬化材料は、天然材料であり、生体親和性が高いため、医療品製品や化粧品の原料として特に好適に使用できる。また、有機溶媒を使用せずに生産できる点からも、医療品製品や化粧品の原料に適しているといえる。例えば、透析済水溶液を人体の外表面に塗る水溶液として使用できる。特に、スズメバチのシルク蛋白質の高次構造は、ケラチンの高次構造と類似していることから、ケラチン部位(ケラチンでできている部位)の修復や保護剤として好適に使用できる。ケラチン部位としては、例えば、爪、又は毛髪を挙げることができる。そのため、透析済水溶液は爪の損傷部位の修復や保護剤として使用できる。硬化材料を医療用製品用として使用する場合、例えば、医療用のフィルム、細胞足場材料、人工角膜材料等として使用できる。また透析済水溶液は、例えば、パーマ液として使用できる。このパーマ液は、毛髪の保護剤として機能する。
(9) Applications A dialyzed aqueous solution and a curable material according to an embodiment of the present invention are natural materials and have high biocompatibility, so that they can be particularly suitably used as raw materials for medical products and cosmetics. Moreover, it can be said that it is suitable as a raw material for medical products and cosmetics because it can be produced without using an organic solvent. For example, it can be used as an aqueous solution in which a dialyzed aqueous solution is applied to the outer surface of a human body. In particular, since the higher order structure of the wasp silk protein is similar to the higher order structure of keratin, it can be suitably used as a keratin site (site made of keratin) or as a protective agent. Examples of keratin sites include nails or hair. Therefore, the dialyzed aqueous solution can be used as a repairing or protecting agent for the damaged part of the nail. When the curable material is used for a medical product, for example, it can be used as a medical film, a cell scaffold material, an artificial cornea material, or the like. The dialyzed aqueous solution can be used as a permanent solution, for example. This permanent liquid functions as a hair protecting agent.
 本発明の一実施形態に係る硬化材料は、絶縁性、低比誘電率性などの電気特性を有している。これらの電気特性は高電圧下でも発揮できる。また硬化材料は、曲げや引張りに対する強度も有し、さらに高温(例えば、200℃近くの高温)にも耐えられ、フィルムの厚さを10μm程度まで制御可能である。本発明の一実施形態に係る硬化材料は、これらのような性質を有していることから、例えば、電子機器の中で使われる絶縁フィルムとして好適に使用できる。 The curable material according to one embodiment of the present invention has electrical characteristics such as insulation and low relative dielectric constant. These electrical characteristics can be exhibited even under high voltage. The cured material also has strength against bending and tension, can withstand high temperatures (for example, near 200 ° C.), and the film thickness can be controlled to about 10 μm. Since the curable material which concerns on one Embodiment of this invention has such a property, it can be used conveniently as an insulating film used in an electronic device, for example.
 本発明の一実施形態に係る透析済水溶液は、エレクトロスピニング法等の方法を用いて繊維製品にすることができる。繊維製品の形態としては、例えば、不織布を挙げることができる。この不織布は、例えば、フィルター、又は細胞足場材等として使用することができる。エレクトロスピニングにおいて、透析済水溶液とポリエチレンオキシド等の溶液との混合割合は、例えば、透析済水溶液がポリエチレンオキシド等の溶液に対して1.2、1.5、2、3、4、5、又は10倍量の固形分を含む比率であってもよく、それらいずれか2つの値の範囲内であってもよい。 The dialyzed aqueous solution according to one embodiment of the present invention can be made into a textile product using a method such as an electrospinning method. As a form of a textile product, a nonwoven fabric can be mentioned, for example. This nonwoven fabric can be used as, for example, a filter or a cell scaffold. In electrospinning, the mixing ratio of a dialyzed aqueous solution and a solution of polyethylene oxide is, for example, 1.2, 1.5, 2, 3, 4, 5, or 10 times the amount of the dialyzed aqueous solution relative to a solution of polyethylene oxide or the like. The ratio may include a solid content, or may be within the range of any two of them.
 本発明の一実施形態に係る透析済水溶液は、透析温度、透析外液のpH、又はシルク蛋白質濃度によってはゾルもしくはゲルになってもよい。このときに得られるゾルやゲルは透明性が高く、純水で透析したときに得られる白濁したゾルやゲルとは異なっている。この透明性の高いゾルやゲルは、例えば、ジェル状化粧品用として使用できる。 The dialyzed aqueous solution according to one embodiment of the present invention may be a sol or gel depending on the dialysis temperature, the pH of the external dialysate, or the silk protein concentration. The sol or gel obtained at this time is highly transparent and is different from the cloudy sol or gel obtained when dialyzed with pure water. This highly transparent sol or gel can be used, for example, for gel cosmetics.
 (10)用語の説明
 本発明の一実施形態において「用」は、専用又は兼用として使用されるものに対して使用してもよい。本発明の一実施形態において「材料」は、例えば、製品又は中間体の構成要素、原料、又は成分として用いられる物質であってもよい。この材料は、1種又は2種以上の物質を含んでいてもよい。この材料の形状、材質は特に限定されない。本発明の一実施形態において「硬化」は、水溶液の水分が蒸発又は気化して、固形状又は半固形状の状態になる現象を含む。この硬化は、固化、固形化、又は半固形化の現象を含む。この硬化は、水分の蒸発又は気化に伴う現象であってもよく、高分子成分の架橋に伴う現象であってもよい。また固化は、ゲル化又はゾル化を含む。本発明の一実施形態において「硬化材料」は、水溶液状態でなければ、硬度は特に限定されず、例えば、固形状、ゲル状、又はゾル状であってもよい。本発明の一実施形態において「透析済水溶液」は、透析操作を経た後の水溶液を含む。透析済水溶液は、例えば、透析工程後の透析内液を透析膜から回収した後の水溶液であってもよい。このとき、透析時間、透析後の透析内液の成分濃度、又は透析済水溶液が収容される容器は特に限定されない。透析済水溶液は、水溶液状態であればよく、その粘度(15℃)は、例えば、100、50、25、10、5、1、又は0.1cp以下、又はそれらいずれか2つの値の範囲内であってもよい。
(10) Explanation of Terms In one embodiment of the present invention, “used” may be used for a dedicated or combined use. In one embodiment of the present invention, the “material” may be, for example, a substance used as a component, raw material, or component of a product or an intermediate. This material may contain one or more substances. The shape and material of this material are not particularly limited. In one embodiment of the present invention, “curing” includes a phenomenon in which water in an aqueous solution evaporates or vaporizes into a solid or semi-solid state. This curing includes the phenomenon of solidification, solidification, or semi-solidification. This curing may be a phenomenon accompanying evaporation or vaporization of moisture, or a phenomenon accompanying crosslinking of the polymer component. Solidification includes gelation or solification. In one embodiment of the present invention, the “curing material” is not particularly limited as long as it is not in an aqueous solution state, and may be, for example, solid, gel, or sol. In one embodiment of the present invention, the “dialyzed aqueous solution” includes an aqueous solution after undergoing a dialysis operation. The dialyzed aqueous solution may be, for example, an aqueous solution after collecting the dialyzed internal solution after the dialysis step from the dialysis membrane. At this time, the dialysis time, the component concentration of the dialysis internal solution after dialysis, or the container in which the dialyzed aqueous solution is accommodated is not particularly limited. The dialyzed aqueous solution may be in an aqueous solution state, and its viscosity (15 ° C.) is, for example, 100, 50, 25, 10, 5, 1, or 0.1 cp or less, or within the range of any two of them. There may be.
 なお、本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。 In this specification, “or” is used when “at least one” of the items listed in the text can be adopted. The same applies to “or”. In this specification, when “in the range of two values” is specified, the range includes the two values themselves.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted. Moreover, it is also possible to adopt a combination of the configurations described in the above embodiments.
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
 <試験例1>透析外液として純水を用いた場合
 キイロスズメバチの繭62.5mgを2.5mlの9M LiBr水溶液に37℃で20分間以内で溶解した後、透析膜に流し込んだ。透析膜にはエーディア(株)製の透析用セルロースチューブ(透析膜 8/32, 平面幅 10mm)を使用した。透析外液には500mlの純水を使用した。透析温度は5℃に設定し、1日1回の頻度で外液を交換し、合計で4回交換した。その結果、透析内液はゲル化した。
<Test Example 1> When pure water was used as an external solution for dialysis 62.5 mg of moth wasp was dissolved in 2.5 ml of 9M LiBr aqueous solution within 20 minutes at 37 ° C. and then poured into a dialysis membrane. As the dialysis membrane, a cellulose tube for dialysis (dialysis membrane 8/32, plane width 10 mm) manufactured by Adia Co., Ltd. was used. 500 ml of pure water was used as an external solution for dialysis. The dialysis temperature was set to 5 ° C., and the external liquid was changed once a day, and the total was changed four times. As a result, the dialysis internal solution gelled.
 透析後に水溶液状態が維持されていたか、もしくは固化(ゲル化もしくはゾル化)したかの判断は、透析チューブ内にあらかじめ封入しておいた3個のビーズの落下挙動で判断した。すなわち、透析チューブを上下反転させて、透析チューブ内をビーズが落下移動すれば溶液状態、落下せずに透析チューブ上方にとどまる場合には固化と判断した。ビーズはニッカトー製のYTZボールを用いた。 Whether the aqueous solution state was maintained after dialysis or whether it was solidified (gelled or sol) was determined by the falling behavior of the three beads previously sealed in the dialysis tube. That is, the dialysis tube was turned upside down, and it was determined that the solution was solid if the beads dropped and moved in the dialysis tube, and solidified if the beads remained above the dialysis tube without falling. As beads, YTZ balls made by Nikkato were used.
 さらに、固化したものに対して、ゲル化と判断するかゾル化と判断するかについては、以下のように行った。チューブから出した時に、円柱状の構造を維持したまま取り出せた場合はゲルと判断、筒状の形状が維持されず、流動性がある場合にゾルと判断した。 Furthermore, whether the solidified product was judged to be gelled or solylated was determined as follows. When it was taken out from the tube while maintaining the columnar structure, it was judged as a gel. When the cylindrical shape was not maintained and it was fluid, it was judged as a sol.
 <実施例1>透析外液として揮発性塩基物質を含む水溶液を用いた場合
 キイロスズメバチの繭62.5mgを2.5mlの9M LiBr水溶液に37℃で20分間以内で溶解した後、透析膜に流し込んだ。透析膜にはエーディア(株)製の透析用セルロースチューブ(透析膜 8/32, 平面幅 10mm)を使用した。透析外液には500mlの0.1N アンモニア水を使用した。透析温度は5℃に設定し、1日1回の頻度で外液を交換し、合計で4回交換した。その結果、透析内液は水溶液状態を維持した。
<Example 1> When an aqueous solution containing a volatile base substance was used as an external solution for dialysis 62.5 mg of moth wasp was dissolved in 2.5 ml of 9M LiBr aqueous solution within 20 minutes at 37 ° C and then poured into a dialysis membrane. As the dialysis membrane, a cellulose tube for dialysis (dialysis membrane 8/32, plane width 10 mm) manufactured by Adia Co., Ltd. was used. 500 ml of 0.1N aqueous ammonia was used as the external dialysis solution. The dialysis temperature was set to 5 ° C., and the external liquid was changed once a day, and the total was changed four times. As a result, the dialysis internal solution maintained an aqueous solution state.
 <実施例2>pHの検討
 透析外液のpHが、透析過程におけるホーネットシルク蛋白質の固化に与える影響を検討するために、様々な種類の緩衝液およびアンモニア水でpH6からpH11の範囲の水溶液を調製し、これらを外液として透析を行った。
<Example 2> Examination of pH In order to examine the influence of the pH of the dialysis external solution on the solidification of the hornet silk protein during the dialysis process, aqueous solutions in the range of pH 6 to pH 11 with various types of buffer solutions and aqueous ammonia are used. These were prepared and dialyzed using these as external solutions.
 62.5mgのキイロスズメバチの繭を2.5mlの9M LiBr水溶液に37℃で20~30分間以内で溶解した後、透析膜に流し込んだ。透析膜にはエーディア(株)製の透析用セルロースチューブ(透析膜 8/32, 平面幅 10mm)を使用した。透析外液は500mlで、透析温度は5℃~37℃の間で固定し、1日1回の頻度で外液を交換し、合計で4回交換した。使用した透析外液の種類と調製法は以下の通りである。 6 62.5 mg of killer whale moth was dissolved in 2.5 ml of 9M LiBr aqueous solution at 37 ° C within 20-30 minutes, and then poured into a dialysis membrane. As the dialysis membrane, a cellulose tube for dialysis (dialysis membrane 8/32, plane width 10 mm) manufactured by Adia Co., Ltd. was used. The dialysis external solution was 500 ml, the dialysis temperature was fixed between 5 ° C. and 37 ° C., and the external solution was changed once a day for a total of 4 times. The types and preparation methods of the external dialysis solution used are as follows.
 リン酸緩衝液は0.2Mリン酸二水素ナトリウムと0.2Mリン酸水素二ナトリウムを混合して調製した。トリス-塩酸緩衝液は0.1Mトリス(ヒドロキシメチル)アミノメタンと0.1M塩酸を混合して調製した。グリシン-水酸化ナトリウム緩衝液は0.1Mグリシンと0.1M水酸化ナトリウムを混合して調製した。炭酸-重炭酸緩衝液は0.1M炭酸ナトリウムと0.1M重炭酸ナトリウムを混合して調製した。いずれの緩衝液も、最終濃度は0.1mol/Lとした。さらに、0.1Nアンモニア水を調製した。これらの緩衝液およびアンモニア水を透析外液として透析を行った。 The phosphate buffer was prepared by mixing 0.2 M sodium dihydrogen phosphate and 0.2 M disodium hydrogen phosphate. Tris-hydrochloric acid buffer was prepared by mixing 0.1M tris (hydroxymethyl) aminomethane and 0.1M hydrochloric acid. The glycine-sodium hydroxide buffer was prepared by mixing 0.1 M glycine and 0.1 M sodium hydroxide. The carbonate-bicarbonate buffer was prepared by mixing 0.1M sodium carbonate and 0.1M sodium bicarbonate. The final concentration of all buffers was 0.1 mol / L. Further, 0.1N ammonia water was prepared. Dialysis was performed using these buffer solution and aqueous ammonia as an external solution for dialysis.
 検討の結果を図1に示す。図中には、透析後も水溶液状態を維持した場合(○)、固化した場合(ゲル;●,ゾル;■)に分けて示した。その結果、透析温度が30℃未満で、pHが9.0以上のときに水溶液が得られた。但し、pH9~10では、緩衝液の種類によっては固化する場合があり、炭酸-重炭酸緩衝液系では水溶液が得られるが、グリシン-水酸化ナトリウム系では固化していた。緩衝液の種類に拘わらず水溶液が得られるのはpH10を超えてからであった。 Figure 1 shows the results of the study. In the figure, the case where the aqueous solution state was maintained even after dialysis (◯) and the case where the solution was solidified (gel; ●, sol; ■) were shown separately. As a result, an aqueous solution was obtained when the dialysis temperature was less than 30 ° C. and the pH was 9.0 or more. However, at pH 9 to 10, solidification may occur depending on the type of buffer solution. An aqueous solution was obtained in the carbonate-bicarbonate buffer solution system, but solidified in the glycine-sodium hydroxide system. An aqueous solution was obtained after the pH exceeded 10 regardless of the type of buffer.
 <実施例3>アンモニア濃度及びシルク蛋白質濃度の検討
 アンモニア水の濃度を変えることによって、透析外液の状態がどのように変化するかをあらかじめ把握するため、アンモニア濃度とpHの関係を調べた(図2)。この図から、透析外液のpHはアンモニア濃度に依存し、実施した0.0001N~0.7Nの範囲ではpH8.5~pH11.6の範囲で変化した。透析外液中のアンモニア濃度変化、およびアンモニア濃度変化に伴うpH変化が溶解中のホーネットシルク蛋白質の安定性に寄与するものと思われる。
<Example 3> Examination of ammonia concentration and silk protein concentration In order to grasp in advance how the state of the dialysis external solution changes by changing the concentration of ammonia water, the relationship between ammonia concentration and pH was examined ( Figure 2). From this figure, the pH of the external dialysis solution was dependent on the ammonia concentration, and varied in the range of pH 8.5 to pH 11.6 in the range of 0.0001N to 0.7N. It is considered that the change in ammonia concentration in the dialysis solution and the pH change accompanying the change in ammonia concentration contribute to the stability of the hornet silk protein during dissolution.
 様々なホーネットシルク蛋白質濃度の溶液を調製する場合、繭をある量はかり取り、それを臭化リチウム水溶液に溶かして透析するが、このとき透析中に透析チューブ内の圧力が増し、外液がチューブ内に侵入するため、透析後のチューブ内部の溶液中のシルク蛋白質濃度は透析前の濃度よりも低くなる。このため、透析終了後に、改めて溶液のホーネットシルク蛋白質濃度を再測定することが好ましい。この再測定には熱重量分析法(TG法)を使って濃度を決定した(TG法とは水溶液を加熱して水分を全て蒸発させた時の重さ変化を計測することで、水溶液の全重量に占めるシルクの重量の割合(重量%)を求める方法)。 When preparing solutions with various hornet silk protein concentrations, weigh out a certain amount of sputum, dissolve it in an aqueous solution of lithium bromide, and dialyze. At this time, the pressure in the dialysis tube increases during dialysis, and the external solution flows into the tube. Since it penetrates into the inside, the silk protein concentration in the solution inside the tube after dialysis is lower than the concentration before dialysis. For this reason, it is preferable to re-measure the hornet silk protein concentration of the solution after completion of dialysis. For this re-measurement, thermogravimetric analysis (TG method) was used to determine the concentration. (The TG method measures the change in weight when the aqueous solution is heated to evaporate all the water. The ratio of weight of silk to weight (method of obtaining weight%)).
 透析後にTG法によって決定したホーネットシルク蛋白質の「透析後の濃度(wt%)」を、透析前に9M臭化リチウム水溶液1mLに溶かしたキイロスズメバチ繭の量(mg)「仕込み濃度(mg/mL)」に対してプロットした(図3)。この図から、仕込み濃度(mg/mL)と透析後の溶液濃度(wt%)との間には直線関係があることがわかる。この直線関係を利用することによって、透析後にある濃度の水溶液を得るために必要とされる仕込み濃度についておおよそ見当を付けることができる。本実施例では、透析チューブとして、エーディア株式会社(旧三光純薬)製の透析膜(8/32)を使用した。使用前の透析膜の平面幅は10mm、直径は6mmであった。また、この図のプロットデータは透析温度5℃で得たものであり、透析後の状態が水溶液であるかゲルかに拘わらずプロットした。 Hornet silk protein `` concentration after dialysis (wt%) '' determined by the TG method after dialysis is the amount (mg) of Kirosuzubachi koji dissolved in 1 mL of 9M lithium bromide aqueous solution before dialysis `` feeding concentration (mg / mL) ”(FIG. 3). From this figure, it can be seen that there is a linear relationship between the charged concentration (mg / mL) and the solution concentration after dialysis (wt%). By utilizing this linear relationship, it is possible to roughly approximate the charge concentration required to obtain an aqueous solution having a certain concentration after dialysis. In this example, a dialysis membrane (8/32) manufactured by Edia Co., Ltd. (former Sanko Junyaku) was used as the dialysis tube. Before use, the dialysis membrane had a planar width of 10 mm and a diameter of 6 mm. The plot data in this figure was obtained at a dialysis temperature of 5 ° C., and was plotted regardless of whether the state after dialysis was an aqueous solution or gel.
 以上の予備検討を行った後、透析温度一定(5℃)のもとで、「透析外液のアンモニア水濃度」と「溶解しているホーネットシルク蛋白質の濃度」が透析後の水溶液の状態に与える影響について検討を行った。
 9M LiBr水溶液1mL当たりに、3mg~150mgのホーネットシルク蛋白質を溶解した透析前水溶液を調製し、5℃で透析を行い、実施例2と同様のビーズの落下挙動から固化の有無を観察した。透析後も水溶液が維持されたサンプルに対してTG測定を行い、濃度を決定し、透析に用いたアンモニア水濃度に対してプロットした結果を図4に示す。
After conducting the above preliminary study, under the constant dialysis temperature (5 ° C), the “dialysis aqueous ammonia concentration” and the “dissolved hornet silk protein concentration” indicate the state of the aqueous solution after dialysis. We examined the effect of this.
A pre-dialysis aqueous solution in which 3 mg to 150 mg of Hornet silk protein was dissolved per 1 mL of 9M LiBr aqueous solution was prepared, dialyzed at 5 ° C., and the presence or absence of solidification was observed from the dropping behavior of beads similar to Example 2. FIG. 4 shows the results of TG measurement performed on the sample in which the aqueous solution was maintained after dialysis, the concentration was determined, and plotted against the ammonia water concentration used for dialysis.
 水溶液が得られる領域と、透析中に固化(ゾル化又はゲル化)してしまう領域とは図中の点線を境界にしていることがわかる。点線で区切ったL側は水溶液が得られる領域、S側は透析中に固化する領域となる。領域Lの条件で調製することによって、ホーネットシルク蛋白質の水溶液を得ることができる。 It can be seen that the region where the aqueous solution is obtained and the region that solidifies (sol or gel) during dialysis are bounded by the dotted line in the figure. The L side separated by a dotted line is a region where an aqueous solution is obtained, and the S side is a region solidified during dialysis. By preparing under the conditions of region L, an aqueous solution of hornet silk protein can be obtained.
 この図から、アンモニア水濃度の向上に伴って、水溶液が得られるホーネットシルク蛋白質の濃度幅が広がることがわかる。なお、アンモニア水濃度が0.0001Nでは実験を行ったすべての濃度範囲で水溶液を得ることはできなかった。ホーネットシルク蛋白質濃度が140mg以下(透析後は6.44wt%以下)のときは、いずれのアンモニア水濃度のときも、透析内液は水溶液状態を維持していた。本検討では、アンモニア濃度を0.5Nまでしか行っていないが、さらに濃度を上昇させれば、ホーネットシルク蛋白質水溶液の濃度限界も上昇すると考えられる。ちなみに、市販アンモニア水の濃度は28%であり、14.8Nに相当することから、市販アンモニア水を使えば14.8Nまで上昇させることができる。 From this figure, it can be seen that the concentration range of the hornet silk protein from which the aqueous solution is obtained increases as the ammonia water concentration increases. When the ammonia water concentration was 0.0001 N, an aqueous solution could not be obtained in the entire concentration range tested. When the hornet silk protein concentration was 140 mg or less (6.44 wt% or less after dialysis), the dialysis internal solution was kept in an aqueous solution state at any ammonia water concentration. In this study, the ammonia concentration was limited to 0.5 N, but it is thought that the concentration limit of the hornet silk protein aqueous solution will increase if the concentration is further increased. By the way, the concentration of commercial ammonia water is 28%, which corresponds to 14.8N, so it can be increased to 14.8N using commercial ammonia water.
 <実施例4>温度、アンモニア濃度、及びシルク蛋白質濃度の検討
 透析外液のアンモニア水の濃度一定のもとで、「溶解しているホーネットシルク蛋白質の濃度」と「透析温度」が透析後の水溶液の状態に与える影響について検討を行った。
 9M 臭化リチウム水溶液1mLに対してキイロスズメバチの繭を3mg~150mgの範囲で溶解した濃度の異なる様々なサンプルを調製した。この臭化リチウム水溶液を、アンモニア濃度が異なる3種類の透析外液、および5℃~37℃の異なる透析温度の条件下で透析を行った。透析中に固化することなく、透析後も水溶液状態を維持したサンプルについてTG測定を行って濃度を決定した。決定した各サンプルの濃度を、透析中に設定していた温度に対してプロットした結果を図5に示す。
Example 4 Examination of Temperature, Ammonia Concentration, and Silk Protein Concentration Under the constant concentration of ammonia water in the dialysis external solution, “dissolved hornet silk protein concentration” and “dialysis temperature” are the values after dialysis. The effect on the state of the aqueous solution was examined.
Various samples with different concentrations were prepared by dissolving 3 mg to 150 mg of moth wasp in 1 mL of 9M lithium bromide aqueous solution. This lithium bromide aqueous solution was dialyzed under the conditions of three kinds of external dialysis solutions having different ammonia concentrations and different dialysis temperatures of 5 ° C to 37 ° C. The concentration was determined by performing TG measurement on a sample that remained in an aqueous solution state after dialysis without solidifying during dialysis. FIG. 5 shows the result of plotting the determined concentration of each sample against the temperature set during dialysis.
 水溶液が得られる領域と、透析中に固化(ゾル化又はゲル化)してしまう領域は図中の点線を境界にしていることがわかる。点線で区切ったL側は水溶液が得られる領域、S側は透析中に固化してしまう領域となる。この図から、ホーネットシルクの水溶液が得られる「ホーネットシルク蛋白質濃度」、「透析温度」、「透析外液アンモニア水濃度」の関係がわかる。L領域内の条件で調製すれば水溶液が得られることを示唆している。 It can be seen that the region where the aqueous solution is obtained and the region that solidifies (sol or gel) during dialysis are bordered by the dotted line in the figure. The L side separated by a dotted line is a region where an aqueous solution is obtained, and the S side is a region that solidifies during dialysis. From this figure, the relationship of “hornet silk protein concentration”, “dialysis temperature”, and “dialysis aqueous ammonia water concentration” from which an aqueous solution of hornet silk can be obtained can be seen. It suggests that an aqueous solution can be obtained if prepared under conditions in the L region.
 この図ではアンモニア水濃度を0.01~0.5Nの範囲で検討を行っている。0.01Nよりも低い濃度では、0.0005Nでも透析温度5℃で水溶液が得られた。一方、0.5Nよりも高い濃度では、濃度上昇に伴って水溶液の安定化領域は拡大し、さらに高濃度ホーネットシルク蛋白質水溶液が得られる。市販アンモニア水は濃度28%であり、14.8Nに相当する。よって、透析に用いるアンモニア水の濃度は、市販アンモニア水を用いれば0.0005N~14.8Nまでの範囲で任意に設定することが可能である。しかし、実際には、アンモニア水の濃度が高くなりすぎるとアンモニア臭がきつくなり、人体への影響のみならず、環境、コストの面で問題となる場合がある。 In this figure, the ammonia water concentration is examined in the range of 0.01 to 0.5N. At concentrations lower than 0.01N, an aqueous solution was obtained at a dialysis temperature of 5 ° C even at 0.0005N. On the other hand, at a concentration higher than 0.5N, the stabilization region of the aqueous solution expands with increasing concentration, and a high-concentration hornet silk protein aqueous solution can be obtained. Commercial ammonia water has a concentration of 28% and corresponds to 14.8N. Therefore, the concentration of ammonia water used for dialysis can be arbitrarily set in the range of 0.0005N to 14.8N using commercially available ammonia water. However, in reality, if the concentration of the ammonia water becomes too high, the smell of ammonia becomes too strong, which may cause problems not only for the human body but also for the environment and cost.
 <実施例5>分子量の低下の検討
 タンパク質は高アルカリ性水溶液中で加水分解することが知られている。加水分解による分子量の低下は、乾燥(キャスト)後に得られるフィルムの力学物性を低下させる原因になる。そこで、アンモニア水透析による分子量低下の有無を調べるために、電気泳動測定を行った。比較のために純水で透析した場合の透析後のホーネットシルク蛋白質(ゲル状態)についても、再度臭化リチウム水溶液に溶解した後に電気泳動を行った。
<Example 5> Examination of decrease in molecular weight It is known that a protein is hydrolyzed in a highly alkaline aqueous solution. The decrease in molecular weight due to hydrolysis causes a decrease in the mechanical properties of the film obtained after drying (casting). Therefore, in order to investigate the presence or absence of molecular weight reduction due to ammonia water dialysis, electrophoretic measurement was performed. For comparison, the hornet silk protein (gel state) after dialysis when dialyzed with pure water was also dissolved in a lithium bromide aqueous solution and then subjected to electrophoresis.
 (1)純水で透析した場合
 50mgのキイロスズメバチの繭を2mlの9M LiBr水溶液に室温で溶解し、5℃から37℃の純水中で透析を行った。透析外液は500mlで、1日1回の頻度で外液を交換し、合計で4回交換した。透析の途中で溶液はゲル化した。透析後のゲルを-30℃で凍結後、凍結乾燥を行い、得られた乾燥試料について電気泳動を行った。その結果を図6に示す(pure water 5~37)。比較のために、キイロスズメバチの繭をそのまま電気泳動した結果も示す(図6中の(C))。
(1) In the case of dialyzing with pure water 50 mg of the killer whale moth was dissolved in 2 ml of 9M LiBr aqueous solution at room temperature and dialyzed in pure water at 5 ° C to 37 ° C. The dialyzed external solution was 500 ml, and the external solution was changed once a day for a total of 4 times. The solution gelled during dialysis. The gel after dialysis was frozen at −30 ° C., lyophilized, and the resulting dried sample was electrophoresed. The results are shown in Fig. 6 (pure water 5-37). For comparison, the result of electrophoresis of the moth wasp is also shown ((C) in FIG. 6).
 図6中の(C)には、繭を構成する4種類の主要タンパク質のバンドが明瞭に現れている。同様に、純水透析した後の試料も4種類の主要構成タンパク質のバンドが明瞭に観察されているが、主要タンパク質以外に由来するバンドも複数観察されている。このことは、純水中で透析する過程で、ある程度の分解が進行したことと、繭を溶解する時に、繭に付着している巣盤に含まれるタンパク質も一部溶解したことによると考えられる。透析温度で比較すると、温度の上昇に伴って低分子側のバンドの濃さが増加しているように見える。このことから、低分子側のバンドは繭付着成分ではなく、繭分解成分に由来すると考えられる。しかし、透析温度による違いは小さく、分解の程度は小さいことを示唆している。 (C) in Fig. 6 clearly shows the bands of the four major proteins that make up the cocoon. Similarly, in the sample after dialysis with pure water, bands of four kinds of main constituent proteins are clearly observed, but a plurality of bands derived from other than the main proteins are also observed. This is considered to be due to the fact that some degree of degradation progressed in the process of dialysis in pure water and that some proteins contained in the nests attached to the sputum were dissolved when the sputum was dissolved. . When compared at the dialysis temperature, it appears that the density of the low-molecular band increases with increasing temperature. From this, it is considered that the band on the low molecular side is not derived from the soot adhesion component but derived from the soot decomposition component. However, the difference due to dialysis temperature is small, suggesting that the degree of degradation is small.
 (2)アンモニア水で透析した場合
 アンモニア水で透析した場合の透析温度による透析後のタンパク質の電気泳動パターンの違いを、各アンモニア水濃度に対して測定した結果を図7に示す。
(2) When Dialyzed with Ammonia Water FIG. 7 shows the results of measuring the difference in electrophoretic pattern of protein after dialysis according to the dialysis temperature when dialyzed with ammonia water with respect to each ammonia water concentration.
 いずれの結果も、透析温度が低いほど分解が抑制されていた。但し、アンモニア濃度が高い0.5Nにて、37℃で透析した時のタンパク質の分解が著しい。この結果から、透析をアンモニア水中で行う場合には透析温度がタンパク質分子鎖に与える影響は大きくなるが、低温で行うことにより分解を抑制できることがわかる。さらに、高温下での透析では、アンモニア水の濃度を小さくするほど、分解を抑制できる。 In all results, the lower the dialysis temperature, the more the decomposition was suppressed. However, protein degradation is significant when dialyzed at 37 ° C with 0.5N ammonia concentration. From this result, it can be seen that when dialysis is performed in ammonia water, the influence of the dialysis temperature on the protein molecular chain is increased, but decomposition can be suppressed by performing at low temperature. Furthermore, in dialysis at a high temperature, the decomposition can be suppressed as the ammonia water concentration is reduced.
 特に、20℃以下で透析した結果は、いずれのアンモニア濃度で透析した結果も、ほとんど分子鎖の分解が起こっていないことが分かる。分子鎖が分解すると、後に述べる水溶液を乾燥して得られるフィルムの物性の著しい低下を招くことになる。以上の結果から本実施例で作製される水溶液は、透析温度が20℃以下において得られる、分子鎖の分解がほとんど起こっていない水溶液が好ましいといえる。 Especially, it can be seen that the results of dialysis at 20 ° C. or lower show almost no degradation of molecular chains in any ammonia concentration. When the molecular chain is decomposed, the physical properties of a film obtained by drying an aqueous solution described later are significantly reduced. From the above results, it can be said that the aqueous solution prepared in this example is preferably an aqueous solution obtained at a dialysis temperature of 20 ° C. or less and having almost no molecular chain decomposition.
 <実施例6>長期安定性の検討
 (1)長期安定性とアンモニア濃度の検討
 以上の実施例で得られた水溶液の長期安定性を検討するために、透析後から固化するまでの期間を調べた。
 まず、9M LiBr水溶液1mL当たりに、キイロスズメバチの繭6.7~150mg(具体的には、それぞれ6.7、16.7、25.0、37.5、45.8、54.6、58.3、72.9、87.5、100、110、120、125、130、140、150mg)を溶解した透析前水溶液を調製し、透析5℃で透析を行った。また、透析外液には0.0005、0.001、0.005、0.01、0.05、0.1、0.5Nの7種類のアンモニア水を使用した。透析は1日1回の頻度で外液を交換し、合計で4回交換した。
<Example 6> Examination of long-term stability (1) Examination of long-term stability and ammonia concentration In order to examine the long-term stability of the aqueous solution obtained in the above examples, the period from dialysis to solidification was examined. It was.
First, per 1 mL of 9M LiBr aqueous solution, 6.7-150 mg of Kirosuzubee was 6.7, 16.7, 25.0, 37.5, 45.8, 54.6, 58.3, 72.9, 87.5, 100, 110, 120, 125, 130, 140, 150 mg) was dissolved in a pre-dialysis aqueous solution and dialyzed at 5 ° C. In addition, seven types of ammonia water of 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5N were used as the external dialysis solution. In dialysis, the external solution was changed once a day, and the dialysis was changed four times in total.
 次に、透析後の水溶液(透析内液)を、5℃冷蔵庫内に放置し、固化するまでの時間を調べた。その結果を図8に示す。図中には、1日超2日以内に固化(<2d)、2日超14日以内に固化(<14d)、14日超1カ月以内に固化(<1m)、1カ月経過しても水溶液を維持(>1m)に区分して示している。 Next, the aqueous solution after dialysis (dialysis internal solution) was left in a refrigerator at 5 ° C., and the time until solidification was examined. The results are shown in FIG. The figure shows that it solidified within 2 days for more than 1 day (<2d), solidified within 14 days for more than 2 days (<14d), solidified within 1 month for more than 14 days (<1m), even after 1 month The aqueous solution is shown as being maintained (> 1m).
 アンモニア濃度が高いほど水溶液の安定性は向上し、0.05N以上では得られた水溶液のほぼ全濃度範囲で、1カ月以上の間、水溶液として安定して維持できることがわかった。保持温度を5℃よりも高い温度で検討したところ、保持温度の上昇に伴って固化までの時間が短くなる傾向が観察された。すなわち、保持温度が高いほど水溶液の安定時間は短くなる。保持温度20℃では、アンモニア濃度0.05N以上、ホーネットシルク濃度2wt%以下でのみ水溶液を1カ月以上維持することができた。さらに保持温度が高くなると、いかなる条件であっても1カ月以上水溶液を維持できることはできなかった。 It was found that the higher the ammonia concentration, the better the stability of the aqueous solution, and at 0.05 N or higher, it can be stably maintained as an aqueous solution for almost one month or more in almost the entire concentration range of the aqueous solution obtained. When the holding temperature was examined at a temperature higher than 5 ° C., a tendency to shorten the time until solidification was observed as the holding temperature increased. That is, the higher the holding temperature, the shorter the stabilization time of the aqueous solution. At a holding temperature of 20 ° C, the aqueous solution could be maintained for more than 1 month only at an ammonia concentration of 0.05N or more and a hornet silk concentration of 2wt% or less. Further, when the holding temperature was increased, the aqueous solution could not be maintained for more than 1 month under any conditions.
 <実施例7>水溶液中でのホーネットシルク蛋白質の分子構造
 次に、アンモニア水透析で得られた水溶液中でのホーネットシルク蛋白質の分子構造を調べるために、CD測定を試みた(図9)。0.1Nアンモニア水で透析したホーネットシルク蛋白質濃度が0.1wt%の水溶液を分解能0.2nm, バンド幅1.0nm、感度50mdegの条件で測定した。この結果から、ホーネットシルク蛋白質は水溶液中でαヘリックス構造を形成していることがわかった。
<Example 7> Molecular structure of hornet silk protein in aqueous solution Next, in order to investigate the molecular structure of hornet silk protein in the aqueous solution obtained by ammonia water dialysis, CD measurement was attempted (FIG. 9). An aqueous solution dialyzed with 0.1N ammonia water and having a hornet silk protein concentration of 0.1 wt% was measured under the conditions of a resolution of 0.2 nm, a bandwidth of 1.0 nm, and a sensitivity of 50 mdeg. From this result, it was found that the hornet silk protein formed an α-helix structure in an aqueous solution.
<実施例8>遺伝子組換え生物が生産したホーネットシルク蛋白質の場合
 キイロスズメバチの繭を構成する主要蛋白質の遺伝子(Vssilk 1、accession no. AB537885)を単離するために、GAGATCTGGGCCATCAAGGTTGTCTG(配列番号1)とGGTCGACTTAGGCGCTGCTACTACTC(配列番号2)の2種類をプライマーにして、キイロスズメバチの絹糸腺のcDNA(Sezutsu et al. (2007): Biosci. Biotechnol. Biochem., 71, 2725-2734.)に対するPCRを行った。PCR産物はpGEM T-Easyベクター(Promega)でクローニングを行い、続いて、発現ベクターpTrcHis(Invitorogen)のBglIIサイトとEcoRIサイトの間にサブクローニングした。発現用宿主細胞にはBL21大腸菌株を用い、150 mg/mLのアンピシリンが添加されたLB培地中で温度37℃で生育させ、細胞濃度が0.5 - 0.7 OD600に達したところでIPTGを0.5mM加えて誘導し、さらに5時間培養を続けた。培養終了後、封入体(inclusion body)をQIAexpressionistプロトコールに従って処理を行い、固化した蛋白質生成物を9M LiBr水溶液で溶かし出した。得られた9M LiBr蛋白質水溶液を電気泳動で調べたところ、キイロスズメバチの繭の主要蛋白質であるVssilk 1が高い純度で溶解した水溶液であることが分かった。
<Example 8> In the case of Hornet silk protein produced by a genetically modified organism In order to isolate the gene (Vssilk 1, accession no. AB537885) of the main protein that constitutes the moth of the killer whale, GAGATCTGGGCCATCAAGGTTGTCTG (SEQ ID NO: 1) Using two types of GGTCGACTTAGGCGCTGCTACTACTC (SEQ ID NO: 2) as primers, PCR was performed on the cDNA of the silk gland of Kirosuzubee (Sezutsu et al. (2007): Biosci. Biotechnol. Biochem., 71, 2725-2734.). The PCR product was cloned with the pGEM T-Easy vector (Promega), and then subcloned between the BglII site and EcoRI site of the expression vector pTrcHis (Invitorogen). BL21 E. coli strain is used as the host cell for expression, grown at 37 ° C in LB medium supplemented with 150 mg / mL ampicillin, and 0.5 mM IPTG is added when the cell concentration reaches 0.5-0.7 OD 600. And the culture was continued for another 5 hours. After completion of the culture, the inclusion body was treated according to the QIAexpressionist protocol, and the solidified protein product was dissolved in 9M LiBr aqueous solution. When the obtained 9M LiBr protein aqueous solution was examined by electrophoresis, it was found that it was an aqueous solution in which Vssilk 1, which is a major protein of the moth wasp, was dissolved with high purity.
 得られた9M LiB蛋白質水溶液を室温で水で透析したところ、蛋白質の沈殿が生じた。一方、0.05Nアンモニア水で室温透析した場合には、水透析の場合と比べて析出する蛋白質量は著しく少なかった。透析後の水溶液を遠心(12000rpm、4℃、10分間)し、上清を10倍に希釈して280nm吸光度測定を行ったところ、水透析の吸光度 0.065に対して、0.05Nアンモニア水透析では0.242となり、3.7倍の濃度差が認められた。この結果は、遺伝子組換え大腸菌が生産したホーネットシルク蛋白質においても、アンモニア水中で透析することで透析中の固化が抑制され、シルク水溶液が得られることを意味している。 When the obtained 9M LiB protein aqueous solution was dialyzed with water at room temperature, protein precipitation occurred. On the other hand, when dialysis was performed at room temperature with 0.05N ammonia water, the amount of protein precipitated was significantly smaller than in the case of water dialysis. The aqueous solution after dialysis was centrifuged (12000 rpm, 4 ° C., 10 minutes), and the supernatant was diluted 10 times and the absorbance at 280 nm was measured.The absorbance of water dialysis was 0.065, while that of 0.05N ammonia water dialysis was 0.242. Thus, a 3.7-fold density difference was observed. This result also means that the hornet silk protein produced by the genetically modified Escherichia coli can be dialyzed in ammonia water to suppress solidification during dialysis and obtain an aqueous silk solution.
 <実施例9>フィルムの作製
 キイロスズメバチの巣から繭の周辺部分を取り出した。繭に付着した巣材(木くずを固めて作られている)部分を極力取り除いた後、その1.5gを30mLの9M LiBr水溶液に溶解した。溶解は37℃で30分間高速振とうして行った。溶解後、遠心(10kG、20分)して不溶成分(大部分は巣材の木くず)を分離した後、濾過してろ液を回収した。ろ液を透析膜(和光純薬セルロースチューブ、サイズ24)に入れて、0.1Nアンモニア水中で透析した。アンモニア水は、28%アンモニア水(ナカライテスク製、試薬特級)を14.8Nアンモニア水として希釈して使用した。透析は5℃の定温庫内で行い、透析外液(アンモニア水)は1L以上使用して、常時攪拌しながら透析した。透析外液を1日に1回以上交換して、電導度が200~300程度以下まで低下して一定になるまで外液交換を繰り返した(4回以上の交換を行った)。
<Example 9> Production of film The peripheral part of the cocoon was taken out from the nest of the yellow wasp. After removing as much as possible the nest material (made by solidifying the wood chips) adhering to the spear, 1.5 g of the nest was dissolved in 30 mL of 9M LiBr aqueous solution. The dissolution was performed by shaking at high speed for 30 minutes at 37 ° C. After dissolution, the mixture was centrifuged (10 kG, 20 minutes) to separate insoluble components (mostly wood chips from the nest material), and then filtered to collect the filtrate. The filtrate was put in a dialysis membrane (Wako Pure Chemical Cellulose Tube, size 24) and dialyzed in 0.1N ammonia water. As the ammonia water, 28% ammonia water (manufactured by Nacalai Tesque, reagent grade) was diluted as 14.8N ammonia water and used. Dialysis was performed in a constant temperature chamber at 5 ° C., and dialysis was performed with constant agitation using 1 L or more of dialysis external solution (ammonia water). The dialysate was exchanged at least once a day, and the exchange of the external solution was repeated until the conductivity decreased to about 200-300 or less and became constant (at least 4 exchanges were performed).
 透析中に不溶物(透析前の濾過で除ききれなかった成分など)が沈殿するので、再度、フィルター濾過を行った。得られた水溶液の粘度は3.33cp(15℃)で濃度は3.38wt%であった。この水溶液を底面が平らな容器(東洋器材科学株式会社製、角1号シャーレ(235mm×85mm×16mm)ポリスチレン製)に28mL流し込み、20℃の恒温室内で乾燥(キャスト)した。乾燥は2日間程度以内で乾燥できるように、送風するなどして乾燥速度を調節した(図10、11)。フィルムの厚さは30±5μmであった。この条件で得られたフィルムを幅3mm、長さ30mmの短冊状に切り出して、力学物性を測定した。結果を表1に示す。 Since insoluble matters (components that could not be removed by filtration before dialysis) precipitate during dialysis, filtration was performed again. The obtained aqueous solution had a viscosity of 3.33 cp (15 ° C.) and a concentration of 3.38 wt%. 28 mL of this aqueous solution was poured into a container having a flat bottom surface (manufactured by Toyo Kikai Co., Ltd., square No. 1 petri dish (235 mm × 85 mm × 16 mm) polystyrene) and dried (cast) in a constant temperature room at 20 ° C. The drying speed was adjusted by blowing air so that it could be dried within about 2 days (Figs. 10 and 11). The film thickness was 30 ± 5 μm. The film obtained under these conditions was cut into strips having a width of 3 mm and a length of 30 mm, and the mechanical properties were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の物性値は、Yinら(Biomacromolecules, 11, 2890, 2010)によって報告された6%絹フィブロイン水溶液を乾燥して得られたキャストフィルムの力学物性(ヤング率2.7GPa、引張り強度80MPa、破断伸び5%)と同程度である。 The above-mentioned physical property values are the mechanical properties (Young's modulus 2.7 GPa, tensile strength 80 MPa, elongation at break, reported by drying 6% silk fibroin aqueous solution reported by Yin et al. (Biomacromolecules, 11, 2890, 2010). 5%).
 上述のように、キャストによってフィルムを得るためには、底面が平らな容器を用いることが好ましい。この容器をどのような材質のものにするかによってフィルムの剥がしやすさは異なる。ポリスチレン(例えば東洋器材科学株式会社の角1号シャーレ、栄研化学株式会社製の滅菌2号角シャーレ、滅菌MMシャーレなど)シャーレ、テフロンシャーレ、もしくは表面をテフロンコーティングした容器は剥がしやすく好都合である。 As described above, in order to obtain a film by casting, it is preferable to use a container having a flat bottom surface. The ease of peeling of the film differs depending on the material of the container. Polystyrene (e.g., Toyo Kikai Kagaku No. 1 Petri dish, Eiken Chemical Co., Ltd. Sterilized No. 2 Petri dish, sterilized MM Petri dish, etc.) Petri dishes, Teflon petri dishes, or containers with a Teflon-coated surface are easy to peel off and are convenient.
 図12には、作製したキャストフィルムの固体NMRスペクトルを示す。αヘリックスに由来するピークが大きく現れており、αヘリックス主体の構造を有していることがわかる。αヘリックス構造主体のホーネットシルクフィルムが得られたことは特許文献2で示されているHFIP溶液からキャストして作製したフィルムと同様である。 FIG. 12 shows a solid state NMR spectrum of the cast film produced. A peak derived from the α helix appears greatly, indicating that it has a structure mainly composed of α helix. The fact that a hornet silk film mainly composed of an α-helix structure is obtained is the same as the film produced by casting from the HFIP solution disclosed in Patent Document 2.
 図13には、作製したキャストフィルムのFT-IRスペクトルを示す。アミドIバンド領域には1638cm-1をトップとするピークが現れている。典型的なαヘリックスのアミドIバンド(1645cm-1付近)よりも10cm-1ほど低波長側にシフトしていることから、αヘリックス分子鎖は超二次構造(コイルドコイル構造)を形成していると考えられる(Heimburg et al., Biochemistry, 1990)。 FIG. 13 shows the FT-IR spectrum of the produced cast film. In the amide I band region, a peak with the top at 1638 cm -1 appears. The α-helix molecular chain forms a super-secondary structure (coiled coil structure) because it is shifted to the lower wavelength side by 10 cm -1 than the typical α-helix amide I band (around 1645 cm-1). (Heimburg et al., Biochemistry, 1990).
 <実施例10>フィルム製造の条件
 「乾燥温度」をパラメータにして、フィルムが作製できる条件を検討した(図14)。ここで、「フィルムができた」とは、シャーレから1枚の連続したフィルムとしてはがし、取り出すことができた場合を指す。また、「フィルムができなかった時」とは、乾燥が終了した時点でシャーレ上のホーネットシルクフィルムがひび割れていたり、シャーレからホーネットシルクフィルムをはがす過程で割れたり、砕けたり、裂けたりした場合を指す。なお、フィルムができない時はシャーレにホーネットシルクフィルムが付着してはがれない場合が多い。
<Example 10> Conditions for film production Using the "drying temperature" as a parameter, the conditions under which films can be produced were examined (Fig. 14). Here, “Film was made” refers to a case where a continuous film was peeled off from the petri dish and removed. “When the film could not be produced” refers to a case where the hornet silk film on the petri dish is cracked when it is dried, or it is cracked, crushed or torn in the process of peeling the hornet silk film from the petri dish. Point to. In addition, when a film cannot be formed, the Hornet silk film often does not adhere to the petri dish.
 以下では、フィルムができる「乾燥温度」について検討した結果を以下に述べる。1.5gのキイロスズメバチ繭を30mLの9M臭化リチウム水溶液に溶解し、0.1Nアンモニア水にて透析して得たホーネットシルク蛋白質濃度2.44wt%の水溶液を角シャーレ(栄研化学株式会社製2号角シャーレ)に30mL注いで、20~36℃の温度範囲にて乾燥(キャスト)してフィルムを作製した。乾燥後、フィルムができた場合を○印、できなかった場合を×印にして以下の表2にまとめた。本実験では、すべて2日以内に乾燥してフィルムを得た。 In the following, the results of studying the “drying temperature” that the film can be produced are described below. An aqueous solution of Hornet silk protein concentration of 2.44 wt% obtained by dissolving 1.5 g of Kirosuzume wasp in 30 mL of 9 M lithium bromide aqueous solution and dialyzing with 0.1 N aqueous ammonia was added to a square petri dish (Eiken Chemical Co., Ltd., No. 2 square petri dish) ) Was poured into the solution and dried (cast) in a temperature range of 20 to 36 ° C. to produce a film. Table 2 below summarizes the cases where a film was formed after drying, with a circle mark and a case where a film was not formed. In this experiment, all films were dried within 2 days.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果から、27℃と29℃の間を境目として、それ以下の温度ではフィルムができることがわかった。フィルムができる27℃以下で乾燥した場合であっても、乾燥時間が長時間になるとフィルムができなくなる頻度が増加した。上記の実験では2日間以内で乾燥させたが、2日を超える日数で乾燥させた場合には割れやすくなる。乾燥時間はできるだけ短いことが望ましい。ただし、急激な乾燥はフィルム形状の悪化の原因となる。2日間以内で乾燥するぐらいが適当であった。 From this result, it was found that a film could be formed at a temperature below 27 ° C and 29 ° C. Even when the film was dried at a temperature of 27 ° C. or lower, the frequency at which the film could not be increased as the drying time increased. In the above experiment, the sample was dried within 2 days. However, when it was dried for more than 2 days, it easily breaks. It is desirable that the drying time be as short as possible. However, rapid drying causes deterioration of the film shape. It was appropriate to dry within 2 days.
 従って、フィルムの作成においては「乾燥温度」と「乾燥時間」を適宜調整することが好ましい。フィルムができる特に好ましい条件は、ホーネットシルク蛋白質が溶解しているアンモニア水溶液を27℃以下で、2日以内で乾燥させた場合である。なお、「乾燥時間」に関して、フィルム加工時のクラックやひび割れを防ぐ上で、水分の蒸発速度の制御が大切である。 Therefore, it is preferable to appropriately adjust the “drying temperature” and “drying time” in the production of the film. A particularly preferable condition for forming a film is when the aqueous ammonia solution in which the hornet silk protein is dissolved is dried at 27 ° C. or less within 2 days. Regarding “drying time”, it is important to control the evaporation rate of moisture in order to prevent cracks and cracks during film processing.
 フィルムができる条件にてフィルムを作製した時には、指やピンセットで筋が付く程度まで完全に折り曲げても割れないフィルムが作製できた(図15)。ただし、湿度やフィルムの厚さなどによっては、折り曲げて割れる場合が時々あるので、厳密には「折り曲げても割れないフィルム」というよりは、「折り曲げても割れにくいフィルム」といえる。一方、フィルムができない条件で作製されたホーネットシルクフィルムは、折り曲げ試験を行うと、すべてのサンプルが割れた。図15は、1cm幅のフィルムを折り曲げて、ピンセットでしっかりと折り目を付けたところ(上)。折り目を付けたピンセットを離したところ(中)。折り目を付けたフィルムの両端を広げたところ(下)の様子を写したものである。この図に示したように、柔軟性があるフィルムが作製できる条件では、折り曲げて筋がついても割れないフィルムを作製することができる。 When the film was produced under conditions that allow it to be produced, a film that could not be broken even when it was completely folded to the extent that the streaks were attached with fingers or tweezers was produced (FIG. 15). However, depending on the humidity, the thickness of the film, and the like, there are cases where it can be bent and broken, so strictly speaking, it can be said to be “a film that does not break even when folded” rather than a “film that does not break even when folded”. On the other hand, when the hornet silk film produced on the conditions which cannot produce a film was subjected to the bending test, all the samples were cracked. Figure 15 shows a 1cm wide film folded and creased with tweezers (top). The inside of the creased tweezers (middle). This is a picture of the bottom of the creased film with both ends widened (bottom). As shown in this figure, under the condition that a flexible film can be produced, it is possible to produce a film that does not break even if it is bent and has streaks.
 <実施例11>フィルムの電気物性
 実施例9の手順で得られたホーネットシルク蛋白質のキャストフィルムについて、電気容量Cを測定した。2cm×2cm角の銅板を2枚用意し、この銅板でフィルムを挟んで電気容量を測定した。測定にはカスタム製LCRメーター(ELC-133A)を用いた。100Hz、1kHzおよび10kHzの3種類のテスト信号周波数に対して電気容量値(pF)を測定した。
<Example 11> Electrical properties of film The capacitance C of the cast film of Hornet silk protein obtained by the procedure of Example 9 was measured. Two 2 cm × 2 cm square copper plates were prepared, and the capacitance was measured by sandwiching a film between the copper plates. A custom LCR meter (ELC-133A) was used for the measurement. The capacitance value (pF) was measured for three test signal frequencies of 100 Hz, 1 kHz and 10 kHz.
 図16には、テスト信号周波数100Hz、1kHz、及び10kHzでの電気容量値(pF)を、フィルムの厚さ(mm)に対して、それぞれ、◇(菱形)、□(四角)および△(三角)印でプロットした。ホーネットシルク蛋白質のキャストフィルムは、厚さが異なる複数のフィルムについて、乾燥する前と後で測定した。乾燥は真空乾燥器にて行った。 Figure 16 shows the capacitance values (pF) at test signal frequencies of 100 Hz, 1 kHz, and 10 kHz, with respect to the film thickness (mm), ◇ (diamond), □ (square), and △ (triangle), respectively. ). The hornet silk protein cast film was measured before and after drying a plurality of films having different thicknesses. Drying was performed in a vacuum dryer.
 ホーネットシルクフィルムの電気容量は乾燥前後で大きく変わり、乾燥することによって電気容量が低下(絶縁性能が向上)したことがわかる。さらにフィルム中の残存水分を除くことによって電気容量が低下することが予想される。比較のために同条件で測定した汎用フィルムと比較しても、ホーネットシルクフィルムの電気容量は低いことがわかり、優れた電気絶縁体であると言える。 The electric capacity of the hornet silk film changes greatly before and after drying, and it can be seen that the electric capacity is lowered (insulation performance is improved) by drying. Furthermore, it is expected that the electric capacity is reduced by removing the residual moisture in the film. For comparison, it can be said that the hornet silk film has a low electric capacity even when compared with a general-purpose film measured under the same conditions, and can be said to be an excellent electric insulator.
 <実施例12>アンモニア水以外のアルカリ溶液を使用した場合のフィルム
 炭酸ナトリウムNa2CO3で調製したpH11の水溶液を透析外液として、5℃で透析して得られたホーネットシルク蛋白質水溶液(1.5g/10mlのオオスズメバチ繭)を直径55mmφの円形シャーレ(栄研シャーレAG2000)に2mL注いで乾燥(キャスト)したところ、図17のような白濁物質が得られた。この物質は脆く、割れやすいため、シャーレから取り出す過程でひび割れた。白濁の原因は乾燥によって炭酸ナトリウムが析出したためである。乾燥によって塩がホーネットシルク硬化体中で析出すると、ホーネットシルク硬化体は脆く割れやすくなり、フィルムが得られなかったと考えられる。以上の結果から、用いる塩基物質としては、アンモニアのような揮発性物質を用いることが、フィルムを得るためには重要であることがわかる。
<Example 12> Film when alkaline solution other than aqueous ammonia is used An aqueous solution of pH 11 prepared with sodium carbonate Na 2 CO 3 is used as an external solution for dialysis, and a hornet silk protein aqueous solution (1.5 When 2 mL of g / 10 ml male hornet wase was poured into a circular petri dish (Eiken Petri dish AG2000) having a diameter of 55 mmφ and dried (cast), a cloudy substance as shown in FIG. 17 was obtained. Since this material is brittle and easy to break, it cracked during removal from the petri dish. The cause of white turbidity is due to precipitation of sodium carbonate by drying. If salt precipitates in the hornet silk cured body by drying, the hornet silk cured body becomes brittle and easily broken, and it is considered that a film was not obtained. From the above results, it can be seen that it is important to use a volatile substance such as ammonia as a base substance to be used in order to obtain a film.
 <実施例13>、揮発性塩基物質を含有する水溶液を使用した場合のフィルム
 アンモニアと同様に、揮発性の塩基であるジエチルアミンを加えた水を透析外液にして透析を行った。ジエチルアミン0.1N水溶液を調製したところpH 11.7の水溶液が得られた。この塩基性水溶液を透析外液として、キイロスズメバチ繭の9M臭化リチウム水溶液を透析した。透析温度は5℃とした。透析後も水溶液が維持され、均一な水溶液が得られた。水溶液の濃度をTG測定にて決定したところ、6.39%であった。得られた水溶液4mlを直径5.5mmφの円形シャーレ(栄研化学株式会社製滅菌MMシャーレ)に注いで乾燥させたところ、図18のような透明で柔軟性のあるフィルムが得られた。
<Example 13>, Film in the case of using an aqueous solution containing a volatile base substance As in the case of ammonia, dialysis was performed using water added with diethylamine, which is a volatile base, as an external dialysis solution. When a diethylamine 0.1N aqueous solution was prepared, an aqueous solution having a pH of 11.7 was obtained. Using this basic aqueous solution as an external solution for dialysis, a 9M lithium bromide aqueous solution of killer whale wase was dialyzed. The dialysis temperature was 5 ° C. The aqueous solution was maintained after dialysis, and a uniform aqueous solution was obtained. The concentration of the aqueous solution determined by TG measurement was 6.39%. When 4 ml of the obtained aqueous solution was poured into a circular petri dish having a diameter of 5.5 mmφ (sterilized MM petri dish manufactured by Eiken Chemical Co., Ltd.) and dried, a transparent and flexible film as shown in FIG. 18 was obtained.
 <実施例14>臭化リチウム以外の無機塩で繭を溶かした場合のフィルム
 (1)フィルム作製
 塩化カルシウム水溶液に繭を溶かした場合についても検討した。塩化カルシウム(Nacalai tesque, 試薬特級)15gを20mlの水に溶かして、5.4M塩化カルシウム水溶液を調整した。この5.4M塩化カルシウム水溶液を65℃に昇温して、攪拌しながら600mgのキイロスズメバチ繭を加えて溶解した。繭は3分以内でほとんど全てが溶解したので、加熱をやめて流水で冷やした後、繭に付着していた不溶物(巣材の木くずなど)をフィルターろ過(桐山製作所製、桐山ロート(φ60) No.5Aろ紙)で取除いた。ろ液を透析チューブの中に注いで5℃で透析を行ったところ、透析外液のアンモニア水を0.5N、0.1N、0.05Nのいずれで行った結果も固化することなく均一な水溶液が得られた。0.1N透析で得られた水溶液のシルク濃度は1wt%であった。なお、アンモニアを使用せずに、純水で塩化カルシウム水溶液を透析した場合には、ホーネットシルク蛋白質は透析中に固化して白色ゲルとなり、水溶液は得られなかった。よって、塩化カルシウム水溶液でキイロスズメバチ繭を溶解させた場合においても、アンモニア水で透析することで水溶液が得られることがわかった。
<Example 14> Film in which soot is dissolved with an inorganic salt other than lithium bromide (1) Film production The case of dissolving soot in a calcium chloride aqueous solution was also examined. 5.4M calcium chloride aqueous solution was prepared by dissolving 15 g of calcium chloride (Nacalai tesque, reagent grade) in 20 ml of water. This 5.4M calcium chloride aqueous solution was heated to 65 ° C., and 600 mg of killer whale moth was added and dissolved while stirring. Since almost all of the cocoons were dissolved within 3 minutes, after heating and cooling with running water, insoluble materials (such as nests of wood from the nests) that had adhered to the cocoons were filtered (Kiriyama Mfg. Co., Ltd., Kiriyama funnel (φ60) No.5A filter paper). When the filtrate was poured into a dialysis tube and dialyzed at 5 ° C, a uniform aqueous solution was obtained without solidifying the results of ammonia water in the dialysis external solution at 0.5N, 0.1N or 0.05N. It was. The silk concentration of the aqueous solution obtained by 0.1N dialysis was 1 wt%. When the calcium chloride aqueous solution was dialyzed with pure water without using ammonia, the hornet silk protein solidified during dialysis to become a white gel, and no aqueous solution was obtained. Therefore, it was found that an aqueous solution can be obtained by dialysis against ammonia water even when the killer whale moth is dissolved with an aqueous calcium chloride solution.
 この1wt%水溶液を直径55mmφの円形シャーレ(栄研シャーレAG2000)に注いで20℃にて乾燥(キャスト)したところ、柔軟なフィルムを得ることができた(図19)。 When this 1 wt% aqueous solution was poured into a circular petri dish (Eiken Petri dish AG2000) having a diameter of 55 mmφ and dried (cast) at 20 ° C., a flexible film could be obtained (FIG. 19).
 (2)溶解性試験
  塩化カルシウム水溶液への繭の溶解性を検討した。図20は、オオスズメバチの繭20mgを50, 60 および70℃の塩化カルシウム水溶液10mLに浸して、振とうさせた時の、塩化カルシウムの濃度と、振とうしてから30分後および60分後の溶解率(%)をプロットした図である。溶解率は、UV装置で測定した波長280nmの紫外線の吸光度から算出した。この図から、50℃~70℃の温度範囲では、30分振とうと60分振とうで溶解率に差がないことがわかる。このことは、30分以内の振とうで平衡溶解状態に達したことを示唆している。また、この図から、平衡溶解状態での繭の溶解率(%)は、塩化カルシウムの濃度に依存することがわかる。繭は、塩化カルシウム濃度が3.0M~6.0Mの濃度範囲で溶解し易く、塩化カルシウム濃度が4~5Mでは繭が完全に溶解するが、その前後では飽和溶解濃度が減少した。
(2) Solubility test Solubility of soot in aqueous calcium chloride solution was examined. Figure 20 shows the concentration of calcium chloride and the concentration of calcium chloride when immersed in 10 mL of calcium chloride aqueous solution at 50, 60 and 70 ° C and shaken 30 minutes and 60 minutes after shaking. It is the figure which plotted dissolution rate (%). The dissolution rate was calculated from the absorbance of ultraviolet rays having a wavelength of 280 nm measured with a UV apparatus. From this figure, it can be seen that in the temperature range of 50 ° C. to 70 ° C., there is no difference in dissolution rate between shaking for 30 minutes and shaking for 60 minutes. This suggests that the equilibrium dissolution state has been reached with shaking within 30 minutes. In addition, this figure shows that the dissolution rate (%) of soot in the equilibrium dissolution state depends on the concentration of calcium chloride. Soot was easily dissolved in the concentration range of calcium chloride of 3.0 to 6.0M, and soot was completely dissolved when the calcium chloride concentration was 4 to 5M, but the saturated dissolution concentration decreased before and after that.
 図21は、4.5M及び3.6Mの塩化カルシウム水溶液10mLに、オオスズメバチの繭20mgを浸して、20~70℃範囲の各温度にて振とうさせた時の、振とう後30分後、及び60分後の溶解率を、温度に対してプロットした図である。塩化カルシウム濃度4.5Mでの結果から、振とう時の温度が高くなるほど、30分後と60分後の溶解率の差が小さくなり、50℃以上ではほぼ一致することがわかる。この結果から、振とう温度によって繭の溶解速度が異なることが分ったので、次に、50℃以下を中心に、溶解率と振とう時間との関係を各振とう温度に対してプロットした(図22)。 FIG. 21 shows that when 20 mg of giant hornet was soaked in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at each temperature in the range of 20 to 70 ° C., 30 minutes after shaking, and 60 It is the figure which plotted the dissolution rate after a minute with respect to temperature. From the results at a calcium chloride concentration of 4.5M, it can be seen that the higher the temperature at the time of shaking, the smaller the difference in dissolution rate after 30 minutes and 60 minutes, and almost the same at 50 ° C or higher. From this result, it was found that the dissolution rate of soot varies depending on the shaking temperature. Next, the relationship between the dissolution rate and the shaking time was plotted against each shaking temperature, mainly at 50 ° C or less. (Figure 22).
 図22は、オオスズメバチの繭20mgを4.5Mおよび3.6Mの塩化カルシウム水溶液10mLに浸して、20℃、30 ℃および50℃にて振とうさせた時の、溶解率の変化を振とう時間に対してプロットした図である。4.5Mの塩化カルシウムに50℃で振とうさせた場合は、30分以内に溶解率100%に達するが、30℃、20℃と温度が低くなるに従って溶解率100%に達するまでの時間は長くなる。しかし、20℃であっても、長時間振とうすることによって、全ての繭を溶解できることがわかる。一方、3.6Mの塩化カルシウム水溶液に30℃で振とうさせた場合には、4.5Mの塩化カルシウム水溶液に同温度の30℃で振とうさせた場合よりも、平衡溶解状態に達するまでの時間が長い、すなわち溶解速度が遅い。さらに、3.6Mの塩化カルシウム水溶液に30℃で振とうさせた場合には、溶解率は100%に到達せず、55%付近で平衡になった。 Figure 22 shows the change in dissolution rate when 20 mg of giant hornet moth is immersed in 10 mL of 4.5 M and 3.6 M calcium chloride aqueous solution and shaken at 20 ° C, 30 ° C and 50 ° C. FIG. When 4.5M calcium chloride is shaken at 50 ° C, the dissolution rate reaches 100% within 30 minutes, but the time until the dissolution rate reaches 100% increases as the temperature decreases to 30 ° C and 20 ° C. Become. However, even at 20 ° C., it can be seen that all the soot can be dissolved by shaking for a long time. On the other hand, when it is shaken at 30 ° C in a 3.6M calcium chloride aqueous solution, it takes more time to reach an equilibrium dissolution state than when it is shaken at 4.5 ° C at 30 ° C in the same temperature. Long, ie, slow dissolution rate. Furthermore, when the solution was shaken in a 3.6 M calcium chloride aqueous solution at 30 ° C., the dissolution rate did not reach 100%, but reached equilibrium at around 55%.
 以上の結果から、ホーネットシルク繭は、4~5M濃度の塩化カルシウム水溶液に溶解させるのが良い。この場合、特に高濃度の繭を溶解できる。また、溶解温度については、溶解温度が上昇するほど短時間で溶解させることができるが、温度の上昇による分子の分解が問題になることがある。分子分解を防ぐ観点からは、なるべく低温で溶解させるのが好ましいが、溶解温度の低下に伴って溶解速度が減少するため、溶解にかかる時間が長くなる。一方で、溶解時間が短い方が、分子分解を抑制する観点からは好ましい。以上を考慮すると、30℃程度で溶解させるのが最も好ましい。 Based on the above results, Hornet Silk Koji is better dissolved in 4-5M calcium chloride aqueous solution. In this case, a particularly high concentration of soot can be dissolved. In addition, the dissolution temperature can be dissolved in a shorter time as the dissolution temperature increases, but decomposition of molecules due to the increase in temperature may be a problem. From the viewpoint of preventing molecular decomposition, it is preferable to dissolve at a low temperature as much as possible. However, since the dissolution rate decreases as the dissolution temperature decreases, the time required for dissolution becomes longer. On the other hand, a shorter dissolution time is preferable from the viewpoint of suppressing molecular decomposition. Considering the above, it is most preferable to dissolve at about 30 ° C.
 <実施例15>スズメバチの繭以外を使用した場合のフィルム
 (1)クロスズメバチ
 クロスズメバチはVespulaに属し、スズメバチ亜科(Vespa)とは科を異にしているが、構成タンパク質の幾つかは高い相同性を示している。クロスズメバチも9M臭化リチウム水溶液に可溶で、その後、脱塩のための透析を純水中で行うと、透析の過程で固化(沈殿、ゲル化もしくはゾル化)する。そこで、クロスズメバチ繭の臭化リチウム水溶液を0.1N、又は0.5Nアンモニア水を外液にして透析を試みた。
<Example 15> Film when using other than hornet of hornet (1) Cross hornet The hornet belongs to Vespula and is different from the vespid subfamily (Vespa), but some of the constituent proteins are high. It shows homology. Cross-beetles are also soluble in 9M lithium bromide aqueous solution, and then solidify (precipitate, gel or sol) during dialysis when dialysis for desalting is performed in pure water. Therefore, dialysis was attempted using an aqueous solution of 0.1N or 0.5N ammonia water as an aqueous solution of Lithium bromide.
 繭を270~300mgはかり取って、3mLの9M 臭化リチウム水溶液に溶解したところ多くの不溶物が残った。クロスズメバチ繭のすべてのタンパク質成分が9M臭化リチウム水溶液に溶解することは電気泳動とNMRで確認しているので、不溶物は繭タンパク質以外の夾雑物であると考えられる。クロスズメバチは繭が小さいため、繭だけの採集が難しく、巣材などの夾雑物が繭に多く付着している。遠心分離を行って不溶物を除去した後、溶液を5℃の0.5Nアンモニア水中で透析を行ったところ、透析中に固化することなく水溶液が得られた。水溶液の濃度は4.0~4.4wt%であった。 270-300 mg of soot was weighed and dissolved in 3 mL of 9M aqueous lithium bromide solution, and many insolubles remained. Since it has been confirmed by electrophoresis and NMR that all protein components of the hornet moth are dissolved in 9M lithium bromide aqueous solution, the insoluble matter is considered to be a contaminant other than the cocoon protein. Since the hornet is small, it is difficult to collect only the moth, and many foreign materials such as nests are attached to the moth. After removing insolubles by centrifugation, the solution was dialyzed in 0.5N ammonia water at 5 ° C., and an aqueous solution was obtained without solidifying during dialysis. The concentration of the aqueous solution was 4.0 to 4.4 wt%.
 同様に繭を150mgはかり取って、3mLの9M 臭化リチウム水溶液に溶解し、不溶物を除去した後に、0.1Nアンモニア水中にて5℃で透析を行ったところ2.8wt%の水溶液が得られた。以上の結果から、クロスズメバチの繭においても、水溶液が得られることがわかった。 Similarly, 150 mg of soot was weighed out and dissolved in 3 mL of 9 M lithium bromide aqueous solution, insoluble matter was removed, and dialysis was performed at 5 ° C. in 0.1 N aqueous ammonia to obtain a 2.8 wt% aqueous solution. . From the above results, it was found that an aqueous solution can be obtained even in the case of the hornet of the hornet.
 次に、0.5Nアンモニア水で透析して得られた4.0~4.4wt%の水溶液を直径55mmφの円形シャーレ(栄研シャーレAG2000)に4mL注いで5℃雰囲気下で乾燥(キャスト)したところ、柔軟なフィルムを得ることができた(図23)。 Next, 4 mL of a 4.0 to 4.4 wt% aqueous solution obtained by dialysis with 0.5N aqueous ammonia was poured into a circular petri dish (Eiken Petri dish AG2000) with a diameter of 55 mmφ and dried (cast) in an atmosphere at 5 ° C. A good film was obtained (FIG. 23).
 (2)絹フィブロイン
 蚕が作る絹フィブロインおよびセリシンは、臭化リチウム水溶液に溶解させた後、純水で透析した場合でも、透析中に固化することなく水溶液が得られる。このため、フィブロイン水溶液を得るための目的としては、アンモニア水透析を行う必要はないが、フィブロインの場合でも、アンモニア水で透析することによって水溶液が得られる。例えば、3gの精錬絹フィブロインを20mlの9M LiBr水溶液に溶かし、0.5Nのアンモニア水で透析したところ、透明な水溶液が得られた。0.1N アンモニア水で透析した場合も同様に、水溶液が得られた。
(2) Silk fibroin Silk fibroin and sericin produced by silkworms can be dissolved in a lithium bromide aqueous solution and then dialyzed with pure water to obtain an aqueous solution without solidifying during dialysis. Therefore, for the purpose of obtaining an aqueous fibroin solution, it is not necessary to perform dialysis with aqueous ammonia, but even in the case of fibroin, an aqueous solution can be obtained by dialysis with aqueous ammonia. For example, when 3 g of refined silk fibroin was dissolved in 20 ml of 9M LiBr aqueous solution and dialyzed against 0.5N ammonia water, a clear aqueous solution was obtained. Similarly, an aqueous solution was obtained when dialyzed against 0.1N aqueous ammonia.
 純水で透析した絹フィブロイン水溶液は、低温(5℃)中であっても、長時間(1か月程度)放置すると固化して白色のゲルになるが、0.5Nもしくは0.1N アンモニア水で透析して得た絹フィブロイン水溶液は、1か月以上の間、低温(5℃)中に保存しても固化することはなく、水溶液を維持した。よって、フィブロイン水溶液に対しても、アンモニア水溶液を用いることによって安定性を向上させる効果があるといえる。得られたフィブロインのアンモニア水溶液を20℃でキャストすると、図24のような透明で柔軟性があるフィルムが得られた。 Silk fibroin aqueous solution dialyzed with pure water solidifies into a white gel when left for a long time (about 1 month) even at low temperatures (5 ° C), but is dialyzed against 0.5N or 0.1N aqueous ammonia. The silk fibroin aqueous solution thus obtained did not solidify even when stored at a low temperature (5 ° C.) for more than 1 month, and the aqueous solution was maintained. Therefore, it can be said that the stability of the fibroin aqueous solution is improved by using the aqueous ammonia solution. When the aqueous ammonia solution of fibroin obtained was cast at 20 ° C., a transparent and flexible film as shown in FIG. 24 was obtained.
 <実施例16>フッ素加工した型枠を使用した場合のフィルム
 ステンレスシャーレ((株)山田製作所製、75mmφ)の表面にフッ素樹脂コーティングを行った。これにより、ステンレスシャーレの内側面は灰色になった。このシャーレに実施例9と同様の条件で作製した水溶液を注いてキャストしたところ、図25のような透明で柔軟性があるフィルムが得られた。
<Example 16> Film in the case of using a fluorine-processed formwork The surface of a stainless steel petri dish (manufactured by Yamada Seisakusho Co., Ltd., 75 mmφ) was coated with a fluororesin. Thereby, the inner surface of the stainless steel petri dish became gray. When an aqueous solution produced under the same conditions as in Example 9 was poured into this petri dish and cast, a transparent and flexible film as shown in FIG. 25 was obtained.
 <実施例17>フィルムの再利用について(キャストフィルムの溶液挙動)
 上記実施例に記載の方法で作製したキャストフィルムの再利用について検討を行った。
 コガタスズメバチの繭を9M臭化リチウム水溶液に溶解後、0.1Nアンモニア水にて透析した水溶液から得られたキャストフィルムを、再び9M臭化リチウム水溶液に溶解して、得られたホーネットシルク蛋白質が溶解している臭化リチウム水溶液の粘度を測定した。比較のために、キイロスズメバチ、オオスズメバチ、又はコガタスズメバチの繭を9M臭化リチウム水溶液に溶解した状態での粘度も測定した。結果を図26に示す。
<Example 17> Reuse of film (solution behavior of cast film)
The reuse of the cast film produced by the method described in the above example was examined.
The cast film obtained from the aqueous solution dialyzed with 0.1N aqueous ammonia after dissolving the moth wasp in 9M lithium bromide aqueous solution was dissolved again in 9M lithium bromide aqueous solution, and the resulting hornet silk protein was dissolved. The viscosity of the aqueous lithium bromide solution was measured. For comparison, the viscosity was also measured in a state in which a moth hornet, giant hornet or moth wasp was dissolved in a 9M lithium bromide aqueous solution. The results are shown in FIG.
 9M臭化リチウム水溶液に溶かしたシルク蛋白質量に対する粘度の値は、繭と再生フィルムでほとんど同じであることがわかる。一般に、分子量が低下すると粘度が低下することが知られている。粘度がほとんど変わらなかったという結果は、キャストフィルムを再溶解した場合でも、繭を直接溶解した場合と同様の溶液が得られることを示唆している。 It can be seen that the value of the viscosity with respect to the amount of silk protein dissolved in 9M lithium bromide aqueous solution is almost the same between the cocoon and the recycled film. In general, it is known that the viscosity decreases as the molecular weight decreases. The result that the viscosity was hardly changed suggests that even when the cast film is redissolved, a solution similar to that obtained when the soot is directly dissolved is obtained.
 得られたキャストフィルムを再溶解して得た臭化リチウム水溶液を0.1Nアンモニア水で5℃にて透析したところ、同様の水溶液が得られた。さらに、この水溶液をシャーレ上に流延して乾燥させたところ、柔軟性のあるフィルムが得られた。よって、本件発明法では、キャストフィルムの再利用が可能である(図27)。 When a lithium bromide aqueous solution obtained by re-dissolving the obtained cast film was dialyzed against 0.1N ammonia water at 5 ° C., a similar aqueous solution was obtained. Furthermore, when this aqueous solution was cast on a petri dish and dried, a flexible film was obtained. Therefore, in the present invention method, the cast film can be reused (FIG. 27).
 <実施例18>繊維化
 上記実施例に記載の方法によって均一な水溶液が得られたことから、紡糸のための紡糸原液としても使用することが可能になった。例えば、上記の方法で作製した5.4wt%のホーネットシルク蛋白質が溶解しているアンモニア水溶液に、分子量90万のポリエチレンオキシドの5wt%溶液を容量比で3:1、2:1、1:1の割合で混合して、サイズ27Gのニードルから加電圧15kVにて電気紡糸(電界紡糸)を行ったところ、3:1および2:1の溶液からは直径数百ナノメートルの均一なナノファイバーが得られた。1:1の系では、繊維中に泡が入り、均一な繊維が得られなかった。
<Example 18> Fibrosis Since a uniform aqueous solution was obtained by the method described in the above Example, it was possible to use it as a spinning stock solution for spinning. For example, a 5 wt% solution of polyethylene oxide having a molecular weight of 900,000 is mixed at a volume ratio of 3: 1, 2: 1, 1: 1 in an aqueous ammonia solution in which 5.4 wt% Hornet silk protein prepared by the above method is dissolved. When mixed at a ratio and electrospun (electrospinning) at a voltage of 15 kV from a 27G needle, uniform nanofibers with a diameter of several hundred nanometers were obtained from 3: 1 and 2: 1 solutions. It was. In the 1: 1 system, bubbles entered into the fibers, and uniform fibers could not be obtained.
 <実施例19>
 上記実施例3~7、9~11、13、14、16、18のうちキイロスズメバチを用いて行った実験について、キイロスズメバチを、コガタスズメバチ、オオスズメバチ、ヒメスズメバチ、モンスズメバチ、又はクロスズメバチに代えてほぼ同様の実験を行った。その結果、キイロスズメバチを用いて行った場合と、ほぼ同様の結果が得られた。また、複数の種のスズメバチの繭を混ぜても、透析済水溶液及びフィルムを作ることができた。
<Example 19>
About the experiment performed using the chiros wasp among the above examples 3 to 7, 9 to 11, 13, 14, 16, 18, the chiros wasp is substantially the same instead of the beetle wasp, the giant wasp, the wasp, the wasp, or the cross wasp. The experiment was conducted. As a result, almost the same result as that obtained when using a key wasp was obtained. In addition, a dialyzed aqueous solution and a film could be made by mixing a plurality of species of wasp cocoons.
 <考察>
 以上の結果、ホーネットシルク蛋白質が溶解した無機塩水溶液を高pHの水溶液で透析した場合、透析内液が水溶液状態を維持できることが明らかになった。さらに、透析条件として、透析外液のpHが9以上、透析外液のアンモニア濃度が0.0001N超、透析温度が20℃以下、又は透析内液のホーネットシルク蛋白質濃度が140mg/mL以下(透析後は約6.5wt%以下)のときに、特に透析内液が安定的に水溶液状態を維持でき、且つ透析内液中のホーネットシルク蛋白質の分解を抑制できることがわかった。
<Discussion>
As a result of the above, it was revealed that when the inorganic salt aqueous solution in which the hornet silk protein was dissolved was dialyzed with a high pH aqueous solution, the dialysis internal solution could maintain the aqueous solution state. Furthermore, as dialysis conditions, the pH of the external dialysis solution is 9 or more, the ammonia concentration of the dialysis external solution is over 0.0001 N, the dialysis temperature is 20 ° C. or less, or the hornet silk protein concentration of the dialysis internal solution is 140 mg / mL or less (after dialysis) It was found that the dialysis internal solution was able to maintain a stable aqueous solution state and the degradation of the hornet silk protein in the dialysis internal solution could be suppressed.
 また、得られた透析済水溶液を用いて、十分な力学物性、透明性、柔軟性を有しており、且つαへリックス構造を有しているフィルムを作成することができた。さらに、透析時の透析外液に揮発性塩基物質を含む水溶液を用いると、特に良質のフィルムを作成できることがわかった。 Moreover, using the obtained dialyzed aqueous solution, a film having sufficient mechanical properties, transparency and flexibility and having an α helix structure could be produced. Furthermore, it has been found that when an aqueous solution containing a volatile basic substance is used as the dialysis external solution during dialysis, a particularly good film can be produced.
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.

Claims (21)

  1.  シルク蛋白質を含有する透析済水溶液の生産方法であって、
     透析内液として蜂のシルク蛋白質を含有する無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程を含む、生産方法。
    A method for producing a dialyzed aqueous solution containing silk protein,
    A production method comprising a step of dialysis using an aqueous solution of an inorganic salt containing bee silk protein as an internal dialysis solution and an aqueous solution having a pH of 9.0 or more as an external dialysis solution.
  2.  前記pH9以上の水溶液は、揮発性塩基物質を含有する水溶液である、請求項1に記載の生産方法。 2. The production method according to claim 1, wherein the aqueous solution having a pH of 9 or more is an aqueous solution containing a volatile basic substance.
  3.  前記pH9以上の水溶液は、前記揮発性塩基物質を0.0001N超含有する、請求項2に記載の生産方法。 3. The production method according to claim 2, wherein the aqueous solution having a pH of 9 or more contains the volatile base substance in excess of 0.0001N.
  4.  前記透析は、20℃以下で行う、請求項3に記載の生産方法。 4. The production method according to claim 3, wherein the dialysis is performed at 20 ° C. or lower.
  5.  透析前の前記透析内液のシルク蛋白質濃度が、140mg/mL以下である、請求項4に記載の生産方法。 The production method according to claim 4, wherein the silk protein concentration of the dialysis internal solution before dialysis is 140 mg / mL or less.
  6.  前記透析は、前記透析済水溶液のシルク蛋白質濃度が6.5wt%以下になるように透析する、請求項4に記載の生産方法。 5. The production method according to claim 4, wherein the dialysis is performed so that the silk protein concentration of the dialyzed aqueous solution is 6.5 wt% or less.
  7.  前記透析は、前記透析内液が水溶液状態を維持するように透析する、請求項1~6いずれかに記載の生産方法。 The production method according to any one of claims 1 to 6, wherein the dialysis is performed so that the dialysis internal solution maintains an aqueous solution state.
  8.  蜂のシルク蛋白質を3~6mol/Lの塩化カルシウム水溶液に溶解させる工程をさらに含む、請求項1~7いずれかに記載の生産方法。 The production method according to any one of claims 1 to 7, further comprising a step of dissolving bee silk protein in a 3 to 6 mol / L calcium chloride aqueous solution.
  9.  請求項1~8いずれかに記載の生産方法を経て得られる、透析済水溶液。 A dialyzed aqueous solution obtained through the production method according to any one of claims 1 to 8.
  10.  医療用製品、化粧品、電子機器、又は繊維製品用の、請求項9に記載の透析済水溶液。 10. The dialyzed aqueous solution according to claim 9, for medical products, cosmetics, electronic devices, or textile products.
  11.  請求項9又は10に記載の透析済水溶液を硬化させる工程を経て得られる、硬化材料。 A cured material obtained through a step of curing the dialyzed aqueous solution according to claim 9 or 10.
  12.  フィルムである、請求項11に記載の硬化材料。 The curable material according to claim 11, which is a film.
  13.  医療用製品、化粧品、電子機器、又は繊維製品用の、請求項11又は12に記載の硬化材料。 13. The curable material according to claim 11 or 12, for medical products, cosmetics, electronic equipment, or textile products.
  14.  シルク蛋白質を含有する透析済水溶液の生産方法であって、
     請求項11~13いずれかに記載の硬化材料を無機塩水溶液に溶解させる工程と、
     透析内液として前記硬化材料が溶解した無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程と、を含む、生産方法。
    A method for producing a dialyzed aqueous solution containing silk protein,
    Dissolving the curable material according to any one of claims 11 to 13 in an aqueous inorganic salt solution;
    Dialysis using an aqueous inorganic salt solution in which the curable material is dissolved as the dialysis internal solution and an aqueous solution having a pH of 9.0 or more as the external dialysis solution.
  15.  請求項14に記載の生産方法を経て得られる、透析済水溶液。 A dialyzed aqueous solution obtained through the production method according to claim 14.
  16.  請求項15に記載の透析済水溶液を硬化させる工程を経て得られる、硬化材料。 A curable material obtained through a step of curing the dialyzed aqueous solution according to claim 15.
  17.  シルク蛋白質を含有する硬化材料の生産方法であって、
     透析内液として蜂のシルク蛋白質を含有する無機塩水溶液を用い、透析外液としてpH9.0以上の水溶液を用いて透析する工程と、
     前記透析工程後の透析内液を透析膜から回収する工程と、
     回収後の透析内液を硬化させる工程と、
     を含む、生産方法。
    A method for producing a curable material containing silk protein,
    A step of dialysis using an aqueous solution of inorganic salt containing bee silk protein as an internal dialysis solution, and an aqueous solution of pH 9.0 or more as an external dialysis solution;
    Recovering the dialysis internal solution after the dialysis step from the dialysis membrane;
    Curing the dialysis internal solution after collection;
    Including the production method.
  18.  蜂のシルク蛋白質を0.1wt%以上、揮発性塩基物質を0.0001N~14.8N含み、20℃以下の透析済水溶液。 A dialyzed aqueous solution containing at least 0.1 wt% bee silk protein, 0.0001N to 14.8N volatile base substance, and 20 ° C or lower.
  19.  請求項18に記載の透析済水溶液を硬化させる工程を経て得られる、硬化材料。 19. A curable material obtained through a step of curing the dialyzed aqueous solution according to claim 18.
  20.  蜂のシルク蛋白質を3~6mol/Lの塩化カルシウム水溶液に溶解させる工程を含む、シルク蛋白質水溶液の生産方法。 A method for producing an aqueous silk protein solution comprising the step of dissolving bee silk protein in a 3-6 mol / L calcium chloride aqueous solution.
  21.  請求項20の生産方法を経て得られたシルク蛋白質水溶液を透析し、透析済水溶液を調製する工程と、前記透析済水溶液を硬化させる工程と、を経て得られる、硬化材料。 21. A curable material obtained by dialysis of a silk protein aqueous solution obtained through the production method of claim 20 to prepare a dialyzed aqueous solution and a step of curing the dialyzed aqueous solution.
PCT/JP2014/064155 2013-05-28 2014-05-28 Bee-silk-protein aqueous solution, and production method therefor WO2014192822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519908A JP6450676B2 (en) 2013-05-28 2014-05-28 Aqueous solution of bee silk protein and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013112243 2013-05-28
JP2013-112243 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192822A1 true WO2014192822A1 (en) 2014-12-04

Family

ID=51988845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064155 WO2014192822A1 (en) 2013-05-28 2014-05-28 Bee-silk-protein aqueous solution, and production method therefor

Country Status (2)

Country Link
JP (1) JP6450676B2 (en)
WO (1) WO2014192822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040071A (en) * 2016-09-05 2018-03-15 国立大学法人信州大学 Method for producing silk fiber three-dimensional structure
JP2018038290A (en) * 2016-09-05 2018-03-15 国立大学法人信州大学 Method for producing silk porous fiber conformation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073277A (en) * 1998-08-28 2000-03-07 Natl Inst Of Sericultural & Entomological Science Antimicrobial polymer material and its production
JP2006045076A (en) * 2004-08-02 2006-02-16 National Institute Of Agrobiological Sciences Method for extracting fibrous protein contained in honeycomb and method for forming thin film of the same protein
JP2008173312A (en) * 2007-01-19 2008-07-31 National Institute Of Agrobiological Sciences Production method of protein film and protein film obtained thereby
JP2013502438A (en) * 2009-08-26 2013-01-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Process for producing silk dope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073277A (en) * 1998-08-28 2000-03-07 Natl Inst Of Sericultural & Entomological Science Antimicrobial polymer material and its production
JP2006045076A (en) * 2004-08-02 2006-02-16 National Institute Of Agrobiological Sciences Method for extracting fibrous protein contained in honeycomb and method for forming thin film of the same protein
JP2008173312A (en) * 2007-01-19 2008-07-31 National Institute Of Agrobiological Sciences Production method of protein film and protein film obtained thereby
JP2013502438A (en) * 2009-08-26 2013-01-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Process for producing silk dope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAMEDA, T. ET AL.: "Film formation and structural characterization of silk of the hornet Vespa simillima xanthoptera Cameron", ZEITSCHRIFT FÜR NATURFORSCHUNG, vol. 60C, 2005, pages 906 - 914, XP009138439 *
TSUNENORI KAMEDA: "Suzumebachi no Silk de Tsukuru Kankyo Teifuka Zairyo", POLYMER PREPRINTS, vol. 63, no. 1, 9 May 2014 (2014-05-09), JAPAN, pages 3697 - 3698 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040071A (en) * 2016-09-05 2018-03-15 国立大学法人信州大学 Method for producing silk fiber three-dimensional structure
JP2018038290A (en) * 2016-09-05 2018-03-15 国立大学法人信州大学 Method for producing silk porous fiber conformation

Also Published As

Publication number Publication date
JPWO2014192822A1 (en) 2017-02-23
JP6450676B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
Pereira et al. Bombyx mori silk fibers: an outstanding family of materials
JP5298316B2 (en) Silk nanofiber and silk composite nanofiber derived from aquatic insects, and method for producing the same
Lewis Spider silk: ancient ideas for new biomaterials
US11141506B2 (en) Electrified composite membrane with extracellular matrix electrical topology characteristics, and preparation method thereof
Sutherland et al. The coiled coil silk of bees, ants, and hornets
Hsia et al. Spider silk composites and applications
JP5991624B2 (en) Collagen non-fibrotic molded body and method for producing the same
Baer et al. Shear-induced β-crystallite unfolding in condensed phase nanodroplets promotes fiber formation in a biological adhesive
Benitez et al. Sequence-specific crosslinking of electrospun, elastin-like protein preserves bioactivity and native-like mechanics
KR20100029217A (en) Method for silk fibroin gelation using sonication
JP2010259767A (en) Artificial tympanic membrane using silk protein and manufacturing method thereof
Wang et al. Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials
US20050065323A1 (en) Precursor feedstock for forming filaments
Pal et al. An emerging functional natural silk biomaterial from the only domesticated non‐mulberry silkworm Samia ricini
Humenik et al. Silk nanofibril self‐assembly versus electrospinning
JP2006257013A (en) Collagen gel derived from scale and method for preparing the same gel
JP6450676B2 (en) Aqueous solution of bee silk protein and production method thereof
Herold et al. Applicability of biotechnologically produced insect silks
JP2021169539A (en) Insolubilization-free silk fibroin material
Wang et al. Biogenetic acellular dermal matrix maintaining rich interconnected microchannels for accelerated tissue amendment
JP5453690B2 (en) Collagen / chitosan composite fibrous porous body and method for producing the same
Liang et al. Protein paper from exfoliated eri silk nanofibers
Walker et al. Silverfish silk is formed by entanglement of randomly coiled protein chains
Sionkowska et al. Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydroxyapatite
Wongnarat et al. Degradation behaviors of Thai bombyx mori silk fibroins exposure to protease enzymes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803834

Country of ref document: EP

Kind code of ref document: A1